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Abstract 

The relation between the rapidity density of produced particles in 

ultrarelativistic nuclear collisions and the maximum proper energy 

density, e02  is derived. The new scaling hydrodynamic equations of 

Bjorken, Kajantie, and McLerran are employed. The results exceed earlier 

estimates obtained with inside-outside cascade models and provide an 

independent estimate of 	from collision data. We also derive a lower 

bound on c0  incorporating viscous heating and the first order phase 

transition between the quark and hadronic phases. We infer that c > 

2 GeV/fm3  can indeed be reached in the collision of heavy nuclei at 

cosmic-ray energies. 

This work was supported by the Director, Office of Energy Research, 

Division of Nuclear Physics of the Office of High Energy and Nuclear Physics 

of the U.S. Department of Energy under Contract DE-AC03--76SF00098. 
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I. INTRODUCTION 

Hydrodynamic calculations 14  of hadronic processes have been 

reexamined 58  recently in the light of the longitudinal growth of the 

reaction zone at high energies. In earlier work by Landau and others it was 

assumed that when two hadrons scatter a Lorentz-contracted fireball is formed 

in the cm frame. The energy density is therefore assumed to be enormous 

during the initial phase of hydrodynamic .xpansion, 

- 
CL ~ 2 y 2 H 

where 1cm = ch 'cm 
 is the Lorentz factor and CH 	0.5 GeV/fm3  is the 

proper energy density in a typical hadron. For nuclear collisions CH is 

replaced by the energy density in nuclei, nuc 	mNp Q 	0.15 GeV/fm3 . 

The right-hand side in eq. (1) follows  from assuming complete stopping in a 

Lorentz contracted volume. If shock waves are prduced, 1°  then EL 
 could 

be -2 times as large. To appreciate the scale, note that CL 	500 GeV/fm3  

for collisions involving lab energies -1 TeV 

Such enormous energy densities are well above all estimates' 12  for 

the energy density necessary to produce a quark-gluon plasma. Such estimates 

indicate that already for C > 	2 GeV/fm 3 , hadronic matter dissolvesSB  

into an ideal Stefan-Boltzmann gas of quarks and gluons. In fact, 

deconfinement of hadrons (over the reaction volume) may occur when C is as low 

as CH - 0.5 GeV/fm3 . 

To reach CL the incident hadron must be able to lose all of its 

longitudinal momentum over an ever decreasing linear dimension.. However, 

Landau and Pomerctnchuk noted that the reaction time for hadronic processes 

must increase with increasing energy due to time dilation 3  T h i s 
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phenomenon is known as longitudinal growth, and experimental evidence for this 

effect has been seen in hadron-nucleus data. 13  In simplest terms, to form a 

secondary hadron of dimensions 	1 fm requires a proper time '3. In a 

frame where that secondary has rapidity y the formation time grows as 

t(y) =0  ch y 	. 	 (2) 

In the parton picture ' 	
is replaced by the transverse Compton wavelength 

2/rn1. Equation(2) means that the fastest secondaries can be produced 

only very far downstream from the reaction zone. This is the basis for the 

inside-outside cascade picture of hadronic processes. 5 ' 6 ' 14  

We therefore see that (Landau's) longitudinal growth contradicts the 

assumptions of Landau hydrodynamics. To remove this inconsistency, Bjorken, 

Kajantie, and McLerran have proposed58  a new hydrodynamic picture that 

incorporates eq. (2). Remarkably, the final numerical results turn out to be 

rather insensitive to the actual initial conditions. 8  This is largely due 

to the fact that the breakup condition is always expressed in a Lorentz 

covariant form; namely, when the proper energy density falls below a critical 

value Cf 	m4 , the hydrodynamic expansion is terminated and the 

distribution of momenta is frozen out. Therefore, the original qualitative 

successes 2  of the Landau hydrodynamics are not altered by incorporating eq. 

(2). 

What is altered significantly, though, is the space-time picture of the 

reaction. In particular, the prOper energy density in scaling hydrodynamics 

is always much smaller than CL  as we show in the next section. 

