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ABSTRACT 

In the high-energy (E lab ~ 200 MeV/nucl) heavy ion-collisions, the 

quantum uncertainty of nucleon energies, given by the collision frequency, is 

of the order of (50-100) MeV. At hundreds MeV/nucl beam energies, the 

uncertainty is· comparable with nucleon energies in the equal ion-velocity 

frame, indicating a quantum character of the dynamics. We examine the quantum 

dynamics of a collision process using nonequilibrium Green's function 

methods. We perform numerical calculations of collisions in an 

interpenetrating nuclear matter model, at the energy Elab = 400 MeV/nucl. 

Comparison of the quantum dynamics, with the classical Markovian dynamics from 

the Boltzmann equation, reveals effects of the ill-defined nucleon energies in 

the nucleon momentum distribution. We show that the quantum dynamics proceeds 

twice as slow as Boltzmann dynamics, but the off-shell kinematics compensates 

for this somewhat. 

* This work was supported by the Director, Office of Energy Research, 
Division of High Energy and Nuclear Physics of the U.S. Department of Energy 
und~r Contract OE-AC03-76SF00098. 

t On leave of absence from Institute of Theoretical Physics, Warsaw 
University, Warsaw, Poland. 
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1. Introduction 

With recentavailabillty of high-energy beams, the physics of high-energy 

heavy-ion collisions has undergone a rapid development. The theory of ' the 
( 

collisions has concentrated on the exp'lanation of basic reaction mechanisms 

~,,, and on the possible occurrence of exotic phenomena in the reactions (see the 

I~ 

.' 

reviews [1,2]). In piinciple, a full theoretical description of the 

collisions would necessitate a complete relativistic quantum field theory of 

stron~ inte~actions. At sOfficiently low density and low excitation energies 

of a system, it is,how~ver, believed that nucleons may be described as 

structureless particles interacting via meson exchange. Below the particle 

production thresholds one may simplify the theory by ignoring the relativistic 

effects and introducing a static two-body potential for nucleons. Even within 

that formulation there has been so far no'possibility of describing the 

reaction process. Because of a large number of nucleons taking part in a 

co1li~ion, it is-not possible to evaluate an S matrix. 1 For low~energy 

heavy-ion collisions (E lab < 10 MeV/nucl) one solves the equations of motion" 

for I-particle wave functions (I-particle density matrix) in the mean-field 

approximation. This approach cannot be applied at high energies, because the 

binary NNcollisions are not suppressed by the Pauli principle and dominate 

the dynamfcs. 

That situation led to the development of numerous- phenomenological models 

for high-energy heavy-ion collisions. The idea that heavy-ion collisions can 

1 In connection with a previous paper of this series [31, we may mention 

that the evaluation of the S matrix fot:a collision corre'sponds through the 

reduction formula to anevaltiati~n of the N~pa~ticle vacuum chronological 

Green's function, with N ,... a 'total number of particles. 
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be described classically has gained a rather common acceptance. It has been 

argued that the de Broglie wave length of a nucleon from an oncoming nucleus 

is small in comparison with a nucleon's mean free path. 

In some calculations [4-9], the classical nucleons' equations of motion 

have been solved numerically. On the basis of a smallness of a NN interaction 

time, of the order of 1 fm/c, in comparison with a mean time t rel between 

successive NN collisions, cascade calculations have been carried out (10-21J, 

and the Boltzmann equation has been applied r22-24J. In the initial phase of 

an ion collision t rel ~ l/(noryv) ~ (1.7-3.5) fm/c, where no is the 

normal nuclear density, a a total NN cross section, v a relative velocity of 

ions, Elab ~ 200 MeV/nucl. (Because of the Pauli principle we take into 

account only collisions with nucleons from the opposite nucleus.) Cascade 

calculations and the kinetic description may be essentially considered as 

equivalent approaches. 

A hydrodynamic description of heavy-ion collisions [25-351 relies on an 

assumption of a local thermodynamic equilibrium: this corresponds to a 

smallness of the relaxation time t rel in comparison with the heavy-ion 

collision time t 1 < 20 fm!c. co "-

In statistical [36,37] and thermodynamic [38-431 models one assumes that, 

the dynamics leads to a uniform population of the available phase space. 

At the beam energies per nucleon exceeding the Fermi energy, at least a 

doubling of the nuclear-matter density may be expected. Hypotheses have been 

put forward on occurrence in the dense excited matter of an anomalous nuclear 

state [44,451, a ~ meson condensation [46-51J, or quark matter f52-541. The 

calculations of these phenomena, requiring the use of a field theory, 

concerned static situations, and there has been no possibility of 

investigating exotic phenomena in dynamic situations. 



