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ABSTRACT 
p 

OL 

A new mechanism for spin diffusion between quadrupolar nuclei 	 IWII 

whose NMR lines do not overlap is proposed. For spin-i nuclei, 

double-quantum flip-flop transitions allow the diffusion of Zeernan 

order, but not quadrupolar order, without requiring an extraneous 

energy reservoir. The flip-flop rate is sensitive to the relative 

signs of the quadrupolar splittings. 
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1. Introduction 

Spin diffusion in NMR typically occurs by mutual spin flip-flop 

transitions between coupled nuclei whose individual resonance lines 

overlap. Such a flip-flop transition is dpicted in Figure la. The rate W 

at which flip-flop transitions occur for a pair of nuclei, called the cross 

relaxation rate, is roughly W d2 6, where d is the coupling strength and 

6 is the linewidth 1 . When the resonance lines do not overlap, spin diffusion 

is expected to be strongly quenched since the flip-flop transitions no 

longer conserve energy2 , as in Figure lb. Some residual spin diffusion may 

remain in the presence of a dipolar reservoir capable of absorbing small 

energy differences 3  ' 

Recent studies indicate that spin diffusion between inequivalerit 

spin-i nuclei in solids is not entirely quenched even in the case where 

the difference between quadrupole splittings exceeds the resonance 

linewidths, i.e. in the case where the lines do not overlap 5,6,7 

Suter and Ernst have presented data indicating that the cross 

relaxation rate between pairs of 14  N nuclei in such a case is 

proportional to -2 
 where M is the line separation 7 . Two explanations 

for the presence of the residual spin diffusion have been advanced. 

Schajor et al. suggest a multiple spin flip-flop as the basic 

diffusion step, but give no quantitative details 6 . Suter and Ernst 

treat each spin-i nucleus as a pair of independent, mismatched spin-1/2 
IT 

particles which are in turn coupled to a proton dipolar reservoir 7 . 

Based on the general theory of Demco et al. 8 , they derive a theoretical 

expression for the cross relaxation rate which reduces to W d 2  ç2  in 

2  the limit d << 	M, where H21  is the second moment of the proton-proton 
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dipole interactions. 

In this letter we elaborate on an alternative suggestion that 

double-quantum (Am = 2) transitions may be important in spin-i spin 

diffusion9 , and point out how a double-quantum mechanism leads to a similar 

inverse quadratic dependence for the cross, relaxation rate without invoking 

any couplings other than those between the spin-i nuclei themselves. 

2. Double-quantum flip-flops 

The essential idea behind the double-quantum mechanism is 

illustrated in Figure 2. Consider two coupled spin-i nuclei I and S 

with identical Larmor frequencies and with quadrupole splittings 

and w5 . If 1W I 1 = IW 5  as in Figures 2a and 2b, energy-conserving 

flip-flop transitions may occur in which the spin quantum number of 

each nucleus changes by ±1. If 1w 1 1 # IWS1 as in Figures 2c and 2d, 

the same transitions no longer conserve energy, but transitions in which 

the spin quanturn.nurnber of each nucleus changes by ±2 do conserve energy. 

In other words, although the resonance lines in the single-quantum 

spectrum of the two nuclei may not overlap, the double-quantum spectrum 

will consist of two overlapping lines. An approximate expression for 

the rate of double-quantum flip-flop transitions can be derived with 

second order perturbation theory, treating the I-S coupling as a 

perturbation, as in the explanation of double-quantum decoupling given 

by Pines et al. 10 The result is: 

W=2ir 	 f(o) 

(w1+ ws)2 

where f(0) is the overlap integral of the double-quantum lines. 

Two predictions following from the double-quantum spin diffusion 



mechanism deserve emphasis: 

The single-quantum spectrum of the I-S system depends only on 

Iw1IandIw3l, while the cross relaxation rate is sensitive 

to the relative signs of W I  and wS . This point can 

be understood by comparing Figure6 2c and 2d. The virtual, 

or intermediate, state in Figure 2d, where W, and 

WS are of opposite sign, is more nearly resonant with 

the initial and final states than in Figure 2c. Double-

quantum spin diffusion is therefore expected to be more 

efficient when W, and WS  are of opposite sign. It 

is only in that case that 	+ 	)2= M 	 - 

Double-quantum flip-flops provide a pathway for the diffusion 

of Zeeman, but not quadrupolar, spin order. Zeernan order 

corresponds to a population difference between the m = 1 

and m = -1 levels of a spin-i nucleus, while quadrupolar 

order corresponds to a population difference between 

the m = 0 and the m = ±1 levels. Double-quantum flip-flops 

will tend to equalize the population differences between 

the m = 1 and m = -1 levels of I and S. If there is 

quadrupolar order at spin I and no order at spin S, i.e. 

all three levels of spin S are equally populated, double-

quantum flip-flops will be ineffective in transferring 

the quadrupolar order to spin S, since the population 

difference between the m = 1 and m = -1 levels is already 

zero for both I and S. 

