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ABSTRACT 

A new model for the analysis of constant rate 
well test data from naturally fractured reservoirs is 
presented. The model considers three Sets of orthog-
onal fractures with fluid flow from the fractures to 
the well and from the rock matrix to the fractures. 
In comparison to other models for naturally fractured 
reservoirs the present model allows fully transient 
fluid flow from the rock matrix to the fractures and 
a cubic geometry of the matrix blocks. 

The model has been used to develop type curves 
for the analysis of drawdown and build-up tests as 
well as pressure transient data from observation wells 
The reservoir systems considered include an infinite 
and a finite (no-flow outer boundary) system and a 
system with a constant pressure outer boundary. The 
effects of wellbore storage and skin are illustrated. 
The model is, applied to field data to illustrate the 
method of analysis and the applicability of the model. 

INTRODUCTION 

In the last two decades considerable work has 
been devoted to the analysis of well test data from 
naturally fractured reservoirs. The need for new 
analysis methods arose because of the distinct dif-
ferences in the pressure response at wells completed 
in homogeneous porous media reservoirs to that of 
wells penetrating naturally fractured reservoirs. 
The approach used in developing analysis methods for 
well test data of naturally fractured reservoirs is 
to treat the fractures and the rock matrix separately, 
but couple their response by means of interaction 
terms. Thus, the fractures represent high permeabil-
ity for fluid transport into the well, whereas the 
rock matrix has a much lower permeability, and pro-
vides gradual fluid drainage to the fractures. On the 
other hand, the fraction of the total volume occupied 
by the fractures (fracture porosity) is very small, 
and consequently the bulk of the fluids is stored in 
the rock matrix. This approach is currently referred 
to as the double porosity approach, and was developed 
by Barenblatt et al., 1 ' 2  and Warren and Root3 . They 
considered the model shown in Figure 1, in which each 

References and illustrations at end of paper. 

point in the system is assigned two pressures, one 
for the fractures, P2'  and the other for the rock 
matrix P1. Thus, for a rigorous solution to the prob-
lem, one must solve diffusion equations for both media. 
However, Barenblatt et al., 1 ' 2  and Warren and Root 3  
assumed a quasi-steady flow between the rock matrix 
and the fractures. This approximation simplifies the 
problem considerably so that solutions for the pres-
sures in the fractures androck matrix can easily be 
obtained in the Laplace domain. 

Warren and Root3  found that the pressure solution 
could be characterized by two parameters A  and U). The 
parameter A  represents the ratio of the rock matrix 
permeability to that of the fractures; whereas U) repre-
sents the ratio of the fracture compressibility to the 
compressibility of the total system (see nomenclature 
for definitions of A  and U)). For naturally fractured 
reservoirs tyjcal values of A  and U) fall within the 
ranges of iO 	to 10 	and 0.1 to 0.001, respectively. 

Subsequent to the studies of Barenblatt et al. 1 ' 2  
and Warren and Root3 , various studies have been pub-
lished on the applicability and extension of their 
models. Odeh4  used a model similar to that of Warren 
and Root, and concluded that the pressure behavior in 
a naturally fractured reservoir is identical to that 
of homogeneous porous media reservoirs. However, in 
his study Odeh4  only considered cases where the inter-
porosity flow factor A  was relatively large (10- ), 
in which case the differences in the transient pressurei 
behavior are only apparent at very early times. Later, 
Mayor and Cinco-Ley 5  extended the solution by Warren 
and Root to include the effects of welibore storage 
and skin. 

Many workers have developed models that do not 
require the approximation of quasi-steady fluid flow 
between the rock matrix and the fractures. However, 
due to the three-dimensional nature of the model con-
sidered by Barenblatt et al. ad Warren and Root 
(Fig. 1) the treatment of transient interporosity flow 
is mathematically very difficult, and has been accom-
plished only by more or less drastic simplification of 
matrix block geometry. Deruyck 6 , Kazemi', Streltsova 8  
and Serra et al., 9  considered a slab model, whereas 
de Swaan 10 , Najurieta 11 , and Cinco-Ley et al., 12  con-
sider models based on spherically shaped matrix blocks. 

Copyright 1983 SPE-AINE 
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The slab model is applicable to layered reservoirs as 
well as reservoirs- with predominantly horizontal frac- 	 IT  2 

	
2 	2 	2 	

k 
 1 
 t 

tures. However, in the slab model •the fluid flow in 	exp 	[(2-i-i) ~ (2m-1) + (2n-1) 	
2 

the layers is assumed one-dimensional; an approximation 	 4 1 c 1 (D/2) 

that is only valid if the permeability contrast between 	 (1) 
layers is large. 

In contrast to the above transient models we use 
the original model, proposed by Barenblatt et al., 1 ' 2  
and Warren and Root3  (Fig. 1). This model considers 
three orthogonal fracture sets separated by cubic rock 
matrix blocks and does not invoke further simplifica-
tions of block shapes. Fully, transient fluid flow 
between the rock matrix and the fractures is evaluated 
by means of a novel approximation for spatial depen-
dence of pressure change in the blocks 13 . In the fol-
lowing discussion we will describe the mathematical 
model and verify the solutions obtained by using a 
numerical model. Type curves will be given for the 
cases of constant rate production in infinite and 
finite systems as well as a system with a constant 
pressure outer boundary. The effects of wellbore 
storage and skin will be illustrated. Finally, 
application of the model will be illustrated in the 
analysis of field data. 

BASIC MODEL 

In formulating the governing equations for the 
pressures in the fractures and rock matrices, we use 
the Warren and Root3  approach of lumping the fractures 
and the rock matrices into two different continua. 
Using this approach the governing equation for the 
pressure in the fractures can easily be derived, but 
the geometry of the rock matrix (cubic) causes some 
problems. For a rigorous treatment of the fluid flow 
in the rock matrix continuum, a three-dimensional 
representation is necessary. However, we have devel-
oped a one-dimensional representation of the fluid 
flow in the rock that is quite adequate for the pres-
ent problem and actually gives practically identical 
results for the pressure transients at a well to those 
obtained using a three-dimensional model for the rock 
matrix. 

