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Deuteron production cross sections are calculated from an intranuclear 

cascade model for Ne + U and Ar + Ca at 400 MeV/A. In effect, there are no ad-

justable parameters in this calculation. The parameters of the cascade code 

are fixed by sum charged inclusive data. Furthermore, the high momentum deuteron 

inclusive distribution is found to be insensitive to the details of the deuteron 

wavefunction. This latter observation leads to a justification of a generalized 

coalescence formula involving both momentum and spatial coordinates. Satisfac-

tory agreement is found between our calculations and both the untriggered. and 

high multiplicity triggered inclusive spectra of deuterons with energies 

> 50 MeV/A. 
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I. INTRODUCTION 

One of the striking features of relativistic nuclear collisions is 

copious production of light composite (d,t,...) fragments. For Ne + U at 

iOO MeV/nucleon, for example, up to two thirds of the protons emerge bound in 

light fragments in certain kinematical regions. Up to now, simplified analyti-

cal models have been used to account for composite formation. 

The coalescence model 	is based on the intuitive assumption that 

if two or more nucleons emerge from the reaction region with relative momenta 

less than a coalescence radius 250 MeV/c, then through final state interac-

tions they will form a bound nuclear fragment. This model predicts that the 

momentum distribution, of a nuclear fragment with A nucleons should be there-

fore proportional to the Ath  power of the proton distribution. This power 

law has been verified experimentally for a very large class of reactions.(2) 

The absolute normalization of the fragment distributions cannot be calculated 

in this model. 

Models based on assumptions of chemical and thermal equilibrium have 

also been proposed. These have had some difficulty in correctly predicting 

the shape of deuteron spectraj2) 

(it) 
Similar models 	have recently been used to attempt to relate the 

ratio of total deuteron to proton yields to properties of nuclear matter during 

the high temperature and density phase of the collision. An experimentally 

quoted (2b) ratio of u  0.3 has been interpreted as evidence of higher entropy 

than could be accounted for by conventional nuclear degrees of freedom alone. 
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Many questions however have been raised as to whether the assumptions used in 

this interpretation are valid. 

The normalization ambiguities in the coalescence model, difficulties 

in the chemical model and questions in respect to deuteron/proton yeilds have 

motivated us to treat composite production using more detailed and exact 

methods. The intranuclear cascade model is used to generate an approximation 

to the full density operator of the colliding system as a function of time. 

The relation between this classical stochastic model and the quantum density 

operator is via the Wigner representation of the density as first outlined in 

Ref. 6. Many versions of the cascade model exist and have been on the whole 

rather successful in accounting for the summed charge inclusive cross section. 

We have used a version due to cugnon. 	The relation between the time depen- 

dent density in the Wigner representation and inclusive fragment cross-sections 

is essentially kinematic and can be found exactly. (6,7)  

In the next section we review the derivation of the necessary formulas 

found in Refs. 6,7. In addition we show that the cross section is composed of 

two parts. The first by itself is a generalization of the coalescence model 

expression. For fast deuteron production (E Z 50 MeV/nucleon) we show that 

the second part, which is simple but more time consuming to calculate, serves 

as a small correction. It is ignored in the present study. 

Section IV contains our numerical results compared to the data. In 

the last section we briefly discuss (1) total deuteron/proton yields and (2) 

suppression of forward protons. 

Our main conclusions areas follows: (1) The cascade model plus 

the generalized coalescence formula agree well with fast deuteron production 
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data to within theoretical and experimental statistical uncertainties of order 50%. 

