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Introduction 

Back in 1927 Bochner [1], [2, p.l07] and [3, p.lSO], proved that 

a sequence of polynomials 

deg Pn = n n=O,l,2, ••• 

satisfy a differential equation of the form 

(1) 

only in a very limited set of cases. After a change of variables you 

must have the so called "classical orthogonal polynomials" connected 

with the names of Jacobi, Laguerre, Hermite and Bessel. 

This is a nice result from the standpoint of elegance but it is 

bad news for applications of orthogonal polynomials to boundary value 

problems. 

In a recent paper prompted by work on a nonlinear differential 

equation [4], R.Smith (5] relaxes the condition on the degree of poly-

nomials and allows these degrees to advance in steps of length m. 

He then shows that the differential equation can be reduced to one of 

the forms below: 

( m) " ~ m 1 m-1 1-x xY - (k-l+ux )Y + n(n+o-l)x Y n n n = 0 

Y" (k m) 1 m-1 x n - - 1 + mx Yn + mnx Yn = 0 

In this note we point out for any value of n a solution Yn(x) 

of (A) is given in terms of Jacobi polynomials, namely, 

(A) 

(B) 



Yn(x) 
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k o+k -m-1 
k piii, m 

= x n-k 
""""iD 

m 
(1 - 2x ) (2) 

One can then see that if either n or n-k is an integer multiple of m, 

Yn(x) is a polynomial in x. 

We notice too that a solution of (B) is ,given in terms of 

generalized Laguerre polynomials 

(3) 

and again if either n or n-k is an integer multiple of m, Yn (x) is 

a polynomial in x. 

The result of Smith therefore strengthen those of Bochner, and 

show that unfortunately in the presence of extra properties like (1), 

orthogonal polynomials are as useful as they are rare. 

Canonical Form for the Differential Equation (A) 

Take (A) in the form 

2-m m " m 1-m , 
X ( 1 - X ) Y - (k -1 + 0 X ) X Y + n ( n + 0 - 1) Y ~ 0 • ( 4) 

Now define a new variable z by means of 

. mz (s~n T )
2 

to rewrite (4) in the form 

m-2k . 2 mz 
~ - (cS-l)s~n T 

. mz mz 
s~n T cosT 

:; + n(n+o -l)Y = 0. 

(5) 

(6) 

r 

/ 
'-' 
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Now put 

-~ f S(z)dz 
r(z) = e 

where S(z) denotes the coefficient in front of :~ in (6). 

One obtains 

2- 2o +m-2k 2k-m 

r(z) = ( mz) 2m cos 2 ( . mz)Ziil s1n-
2 

and then (6) can be written as 

r ( z) [ d:: (! g ~ ) + V ( z) ! g ~ + n (n + o - 1) ! g~ J = 0 

where 

V(z) = m
2 

- 4k
2 

16 . 2( mz ) s1n -, 
2 

The Jacobi Polynomials 

m2 
- (2o + 2k - 2m - 2) 

2 

+ + 

16 cos2
( m; ) 

co-l) 
4 

If we set e = mz we see that the solutions of (6) are given by 

Y(z) = r(z)y(z) (7) 

where y (= y(u)) satisfies 

+ 
( o+k-m-1)2 ) 4 - 1 

__.:_._m -:- Y = 

16 cos2 ~ 

2 

(
2n-o-1) 

2m Y · 

Now ,a glance at Szego [2, p.67] shows that we can take 



with 

y(6) 

k a=m 

= 

• B = 

-4-

o+k-m-1 
m • 

and P~· 8 ccos6) the standard Jacobi polynomials. Therefore we obtain, 

in terms of z, 

Y(z) = 

2k 

( )
- a,B 

sin T m Pn-k (cos mz) 
-

. 0 

m 

Recall now some of the expressions for P~'B in terms of hyper

geometric functions from [2, p.62] and [6, p.212], namely 

and 

Pa'B(cos mz) 
'V 

Notice that 

1 -cos mz 
2 = 

( 'V+CL) ( 1 - cos mz ) ~ v 
2
F

1 
-v, v+a+B+l, a+l, 

2 

• 
1 +cos mz 

2 = m 1-x 

A look at (5), (7') and (8) shows that except for multiplicative 

constants 

= X
k ( k-n k+o-l+n 

ZFl m, m 
k+m m) , X 
m 

(8) 