-3-

Can one really describe the high-energy heavy-ion collisions· 

classically; The'meantime between successive NN collisions (the 

characteristic time of changes in the nucleon distribution), equal initially 

to trei ~ (1.7-3.5) fm/c, implies uncertainties of nucleons' energies of the 

order of ~/tr~l ~ (55-115) MeV, due to the uncertainty principle. With the 

diminishing role of the Pauli principle in the course of an ion collision~ th~ 

mean time between successive collisions might diminish by as much as· factor of 

two, and re~pectively the uncertainties could be even larger. At the beam. 

energies Elab < 800 MeV/nucl; the nucleons will have energies less than 200 

MeV/nucl, Tn the equal. ion-velocity frame, during the whole course of the 

collision~ This indicates that the ion-collision dynamics at these beam~ 

energies should have a quantum character, because uncertainties would be 

larger than or comparable with the energies of nucleons. 

Eve'n afmuch higher beam energies quantum effects may be expected, in 

cases ~hen strong kinematical restrictions occur, e.g., in .the production or 

absorption of particles. 

In the present paper, we examine the quantum dynamics of a colli.sion 

process. We perform numerical calculations of collisions in an 

interpenetrating nuclear matter model, at the energy Elab = 400 MeV/nucl. 

The quantum dynamics is confronted with a classical Markovian dynamics given 

by the Boltzmann equation. The calculations are the· first attempt at a 

quantum description of a collision process at high energies. We employ the; 

methods of nonequilibrium Green's functions, desribed in a previous paper of 

the series [3] (hereafter referred to as I). 

Nonequilibrium Green's function techniques have recently received certain 

attention in nuclear physics. In Ref. [55J the methods have been applied to a 

nucleon moving in nuclear matter, radiating 'If mesons. Several authors [56-5.9l 
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have considered Green's function methods to go beyond the time-dependent 

Hartree-Fock approximation in the description of low-energy heavy-ion 

collisions. 

The interpenetrating nuclear matter model, considered in the paper, has 

been previously applied if Refs. [50,221 (also in [601). Randrup r22J studied 

the Boltzmanh equation dynamics. 

In calculating the nuclear-matter collisions we solve the Green's 

function equations of motion with self-energies. In Sect. 2 we present 

results for a two Fermi-spheres Hartree~Fock initial state of the nuclear 

system. The evolution is compared with the one given by the Boltzmann 

equation~ Details of the calculations are contained in Appendices A and B. 

At initial stages of the nuclear-matter collision, the nucleon momentum 

distributions, resulting from the Green's function equations of motion, differ 

from distributions from the Boltzmann equation, reflecting ill-defined nucleon 

energies. The approach to equilibrium is slower in the quantum dynamics than 

in the Boltzmann dynamics. 

In Sect. 3 we repeat the quantum calculation of the nuclear-matter 

collision, starting from a correlated initial state. The correlated state is 

prepared through the imaginary-time evolution. Details of the calculation are 

contained in Appx. C. 

In Sect. 4, we analyse the effect of the slowing down of the quantum 

dynamics in comparison with the Boltzmann dynamics, observed in the 

calculations. 

The calculations presented in the paper concern a uniform-medium 

problem. When solving a nonuniform problem it may be indispensable to expand 

the Green's functions and self-energies in some I-particle basis. Such 

attempts have been presented in Refs. r56-59J. 
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In a following paper of the series, we discuss the nonequilibrium Green's 

function methods for a system of fermions coupled with bosons. Results 

contained there should be of interest in connection with the w-meson 

condensation studies, and also the particle production in heavy~ion collisions. 
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2. Nuclear matter collisions 

The model which we employ is the following. We con~ider spatially 

infinite and uniform, spin-isospin symmetric system of, nucleons. At the 

initial moment the nucleons are confined to two separate Fermi spheres. The 

picture refers to the initial phase of a nuclear collision, when the nuclei 

have partially overlapped, but the thermalization has not yet taken place. 

The radii of the Fermi spheres in the calculations have,been taken equal 

to PF = 255 MeV/c (which corresponds to the normal nuclear density no = 

0.145 fm-3). For numerical reasons the extent of the momentum space in the 

model has been limited to a sphere of a radius 900 MeV/c. 

For the model system we have both solved the Green's function equations 

of motion, discussed in Sect. 3 of I, and the Boltzmann equation. 

