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Abstract |
The Dfop]et Model expfessions for cé]cu]ating various moments ofyfhe
nuclear charge distribution are given. There are éontributions to the moments -
from the size and shape of the system, from the internal fedfstribution induced
by the Coulomb rgpu]sidn; and f%om the diffuséness.of the surface. *A case is
made fbr the use of diffuse §harge dfstributions genérated by gonvo]ution as

an aIternative to Fermi-functions.
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Introduction
The Droplet Model provides a comprehensive description of a number of
macroscopic aspects of nuclei such as the binding energy and the associated

1_3). It also

potential energy as a function of the collective coordinates
provides a basis for a rather detailed description of both the neutron and
proton spatial distributions. In ref. 4) Myers and Swiatecki discuss the
problem of the "neutron skin" and give references to the earlier work on

Droplet Model density distributions. More recently, the present authors5'7

8’9) have concentrated on comparing the Droplet Model predictions

and others
of RMS charge radii with -the large number of excellent measurements of radii
and isotope shifts that are currently becoming available. It is our purpose
here to bring togethef some of these reéu]ts and to extend the dischssion SO

as to provide an.update on the status of the Droplet Model predictions. .

Drop1et.Mode1 Density Distributions

The Droplet Model predictions for nuclear density distributions difféf
from thbse of the Liquid Drop.Mode1 in two important ways.ﬁ The most important
difference is\thét thé equivalent shafb radii of_the neutron and proton dis—
tribﬁtions are determined by minimiiing the macroscopic éhekgylof the system.
This procedure results in a prediction that light nuclei are squeezed slightly
by the surféce tension and that most nuclei have a neutron skin because the
neutron distribution is slightly larger than the proton distribution fdr
neutron excess huc1ei. The other difference is the prédicion of‘a small amount

of bulk redistribution under the influence of the repu]éive Coulomb force.



Since the Droplet Model expressions governing these phenomena have been

given so often1'4), the next section will be as brief as possible commensurate

wfth completeness.

The Size
The first step in constructing the Droplet Model nuc]eak,density
" distributions is to calculate the size of the system,(heutrons and pkotons

together)‘from the expression

R=r AP 17,

Where
— - -1/3; -2 2,-4/3 _
£ = <72a2A BS + L s+ clz A BC>/K .
3 -2/3
1+3 (3Q) A3 B
and
I = (N-2)/A

(The quantity BS is the ratio of‘the surface area of adeforméd nuc]eus‘td
that of é'sphere with equal volume, Bc is the éﬁa]ogous term for the Coulomb
énergy, and B, is associated with variations‘fn the Cou]bﬁbrpofential over
the surface wheﬁ a nucleus is deforhéd.) "_ |

One currently accepted set' of values for the Droplet Model coefficients

that appeak,here is3)

1.18 fm, the nuclear radius constant,

.73
[

0

o
1

0.99 fm, the nuclear diffusehess, _ y

3 (ez/r_) ='0.7322.Mev, the Coulomb energy coefficient,
5 0 ,

(3)

(4)



A

2, = 20.69 MeV, the surface energy coefficient,

J =36.8 MeV, the symmetry energy_coefffcieht, .
Q = 17 MeV, the effective surface stiffness;

K = 240 MeV, the compressibility coefficient, and
L = 100 MeV, the density symmetry coefficient.

Once the mean radi@s R has been'ca16u1atéd the neutron skin thickness can

be obtained from the'expressioh'

) —_
t = 3 R (I - 5)/8S ,

The separate effective sharp radii for the neutron and proton

distributions can be calculated from the expreséions,

Z .
Rn =R + A t ,
N

The Shape

(6)

A simple, useful representation for the éhape of the density distribution is

in terms of Legendre polynomials,

r=nR (1+ a,P, +:a4p4 + a6p6'+ col)

where volume normalization is insured by setting

n = (i - luz - —Z—u3 + g—a4 - g—azé' - luz
oY 572 10572 2572 357274 974"

In terms of this expansion the shape dependences above are .

ca)e

B _1+22_ 4.3 66 4 4 2 . 2
s 5%2 T 105%2 ~ T75%2 ~ 35°2% ~ %4
s .1 12 43,5 4 62 52
c = " " 5% T T05%2  245%2 T 35*2%4 T 277
B _1.l2 23 23 4 4 2 42
= 5%2 T 705°2 T 1225%2 T 105%2% " 9*a°

