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ABSTRACT

In his later years, E.A. Guggenheim recognized that the
exchange energy in his quasi-chemical theory of mixtures 1is
really a freev energy. Proper use of quasi-chemical theory
contains an entropic contribution which must also be conside-
red in calculat;ng deviations from random mixing. Methods

for including this entropic contribution are discussed here.

When Guggenheim's quasi-chemical theory 1is coupled with
a two-fluld theory of mixtures and a suitable reference
system, we obtain an equation of state that ma& be particu-
larly useful for fluid mixtures showing large deviations

from ideality.



INTRODUCTION

Chemical engineers in process design are increasingly
confronted with prediction of phase equilibria for widely
asymmetric mixtures, that 1is, mixtures of molecules which
differ significantly in size and shape or intermolecular
potential. While many suitable equations of state are avail-
able for simple mixtures of nonpolar molecules (such as
light hydrocarbons), these equatioﬁs of state, with standard
mixing rules, are not adequate for predicting thermodynamic

properties of highly nonideal mixtures.

The most important step in extending an equation of state
to mixtufes_appears ﬁo be thé proper choice of mixing rules.
Density-dependent mixing rules based on the local composition
concept, as suggested by Whiting (1981,1982) and also by
Mollerup (1981), suggest significant improvement over the

usual van der Waals mixing rules.

In this ﬁork, Guggenheim's quasi-chemical théory is used‘as
aApoint of departure for defiving new mixing rules. The
quasi-chemical theory has been extended to take info account
the effect of both energy'and entropy on nonrandom mixing. In
relatively simple cases (nonﬁolar molecules), the entropic
effect can be related directly to molecular size. The terms
which account for nonrandomness due to energy differences
are éimilar in form to those in Wilson's equation but they

have been modified to meet realistic boundary conditions for



athermal mixing. By coupling the extended quasi-chemical
theory with an arbitrary hard-body refereﬁce system, we
obtain a new model for mixtures which can be applied to any
equation of state of the van der Waals type. We outline here
the derivation of.this model and discuss how it meets désired
boundary conditions for randomness and nonrandomness at high

and low densities.

We discuss the general properties of the model which
contains only two orthogonalv binary parameters. It 1is too
early to report on a definitive comparison between calculated
and observed phase behavior because as yet, we do not have
sufficient experience concerning how well the theory can fit
experiment. With two adjustable binary parameters it 1is
likely that the fit will be good but we must remember that
this is no evidence for the theory's validity. A more
meaningful test will be to compare the theory with molecular-

dynamic calculations for representative systems.

EXTENDED QUASI-CHEMICAL THEORY

Fig. 1 shows an outline of the procedure used by Guggen-
heim (1935) to derive the Quasi-chemical Theory of 1liquid
mixtures. Starting from an expression for the excess molar
energy as a function of the number of 1-2 nearest neighbors
and energy parameters €jj}, €22 and €12, Guggenheim wuses the

Gibbs-Helmholtz relation to obtain the excess Helmholtz energy



of the mixture. To establish a relation between the number of

1-2 nearest neighbors and the energy parameters €14 Guggen-—

heim considers a "quasi-chemical reaction"”
1-1 4 2-2 ==+ 2(1-2)

for which the "equilibrium constant” is a function of the
interchange energy w as shown in Fig. 2. We call this proce-

dure Guggenheim's Ansatz.

Guggenheim's treatment 1is limited to quuid mixtures of
spherical, equisized molecules. (A later modification of the
original Quasi-chemical Theory was developed for mixtures
of molecules consisting of segments of equisized spheres,
which interact with each other by a spherically symmetrical
intermolecular potential.) To make progress, we use two-
fluid ﬁheory to bifurcate Guggenheim's Ansatz such that we
obtain as independent variablés the local mole fractions xj,

and 221, as indicated in Fig. 2.

For the calculation of the excess internal energy, we
refer to an ideal solution of "ideal” hypothetical fluids (1)
and (2), where the structure of the fluids 1is the same as
that in the real solution, but where the energy interaction

parameter between unlike molecules is given by the arithmetic

mean as shown in Fig. 3. When we "flip” on the real forces
by changing energy parameter e?z (ideal mixture) to €12 (real

mixture), we obtain the real solution. This gives an expression



for the excess internal energy, which is essentially equal to

the one usually used.

We propose to include an entropic contribution to nonran-
domness, following Guggenheim's suggestion that the argument
in the exponential should be a free—-energy rather than an
energy parameter. For mixtures of nonpolar molecules this
entropic contribution, as shown in Fig. 4, accounts for both
size and shape differences. Fof more complex mixtures, it

accounts for molecular orientation (angular dependence) 1in

the intermolecular potential of polar or hydrogén-bonding‘

molecules.

