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PREDICTION OF EROSIVE WEAR BY SOLID PARTICLES 
IN A TURBULENT CURVED CHANNEL FLOW 

J. A. C. Humphrey and F. Pourahmadi 

Department of Mechanical Engineering 
University of California, Berkeley 

and 

A. Levy 

Materials and Molecular Research Division 
Lawrence Berkeley Laboratory 

University of California, Berkeley 

Numerical modeling of fluid-particulate turbulent flow 
transport processes, including erosion, cannot substitute 
(at least for the present) good experimentation. Notwith-
standing, the calculation approach offers a viable, rela-
tively inexpensive and complementary alternative for glean-
ing useful information on the relative dependence of parti-
cle transport and erosion on the flow system parameters of 
relevance. In the present study these parameters include: 
the particle phase response time, Reynolds number and con-
centration; the turbulent characteristics of the fluid 
phase; the channel aspect ratio and curvature. This com-
munication summarizes the main results predicted by means 
of a numerical procedure for the motion of a dilute sus-
pension of solid particles driven by turbulent flow in 
curved and :straght two-dimensional channels. An exposi-
tion of the theoretical development, the numerical model, 
its testing and applicationto these configurations of 
special engineering interest ar provided. A simple model 
for erosion is used successfully to predict surface wear. 

	

1. 	Introduction 

	

1.1 	The Problem(s) 

The problem of erosive wear by solid particulates suspended in a 

turbulent flow is of fairly obvious practical importance. Two-phase flows 

cover a wide spectrum of applications in many areas, ranging from numerous 

engineering applications to a variety of processes associated with natural 

flows. The dispersion of dust and pollutant particulates in the atmo-

sphere, the transport of silt and fine mineral particles by rivers, the 

erosion of pipeline components in coal liquefaction/gasification systems, 

and also the erosion of gas turbine blades and internal walls of nozzles 
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in solid-propellant rockets are but a few examples of the diversified 

processes which are affected by the motion of two-phase turbulent flows. 

Other engineering examples of strong relevanceto this work are: fluid-

ized beds, pneumatic conveying, settling tanks, sand blasting, the flow 

of slurries and fibers and the flows occuring in cyclone separators and 	
I 

electrostatic precipitators. The flows of particle-laden fluids in coal 

liquefactoin/gasifjcatjon pipeline systems cause erosion Of the wall mate- 

rials. This can result in serious damage and possible catastrophic fail-

ures, both from the safety and economical points of view. For coal lique-

faction/gasification systems the problem of erosive wear is quite severe 

at pipe bends, tee junctions and impinging jet surfaces. The successful 

design and determination of optimum operation conditions of such systems 

requires measurement, analysis and prediction of the fluid mechanical 

characteristics of the turbulent two-phase flows in the components com-

prising the systems. Due to the complexity of the fundamental aspects 

governing particle motion and wear by impingement, these topics are also 

of considerable academic interest. 

Experimental studies of particle-laden turbulent flows 

are indispensable for identifying and quantifying the mechanisms control-

ling particle transport and particle-surface interactions. Unfortunately, 

experiments are often costly, laborious and time-consuming to perform. 

Often they cannot be executed to the degree of spatial and temporal reso-

lution required to help unravel the sequence and nature of the physical 

mechanisms involved. 

The large storage capacities and rapidity of calculation typical of 

digital computers today make attractive the numerical modeling approach 

for studying particle-laden turbulent flows. The availability of a com-

putational model allows "numerical 'experiments" to be performed with rela-

tive ease, often at a fraction of the cost (and certainly at a micro-

fraction of the time!) entailed by the corresponding laboratory experi-

ment. While the lure is strong to pursue this approach, unfortunately it 

is fraught with its own impedimenta. The difficulties are mainly two. 

The first and less serious is related to numerical accuracy. A computa-

tional model must be based on a stable and accurate numerical scheme, in 
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'order to allow a proper assessment of the model physics. In principle, 

most complications (if not all) which are strictly numerical can be 

solved, therefore they will not concern us here. The second difficulty 

arises in connection with the model(s) chosen to represent the various 

physical aspects of the problem. Present-day theoretical knowledge of 

turbulent two-phase flow behavior is inadequate so that, by necessity, 

models of the physical characteristics of such flows must, reflect the in-

adequacies. In spite of this second, much more serious limitation, the 

financial incentives are very strong for using the computational approach 

to predict particle motion and erosive wear. Therefore, it becomes im-

perative to conduct careful, selective experimentation in parallel with 

the necessary theoretical developments. If properly planned, selective 

experimentation can yield: i) data to help understand and formulate 

fundamental mechanisms; and, ii) data of value for testing mathematical 

models representing these mechanisms. Because of the different nature of 

these two requirements, the two sets of data are not necessarily the same. 

Given the undesirably large gaps and serious limitations in present 

day knowledge of two-phase flow behavior, we are led to conclude that an 

especially strong synergic interaction is required between research pro-

grams respectively aimed at the experimental measurement and the mathe-

matical (numerical) modeling of these flows. The present contribution 

focuses on the achievements and limitations of a particular numerical 

model, within the context of a broader program of research which includes 

experimentation. After a brief discussion addressing earlier work and the 

influence of turbulence, the model is outlined briefly and the principal 

results obtained for the turbulent, erosive flow of particulates in a 

curved channel are presented and discussed. The paper closes with some 

general conclusions and recommendations for future work. 