The approach employed is as follows. Due to the 
high permeability of the fractures, pressure changes 
will propagate rapidly in the fracture network while 
migrating slowly into the low-permeability rock matrix. 
Theref ore, as pointed out by Pruess and Narasiathan, 3  
pressures at each point in the rock matrix will depend 
primarily on the distance to the nearest fracture. In 
light of this and by neglecting gravity effects, flow 
in the rock cubes can be approximated by a one-dimen-
sional basic model, as shown in Figure 2. The basic 
model represents one-sixth of a rock matrix block, 
with the surface area for flow decreasing from D 2  (D 
is the fracture spacing) at the edges of the cube to 
zero in the middle. Thus, the total flow from the 
rock matrix block to the fractures will be six times 
that given by the one-dimensional model. 

In order to verify the one-dimensional approxima-
tion, we consider flow to a cube with a uniform initia 
pressure of zero and a constant boundary pressure of 
unity. The solution for the transient flow rate in 
this three-dimensional problem is given by Carslaw and 
Jaeger 14 : 

The dimensionless flow rate for the same problem 
using the one-dimensional approximation, is given by: 

22 

	

nik1t 	9 
q0  = 24 	ex{_ 	 (2) 

. 1c1 ( D/2) 2   
n= 1 

The dimensionless flow rates for the two models 
(Eqs. 1 and 2) are plotted versus dimensionless time 
in Figure 3. The figure shows that at all times the 
dimensionless flow rate is practically identical for 
the two models. This indicates that the flow from the 
rock matrix to the fractures in naturally fractured 
reservoirs is quite well approximated by the one-dimen-
sional model. However, it should be pointed out that 
the pressure distribution in the rock matrix blocks are 
not the same in the one- and three-dimensional models. 
This does not, however, have significant impact on 
interporosity flow and the pressure response at wells 
completed in naturally fractured reservoirs. 

MATHEMATICAL MODEL 

In addition to the approximation discussed above, 
the following assumptions are made: 

The reservoir is of uniform thickness, with 
impermeable lower and upper boundaries. 
The fluid flow from the system into the welibore 
is radial and only the fractures feed the well. 
The initial pressure Pi is uniform throughout the 
system, but at time t > 0, a constant flow rate q 

at the welibore is imposed. 
The pressure in the fractures is assumed to be 
equal to the pressure in the rock matrix at the 
contact region (Z = D/2). 
All properties such as permeability, porosity, 
and compressibility, are Constants in each 
continuum. 
The fluid flow is isothermal And single-phase. 
The fluid is slightly compressible, with constant 
properties (viscosity and density). 

The governing equation describing the fluid flow 
in the fracture system can be derived by performing a 
mass balance on a control volume in the fractures (see 
Appendix A): 

____ 
a2p 

1 	
u ap 	 p 2c 2 	P2  

2 	r3r 	k D3Z 	 k 
2 	Z

= 	

= 

D/2 	2 	at 

where P2 is the pressure in the fracture, and P1 is 
the pressure in the rock matrix. Other symbols are 
defined in the nomenclature. The governing equation 
for fluid flow in the rock matrix can be expressed as: 

	

2 
 ap 	$ 1 c 1 U 3P 1  

1 	_ 
-+--= 

__ 
- 	 (4) 

	

Z äZ 	k 1  at 

24 x 64 
qD 	4 

Tr 	
Z=1 n1 n=1 

(21 - 1)2(2m - 1) 2  

The initial conditions are: 

P 
2 	 1 
(r,O) = P (r,Z,O) = P. 	 (5) 
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The boundary conditions at the well are controlled 

by the constant flow rate, q, and the effects of well- P01 (r0 ,n,t0 ) rl= ,= P02 (r0 ,t0 )  
bore storage: 

ap 	 k 
lim 	P 	(r0 ,t0 ) 	0 r04 	D2  

\arr=r 
- C 	+ 2THr 	2 	 = qB 

(6) 
at 

w 
aP02(r01t0)l 

The effects of infinitesimal skin region around ar. 
0 rr 

 

the wellbore can be expressed by: D 	e0 

ap2 -1 P02 (r0 ,t0 ) 	 = 0  
1p = - Sr 	 (7) 

Wf 	L2 	wJrr 
where. 

The boundary conditions for the rock matrix are: 

2k H 
ap 	(r,z,t) = 	2 	

(P 	- P(r,t))  
az 	zo =0 	 (8) 0 	qiB 	i 

P .(r,z,t)l 	P2 (r,t) 	 (9) 
1.  

r 
r0  = 	-  

z0/2 

Three different cases are considered for outer fl 	=  
boundary conditions; the reservoir is infinite in 

0 

radial direction, a finite reservoir with a no-flow 
boundary, and a constant pressure boundary. k2t 

tD= 	. 	 2 
 

Infinite reservoir: (4 1 c 1 	+ 	4 2 c2 )IJr 
w 

urn P 	(r,t) 	= P. 	 . 	 (10) 
2 

r lv 
 

Finite reservoir: 
k202 

.4 

a2p ap K0 (/)+ S/K 1 (/) 

	

1 	+ 

	

2 	nan an 

= 	(1- 	01 

at x 	o 
 

P0f = p{K1 () 	+ C 0p(K0 () 	+ SK1())} 	
(30) 

(r0 ,n,0) 	= 0 = P01  K(V'r0 ) 
p02 = 
	

0 

t 	K 1 () 	+ C0p(K0 () 	+ SK1())} 	(31) 
aP0f 

C -+ 
0 at0 

(aPD2)lr 
3r 	= 1 

01 
(16) X 	= 3AX 	coth (X) - 3A + wp 2 	1 	 1  

P0f 	
[  PD2 

ap 2 
 
A 	 A 	

(32) coth (X1+ 
= 

ar0 	
jr 

 
D=l 

 
where 

p 1 	(r0,n,t0) I 	= 
0  

= /(1 - 	
(33) A ar0 

n=0 

3P 2 (r,t) 	 4 2c2  

ar 	
ir--re = 0 
	 (11) 	