In effect, the calculation has no free parameters. (2) The correction to 

the generalized coalescence term in the exact formula is small primarily be-

cause the cascade model generated no significant two body correlations on 

• 

	

	the order of the size of the deuteron in phase space. One corollary of this 

is the insensitivity of our results to approximations of the deuteron wave 

function. Another corollary is that it suggests the adequacy of kinetic theory 

approximations to the dynamics which also ignore two body correlations. (3Y 

For slower deuterons we expect the cascade code as currently implemented as 

well as the generalized coalescence term by itself to become inadequate. This 

agrees with the fact. that our agreement with data deteriorated below 50 MeV/ 

nucleon. (4)  Evidence for both high entropy and flow effects is currently 

inconclusive because of possibly important contributions from production of 

nuclear fragments heavier than thedeuteron. These have not been measured 

adequately in experiment nor have they been accounted for adequately by 

previous theoretical 'discussions. 
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II. ThEORY 

A. Primordial Differential Yields 

All information about a system can be extracted from its A-body 

density p(t) which satisfies Schroedinger's equation (i = 1) 

= -i[H,p] 	, 	 (2.1) 

where H is the A-body Hailtonian 

H=EK. + E V.. 
j 	:1. 	i>j 	1J 

(2.2) 

K., the kinetic energy of nucleon i and V, the interaction between i and j. 

Deuteron production information can be extracted with the aid of a two body 

density 

PD = 	D><D1 	
' 	 (2.3) 

where we take 	to be a momentum eigenstate of a deuteron formed from nucleons 

1 and 2. Thus tr(pDp(t)),  where the trace is taken over all A body coordinates, 

measures the inclusive probability for finding nucleons 1 and 2 in the subspace 

defined by p at time t. Since the trace sums over all states of the remain-

ing particles then in particular, as t + o, this expression includes contribu-

tions from final state fragments larger than the deuteon, 	for example from 

bound states of 1, 2 and 3. As usually understood, the inclusive probability 

does not include such possibilities. Thus this probability is inclusive in 

an extended sense of the word. To distinguish it we call it primordial. When 

P(0) is normalized to describe one incident beam nucleus per unit area then 

the probability for 1 and 2 to be detected as a deuteron in the final state 
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equals the cross-section, GD.  Thus, assuming this normalization, we write 

GD = urn tr PDJ(t) 	 (.i) 

and call this the primordial (differential with respect to 3-momentum) cross 

section for nucleons 1 and 2 to emerge as a deuteron. The primordial cross 

section 	is always greater than the inclusive GD  and is obtained by 

adding to it contributions from the measured inciusive JJ3, He 3 , ... production 

in a manner to be discussed. The above must finally be summed over contribu-

tions from all A(A-1)/2 pairs of nucleons to be compared with experiment. 

It is difficult to use Eq. (2. 1 ) directly because it requires that 

P(t) provide a good approximation to 2-nucleon correlations as t -' . However, 

the intranuclear cascade asymptotically describes only free streaming. The 

intranuclear cascade model can provide, at best, an approximation to p(t) only 

during the reaction time when many large momentum transfer collisions occur. 

To overcome this we turn instead to an expression for a transition rate rD(t) 

which is related to the primordial cross-section via 

"GD"  - tr(pDp(0)) = .çD00 
F(t) dt 

= f tr(pp/t) dt 

-i £° tr(pD[H,pI) di 	. 	 (2.5) 

A compact expression for F can now be derived using the following decompo-

sition of H, 

H= H +H—+U 
12 	12 	12 ' 

(2.6) 

where H12  = K1  + K2  + U12  is the two body Hamiltonian of particles 1 and 2, 



= K. + V1 for j > i > 3 is the A-2 body Hamiltonian of particles 3...A 

and 

E (V +V 
= j3 	1. 
	

2j (2.7) 

is the interaction of particles 1 and 2 with 3.. .A. Equation 2.6 into 2.5 

yields 

rD(t) = -i tr P 
D12, 

 p(t)] 
	

(2.8) 

using the cyclic property of traces. Only the commutator of U12  with p sur-

vives because (a) 	is an eigenstate of 1112  and hence IPD2 1112] = 0 and, 

(b) 	D' H] =0 since H- does not act on the coordinates of particles 1 and 2. 

Equation 2.8 can be considered to be the analog of an expression for the tran-

sition matrix. It coincides with our expectation that the probability of find-

ing 1 and 2 in a bound state can be changed only by their interaction with a 

third body. 

The finite range of the nuclear potentials V. causes rD(t) to cut 

off in time. The reaction time is thus dynamically defined and no ttfreeze  out" 

time need be inserted ad hoc in a calculation based on Eq. 2.8. It is now 

possible to employ approximations forp(t) based on dynamical models such as 

intranuclear cascade. 