Calculations, described in detail in Appendices A and B, have been carried out 

for a separation 2 Po' between the centers of the Fermi spheres, 

corresponding to Elab = 400 MeV. For the self-energy, in the Green'S 

function equations of motion, the direct Born approximation has been used. 

Parameters of the local potential (approximation to the T-matrix) have been 

taken from a Born approximation fit to the differential nucleon-nucleon cross 

sections. 

Evolutions of the nucleon momentum distribution, following from the 

calculations, are presented in Fig. 1. The leftmost figures represent the 

Boltzmann-equation evolution. The central figures represent an evolution 

given by the Green's function equations of motion. The evolution starts from 

a two Fermi-spheres Hartree-Fock initial state. The rightmost figures also 

represent an evolution given by the Green's function equations of motion, but 

one starting from a correlated initial state. The last evolution will be 

discussed only in the next section. In Fig. 1 the nucleon momentum 

distributions are seen to evolve from two separate Fermi spheres towards 
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equilibrium. 

At an initial stage of the Boltzmann-equation evolution, a characteristic 

hollow shell develops in the nucleon distribution, reflecting energy and 

momentum conservation in binary collisions. See Fig. 1 for t = 0.5, 1 fm/c, 

and Fig. 2 for t = 1,2 fm/c. In Fig. 2, values of the distribution functions 

at 45° and 90° eMS angles are depicted. According to the Boltzmann equation, 

a scattering of particles from two different points in the momentum space 

feeds a spherical shell in the momentum spac~. The quantum evolution gives no 

shell in the distribution function, which may be expected, because of 

ill-defined energy conservation in the interactions (see Appx. G of I) and 

ill-defined nucleon energies. On the basis of the equilibrium self-energy 

forms (fq. ,(E.8) of I), one could actually consider a scattering of particles, 

in thes~eady conditions of thermodynamic equi 1 ibrium. With a half-width r (r 

- n/trel ) of initial and final states, one finds that a scattering of 

particles, from two <;iifferent points of the momentum space, feeds a diffuse 

shell wit~awidth 2rin the kinetic energy of the final particle. 

Jhe approach to equilibrium is more rapid with the Boltzmann e~uation 

than with the quantum equations of motion. For an average deviation of the 

distribution from equilibrium ( ~dE(f(e,t) - feq(p))21 fdE f~q('p))l/2 equal to 

1/2, which corresponds to t = 4.7 fm/c in the Boltzmann and to t = 6.3 fm/c i~ 

t~e quantum evolution, we get respective rates 

At the time t = 10 fm/c, the nucleon distribution from the Boltzmann equation 

is practically at equilibrium, while the distribution from the quantum 

evolution still exhibits nonequilibrium features. We shall discuss the effect 

in some detail in Sect. 4. 

To assess the validity of a hydrodynamic approach to nuclear collisions, 
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it is interesting to study the relaxation of the tensor <pipk> towards 

isotropy. The average is taken here with respect to the distribution function. 

In Fig. 3, an anisotropy of the tensor, given by (2<pz2>/<p12> - l),is 

presented as a function of time. An anisotropy equal to 1/2 is achieved after 

6.7 and 9.2 fm/c for the Boltzmann equation and the Green's function equations 

of motion, respectively. 

If one goes beyond the self-energy in the Hartree-Fock approximation, in 

the Green's function equations of motion, then the nucleon distribution given 

by a Fermi sphere is not stationary. Figure 4 presents a radial profile of a 

single evolving Fermi sphere placed in the center of the momentum space--the 

calculation was performed with the same numerical code as the nuclear matter 

collisions. The sphere decays, occupation in the central part of the sphere 

drops, stabilizing at around 0.7, and the sphere acquires a tail. At a time 

t = 6 fm/c, when we interrupt the evolution, the changes occur only in the 

vicinity of the Fermi momentum. In the next section we consider an evolution 

of the nuclear system, that starts not from the two Fermi-spheres Hartree-Fock 

state, but from a correlated initial state prepared through the imaginary-time 

evolution (Sect. 5 of I). 
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3. Dynamics for a correlated initial state 

In Ref. r611 attention was p~id to the fact that, if one intends to 

consider nucleon-nucleon collisions in nuclear collisions, then in a 

consistent approach to the problem one should include the collisions in the 

nuclear ground states. When the widths of states are finite, the occupations 

inside a Fermi sphere are less than unity and outside the sphere possess~s ~ 

tail. At a temperature T = 0 in nuclear matter, according to Eqs. (E.2a), 

(E.5), and (E. 13) of I (a ~ 00 ), 

(3.1) 

and the ~u~leondistribution 

(3.2) 

