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F. Alberto Grunbaum 

THE LIMITED ANGLE PROBLEM IN TOMOGRAPHY 
AND SOME RELATED MATHEMATICAL PROBLEMS 

1. INTRODUCTION 

Consider the problem of recovering a compactly sup
ported function f(~) , ~ERn , from a collection of its 
"one dimensional projections" given by 

Pf(w, t) - J f 
- ( X ,W) = t 

w E Sn-l 

Here sn-l denotes the unit sphere in Rn , and < x ,w > 

denotes the usual inner product in Rn 

The most common applications call for n = 2 (X-ray 
tomography) or n = 3 (Nuclear Magnetic Resonance Imaging) 
and therefore we will occasionally specialize our consider
ations to these cases. 

One of the main concerns in this lecture is the effect 
that a limitation of the range over which the directions 
w can be chosen has on the quality of the reconstruction. 

If one had no restriction on the choice of directions 
w , more precisely if one knew Pf(w,t) for all wE Sn-l 

one could use the formulas of Radon [ 1 ]. In the two 
dimensional case we have 

f(x ,y) 
1 ( "'f 

= - 1 d6 p.v. 
2;r2 ~ 

with t = x case + y sine 

f 
co-t _..;,_ a 

-,-- s as Pf(e,s) 
-co 
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The formula depends on the dimension n but some features 

of it are independent of n : the projections are first 

"filtered" by the application of some operator -- differen

tial if n is odd, integral if n is even -- then for 
n-1 each w E S the result is "backprojected" to get a 

function of x -- i.e. the function is made constant along 

the hyperplanes <!·~> = t , finally these backprojections 
are added up with uniform weight over sn-l 

Thus Radon's formula has the form of a sum of filtered 
backprojection. The history behind the formula is inter
esting. Although Radon, in 1917, certainly proved it first 
for general n , the Dutch physicist H. Lorentz knew of 
this formula for n = 3 around the end of the century [ 2 l. 
A paper in 1906 gives credit to Lorentz [ 3 l. Later on 
Uhlenbeck [ 4 1, Cramer and Wold [ 5 1, Bracewell [ 6 l, 
Cormack [ 7 1 -- and probably many others had to rediscover 
this result on their own. An independent attack, not re
lated to Radon's formula was conceived and carried out by 
Houns fie 1 d [ 7 1 • 

2. THE LIMITED ANGLE PROBLEM 

A problem of practical interest is that of recovering 
f from its projections · Pf(w,t) in a given limited range. 

For convenience the following discussion deals with R2 and 

we use the notation 

Pf(e,t) 

for the projections. 

Although one can prove that knowing Pf(6,t) for 
-a< e <a, with a> 0 arbitrary, determines f uniquely 
it is clear that the "quality" of the reconstruction should 
depend on a . We have the case of an ill-posed inversion 
problem and the degree of ill-conditioning will depend ser
iously on .the range of views -a < e < a . 

Assume that all the projections 

Pf(e,t) - ; < -a < e < a < ; are known. The problem 
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is to recover f . It is convenient to visualize the data 

as the result of applying a linear operator A to the un

known function f . For mathematical expediency we take 

.f E L2(o) which gives Pf(e,t) E L2(I,w) • for each e . 

Here 0 denotes the unit disk in R2 , L2(D) the space of 

square integrable functions on 0 , and L2(I,w) the 

space of functions on the unit interval I , square integra
ble with respect to some appropriate weight w . 

In this fashion the operator A maps L2(D) into 

el 2 (I ,w ), with the direct sum extending over a 11 

-Q < e <a . If b -- the data -- denotes the set of all 

available projections we have 

Af = b 
It is now convenient to bring in the singular value -

singular vector decomposition of A . 

Take ~i 

with positive 

to be the orthonormal eigenvectors of AA* , 

real eigenvalues ~~ , ~- > 0 . Then set 
1 1 

9· =A*~./~. and get for the smallest f which minimizes 
1 1 1 

the error Af - b the eipression 

-f 

A crucial role is played by the spectral decomposition 

of AA* . This is an operator from e L2(I,w) to itself. 