1.2 	Earlier Work and Modeling Approaches 

In the course of reviewing the literature on two-phase fluid-partic-

ulate flows, the variety of investigations and the range of complexity of 

the analyses is found to be amazingly large. Many significant contribu-

tions have been cited in the books by Soo [1] and Boothroyd [2],  and in 

the sequence of reviews given by Torobin and Gauvin [3-5]. The motion of a 
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dispersed particulate phase in a continuous fluid phase has been ana-

lyzed by both Lagrangian and Eulerian methods. In the Lagrangian ap-

proach, the dynamics of single particles are analyzed by following the 

motion of these with a prescribed set of initial conditions. In the 

Eulerian approach the two-phase flow can be considered as two interacting 

continua, with separate boundary condTtionS for each phase. The success 

of either approach for the prediction of the flow variables of interest 

depends on the appropriate inclusion and accurate modeling of the various 

and relatively complex physical processes represented in the governing 

equations. The occurrence of fluid turbulence, and the associated solid 

phase turbulence implying complex interactions and exchange mechanisms 

between the two phases, can be fairly significant and requires proper 

modeling. 

Continuum-type approaches can be roughly divided into two categories. 

In the first, the two-phases are treated as separate, Tnteracting 

continua, in which, forthe particulate phase, a diffusional mode of 

transport, as well as convection, are included. In this respect, the 

following investigations are noteworthy: Soo [6], Drew [7], Hinze [8] 

for laminar flow, and Hinze [9], Drew [10], Nagarajan [11] and Soo [12] 

for turbulent flow. In the second approach, the two-phase flow is treated 

as a single continuum in which fluid variables are redefined to include 

the presence of the particulate phase, Formulations following this 

approach have been given by Wallis [13] and Hinze [8] and are common in 

gas/liquid flows with mass exchange between the phases. Wallis [13] has 

shown that for such an approach to be valid the assumption of dynamical 

and thermal equilibrium between the phases must be made which is approxi-

mately valid only for very small particles and low flow velocities. 

In the Lagrangian approach, the motion of single particles are con-

sidered and relevant variables are calculated along the particle trajec-

tories. Early works based on Lagrangian equations of motion are due to 

Glauert [14], Largmuir and Blodgett [15], and Brun and Mergier [16] in 

relation to the inipingement of rain-drops on aircraft surfaces for the 

analysis of ice formation on aircraft wings. Other more recent 
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investigations using this approach are those due to Laitone [17],  Yeung 

[18] and Abuaf and Gutfinger [19]. 

In the present work, because it is more convenient to analyse the 

flow through engineering systems in terms of fixed coordinates, attention 

will be restricted to a formulation following the Eulerian approach. 

1.3 The Influence of Turbulence 

Ln. the presence of turbulence, the problem of measuring and/or pre-

dicting two-phase flows becomes even more complicated. A successful pre-

diction requires a thorough understanding and proper modeling of all 

major turbulence-related processes. It is clear that, for this, a detail-

ed understanding of the fundamentals of fluid and particulate phase turbu-

lence, including significant fluid-particle interactions, is required. In 

this regard the investigation of Baw and Peskin [20] can be mentioned. 

In their study particle effects on the fluid turbulence energy spectrum 

were analyzed and the results showed increased reductions in the spectrum 

values with increases in wave-number, compared to the pure fluid spectrum. 

In a related work, Owen [21] has shown a reduction in fluid turbulence 

intensity with increases in particle concentration. However, this result 

was not observed by Soo et al. [22] who noticed no effect due to the 

presence of particles. An increase in dissipation rate of turbulent 

kinetic energy with particulate concentration has been reported by Kada 

and Hanratty [23],  Owen  [21],  and Hino [24].  In the last two investiga-

tions, a decrease in eddy diffusivity with particle concentration was 

observed which contrasts with the results given by Kada and Hanratty [ 23]. 

A review of some fundamental problems arising in turbulent two-

phase flows has been given by Peskin [25].  Particle effects on fluid 

mean velocity have been investigated by Soo [26-28], Peskin [29-30] and 

Peskin and Dwyer [31] in pipe flow. The results show a flattening of the 

fluid velocity profile induced by the solid particles, even at small con-

centrations of the particulate phase. Soo et al. [22] have shown a de-

crease in the Lagrangian integral scale with an increase in particulate 

concentration. Other studies aimed at measuring the mean flow character-

istics of confined two-phase turbulent flows are given in [32-39]. 
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In spite of the lack of detailed fundamental knowledge required for 

the formulation and modeling of two-phase turbulent flows, the need to 

predict flows of industrial interest has stimulated analyses for obtaining 

approximate solutions for these flows. Drew [40] has modeled the problem 

of turbulent sediment transport over the flat bottom of a stirring tank 

in which the mixing length hypothesis was used. Nagarajan and Murgatroyd 

[41] have presented an analytical model for two-phase turbulent flow in a 

fully-developed pipe flow. The assumption of a linear variation of the 

tQrbulent shear stress in the radial direction, the neglect of all but the 

dissipation and production terms in the turbulence kinetic energy equa-

tion, and the introduction of several empirical and configuration-depen-

dent coefficients make their solution too specific for general applica-

tons. In a related work, the effects due to gravity and electrostatic 

effects were later included by Nagarajan [11]. Based on the single-con-

tinuum model approach, Kramer and Depew [42] developed a calculation 

model for fully developed two-phase turbulent pipe flows. To obtain a 

solution, they expressed velocity fields in terms of various empirical 

coefficients and in addition an assumption of linear mixing length was 

made. Yuu et al. [43] developed a solution for two-phase turbulent jet 

flows. In their calculations they substituted empirical relations for 

the fluid mean velocities in the Lagrangian equations for the motion of 

the particles. 

