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ABSTRACT 

A negative T-112 dependence of a component of the electrical 

conductivity, indicative of one-dimensional transport, was found in 

glassy carbon heat treated at temperatures less than 2200°C. The 

microstructure, as examined in lattice images in the transmission 

electron microscope, the Porod law dependence obtained in small angle 

scattering, and the decrease in the d002-spacing interlayer as 

measured by x-ray diffraction (above this critical temperature) 

support this thesis. 

PACS : 72.15~Cz. 
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There has been increased interest in the electrical conductivity 

of solids restricted to less than three dimensions, as in thin 

wires, 1- 6 thin sheets7 such as MOSFET channels,B-10 and in some organo­

metallic materials. 11- 12 We believe that we have found an example of 

one-dimensional conductivity in glassy carbon. Our results empirically 

agree with theory and the case for one-dimensionality is supported by 

the observed microstructure. 

Glassy carbon, 13 a prototype non-graphitizing bulk carbon, is 

prepared by thermally decomposing a thermosetting resin, typically a 

mixture of phenol formaldehyde and furfuryl alcohol. The as received 

material had been given a final one hour processing at 1000°C in inert 

atmosphere. It was heat treated further for three hours in a graphite 

furnace under an inert gas at temperatures ranging from 1200 to 

2700°C. Specimens were ground, polished to uniform thickness and 

ultrasonically cut into a four probe bar configuration. Electrical 

conductivity measurements were made under isothermal conditions at 

temperatures from 3 to 300°K. 

The results can be divided into two classes according to the 

behavior of the low temperature conductivity. For high heat treatment 

temperatures, greater than about 2200°C, the conductivity decreases 

with temperature to a shallow minimum (Fig. 1(a)). Of more interest 

in this letter, for low heat treatment temperatures the conductivity 

continues to decrease more rapidly with decreasing temperature as 

shown in Fig. 1(b). 
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Saxena and Bragg14 were the first to formulate an empirical 

expression for the electrical conductivity of glassy carbon in the heat 

treatment temperature range of interest. In the present study, 15 the 

conductivity a as a function of measurement temperature T is written as 

a= A + Bexp(-CT-l/ 4) - DT-112 

where the first term is attributed to strongly scattering metallic 

conductivity independent of temperature and the second term to variable 

range hopping. Both terms have no strong dependence on the heat treat­

ment temperature. The last and new term is a low temperature correc­

tion term to the metallic conductivity, and as shown in Fig. 2, is only 

important for heat treatment temperature less than about 2200°C. 

Kaveh and Mott16 have reviewed two approaches to a correction of 

the metallic conductivity. They are the localization approach by 

Abrahams, Anderson, Licciardello and Ramakrishnan 17 and the electron 

interaction approach by Altshuler, Aronov and Lee. 18 in the locali­

zation approach, the carrier is allowed to diffuse until an inelastic 

scattering event takes place (trapping by a localized state) and thus 

diffusion of the carriers is lim~ted by the inelastic scattering time. 

In the electron interaction approach, the effective number of carriers 

is affected by the correlation between the ihift of potential energy 

and the broadening of the momentum distribution of the carriers them­

selves as scaled by the physical dimensions. Both mechanisms may be 

operating simultaneously. They give identical results for conduction 

in two dimensions: 
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where T is the effective scattering time. The difference between the 

two approaches is seen in the Hall effect: The localization approach 

predicts no correction in the Hall effect but the interaction approach 

predicts that the relative change in the Hall coefficient will be 

twice that for the conduction. 

The interactinn approach has been used to predict a correction in 

three dimensions 

and in one dimension 

· e
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where Dis a diffusion coefficient related to the mean free path and A 

is the cross sectional area. Such a -T-112 dep~ndence for a component 

of the electrical conductivity indicates the possibility of one-

dimensional transport in glassy carbon and is consistent with its 

structure. 

Glassy carbon is primarily an elemental carbon material with 

perhaps trace amounts of hydrogen as an impurity. The microstructure 

is essentially the skeleton of its polymer precursors. Figure 3(a) · 

shows direct 002 lattice images of glassy carbon heated at 2700°C. It 
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can be seen that ribbons or laths are imaged. However, Fig. 3(b) 

shows that imaging is less sharp in material heated at 2250°C and in 

Fig. 3(c) it is seen that hardly any lattice fringes can be obtained 

from material heated at 1800°C. By comparison with Fig. 2, it is 

inferred that there is a direct correlation between the presence of 

the one dimensional component of the conductivity and the inability to 

obtain lattice images. Small angle scattering results show that the 

micropores (10-20 A) in low heat treatment temperature material have 

diffuse boundaries and that the Porod law is not obeyed. 17 , 18 How­

ever, for the high heat treatment temperatures the diffuse boundary 

scattering is absent and the Porod law is obeyed. Other changes in 

the microstructure occur at about 2200°C, the temperature where one­

dimensional electrical conductivity ceases to be observed. In wide 

range x-ray diffraction, the d-spacing associated with the 002 

graphitic planes in turbostratic carbons begins to decrease, 19 , 20 

and the small (=1 percent) weight loss during heat treatment becomes 

constant for higher heat treatment temperatures. 21 The nature of 

this transition, whether it is due to simply coarsening of the inter­

locking filaments, or if a phase transformation is taking place, has 

not been fully established. 

In summary, the microstructure of glassy carbon heat treated below 

about 2200°C is best described as tightly interwound laths consisting 

of 5-10 layers of graphite-like ribbons of a width less than about 50A 

which do not possess sufficient registry to resolve lattice images. 

This scale is minute enough to admit the possibility of a 

v 

J 
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one-dimensional electrical conductivity correction to the metallic 

conductivity having the observed -T-l/ 2 dependence. 
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Fig. 1. 

Fig. 2. 
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FIGURE CAPTIONS 

Electrical conductivity of glassy carbon heat treated at a) 

2550 and b) 1200°C. The solid lines are calculated fitted 

lines from the empirical equation a= A+ Bexp(-CT-1/4) -

DT-112. 

One-dimensional electrical conductivity component parameter D 

of glassy carbon as a function of heat treatment temperature. 

Fig. 3. Transmission electron microscope 002 lattice images under 

identical conditions of glassy carbon heated at a) 2700, b)· 

2250, and c) 1800°C. The fringes imaged have a 3.4 A 
spacing. The microscope work is courtesy of Or. Ron Gronsky. 
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