B. Ppp1ication to Intranuclear Cascade 

In this model, trajectories {c.(t), Ti ( t); i = 1 ... A, 0 < t < oo} 

are calculated as a function of time. Interactions are taken into account by 

allowing the 	to change at discrete scattering times {t 1 (v)} with momentum 

transfers Ap..(v) chosen at random from experimental NN cross sections. 

Typically the times by prescription are chosen to be at the distance of closest 

approach of i with j subject to the restriction that 	
- x 
	
< (/) lI2 at 
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that time. Thus in this notation, t i .
J 
 (v) is the time of the v h collision 

between i and j and the momentum of i at t can be written as 

= p.(0) + E 	
i U(t - t .()) p. .(v) 	 (2.9) -a 	ji , 	. 

where 	
i AciJ 

.. = -Lp
J.. and p.(0) is selected from a boosted Fermi momentum dis- - 

tribution corresponding to the initial state of the nucleus that nucleon i 

started in. These models typically equate the canoniGal with the kinematic 

(m dx/dt) momentum so that Eq. 2.9 also implies straight line trajectories 

between collisions. 

In order that the intranuclear cascade model be used to calculate 

composite particle production along.the lines indicated, these trajectories 

must be related to the density operator p(t). Ideally this would be done by 

deriving the model from the Schroedinger equation. A completely satisfying 

derivation is still lacking but a first step 6  suggests that the relation goes 

via the Wigner representation P(t) of the density as follows. Recall 	that 

the Wigner representation of any operator e.g. A(t) is related to is coordinate 

space representation by 

A(t) 	A(x1,p1 ,... , A , A;t) 	 V  

-ip.y 	_ip.y 

fdy1.'.. dyAe 	... e 

. < l 	l' • ' 'A + 2 A A(t)1x1 - • J' •••  'A - 2 A> 	(2.10) 

Each cascade run provides the following approximation for the density matrix: 

3  p(t) = il h(x. - i(t)) (p. - (2.11) 

Averaging p c  over many cascade runs corresponds to sampling the allowed tra-

jectories. Therefore we approximate.the exact density matrix in the Wigner 



8 

representation by 

P(t)= 	 , 	 (2.12) 

where <"> denotes the ensemble average (over all trajectories and/or initial 

starting configurations). 

This approximation however is not such was to allow one simply to 

insert Eqs. 2.11 and 2.12 intoEq. 2.8 to calculate rD(t)  directly since it 

is clearly in gross error in the region of small internucleon separation 

where V.. is strongest. This problem can be neatly avoided by noting that 
ij 

the required commutator in Eq. 2.8 is already done for us in the cascade 

model's approximation as follows. According to eq. (2.12), the rate of change of 

p(t) is, using Eq. 2.9, 

A 
= <E 

1 

C 
+ < E E 6(t - t 

13
. .())(pC

W
(t + c) - p(t - c))> , 	 (2.13) 

j>iv 

where v . = p, .(t)/m. The first term arises from the free translation of par-

ticles between collisions while the second is due (in the context of the 

classical stochastic model) to the impulses received at times t 1 (). The 

limit C 4- 0 is implicit. The exact equation of motion is, on the other hand, 

A 
= -i E 	[K., p(t)] - i E 	[V.., p(t)] 	. 	 (2.1I) 

11 	 1>3 

But it is straightforward to show that 

-i[K., p(t)] = i.xPw(t) 	
(2.15) 



so that comparing Eq. 2.13 and 2.1 1  we find that 

_i[V. 	p(t)] 	<E ô(t- t.(v))(p(t + 	- p(t - 	 (2.16) 

- 

	

	is an approximation to the commutator which is already included in the model. 

