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Deuteron production cross sections are calculated from an intranuclear
cascade model for Ne + U and Ar + Ca at 400 MeV/A. 1In effect, there are no ad-

Jjustable parameters in this calculation. The parameters of the cascade code

are fixed by sum charged inclusive data. Furthermore, the high momentum deuteron

inclusive distribution is found to be insensitive to the details of the deuteron
wavefunction. This latter observagidh leads tp a justification of a generalized
coalescence formula.involving both‘homentum and spatial coordinates. Satisfac-
tory agreement is found between our calculations and both the untriggered and
high multiplicity triggefea inclusive spectré of deuterons with energies

> 50 MeV/A.
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law has been verified ekperimentally for a very large class of reactions.

I. INTRODUCTION -

One of the sﬁriking features of relativistic nuclear collisions is

copious production of light composite (d,t,...) fragments. For Ne + U at

~

400 MeV/nucleon, for example, up to two thirds of the protons emerge bound in
light fragments in certain kinematical regions. Up to now, simplified analyti-

cal models have been used to account for composite formation.

(1)

The.coalesceﬁce model is based on the intuitive assumption that

if ﬁwbkor:ﬁore nucleons emerge from the feaction region with relative momenta
léss than a éoaléscence radius v 250 MéV/c, then througﬁ final state interac-
tiéné they will form a bound nuclear fragment. This model predicts that the

ﬁbgeﬁfumAdisfribution; of a nﬁclear fragment ﬁith A nucleons should be there-

fore proportional to the Ath power of the prbton distributidn. This power

(2)
The absolute normalization of the fragment distributions cannot be qalculated
in this model.

Models based on assumptidns of chemical and ﬁhermal equilibrium have

(3)

also been proposed. These have had some difficulty in correctly predicting'

(2)

the shape of deuteron spectra.

(L)

Similar models have recently been used to attempt to relate the

ratio of total deutefon.to proton yields to properties of nuclear matter during
the high temperature and density phase of the collision. An experimentally

(2p)

gquoted ratio of v 0.3 has been interpréted as evidence of higher entropy

than could be accounted for by conventional nuclear degrees of freedom alone.



Many questions however have been raised as to whether the assumptions used in
this interpretation are wvalid. |

The normalizatién ambiguities in the coalescence model, difficulties
in the chemical model and questions in respect to deuteron/proton yeilds have
motivated us to tfeat composite production using more detailed and exact ’
methods.” The intranuclear_cascade moael is used to generaté an approximation
to the full density operator of the colliding system as a function of time.
The relation between this classicél_stochastic model and the quantum density
operator is via the Wigner representation of the density as first outlined in
Ref. 6. Many versions of the cascade model exist and have been on the whole
rather‘sucgessful iﬁ accognting for the summed charge inclusive cross section.

(5)

We have used a version due to Cugnon. The relation between the time depen-

dent density in the Wigner representation and inclusiye fragment qross—sectioné
is essentially kinematic and caﬁ be found exactly;(6’7)

In the next section Wé review the derivation of the necessary fdrmulas
found in Refs. 6,7. Iﬁ addition we show that the cross section is compésed of
two parts; The first by itself is a generalization of the coaleséence model
expression. For fast dguteron production (E > 50 MeV/nucleon) we show that
the second parﬁ, which is simple but more time consuming to calculate, ser?es
as a small correction. ItAis ignored in the present study.

Section IV contains our numerical results compared to the data. 1In

the last section we bfiefly discuss (1) total deuteron/proton yields and (2)

<

suppression of forward protons.
Our main conclusions are as follows: (1) The cascade model plus

the generalized coalescence formula agree well with fast deuteron production



data to within theoretical and experimental statistical uncertainties of order 50%.
In effect, .the calculation has no free parameters. (2) The correction to

the generalized coalescence term in the éxact formnla is small primarily be-
cause the cascade model generated no significant two body correlationé on‘

the order of the size of the'deuteron;in.phasé space,.;One corollary of this
is the insensitivity of our results to approximations of the deuteron wave
function. . Anqther corollary is that it suggesté the anequacy of kinetic theory
approximations to the dynamics which also ignore two body correlations. (3)!
For slower deuterons we expect the cascade code as currently implemented as
well as_thé generalized.coalescenge term[bylitself to necome inadequane. This
agrees with the fact that our agreement with data detgriorated beloﬁ 56 MeV/ -
nucleon. (4) Evidence for both high entropy and flow effects is currently
inconclusive because of possibly important contributions from production of
nuclean fragments heavier than the deuteron. These ha&e not been measured
adequnteiy in experimenn non have they been accounted_for adéquately by

previous theoretical discussions.