Nevertheless., we find that the initial proper energy density can still exceed 

the critical values required to reach the quark-plasma phase. The nonlinear 

relation connecting the observed rapidity density, dN/dy, to c is derived 
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in section II. In addition to the ideal (Stefan-Boltzmann) equation of state, 

we consider a broader class of (Shuryak) equations of state. We then note 

some novel scaling laws of dN/dy with atomic number A that follow from ideal 

hydrodynamic expansion. In section III, we consider entropy'production due to 

viscous effects. A lower bound on c 
0 
 is derived by following the path of 

maximum entropy generation. We show that the earlier estimates of c  by 

Bjorken 5  coincide with the lower bounds appropriate for maximum entropy 

expansion. An upper bound on c is derived in section IV, which 

incorporates a first order phase transition from the plasma phase to the 

hadronic phase. The Bag model is used to obtain qualitative insight. In 

section V. numerical examples show that dN/dy depends only very weakly on the 

details of the phase transition and that viscosity and phase transitions can 

lower the ideal hydrodynamics estimate of e for fixed dN/dy by at most a 

factor 2. 

II. SCALING HYDRODYNAMICS 

The basic equations of scaling hydrodynamics 68  are 

a11TPV XV 
	

(3) 

where 

= e0 (y)u'(Y-Y 0 ) 	 ( 4) 

is the source function in terms of the variables 2  = t 2  - z 2 , y = 

112 .Qn(t+z/t—z), and u" = x''/Y is the collective flow velocity. The form 

of Z is chosen to incorporate lon9itudinal growth in a natural way. The 

partons come on-shell at proper time V0  - 1 fm/c and are assumed to evolve 

thereafter according to ideal hydrodynamics. Integrating eq. (3) around Y =Y, 
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noting that T .tV 	 li =(€ + p)u u v - 	we see that 

	

= c0(y) 	 (5) 

is the initial proper energy density of the fluid element with collective flow 

rapidity y. Using the inside—outside cascade picture, Bjorken 5  estimated 

that 

	

1 	 (6) c 0 (y) = < mi> 	
dN 

 

where Ax is the transverse area of the reaction, <m 1 > — 0.3-0.4 GeV is the 

typical transverse mass of produced particles, and dN/dy is the rapidity 

density of produced particles. For pp collisions at collider energies, eq. 

(6) predicts that C < C H << 

The point of this section is to note that if hydrodynamics, eq. (3), is 

valid for the final expansion phase, then c 0 (y) is related to the final 

observed dN/dy and the equation of state as 

I k .dNl 

= L0&.J 	
(7) 

where k is a constant that we determine below and c 0  is the speed of sound. 

The difference between eqs. (6) and (7) comes about by taking into account the 

work done by the fluid during expansion. 

To derive eq. (7), we recall that eq. (3) implies that the entropy 

current s = cxu obeys 7 ' 8 	 - 	 - 

Ta s'1  = u'Z 	, 	 ( 8) 
p 

where T is the local temperature related to a via To = e + p. Neglecting 

transverse flow8  u'aa = aa/n, au's  = 1/'', and u"u = 1. Therefore, in this 



case eq. (8) reduces to (a = dp/dT) 

	

d 	 + I2 - 0 (y)is( 	 (9) a) =-(Ta—p) 	,y_ 

The solution of eq. (9) is clearly 58  

a(y,y) = a(y) ry/ 	
, 	

1 (10) 

independent of the equation of state. The initial entropy density is 

9 0 (y) = (c(y) + p(,y))/T(' 0 ,y) 	. 	 ( 11) 

We now recall the relation between the proper entropy density, a, and the 

proper density of quanta, n, for an ultrarelativistic (T >> m) gas with zero 

chemical potential 

a 	5n 	, 	 (12) 

where 	= 3.6, 4.0, and 4.2 for Bose, Boltzmann, and Fermi gases, 

respectively. For an SU(3) up—down glue plasma, e = 12.2 T4 , p = 

n = 4.14 T 3 , and a = 16.2 T 	so that 3 = 3.9. For illustration, note 
that at T = 200 MeV, c = 2.6 GeV/fm 3 , and there are n = 4.3 quanta per fm 3 . 