This space can be expressed as a discrete direct sum 

2 co 
eL (I,w) = 2: V 

n=O n 

where the subspace 

factorized form 

V is made up of functions of the 
n 
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k(e) c'(cos t)Jl - t 2
, . n 

with k(e) E L2(-a,a) and C~(cos t) a Gegenbauer poly
nomial. 

One can see that AA* leaves each one of the spaces 

Vn invariant, and that its action on Vn is given by 

( ( AA *) n k) (e) 

If k. (e) 
1 ,n 

l.;)) 
k(z;) dl.; 

-a 

denote the eigenfunctions of (AA*) then 
n 

the eigenfunctions of AA* are given by 

k. (e) lt'(cos t)Jl - t 2 
1,n n 

For all the missing proofs the reader can see [9, 10, 11). 

by 

Now we consider the family of integral operators given 
(AA*) . 

n 

C~(cos e) 

C~(l) 

Since 

= 

we are -- by a stroke of luck 
Slepian in [12]. 

in the case considered by 

Slepian found that a remarkable phenomenon holds true 

for this integral operator, to wit: a second order dif

ferential operator exists which has the same eigenfunctions 
as (AA*)n . This is in the same spirit of the pioneering 
papers of Whittaker [13) and Ince [14]. 

In the same paper Slepian considers the matrix 
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sin 21ro.(i - j) 
,.(; - j) 
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and shows that a tridiagonal matrix exists which commutes 
with it. This holds for any value of the parameters n,a . 

In summary, the computation of the singular values and 
singular· vectors of PP* can be reduced to a managable 
numerical problem since we are in the presence of the 
remarkable miracle described above. For the actual imp
lementation of this program in the tomography context see 
[15, 16]. 

3. COMMUTING INTEGRAL AND DIFFERENTIAL OPERATORS 

The phenomenon mentioned above has appeared before. 
Already in Ince [14] we see examples of this situation. 

In the sixties Slepian, Landau and Pollak came up with 
a remarkable series of papers dealing with the problem of 
time and band limited functions [17-:20]. At the core of the 
paper is the fact that if A denotes the finite Fourier 
transform 

(Af)(A) = JT eD.t f(t) dt , 1- E [-r.,nl 

-T 

then the integral operator given by A*A , namely 

(kf)(t) = JT sin n(t - s) f(s) ds 
t - s 

-T 
tE[-T,T] 

admits a second order differential operator commuting with 
it, namely 

(Df)(t) = ( (T2 - t 2)f') I 

Slepian proved that this same result holds if R1 is 
replaced by Rn [20], and then in [12] --mentioned earlier 

in connection with tomography -- extended this fact for 
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functions defined on the circle or on the integers. We 

become interested in this problem and tried to extend its 

range. In [21] one finds an extension to the case of the 
nth roots of unity and then in [22] one finds a classifica

tion of all Toeplitz matrices which have a tridiagonal 

matrix, with single spectrum, in its commutator. 

In [23] this property is seen to hold for the Hilbert 
matrix and in [24] one finds that the property (essentially) 
holds for the Discrete Fourier Transform matrix. 

Another example not reported before is given by the 
matrix 

G m,n 
= sin(n - m)e 

n - m 
sin(n + m)e 

n + m 1 ~ n ,m ~ N 

which comes about as the Gram matrix for the functions 
sin n~ , n < N . 

It is not hard to see that in this case a commuting 
tridiagonal matrix with single spectrum is given by 

T. . = 2 ( i 2 - 1 ) cos e , 
Ti,i+l = Ti+l,i = (2 + N)(N- 1)- (2 + i)(i- 1) 

It is a bit,harder to see that in order for the com
mutativity property mentioned above to hold for a matrix 
of the form 

sin(n - m)e 
n - m 

+ sin(n + m)e 
a n + m 

one needs a= ±1 or the previously known case ~ = 0 [12]. 
These three instances correspond tQ the Gram matrices for 
the functions sin n; , cos n; , e 1 n~ . 

Other examples of Gram matrices with this property have 

been given in [ 251 . 