Equation 2.16 into Eq. 2.8 yields 

	

t) = < E 	E E 6(t - t1 . ( v)) 	I dx dp1h3 " 
i=l,2 j>3 v 

C, 
PD W Lx1 ,El; x2 ,p2 )Lp(t + 	- p t  w 

	

= < E 	E E (t - t. .(v))(PD  (t + e) - 	( t - E))> , 	 ( 2.17) 
i1,2 j13 v 	 ' 	 ' 

using the notation 

PD ,w(t) 	PD,wl(t),Pl(t), 2(t)12(t)) 

- p(t)) D(r(t), q(t)) , 	 (2.18) 

<2½D> 	
h3/2e(i p.( 	+ x2 )/2)<rtD> , 	 (2.19) 

D(r,q) = fdy e <r + yjD><DjE- . (2.20) 

Thus P is the deuteron total momentum, ID> its internal wave function unit nor-

malized and, D, the Wigner representative of ID><DI. The phase space integral 

in Eq. 2.17 is trivial because of the delta function form of pC(t) given by 
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Eq. 2.11 and the variables in Eq. 2.18 are 

P(t) = T 1(t) + 2 (t) 

q(t) = 51(t) - 

r(t) = (.i1 (t) 	2 (t)) 

Equations 2.17 and 2.18 into 2.5 yield 

GD 11 - Tr(PDP( 0 )) = < E (p 	n Ct + c) - p 	n Ct - 	 > 	 31 

n1 D,w 
	 D,w  

(2.21) 

(2.22) 

where for convenience we have ordered the scattering times t..(v) sequentially 

and called them t n 

{tn 
 It n+1  >t n } = it 1. 3 .()Ii=1,2;j.3;} 
	

(2.23) 

The 6A dimensional phase space point {.(o), 	(o) , i = 1 ... Al, the initial 

condition for a cascade trajectory, is normally chosen from a distribution 

representing one beam per unit area just prior to collision with a 

single localized target nucleus. Internal consistency requires that this dis- 

tribution in principle be 

become negative at some points. 

each detailed oscillation in p(O 

simple positive approximation is 

is done we then have 

Tr ( PDP (0 )) 

This is however impractical because 	can 

Since it is most probably unnecessary to keep 

for relativistic heavy ion collisions,a 

used (as noted following Eq. 2.9).  Once this 

(2.24) 

the right hand side being the Monte-Carlo approximation to the phase space 

integral on the left. We can then rewrite Eq. 2.22 as 
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GD = 	
+ c) - PD,w(tfl - )) > (2.25) 

defining p D5w(t) = 0 for t < 0. 

The right hand side of Eq. 2.25 is a sum of terms each proportional 

to a delta function in total deuteron momentum. Clearly we are really in-

terested in a smoothed version of this function. Assume this is done by col-

lecting cdntribütions in bins of volume EP to form the cascade models approxi-

mation to "G 
D " 

tSP. Thus each p(t n + ) lies in some bin and one adds 
- 	 - 	— 

± D((t), q(t + c)) to accumulate "GD"  AP for that bin. Generally P(t + 

will not be in the same bin as P(t - ) but, because of momentum conservation 

between collisions, it will be in the same bin as P(tn+1 - c). Since D is 

generally positive this leads to important cancellations and it is useful to 

rewrite the series to reflect these facts as follows, 

"GD" = <(p - PN)DN> 	

N-1 	
- 

+ •<5p> 
	

(2.26) 

P = P(t + ) = (t 1  - E) 

T1 
= q(t + c) =jt1 - 

r = r(t n + c) = r(tn 
 - 

-.  

DN = D(rN ,  

= D(r, 	- D(r 1 q) 

(2.21) 

(2.28) 

Note that in all the foregoing N, as well as {P,q,r; n = 0 ... N},vary from 

one cascade to another. 
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Before proceeding we must correct a slight discrepancy that has been 

allowed for simplicity to creep into the notation. Equations 2.27 are incon-

sistent with the restriction j > 3 in the definition of t given by Eq. 2.23 

since a self-interaction of the pair, a collision between particles 1 and 2 which 

could occur between a tn  and t 1 , would cause q,(t + c) 0  q(t 1  - 

However note that D isa function only of In, r.q and, Iqi; the first two are 

zero at a self collision and the last is conserved in elastic scattering. Thus 

inclusion of self collisions in Eq. 2.22 will not change the result since they 

all give zero contributions. If we do this, by removing the restriction j > 3 

in Eq. 2.23 1 it becomes consistent with Eq. 2.27,and Eq. 2.26 is still correct. 