- (8)
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In these expressions -and those that follow, we:have chosen to retain only terms

-up t0 order e4, where the coeffficiénts 52,‘a4; and. ag are'regarded as

2 3

being of relative order ¢, ¢, and ¢”.
The Redistribution

Once the Droplet Model size of the distribution has: been determined, and
some other source has been consulted for informatioﬁ about the shape (for
example, a table of measured values or the recent Moller and Nix compilation

10’11)), We(can'proceed to the next level of refine-

of predicted deformations
mént. ‘The bfotons (and néutrons to some extent) are bushed fbwérd the'surface
by the Coulomb repulsion, and the small increase in binding that results is

included in the Droplet Model energy expression. The corresponding changé in

the density is given by2
- 1 9 —1 ~.
oY ="2'°0(W+T5>ev ’ oo

where v is the deviation of the Coulomb potential from its ayerage,ya]de over
the bulk.

For a spherical distributionz),

B33
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and for a distribution whose shape is given by Eq. (8) abovélz)

) .

e [ 1 2,3 i SR
V=R <‘75 +7zcicpi>’ - S (13)

z i=0,2,4,6
— e [6 " . . |
V = -R—- (g BC) N v ’ . (14)
2 ) . ‘ .
~ Ze (1.2 .3 i - |
;oL <_?g. +3 3 0 p1.> . (15)
e i=0,2,4,6 / . -

where T = r/nRZ and the C's and D's are given in the appendix.
- The change in the proton distribution due to redistribution can be written

~ 1

Bo=geLf(r) L S (16)
where | | .
C 1, 9,1 22 . a3
C =7('27+7‘7)T , ~0.0156 ZA. f (17)
For a spherical nucleus
f(r).= [(.r/RZ)2 - 3/5] :,' | .A l (18)

and for a deformed nucleus

2 i - : | |

f(z;)=<z; -3 Y 0 P1.> . B 4 1)
i=0,2,4,6 / ‘ - 3 :

The redistribution creates a central depression in the proton distribution that

increases all the radial moments. It also increases the charge on the ends of

a deformed shape, resulting in an increase in the duadrupo]é, hexadecapole, and

other even order multipole moments.



The Diffuseness

Once the size, the shape, and the redistribution have been combined, the
1a§t step in the determination of the Drop]et Modé] prediction for the density
distribution is to add the diffuseness. The customary procedure of USing |
Férmi functions is awkward and inconvenient (esbecia]]y when the density is
deformed and redistributed) and so we will use cbnvolufﬁon to create the
diffuseness. When a normalized, spherically symmetric, short-ranged function
is folded into our sharp-éurfaced distribution the resulting diffuse
distribution still has the same volume integral (contains the same number of
particles). What is most significant is the fact that the mﬁ]tipo]e momen%S'
of the distrfbution are unchanged and the radial mqments (and moment of

13’14). So, we do not have to

inertia) simply increase by a known constant
actually perform the convolution integra],.un1ess‘We want to plot the density
- distribution itself.

A proposal for creating the diffuseness in this way was made by He]mls);
in connection with the interpretation of elastic electron scattering measure-
~ ments. More recent work along these same lines has.been‘done by Friedrich and

Voeg1er8’9)

They find that "Helm Model" effective sharp.radfi extracfed
from experiment behave much as the Droplet Model says they shou1d and that the

variance of the gaussian folding function,

)—3/2

g(r) = (2n02 - exp (-r2/202) _ : . | | kzo)

is nearly constant throughout the periodic table except for some small
evidence of shell structure.

It should be mentioned in passing that o = b and that the geometrical
re]atidnships between the surface location C, the effective éharpvradiUS'R,

the effective RMS radius Q, and the surface width b have been discussed by
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16) ]4,17)

. The advantages of the folding method
18,

and other authors

Stssmann

have also received recent attention from Krappe

Radial Moments

2

The most frequently measured quantity, the mean square radius <r >; can

~be calculated from the expression
s w sy rats vty | @

where (thé subscribt Z, indicating protons, is dropped here since these

expressions are completely general)
20 3.2
fl" >u =<§ R

2,10 3 27 4 10 2
2 22732 T 2%

(1+a +2ab+ ) (22)

is the contribution from the size of the uniform distribution and fts'shape;5~
The next term,

w2 12 ~.p2 14 2 .28 3 29 4 _ 116 2 70 2 . .
<r >Y'=I7-§CR (1+——5—02+EG2—5—C!2+T?0204 f'%‘(!A"' ...) (23)
is the contribution from the redistribution, and its shape dependence. -The'

last term,

<r2>d - 30° or 3_b2 s o T(28)

is the contribntion from the.diffuéenéss..ylt is intefesting to note that the "
diffuseness .correction has no shape.depenqence,and that it is the same for all
nuclei (so long as we assume that the diffusenéss itself is a conétant).