From eqs. (10,12) we see that a and hence n decrease 5  as 1/Y. The 

hydrodynamic expansion continues until the energy density falls below a 

critical value e f  - m4 . The breakup surface on which e = 	follows 

from the solution of eq. (3). In general, that surface must be solved for 

numerically. However, in the scaling regime, where dc/dy can be neglected and 

the collective velocity can be well approximated by u = x/'t', eq. (3) 

simplifies 5  to 

+ (E  + p) = 	Y—Y0)  

For p = c 2  e, 

2 
e(l) = e e'r/') 

1c0 	
(14) 
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From eq. (14) we see that the breakup surface is simply a fixed proper time 

The volume element on that surface is just I fdydx , so that 

- 	= 	
dx Ir f  n f ,y,x ) 	. 	 (15) 

Combining eqs. (10,12,15), we obtain 

- 	

= 	
A; c(0,y) 	. 	 ( 16) 

dy- 

which depends on the initial entropy density. For a Stefan—Boltzmann gas, 

= 4c/3T, eq. (16) leads to 

3 	1 	dN 
0 = 4 

This shows explicitly that the transverse mass in eq. (6) is replaced in hydro-

dynamics by meff - 3T 0 . Since T0  depends on E via 	= KSB T 4 , we see that 

eq. (17) is a special case of eq. (7) with k = 3/(4K 4 ) and c 	= 1/3. 

For a more general equation of state, we consider a Shuryak resonance gas 

characterized by a mass spectrum p(m)øCma.  The thermodynamic relations 

are 2  

2 
p 5 =c0 c 5  

—2 
4 IT \ 1c0 

= xm 

1 
2 

1c 

a = xm3  (1 + c) (-;i!•) 

2 
a s  = 1,, (c 0 ) n5 



me 

—2 	
(1+c2) 

= 0 + c ) 	
(c2) 	

, 	 (18) 

where (z) = Zn_ Z  for bosons, c 0  is the velocity of sound related to a by 

c 2  = a + 4, and x is an arbitrary constant. Note that eq. (18) reduces 

to the Stefan—Boltzmann form for c = 1/3 and x = KSB. When dealing 

with a resonance gas it is important to note that dN/dy in eqs. (15,16) is not 

equal to the final pion multiplicity density. It is the total number of pions 

plus heavy resonances per unit rapidity at the breakup time. To convert dN/dy 

into dN/dy we must estimate how many pions will emerge after all resonances 

have decayed. The average energy per resonance at breakup (If 	m) is 

= c 5 (m/n 5 (m) = m 	(c)/(1+c) 	m/c. Estimating the average kinetic 

energy per resonance to be (3/2 - 3)T f 	2m at breakup, we see that the 

average resonance mass Th 	E - 2m 	m,1(c2 - 2). The average number 

of pions with kinetic energies (1-2)m resulting from the decay of theseTr  

resonances is 	/2m - 1/2c for c << 1. Consequently, 

dN/dy . (1/2c) dN/dy with uncertainties on the order of a factor of 

two. Since eqs. (16,18) show that dN/dyo S ' ( c)ccc, we find 
that for c << 1 

dN 	1 
dT = 	A LTO  c('Y0 ,y) 	 (19) 

where 1,  is independent of c to lowest order in c. To fix 1,T1.  note that for 

an ideal pion gas (c = 1/3) ' . 4. Therefore, the only role of the equation 

of state is to establish the relationship between a() and 

For the Shuryak gas we obtain in this way 

[ 	3m dNl+cO 1 	it 	it 
C = C 

0 	it 	yA3i 
0i.. 

(20) 



so 

where we used 1 4 ( 1  ± c) 	3 to lowest order in c - 1/3 and defined 

c 	e 5 (T = m) = xm. This completes the derivation of eq. (7). 

An interesting consequence of eq. (20) is the dependence of dN/dy on the 

atomic number A in nuclear collisions. If the initial energy density depends 
(1 

on A as eoCA,  then 

V 

/(1±c 2 )] 	

(21 

The power s depends, of course, on the plasma production mechanism. In many 

models, such as the additive quark model 12  or Low—Nussinov model,' 5 	= 

1/3 and consequently the power in eq. (21) varies between 5/6 and 1. 

Hydrodynamic flow thus tends to lower the A dependence of dN/dy because the 

entropy density rather than the energy density determines the multiplicity. 

Up to now we have treated 	as an independent parameter 

1 fm/c. However, for production of structureless partons longitudinal growth 

is controlled by the transverse Compton wavelength,vY0 - 2/p 1. For a given 

initial temperatuare T09 
<L> 	(2-4)T 0 , 	 - 

T'. Such a dependence of 0  on T0  would lead via eq. (17) to a 

highly nonlinear relation 

1c 

2 
/dN\ -% 

cocc

(For c = 1/2 the relation would be quadratic) 

However, the use of Ŷ - T 1  in eq. (17) would not be correct, 

because in colliding nuclei the relevant'Y0  cannot be smaller than the 

thickness of the parton cloud around the nuclei. Due to the wee (1/x) partons 
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the limiting thickness' 4  of any hadronic system at very high energies is 

—1 fm/c. Hence, it takes At > 1 fm/c for the colliding nuclei to pass through 

each other in any frame. Even though higher p partons can be created on a 

faster time scale, their production times are distributed over a finite time 

interval At. In thermodynamic terms, entropy continues to be produced at 

least up to 'Y 	t. Since in eq. (16) we used entropy conservation to get 

from Yf  toY0 , we see that Y. > At 	1 fm/q in that relation. 