It is interesting to note that this result can be viewed as a reflection of 

the orthogonality between bound and scattering wave functions which is preserved 

in this model. 

We have seen that "CYD"  is made up of two parts. The first, <PN>  is 

calculated using last collision coordinates only, the second, <5p> involves all 

of them. Since typically there may be ".' 5 collisions/nucleon/cascade, < 5 p> 

could take 10 times longer to calculate than .<PN>,and  it is often impractical 

to do this. However a previous preliminary numerical investigation of fast 

((-P) 2 /2m > 50 MeV/nucleon) deuteron production from 600 MeV protons on gold 

showed that <SP>/<PN> " 0.01. This suggests that cancellations in the second 

part of 	are large. In the next section we study under what conditions such 

cancellations in <5p> can be expected to occur. We show that when <P N > is in-

sensitive to the deuteron wavefunction, then 

<>"<N> << 1. 
	 (2.29) 
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In that case a can be calculated from the generalized coalescence formula, 

< N>  

C. The Generalized Coalescence Formula 

The approximate deuteron Wigner density used in this investigation is 

that of a ground state harmonic oscillator wave-function, 

2 2 22 
D(,q) = e_r Id - d 	 (2.29) 

A value of d = 1.7 fin corresponds to a r.m.s. radius of 2.1 fm. We found that 

varying d2  by a factor of two had no detectable effect on the calculated value 

of This result has significant consequences as shown below. 

Let us define source distribution functions 

N-i 
3(P;q,r)P =J 	dP < E 	(P - P)6(q - q)cS(r -AP  

	

-. 	n0 

N-1 
S (P;q,r)ip= f 	dP < E S(p- P)rS(q_ q)S(r - rn+1)>AP 

	

- 	n0 

Sf(P;q,r)AP = f 	dP <cS(P - 	)S(q - q)S(r - rN) > 	 (2.30)AP  

In terms of these, the cross section into AP can be written as 

	

GD  = I dqdr[D(r,q)(S(P;q,r) - S(P;q,r)) + D(r,q) S(P;q,r)] . 	(2.31) 

S gives the number of pairs produced at P,q,r due to all collisions before the 

(. 	last,S gives the number annihilated andS f  the number produced due to all last 
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collisions. A physically reasonable S f  must possess a minimum momentum scale 

for each P say q(P) such that for q < aP), S. varies negligibly from its 

value at q = 0. Our observation that I dqdr D(q,r) S f(P;q,r) did not vary with 

changes ind, the momentum scale in D. shows that qmjn  >> c1 1 . But q(P) 

tells us about the range in relative momentum between nucleons of momentum 	 - 

1/2 P and other nucleons in the medium in which they travel. The corresponding 

momentum scales in S cannot be less than q(P) because they refer to earlier 

(and therefore "hotter") times during the reaction. We therefore conclude that 

we may set q = 0 in S under the integral in Eq. 2.31 in the same limit. This 

causes <6p> to vanish. 

An order of magnitude estimate of <ISp> can be obtained as follows. 

In Eq. . 2.30 set 

En+l = n + 2/m (t 1  - t) 	 (2.32) 

- t 	A/v d rb mAN/Pn 
, 	 (2.33) 

where the deuteron mean free path, Xd is approximately one half the nucleon mean 

free path AN  d. This into Eq. 2.30 yields 

S(P;q,r) Z S(P,q,r - ór) 	 (2.31 ) 

= 2Aq/P 
	

(2.35) 

This into Eq. 2.31 yields 

< 5 p> 	I dq.th' D(r,q) (S(P;q,r) - S~(P;,r 

I dqdr D(r,) q.(r - Sr). S. .(F) 
3 13 - 

(2.36) 

where the 1eding contribution from the. Taylor series expansion of S +  about 
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q = r = 0 has been kept using the definition 

sj(P) 	 (2.37) 

and implied summation over repeated indices. Note also that the arguments con-

cerning the momentum scale in S can be repeated for its length scale, 

r(P) >> d, which justifies Eq.. 2.36 as the leading contribution. The only 

natural scale parameter for r 	which is much larger than d. is the nucleus iran 

radius B. 