Smith et al. [44] have presented a two-dimensional Lagrangian model 

for dilute particulate flows in which the fluid variables are obtained 

using a two-equation (k-c) model of turbulence, but without considering 

particle effects on the fluid turbulence. Danon et al. [45] have pre-

sented a turbulence model for two-phase turbulent flows which is based on 

a set of parabolic conservation equations. In their model the particulate 

phase mean velocity is not solved directly but is assumed to be equal to 

the fluid velocity. In order to avoid complex particulate-wall inter-

action effects, the model was applied to axi-symmetric free jet flows 

only. The fluid Reynolds stresses were modeled using fluid turbulent 

length scale and fluid turbulent kinetic energy concepts. For the turbu-

lent length scale, an algebraic relation was assumed which remained 
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constant in the lateral directions, and the fluid turbulent kinetic energy 

was obtained from a parabolic conservation equation in which particulate 

interaction effects with the fluid were included. However,the closure 

relation for the fluid-particle correlation term was assumed to be of an 

exponential form and was not rigorously derived. Finally, for obtaining 

better agreement with the data for turbulent kinetic energy, the dissipa-

tion and production terms were assumed to have a linear variation with 

particulate concentration. This assumption, however, resulted in the 

introduction of two new empirical constants which were dependent on 

particle size and were "tune& to match the experimental data. 

Genchev and Karpuzov [46] have proposed a turbulence model for 

fluid-particle flows in which the effect of particles in the turbulence 

transport equations are considered. The assumptions of uniform particu-

late concentration and equivalence of particle-phase mean velocity to the 

fluid velocity simplified the problem by making it possible to discard 

the governing equations for particulate phase concentration and momentum. 

These assumptions, of course, have limited the range of applicability of 

the model. In the Genchev and Kapuzov model, the closure for fluid 

Reynolds stresses is based on the eddy viscosity concept proposed by 

Harlow and Nakayama [47] inwhich transport equations forthe fluid turbu-

lent kinetic energy and a turbulent length scale are solvech Despite the 

inclusion of particle effects in the turbulent.fluid transport equations, 

the fluid-particle correlation terms were assumed to be negligible in 

compartson with their fluid-fluid counterparts. This simplification 

obviates the need to account for the complex fluid-particle correlation 

terms. As argued by the authors, the assumption is valid if typical 

particle response times are much larger than the time scale character-

istic of the mean fluid motion. However, the last assumption regarding 

time scales is in conflict with the earlier assumption regarding equal 

flud and particulate mean velocities. For the equal velocity condition 

the particle response time must be much smaller than the mean fluid 

motion time scale. Thus, the assumption which makes it possible to avoid 

the complexity of the fluid-particle interaction terms raises a serious 

inconsistency in the model. Finally, the authors applied their 



turbulence model to the case of fully-developed pipe flow, but no experi-

mental data was provided in order to evaluate the capabilities and limita-
tions of the model. 

1.4 Sumary 

As discussed above, calculation methods for two-phase turbulent 

flows invariably embody numerous simplifying assumptions in order to 

allow solutions for theflow field variables. In the majority of the 

analytical studies listed above, particulate phase effects on the fluid 

turbulence structure have not been considered. In the few investigations 

where such effects have been incorporated, further simplifications in the 

governing turbulence equations became necessary, and various empirical 

coefficients were introduced. The latter are, ingeneral, functions of 

the flow characteristics and yield calculation schemes which are strictly 

valid only for the flow conditions for which they were optimized. Such 

schemes are not readily extended to encompass more general flow conditions 

and configurations. 

The objective of this work is to analyze two-phase turbulent flow 

with theview of developing a more general turbulence model for com-

puting flows of engineering interest. The model will be based on the two-

equation (k-c) model of turbulence for single-phase flows with universal 

constants [ 48]. The governing transport equations' for the particulate and 

fluid phases are taken in their fully-elliptic forms, in order not to pre-

clude the possibility of predicting flow recirculation. In the momentum 

balance equations, the interactive effects of the two phases are consid-

ered and, in addition, particulate phase momentum exchanges with 

solid walls are included. The inclusion of the latter effect enhances 

further the capability of the present model for predicting wall-bounded 

flows which frequently arise in practice. The various fluid- 

particulate correlation terms in the equations for fluid turbulent kinet-

ic energy and its dissipation rate are rigorously modeled using the 

governing equation for the particulate- phase fluctuating velocity. 

Ultimately, the numerical model developed in this investigation 

will be used to Predict/various two-phase flow quantities as well as 
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erosive wear by solid particulates in curved and straight two-dimensional 

channel flows. The tested and validated calculation procedure can 

be viewed as a relatively inexpensive and very valuable tool for conduct-

ing two-phase flow and erosive wear experimentation"; not only in curved 

channels, but in other shapes such as sharp bends, tees, backward- and 

forward-facing steps, axisynimetric contractions and expansions, and curved 

solid objects immersed in a free flow, to name a few. While such a com-

putational tool is more economical than experimentation, it cannot be 

looked upon as a substitute for experiments. The foundations of the 

model depend on critical experimentation, and valIdation of the model 

requires appropriate test data. Notwithstanding,in many systems of 

engineering interest, especially newly conceived ones, often the data 

required to characterize the system is not available, and to conduct 

detailed experiments can be prohibitively expensive or time consuming. 

In such cases the tool provided here is of most use. While in absolute 

terms calculations of an unknown two-phase flow may not be verifiable un-

til experimental data is available, relative comparisons of parametric 

effects can still be extremely useful for alterning and/or optimizing the 

system characteristics and enhancing its performance. It is in this 

spirit that the present study has been motivated. 

	

2. 	The Numerical Model 

This section is devoted to listing the assumptions and the forms of 

the modeled transport equations with appropriate boundary conditions for 

predicting dilute, turbulent, two-phase flow and erosion in straight and 

curved two-dimensional channels. The solution methodology and numerical 

algorithm are also outlined. The brief description provided here is based 

on the more complete exposition given by Pourahmadi [ 49]. 

	

2.1 	Assumptions 

The following assumptions are implied in the modeled form of the 

equations given below: 

The particulate phase if taken to be a continuum and treated 

as such. 

The fluid phase is taken to be Newtonian. 
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The flow is steady, incompressible and isothermal. 

Fluid and particulate phase properties are constant. 

The particle phase response time, tm  Is calculated by depart-

ing from the continuum assumption and analyzing spherical parti-

cles of diameter d. 

