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Introduction i 

The electromagnetic(EM) method has been used for a wide variety of 

applied geophysical problems, beginning perhaps and achieving widest usage 

in mining exploration. 

and ground exploration have 

A considerable number of techniques for both airborne 

n developed and utilized in the search for 

ive (sulfide) mineral depo 

's and the large 

electromagnetic 

igations to depths 

on. We hav 

For these problems we rely on either numerical solutions or laboratory 
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measurements made on c a r e f u l l y  constructed scale models. Only a l imited 

number of tank model r e s u l t s  are m a i l a b l e  because of t he  d i f f i c u l t y  of 

construct ing models with the  appropriate  conduct iv i t ies  and geometries fo r  

each area imrestigated.  

simple two-and three-dimensional models. 

Numerical so lu t ions  exist and are amenable t o  
1. 

The problem with many numerical 
5 

techniques is  the  trade-off between accuracy and computation costsr There- 

fore ,  we have addressed the  problem of developing f a s t e r  numerical algorithms 

f o r  EM i n t e r p r e t a t i o n  without s a c r i f i c i n g  accuracy. 

Geologic models i n  which the  e l e c t r i c  parameters are invar ian t  with 

s t i t u t e  an important c l a s s  of t a r g e t s  f o r  electromagneti  

a t ion .  

f i n i t e  element method (Lee,  1978). 

A numerical so lu t ion  for  t h i s  c l a s s  of models was obtained using the  

In  t h i s  technique the  e n t i r e  model is 

represented by a mesh composed of volume elements, each of which is assumed 

t o  have constant e l e c t r i c a l  p roper t ies .  Mainly due t o  the Large number of 

elements, t h e  computing c o s t s  are usual ly  prohib i t ive .  

of t h e  technique is the  lack of accuracy i n  the numerical so lu t ion  fo r  models 

i n  which the d i scon t inu i ty  of la teral  conduct ivi ty  d i s t r i b u t i o n  is located 

Another disadvantage 

c lose  t o  the sur face  of the  ea r th .  

To overcome these  Limitations we have developed a new, e f f i c i e n t  

numerical so lu t ion  based on the hybrid technique (Lee et al . ,  19811, a 

technique t h a t  makes use of both the  f i n i t e  element and the  i n t e g r a l  equat ion 

techniques. The f i n i t e  element method is  used f o r  t he  so lu t ion  i n t e r n a l  t o  

a anomalous conduct ivi ty  s t r u c t u r e  embedded i n  a layered ea r th  and the  

i n t e g r a l  equation i s  used f o r  t h e  ex terna l  layer-boundary value problem. 

The so lu t ion  obtained i n  t h i s  manner tends t o  be more accurate  than the  one 

obtained by the  f i n i t e  element method alone. The major improvement with t h i s  
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technique is i n  the computing speed; o f t en  an order  of magnitude f a s t e r  than 

the  f i n i t e  element solut ion.  

Formulation of Numerical I n t e g r a l  Equations .- 
I f  a two-dimensional ( i n f i n i t e  s t r i k e  length) conductor e x i s t s  i n  

t h e  lower half-space of an otherwise layered ea r th  (Figure 11, one may 

approximate the  electromagnetic va r i a t iona l  i n t eg ra l  as the sum (Lee, 1978) 

J 

where S i  is the i-th d i s c r e t e  w a v e  number i n  the s t r i k e  d i r ec t ion ,  and 

r 
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Ii {E(9i)]  = E T K E . 

Following the  v a r i a t i o n a l  p r inc ip l e ,  t h i s  reduces 

equations 

K E = O ,  

which i n  turn  may be pa r t i t i oned  i n t o  

t h e  upper por t ion  of a i c h  suggests 

-1 Ei -Kii Kib Eb . 

t o  a set of simultaneous 

Here t h e  subscr ip ts  i and b ind ica t e  " internal"  and "boundary", respec- 

t ive ly  . 

