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INERTIAL EFFECTS IN TRANSPORT OF RADIOACTWE WASTE 
THROUGH ENGINEERED BARRIERS 

C. L. CARNAHAN 
Earth Sciences Division, Lawrence Berkeley Laboratory, 
University of California, Berkeley, California 94720 

ABSTRACT 

Additiçn of an inertial term to the constitutive reltion for 
mass flux leads to a mass transport equation which is hyper- 
bolic and describes propagation of a distorted wave with a finite 
velocity. This approach eliminates the "instantaneous propaga-
tion paradox" inherent in parabolic transport equations based on 
Fick's law. Analytical solutions of the wave transport equation 
have been derived and have the properties that the leading edge 
of a solute front propagates at a finite, predictable velocity and 
is truncated by a step function which decreases in magnitude 
exponentially with time. The inertial effects on computed solute 
fronts are most evident near the leading edge, and have potential 
significance in the prediction of engineered barrier performance. 

INTRODUCTION 

Mathematical models are being used increasingly to predict movement of radioac-
tive waste through engineered barriers and to interpret results of transport experi-
ments with barrier materials. Model predictions of transport in engineered barriers 
may be used as input to models of transport in the far field. Because these models will 
be used as indicators of engineered barrier performance, and eventually in support 
of license applications, it is important that the models be as physically realistic as 
possible. 

Let us examine the conceptual basis of many current models, and its conse-
quences. 

TRANSPORT EQUATION WiTHOUT INERTIA 

Mathematical models used to predict the performance of proposed engineered 
barrier materials traditionally have been constructed by combining the mass conser-
vation equation with a constitutive relation describing the dependence of mass flux 
on forces acting on the system. For the simplest kind of transport model describing 
diffusion in one dimension, the mass conservation equation has the form 

(1) 
Ot 	Ox 

where C is the concentration of diffusing material, j is the diffusive mass flux, x is 
distance from the origin, and t is time. 



Constitutive relations have taken a variety of forms; the usual practice in mass 
transport is to ignore thermodynamic couplings to other transport processes, to 
approximate chemical potential gradients by concentration gradients, and to write 
the constitutive relation for a single diffusing species in the form of Fick's law. In 
this form, the diffusive mass flux is stated to be proportional to the negative gradient 
of concentration through a transport coefficient, D, which in a fluid-saturated porous 
matrix is the coefficient of hydrodynamic dispersion. Thus, 

 

Combination of (1) and (2) results in a parabolic partial differential equation of 
transport, the "diffusion equation", which in this case has the form 

o2c ac 
 

When (3) is solved with the initial and boundary conditions 

C(z, 0) = 0, 	C(0, t) = Co, 	Jim C(z, t) = 0 	 (4) 
z—oo 

the result is 

C(z, t) = Co 
erfc2'/5i) 	

(5) 

where erfc(z) represents the complementary error function with argument z. This 
procedure is subject to criticism on two grounds. 

First, the simple phenomenological relation embodied in Fick's law was deduced 
from consideration of systems in steady states, and does not account for transient, 
inertial effects. Its application to systems showing explicit temporal dependence is 
questionable. 

Second, solutions of the diffusion equation have the property that a material or 
thermal anomaly must be propagated with infinite velocity, i.e., the velocity of a 
concentration isopleth becomes large without bound as either time or concentration 
approaches zero. This can be shown for the present example by explicit derivation of 
the velocity of propagation, v, of an isopleth of given concentration C: 

VC = - 
dzl 	C/5t - x 
dtjc - 5C/5Z - 	 (6) 

Examination of (5) and (6) shows that vc goes to infinity as either t or C approaches 
zero. This non-physical result (the "instantaneous propagation paradox") has received 
attention in recent years in the literature of heat transport [1,2,3,4]. We are led to 
inquire how we can avoid this paradox while retaining features of our transport models 
that correspond to our observational experience. 
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ADVECTIVE.DISPERSWE TRANSPORT EQUATION WITH INERTIA 

The paradox can be resolved by carefui consideration of inertial processes (i.e., 
temporal changes of forces and fluxes) in a transporting system. Thus, Bearman and 
Kirk-wood [5] and Bearman [6,7] used a statistical mechanical analysis of momentum 
balance, and Machlup and Onsager [8], Luikov [9], Gyarmati [10] and others used 
the thermodynamics of irreversible processes to derive constitutive relations including 
inertial terms explicitly. 