5- 
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3. Operator theory 

A more formal insight into the mechanisms of spin diffusion between 

spin-i nuclei can be attained with average Hamiltonian theory 11 . 

Neglecting chemical shifts, the high field, rotating frame Hamiltonian 

for the I-S system is: 

c=c +c 
Q 	d 

= w1(12 - I2) + w (S 2  z 	3 	S 

JC = d(31 S - I•S) d 	zz 

2  d= (1 - 3cosQ) 
2r 

In an interaction representation with respect to 	the Hamiltonian 

becomes 

iJCt 	- jCt 
J'C =  e Q Rde Q 

Provided that Wd(t) is periodic in time, we can use average Hamiltonian 

theory to define an equivalent constant Hatniltonian in the interaction 

representation. Using the fictitious spin-1/2 operators defined by 

12 	 13 Vega and by Wokaun and Ernst 

	

= 2d {4i 1-3 S  1-3 -cosat(I2s2 + I12 S12  + I23S 2 	+ 123523) x x 	y y 	x x 	y y 

- sinat(11 2 S12  - 12s12 -i2  s 3  ± 123S23 ) x y 	y x 	x y 	y x 

- cost (Ii 252_3 + 112s23 + 1 23 s12  + I23S12 ) x x 	y y 	x x 	y y 

- sinBt(11-2  S 2-3  - 112s23 -i2 _ 3 s 1_2  + 123 s1_2 j 
x y 	y x 	x y 	y x 



Here a = WI 
- W

5  and 	+ 	If a = 0, :;cd(t) becomes 

periodic with period T = 27 	. The average Hamiltonian is then: 

(0) = 2dI4i3s3 - Ii 	- 1-2 S 1-2  - 
	- 12-3 s2-3 1 d 	 z z 	x x 	y y 	x x 	y y 

K(0) can induce first order transitions such as those pictured in 

Figure 2a. Similarly, if 	0: 

= 2d 	 -.i2s3 - Il-2S2-3 - i3s2 - i 3 s 2 } 

Here 	can induce first order transitions such as those pictured 

in Figure 2b. 

The novel component of this letter is the case where neither 

a nor a is zero. In this case the average Hamiltonian is diagonal and 

it is necessary to calculate a first order correction term 11  in order 

to discover the source of the residual spin diffusion. Suppose IaI>II 
If we define T = 2n7 1 , for some integer n subject to the restriction 

T << d 1 , Wd(t)  is periodic with a period T as long as a = 8kn 	for 

some integer k. In a real system, a may differ slightly from this value, but 

such a slight difference should not alter the physical situation appreciably 

provided that JI >> d. A similar argument holds for the case W > Jul. 

Having thus defined a period, we can approximate the average Hamiltonian 

expansion by its first two terms: 

7 



(0) 	(1) 
dCd +C 

= A + B + C 

where 

A = 8d 11 3 s1  - 	 _ {1 -3  - s3 -  1 2  + 

~2,2-3S2-
3 - 	 - I 2 S 3  + 2112 S12  

- 

 

+ il  2s1  + 211 3 s1  + 1 3 s 3  + 

+ 	+ 3-i2 	
- 	 + -s3 - s1 _2 3. 

B 
= 2 	1223 + 1 2 s 3  + 13s2 + 1_3s_2 1 

c 
= 

2 f11s3 + 11 s_31 

Term A is diagonal in the basis of eigenstates of if. . Term B would 

give single-quantum flip-flop transitions in a first order perturbation 

theory treatment if it were not for the fact that energy conservation 

would be violated in the absence of an external energy reservoir. 

Term C is responsible for double-quantum flip-flop transitions in a 

first order treatment. Note that the double-quantum transition rate 

calculated in first order using JC 
d  as the perturbation is the same as 	

V 

the rate calculated in second order using Cd as the perturbation 

(equation 1). 



4. Computer simulations 

An experimental measurement of cross relaxation in the two spin 

system described above may begin with the creation of a non-equilibrium 

density matrix proportional to (IZ + S) - 1/21 + 1/2(312  - 12 ) ,  

by the application of a selective ir pulse to one of the I spin transitions. 

The I + S part will remain unchanged under the action of 1C . The 

I and 312  - 12 parts represent Zeeman and quadrupolar order, respectively, 

at spin I. The Zeeman and quadrupolar order at spin I may subsequently 

evolve independently into Zeeman and quadrupolar order at spin S. No 

conversion of Zeeman order to quadrupolar order may be expected, due to 

their different symmetry properties. 