III. MAXIMUM ENTROPY PRODUCTION IN VISCOUS EXPANSION 

In section II, we solved for the ideal fluid dynamics relation between 

and dN/dy. The central assumption was that the total entropy per unit 

rapidity dS/dy = A1Ya('Y,y) is a constant of motion. However, there are two 

obvious sources of additonal entropy: (a) viscous heating and (2) the phase 

transition from the quark to the hadronic phase. Therefore, we rewrite eq. 

(19) as 

dN 	dS 	dS 	dS 
it 	0 	 tr 	 22 

where S is the total entropy produced via viscous heating and Str  is the 

total entropy produced In the phase transition. In this section, we derive an 

upper bound on S. 

Suppose at time 
TO 

we start with a plasma drop in equilibrium with 

total energy E in a volume V 0 	= Ely 0 ). As the system expands, the 

state of maximum entropy is obtained in a volume V if global thermal 

equilibrium is maintained, and no energy is lost from the system. The maximum 

increase of entropy on expansion is therefore 

	

AS<aV — ciV =S ( ciV _' 	, 	 ( 23) 
00 	0 	 / 
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where S 0  = a 
0  V  0 

 is the initial entropy. By  energy conservation V/V 0  = 

and, hence, eq. (23) reduces to 

S0<S<a-2V 	. 	 ( 24) 

The system expands until the mean free paths of hadrons become comparable to 

the size of the system. At that point c = Cf . I = Tf 	140 MeV, and the 

system disintegrates. 
1 , 2

For a Shuryak gas, af /cf  = (1 + c0 )/Tf , 

and, therefore, eqs. (22,24) give the bound 

m 	dNeff 
Chyd - 	o  2: 	

, 	
- 	(25) 

where 

Tf  

meff = 1c 
	

- 3m 	, 	 (26)Tr  

and chyd  is given by eq. (20). We have thus shown that Bjorken's estimate, 

eq. (6), is a lower bound on e and follows in thermodynamics if the system 

follows the path of maximum entropy expansion. That path requires maintenance 

of global equilibrium at constant total energy. Of course, eq. (6) also 

follows in the extreme nonequilibrium limit appropriate for the expansion of a 

noninteracting gas satisfying the scaling hypothesis. 5  

To understand better the bounds in eq. (25) we contrast hydrodynamic 

expansion to maximum entropy expansion. For the scaling initial conditions, 

eq. (3), matter is formed along the hyperbola Y=3' 0 . Hydrodynamics assumes 

that this matter behaves as a continuous fluid capable of maintaining local 

thermal equilibrium between fluid cells with a large rapidity gradient. 

Consider now a fluid element with rapidity between y and y + sy. In the rest 
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frame of that element, the initial volume is 6V= Aj0 y. In the scaling 

regime the volume expands to tsV = Ajy by time t, in that frame. After a 

time increment At, the volume expands by AV = A Atsy. The amount of work done 

in the expansion is pV to first order in At. Therefore, energy conservation 

implies that 

cV = (e + 	+ V) + pV + O(t 2 ) , 	 (27) 

which leads to the hydrodynanhic equation (13) 

t - 	+ ( e + p) = 0 	. 	 ( 28) 
At 

1c2  
Equation (28) shows that c decreases as ('0h') 	

0 	The energy density 

decreases faster than 113d, as appropriate for a noninteracting gas, because of 

work required to push neighboring fluid cells aside. 

Now suppose that instead of a continuous fluid a series of fireballs are 

formed along 	= Yo 	This could arise due to unusual formation mechanisms 

or the inability of adjacent fluid elements to remain in thermal contact. 

Since these fireballs are all receding from one another in any frame, each 

expands independent of the other. No work is performed so that energy is 

conserved in each fireball. It is of course possible for each fireball to 

expand hydrodynamically. However, the maximum entropy is generated if no 

collective flow velocities develop. This is the scenario that leads to the 

lower bound in eq. (25). 

