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In his later years, E.A. Guggenheim recognized that the 

exchange energy in his quasi-chemical theory of mixtures is 

really a free energy. Proper use of quasi-chemical theory 

contains an entropic contribution which must also be conside-

red in calculating deviations from random mixing. Methods 

for including this entropic contribution are discussed here. 

When Guggenheim's quasi-chemical theory Is coupled with 

a two-fluid theory of mixtures and a suitable reference 

system, we obtain an equation of state that may be particu-

larly useful for fluid mixtures showing large deviations 

from ideality. 
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INTRODUCTION 

Chemical engineers in process design are increasingly 

confronted with prediction of phase equilibria for widely 

asymmetric mixtures, that is, mixtures of molecules which 

differ significantly in size and shape or intermolecular 

potential. While many suitable equations of s.tate are avail-

able for simple mixtures of nonpolar molecules (such as 

light hydrocarbons), these equations of state, with standard 

mixing rules, are not adequate for predicting thermodynamic 

properties of highly nonideal mixtures. 

The most Important step in extending an equation of state 

to mixtures appears to be the proper choice of mixing rules. 

Density-dependent mixing rules based on the local composition 

concept, as suggested by Whiting (1981,1982) and also by 

Mollerup (1981), suggest significant improvement over the 

usual van der Waals mixing rules. 

In this work, Guggenheim's quasi-chemical theory is used as 

a point of departure for deriving new mixing rules. The 

quasi-chemical theory has been extended to take into account 

the effect of both energy and entropy on nonrandom mixing. In 

relatively simple cases (nonpolar molecules), the entropic 

effect can be related directly to molecular size. The terms 

which account for nonrandomness due to energy differences 

are similar in form to those in Wilson's equation but they 

have been modified to meet realistic boundary conditions for 
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athermal mixing. 	By coupling the extended quasi-chemical 

theory with an arbitrary hard-body reference system, we 

obtain a new model for mixtures which can be applied to any 

equation of state of the van der Waals type. We outline here 

the derivation of this model and discuss how it meets desired 

boundary conditions for randomness and nonrandomness at high 

and low densities. 

We discuss the general properties of the model which 

contains only two orthogonal binary parameters. It is too 

early to report on a definitive comparison between calculated 

and observed phase behavior because as yet, we do not have 

sufficient experience concerning how well the theory can fit 

experiment. With two adjustable binary parameters it is 

likely that the fit will be good but we must remember that 

this is no evidence for the theory's validity. A more 

meaningful test will be to compare the theory with molecular-

dynamic calculations for representative systems. 

EXTENDED QUASI-CHEMICAL THEORY 

Fig. 1 shows an outline of the procedure used by Guggen-

heim (1935) to derive the Quasi-chemical Theory of liquid 

mixtures. Starting from an expression for the excess molar 

energy as a function of the number of 1-2 nearest neighbors 

and energy parameters Ell ,  E22 and £12,  Guggenheim uses the 

Gibbs-Helmholtz relation to obtain the excess Helmholtz energy 
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of the mixture. To establish a relation between the number of 

1-2 nearest neighbors and the energy parameters cjj, Guggen-

heim considers a "quasi-chemical reaction" 

1-1 + 2-2 --+ 2(1-2) 

for which the "equilibrium constant" is a function of the 

interchange energy w as shown in Fig. 2. We call this proce-

dure Guggenheim's Ansatz. 

Guggenheim's treatment is limited to liquid mixtures of 

spherical, equisized molecules. (A later modification of the 

original Quasi-chemical Theory was developed for mixtures 

of molecules consisting of segments of equisized spheres, 

which interact with each other by a spherically symmetrical 

intermolecular potential.) To make progress, we use two-

fluid theory to bifurcate Guggenheim's Ansatz such that we 

obtain as independent variables the local mole fractions x12 

and x21, as indicated in Fig. 2. 

For the calculation of the excess internal energy, we 

refer to an Ideal solution of "ideal" hypothetical fluids (1) 

and (2), where the structure of the fluids is the same as 

that In the real solution, but where the energy interaction 

Tw 
parameter between unlike molecules is given by the arithmetic 

mean as shown in FIg. 3. When we "flip" on the real forces 

by changing energy parameter C
o
2  (Ideal mixture) to c 12  (real 

mixture), we obtain the real solution. This gives an expression 
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for the excess internal energy, which is essentially equal to 

the one usually used. 

We propose to include an entropic contribution to nonran-

domness, following Guggenheim's suggestion that the argument 

in the exponential should be a free-energy rather than an 

energy parameter. For mixtures of nonpolar molecules this 

entropic contribution, as shown in Fig. 4, accounts for both 

size and shape differences. For more complex mixtures, it 

accounts for molecular orientation (angular dependence) in 

the intermolecular potential of polar or hydrogen-bonding 

molecules. 