0c + 42c2) 	
(28) 

Constant pressure: 	
C = 
	C 	 (29) 

0 	 2 
P 
2 	

rre 
(r,t) 	P. 	 (12) 	

21(1c1 + 4 2c2 ) Hr 
1 

The mathematical model is fully defined through 
In terms of dimensionless parameters, the govern- equations (13) to (22). The simultaneous solution of 

ing equations (3)-(4), the initial conditions (5), and the equations using the Laplace transformation is 
the boundary conditions (6)-(12), can be written as: 	derived in Appendix B. In the Laplace domain the 

solutions for the pressure in the flowing well and the 

a 2p 	ap 	ap 	 ap 	 fractures are: 

02 + !_ __2. - 3X 	 - 
- 	

02 	
(13) 

3r2 	r0  r0 	a 	 at 
0 	 1T1=1 	 . 	Infinite reservoir 
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and p is the Laplace parameter. It should be pointed 
out that this result is identical to de Swaa&s result, 
which was obtained by approximating the behavior of 
cubical matrix blocks with that of spheres, provided 
the diameter of the spheres is equal to the side length 
of the cubes. 10  

Finite reservoir 

= { IO (i) K, (/ r D )  + I1 (1 r D ) K0 (I) } 

Of 	
CD p2 [Y - SIX] - pIX 

- S x {I1(/)K1(/ 2 eD 
	1 

r )- I (17 
2 e0 1 
r )K (/x2 )} 

	

c0p 2 [Y - SV'D] - pv'x2X 	
(34) 

- 	I 0 	0 1 	 1 	0  

	

(/r)K(/r 	+ I/ 

	

(r)K0 	2  (v'xr0 ) 
P = 
02 	 c 3p2 [Y - S/X] - pV'X 

where 

	

X = I (/)K (/r ) - I (V7r )K (v7) 	(36) 1 	2 	1 	2e0 	1 	2e0 1 	2 

	

Y = I (/)K (/r ) + I ('/7r )K (v7) 	(37) 
0 	2 1 	2eD 	1 	2eD 0 	2 

Constant-pressure outer boundary 

- 	K(/)I (v' r ) - K ('7 r )I (v7 0 	2   
0 	2e0 	0 	2e0 0 	2 

P = 
Of 	pV72 (1 0 (17 2r )K (v7 ) + I (17 )K (v7r )J 

eD 1 	2 	1 	2 0 	2eD 
(38) 

Weilbore storage and skin effects are not consid-
ered in the case of a constant-pressure outer boundary. 
The complex nature of the solutions prohibits analyti-
cal inversion from the Laplace domain into real space. 
Therefore, we employ a numerical inverter by Stehfest 15  
(1979) to obtain the solution in real space. 

ASYMPTOTIC SOLUTIONS 

In the following discussion we consider the case 
of the infinite reservoir without wellbore storage and 
skin effects and develop asymptotic solutions for the 
early- and late-time behavior. 

Early time behavior 

At early times the pressure response at the well 
is only governed by the characteristics of the frac-
ture system: 

Late-time behavior 

At late times the flow between the rock matrix 
and the fractures becomes quasi-steady and the pres-
sure response at the well is identical to that of a 
homogeneous reservoir with a storativity (c)T 

(1c1 + $2c2): 

Of = 2 [int
0  + 0.80909] 
	

(41) 

Comparison of Eqs. (40) and (41) shows that the 
early-time and late-time semilog straight lines will 
be parallel and offset by in(. 

The early- and late-time behavior described here 
is identical to that obtained by earlier models, e.g., 
the Warren and Root model 3  and layered reservoirs 8 ' 9 . 
The present model and the earlier models differ only 
in the transient pressure response at intermediate 
times. 

COMPARISON BETWEEN MODELS FOR NATURALLY FRACTURED 
RESERVOIRS 

The main difference between the present model and 
that of Warren and Root3  is that we assume transient 
fluid flow between the rock matrix and the fractures 
instead of the quasi-steady state fluid flow assuxnptio 
Results from these models for several values of A are 
shown in Figure 4. As mentioned earlier, the early-
and late-time semilog straight lines are identical for 
both models. However, significant differences are 
evident in the transient region at intermediate times. 
In the present model, significant flow from the rock 
matrix to the fractures occurs much earlier than in 
the Warren and Root model; consequently, the pressure 
deviates earlier from the first semilog straight line. 
Also, the pressure transients in the intermediate-time 
region last considerably longer in the present model 
than is predicted by the Warren and Root model. As 
will be shown later, the pressure transient data in 
the intermediate-time region are essential for the 
determination of the reservoir parameters, since in 
most cases the early-time data (first semilog slope) 
are masked by wellbore storage effects. 

Other models that consider transient fluid flow 
between the rock matrix and the fractures8 1  show 
similar transient pressure behavior at intermediate 
times. Therefore, depending upon the geologic condi-
tions that prevail at a given Site, the present model 
for naturally fractured reservoirs may be utilized or, 
in the case of layered reservoirs, models developed by 
Streltsova8  or Serra et a19  are applicable. 