In order to assess the relative importance of the different terms we can

238

~consider the example of U. The spherical Droplet Model value of R, is.

7.030 fm, and this becomes 7.027 fm when the effect of deformatidh fusing the"
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values a, = 0.1395, o, = 0.0652, and ag = 0.0024 provided by_Mallers)] on the
siie of the distribution is included via the B's Eq. (10). The mean squaré -
radius of a uniform distribution with this shape and a shérp surface is

29.6273 (1+0.02462) fmz, whefe.the first part comes from the size and the

second from the shape. The redistribution contribution is 0.8790 fmz,'and the

2 2

diffuseness correttfon is 2.9403 fm , for a total of 34.1760 fm°. The predic—

ted RMS radius is 5.8406 fm, which is to be compared with the experimental

value of 5.843 + 0.012 fm 17).

In fig. 1 a broad comparison is made betweenvthe measured va1ué§'and'the

values calculated using the Droplet Model expression (21) and the calculated -

‘11).

deformations of Moller and Nix In this comparison the compilation of

experimental RMS radii of Angeli and Csat]os19

20,21)

) was extended by RMS radii and

, ca1cu1um21’22), scandiumZL),
21) 21) 23)

isotope shifts of isotopes of potassium

21) 21), chromium21) , krypton

titanium , vanadium , Mmanganese , iron

24)’ pé]1adium 26;27) 23) 28

31)

25 29,30,

rubidium ,. cadmium , xenon“>), cesium“®), barium

31) 31) 32) d 33).

dysprosium~~), erbjum , ytterbium~ "), mercury "), and lea Isotopes of
the same e]ement.are connected by a line.  The error bar at the top of the figure
represents the‘typicaj untertainty of the absolute RMS radii, which are deter-
mined only for some stable isotopes, and the RMS radii of isotopic chains are then
linked by ratherlaccurate isotdpe shifts. As a consequence the groups of

points that lie away from the main concentration of values correspond to single
measurements, rather than a number of supportiné deviations as one might have
thought at firsf. The strong odd-even staggering around A = 103 referé to .
mercury isotopes. It can be explained by shortcomings of the theoretical pre-
diction of the nuclear deformation. The experimentally observed sudden transil.
tjon‘to strong deformatidn is not reproduced by the calculation. THe light

vertical lines are located at the neutron magic numbers 28, 50, 82, and 126.
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They serve to bring our attention to she11-re1ated deviations at 28 and 50
"~ These deviations may be associated with radial shell effects or they may simply
reflect differences between the actual shapes of nuclei in these regions and
the fheoretica] shapes that were used in the calculations. The deviations are
summed in the histogram at the right of the figure, and inspection shows that
the centroid is at about -0.015 fm suggesting that the Dropiet Model radius 7
constant o should probably be decreased by (3/10) of a percent.

In fig. 2 another comparison between the measured and calculated values
is given, this time without corrections for deformétion. The structure
imposed on the RMS radii by the increase and then decrease in deformation that
occurs as one moves from one magic number to the next can be clearly seen. - -
This sort of structure is almost completely absent from the previous fiQUre ,
suggesting that all the shell effects are shape effects.and that there is‘ 
lTittle evidence for volume (or diffuseness) shell effects. | -

Figuré‘3 displays the differences that femaiﬁ when the appropriate
deformation corrections are made but a Liquid Drop Model‘expression is used
for thé size of the proton distribution instead of the Droplet Model expres;