- II. THEORY
A. Primordial Differential Yields

Ay

All information about a system can be extracted from its A-body

density p(t) which satisfies Schroedinger's equation (i = 1)

dp/dt = -i[H,p] ' v SR ‘(2.1)

where H is the A-body Hamiltonian

H=2K + I V.., | - (2.2)
i i>y 1 - ’

K;» the Kinetic energy of nucleon i and Vij’ the interaction between i and ie
Deuteron production information can be extracted with the aid of a two body

density - ’ : _ )

pD = le><wD| ) . ' ‘ (203)

where we take wD to be avmomentum eigénstate of a deuteron formed from nucleons
1 and 2. Thus tr(pr(t)), where the trace is taken over all A body coqrdinates,
measures the inclusive probability for‘finding nucleons 1l and 2 in the subspace
defined by pD at time t. Since the tracg sums over g;l_states of the remain-

ing particles then in particular, as t > o, this expression includes.contribu-

(1)

tions from final‘state fragments larger than the deuteron, for example from
bound states of 1, 2 and 3. As usually understood, .the inclusive probability»
does not include such possibilities. Thus this probability is inclusive in

an extended sense of the word. To distinguish it we call it primordial. Whgn

p(0) is normalized to describe one incident beam nucleus per unit area then

the probability for 1 and 2 to be detected as a deuteron:'in the final state



B

equals the cross-section, O Thus, assuming this normalization, we write

D.'

"o " = 1lim tr p.p(t) (2.4)
D~ iie D - |

and call this the primordial (differential with respect to 3-momentum) cross
section for nucleons 1 and 2 to emerge as a deuteron. 'The primordial cross
section "o

" is always greater than the inclusive O_ and is obtained by

3

D D

adding to it contributions from the measured inclusive H3,'He o o production%
in a manner to be discussed. The above must finally be summed over contribu-
tions from all A(A-1)/2 pairs of nucleons to be compared with expériment.

it-is difficult to use Eq. (2.4) directly because it requires that

o(t) provide a good approximation to 2-nucleon correlations as.t - ®. However,

the intranuclear cascade asymptotically describes only free streaming. .The

intranuclear cascade model can provide, at best, an approximation to p(t) only

during the reaction time when many large momentum transfer collisions occur.
To overcome this we turn instead to an expression for a transition rate TD(t)

which is related to the primordial cross-section via

ot - tr(on(O))

(o}

.6 rD(t) dt

= {) tr(pDap/at) dt

00

= -1 [ tr(pplH,0]) at . | - (2.5)

A compact expression for FD can now be derived using the following decompo-
sition of H,

H=H,+Hz + U0, , : (2.6)

where H12 = Kl + K, ¢+ U12 is the two body Hamiltonian of particles 1 and 2,



HI§-= ZKi + Vij for jJ > 1 > 3 is the A-2 body Hamiltonian of particles 3...A;
and
U,= I (v,, +7V,,) ' (2.7)
1
S T

is the interaction of particles 1 and 2 with 3...A. Equation 2.6 into 2.5

yields
ro(s) = =i tr op[u, p(t)] (2.8)

using the cyclic property of traces.  Only the commutator of Ui with p sur-

2

vives because (a) Y_ is an eigenstate of H.,. and hence [pD, le] = 0 and,

D 12

(b)‘[pD, HIE]'=‘O since Hiz-does not act on the coordinates of particles 1 and 2.
Equation 2.8 can be considered to'be the analog of an expression for the tran-
sition matrix. It coincides with our expectation that fhé probability‘of find-
ing 1 and 2 in a bound state can be changed only by their interaction with a
third body.

The finite range of the nuclear potentials V; . causes FD(t) to cut

J
off in time. The reaction time is thus dynamically defined and no "freeze out"
time need be inserted ad hoc in a calculation based on Eq. 2.8. It is now

possible to employ approximations for p(t) based on dynamical models such as

intranuclear cascade.