In the second quantum calculation of nuclear matter collision, an initial 

nuclear matter state was obtained from a two Fermi spheres Hartree-Fock state 

through the imaginary time evolution described in Sect. 5 of I. The evolution 

generator in the imginary time ,was of the form 

i\" "+z A_Z Jt= H - v P + v p o 0 
(3.3) 

A± 
Here P z are the beam-axis components of the operators of the total momentum 

in the forward and backward momentum sphace hemispheres, respectively. The 

Lagrange multiplier Vo has been taken equal to vo = po/m. Equation 

(3.3) corresponds to the replacement of l-:particle energies 

,. 0 2: p2 At" 
H = paa 2m bpaa bpaa 

.., "' ... 
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.12 + (pz+p )2 " L: p ,. 
= o b b 

I? (pz<O) 
2m paa paa 

'" '" 
'" aa 

~ 
pl.2 + (j pZI_Po)2 At ,. 

= 2m b b (3.4) 
paa e,aa paa ... 

,. 
Here b is the annihilation operator of the state with momentum p and paa .... 
respective spin and isospin projections. 

The self-energy on a contour in the complex time plane has \been taken in 

the direct Born approximation. In detail. the calculation is described in 

Appx. C. The nuclear matter system has been evolved in the imaginary time for 
" -. 

3 fmlc. In case of a single Fermi sphere, with 'Jt = H, the chosen time of the 

imaginary evolution assures a reasonable stationarity of the distribution for 

real times. 

An evolution of the nucleon distribution, for a 5tate prepared through 

the imaqinary evolution, is presented in Fig. 1, the rightmost figures. At an 

initial moment, the occupations inside the Fermi spheres are equal to about 

O.B. The profiles of the distribution at 45° and 90v eMS angles are depicted 

in Fig. 2 (solid lines). 

Early stages of distributions from the quantum and classical evolutions 

differ qualitatively because of the uncertainty principle. Again in the 

quantum evolution we obtain no shell in the momentum space. Starting from the 

initial state, more nucleons populate high momenta in the quantum case than in 

the Boltzmann equation case. These are the results of ill-defined nucleon 

energies and ill-defined energy conservation in the interactions, in the 

quantum case. 

The inclusion of correlations in the initial state narrows the nucleon 

distributions at late stages of the evolution. The slowing down of the 
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quantum evolution, "in comparison with the Boltzmann evolution, is now somewhat 

more direc~ly visible in the nucleon distributions. Quantitatively, for an 

average deviation from equilibrium equal to 1/2 (see the previous section) at 

t = 6.9 fm/c, we get the effective rate y = 50J'1eV. The approach of the 

distribution to equilibrium turns ou~ about 50o~ more rapid in the Boltzmann 

dynamics than in the quantum dY9amics. 

The time for the tensor <pipk) to achieve an anisotropy equal to 1/2 

2 is now equal to 9.9 fm/c , see Fig. 3. 

2 Let us mention that'our finite momentum space favors quick equilibration 

of~anisotropy, especially in the ,quantum dynamics. 
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4. The slowing down of quantum dynamics 

Let us discuss in some detail the slowing down of the quantum evolution. 

In Fig. 5 we plot the values of the scattering-in and -out rates in the 

Holtzmann equation at 90° for t = 10 fm/c. Similar values of the rates 

prevail throughout the momentum space during most of the evol~tion. The 

lowering of the scattering~out rate with momentum, in Fig. 5, is an effect of 

the Pauli principle. According to the Green's function equations of motion, 

the distribution function satisfies 

t 
~t f(p,t) = 2Re( ( dt'(-i)l«p;t,t') iG>(p;t',t) 
a ""' J .., .., 

t - J dt' i2?(e.:t,t')(-i)G~(~:t"t)) (4.1) 

On the basis of (4.1) we may define auxiliary rates 

= 2Re( (tdt '(-i)!.«P;t,t')iG>(P:t.',t))/(1 - f(p:t)) J ~ ~ N 
(4.2a) 

and 

t 
= 2Re(1 dt' i2:>(~:t,t')(-i)G«e.:t',t))/f(e.;t) (4.2b) 