Momentum exchange between the fluid and the particulate phase 

is through Stokess  viscous drag only. 

The particulate phase is dilute, meaning that the volume con-

centration, a, is a << 1. 

The flow is locally isotropic, and viscous diffusion is negli-

gible compared to turbulent diffusion at high Reynolds number, 

Re. 

Brownian and Bernouillian diffusion of the particulate phase 

are negligible compared to turbulent diffusion induced by the 

fluid motion. 

Third-order correlations containing particle concentration 

fluctuations are negligible. 

2.2 	Modeled Transport Equations 

The equations listed below have been derived by Pourahmadi [49] 

using Reynolds decomposition for fluctuating variables and time averaging 

of the instantaneous equations. These equations are in agreement with 

those given by Hinze [8] if the flow resistance of the particulate phase 

is modeled according to assumption 6. Although programmed in cylindrical 

coordinates for curved channel flow predictions, and in cartesian co-

ordinates for straight channel flow, the equations are given here in 

cartesian notation for compactness of presentation. The summation con-

vention on repeated indices is implied. 

Mass Conservation Equations 

a) Fluid Phase 

f 

ax j 
	 (1) 



-11- 

b) Particulate Phase 

j —  (a U 	+ a ' u) = 0 	 (2) 

In Eq. (2) the second term represents a mass flux contribution due to 

turbulent diffusion of the particulate phase. Following Hinze [9],.  we 

assume a gradient-type diffusion for this correlation given by: 

au 	_Vt 

In Eq. (3) Vt  represents the turbulent diffusivity for particulate mass 

concentratlonand is taken as a fraction of the fluid turbulent viscosity, 

• It is modeled along the lines of Peskin [30]: 
f 

:a=1 	
TL  

Vt 	lSv K+2 

where, 

K - T- 

	

- 2rm 	
(5) 

is the ratio of particle response time to the fluid Lagrangian integral 

time scale. These quantities are respectively given by: 

v" 	2 
p d 

Tm = l8u 	 (6) 

and 

TL = C... k/c 	 (7) 
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with CT  an experimental constant equal to 0.41. For fast particulate 
phase response times (Tm - 0) we have 

p 	f 
Momentum Balance Equations 

a) Fluid Phase 

Aj 

Pf ax (U
f  Uf ) = - 	

[ (U 
	- U) + a'(Uf  - u p )] 

	

(A) 	 (B) 

au  
- 	( P o..) + Pf 	tf  :) 	(8) 

In Eq. (8) the Boussinesq assumption has been used for expressing the 

Reynolds stresses: 

Uf 	U 

- Uf1Uf = tf (axji + 	- 	k 	 (9)  

where k = 1/2 (Uf U f  ) is the fluid turbulent kinetic energy andis 
ii 	 f 

the flow turbulent viscbsity. In the two-equation k-.c model of turbulence 

[48-50], the latter quantity is related to k and the rate of dissipation of 

k(c) by: 

\) =C k - 
tf 	11 £ 

2 
	

(10) 

with C = 0.09. 
U 

The fluid-particle interaction in Eq. (8) comprises two terms. 

The first term (A) represents the mean viscous drag induced by the 

particulate phase, the second term (B) is the drag contribution induced 

by the turbulent diffusion of the particulate phase. 
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It has been postulated by Hinze [9] and Davidson and McComb [511 

that: 

	

&Uf 	
- "tcz ax i (11) 

with v denoting the turbulent diffusivity for the transport of the 

scalar 	An investigation of the behavior of a'u f  in [49] suggests 

that, to a good approximation: 	
1 

• ct'U f  = aU 	 (12) 
1 	Pi 

and will so be modeled. In effect, the approximation implies that 

A >> B in Eq. (8). 

b) Particulate Phase 

	

--- (a U U ) = -- a(tJ 	- U ) 

	

P P 	Tm 	i 	Pi 

(A1 ) 

-{- avt 
	

+ 	+ 

as.. (k + v ax 

i- f- 
[Vt (Upj 

.-+ u 
	 (13)xj)] 

In Eq. (13) the approximation given by Eq. (12) has been used and the 

Boussinesq approximation given by Eq. (9) has.been extended to the 

particulate phase: 

 au Pt  
- 

u u= 
	

+ 	- 	

ij 	p + 	
(14) 

The divergence term in Eq. (14) is required to ensure u u 	= 2 k 
pi P 	P 
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Note that term A1  is equal in magnitude but opposite in sign to term A in 

Eq. (8), thus showing clearly the mean momentum exchange between the two 

phases. 

Turbulent Kinetic Energy 

	

a) Fluid Phase (k 	- UfUf i 

	

(ak

.f.
ak 	 'f°k 	

3U 
Ii  

	

\
f •- = •- 
	

- Uf  U f 
i 
 3x - 

ru 

- .!. k(uf Uf . - U f U) + cu(U 	- 	 (15) 

	

(A2 ) 	 (B2 ) 

In this equation a 
k 
 is the t 1 Prandtl' number for k and is taken as 

ak = 1.0 1501 ; c is the isotropic rate of dissipation of k; Uf  iUf 
i 
 and 

are modeled according to Eqs. ( 9  ) and (12) respectively; and, 
1 

TL u f u 	2k 
1 p 	t+I mL 

(16) 

The form of Eq. (16) has been derived by Pourahmadi [49]  by reference to 

the Lagrangian equation of motion for a single particle and is limited to 

high flow Reynolds numbers, short particle response times, and dilute 

systems. 