A very gross estimate of s..(p) is possible; 

'v 	 . 	 ( 2.38) 

This into Eq. 2.36 yields 

<> N (A/r in,)2Pmin 	fdqdrD(r,q) S4(P;O,O) •,. 	 (2.39) 

dropping constants of order unity. Estimating 

S(P;O,O) 	<N> Sf(P;O,O) 	, 	 (2.10) 

where <N> is the average total number of collisions made by a fast pair of 

nucleons, 

<N 
p > 
	nan R/X " r 	/A 	 (2. 1 1) 

gives 

<>'<N> 	
<N> (A/r)(d2P.) 	(dP) 	dqmi 	

(2.2) 

Sincewe find da. >> 1, empirically for high momentum deuterons (dP >> 

e.q. (2.291 is satisfied in our case. 
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We derive next a practical criterion to test if 	 is indeed 

small. 	An order of magnitude estimate of q min can be obtained from the sen- 

•sitivity of <P > to the momentum parameter appearing in D as follows. Note 

that we could have more generally used a model such as 

D(r,q) = 8(d Id )3 _r2/dr2_ 2d 2 q 	
(2.3) 

instead of Eq. 2.29. In this case 

/dq2<PN> 	f dd 	/ q2  D(r,q) q2(Sf(P;q,r)/q2 ) 0  

dq 	 N • 	<> 	 (2.lLl) 

using the same sort of estimate as in Eq. 2.38. Equation 2.44 into Eq. 2.12 

yields 

[n<p1 >/n d q 21/2 
	

(2. 1 5) 

Thus the error involved in neglecting <6p> is linked to the sensitivity of the 

calculation of <N> 
 to the model deuteron Wigner distribution used. 

We conclude this discussion of the validity of Eq. 2.29 by cautioning 

that is based on the smallness of 3Pn<pN>/9fldq2  which has been verified only 

for fast deuterons. 	 This could very well break down for slower 

deuterons as evident from the factor (dP) '  in Eq. 2.12. 

With eq. 2.29 satisfied, we obtain finally the generalized coalescence 

formula 

aD = 	 - 	 (2.46) 

'l'2 
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where 3/4 is the statistical spin factor for the deuteron now inserted, i and 

are indices respectively for protons and neutrons now summed over, N is the 

last scattering index which now varies with i 1 , i as well as over cascades. 

	

EN = 1l . 2 	 - 
N' is the total momentum of the pair 	

' 	after the 

last collision of either with a third particle and, 

	

=• 	_• 	
is the Wigner function evaluated at the final r, q of 

1l12 	1l12 

The assignment of neutron and proton labels in the Cugnon COde is 

done statistically according to the N/Z ratio of projectile and target nuclei. 

The physical interpretation of Eq. 2.46 is that the probability for 

n-p pairs to form deuterons is determined by their relative separation and 

momentum when both cease interacting with other nucleons. In this sense it is 

a final state interaction approximation. Last collision times tN  vary over the 

entire history of the reaction. The familiar coalescence model 1  in which a 

pair is assumed to form a deuteron if q < d is corrected by the inclusion 

of spatial correlation effects. This and other such models are also corrected 

by the realization that the cross section "clD"  being calculated is the primor-

dial and not simply the observed one. Also note that there is no arbitrary 

freezeout time in eq. 2.116.  All quantities in eq. 2.46 are determined from 

the dynamical cascade calculation. Finally, we emphasize that even this 

generalization of the coalescence formula fails in kinematic regions for which 

(d2PQmin)1 Z 1, as seen from eq. (2.42). A significant result of this section 

is the derivation of.a practical test eq. (2.45) for the validity of the general-

ized coalescence formula. 
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III. NUMERICAL RESULTS 

We have performed calculations for the reactions Ne(1400 MeV/A) + U 

and Ar(1400 MeV/A) + Ca. Inclusive differential cross sections for 1H, 2H, 3H, 

3He, He were reported for these reactions over a wide kinematic range in Ref. 8. 