and in Fig. 5 we compare the values of the rates with the values of the rates 

from the Boltzmann equation. 3 For r(£:t) = i(Z> - Z<)(e;t) averaged 

over the nucleon momentum distribution at t = 10 fm/c, we get 68 MeV in the 

quantum calculation with the Hartree-Fock initial state and 61 MeV in the 

3 In the Boltzmann limit, the auxiliary rates coincide with the rates from the 

Boltzmann equation. In thermodynamic equilibrium, the rates are -i!«p) = .., 

S ( dw 12 'IT ) ( - i )!< ( ~, w ) i G > ( e., w ) 1 (1-f ( ~) ), i~:> ( ~) = S ( dw 12 'IT ) i~? ( e., w ) ( - i ) G < ( ~, w ) 1 f ( ~ . 
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calculation with a correlated initial state, as compared with an average r 
from the Boltzmann calculation equal to .136 ,MeV. Average rates vary weakly 

throughout'rriost':()f the evolutions and are seen to be about twice lower in the 

quantum evolutions as compared with the. Boltzmann evolution. There are two 

reasons for the lower 'rates. ' 'Partially the lowering comes from the decay of 

the Green's functions as functions of difference of time arguments. We plot 

the functions ' moduli for several momenta in Fig. 6. Straight lines drawn in 

the figure correspond· to exponential decay rates r(p:t)/2. An exponential ...., 

decaYIG')l(~:t,'t, )\. = IG)£(e)\ x exp (-1r(~,wpHt- til) is found in thermal 
'" 

equilibrium (Appx~ E of I1~ when one ignore~ the frequency dependence of 

self-energies 'in the spectral function, Eq. (E.5) of I, and in the expressions 

>. for G(, Eq.(E.2) of I, one replaces the occupation function f with its value 

at w = wp·.~ "Coupling to macroscopic variations in the system is particularly 
AI 

evident for arnomentum inside the Fermi sphere, Fig. 6d. The decay of the 

Green's functlons 'restricts the time integration ranges in Eq. (4.l)(see Eqs. 

(G.~) and (G.6) of I)'and reduces the integrals. We may consider that the 

decay of the Green's functions in the integrals accounts for an overlapping of 

the interaction zones in the medium, which is due to finite interaction 

times. By cons idering theequil i bri um funct ions in the frequency 

representation, it may be seen that finite widths of the states in the 

self-energy integrals induce high-momentum transfers in the scattering, hence 

the :cross sect ion drops. Apart from the mere decay of the Green I s funct i orys, 

there i.s another effect that, as the numerical investigations show, is 

responsible for most of the drop of the rates. This is a rather different 

oscillatory behavior of the functions G< and G> for a given momentum, as 

functions of the time argument difference. In fact; from Eqs. (E.2)" (E.5), 

and (E.13) of I, a necessary existence.of a frequency gap, between the 

functionsG< and G>, follows for ar- 1, with the particle frequencies 
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lying below hole frequencies. (For reference, in the Boltzmann calculation we 

have T = 13-1 ~ 80 MeV.) In the "low~density limit, for small ar, the gap can 

be expected to be of the order of ar2. With r ~ n"v, we have ar2 -

1/(mA2), where A = l/(ncr) stands for the mean free path, and the effect 

seems to be related to the energy spacing of levels in a finite spatial region. 

Oesp ite a factor of two d iff erence in the magn i tudes of the 

scattering-out and -in rates in the Boltzmann and quantum evolutions, the 

actual approach to equilibrium of the distribution from the Boltzmann equation 

is not that much more rapid (as is indicated by the values of effective rates 

quoted earlier). This is due to the following: On the approach to 

equilibrium there are two regions in the momentum space with excessive 

particle density, around the two original Fermi spheres. In the Boltzmann 

dynamics, because of momentum and energy conservation in binary interaotions, 

the feeding of the momentum space from scattering of particles from one 

excessive region is basically restricted to the same region. By contrast, in 

the quantum dynamics the feeding.from such scattering is in principle smeareo 

over the"whole momentum space. 

To demonstrate the effect of the slowing down of the quantum evolution, 

we have repeated the calculations for the potential in the equations 

multiplied by a constant that has been varied from one set of calculations to 

the other. In the Boltzmann equation the operation amounts to the scaling of 

time variable and values of rates (uniform medium). In Fig. 7 we plot the 

values of the effective rates y in the quantum evolutions vs effective rate y 

in the Boltzmann evolution, at a fixed average deviation from equilibrium, 

when the multiplication constant is varied. Figure 8 displays values of 

r(p:t) averaged over particle momentum distribution close to equilibrium vs 
<V 

average r from the Boltzmann equation. Note the saturation of the quantum 

rate~ 



-15-

5. Final remarks 

We have applied ·the nonequilibrium Green's function methods to study the 
. . . 