As argued in [49], term A2  in Eq. (15) represents a transfer of ki.-. 

netic energy of turbulence of the fluid phase to kinetic energy of the par-

ticulate phase. Term B 2  also represents an energy transfer term, from the 

mean kinetic energy of the fluid phase to the turbulent kinetic energy of 

the particulate phase via the turbulent kinetic energy of the fluid phase. 
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b) Particulate Phase (k E 	uu) 

The equation for turbulent kinetic energy, of the particulate phase 

has been derived in [49].  However, the complexity of the various cor-

relations it contains precludes a direct solution for k. For high flow 

Reynolds numbers, short particle response times and dilute systems: 

I 

P - 

The form of this relation implies that the fluid turbulence is the only 

source of energy for turbulence in the particulate phase, and that the 

turbulent kinetic energy exchange between the two phases is through 

viscous interaction. 

	

( 	
3U. aU f  

	

Isotropic Dissipation of k for the Fluid Phase fc 	v 	
1 	1 

X j 
 3x i ) 

The modeled form of the equation for E derived in [49] is: 

1' 	 aU 
- 	- a ( tf 	

C  

f .;- - 	
t-ç-  -.-) - 1 
	f f 	a x 

	

2 	 aU f  aU 

- C 2  .!k_ - P 	C - 	 ') 	
X 	

(18) 

(A3 ) 

In the absence of particles a = 0 and Eq. (18) reduces to the accepted 

form for a single phase turbulent flow [50]. The parameter o' is a 

UP randtlII number for c and values for the constants are taken as C = 1.44 

C 2  = 1.92 and a = K /[(C2 - C1)C 	] from  [50].  Term A3  in Eq. (18) 

represents a proportion of c which is apportioned to the particulate 

phase due to direct dissipation of k by fluid-particle interaction 

effects. The term has been modeled in [49] where it is shown that: 

(17) 
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r  
Ic T L + 	Tm 	k TLl 

A3  = c - \) 	
Tm+TL 	(Tm+TL)2jjj 	

(19) 

This expression yields A 3  - 0 for Tm/TL -* 0, meaning that for short 

response times fluid-particle interactions result in negligible direct 

dissipation of fluid turbulent kinetic energy by the particulate phase. 

Equations (1, 2, 8, 13, 15, 17, and 18) constitute a set of 7 

equations from which to solve for the unknowns: U f  31 U , , I', k, c, 

k. To achieve this, use must be made of the additinal relations given 

by Equations (3, 9, 12, 14 9  16, and 19), and appropriate boundary condi-

tions must be specified. 

2.3 	Boundary Conditions 

a) Fluid Phase 

At either channel wall the shear stress for the fluid phase is 

prescribed from the universal law of the wall distribution for velocity 

[50]. This empirical function relates the wall stress to the tangential 

velocity component calculated at the nodes nearest the wall. The normal 

velocity component at the wall is set equal to zero. The entrance veloc-

ity distribution is presumed known or taken from experiments. The exit 

boundary condition for velocity is also presumed known or, in the event 

of being unavailable, a fully developed flow condition is set by specify-

ing the following streamwise condition: 

(20) XI ex i t  plane 

where 	= Uf  . The effect of particles on the law of the wall distri- 
1 

bution for velocity have been shown to be significant for non-dilute, 

inertial particle systems [31, 51, 52]. Only for inter-particle distances 

larger than the scale of the energy containing eddies do Peskin and 

Dwyer [31] show a negligible influence of the particle phase. This 
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condition is presumed to arise in the present work but requires further 

analysis for rigorous justification. 

The specification of k at the channel walls is accomplished by 

assuming local equilibrium of the flow in the wall region [50]. Analysis 

given in [49] of laser-Doppler measurements of turbulent shear stress 

made by Zisselmar and Molerus [32] suggests that for systems with 

a < 0.035 and values of Tm  of interest to this work, the 

particulate phase does not alter strongly the distribution of k in the 

near wall region. The transport equation for k then yields an expression 

for k in terms of the wall stress. The inlet value of k is presumed 

known, or taken from experiment. The exit plane value is taken from 

experiment or fixed by specifying 	= k in Eq. (20). 

Wall values of £ are determined by requiring that the turbulence 

length scale vary, linearly with distance from the wall [50]. Substitu-

tion of the gradient of velocity from the law of the wall into the sim-

plified (near-wall region) turbulent kinetic energy balance yields the 

necessary relation for c [50]. As for k, particle effects on the distri-

bution of £ near a wail are shown in [49] to be small.. The exit plane 

distributions for cis dealt with as for k. At the inlet plane cis 

specified from: 

k"2  
- 	inlet 

0.010 (21) 

where D is the channel width or pipe diameter. 

b) Particulate Phase 

The wall shear stress and the slip velocity for the particulate 

phase can be found from the relations derived by Stuckel and Soo [34] 

and Soo [27].  These are: 

( 	
l 	 2 	l/2 

P) w .. 2/ 	'Pw 	(- kp; 	 (22) 

and 
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where n is the coordinate direction normal to a wall. Particle inertial 

effects associated with acceleration of the fluid phase over a short 

entrance length in the channel are neglected in Eq. (23), but are avail-

able in [49].  The particulate phase velocity component normal to a wall 

was set equal to zero. 

The treatment for the particulate phase velocity components at the 

entrance and exit planes are the same as those described above for the 

fluid phase. 

Boundary condition specifications for k follow directly from 

Eq. (17) and a knowledge of the distribution for k. 

The boundary conditions for a at a wall were prescribed to con-

formwith an impermeable wall condition; 

"wa1l 

	 (24) 

Inlet and exit plane boundary conditions for a were prescribed as for 

velocity. 

2.4 The Erosion Model 

The problem of surface wear by particle impingement has been re-

viewed recently by Tilly [53].  The author discusses mechanisms of ero-

sion and clarifies the roles played by the various contributing factors. 

Among the most important parameters affecting particle impingement ero-

sion are: particle shape, size, density, concentration and hardness; 
p 

the particle Impact velocity and angle of attack with respect to the 

surface; conditions at the eroded surface such as roughness, duration of 

exposure and physical properties of the surface. 