~sjon. In this figure

3 —2/3 o =813, 1/3 |
RMS 1. =/;(1.15 +1.80 A% - 1.20 A7) AP pm - (25)

corfesponding to an equivalent sharp radius of 1.15 A1/3

fm and a diffuseness

b of 0.98 fm. The steép downwafd slope of isotopic sequences that is seen here

(but not in fig. 1) is due to the LDM neglect of the effecfs of the neutron
skin on charge radii. -Another way of displaying this effect can be seen in o

fig. 4. Here; the measured RMS radii have been converted to equivalent sharp

radii by the approximate procedure of multiplying by (Rp/RMSy), where Ry is the
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| Droplet Model predicted equivalent sharp radius, .and RMSD is the Droplet Model
prédiction for the RMS radius with all the diffuseness deformation and redfs—
tribution effeéts included. A straight'1ine has then been fitfed to isotopic

2/3) has been- -

sequehces and the slope of thfs line ARn (multiplied by A
plotted against the Z va]ueAfor the sequence. The Liquid Drop model would
predict that thiquuantity should always have.thé constant value 1/3 o (ag

" is indicated by the dottéd line in the figure). The data are seen to cluster .
about the dashed line representing the Droplet Model predction. -The solid

horizontal line at ARh * AZ/3

= 0 corrresponds to the idea that charge

radii depend only on the value of Z, as has sometimes been advocated. The

- data used here include some isotopic sequences that could not be used in the.

previous figures becéuse they consist of only isotope_shffts without any

absolute measurement. .In addition, some. of the sequences from the previous-f

figures have been omitted here because they consist of fewer than four points.
Further comparison can be made with the more récent extensive measurements

of cesium isotopes reported in ref. 28). Figure 5 shows how well these

measured relative mean quare radii are reproduced by the calcutlations. The

agreement below the magic number 82 is quite striking, corresponding as it does
18

to differences of a few attometers (1 am =1 mi]]ifemtometer = 107" meter).
The poorer agreement beyond the’magic number may be associated with “
deficiencies in the calculated deformationsvfhat were used.

Another similar comparison is made in fig. 6, for the rubidium 1sotqpes

f. 24). In this case the agreement is best at some distance from the

from re
magic number 50, but the calculated values decrease abruptly to approximately
the undeformed Droplet Model va]ye on both sides of the magic number N = 50.

(A similar, but less striking effect can be seen in the previous figure.) The‘

reason for these differences is quite interesting, and it is discussed at some
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length in ref. 34) as well as in ref. 35) where an attempf was made to
understand the measured values in terms of Hartree-Fock calculations. Briefly,
the difference appears to have its origin in the fact that the RMS radii depend
on <a§>. In the transition region between the magic number and the sb]id]yv
established deformations tﬁere exists a region in which zero point motion in
tﬁe collective coordinatesigenefates a 1ar§e value for <a2> even though
<a> ~ 0. One consequence 6f this effegt,i§ that béttef’agreemenf between
measured and calculated RMS radii éan bé obtained if measuréd values Of'<a§A

are used rather than .assuming that <a§> ~ < as we have above.

®i>calc

Multipd]e-Moments

Using the definition,:
N T S o
Q=2 rvP, d3r_ S ~ (26)
we can derive expressions_for the mu]tipo]é moments analogous to eq. (21).
Thus,
Uyl +nod . ' S »
QQ'=QQ OQ{ QQ’ [ ’ ) (27)
" where Q% is the contribution from the uniform distribution; Qz the> '
contribution from redistribution, and (as we mentioned befbre) Q% is the

contribution from the difquehess, which is 1dentica11y zero. For the

 quadrupole moment,

r48 ., o2 6 2 4 3 1984 4, 50 |
G =1 O R (o * 705 - 59~ 1155 %2 * 7T %%
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and for the hexadecapole moment,

U _ 2 2t (54 2,108 3 ,8154 4 . 120
Q =3 35 % Y 77 % 75005 2 T TTT %% o)
: 30
L 19828 2 486 2 270 )
* 5005 %2% T 7001 %4 T 143 %2% T -+ s
Q" - 112~ 7p4 (81 2 + 34344 3 21435516 4, 160
4 T 395 3 T§§E" 2 ~ 15940925 2 4 77 "274 )
(31
, 19508026 2 . 5427 2 . 35235 N )
3188185 %2%4 ~ 7007 “4 = 13013 %2% = -
For 238U (using the a's mentioned earlier) the predicted moments are
Q, = 8.8768 + 0.5444 = 9.4212 barn (32)
and
Q, = 1.8053 + 0.1620 = 1.9673 barn® (33)