The sum charge inclusive yield is just the primordial proton cross-

section and in the cascade model is given by 

= <Eó(p'- p )> 	 (3.1) 
H 	i 

where EN = EN,i is the momentum of proton i after its last collision and the 

sum is over all protons. There is no term corresponding to <5p> here - it 

vanishes identically. This term exists only for 'composite particles. The 

primordial proton cross section is related to the experimental inclusive cross 

sections for composites y = 1H, 2H 9 3H 9 3He, He, . . . by 

' t cJ 	"EZ 	a 	 .' 	 (3.2) 

	

I 	
'' 	'' 

where Z is number of protons in y. The approximation indicated in Eq. 3.2 

refers to neglect of effects of Fermi monientum'of the proton in 

In Fig. 1.A,C, the cascade model prediction of t?cy " is compared to 
H 	14 

the data calculated via Eq. 3.2 where the sum over y extends to He. For each 

impact. parameter b =n/10 bax 100 cascades were generated and averaged over. 

Thus we calculated 

IS  = I 27Tb tb <cS(P - EN>b 	 (3.3) 
H 	n 	 n 

where Ab = b max /10. 
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An important momentum shift correction, however, was applied to the direct out-

put of the Cugnon code, 	 Nucleons before and 

during the reaction find themselves in an average optical potential u -50 MeV. 

They must overcome a potential on this order of magnitude to emerge unbound 

as a lightly bound fragments. This effect is not included in the code. To 

take this final state interaction into account in a simple rough way, we have 

distorted each final nucleon momentum P to 

= (p2 + 2rnV0 )/2 
	

(3.Ii) 

where V0  was varied to fit the sum charged data. A best value V 0 	16 MeV 

was found. Without this distortion, cascade results are systematically shifted 

to higher energies and clearly disagree with the data,. Of course at high 

energies E >> V0  the shift has no effect but in the kinematic domain E < 100 MeV 

it is important. It is interesting that one reasonable value of V 0  leads to 

such an accurate reproduction of the data at all energies and angles in two 

rather different reactions. It should be kept clearly in mind that this pro-

cedure is a correction to the code and not to the theory discused in the 

previous section. The theory in section II presupposes the accuracy of the 

underlying cascade model. 

Having used the sum charge data to determine V011  we proceed to cal-

culate the primordial deuteron cross section. As was first pointed out in 

Ref. 7, this is related to the experimental cross sections for composites by 

the direct generalization of Eq. 3.2, 

PC 2 rI1 	 (3.5) 
Y 	 I 
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where '0(2H,y)  is an apriori probability for finding a deuteron like configura-

tion of an n-p pair in a fragment y. An exact expression for 	is given in 

Ref. 7  which involves overlaps of wave functions. Equation,3.5 again neglects 

Fermi motion of the n-p system in y.  The suni clearly begins with y = D = 2H 

for which 6(2H/2H) = 1. A rough estimate of higher probabilities based on 

simple spin-isospin considerations was given in Ref. 9; 62( 211/111) 	C( 2H/3He ) 

1.5, 7(2H/4He) 	3.0. Keeping only these terms we have therefore used the 

expression 

"cy"a +l.5(c 	+G 	)±3.0o D 	D 	
3H 	3He 	 He 

(3.6) 

all cross sections being evaluated at the same energy per nucleon. 

The large triangles in Figs. 1B,C show the "GD"  data obtained using 

Eq. 3.6. The large size of the triangles reflects an estimated 50% uncertainty 

in the (?(2H/y) values used The dots show GD. Note that in the kinematic 

region considered there are substantial contributions to "GD" from higher mass 

fragments y. Thecalculated curve is based on Eqs. 2.146.  To within the 50% 

uncertainties in the experimental "GD"  values and the statistical uncertainties 

in the cascade output, the calculated "GD"  is in excellent agreement with the 

data with respect to both normalization and shape over a 3 decade fall of the 

cross sections in both reactions. 