Tilly [53] discusses the relative merits of the ductile metal sur-

face-gas-solid particle erosion model proposed by Finnie [54].  In the 

model the cutting action of solid particles is assumed to be similar to 
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that of cutting tools, with the cutting depth depending on the surface 

material physical properties. Because this model shows good agreement 

with experimental data for shallow angles of attack, and because it is 

relatively simple to implement, it was used for this study. The volume 

rate of removal of wall material per unit surface area predicted by this 

model is given by: 

c 	q f(s) 
	

(25) 

In Eq. (25) the variables are defined as: 

erosion rate in terms of volume per unit area and time 

c 

	

	fraction of the number of particles cutting in an idealized 

manner 

p1  Vickers hardness of the wall material 

ri p  particle mass striking the surface per unit area and 

unit time 

q 	the magnitude of the particulate phase impact velocity 

f(J function of particle angle of attack, 	(measured with respect 

to the wall) 

The following expressions for f(3) arise: 

f(s) = sin(2) - 4 sin 	< 14 0  

f(s) = cos 2 /4 	 B > 140 	
(26) 

2.5 	The Solution Algorithm 

The basis for the numerical algorithm used to solve finite differ-

ence forms of the equatins presented in section 2.2 is the TEACH code. 

This type of numerical procedure has been used extensively for predicting 

laminar and turbulent flows and has already been described and extensive-

ly documented in various communcations. Among the most informative of 

these are [55-59]. The procedure was extended as described in [49] to 

accommodate the presence of a solid phase in the flow. 



The forms of the finite difference equations for the two phases 

were obtained in the same way as described in the references. Variables 

were solved iteratively on a staggered interconnected calculation grid. 

A solution was obtained when the maximum normalized value of any of the 

residual sources for momentum or mass was less than 10. Under-relaxa- 

tion factors for velocity were set equal to 0.5 and for pressure equal to 

1.0. 

Calculations were performed on a 20 x 40 grid for curved channels 

and on an 18 x 50 grid for straight channels. The grids were evenly 

spaced in the streamwise direction and unevenly spaced in the transverse 

direction. The optimum transverse spacing was determined empirically in 

each case. Grid refThement tests showed that while finer grids than the 

ones used would hav.e improved the results, the costs involved would have 

outweighed the benefits. It is estimated that the results presented here 

are within 10% of grid-independent solutions. Typical storage and calcu-

lation time requirements on a CIX 7600 computer were 155 k 8  words, and 

200 CPU seconds for 225 iterations. 

3. 	Results and Discussion 

The following two sections present the main results of this study. 

First, testing of the numerical model was performed and some of the re-

suits are discussed here; particularly those relating to erosion since 

adequate data for conducting such tests is sparse. Second, the model was 

applied to curved channel flows with different conditions, for which data 

is unavailable. Although the numerical model has performed quite satis-

factorily with respect to the tests, these are few and confidence should 

strictly be placed only on the relative value of the extrapolations. 

Checks on the accuracy of the absolute values of the new curved channel 

results await the availability of appropriate experimental data. 	
01, 

3.1 	Numerical Model Testing 

Unfortunately, there are few reliable experimental investigations, 

with detailed enough measurements of the variables needed, for testing 

and evaluating the performance of fluid-solid two-phase turbulence models. 

A careful search revealed only four studies which could be readily and 
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usefully employed for model testing and evaluation. These were: the 

straight channel studies of Stuckel and Soo [34];  the straight pipe 

studies of Kramer and Depew [33],  and Zisselmar and Molerus [32];  and 

• 	the curved duct study of Mason and Smith [60].  In their study, Zisselmar 

• 	and Molerus used a laser-Doppler velocimeter to investigate the motion of 

dilute suspensions of glass particles in methyl benzoate, and the data 

provided is quite detailed. The remaining studies pertain to solid par-

ticles suspended in air. Table 1 provides a relative comparison of some 

of the principal characteristics, of these investigations. 

Figures 1-a and 1-b provide a comparison between calculated and 

measured values of fluid and particulate phase mean longitudinal veloc-

ities for two concentrations in the pipe flow configuration of Kramer and 

Depew [33].  In general, the comparison shows very good agreement, with 

the present model yielding superior predictions than the single-phase 

model of [33].  Similar profiles for the configuration of Stuckel and 

Soo [34] displayed the same level of agreement, although measured parti-

culate phase velocities systematically lagged behind the predicted values 

by as much as 12% due to the delaying action of electrostatic forces 

present in the experiment which were not included in the model. 

Centerline values for developing fluid and particle streamwise 

velocities are shown in Figures 2-a and 2-b. Again, the agreement be-

tween measurements and predictions falls well within the scatter in the 

data over a substantial range of the Reynolds number. The streamwise 

variation of the particulate-phase wall-slip velocity is shown in Figure 

3. The agreement shown in the figure is an indirect confirmation of 

the validity of the wall treatment used for the fluid and particle phases 

in the present model. 

Comparisons between the predicted and measured transverse varia-

tions of streamwise slip velocity, given in Figures 4-a and 4-b for the 

configuration of Kramer and Depew [33] show better agreement for the case 

of small particles (d = 62 um) than for the case of large particles 

(d = 200 urn). In addition, for the small particles better predictions 

are shown for the more dilute flow. The deviations displayed for the 

cases of larger particles and higher concentrations are in keeping with 
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the limitations embodied in the model. It is estimated in [49] that 

typical response times for the larger partièles were ten times greater 

than for the small. The slip Reynolds number for the large and small 

particles were about 130 and 12 respectively, indicating the invalidity 

of assuming Stokes drag law for the larger particles. Also, in both cases 

particle sizes were larger than the estimated Kolmogorov length scale 

for the fluid phase n, which was bounded by 10 	n :5 100 Pm in the experi- 

ment. This suggests that the assumption of a continuum,.that d << r, is 

questionable, but more seriously for the larger particle case. The points 

just made partly explain the differences arising between the two particle 

sizes. Negative values of the slip velocity near the wall are due to the 

fluid having to come to rest at the wall while the particulate phase slips 

by. 