It is important to note that if the path of maximum entropy is followed, 

then the final entropy Sf  = fVf  = ( af /e/ f )( 0V 0 ), is 

independent of any phase transitions during expansion. It depends only on the 

total energy of the fireball and the final freezout temperatuare. Therefore, 

the lower bound in eq. (25) is very general in the scaling limit. 
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Finally, we note that if the scaling hypothesis is removed, then the 

initial state could be drastically different as, for example, Landau's 

fireball in eq. (1). The simple connection of c 0 with dN/dy would be lost. 

It is the assumed frame invariance of the production and expansion process 

that leads to the simple bounds in eq. (25). This is a fundamental difference 

between Bjorken and Landau hydrodynamics. 

IV. ISENTROPIC PATH THROUGH THE PHASE TRANSITIONS 

During the expansion phase there may be a first order transition between 

the quark and hadron phases. 11 ' 12  This could lead to entropy production. 

However, as noted in section III, there is an upper bound on the maximum 

entropy that can be produced. This gives a lower bound eq. (25) on E for a 

fixed dN/dy. In this section we derive an upper bound on c, which takes 

into account a possible first order transition. 

First we show that there exists an isentropic path through the 

transition. For illustration we consider the Bag model 16 '' 7  equation of 

state. In the quark phase, we assume that 

q =KT4 +B 

1 	4 
Pq (T -B 

4 	3 q =KT (29) 

For the hadronic phase we use eq. (18). The critical temperature Tc  is a 

solution of Pq = p . For example, for c = 1/3, Tc = [3B/(K- x)]114 	Define 

the critical parameters CH = 	 H = as(Tc), EQ 	€ q (T c ) cIQ  = 
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Note that E - 	is the latent heat per unit volume. For c 
H 	

EQthe. 

pressure and temperature are independent of c. 

Consider again a fluid element in the rapidity interval y to y + sy with 

an initial proper energy density c > c. In the rest frame of that 

element the fluid expands from the initial volume sV O  = AY0 sy until the 

energy density is reduced to CQ . At that point the volume has increased to 

VQ . The total entropy in that element at that point is then sS Q  = 

YQ SVQ  = a 0 V 0 . As the system expands further, c decreases while the 

temperature and pressure remain constant at T = T C 9 ) 	The expansion 

continues until e is reduced to 	and sV = SVH. During this expansion an 

amount of work sW = Pc(SVH - V 
Q 
 ) must be performed to counteract the 

pressure exerted by neighboring fluid elements. Therefore, energy 

conservation implies that EQ6VQ = 	+ sW and therefore 

(CQ + 	= (CH + 	• 	 (30) 

The thermodynamic relation GQT c  = 	+ c and GHT c = 	
+ 

then shows that the total entropy of the cell remains constant 5SQ = SSH 

through the transition. Clearly this result is independent of any particular 

functional form of the equation of state. 

Therefore, if there are no viscous effects before or after the 

transition, then entropy can he conserved at all times, i.e., there exists an 

isentropic path through the phase transition. For this scenario to hold the 

characteristic time, 	for the transition must he short in comparison to 

the time required to expand from cSV Q  to VH.  If Y is long, then 

supercooling of the plasma could occur. Such supercooling could be followed 

by explosive growth of hadronic bubbles leading to additional entropy.'8 
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Following the isentropic path starting at c > E leads to eq. (19) 

with 

4 1/4 	- B) 314 	. 	 (31) 

For an initial energy density in the mixed phase (CH < 	< 

Go 
= 	+ cCH)/Tc 	, 	 (32) 

where we used that the pressure p = CI E and T = T are constant in the 

mixed phase. In the hadronic phase c < 	eq. (18) applies. 

Inserting these forms of the entropy density into eq. (19) gives 

dN 1 4/3 

Co = B + ;A 	 for 	 , 	 (33) 

where k = 3r/(4K4) an B = (€Q - 3c2eH)/4 as follows from 	= P Q . 

For the mixed phase we obtain 

m dN 
c 	2 

c0 =A 	- 	for eN < C 
0 

< CQ 91 	 (34) 

with a critical mass parameter 

mc  -- J Tr T 	 (35) 

where T c  = 13(C Q  + coeH)/4K1 	. Note that in the mixed phase, we have again a 

linear relationship between E and dN/dy. Finally, for the hadronic phase 

we must use eq. (20). Equations (20,33,34) give the upper bound on c 0  as 

obtained by following the isentropic path through the transition. 