B. Application to Intranuclear Cascade

In this model, trajectories {%.(t), p(t); 1 =1 ... A, 0 <t <}

are calculated as a function of time. Intéractions are taken into account by

allowing the ﬁi to change at discrete scattering times {tij(v)} with momentum

transfers Apij(v) chosen at random from experimental NN cross sections.

Typically the times by prescription are chosen to be at the distance of closest

)1/2

approach of i with j subject to the restriction that |§i - gj| < (UNN/ﬂ at



derivation is still lacking but a first step

that time, Thus in this notation, tij(v) is the time of the vth collision

between 1 and j and the momentum of i at t can be written as

p.(t) =p.(0) + T ZO(t-t..(v)) Ap..(V) (2.9)
~ ~ J#L v Mo g -
where ARij = —Agji and gi(o) is selected from a boosted Fermi momentum dis-—

tribution corresponding to.the initial ;tate of the nucleus thatvnucleon i
started in. Thesglmodels typically equateithe.canonieal with the kinematic
(m dx/dt) momentum so that Eé,v2.9_also implies straight line trajectories
between gollisions.

yIn order that the intranucieaf cascade model‘belused to calculate
composite particle production along the lines indicated, these trajectories
must be related to the density operator p(t). Ideally this would be éone by
deriving the model from the Schroedinger equation. A completely satisfying
(6) suggests that the relationvgoes
via the»Wigner representatiqn pw(t) of the density as follows.l Recall that
the Wigner erresentation‘of any Oberator e.g. A(t) is related to is coordinate

space representation by

A (t) E A (El’gl"”.’i(A’EA;t) ’

w w '
-ip. -y =ipycy
_ , £1 41 ~A A
_fd;zl ehe d}:Ae .- €
1 1 = >
. < = 5 -5 -7 7o )
SERIPIR ALREEEE TN XA'A(t)|§1 2 Y12 X T2 (2.10)

Each cascade run provides the following approkimatidn for the density matrix:

.
og(®) = T n8(x - F (1)) 8(p; - B(t)) - | (2.11)

Averaging pwc over many cascade runs corresponds to sampling the allowed tra-—

jectories. Therefore we approximate the exact density matrix in the W;gner



representation by
C . . y
p,(t) = <p (t)> (2.12)

Where.<rf-> denotes the ensemble average (over ali\tréjectories and/or initial
starting configurations).
This approximation however is not such-.as to allow one simply to
insert Egs. 2.11 and 2.12 into Eq. 2.8 to calculate PD(t) directly since it
is clearly in gross error-in the region of small internucleon separatibn
where Vij is strongest. This problem can be»neatly av§ided by noting that.
the requiréd commutator in Eq. 2.8 is already done for us in the cascade
model's apprbximation'és follows. .According to éq. (2.12), the rate of change of

pw(t) is, using Eq. 2.9,

A i
- c
3, (t)/3t = < L 3,32 p (t)>
i=1 1
$<T L8t -t (V)pAt +E)-p(t-e))> > (2.13)
31 v e ? |

where ii = 5i(t)/m. The first term arises from the free translation of par-
“ticles between collisions while the second is due (in the context of the
classical stochastic model) to the impulses received at times tij(v). The

+ . S
limit € » 0 is implicit. The exact equation of motion is, on the other hand,

A ,

B (t)/06 = =i T (K, o(t)] -3 Z [y, p(e)], « , (2.14)
i=1 i>] .

But it is straightforward to show that

-1k, o(t)] ) = ¥;-8, o, (t) (2.15)

1



so that comparing Eq. 2.13 and 2.14 we find that

S0V, p()], T B 8(e - b ONE(s + €)= gt - e))>  (2.16)
. |

is an approximation to‘the commutator which is already included in the model.