The argument in our Boltzmann factors vanishes when the
unlike-molecule interaction €y9 is given by (ey1+ €79)/2. The
previously used argument €4 j (e.g. Wilson equation) over-
corrects; it produces too much "order” in the ﬁixture (Fischer,

1982).

EXCESS PROPERTIES AT HIGH DENSITIES

Fig. 5 shows the relation we obtain for the excess inter-
nal energy in the high~-density 1limit. When the Boltzmann
factor is small and the exponential is expanded in a series,
the leading term is quadratic in "effective"” size fractions
04 and goes to a van Laar form in first order for the

simple case where the mixture contains only nonpolar molecules.



The expression for the eicess internal energy shown in
Fig. 5 meets the random-mixing boundary condition as w/kT
goes to zero and fulfills the athermal mixiﬁg req;irement
when the interchange energy vanishes, regardless of entropy

parameter r.
@

For an equimolar binary mixture of equisized molecules,
Fig. 6 compares excess entropies and energies for the proposed
model, the Quasi-chemical Theory of Guggenheim and the origiﬁal
two-fluid theory with expressions in the Boltzmann factors
according to Wilson (1964). 1In the left diagram we see the
increased order which is predicted_by the original two-fluid
theory. In the right diagram we see that the excess energy (ac-

cording to Wilson) does not vanish when €;,=(€;1+ €99)/2.

EQUATION OF STATE FOR HIGHLY NONIDEAL MIXTURES

To obtain an equation of state for the entire fluid densi-
ty range, our energy parameters must be density dependent. We
can achieve that by first rélating the energy parameter (per
surface area) to‘a free energy parameter (per surfaée area)
via the Gibbs-Helmholtz relation. Second, as shown in Fig. 7,
the density-dependent free—énergy parameter must vanish at
zero densify to obt#in random mixing at low densities. Integ-
ration of the expression for the excess energy gives an equa-
tibn for the excess Hélmholtz energy (Fig. 7), where we split

the free-energy parameters in the exponentials of the Boltz-



mann factors into an energetic and an entropic part.

We propose to use for the entropic contribution a function
given in Fig. 8. For low densities, the entropic term goés
to unity, satisfying the random mixing condition. The high-
density limit is determined by binary parameter r which
reflects difference in moleculér size and shape for mixtures
of nonpoiar molecules and reflects molecular orientation and
angular dependence of the intermolecular potential forvmixtu—
res containing polar or hydrogen-bonding molecules. The parti-
cular function shown in Fig. 8 meets desired boundary condi-

tions but otherwise it is arbitrary.

Our method can be used to extend to mi%tures any equation
of state of the van der.Waals type. Fig. 9 shows the general
form of the resulting local-composition equation of state.
The choice of the reference system is incorporated through
the proper high-temperature integration constant required

upon integrating the Gibbs~-Helmholtz equation.

Fig. 10 shows the effective van der Waals constant for a
binary mixture in reduced form. At low densities the non-
randomness correction is negiigible. More significant than
the percent deviation from random mixing at high densities
is the difference in the slopes, because these are directly
related to the chemical potentials. For this highly asymmetric
model mixture, changing the entropic parameter r from 1 to 2

drastically affects one of the limiting activity coefficients



o

while the other is not changed much.

Our calculations indicate that the "switch” parameter A has
no significant effect on the results. We expext A to be a

universal constant.

Fig.1l1l shows the general properties of the proposed equa-
tion of state for binary mixtures. This equation can readily
be generalized to multicomponent mixtures using only two

adjustable binary parameters per binary.

The proposed mode} offers an importéht advantage; it can
be adapted to commonly-used working equations of state by
incorporating first-order nonrandomneés cbrrections, as shown
in Fig. 12. All these enefgetic, entropic and (créss-term)
energetic/entropic correctioné are cubic in mole fraction.
Also, they are at least quadratic in density, assuring that

they don't influence the second virial coefficient.

CONCLUSIONS

Our conclusions are shown in Fig. 13. There are two essen-—
tial achievements. First, we have proposed a method for
incorporation of entropic effects caused by differences in
size and shaﬁe and angular dependence of the intermolecular
potential. Second, we have so nbrmalized the equations that
there is random mixing and athermal mixing when €7, is gi-

ven by the arithmetic mean (€)1+ €59)/2.



The resulting model has two adjustable parameters per bina-
ry which are expected to be orthogonal because the physical
significance of one is completely different from that of the

other; one is energetic and the other is entropic.

Before we proceed to data reduction and prediction of
phase behavior, further refinements are needed, especially

in the functional dependence of the interchange entropy with

temperature and density.

We shall welcome participation by other research groups
concerning computer simulation to test crucial aspects of our

extended Quasi-chemical Theory.
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