I) 

2/ 
Of 	VIf 

The period for which Equation (39) holds depends 
on the hydraulic properties of the fractures and the 
rock matrix. If the fracture storativity (ai) is large 
and the interporosity flow factor (A) small, the early 
time behavior will last for a long time, and a semilog 
straight line can be observed. The flowing well pres-
sure is given by: 

- 1 I J 2'\ + 0.80909]
PDf- 2 
	

\W 
) 

	 (40)  

I VERIFICATION OF THE PRESENT MODEL 
In order to verify the mathematical model and 

the accuracy of the numerical inverter, we conducted 
independent numerical simulation studies using the 
three-dimensional simulator PT (Pressure and Tempera-
ture), recently developed at Lawrence Berkeley Labor-
atory 16 . Numerical analysis of pressure transients 
of wells completed in naturally fractured reservoirs 
were carried out using the multiple interacting con-
tinua (MINC) method 13 . The comparison between the 
numerical results and the results predicted by the 
present semi-analytic model is shown in Figure 5. The 
excellent agreement did not warrant additional simula-
tion studies. 
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METHODOLOGY 

Type curves for drawdown tests in naturally frac-
tured reservoirs of infinite areal extent are shown in 
Figure 6 for three different values of A (10 -3 , 10-6, 
10) and w (10-1, 10r2 , 10); these values cover the 
range of probable values for naturally fractured res-
ervoirs. Not Only A but also w determines the time of 
pressure deviation. Figure 6 shows that w controls 
the shift of the early- and late-time semilog straight 
lines, whereas A determines the time of pressure 
deviation from the first slope and the time of conver-
gence to the late-time curve. 

In order to develop methods for analysis of data 
from naturally fractured reservoirs, an approximate 
analytical solution is helpful. Applying the improved 
Schapery techniqueL 17  to Eq. (30) (without wellbore 
storage and skin effects), the following solution was 
obtained (Appendix C): 

=-1+1n2 _n 	
/15( 1 

of 	
[i e1AtD 

coth ( 1'15(1 - (a) 	A 	w 	1 
/ 	e1AtD I - 	+ 	

( 42) 
e1AtD ]  

Equation (42) is valid for dimensionless times 
greater than to = 10, which covers times of most prac-
tical interest.- For this time range Eq. (42) is gen-
erally accurate within 1%; the maximum deviation from 
values calculated using the numerical inverter is 2%. 
At late times the equation is exact. Equation (42) is 
used as a basis in the following discussion. 

As mentioned earlier, the pressure response of 
naturally fractured reservoirs is characterized by 
three segments, a semilog straight line at early times, 
a transition period, and a late-time semilog straight 
line. In many cases, regardless of wellbore storage 
effects, the initial straight line is not present. 
Only in cases where (A/U) < 7 x 10 	can the first 
linear segment be observed. By correlation, the 
initial semilog straight line ends at a dimensionless 
time of: 

tD =  T 
	

(43) 

During the transition period the pressure changes 
are much less than at early and late times because of 
the large fluid flow from the rock matrix feeding the 
fractures. This period lasts for about 7 log cycles 
of dimensionless time. During the transition period 
two linear segments on the pressure-log time plot 
(Fig. 6) may be identified. The first segment has a 
slope half that of the initial and final slopes. This 
half-slope has also been identified by Streltsova 8  and 
Serra et al. 9  for the case of stratified reservoirs. 

The half-slope occurs around the dimensionless 
time when the two last terms in Eq. (42) cancel each 
other: 

5w 
-  

e 
I 
 A 
	 (44) 

At that time the pressure declines according to the 
expression: 

& WITHERSPOON 

of = : 	
- £nA(1 - w) - in 	- 31] 	(45) 80 

The time period over which a half-slope can be 
observed depends on W. For W = 0.001, the half-slope 
occurs for over a log cycle whereas for U) = 0.01 it 
lasts only a half-log cycle. Where U) is larger than 
0.1, the half-slope segment cannot be easily identi-
fied. The intersection between the initial semilog 
straight line and the half-slope straight line occurs 
at a dimensionless time of: 

5w 
2 

= 3e1A(1 - U)) 	

(46) 

Similarly, the intersection of the half-slope line 
with the final linear segment occurs at a dimension-
less time of: 

(tD)FH = 3e
1 A(1 - U)) 

5 
(47) 

At a slightly later time in the transition period, a 
brief linear segment with a slope two-thirds that of 
the final slope is apparent. Due to the complex nature 
of the analytical approximation (Eq. 42), it is not 
possible to mathematically derive the exact time of 
deviation of this linear segment. It is also of ques-
tionable value because of its short duration. However, 
as is the case with the half-slope, the 2/3-slope 
increases in duration with decreasing value of U). 

The pressure transients converge on the final. 
slope at a dimensionless time of: 

D 	A 

	

= 3(1 - 	
(48) 

However, for accurate determination of the final slope, 
one should only consider data points at dimensionless 
times exceeding: 

5(1  
tD > 	 A 	 (49) 

PROCEDURES FOR ANALYSIS 

Iti the above analysis we offer some insight into 
the pressure transients in naturally fractured reser -
voirs by using the approximate analytical solution 
(Eq. (42)). However, well test data rarely exhibit 
all of the theoretical characteristics displayed above. 
In most cases early data are masked by wellbore storage 
effects and in some cases the duration of the well test 
is too short for late-time behavior to be observed. 
Also, boundary effects may affect the well test data 
to the extent that the late time behavior predicted by 
the inifinite reservoir model is never observed. The 
effects of wellbore storage and skin as well as the 
effects of different outer boundary conditions are 
discussed in a later section. Analysis procedures are 
given below for cases when the data are incomplete as 
well as for the case of a complete data set. 

Complete data set 

In this case the transmissivity k2H and total 
storativity (c)T of the reservoir can be determined 
from the early-time or late-time slopes using Gonven-
tional methods. UI can be determined from the pressure 
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4e1A(60 + 3.5S) 
C0  (51) 

0 	 P NtW NUUtL r UK Wt..LL 	 up.rp PLN 

7usi
difefrence between the early- and late-time slopes 

ng the equation: 3  

= exp(-2p) 	 (50) 

Once W is determined, A can be calculated from 
any one of Eqs. (44), (46)-(48) by using the appro-
priate dimensionless time. The fracture storativity 
t2c2 can be calculated from w and the total stora-
tivity; k1/D2  can be evaluated from the definition 
of A and the reservoir transinissivity k2. Finally, 
if the permeability of the rock matrix k1 is known, 
e.g., from core data, the fracture spacing D can be 
determined. 