N Equation 2.16 into Eq. 2.8 yields
‘ | -3 -3
r(t) =< I zza(t-t(v)) fax dp,h ~ +°- dx,dp,h
D 21,2 >3 v ) Jandp A“RA
o oo (% 5Py5 %,0,) 1OS(t + €) = o (£ - €)]>
D,w %2015 Xp2Dp/ LB, w
=< I LI 6(t -ty (v))(pD (t +¢€) - pD (t -€))> , (2.17)
i=1,2 j>3 v :
using'the‘notation
= 8(p = p(t)) D(x(t), g(t)) , | S L (2a8)
<x. X lw > = h_3/2e (-i P | + x )/2)<r|D> ' : (2.19)
X Zoi¥pT TR SRR AT T X /e R s | ‘ , ¥
) _ pe -igey 1. 1 e - -
D(r,q) = fdy e T+ 3 y|p><plr - 5y - (2.20)

Thus P is the deuteron total momentum, |D> its internal wave function unit nor-
malized and, D, the Wigner representative of ]D><D|. The phase space integral

C, . .
in Eq. 2.17 is trivial because of the delta function form of pw(t) given by



10

Eq. 2.11 and the variables in Eq. 2.18 are

P(t) = B (t) + py(t)
a(t) = (py(t) - py(t))/2
r(t) = (x(t) - x,(¢)) . : - - (2.21)
Equations 2.17 and 2.18 into 2.5 yield
N , n
"o - Tf(pDo(o)) = <n§1(pD’w(tn +€) - oD,w(tn’- e)> (2.22)

where for convenience we have ordered the scattering times tij(v) sequentially

and called them tn;

{tnltn+l

>tn} = {tij(v)|i=1,2;33§;v} . | | (2.23)

The 6A dimensional phase space point {%i(o), éi(o), i=1 ..; A}, the initial
condition for a cascade trajectory, is normally chosen from a distribution
representing one beam per unit area just prior‘to collision with a

single localized target nucleus. Internal consiétency requires that this dis~
tribution in principle be p(O)w. This is however impractical beécause p(O)w can
becone négative at some points. Since it is most probably unnecessary to keep
each detailed oscillation in p(O)w for relativistic heavy ion collisions,a
simple positive approximation is used (as noted following Eq..2.9). Once this

is done we then have

Trpyp(0)) = <py (0)> , (2.24)

the right hand side being the Monte-Carlo approximation to the phase space

integral on the left. We can then rewrite Eq. 2.22 as



o

11

N .
N 1 - -
opt = < E (pD’w(tn + €) pD,w(tn e)) >
n=0 <

defining pD”é(t) =0 for t < O.
2

(2.25)

The right hand side of Eq. 2.25 is a sum of terms each proportional

to a delta fundtion_in total deuteron 'momentum.. Clearly we are really in-

terested in a smoothed version of fhis function. Assume this is done by col-

lecting cdntributions in bins of volume Ag to form the cascade models approxi-

mation to "OD" AP. Thus each g(tn i'e) lies in some bin and one adds

. _ . L
+ D(g(tn), g(tn + €)) to accumulate o

" AP for that bin. Generally P(tnv+ £)

will not be in the same bin as g(tn - €) but, because of momentum conservation

between'éollisiohs, it will be in the same Bin‘as g(tn

generally'positive this leads to important cancellations and it is useful to

rewrife the'series to reflecﬁAthese facts aé follows,

- N-1
" "o
0" = <8(P - P)D> + < g §(p - P )SD >
= <pN> + <6p> -,
P = E(tn + e? = E(?n+l €)
4 T g(tnv+ e) = g(tn+l - €)
r, =zt +e)=xlt -¢),

6Dn = D(gn, gn) -~ D(£n+l,gn) .

Since D is

’

,'(2.26)

(2.27)

(2.28)

Note that in all the foregoing N, as well as {Pn,qn,rn; n=0 ... N},vary from

one cascade to another.
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Before prbceeding we must correct a slight discrepancy that has been
allowed for simplicity to creep into the notation. Equations 2.27 are incoﬁ-
sistent with the restriction J > 3 in the definition of tn given by qu 2.23
since a self—interactién of the pair, a collision between particles 1 and 2 ﬁhich

could occur betwegn at andt .., would cause g(tn +€) # g(tn+ - €).

1
However note that D is 'a function only of ], r+q and, |al; the first two are
zero at a self collision and the last is conserved in elastic écattering. Thus
inclusion of self collisions iniEQJ 2.22 wili not change the result since they
all give zero contributions. If we do fhiskby removing the restriction J i 3

in Eq. 2.23,1t becomes conéiétent with Eq. 2.2T,and Eq. 2.26 is still correct.
It is interesting to note that this result can be viewed as a reflection of

fhe orthogonality between bound and scattering wave functions which is preservéd
in this model.