The influence of average particle concentration, on the fluid turbu-

lent kinetic energy and turbulent shear stress are shown in Figure 5 for 

the fully-developed straight pipe flow case of Zisselmar and Molerus [32]. 

Both the experiments and the calculations show that increasing a lowers k; 
k can be reduced by as much as 50% for a = 5.6%. The reduction in k 

is attributed principally to the transfer of turbulent kinetic energy from 

the fluid to the particulate phase; term A2  in Eq. (15). The underpre-

diction of k for the larger values of a is due, in part, to the breakdown 

of the diluteness assumption. As shown in Figure 5-c the decrease in 

fluid turbulent shear stress with a near the pipe wall is reproduced. 

In contrast to straight channel flow, the dearth of two-phase flow 

experimental data in curved channels has precluded any detailed testing 

for this configuration. Mason and Smith [60] provide measurements of 

erosion in curved ducts as a function of bend angle for two curvature 

ratios. Although their flow is three-dimensional, two-dimensional pre- 

dictions of erosion using the model of this study show good qualitative 
	 p 

agreement with the measurements in Figure 6. The initial sharp rise in 

erosion rate, the location of maximum erosion and the subsequent tailing 

as a function of bend angle at the concave wall of the duct are faithfully 

reproduced. The very low values of erosion found experimentally for both 

curvatures between 30 and 50 degrees are not predicted. It has been 



shown by Humphrey, Whitelaw aiid Yee [61] for a similar configuration that 

cross-stream flows arising at these locations are in the order of 30% of 

the bulk average velocity through the duct. Such large lateral motions 

will tend to reduce the particle angle of attack, and its kinetic energy 

through repeated collisions with the walls, thus inducing a reduction in 

erosion rate. 

3.2 	Application to Curved Channel Flow 

In this section are given the main results obtained from applying 

the numerical model to 90° curved channel flows of practical interest. 

The testing described in section 3.1 has demonstrated the adequacy of the 

computational model for predicting turbulent two-phase flow in confined 

two-dimensional configurations. Testing of the model's capability to pre-

dict erosivewear, while very encouraging, is much less complete. The 

results given here may be inaccurate in terms of their absolute magnitudes, 

particularly.those relating to erosive wear. Notwithstanding, in the 

absence of experimental information, the relative comparisons which the 

predictions allow are of considerable value for purposes of design, and 

for helping to quantify the relative importance of the roles played by the 

various controlling parameters. It is with this thinking that this sec-

tion should be regarded. 

Fluid Mechanic Results 

Calculations were made of the streamwise mean velocity components 

for the fluid and particulate phases in developing curved channel flow. 

Representative samples of some of the profiles are shown in Figure 7, with 

the calculated conditions indicated. The conditions correspond to a 

mildly curved channel containing a liquid such as water (or solvent re-

fined coal) with particles such as sand (or coal) in suspension. The 

inlet flow to the curved channel was specified as being fully developed 

straight channel flow. Calculations performed with a = 0.1 and 	0.01 

did not differ significantly from the results shown in Figure 7-a, while 

predictions performed with a = 0.001 and p = 100 were very similar to the 

results given in Figure 7-b. The dimensionless particle, response time 

parameter shown in these and subsequent figures is defined as: 



Tm U
fQ/t 	 (27) 

with the particle response time Tm  given by Eq. (6); A being the channel 

width; and Uf0  being the average fluid velocity at the channel inlet. As 

shown in the figures, slip velocity between the two phases becomes signi-

ficant for 	z 1, is large for i = 100, and is an increasing function with 

bend angle. For large values of ip the Coriolis force acting on the par-

ticulate phase has the effect of decelerating particles at the concave 

wall (y/A = 1) relative to the convex (y1A = 0). The calculations re-

vealed that particle slip velocity was independent of concentration for 

all cases with a < 0.1. 

The fluid-particulate phase vector velocity plots shown in Figure 8 

help visualize the calculation conditions discussed above. In the plots, 

of any pair of vectors at a point, the one pointing more directly to the 

concave wall corresponds to the solid phase. For i = 100 it is seen 

clearly that particles strike the concave wall of the channel at an acute 

angle to the fluid streamlines. 

The transverse variation of fluid turbulent kinetic energy is shown 

in Figure 9 for fully developed curved channel flow. The plots indicate 

that decreasing 	and increasing a both lead to decreasing k in the flow. 

These predictions are in agreement withthe turbulent kinetic energy ex-

change mechanisms discussed in section 2.2. Corresponding plots of the 

particulate phase turbulent kinetic energy are given in Figure 10. The 

relative influence of the response time parameter is now reversed, with 

the figures showing that sluggish particles (p > 1) have a smaller pro-

portional amount of turbulent kinetic energy. The role of a in both cases 

is the same, increasing the particle concentration dampens the turbulent 

kinetic energy component of both phases in the flow. The peaks displayed 

by the k profiles for ip = 1 and 100 are due to the modulating effect 

that the time scale ratio -r /T has on k; see Eq. (17). From Eq. (6) and 

(7) this ratio is seen to be proportional to (k/c) 
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Erosive Wear Results 

Erosive wear at the concave wall of a curved channel was predicted 

as a function of channel angle for different values of the particulate 

phase response time parameter, , and channel flow Reynolds number, Re. 

The particle/fluid density ratio was 1.8. The results were plotted in 

the form of "erosion maps" a sequence of which is given in Fig. 11. The 

maps show that sluggish particle (p > 1) tend to produce significant wear 

at all flow speeds. Responsive particles are more erosive at the higher 

flow speeds, but their rate of wear is typically 10 2  - 105  times less than 

that of the sluggish particles. From the maps it is also seen that for 

fixed Re the position of maximum wear moves downstream with increasing p, 

as should be anticipated. 