quantum dynamics of a heavy-ion collision process. In heavy-ion collisions at 

hundreds MeV/nucl beam energies, the quantum uncertainty of nucleon energies, 

of the or.der of 'iNN collision rate, is comparable with nucleon energies. For 

that reason, inappropriate in describing the collisions are the classical 

equations of motion r4-91, cascade calculations [10-21J, or the· Boltzmann 

equation [22-24J, and indispensible is the quantum description. The quantum 

description may be even necessary at much higher. beam energies, for processes 

with strong kinematical restrictions~ 

Let us mention that, at beam energies lower than the Fermi energy, the 

C6llision rate drops because of the Pauli principle. Use of the 

self-consistent equations, supplied with a Boltzmann-type collision-term for 

states close to the Fermi surface, .. should be justified at sufficiently low 

energies. 

We have carried numerical calculations of collisions in an 

interpenetrating nuclear-matter model. We have compared the Boltzmann 

equation dynamics with a dynamics given by the Green's function equations of 

motion. The quantum calculations have been performed for two types of an 

initial state: the Hartree-Fock state, and the correlated state. To the 

author's knowledge, the calculations of the present paper are the first 

attempt at a quantum description of the collision process. The quantum 

dynamics 'differs qualitatively from the Boltzmann dynamics. The nucleon 

momentum distributions evolve through different, shapes, in effect of the 

ill-defined nucleon energies and the ill-defined energy-conservation in the 

interactions in the quantum case. The quantum dynamics proceeds at a slower 

rate, which may be traced to the energy spacing of levels in a spatial region 

of a dimension of the mean free-path. When artificialy increasing 
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cross-sections in the Boltzmann-equation dynamics, the rates from the 

corresponding quantum dynamics exhibit a saturating behaviour. 

It should be noted that the time for achieving an isotropy of the nucleon 

momentum distribution occurs to be unfavourablY large regarding the 

possibility of a hydrodynamic description [25-351 of heavy-ion collision. 

In real nuclear collisions, phenomena observed in nuclear-matter 

collision~ will be modified by finite particle~number effects. The collisions 

will be affected by the uncertainty principle in space and momentum. Of a 

special interest in the collisions is the problem of particles going on-shell 

during the expansion of the system into vacuum. 
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Appendices. Calculations of nuclear-matter collisions 

For the outline of the formalism see I [3J. 
'-.".,: 

A. Green'~ function equations of motion 

Because of the homogeneity .of the system we employ the momentum 

representation for the Green's functions and self-energies. ·If we adopt an 
'~. . 

interacti~n indepe~dent of the spin and isospin, then in the spin-isospin 

symmetric system the functions will be diagonal in the spin and isospin indices 

F g(P:t,t') = 6 b6 DF(p:t,t') a ',., a ap ..., 
a, '. ' 

From Eq~. (3.1) and (3.2) of I we have fo~ t#t' on the contour 

2 
( Oa. p-)G(.t t') 'ar'- 2m .~,." 

2 
(- i : t ' - ~m) G (e..: t, t ' ) 

and from (2.12) of I 

to 
= tdt"G(p;t',t"lZ(p:t",t') 

t1 ... ."" . 
o. 

, iG>'(p:t,t) ~ l-(-ilG«p:t,t) 
I'V "" 

The; nucleon m6mentum-distribut;on ;s given by f(~, t) = -iG«E..~t, t). 

The self-energy in~the calculations has been taken in the direct Born 

approximation 

'\ 
The factor 4 comes from the summation over spin and isospin indices. The 

(A .1) 

(A.2) 

(A.3) 

(A.4) 

. . 
potential (approximation to the T-matrix) had to be taken local - depending 

only on the momentum transfer - in order that the numerical calculations could 

he carried. The parameters of the potential of a gaussian form, 
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(A.5) 

have been fitted, within the Born approximation, to the spin-isospin averaged 

differential nucleon-nucleon cross-sections, in the energy range Elab = 

(0-500) MeV. The parameters of the potential were the following: n = 0.57 fm, 

IVol = 453 MeV. We did not introduce the Hartree-Fock energy which could 

influence the evolution of the distribution function only indirectly. (In a 

homogenous system, for a local interaction, the direct term of the 

Hartree-Fock energy may be besides ruled out from the equations of motion.) 