We have seen that "op"

is made up of two parts. The first, <pN> is
calculated using last collision coordinatés only, the second, <8p> involves all
of them. Since typically there may be v 5 collisions/nucleon/cascade, <Gp§
could take 10 times longer to calculatelthan‘<pN>,andrit is often‘impractical
to do this. However a previous preliminary numerical investigation of fast
((%P)2/2m > 50 MeV/nucleon) deuteron producfion from 600 MeV protons on gold
‘showed that <6p>/<pN>.% 0.01. This suggesfs that cancellations in the second

part of "o " are large. In the next section we study under what conditions such

D
cancellations in <8p> can be expected to occur. We show that when <pN> is in-

sensitive to the deuteron wavefunction, then

<§p>/<py> << 1. (2.29)
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'

In that case "ODT‘can be calculated from the generalized_coalescehce formula,

<Py

C. The Generalized Coalescence Formula
Tﬁe_approximate deuteron Wigner density used in this investigation is

that of a ground state harmonic oscillator wave-function,

2
—r%/a%=q%" (2.29)

D(r,q) = 8e

‘A value of 4 = 1.7 fm corresponds to. a r.m.s. radius of 2.1 fm; We found that

varying d2 by a factor of two had no detectable effect on the calculated value

of <pN>. This result has significant consequénces as shown below,

(6)

Let us define source distribution functions

S N-1 . o .
S((Bs@2)02 = [yp @B < I 8(E - £)8(g - g)8(z - x,)>
. N-1
5_(P3q,r)AP = [, 4P <n§o §(p - gn)ﬁ(g.- g )8(r - r 1) -
.Sf(f;g,z)AP = fAP dp <§(p - EN)ﬁ(q - qN)ﬁ(r - rN)> | (2.30)

~

In terms of these, the cross section into AP can be written as

"°D" = J daqdr[D(r,q)(s (B5q,r) - S_(P3q,r)) + b(g,g) Sf(g;g,g)] . (2.31)
S+ gives the number of pairs produced at P,g,r due to all collisions before the

last,S gives the number annihilated and,Sf the number produced due to all last
T =
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collisions. A physically reasonable Sf must possess a minimum momentum scale
for each P say qmin(P) such that for q < qnﬁéP), S, varies negligibly from its
value at g = 0. Our observation that Jaqdr D(g,r) Sf(g;g,g)’did not vary with
-1 . ' -1 |
rchanges in. 4", the momentum scale in D, shows that qmin(P) }> d . But qmin(P)
tells us about the range in relative momentum between nucléons of momentum

1/2 P and other nucleons in the medium in which they travel. The corresponding

momentum scales in S_ cannot be less than qmiﬁ(P) because they refer to earlier

(and therefore "hotter") times during the reaction. We therefore conclude that

we may set ¢ = 0 in S+ under the integral in Eq. 2.3l in the same limit. This

—

causes <8p> to vanish.
Aniorder of magnitude estimate of <8§p> can be obtained as follows.

In BEq. 2.30 set

Lo+l “ Ep ¥ 2gn/m (tn+l _‘tn) ° . _ (2.32)
the = By v Aa/Va v WAy Py | o (2.33)

where the deuteroh mean free path, kd,'is approximately one half the nucleon mean

free path AN n d, This into Egq. 2.30 yields

ne

S_(Psq,r)

- ~ o~ o~

S+(P,q,r - 6r) » : - . (2.34)

~

§r = 2)q/P . | | (2.35)

This into Eq. 2.31 yields

<8p> = [ dgdr D(r,q) (S+(E;g,£) - 5,(Bsg,r - §f))
= [ dqdr D(r,q) qi(r - 8r)j Sij(g) : _ (2.36)

where the leading contribution from the. Taylor series expansion of S+ about
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~

q = r = 0 has been kept using the definition

8;5(B) = 378,(E3a,1) /80337540 | (2.37)

and impiied summation over repeated indices. Note also that fhe érguméﬁfs con-
cerning. the momentum scale in S+ can be repeated for its length scale,

rmin(g) >> d, which justifiés ﬁ;.A2.36 as the-leading contribution. The only
natural scale parameter for rﬁiﬁ which is muéh laréef than 4 is the nucleus |

radius R.