The wear profiles show that for O'z 700  the rate of erosion is 

essentially constant. Then, for a fixed 	and Re: 

, = 	
UpJ 

E . 	2 

	

Lct 	i1t 
, 
	

(28) 

The form of this relation has also been derived by Laitone [17] and by 

Yeung [62]. 

A simple force balance for responsive particles (p < 1) shows [49] 

that the particle angle of impingement at the concave wall in curved 

channel flow is given by: 

< tan 
	

N •) 
	

(29) 

where r is the radial location of a point in the channel. It is seen 

that, for example, with R /t = 12, q 	10, using 5 urn solid particles 
lu 

i 	-4 with P p/P f  = 1.8, the impingement angle s 	10 	and is too small to 

cause significant erosion even at high speeds. 

In addition to the results given here, values for the strearnwise 

variation of particulate phase kinetic energy and angle of attack upon 

impact with the wall, have been calculated and are available in [49]. 
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4. 	Conclusions 

This study has been performed  to advance present-state turbulence 

modeling concepts relating to two-phase flow, with the aim of developing 

and applying a computational model capable of predicting such flows and 

related erosion phenomena. - 

Analysis shows that viscous interactions between the fluid and 

particulate phases cause reductions in the turbulent kinetic energy of 

both. The mechanisms of kinetic energy exchange involve transport: 

a) from the turbulent kinetic energy of the fluid to the turbulent kinetic 

energy of the particulate phase; b) from the mean kinetic energy of the 

fluid to the turbulent kinetic energy of the particulate phase via the 

turbulent kinetic energy of the fluid. 

In general, predictions based on the present model are in good agree-

ment with available two-phase flow data. Deviations between measurements 

and calculations arise for a > 0.05, Re > 1, 	>> 1,. and when large field 

forces exist in the experiments. In spite of its limitations, the model 

faithfully represents all the important features arising in connection 

with two-phase flows. 

It is shown how the use of a relatively simply expression for ero-

sive wear permits application of the model for predicting erosion in 

curved channel flow. In this regard relative trends are also faithfully 

represented by the calculation procedure. 

Further testing of the computational model is required and is the 

subject of continued research by one of us (JACH) in the context of three-

dimensional curved duct flow. For this purpose, the program of research 

includes laser-Doppler measurements of the fluid and particulate phase 

velocities and corresponding turbulence characteristics. Emphasis will 
01 

be placed on relieving the diluteness assumption and extending the theo-

retical base for dealing with flows in which a > 0.1. The inclusion of 

field forces is also of interest and will be incorporated. 

Although there are numerous practical research activities in the 

field of fluid-particulate turbulent flows, detailed fundamental investi-

gations remain an absolute necessity. In particular, there is a serious 
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need for quantitative experimental work yielding accurate results of 

value for guiding and testing numerical models for these flows. Strate-

gically planned, carefully executed, fundamental experimental work will 

continue to play a dominant role in future theoretical and modeling ad-

vancements relating to turbulent two-phase flows. 
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Notation 

C1 ,C 2 	constants in Eq. (18) 

CT 	constant in Eq. (7) 

C 	constant in Eq. (10) 

D 	pipe diameter 

d 	particle diameter 

erosion rate given by Eq. (25) 

f(s) 	function defined in Eq. (26) 

k 	fluid phase turbulent kinetic energy 

k 	particulate phase turbulent kinetic energy 

particle flux at a surface 

n 	coordinate direction normal to wall 

p1 	wall Vickers hardness 

P 	mean pressure 

magnitude of particle impingement velocity 

R 	straight pipe radius 

Rc 	
curved channel radius of curvature 

Re 	flow Reynolds number 

Re 	particle Reynolds number 

TL 	integral time scale for fluid phase .(Lagrangian) 

Uf 	fluid phase mean velocity in i direction 
1 

U 
p1 	

particulate phase mean velocity in i direction 

Uf 	fluid phase velocity fluctuation in i direction 

particulate phase velocity fluctuation in i direction 

x. 	spatial coordinate in i direction 

y 	distance from pipe/channel wall 

Greek letters 

average particulate phase volume concentration 

fluctuating particulate phase volume concentration 

particle impingement angle at a wall 

channel width 

Kronecker delta 
ij 
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c 	dissipation rate of fluid turbulent kinetic energy 

n 	Kolmogorov length scale 

K 	 Von Karman constant 

u 	fluid phase dynamic viscosity 

V 	 fluid phase kinematic viscosity 

Vt  
f 	

fluid phase turbulent viscosity 

particulate phase turbulent viscosity 
p 

v 	turbulent diffusivity for the transport of scalar a 

mass concentration of particulate phase 

Pf 	fluid density 

particle density 

ak k-Prandtl number 

c-Prandtl number 

particle response time 

dummy variable in Eq. (20) 

dimensionless particle response time parameter defined by Eq. (27) 

subscri pts 

c 	centerline value 

f 	fluid phase 

in. 	inlet value 

max 	maximum value 

p 	particulate phase 

r 	radial direction in straight pipe; transverse direction in 

curved channel 

w 	wall value 

x 	streamwise direction in straight channel 

z 	streamwise direction in straight pipe 

e 	streamwise direction in curved channel 
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108 	Data from Stukel and Soo (1968/69) 
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vO624 	 S 
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Figure 2 	Streamwise variation of centerline fluid 	(a) 	and particle (b) 

mean velocity for developing straight channel 	flow. 	Inlet 

velocities used for normalization and t represents channel 

width. 	Streaniwise location normalized following practice 

in 	[34]. 
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Figure 3 	Streaniise variation of particulate phase wall-slip velocity 

in developing straight channel flow. Velocity at channel 

center used for normalization. 
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Two-dimensional prediction of the rate of erosion at the 

concave wall of a three-dimensional curved duct flow: 

(a) strong curvature; (b) mild curvature. 
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