Early-time data missing 

As mentioned earlier, the initial semilog straight 
line will not appear if (A/U)) > 10. Also, weilbore 
storage effects will in most other cases, mask the 
initial slope as well as some of the data during the 
transition period. However, it is still possible to 
extract the reservoir parameters from the data. As 
before, one can determine k2H and (1c1 + (P2C2) from 
the late-time slope and intersects using conventional 
methods. U) and A can be determined by solving Eqs. 
(44) and (47) or Eqs. (47) and (48), simultaneously. 
The fracture storativity and (k1/D 2 ) can be deter-
mined in the same way as before. 

Final slope missing 

If the well test is of-short duration and A is 
small, the final slope may never be observed in the 
data. If the initial straight line is present, one 
can still determine A, w, and all reservoir parameters. 
k2H and 42c2 can be determined from the slope of 
the initial straight line, A and LU by solving Eqs. (44) 
and (46) simultaneously, and other reservoir parameters 
as discussed above. However, if the initial slope is 
not observed, A and U) cannot be determined. In this 
case the use of the pressure transient data to deter-
mine the k2H of the reservoir by conventional methods 
will result in estimates that are about twice the 
actual k2H of the reservoir. 

WELLBORE STORAGE AND SKIN EFFECTS 

At early times during drawdown tests, most of the 
fluids are produced from the fluids contained in the 
wellbore. Thus, the surface flow rate greatly exceeds 
the sandface flow rate. Later on, steady-state condi-
tions develop in the weilbore so that the sandface flow 
rate equals that at the surface. Obviously, during 
early times the pressure transients are only related 
to the volume of fluids stored in the wellbore, so that 
these data cannot be used to determine any formation 
parameters. It is of interest to examine the duration 
of the weilbore storage effects depending upon the 
value of the wellbore storage factor C0. 

Figure 7 shows the effects of wellbore storage on 
the pressure transient data for A = 10 and w = 0.01. 
The figure shows that even for this small value of A, 
wellbore storage effects will mask the initial straigh 
line completely. The higher the weilbore storage fac-
tor CO3  the more the transition period data will be 
masked. However, in the case of this low value of A, 
the half-slope can still be observed even though the 
wellbore storage factor is as large as C0 = 10 4 . Con-
sequently, the procedure of analysis discussed in the 
last section can be applied, and all reservoir param-
eters determined. 

UK LNbL)UX i.LX r XQLiOKL) nn.KVUmnn 	 rm JL000 

It is obvious that the wellbore storage effects 
become more critical when the value of A is higher. 
In many cases wellbore storage effects will mask all 
of the data during the transition period so that only 
the final semilog straight line can be observed. In 
this case neither A nor w can be determined, but only 
the overall integrated reservoir parameters k2H and 
and (c)T.  Our analysis shows that A and U) can only 
be determined if the following constraint holds: 

The combined effects of wellbore storage and skin 
are shown in Figure 8 for A = 106 and U) = 0.01. The 
skin factor S represents permeability reduction in the 
near-wellbore region as a result of formation damage 
(positive skin) or permeability enhancement due to the 
presence of natural or man-made (hydraulic) fractures. 
The figure shows the characteristic unit-slope due to 
wellbore storage at early times 18 , and a steady-state 
pressure drop associated with positive skin. The well-
bore storage factor C0 can be determined from type 
curves such as the ones shown in Figure 8. The skin 
factor S is determined by conventional methods by 
assuming a value for the total storativity. 

Mayor and Cinco-Ley extended the Warren and Root 
solution3  to include the effects of wellbore storage 
and skin. Their results differ considerably from those 
presented here, mainly because of the quasi-steady 
flow assumption employed by Mayor and Cinco-Ley. For 
example, these authors develop criteria to determine 
at what values of the wellbore storage factor the 
initial straight line will appear. Our studies show, 
however, that if wellbore storage is present, the 
initial straight line will never appear for realistic 
values of A and LU. The reason for this discrepancy is 
that the initial straight line lasts much longer in 
the Warren and Root model due to the assumption of 
quasi-steady interporosity flow. 

FINITE RADIUS RESERVOIR 

In this section we consider the cases of a closed 
reservoir and a reservoir with a constant pressure 
boundary. The mathematical solutions for these cases 
are given in an earlier section. 

Figure 9 shows the pressure transient behavior in 
a closed reservoir (reD = 100) for A = 10 -6 and var-
ious values of w. We show also for comparison, the 
solutions for the same parameters based on the Warren 
and Root quasi-steady flow model. In the case consid-
ered here, the no-flow outer boundary effects are felt 
before the rock matrix significantly contributes to 
the flow. Consequently, the boundary effects are felt 
a factor of (11w) times earlier than they would be in 
the case of a homogeneous reservoir (w = 1). Thus, if 
conventional methods for homogeneous reservoirs were 
used to analyze such data, the drainage radius may be 
underestimated by orders of magnitude. In general, the 
boundary effects will be felt before significant fluid 
flow from the matrix occurs if (A/w2 ) < (T/10r). 

eD 

It is of interest to compare the solutions by the 
present model and the Warren and Root quasi-steady 
type model. In the case of the Warren and Root model, 
a plateau can be observed in the pressure transients 
(Fig. 9). The plateau appears only because of the 
quasi-steady state assumption. When transient fluid 
flow between the rock matrix and the fractures is 
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considered, as in the present model, the pressure de-
cline in the reservoir is more monotonic and a smooth 
transition to the final straight line is observed. As 
a result of the above discussions, methods that have 
been developed to determine the drainage radius of 
finite naturally-fractured reservoirs using the Warren 
and Root model 5  may also significantly underestimate 
the drainage radius. 

When the boundary effects are felt during the 
transition period similar results as discussed above 
can be observed, but the time shift will be less. 
Obviously, a pressure response identical to that of a 
homogeneous reservoir will result if boundary effects 
are felt during the final semilog straight line. This 
will be the case if A > 1/11r 0 . 

Figure 10 shows the effects of no-flow and con-
stant pressure boundaries for A = 106 and various 
values of w and reD.  The figure shows there is a 
much shorter transient region for a Constant pressure 
boundary than for a closed boundary. The boundary 
effect on the pressure behavior in the constant pres-
sure boundary case is similar to that in the no-flow 
boundary case. 