A very gross estimate of Sij(P) is possible;

83 5(B) v 8, (230,00 ayy (P (F)) 8y | - (2.38)

This into Eq. 2.36 yields
| 2 -1
<6p> v (Mr . )(d7Pq , )7 fagdrD(r,a) S.(P;0,0) ., . (2.39)
dropping constants of order unity. Estimating
5,(B30,0) v W S.(B30,0) . - (2.0)
\

where <N>p'is the average total number of coilisions made by a'fasﬁ'pair of

nucleons,

<Np> v R/A N rmin/k ‘ ' (2.41)
gives
<8p>/<py> v W (Mg ) (aPPa 07 v (@) (g )T ()

Since we find dqmin >> 1, empirically for high momentum deuterons (ap >> 1),

eq. (2.29) is satisfied in our case.
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We derive next a practical criterion to test ifv<Gp>/<pN> is indeed
:Small. An order of magniﬁude estimgte of qmin can be obtained from the sen-
sitivity of <0y to the momenﬁum parameter appearing in D as follows. Note
that we could have more éenerally used a model such as

2 2.2

- | -
- D(x,g) = B(dq/dr)3 < far=aidg o | - (2.143)

instead of Eq. 2.29. In this case

e

| 2 | 2 2 L2
a/adq <p> = [ drdg s/adq D(r,q)vq (98.(P3g,r)/03q )q=0

N
Ve Gy Py | S (2.1L)

using the same sort of estimate as in Eq. 2.38. Equation 2.4k into Eq. 2.L42

yields

2]1/2

<8p>/<p> v [82n<pN>/azn,dq (2.45)

Thus the error involved in neglecting <8p> is linked to the sensitivity of the
calculation bf <pN> to the model deuteron Wigner distribution used.

We conclude this discussion of the validity of Eq. 2.29 by cautioning
that is based on the smallness of 32n<pN>/82ndq2vwhich has been verified only
for fast deuterons. This Could'very well break down for slower

deuterons as evident from the factor (dP)-l in Eq. 2.42,.

With eq. 2.29 satisfied, we obtain finally the generalized coalescence

formula

"oy =3/b I <8(B - BIDy>  (2.16)
f1t2 o
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where 3/4 is the statistical spin factor for the deuteron now insefﬁed, il and

12 are indices respectively for protons and neutrons now summed over, N is the

last scattering index which now varies with il’ 12 as well as over cascades.

. EN = P i Q’N, is the total momentum of the pair 11, i2

last collision of either with a thlrd partlcle and

after the

D = D(r

N ) is the ngner functlon evaluated at the final r, q of

1 2’N’”1112’N

il, i2. The assignment of neutron and proton labels in the Cugnon Code is

done statistically according to the N/Z ratio of projectile and target nuclei.
The physical interpretation of Eé. 2.46 is that the probability for

n-p pairs to fornddeuterons is determined by their relative segaretion and

momentum when both cease interacting with other nucleons. In tnis sense it. is

a final state interaetion approximefien. Last collision ﬁimes tN vary over the

entire history of thevreaction.. The familiar coe.lescence,modell in which a |

pair is aseumed to form a aeuteron if q < d-l:ie corrected by theAinclusion

of spetial correlation effects. This and otner such medels are also cerrected

by the realization that the cross section "o " being calculated is the primnr-'

D
dial and not simply the observed one. Also note that phere is no arbitrary
freezeout time in eq; 2.ﬁ6. A1l quentities in eq. 2.46 are determined fron“
the dynamical cascade calculation. Finally, we emphasize that even this
generalization of the coalescence formula fails in kinematic regions for which
(d quln 2 1, as seen from eq. (2.42). A significant result of this‘section

~is the derivation of«a practical test eq. (2.45) for the validity of the general-

ized coalescence formula.
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ITTI. NUMERICAL RESULTS -

We have performed calculations for the reactions Ne(L00 MeV/A) + U

and Ar(400 MeV/A) + Ca. Inclusive differential cross sections for lH,42H, 3H,

3He, hHe were reported for these reactions over a wide kinematic range in Ref. 8.
The sum charge inclusive yield is just the primordial proton cross-

section and in the cascade model is given by

A)>  ' : R : , . - (3.1)

"G L J— < T
(2 - 2y

lH i

where Py = P is the momentum of proton i after its last collision and the

~N,i

sum is over all protons. There is no term cofresponding to <6p> here - it
vanishes identically. This term exists only for‘composite-particles. The

primordial proton cross section is related to the experimental inclusive cross

. h :
sections for composites Yy = lH,2H,3H,3He, He, . . . by

"G "X yv7 g 7 . ) . (3-2)
T A

where ZY is number. of protons in Y. The apprbximation indicated in.Eq. 3.2

(1)

refers to neglect of effects of Fermi momentum of the proton in Y.