The simplest form of an inertial term is the negative time derivative of a diffusive 
flux multiplied by a characteristic relaxation time, r; this term is added to the diffusive 
term in Fick's law to give the complete constitutive relation for a given flux; thus, 

 

The result of combining such a relation with the mass conservation equation is a 
hyperbolic partial differential equation of transport describing a propagated wave with 
distortion caused by dissipative processes. 

For example, the mass conservation equation for advective-dispersjve transport 
in a one-dimensional system with fluid velocity equal to v is 

ax  

Combinihg (7) and (8) gives the hyperbolic partial differential equation 

52y 	L92 y 	a2y ay 	ay 
 

where 

Y(z, t) = C(x, t) or j(z, t). 
To solve (9), we impose the initial conditions 

5C(x,0) 
= , 

5j(x,0) 
= 0. 	(10) C(z,0) = 0, j(z,0) = 0, 

at 	at 
The inner boundary condition can specify either a constant concentration, CO 3  

C(0,t)=CO3 	 (11) 

or a constant flux, jo, 

vC(0,0+j(0,0 = J0. 	 ( 12) 
In either case, the outer boundary conditions are: 

lim C(x, t) = 0, 	lim j(x, t) = 0. 	 (13) x—oo 	 x_oo 
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The solutions of (9) to (13) have been obtained by an integral transform method. 
It is convenient to express the solutions in terms of the following reduced variables: 

_vz 	v2 t 	v2 7 e—- 	'i— __ .-, 	fi=--, 

=Vfi+4-/, 

	

=+4)+ +fi) 	81 

	

= 	8 = 

z = 2/= 

For the constant-concentration boundary condition, the solutions are: 

	

= {J(ri,sj)+ [1— J(s2 , r2)] exp( )}H( - 	 (14) Co  

	

i{Io(z) 
ex p r (fi+2) 	c 1 

vC0  - 	 fi(fl + 4) + + 4j - J(r2, s2)exP(e)}H( - 	(15) 

where 
00 

	

J(r,8) = exp(-3) f exp(— u) I o  (2 vl-s —u) du, 	 (16 

I(z) is a modified Bessel function of order n with argument z, and H(i) is the unit step function defined by: 

H()={0 
forij.(O 

1 for,>O 	 (17) 

For the constant-flux boundary condition, the solutions are: 

vC 

70- = 
H( - w ){J(risi)_ 91(e,)J(r2,82 )exp() 

	

(8+2) 	e fl (18)  
2 	 1 	[— ,6(,8+4) 	3 + 
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I 
. 

= H( - 	+ 91(c,,7)]J'(r2,82)exp() 
TO 

I (fi+2)  
- [[I + g2(e, ii)1 1o(z) + 	+ 4)zli (z)] exp [_ 

8(5 + 4) + _IL 411' 
(19) 

where 

g(e,)=1++(1+)e+'i, 	g2(e,)= 	 + 	
+ev

3V/ 	
(20) 

In these solutions, the variable r represents the time when the solute 'wave front 
reaches an observer located at a position represented by e; during the time period 
represented by 77 < i the observer sees nothing. Thus the solute front moves at a 
constant, finite velocity; it can be shown that this propagation velocity, v, is given 
by: 

2v 
vw  = 

/(./8+4_ ') 
(21) 