PRESSURE BUILD-UP ANALYSIS 

The analysis of pressure buildup tests is ver/ 
similar to that of drawdown tests described earlier. 
Using rules of superpositon, the dimensionless shut-S 
in pressure, PDS,  is given by: 

P DS = P 
DF 

 [(t p 
	0 
+ At) I - P 

DF  N 	0 
At) ) 	 (52) 

If we assume that t is large enough that the 
pressure transients follow the final slope before shut-
in, the build-up data will also exhibit a half-slope 
at a dimensionless shut-in time given by Eq. (44). At 
that time the shut-in pressure is given by: 

= ! <Zn 
 (t + At) 

0 +&n(t +At) 

	

OS 	4 	(At) 	 p 

	

+ iA(1 - ) + in (3. -Y ) ) 	
(53) 

Assuming that in(t + At)0 = Ln(t)0 Eq. (53) simpli-
fies to: 

	

1  [in 	+At)p 	
D +2.n(t

DS 	. (At)0 	 p 0 

	

+ in A(1 - w) + in (i)] 	 (54) 

The late-time behavior of the build-up test is given 
by the expression: 

r(t + At 

9DS = 	
in 
 [ (At)0 )D] 

The dimensionless times for the intersections of the 
half-slope straight line with the initial and final 
slope straight lines, respectively, are identical to 
those presented in Eqs. (46) and (47). 

FIELD EXAMPLE 

Bourdet and Gringarten 19  presented the build-up 
data from a naturally fractured reservoir shown in 
Table 1. We use this data to illustrate how the pres-
ent model can be used to determine important reservoir 
parameters. The best match obtained between the ob-
served data and the calculated values using the present 
model is shown in Figure 11. An excellent match was 
obtained. The analysis proceeds as follows: Using 
the final slope of 141.8 psi/cycle the transmissivity 
of the reservoir can be calculated as: 

162.6qBjj = 162.6 x 4500 x 1.2 X 
0.5 = 3088 md-ft. k2H = 

	m 	 141.8 

For a reservoir thickness of 100 feet, the average 
reservoir permeability is k2 = 30.88 md. 

We can now proceed to calculate w. As is evident 
from the data shown in Figure 11, wellbore storage 
effects mask the initial fracture controlled straight 
line. One must therefore use the methodology devel-
oped earlier to determine Li. In the data shown in Fig-
ure 11 a half-slope segment can be observed at Homer 
time of about (t + At)/At = 35, or At = 0.617 hrs, 
(t = 21 hrs). 

The intersection of the half-slope line with the 
final straight line occurs at (t,, 9  + At)/At = 9, or 
At = 2.625 hrs. Dividing Eq. (4'7) by Eq. (44): 

(At 
DEF_ 	1 	_1 

(At ) 	- 
OH 	

3w(1 - w) 

since (ATD)HF/(AtD)H = (At)HF/(At)H, one can determine 
w = 0.078. To determine k1/D 2  one can use Eq. (47), 
after substituting for A and w in Eqs. (27) and (28): 

1.691 x 10 2k (At) 
1 	HF 

=1 
P(c) 

Solving for k1/0 2  yields k1/D 2  = 1.03 x 10 	md/ft2 . 

Unfortunately, there are no core data available 
on the matrix permeability, k1. However, if one 
assumes a reasonable value for the matrix permeability, 
say, k1 = 0.001 md, the average fracture spacing 0 
equals 10 ft. 

One can now proceed to calculate A based on its 
definition: 

60k 
1 
 r 2 

1.82x10 6  
2 

k 
2 
 D 

The skin factor S can be calculated from: 

S = 1.151 [Plhr - P(At=0) 

-log 
k2 	

2 I 
1 + 3.23 = -0.7 

	

+ 	
2 	w 

2c )ir J 

(55) 
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The above analysis is based on the approximate 
solution given by Eq. (42). However, if a more accur -
ate analysis is needed, Eq. (30) can be employed. The 
match shown in Fiqure 11 was obtained using Eq. (30) 
and the following parameters were determined: 
A = 2.63 x 106,  w = 0.085, and S = -0.7, CD = 1200 
and C = 0.012 bbl/psi. 

Bourdet and Gringarten analyzed the same data 
(Fig. 11) using the Warren and Root model. They do 
not show the comparison between the calculated and 
observed pressures, but give values for A and u of 
2 x 10-6  and 0.25, respectively. Using these param-
eters and the Warren and Root model, we compared the 
calculated and observed data and found a very unsatis-
factory match. A much more reasonable match is ob-
tained using A = 3.5 x 10 	and u.= 0.25. This value 
of A is more than an order of magnitude higher than 
the value obtained using the present model. The value 
of A is also considerably greater than our value, and 
is unrealistically high. 

SUMMARY AND CONCLUS IONS 

A new model for the analysis of pressure tran-
sient data from naturally fractured reservoirs has 
been developed. The model considered is that of 
Barenblatt et al 1 ' 2  and Warren and Root 3 , consisting 
of three sets of orthogonal fractures separated by 
cubic matrix blocks. The model considers fully tran-
sient flow between the rock matrix and the fractures. 
Pressure transient solutions are presented for draw-
down/build-up tests in naturally fractured reservoirs 
that are infinite, finite or with a constant pressure 
outer boundary. Wellbore storage and skin effects are 
also included. Some of the results obtained are: 

Wellbore storage effects will mask the early-time 
semilog straight line for realistic values of A 
and W. 

The pressure transient data during the transition 
period for values of U)  smaller than 0.1 exhibit a 
"half-slope similar to that observed for the 
layered reservoir case. The half-slope is fol-
lowed by a brief segment with a slope of 2/3. 

All reservoir parameters can be determined if the 
half-slope segment is observed, even if the early-
time straight line is not present. The appro-
priate procedure for analysis is given. 

In the case of a finite reservoir, the drainage 
radius cannot be properly determined using a 
Warren and Root type model. 