In the momentum space, Fig. 9, a mesh has been taken with an interval 

between the points 54 MeV/c. Symmetries of the system have been exploited: 

thee axial symmetry with respect to the collision axis, and the reflection 

symmetry with respect to a plane perpendicular to the collision axis. The 

initial Green1s functions .. 

p inside the Fermi spheres 
IV 

p outside the Fermi spheres. 
IV 

Differential equations of motion (A.I) and (A.2) have been solved with a 

(A.6) 

predictor - central point-slope method, and a corrector - trapezoidal method, 

and in sdlijing the factor exp(-i(p2/2m)(t-t l
)) has been excluded from the 

Greens functions. The hermiticity of the Green1s functions 

(A.7) 

and the relation (A.3) have been exploited. The step in time was equal to 0.5 

fm/c. The time integrations at the r.h.s. of Eqs. (A.I) and (A.2) have been 

evaluated with a trapezoidal method. The momentum integrals in the self 

-energies (A.4) have been evaluated through subsequen\ Fourier transformations. 

The application of that method was ~riti~al for the possibility of 

accomplishing numerical calculations of nuclear-matter collisions. 

" 
\ 
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Stability of the solution against the variation of the time step has been 
" 

tested. It was: found that the chosen size of the momentum space affects the 

solution toa certain extent. 

During the calculated evolution (0-10) fm/c, the number of nucleons per 
<. " ' 

unit volume"wa:s conserved with an accuracy of 0.2%, and the energy with an 

accuracy of U;. 

Within the first 2 fm/c of the evolution of the nuclear-matter system, 

ro~ghly 3rr MeV/nucl of the kinetic energy is released. Later on the kinetic 

energy remains essentialy constant. 

'In the additional nuclear-matter collision calculations, when the 

potential was multiplied by some constatnt, the time step was, reduced to 0.25 

fm/c for the constant equal to or exceeding ~. 

B. Boltzmann equation 

The Boltzmann equation for the distribution function f is of the form 

af(l2,t) = 4Jd~1 dQ~(lp-p \/m)(m2/161T2)(V(P'_Il))2 
at (21T)3 - ",1 -.; '" 

[(1 - f(~,t))(l - f(~l,t))f(~',t)(f(~i,t) 

- f ( E., t) f (~l' t) (1 - f ( ~I , t) ) (1 - f( ~i ' t)) 1 (B.1 ) 

The integration Jd~" over the solid angle determining the orientation of the 

relative momentum, and the factors next to the potential, come from integration 

of the 6 functions of energy and momentum conservation in the collision 

integral. 

In the momentum space a mesh has been taken, such as in the quantum 

case. The differential equation in time (B.1) has been'solved using 

second-order methods as in the quantum case. The integral at the r.h.s. of 

(B.l) has been evaluated with a Monte-Carlo method. The method was devised so 
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that it would treat possibly equally various areas of the momentum space, and 

give possibly small fluctuations in the distributions. The number of nucleons 

per unit volume was conserved with an accuracy of 2%, and the energy with an 

accuracy of 4%. To the results presented in Figs. 1 and 2 certain smoothing 

has been applied~ The smoothing was only effective in the initial stages of 

the evolution. 

C. Green's function equations of motion on the contour in the imaginary time 

pl ane 

From Eq. (6.20) of I, with Eqs. (6.25) and (6.26) of I, we have for t t: tl 

on the contour 

t -it' o 0 

(i~t - w~(t))G(t2.;t,tl) = 1 dtll(e.~t,tl)G(e,;t",tl) 
~ t +it' 

o 0 

(- i ~ t I -w~ (t I ) ) G (~: t, t I) == 
~ 

t -it' 
of 0 

dt" 
t +it o 0 

. where 

2m 

G ( p; t , til)! ( p : til, t I ) ... ..., 

t at the imaginary 
part of the contour, 

t real. 

(C.l) 

(C.2) 

(C.3) 

From the field-operator commutation rules, there follows a relation (A.3) for 

the Green's functions on a contour, Eq. (6.17) of I. 

The self-energy on a complex contour has been taken in the direct Born 

approximation (A.4). The boundary Green's function values for the imaginary 

evolution are 

. G< ( t . r t ....) . G< ( . t +' r t +' t ) -, £; 0-' 0' 0-'" 0 = -, e" 0 ' 0' 0 ' 0 I 
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~ inside the Fermi spheres, 

p outside the Fermi spheres~ ..... . 

First in the calculation, in a self consistent manner, the evoluation 

(C.4 ) 

equations on the imaginary part of the contour, Fig.7 of I, have been solved. 

With real boundary values for functions iG~ ((C.4) and (A.3)), the functions 

iG)<' and i !'<. are real on the imaginary part of contour. The time of the 

imaginary evolution .to was taken equal to 3 fm/c. Both for the imaginary 

and real times the time step was equal to 0.5 fm/c. The number of nucleons, 

and for the real times energy, were conserved in the calculation respectively 

with accuracies of 0.2% and 2.5%. 