We emphasize that in comparison to thermal models where large nor-

malization corrections must be introduced, there are no adjustable parameters 

in our calculation of "GD".  Once the cascade model is adjusted to reproduce the 

sum charge data by adjusting V031  the deuteron calculation depends only on the 

deuteron wave funct ion. 
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However, as mentioned before, the results were insensitive to factor 

of two variations in the d2  parameter in the deuteron Wigner density D. This 

implies that the cascade model generates no two body correlations on the scale 

of the deuteron. Essentially, there are only long range 14  fm correlations 

due to finite size effects but on the scale of d 2 ± 1 fm the two particle 

density shows no significant structure. A corollary of this is that insofar 

as deuteron produátionis concerned, the two nucleon density can be well approxi-

mated by the product of single particle densities. This in turn accounts for 

the success of the coalescence model. 

We have also calculated primordial proton and deuteron yields from 

high multiplicity selected reactions of Ne(1400 MeV/A) on U. Results are shown 

in Fig. 2. Theoretically, the maximum impact parameter in Eq. 3.3 was cut to 

2.1 fm in order to fit the primordial proton (i.e. sum charge) data. As Fig. 2 

shows, this can be-done only for E > 50 MeV protons. The discrepancy at lower 

10 energies had led to the speculation that collective flow effects, absent in 

present cascade codes, may be important at these low energies and impact 

parameters. Generally we expect deficiencies in present day cascade codes to 

intensify at lower energies and during denser intermediate states. This is 

especially clear because Of the necessity to introduce binding corrections 

such as eq. 3.14. The domain of applicability of this áode seems to be E > 50 

MeV for central collisions and there itagrees remarkably well with thedata. 

Using the same impact parameter cutoff, "aD"  was calculated and is 

shown in Fig. 2. The experimental 	"an" was calculated from Eq. 3.5 summing 

only for y = 2H, 3H since only these were measured for central trigger events. 

Nevertheless the overall agreements again leads us to conclude that to within 

• 50% accuracy the cascade model can account for composite spectra even for 

central collisions. 
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IV. DISCUSSION 

We briefly discuss here the relation between our results and two 

topics of recent interest. 

First, there is the topic of the ratio of the total primordial deu-

teron yield to the total primordial proton yield. Our value of this ratio, 

in agreement with that obtained in Ref. 9, is too high ("D"/ t'P" 	5.2/6.6 

as compared to the experimentally quoted(2'O) value of 0.3. However, most 

primordial deuterons are at low energies where the number of heavier composites 

becomes largest. Experimentally these are not directly observed and the ex-

trapolation procedure from the high energy light composite spectra used to 

obtain the quoted value of 0.3 tends to underestimate their number. It also 

neglects some lighter fragments associated with the nuclear fragmentation region. 

Both effects imply that the experimentally quoted ratio should be considered 

a lower bound. Theory also increasingly tends to be in error for low energy 

primordial deuterons. As mentioned already this, is due both to defects in the 

cascade model and to neglect of the <Sp> term in the formula for D 

Therefore we are not confident in assigning significance to the present dis-

crepancy between theory andexperiment'.  

Second there is the question of the suppression of forward protons 

in central collisions as evidence of flow effects. 	The phase space den- 

sity in the forward direction is generally large in cascade calculations 

thereby increasing the probability of composite formation. If it is large 
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enough free protons will be suppressed only because primordial protons will 

emerge bound in composites. That is, the free proton depletion could be 

caused by an enhanced composite production. Preliminary 2 H and 3H data also 

seem to show forward suppression for central collisions but heavier fragment 

data are not yet available. If heavier fragments also are found to be sup-

pressed in the forward direction then a clear case for collective flow effects 

can be made. Otherwise, abundant composite fOrmation may be a viable 

explanation. 

!1 
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FIGURE CAPTIONS 

Fig. 1. 	Comparison of sum charge inclusive data 8  (a,c) with. cascade pre- 

dictions. In (b,d) the primordial deuteron distribution as calcu- 

lated (solid lines) using Eq. 2.146is compared to data (solid 

triangles) using Eq. 3.6. The free deuteron data are indicated 

by dots. 

Fig. 2. Sum charge and primordial deuteron (including 1  H and H only) data (11) 

from high multiplicity triggered Ne + U at 400 MeV/A. The lines 

are our calculations with an impact parameter cut off of 2.1 fin. 
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