~-· 
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In trying to deal with the "limited angle" problem in 
R3 , we were led to consider the extension of Slepian's 

[12] results to the case of s2 , or more generally Sn . 

This was found·to·be true and is reported, along with other 

results in [26]. 

Since the property holds for Rn and Sn it is only 

natural to expect that it should hold for hyperbolic space 
Hn • Indeed in [26] the result is shown to hold for H3 , 

see also [27] for a much more transparent proof. 

And yet the result is not true for any Hn , n > 2 , 

except when n = 3 [28] . 

The eigenfunctions for the radial part of the La

placian in Rn are given by 

q,(/..,r) = 
J n22(/..r) 

(/..r)n22 

We make here the remark that as functions of ). these 

functions satisfy a second order differential equation of 

the form 

D). ~(/..,r) = 0{r) q,(/..,r) ( 1 ) 

The eigenfunctions fo the Laplacian for H3 are 

q,(/..,r) = sin /..r 
). sin hr 

and we have 

1 d 2 d 2 I2 cfx</.. d). q,(A.,r)) = -r 4>(/..,r) 

It is now a fact that for any n 1 3 , n ~ 2 , the radial 
eigenfunctions of the Laplacian for Hn do not satisfy an 
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equation of the form (1). 

This fact and other evidence from [25] made us consider 
equation (1) an important ingredient in the existence of a 
differential operator of "band and time limiting." More on 
this in the next section. 

4. DIFFERENTIAL EQUATIONS IN THE SPECTRAL PARAMETER 

Given a second order differential operator 

d2 
L - - dx2 + V(x) 

denote by <t>(A.,x) a family of eigenfunctions of L, L<l> = A.
2<P • 

The previous considerations lead us to the following 

Question. For what V(x) does there exist a differential 
operator DA. such that 

DA. <P{A.,x) = 0(x) ~(A,X) 

We have attacked this question in collaboration with 
H. Duistermaat [29]. 

We give below some few examples of this situation 
leaving a more complete discussion for [29]. 

(a) Take V(x,t) = 6x(x 3 - 2t) 
(x3 + t)2 

then if <P(A.,x) = (A. 2x3 
+ 3iA.x2 - 3x + A. 2t) eiA.x 

A.2(x3 + t) 
we've 

and 

(- ::2 + V(x,t)) ~(A,x) 

4it d<P = 
dA. 

4o ( x + 4tx )<I> 
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10 5 2 4 3 2 
(b) Take V( t s) = 12x +324sx +450t x +300t x+l62s 

X, ' 6 3 2 2 
(x +5tx +9sx-5t) 

then for an appropriate family of eigenfunctions ~(:A.,x) 
we've 

[1 [ddA - f] [ddA - f] [ddA - tM [d~ + ~) [dd + f) [ddA + f)]$ + 

+ 
63 s ·(JL- .!.) (JL + l)<t> - 35it2 dd' <P 2 d:A. :A. d:A. :A. 1\ 

35 , .. ~[ d 2) ( d 2))2 
+ 4 t I \1 d), - I d A + I 

... 
7 35 4 63 2 = (x + -- tx - -- sx -4 2 

We make the observation that the function V(x,t) in 
example (a) is a solution of the Korteweg-deVries equation. 
Also V(x,t,s) in example (b) can be written in the form 

where x1 ,x2 denote the. Kdv flow
3
and the fifth order dif

ferential operator given by [ (-L /2 )+, L] and [ (-L%)+, L] 

respectively, (up to scaling). See [ 30- 35]. 

As one may suspect this works for the whole "hierarchy." 

More interesting still1not all examples are obtained this way. 

(c) The simplest example which is not obtained in this 

fashion is the following. 

Take 

V(x,t) 

with eigenfunctions 

• 
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q,(x,k) + 2t -__,;;_;;~2- rx J 
1 

( x k ) 
(t + x )kx 

One then has 

[[
_a 2 + .!LJ 2 

K 4k2 
4 2 ( x + 2tx ) cp 

It is interesting to notice that for the first family 
of examples one has 

9' (x) = -r(x) where 
v (X ) = - 2( 1 0 g T (X )) II 
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