which are to be compared with the corresponding measured values of 9.04 = 0.06
barn and 2.21.=k 0.46 barn2 [from ref. 36)]. The calculated value of the
quadrupole moment is increased 6% and the hexadecapole moment 9% by the

redistribution of charge.
Summary

We have extended the usual Droplet Model predictions of charge moments to
incude deformation and redistribution contributions. When compared with the
measured values the accuracy obtainable by this method seems to be about
0.01 fm (or 10 am), which corresponds to 0.2% in the RMS radius for a heavy
nucleus. This is almost as good as the 0.1% accuracy (1 MeV out of 1000 MeV)
that can be obtained for the binding energy, when the macrbscopic approach is

supplemented by shell corrections.
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We also showed that'the Liquid Drop Model fails to correctly predict the
changes in charge radii along isotopic sequences. The excellent agreement
that is found when the Droplet Model is used is asSbeiated with the neutron
skin thet develops for neutron-rich nuc]ei. The model cpefficients governing
this effect and the radius constant itselfvwere.ali determined from:fitting
“only to nuc]ear masses and fission barriers. Consequeht]y, some improvement
could be expected in the'bredictions ifAthe'measured Values_of the radii were
to be included in the fitting procedure. |

Finally, we showed how the Droplet Model redistribution affects the
relation between the shape of a nucleus and its charge multipole moments. The
size of this new term is comparable to the accuracy with which these moments
~ are known.

-The -authors wish to acknowledge contributions made by Rainer Hasse, Peter
Moller, Wladek Swiatecki, and G. Ulm. They also wish to express their appre-
ciation to the authors who made available the most recent measured values for

a number of nuclear RMS radii. This work was supported by,the Director, Office
of Energy'Research, Division of Nuclear Physics of the Office of High Energy and
Nuclear Physics of the U.S. Dept. of Energy under Contract DE-AC03-76SF-00098.

References
1. W.D. Myers and W.J. Swiatecki, Ann. Phys. (NY) 55 (1969) 395-505
2. W.D. Myers and W.J. Swiatecki, Ann. Phys. (NY) 84 (1974) 186-210

3. W.D. Myers, Droplet Model of Atomic Nuclei (IFI/Plenum Data Co., New

York, 1977) v
4. W.D. Myers and W.J. Swiatecki, Nucl. Phys. A336 (1980) 267-78
5. W.D. Myers, Prbc. XIX Int. Winter Meeting.on Nuc 1ear Physics, Bormio,

Italy, January 1981, p. 336-40



10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
- 23.
24.
25.
26.
27.
28.
29.
30.

W
f
W
A

J.
. J.

v

=

W

—t

R o] pu

| -15-
.D. Myers and K.-H. Schmidt, CERN 81-09, Proc. 4th Int. Conf. on Nuclei
ar from Sfability, Helsingor, ﬁénmark; Jﬁne 1981, p. 90-2 ‘
.D. Myers, Proc; Conf. on Lasers in Nuclear Physics, Oak R{dge, Tenn.,
pril 1982
Friedrich and N. Voegler, Phys. Rev. Lett. 47 (1981) 1385-8 -
?riedrich-and N. Voegler, Nucl. Phys. A373 (1981) 192-224
. Moller and J.R. Nix, At. Data Nucl. Data Tables 26 (1981) 165-96 -
. Moller, private communication, March 1982. '
M. Hasse, Ann. Phys. (NY) 68 (1971) 377-461
.D. Myers, Nukleonika 21 (1976) 3-28
.T.R. Davies and J.R. Nix, Phys. Rev. C14 (1976) 1977-94
H. Helm, Phys. Rev. 104 (1956) 1466-75
. Stissmann, Z. Phys. A274 (1975) 145-159
.D. Myers, Nucl..Phys. A204 (1973) 465
.J. Krappe, Proc. XIV Masqrian Summer School, Mikolajki, Septéﬁber 1981
. Angeli and.M. Csatlos, ATOMKI Kozlemenyek gg_(1978)vl
. Touchard, et al., Phys. Lett. 1088 (1982) 169
.D. Wohlfahrt, et al., Phys. Rev. C23 (1981) 533
. And1, et al., Phys. Rev. C26 (1982) 2194
. Gerhardt, et a],, Hyperfine Interactions g_(1981)‘175
. Thibault, et al., Phys. Rev. c23 (1981) 2720-9
M. Lightbody, Jr., et al., Phys. Rev. Cl4 (1976) 952 -
. Wenz, A. Timmermann, and E. Matthias, Z. Phys. A303 (1981) 87
. Buchinger, et al., Hyperfine Interactions 9 (1981) 165
. Thibault, et al., Nucl. Phys.(ﬁggz (1981) 1—%2
.B. Shera, et al., Phys. Lett. 1128 (1982) 124
.C. Mue]]er,‘et al., Report CERN-EP/82-162



31.