In Fig. 1.A,C, the cascade model prediction of "o is compared to

lH

the data calculated via Eq. 3.2 where the sum over Y extends to hHe{ For eabh‘

impact. parameter bn = n/10 bmax’ 100 cascades were generated and averaged over.

-

Thus we calculated

" "o 3
o, "=1Z2m_ Ab <§(P - P)> (3.3)
H n n

where Ab = b /10.
max
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An important momentum shift dorrection, however, was applied to the direct out-
put df'the Cugnon code(S)° ~ Nucleons béfore and
during the reaction find themselves in an average optical'potential v =50 MeV.
They mﬁst overcome a pétential on this order of magnitude to emerge unbound

as a lightly bound fragments.v This‘effect i§ not inqluded in the code. To
take this fiﬁal state intéraction into gccount in a simple rough way; we have

distorted each final nucleon momentum P to

P! = (P2 + 2mVO)l/2' (3.4)

where V, vas varied to fit the sum charged data. A best value VO = 46 MeV
was found. Without this distortion, cascade results are systematically shifted
to higher energies and clearly disagree with the data, Of course at high

energies E >> V. the shift has no effect but in the kinematic domain E < 100 MeV

0
it is_importgnt. It is interesting that one reasonable value of VO leads to
such én accurate reproducfion of the data at all energies and angles in two
rather different reéctions. It should be kept clearly in mind thét‘this pro-
cedure is a correction to the cdde and not to the theory discussed in the

previous section. The theory in section II presupposes the accuracy of the

underlying cascade model.

Having used the sum charge data to determine VO, we proceed to cal-
culate the primordial deuteron cross section. As was first pointed out in
Ref. 7, this is related to the experimental cross sections for composites by

the direct generalizéﬁidh of Eq. 3.2,
"o " 21 5(%u/y) o ' (3.5)
Y Y
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where éy(eﬂ/y) is an apridri probabiiity for fiﬁding a déﬁ£éroﬁ‘like confiéufa—
tion of an n—é pair in a fragment y. An exact expression for C;)is.éiveﬁ.in
Ref. T which involves 6veflapé of waﬁévfuncfions. Equation.3.5 againhﬁegieété
Fermi motion of the n-p system in y. The éum clearly begins Qith Y = D= gﬁ
for whicrfc;3(2H/2H).= l} A fough estimate dflhigher probabilities based on
G1%H/38e)

=1.5, é;%gH/hHe) 2 3.0. Keeping only these terms we have therefore used the

e

simple spin-isospin considerations was given in Ref. 93 C;QQH/lH)

expression

"G "I g o+ 1;5(6 + ob ‘) + 3.0 0 | .(3.6)

. all cross sectiohs'being evaluated at the same energy per nucleon.

The large triangles in Figs. 1B,C show the "0_" data obtained using

D
Eq. 3.6. The large size of the triangles reflects an estimated 50% uncertainty
in the C§7(2H/Y) values used. The dots Show'OD. Note that in the kinematic

region considered there are substantial contributions to "o_" from higher mass

) D
fragments Y. The calculated curve is based on Egs. 2.46. To within the 50%

uncertainties in the experimental "o " values and the statistical uncertainties

D
in the cascade output, the calculated "OD" is in excellent agreement with the
data with respect to both normalization aﬁd‘shape over a 3 decade ' fall of the
cross sections in both reactions. |

" We emphasize thatuin comparison to thérmal models where large nor-
malizationﬂcorrecﬁions must be introduced, there are no adjustable parameters
in our calculation of "OD". Once the cascade model is adjusted to reproduce the

sum charge data by adjusting V the deuteron calculation depends only~on the

O’

deuteron wavefunction.