We can also invert eq. (34) to find the minimum observed pion rapidity 

density corresponding to c = CH or c = e• For central A + B collisions 

with A < B,irA 2t3 , r0 	1.2 fm. Therefore, the minimum 

multiplicity density that corresponds to 	> CH is 



(dN' 	
A2t3 (l+c) 

1) 

	

it 	c 

where 	= T/(ff'Y0r) 	0.03 GeV/fm3 . 

- 9111  

Since we expect c,.1 - 0.3-0.5 GeV/fm3 , 

-16— 

(36) 

(dN/dy)H - (3-6)A'". The minimum multiplicity density corresponding to 

c
o 
 > EW, on the other hand, is 

(dN\A2t3 cc 
	

Q (dN\ 	 37
-dy

= 	irc 	H 1tJH 

Therefore (dN/dY) Q  - (6-24)A2 " 3  may be required for events involving the pure 

plasma phase. Detailed numerical results are given in the next section. 

V. RESULTS 

To illustrate the insensitivity of the results to the details of the 

phase transition, we consider two forms of the equation of state as shown in 

Figure 1 that span a physically reasonable range of possibilities.' 1 '' 2  

Curve 1 corresponds to a strong first -  order transition at T c  = 200 MeV with 

latent heat Ac z 2.6 GeV/fm3  and parameters K = 12.2, B = 0.74 GeV/fm3 , 

c = 0.16, and eH€Q = 0.7, 3.3 GeV/fm 3 . Curve 2 corresponds to a 

weak first order transition at T = 140 MeV with ic Z 0.2 GeVffm3  and K = 

12.2, B =0.05 GeVffm3 , cand H'Q = 0.45, 0.67 GeV1fm 3 . o 

Notice that the first Bag constant is close to Shuryak's estimate, while the 

second is close to the MIT value. 

For these two equations of state curves 1 and 2 in Fig. 2 show the 

relation (eqs. (20,33,34)) between the initial energy density €and the 

reduced, total pion rapidity density A 2130/dr,. We used the pseudorapidity 

variable, ri = - In tanolab/2,  instead of y to make closer contact with 

experiment. As emphasized before, the crucial parameter setting the absolute 

scale of e 0  is the proper time To marking the onset of hydrodyriamic flow. 

We set 	= 1 fm/c in this example. For 	= 1/2 fm/c the slope of all 



curves would increase by a factor '2. For 0  = 2 fm/c the slopes would 

decrease by a factor'2. This factor is the intrinsic theoretical uncertainty 

in the conversion between dN/dn and 

In addition to 	we must specify the transverse area A of the 

reaction zone. Assuming central collisions between nuclei A and B with A < B, 

we again take A= ITrA 2 ' 3 , r0  = 1.18 fm. The reduced rapidity 

density, A 213dN/d, therefore, removes the trivial geometric enhancement of 

dN/dii for heavier nuclei and measures the rapidity density per unit area. For 

peripheral collisions the corresponding e value is a lower bound. 

The most remarkable feature seen in Fig. 2 is that curves 1 and 2 are so 

close to each other. The solid dot marking the point c = 	for both curves 

shows that in spite of the large difference between the two equations of state 

the relation between c and dN/dn is controlled mainly by plasma branch for 

e > 
	

given by eq. (29). To a good approximation the curves are shifted 

vertically from one another by the difference of the Bag constants for each. 

Also shown in Fig. 2 is the curve corresponding to evolution along the 

path of maximum entropy production, eq. (25). We took nieff = 0.4 GeV in 

accord with eq. (26). As noted before, with this effective mass that curve 

also coincides with Bjorken's estimate, eq. (6). Viscous effects and entropy 

nonconserving processes associated with the phase transition can therefore 

lower the estimate of c for a fixed dN/dri by at most a factor2. Most 

likely, the entropy generation in the final state expansion will in fact be 

much smaller than the maximum value, and the true c would be closer to 

curves 1 and 2. 