(9) 

(10) 
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and when 

n-k = nonnegative integer --m 

the second factor is a polynomial in m 
X • 

A look at (5), (7') and (9) show that except for a multiplicative 

factor 

= F (n+cS-1 n 
21 m ,-iii, cS+k-1 m) ---,1-x m 

and we get a simple polynomial in 1 - xm any time that 

n 
m = nonnegative integer 

(11) 

Expressions (8) and (9) are equivalent, and the choice of one or the 

other is a matter of convenience. 

As an illustration we give the polynomials obtained using (10) 

and (11) in the case (treated in [4]) 

m = 4 , k = 1 ' cS = 6 . 

From (10) we obtain 

X ' Y 
5
(x) It 

= (5 -11x ) ~ = (3 -18x4 
+ 19x

8
)x. 

5 3 

From (11) we obtain 

It 
3x - 1 

8 It 221x - 182x + 21 
2 60 
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Canonical Form for the Differential Equation (B) 

Take (B) kn the form 

Define a new variable z by means of 

to rewrite (3) as 

(m- 2k) 

mx 

Now put~ as before~ 

r(z) a e 

z a 

2 2 m x ·-2 

and equation (3) is written as 

2 m/2 -x m 

dY + mnY = 
dz 

e 

2 2 m z 
-r 

0 

r(z) [ d:

2

2 Ggl) + V(z) !~~l + mn ~~~l J • 0 

where 

V(z) ( 

.. 2 

- ~ + 
16 

(12) 

(13) 

(14) 

.. 
I 

I . 

I 

• 
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The Generalized Laguerre Polynomials 

If we set 

mz 
- = u z 

we see that the solutions of (14) are given by 

Y(z) = r(z)y(z) 

where y (= y(u)) satisfies 

- ~ + u2 + = d
2 

( 4(k/m) - 1) Y 
du 2 4u2 

Now this has for solutions 

y(u) = 
2 

-u /2 a+~ 
e u 

(a) 
L (u2) 

n/m 

with a= -k/m and L~ the generalized Laguerre polynomials. 

To get Y(u) we need to multiply by 

and we get, except for a multiplicative constant, 

Y (u) n = 
-k/m 

L (u2) 
n/m 

(15) 

(16) 

From (16) it is clear that if n is an integer multiple of m, 

Yn (u) is a polynomial in xm . 
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Using the expression 

= -a v 
1 

F 
1 

( -v-a, 1-a., v) 

involving the Kummer function, [6, p.243], we see that 

2k 
m = u F (- !! + k 1 + mk ' u z\ 

1 1 m m ' J 

= xk F (- !! + k 
1 1 m m 

(17) 

This last expression makes it clear that if n;k is a nonnegative 

· Y · h d f k · 1 ·1· m 1.nteger, n l.S t e pro uct o x tJ.IDes a po ynom1.a . 1.n x . 

As an illustration, take 

m = 2 , 

and using (16) and (17), obtain 

y = X ' 1 

k = 1 

Notice in closing that except for multiplicative constants we have 

exactly the Hermite polynomials, namely, 

= (18) 

Thus, in spite of Smith's statement [5], {HnCx)} is obtained 

from a single family of generalized Laguerre polynomials, not withstand-

ing the familiar relations which involve two such families, ~ -~ L and L • n n 

"· I 

• 

... 
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Conclusion 

A slight elaboration of the results in [5] shows that orthogonal 

polynomials connected with second order differential equations (1) 

have simple and elegant expressions in terms of Jacobi (2) or generalized 

Laguerre polynomials (3). 
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