32.

33.

34.
35.

36.
37.

_15_
R. Neugart, Invitéd paper to the Conference on'Lasers in Nuclear Physics,
21-23 April 1982,'0ak Ridge, Tennessee, USA, and Report CERN-EP/82-80,
JQne 1982 ' ’ | ' , -
Ph..Dabkiéwicz, Thesis, Uhiversity Mainz, 1980, unpublished -
R.C. Thompson, et al., Preprint KfK 3455, Kernforschungszentrum
Karlsruhe, FRG, 1982
X. Campi and M. Epherre, Phys. Rev. C22 (1980) 2605-8
M. Epherre, G. Audi, and X. Campi, Proc. 4th Int. Conf. on Nuclei far
from Stability, He]singor, Denmark, June 1981, p. 62-4
F.K. McGowan, et al., Phys. Rev. Lett. 27 (1971) 1741-4
R.W. Hasse, Pramana ;l_(1978) 441-55



Appendix

17—

Thevcoefficients Ci in the Legendre polynomial expansion of the Coulomb

potential are given_by the expressions

where

If (as elsewhere) we retain terms up to order e4 and regard @5, aa,_and

Co = j;du S(w)°/2
, 1 S
CZ = jldu Pz(u) n S(u)

-2

~

—
|

[p%)

Cyq = S;du Pp(u) S(u)
‘ -l _ -4
Cg = S;du Pe (1) S(u)

etc.

37)

S{un) =1+ a2P2(u) + ¢4P4(u)'+ GGPG(U) +;.;.

3

ap as being of relative order €, e2, and ¢°, these_coéfficients are

%o

4+

_ 4 L 28 2
35 %2%4 7 385 %%

2. _4

9 % ~ 23T *2%

7156 2 56 2 30
" 15015 ®2%4 ~ 1001 %
180 3 36 4 50

= TOOT *2 ~ T43 °2 ~ 143 *2%4

10 2,2
1287 %4 13 % -

- 143 *2%" -

L 540 2
TO0T “2%4

20

693

éi + ..

(AS5)

(A6)

. (A7)

(A8)



-18-
The coefficients .D; in'the'expansion of Vv (eq. (15)) are equal to the
correSpondihg coefficientS'Ci except for Do’ which is

T G TG T T e o (AlO)

+

1
0°~5
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Figure Captions

Fig. 1.

Fig. 2.
Fig. 3.

- Fig. 4.

Fig. 6.

The difference between the measured RMS charge radius and the
Droplet Model predictions of eq. (21). The points are plotted

against neutron number, and members of the same isotopic sequence

are connected by a line.

The same as fig. l'but without.corkections for defbrmation.

The same as fig. 1 but using the Liquid Drop Model expression of
eq. (25) with'déformation corkéctions,instead dfjfhe Dfopiet:Model.
The slope ARn of the equivalent sharp charge radius versus neutron

2/3 is plotted against'the charge number of

number multiplied by A
the isotopicvseduence being considered. The dashed line is the
Droplet Model prediction, and the dotted line is the Liquid Drop ‘
Model prediction. - ‘ |

The measured mean square chafge radig.(relative to N = 80) of the

cesium isotopes/are plotted as solid circles and cqnnedted\by a

Tine. The solid triangles correspond to the full Droplet Model

prediction with calculated deformation corrections included. The

dashed 1ine cofresponds to the uncorrected Drop]etiMode] and the

dot-dashed line cofkésponds’to thé'uncorretted Liqﬁid'Drop Model.
The measured mean square charge radii (ré]ative to N = 50) of the
rubidium isotopés are p]btted as solid circles and'connected by a
line. The so]id triangles correspﬁnd to the fu]] Dropiét-Mode]

prediction with calculated deformation corrections inc]pded. The

. dashed line corresponds to the uncorrecteq;Drop1et Model and the

dot—dashed line corresponds to the uncorrected Liquid Drop Model.
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