The argument in our Boltzmann factors vanishes when the 

unlike-molecule interaction E12  is given by (c11+ c22)/2. The 

previously used argument cj (e.g. Wilson equation) over-

corrects; it produces too much "order" in the mixture (Fischer, 

1982). 

EXCESS PROPERTIES AT HIGH DENSITIES 

Fig. 5 shows the relation we obtain for the excess inter-

nal energy in the high-density limit. When the Boltzmann 

factor is small and the exponential is expanded in a series, 

the leading term is quadratic in "effective" size fractions 

e i  and goes to a van Laar form in f i r s t order for the 

simple case where the mixture contains only nonpolar molecules. 
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The expression for the excess internal energy shown in 

Fig. 5 meets the random-mixing boundary condition as w/kT 

goes to zero and fulfills the athermal mixing requirement 

when the interchange energy vanishes, regardless of entropy 

parameter r. 

For an equimolar binary mixture of equisized molecules, 

Fig. 6 compares excess entropies and energies for the proposed 

model, the Quasi-chemical Theory of Guggenheim and the original 

two-fluid theory with expressions in the Boltzmann factors 

according to Wilson (1964). In the left diagram we see the 

increased order which Is predicted by the original two-fluid 

theory. In the right diagram we see that the excess energy (ac-

cording to Wilson) does not vanish when 612=(c11+ c22)/2. 

EQUATION OF STATE FOR HIGHLY NONIDEAL MIXTURES 

To obtain an equation of state for the entire fluid densi-

ty range, our energy parameters must be density dependent. We 

can achieve that by first relating the energy parameter (per 

surface area) to a free energy parameter (per surface area) 

via the Gibbs-Helmholtz relation. Second, as shown in Fig. 7, 

the density-dependent free-energy parameter must vanish at 

zero density to obtain random mixing at low densities. Integ-

ration of the expression for the excess energy gives an equa- 

tion for the excess Helmholtz energy (Fig. 7), where we split 

the free-energy parameters in the exponentials of the Boltz- 
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mann factors into an energetic and an entropic part. 

We propose to use for the entropic contribution a function 

given in Fig. 8. For low densities, the entropic term goes 

to unity, satisfying the random mixing condition. The high-

density limit is determined by binary parameter r which 

reflects difference in molecular size and shape for mixtures 

of nonpolar molecules and reflects molecular orientation and 

angular dependence of the intermolecular potential for mixtu-

res containing polar or hydrogen-bonding molecules. The parti-

cular function shown in Fig. 8 meets desired boundary condi-

tions but otherwise it is arbitrary. 

Our method can be used to extend to mixtures any equation 

of state of the van der Waals type. Fig. 9 shows the general 

form of the resulting local-composition equation of state. 

The choice of the reference system is incorporated through 

the proper high-temperature integration constant required 

upon integrating the Gibbs-Helmholtz equation. 

Fig. 10 shows the effective van der Waals constant for a 

binary mixture in reduced form. At low densities the non-

randomness correction is negligible. More significant than 

the percent deviation from random mixing at high densities 

is the difference in the slopes, because these are directly 

related to the chemical potentials. For this highly asymmetric 

model mixture, changing the entropic parameter r from 1 to 2 

drastically affects one of the limiting activity coefficients 
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while the other is not changed much. 

Our calculations indicate that the "switch" parameter A has 

no significant effect on the results. We expext A to be a 

universal constant. 

Fig.11 shows the general properties of the proposed equa-

tion of state for binary mixtures. This equation can readily 

be generalized to multicomponent mixtures using only two 

adjustable binary parameters per binary. 

The proposed model offers an important advantage; It can 

be adapted to commonly-used working equations of state by 

incorporating first-order nonrandomness corrections, as shown 

in Fig. 12. All these energetic, entropic and (cross-term) 

energetic/entropic corrections are cubic In mole fraction. 

Also, they are at least quadratic in density, assuring that 

they don't influence the second virial coefficient. 

CONCLUSIONS 

Our conclusions are shown in Fig. 13. There are two essen-

tial achievements. First, we have proposed a method for 

incorporation of entropic effects caused by differences in 

size and shape and angular dependence of the intermolecular 

potential. Second, we have so normalized the equations that 

there Is random mixing and athermal mixing when E12  is gi-

yen by the arithmetic mean (c11+ c22)/2. 



WE 

The resulting model has two adjustable parameters per bina-

ry which are expected to be orthogonal because the physical 

significance of one is completely different from that of the 

other; one is energetic and the other is entropic. 

Before we proceed to data reduction and prediction of 

phase behavior, further refinements are needed, especially 

in the functional dependence of the interchange entropy with 

temperature and density. 

We shall welcome participation by other research groups 

concerning computer simulation to test crucial aspects of our 

extended Quasi-chemical Theory. 
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