The model presented here is similar to other 
transient models, e.g., layered reservoir models. 
Geologic information must be used to determine 
which model is appropriate. 

The field example given illustrates the applica-
bility of the present model for naturally frac-
tured reservoirs. 

NOMENCLATURE 

	

B 	formation volume factor, RB/STB 

	

C 	weilbore storage coefficient, RB/psi 
CD 

	

	dimensionless welibore storage, 
C/(21T(4c1 + 2c2)Hr,) 

c 	compressibility, psi 1  
D 	fracture spacing, ft. 
e 	exponential function 

10 	modified Bessel function of the first kind, 
zero order 

Il 	modified Bessel function of the first kind, 
first order 

k 	permeability, md 
K0 modified Bessel function of the second kind, 

zero order 
K1 	modified Bessel function of the second kind, 

first order 
PD dimensionless pressure, 

[(27k2H)/quB1(P - p(r,t)) 
b boundary pressure on the surface of rock matrix 

block 

o dimensionless vertical semilog 
pressure difference. 

Df dimensionless flowing bottom-hole pressure 
wf flowing bottom-hole pressure, psi 

p 	Laplace parameter 
q 	flow rate, STB/D 

flow rate, STB/D 
qD 	dimensionless flow rate, j 1/k1PbD 
r 	radius, ft. 
rD dimensionless radial distance, r/r 

re 	external radius, ft 
reD dimensionless external boundary radius, r e/rw  
rw  welibore radius, ft. 
S 	van Everdingen-Hurst skin factor 
t 	time, hours 

tD 	dimensionless time, k2t/(P1c1 + 2c2)Ur 

T 	dimensionless time, k1t/(41c1)(D/2) 2  
fl 	dimensionless distance in the rock matrix 

block, 2z/D 
A 	interporosity flow parameter defined by Warren 

and Root, 60k1r,/k2D 2  
X 	Interporosity flow parameter, 4k1r2/k 2D 2  

.L 	viscosity, cp 
porosity 

U 	ratio of storativity of the fracture to total 
storativity, P2c2/01c1 + 02c2) 

I 	Euler constant, 0.5772 

Subscripts 

1 	rock matrix 
2 	fracture 
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In the radial flow system, one can define a con-
trol volume V as: 

V = 7 {(r + dr) 2  - r2 }H = 2rdrH 	 (A-i) 

The interface area Ac  between the rock matrix and 
the fractures in the control volume can.be  expressed: 

A = 6D2(_ 	= 127TrdrH 	 (A-2) c 	
\D) 	

D 

We can now write a mass balance equation for the 
control volume in the fractures: 

	

qA - (qA + a (qA)dr) + (qA) 	
a (Vn2P) 

	

 zD/2 	
(A-3) 

= 	at 

If the fracture and fluid properties are constant, 
the pressure gradients in the system are small and the 
fluid is slightly ccxipressible then after introducing 
Darcy's law, Eq. (A-3) becomes: 

2p2 +1 a 	6k1 
1 
 ap  11 	2 C2

4 3p
2  

2 	rar 	k D3z 	- k 	at 
3r 	 2 	z=D/2 	2 	

A-4) 

The governing equation describing the mass con- 
servation in the rock matrix can be expressed as: 

a(A dz p) 
zz - {qzAz 
	az 	

zz) dz 	at  +- (q A 	=q A
} 	

z 	1 	
(A-5) 

where 
14. Carslaw, H. S. and Jaeger, J. C., Conduction of 

Heat in Solids (2nd Ed.), 1959, London, Oxford 	 A = kz2 	 (A-6) 
University Press, 510 p. 	 z 

Stehfest, H., Numerical Inversion of Laplace 
Transforms, Communications of ACM, Vol. 13, 
p. 47-49, 1970. 

Bodvarsson, G. S., Numerical Modeling of Geo-
thermal Systems, Ph.D. Thesis, University of 
California, Berkeley, 1981. 

and k is a constant. 

Similar considerations yield: 

2 ap 
	4 1 c 1 i ap 

 - 
 +-- = 	- 	 ( A-7) 

oz 
2 	zaz 	k 1 
	

at 
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Equations (A-4) and (A-7) describe the pressure Substituting Eq. 	(3-12) into Eq. 	(B-i) yields: 
transient behavior in the fractures and the rock 
matrix, respectively. ap  

APPENDIX B: 	Simultaneous solution of fracture and 
+ 

r 
02 	1 	02

ar 
- 	coth (X 1 ) - 3A + Wp1P02  = 0 

r2 	0 	0 rock matrix equations. 0 
(B-13) 

Applying Laplace transformation to Eqs. (13) 
through (22) yields: 

Let 

X2  = 3A X 1  coth (X 1 ) - 3A + wp 

ai 

- 

1 	D2 + 
wpP 	= - 

2 	r0  3r0 
0 	(81) 

A 
3r0 	

1 = 	
X 1  coth (X 1 ) - - 	+ Wp 	 (B-14) 

2- 	- 
ap  a 01 	

2 	Di 	(1 	- ) 	 - 
After applying boundary conditions given by Eqs. 	(8-3), 

+ --  = 0 (B-2) (8-4), and (3-7), the solution for the pressure at the 
2 	r 	an 

an weilbore and in the fractures can be expressed as Eqs. 
(30) and (31) for an infinite reservoir. 	Similar pro- 
cedures can be used for a finite reservoir. 