The kinetic energy, larger by about 10 MeV/nucl than in the Boltzmann 

dynamic·s, remains essentially constant throughout the evolution. 

In the additio~~l nuclear-matter collision calculations, the time step 

was eventually reduced to 0.25 fm/c, as in the calculations with a non

correlated initial state. The time of imaginary evolution to has been kept 

constant. 
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Figure Captions 

Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

Contour plots of the evolving nucleon momentum distribution 

f(pL,pZ,t) .. Leftmost figures - Boltzmann equation evolution; 

central figures ~ Green's function equation of· motion evolution 

for a two Fermi-spheres Hartree-Fock initial state: rightmost 

figures - evolution for a correlated initial state. Horizontal 

axes are the collision axes. The momentum space is restricted 

to 900 MeV/c as shown by th~ outer circles. 

, 
Nucleon momentum distributions at 45° and 90° eMS-angles. 

Short-dashed lines - distributions from the Boltzmann equation. 

Long-dashed lines - distributions from the Green's function 

equqtionswith a Hartr.ee-Fock initial state. Solid lines -

distributions from equations with a correlated initial state. 

Evolution of the momentum distribution anisotropy. Short-dashed 

line corresponds to the Boltzmann equation, long-dashed line to 

the Green's function equation of motion and the Hartree-Fock 

initial state, and solid line to the correlated initial state. 

The dashed horizontal line at 0.5 is a guide to th~ eye 

repre~enting <pz2> = 1.5 x «pL2>/2). 

Radial profile of a single evolving Fermi sphere. An initial 

state of the evolution was a Hartree-Fock state. 

Scattering-'-out iZ>(£.w~:t) and -in (-i)l..«E,w~;t) 

rates from the Boltzmann equation at 90° CMS angle (short-



Fig. 6. 

Fig. 7. 

Fig. 8. 
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dashed lines). The rates from the Boltzmann equation are 

depicted togetherwtth the auxiliary rates from the Greenls 

function equations (see text), for a Hartree-Fock initial 

state - long-dashed lines and for a correlated initial state -

solid lines. 

Greenls function moduli IGl:(~:t,tl)\ as fun.ctions of (t - t l ), 

for several momenta and t = 10 fm/c. Thin straight lines 

correspond to exponential decay rates r(£:t)/2 (see text). 

Effective rates Y = ~(Jd~ (af(~,t)/at)2/ 

Jd~ (f(~,t) - feq(p))2)1/2 from quantum evolutions 

plotted vs y from Boltzmann evolution, for a fixed average 

deviation from equilibrium 

(fd£ (f(~,t) - feq(p))2/fdef~q(p))1/2 = 1/2, when 

the multiplication constant in the potential is varied. Long

dashed line corresponds to a Hartree-Fock initial state, solid 

line - to correlated initial states. Short-dashed line y = 

YBoltzmann serves as a guide to the eye. The arrow locates 

t~e values corresponding to the multiplication constant in the 

potential equal to 1. 

Rates r(e:t) from quantum evolutions, averaged over momentum 

distributions close to equilibrium, plotted vs averaged 

r(p,wo:t) from Boltzmann equation, when the multiplication ... p 

constant in the potential is varied. Long-dashed line 

corresponds to a Hartree~Fock initial state, solid -



Fig. 9. 
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to correlated initial states. Short-dashed line <r> = 

<r>Soltzmann serves as a guide to the eye. The arrow 'locates 

the values corresponding to the multiplication constant in the 

potential equal to 1. 

Mesh in the momentum space for the numerical calculatio"~. 
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t = 0 

t = 0.5 fm/c 

t = 1 fm(c 

t = 1.5 fm/c 

t = 2 fm/c 

t :: 2.5 fm/c 

XBL 8212-12083 

Fig. 1a 
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t = 3 fm/c 

t = 3.5 fm/c 

t = 4 fm/c 

t = 4.5 fm/c 

t = 5 fm/c 

t = 5.5 fm/c 

XBL 8212-12084 

Fi g. 1 b 
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t = 6 fm/c 

t = 6.5 fm/c 

t =7 fm/c 

t = 7.5 fm/c 

t = 8 fm/c 

" t = 8.5 fm/c' 

XBL 8212-12085 

Fi g. 1 c 
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t = 9 fm/c 

t = 9.5 fm/c 

t = 1"0 fm/ c 

XBL 8212-12086 

Fi g. 1 d 
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