The results of computer simulations of the transfer of Zeeman order 

are shown in Figure 3. We calculated the amplitudes P 2 	2  (t) and P(t) 

that an initial density matrix p(0) = I will develop into p(t) = S 

under 1C and 	respectively: 

Tr St 	1Ct 

	

le 	} 
P(t)= 

Z 	
Tr {S2 } z 

	

(\J 
	 MV 

t -jC t 	iJC t iC t 
Tr{Se Q e d  i e d e 

	

P(t)= 	Z 	 z 
z 

Tr f S 2 } 
z 

	

Ii 	 "I 

-i1Ct 
Tr (S e 	d t e d 

	

= 	

Tr {s2} 
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Good quantitative agreement between P(t) and P(t) was found when the 

ratio of Idj to 1w1  + WS J was less than 0.05. In such cases, the 

diffusion amplitude depended only on w 
+S  for a given d, as 

anticipated by the double-quantum mechanism. The maxima of 0.67 in P(t) 

indicate the efficiency of double-quantum flip-flops in transferring Zeeman 

order. 

As calculated above for a single pair of isolated spin-i nuclei, 

P ( t) is an oscillatory function. However, in a real sample in which the 

resonance lines are broadened, for example by unresolved spin-spin couplings 

or by orientational inhoniogeneities, cross relaxation will proceed from one 

nucleus to another at a time-independent rate, provided that the linewidths 

are large compared to the frequency of oscillation ofP(t).  If that 

frequency is v(Hz), the expected rate will be W = 2ir 3u 2  f(0). 

The agreement between the first order P(t)  and the exact P(t) 

calculations indicates that the residual spin diffusion among inequivalent 

spin 1 nuclei can be interpreted as the result of a first order correction 

term, in the sense of average Hamiltonian theory, in a system with no other 

degrees of freedom. It should be stressed that neither calculation 

includes the presence of an energy reservoir such as coupled spins of a 

different type. If an energy reservoir is present, single-quantum 

flip-flop terms contained in the zeroth order average Hamiltonian may 

dominate the spin diffusion process. 

We also calculated the amplitudes P Q (t) and %P 	that an initial 

density matrix p(0) = 31 - would evolve into p(t) 	3S - S2  under 	 'I 

1C and JCd . There the agreement was not quantitative. The maxima of 

PQ (t) were larger than those of P Q(t) suggesting that the use of JC 

results in an underestimation of the efficiency of single-quantum flip-flops 
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that allow the diffusion of quadrupolar order. Even so, the maxima of 

PQ (t) were small. As an example, for w 	20, w = -10 and d = 0.5, 

the maxima of PQ (t) were about 0.012. 

5. Conclusion 

In general, several mechanisms may contribute to spin diffusion 

between inequivalent spin-i nuclei, including off-resonance single-quantum 

flip-flops. The importance of the double-quantum mechanism presented here 

may be assessed experimentally by examining the dependence of the cross 

relaxation rate on the relative signs of the quadrupole splittings, by 

decoupling the nuclei of interest from possible energy reservoirs in the 

form of other nuclear spins and by studying the diffusion of both Zeeman 

and quadrupolar order. Clearly these considerations can be extended to 

quadrupolar nuclei with I > 1 
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Figure Captions 

Figurel: Flip-flop transitions for a pair of coupled spin- nuclei. 

The I and S resonance lines overlap, so that the single-

quantum ( trn = ±1) flip-flop conserves energy. b) The I and S 

S resonance lines do not overlap, requiring an extraneous energy 

reservoir to absorb the energy change in the single-quantum flip-

flop. 

Figure 2: Flip-flop transitions for a pair of coupled spin-i nuclei with 

quadrupole splittings w and 	a) w1 = w3 . 

w = 	Single-quantum flip-flops conserve energy in 

both cases. c) jw 	 and WS  are both 

negative. d) 1w 1 1 	WI 	is negative and 

is positive. The double-quantum flip-flop conserves energy in 

both cases, even though the resonance lines do not overlap. 

Case d. leads to a greater flip-flop rate, since the 

intermediate state is nearly resonant. 

Figure 3: Theoretical amplitudes of the diffusion of Zeeman order between 

a pair of coupled spin-i nuclei with quadrupole splittings w 1  

and w and dipole coupling constant d (rad/sec). The results 

of exact (solid line) and approximate, average Hamiltonian theory 

(dotted line) calculations are shown. a) w I = 20, w 3  = -10, 

d 	3. b) W I  = 20, w 5  = -10, d = 0.3. The agreement between 

the exact and approximate calculations is good when the ratio of 

dj to I W + W S I is less than 0.05. 

12 
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