D2 1 
C0PP0f  - 

-.:-; - 
= I (B-3) 

rl 
APPENDIX C. 	Approximate solution 

Without skin and wellbore storage effects, the 

- 	

] 

P0f = 

{ 

(...4) pressure at the welibore can be expressed as: 
D2 

r 
D K0/ () 

P0f = p/ 	Ki() 	
(C-i) 

ap01(r0,n) 

an 1n=O 
 =  

Approximate inversion of equation (C-i) is pos- 
sible using the improved Schapery method. 	As a first 

P02 (r0 )  step, one approximates: 

him 	P 2 (r0 ) = 0 Df 	p 1/eAt0  (B7) 
r 	-' 
0 Hence, 

3p 	(r 
02 	D 
ar 

= 0 (B-8) 
p 	 (C-2) Df 

0 

If X2 is small, equation (C-2) becomes 

P  
D2 

(r 
 0 ) 	

= 0 

Ir0 r 
(8-9) 

0  P0f 
K() 	 (C-3) 0  

After applying boundary conditions given by Eqs. In general, for t0 > 10, within 2% accuracy in 
(8-5) and (B-6) to Eq. 	(B-2), 	the solution for the comparison to the results of the Laplace numerical 
pressure in the rock matrix can be expressed as: inversion, P0f can be expressed as equation (C4): 

- 
P0 	1 1,,2 (X 1 fl) A P0f  = -y + in 2 - 2 in 	X3  coth(X 3 ) 	+ 

2 et 
= 	I112(X1) (8-10) 

(C-4) 

where 
where 

___________ 

w)p = /(1 	= /15(1 
/15(1 	- 

(3-11) e1 At0  

To solve the equation for the pressure in the The half-slope can be observed around the dimen-
sionless time, 	t0 = 5w/XeI. 	In this region Eq. 	(C-4) fracture and at the wellbbre, 	(B-lU) can be used to 

yield: can be further simplified to yield: 

ai P 	XI 	(X 
D2 	1 	3/2 	l P0f  = 	{.En t0  - in A(1 	- 	) - in 	- 3i} 	(C-5) 

Dli 
- 

= 	I1,,2(X1) 	
= P02 (X 1 coth 	(X1) 1 

so 

(8-12) 

I 
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Fig. 1-Idealized model of naturally fractured reservoirs. 
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Table 1. Data for pressure build-up test. 

H100ft, 	B=1.2RB/STB, 	 j0.5cp, 
+ 2c2) = 10 6psi, 	 q = 4500 bbl/D, 

= 0.3 ft., 	P(dt. 	0) = 3420.8 psi, t, = 21 hrs 

it 	(hrs) (t 	+ dt)/t PWf (psi) 

0.0126 973.22 3607.6 
0.0480 438.50 3867.6 
0.0833 253.10 3970.9 
0.166 127.51 4067.9 
0.250 85.00 4093.9 
0.333 64.64 4108.0 
0.416 51.48 4117.0 
0.500 43.00 4127.2 
0.667 32.48 4138.5 
0.833 26.21 4147.5 
1.0 22.0 4154.8 
1.25 17.8 4162.7 
1.50 15.0 4170.6 
1.75 13.0 4176.8 
2.00 11.5 4182.5 
2.25 10.33 4187.6 
2.50 9.40 4192.6 
2.75 8.64 4196.6 
3.0 8.00 4199.9 
3.25 7.46 4202.8 
3.50 7.00 4205.6 
3.75 6.60 4208.4 
4.00 6.25 4211.3 
4.50 5.67 4216.9 
5.00 5.20 4220.8 
5.50 4.82 4225.9 
6.00 4.50 4228.7 
6.50 4.23 4232.1 
7.00 4.00 -- 	4233.8 
7.50 3.80 4237.8 
8.00 3.63 4239.5 
8.50 3.47 4242.3 
9.00 3.33 4245.1 
9.50 3.21 4246.8 
10.00 3.10 4248.5 
10.50 3.00 4250.7 
11.00 2.91 4251.9 
11.50 2.83 4254.1 
12.00 2.75 4256.4 
13.0 2.62 4259.2 
14.0 2.50 4263.2 
15.0 2.40 4264.9 
16.0 2.31 4267.7 
17.0 2.23 4269.4 

Matrix 
Block 

Basic 
Element 

T 
D 

I 

Fig. 2-One-dimensional approximation of fluid flow in 
rock matrix block. 



0 

0 

0 	
2 

0 

.1 

C 

	1 
2 2 
8 

a 

0 

a 
- 

0 

I 	I 	I 	I 	I 	 I 	I 

C 

0 
o-a 

U, 

• 	

co 	9I 	 - 
2 31  

U) 

\ 

I 	 I 	I 	I  
FU) C'J = 0 C) cc N-CD u 	V,  rU) CJ 	0 

1 	 I 	I 0 

- 	 —ö 	- Q 
C) 

o 	 -0 
Odd 

- 	\\ 	 333 	 -2 
\\ 	C? 	 I 	I 
't\ 	0 	I 

- 	 I 	 - O 
N- 

\\\ CO 

\'C 	\ 
\\ 

- 	 \\\ 
\' 	\' 
\\ 	\\ 	r 

- 	 \\\ 	2 	- ç 

\\ 	\\\ 

- 	 \\\ 
to 

\ 	\\\\ 

-c 
\ 	'•'\ 

\\ \ 	\ 

\ 	\\ 
9. 

insid aoqfl3M Ssaluoisuawia 

0 
	 1 

 2 

C) 

U, 
U, 
C) 

C 
C, 
E 
b 

ad 3.1rSSJd aiOq lM ssIuo!suw!a 

N- 
• 	 •0 

C 
0 

CO 

	

P 	 2(2 	 - o 

	

2 	 - 

	

If 	 E 

a. 

	

-< 	 3• 	 I',  

- O .9 

	

I . 	 C, 

\ 

U, 
\ 	 0 U, 

Ln 

- C) 
C 
0 

C 

	

fU) 	-  
2E 

\\ 

c'J 

2 

—o  

I 	I 	I 	I 	I 	0 

2 c 	r-. 	.o '  

1 ad I 3JnsSJd aJoquaM SS2IUOISU3WIQ 

a. 
a- 

o - 	•- 

25; 

E 

2 

2 

no 



'3 

12 

a 
a- Ia 

3 

2 

Id 	102 	10 3 
	

10 
4 	

10 5 
	166 
	 los 
	 loll 

Dimensionless time, t 0  

Fig. 7—Effects of wellbore storage on pressure drawdown behavior. 
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Fig. 8—Effects of welibore storage and skin on pressure drawdown behavior. 
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