-
»
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However, as mentioﬁed before, the results were insensitive to factor
of’tﬁo variations in the d2 parameter in the deuteron Wigner density D. This
implies that the cascade model generates no two body correletioﬁs on the scale
of the deuteron. . Essentially, there are only long range n i fm corfelations
due to finite size effects but on the scale of 4 v 2 + 1 fm the two'partiele
density shows no significant structure. A corollery of this is‘that insofar
as deuteron produc¢tion.is e¢oncerned, the two nucleon density can be Weli approxi~
mated by'thefproduct ef single particle densities. This in turn accounts for
the success7of the'cealescence model.

" We have aiso calculated’primordial'protoﬁ and deuteron yields from
high multiplicity selected reactions of Ne(L400 MeV/A) oﬁ'U. Results are shown
in Fig. 2. Theoretically, the maximum impact.paraheter in Eq. 3.3 was cut to
2.1 fm in order to fit the primordial proton (i.e. sum charée) data. As Fig.’2-
shows, this can be ‘done only for E > 50 MeV protdns.' The discrepancy et lower

energies had led to the speculationlO that collective flow effects, absent in

-~

present cascade codes, may be important at these low energiee and impact
parameters. Generally we expect deficiencies in present dayvcascade ceaeS‘to
intensify at lower energies and during denser intermediate states. This is
especialiy clear because of the necessity to introduce binding corrections
such. as eq. 3.4, The domain of applicability of this ¢ode seems to be E > 50
MeV for central collisions and there it'agrees\remarkably well with,the data.

' ‘Using the same impact parameter cutoff, "

11 "

OD" was calculated and is

shown in Fig. 2. The experimental OD" was calculated from Eq. 3.5 summing

3

only for vy = 2H, H since only these were measured for centralvtrigger events,

Nevertheless the overall agreements again leads us to conclude that to within

- 50% accuracy the cascade model can account for composite spectra even for

central collisions.
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IV. DISCUSSION

We briefly discuss here the relation between our results and two .
topics of recent interest.
rFirst, there-ié-the topic of the ratio of the total primordial deu-

teron yield to the total primordial_proton'yield. Our value of this ratio,

~

in agreement with that obtained in Ref. 9, is too high ("D"/"P" 2 5.2/6.6 N 1)

-as compared to the experimentally quoted(2b)

value of 0.3. However, most
primordial deuterons are at low energies where the number of heavier composites
becomes largest. Experimentally these are not directly observed and the ex-

trapolation procedure from the high energy light compoéite spectra used to

obtain the quoted value of 0.3 tends to underestimate their number. It also

neglects some lighter fragments associated with the nuclear fragmentation region. -

Both effects imply that the experimentally quoted ratio should be considered
a lower bound. Theory also in%reasingly tends to be in error for low energy
primordial deuterons.. As mentioned already this is due both to defects in the -

cascade model and to neglect of the <8p> term in the formula for "OD".

Therefore we are not confident in assigning significance tdvthe present dis-

e

crepancy between theory and experiment,
Second there is the question of the suppression of forward protons

in central collisions as evidence of flow effects.(lo)'

The phase space den-
sity in the forward direction is generally large in cascade calculations

thereby increasing the probability of composite formation. If it is large

-
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enough.free protons will be suppressed oniy because primordial protons will
emerge bound in composites. That is, the free proton depletion could be
caused by an enhanced cémposite prodﬁction.  Pfeliminary 2H and 3H data also
seem to . show forward_suppression for central collisions but heavier fragment
daté'are‘not'yet available., If heavier fragments also are found to bejsup-
pressed in the forward‘difection then a clear case for collective flow effects
can be made. Otherwiée, abundant composite formation may be a viable

explanation.
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Fig. 1.

Fig. 2.

, tfiangles) using Eq. 3.6. The free deuteron data are indicated
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FIGURE CAPTIONS

(8)

Comparison of sum charge inclusive data {a,c) with.cascade pre=
dictions; In (b;d).the pfimordial deuteron distribution as calcu~

lated (solid lines) using EQ. 2.46 is compared to data (solid

" by dots.

Sum charge and primordial deuteron (including.lH and 2H only) data(ll)

from high multiplicity triggered Ne + U at 400 MeV/A. Thevlines

are our calculations with an impact parameter cut off of 2.1 fm.
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