Numerical values of the solutions given by (14) to (20) have been computed for 
a variety of values of transport properties (including the inertial relaxation time). 
Figures 1 and 2 show profiles of advective fluxes (effectively, concentrations) and 
diffusive fluxes at an instant of time, t, as a function of distance, z, from the origin 
of a semi-infinite, one-dimensional space. Both figures show results computed for t 
equal to 0.2 year, advective velocity, v, equal to 1 meter/year, and the coefficient of 
hydrodyiiamic dispersion, D, equal to 0.2 meter 2 /year. In each case, the inner boun-
dary condition wasa constant total (advective plus dispersive) flux, J o  mole/(meter2  
year), at the origin. In Figure 1, the ordinate is the dimensionless ratio of the advec-
tive flux, vC, where C is the concentration of solute in mole/meter 3 , to the boundary 
flux, J0 . In Figure 2, the ordinate is the dimensionless ratio of the dispersive flux, j, 
to the boundary flux, J0 . Note that the dispersive flux is composed of two terms: the 
usual "Fickian" flux plus the inertial term. Graphs of inertial solutions are shown for 
two values of the relaxation time, r, and their corresponding values of propagation 
velocity, v; corresponding solutions of the inertia-less transport equation (r = 0) 
are also shown for comparison. 

PROPERTIS OF THE SOLUTIONS 

Several properties of the solutions obtained, as illustrated in Figures 1 and 2, are 
interesting in the context of the nuclear waste disposal problem: 

1. The leading edge of a solute front propagates at a finite velocity dependent 
on the relaxation time, the dispersion coefficient, and the mean advective 
velocity of fluid flow. In the limit as thd relaxation time goes to zero, the 
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velocity of propagation increases without bound and the wave solution ap-
proaches the diffusion solution. Conversely, as the relaxation time increases 
in an advective system, the velocity of propagation approaches the advective 
velocity, and the 'wave solution approaches a distortionless translation of the 
initial material anomaly. 

The leading edge of a solute front is truncated by a step function 'which 
decreases in magnitude exponentially with time. 

Inertial effects are most evident near the leading edge of the solute front, but 
as time becomes large relative to the time of arrival of the leading edge at 
a given location the wave solution approaches the diffusion solution; i.e., the 
mass flux becomes "Fickian". 

ESTIMATION OF THE RELAXATION TIME 

Estimation of values of the relaxation time, r, has proven to be very difficult. 
Chu and Sposito [11] have discussed the physical meaning of r and have indicated how r can be estimated from the appropriate experimental data. However, such data 
are very scarce; indeed, no experiments directed specifically toward estimating r have 
been reported. Chu and Sposito [11], using other data, estimated a value of the order 
of 104  seconds (3 x 10 -4  year) for sandy soils. This value is two to three orders of 
magnitude lower than the values used in the calculations shown in Figures 1 and 2, 
and it is clear that the inertial effect would be insignificant at this level. However, due 
to the nature of the data used by Chu and Sposito [11], their estimate is not precise 
and is more likely too low than too high. 

A need for further research exists in two areas: (1) acquisition of data from 
appropriately designed experiments to more precisely define the magnitude of the 
inertial effect in engineered barrier materials, and (2) further development of the 
fundamental concepts underlying the theory of solute transport in porous media. 

SUMMARY 

In summary, it is evident that model calculations of breakthrough curves of 
radionuclides transported through engineered barriers could be erroneous near the 
leading edge if the inertial effect were sufficiently large. Conversely, theoretical inter-
pretation of the results of laboratory measurements or of field monitoring experiments 
would be adversely affected by an incorrect choice of transport model: Because of a 
lack of data needed for precise evaluation of the inertial parameter, r, considerable 
uncertainty exists about the significance of inertial effects in engineered barriers. 
However, it is clear that inclusion of inertial effects in mass transport provides, in 
principle, an improved physical basis for the evaluation of barrier performance. 
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Fig. 1. Advective flux for flux boundary condition. 
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Fig. 2. Diffusive flux for flux boundary condition. 
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