The f i e l d  equations on the  surface aV can a l s o  be derived indepen- 

dent ly  from t h e  f i n i t e  element equation. The r e s u l t  i s  an integro-differ-  

e n t i a 1  equation governing the  tangent ia l  e l e c t r i c  f i e l d  and the r o t a t i o n  

of t h e  e l e c t r i c  f i e l d s  as r approaches the sur face  aV: 

where hl(r) i s  the normalized angle a t  r subtended by the  volume t o  be 

integrated i n  t h a t  v i c i n i t y ,  and subscr ip t  "p" r e f e r s  t o  the  incident  
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e l e c t r i c  f i e l d  a t  r t h a t  would exist i n  the absence of the inhomogeneity, 

GEJ(r/rO) and Gm(r/<) are tensor  e l e c t r i c  Green‘s funct ions due t o  

e l e c t r i c  and’ magnetic cur ren t  sources at r’ For” a two-dhensional ea r th ,  

Fourier  transform of equation (4) i n  the s t r i k e  d i r e c t i o n  f o r  d i s c r e t e  .- 
harmonics S i  yields 

G (p/p’ $nil  axH(p’ ,TI i) S( EJ ( 5 )  

I 

Q(p )E(p - E ( P  a n i )  P 

L 

- G EM (p/pO,ni)  nxE(pO,ni)} dL 

p and p0 are i t i o n  vec tors  def ined on the two-dimensional cross- 

s ec t ion  S. 
. .  . I. 

The hybrid technique 

where Q(c, 1 becomes uni ty .  
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Numerical Example 

The algorithm has been coded on the  CDC 7600 computer, and the code was 

t e s t ed  aga ins t  a simple model f o r  which we have tank model r e s u l t s .  

model i a  a v e r t i c a l  s l a b  of r e s i s t i v i t y  2.63 ohm-m, 12 m wide and 60 m long 

i n  the v e r t i c a l  extent .  The s l a b  is buried 10 m below the  surface of 

The 

* f  

: t he  ea r th  of 100 ohm- r e s i s t i v i t y .  

separated by 12 m i s  flown 20 m above the surface of the ear th .  

A v e r t i c a l  t ransmit ter-receiver  p a i r  

The magnetic 

f i e l d  computed a t  the rece iver  

(Figure 2). 

is p lo t ted  a t  a r ray  cen te r  i n  ppm 

The numerical so lu t ion  is compared with tank model r e s u l t s  

obtained a t  the Richmond Fie ld  S ta t ion ,  Universi ty  of Cal i forn ia .  A t  the  

same t i m e  a modified vers ion of f i n i t e  element so lu t ion  is a l s o  p lo t ted .  

The s t r a i g h t  forward f i n i t e  element method produces an e l e c t r i c  f i e l d  

everywhere. Instead of taking the  numerical der iva t ives  of the electric 

f i e l d ,  we obtain a better r e s u l t  f o r  the magnetic f i e l d  by in tegra t ing  t h e  

s c a t t e r i n g  current  mul t ip l ied  by the Green's function Over the  conductor. 

This is ca l l ed  the  f i n i t e  element - Green's function solut ion.  The numerical 

r e s u l t s  show good agreement fo r  the  30 Hz response with the tank model 

resu l t .  

show smaller peak anomalies than the tank model results.  For the  in-phase 

component in  p a r t i c u l a r ,  t h e  hybrid so lu t ion  d i f f e r s  by 100% from the  tank 

model r e s u l t ,  and the f i n i t e  element - Green's function so lu t ion  becomes 

somewhat unstable. 

With the frequency increased t o  263 Hz both numerical so lu t ions  
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FIGURE CAPTIONS 

conductor (V)  buried in the lower half-space of a layered earth. 
Current and magnetic sources are outside the conductor whose surface 
is aV. S is the cross-section of V if it is two-dimensional. 

. A coaxial transmitter-receiver pair separated by 12 m is flown 20 m 
above the surface of the earth in which a vertical tabular conductor 
is embedded (top). 
30 Nz (middle) and 263 Bz (bottom). 

The responses in ppm for H, are plotted for 
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i Air, 0-0 

Layer, c= crl 
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