Finally, we have indicated in Fig. 2 the observed reduced rapidity 

density in typical 'p  reactions at collider energies. 19  We assume that 

unobserved neutral pions account for-1/3 of the total rapidity density. We 



sm 
see from Fig. 2 that typical pp events lead to very low initial energy 

densities, 	0.5 GeV/fm3 . However, in about 57 of the events, 19  

dN/dy 	18 is reached corresponding to c o  - 1.5-3 GeV/fm3 . For nuclear 

collisions, only limited cosmic—ray data are available. 20  The most 

spectacular reaction observed so far is the JACEE event 2' Si + Ag at 

4 1eV/A. The charged particle multiplicity in the central region is 

dNch/dTl z 200. Taking A = 28 for this reaction, the reduced total pion 

dens ity is then 32. Simple model estimates 22  indicate that such high 

multiplicities are to be expected in central Si + Ag collisions. Multiplicity 

densities in central U + U collisions are thus expected to reach reduced 

densities-60, assuming A 3  scaling. Reading off the conservative max 

entropic curve, heavy nuclear collisions would then lead to initial energy 

densities c > 3 GeV/fm3  -- well into the plasma phase. If scaling 

hydrodynamics applies, then energy densities as high as 	10 GeV/fm3  

could be reached in central U + U collisions at JACEE energies. This value 

represents an optimistic upper bound achievable in nuclear collisions. 

These estimates for the energy densities achievable in nuclear collisions 

are subject, however, to several caveats. First, they are only applicable to 

the central rapidity region where the baryon density is low. In the 

fragmentation regions, the relation between entropy density and pion 

multiplicity is more complicated because only a fraction of the total entropy 

is carried by mesonic degrees of freedom. That fraction is also a sensitive 

function of the temperature and varies during the expansion phase. Since each 

fragmentation region extends over a rapidity interval  AYF in 4R/t'0  < 3, 

the total rapidity gap necessary to form a central region is 2AyF 	6. 

Therefore, Fig. 2 can be applied only for reactions above several hundred GeV 

per nucleon. 
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Second, we have assumed via eq. 
(4) 

 that the energy deposition in the 

central region occurs instantaneously at proper time'Y 0 . However, as noted 

before, there exists a finite time interval, 5 ' 14  Y 1 fm/c, asymptotically 

for the nuclei to pass through one another. This has the effect of replacing 

in eq. (4) by c 0 /'Y e('— IV—V 01). The solution of 

eq. (3) with such a source was found in Ref. 8 (see eq. (53)). The maximum 

energy density for AY - 1 fm/c was found to be reduced by —31, from what it 

would be if -'= 0. This finite time dilution factor therefore has the effect 

of lowering the slopes of curves 1 and 2 by —3c. Nevertheless, the resulting 

isentropic curves still lie significantly above Bjorken's •estimate. This 

shows, in particular, the importance of choosing the source function in 

hydrodyriàmical calculation self—consistently. Up to now, scaling hydrodynamic 

source terms were estimated68  using Bjorken's formula, eq. (6), relating 

s 0  linearly with the final rapidity density. However, as stressed here, 

dN/dy is linearly related only to the entropy density. 1 ' 2  A higher initial 

value of e 0 ñiust be chosen, as shown in Fig. 2, to allow for work done on 

expansion. Such a self—consistent calculation would result, according to our 

analysis, in approximately a factor of two higher c
o 
 in the central region 

than computed in Ref. 8. Self—consistency in the fragmentation regions would 

also be important, especially since the scaling relationship, eq. (2), between 

longitudinal coordinate and rapidity breaks down and even the linear relation 

between; and a no longer holds. 

A third caveat concerns the applicability of ideal (nonviscous) 

hydrodynamics. A necessary condition for the validity of such an approach is 

that gradients of field quantities such as €(x) be small compared to 

characteristic collision rates. In the scaling regime the rapid longitudinal 

expansion causes e to change significantly on a time scale 6t 	(9nE/9i)—' 
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. The collision rate in the plasma is, on the other hand, controlled by 

the local temperature, 17 y °c a2 T(-Y), where a is an effective parton 

coupling constant. If local equilibrium is maintained, then 5  T(') = 

Viscous effects can be neglected only if ySt 	2T0 'y0  > 1. 

Therefore, ideal hydrodynamics can be applied only if the initial energy 

density Cc,O  T is sufficiently large. Any estimate of that critical 

energy density is, however, very uncertain at present and requires further 

development of a transport theory of quark-glue plasmas. 23  It is likely to 

be on the order of c - 1 GeV/fm3 . 

Finally, we note that we have neglected transverse motion. In the 

central region, this is justified because the entropy per unit rapidity is 

still conserved, and we need only to interpret A as the initial transverse 

area of the plasma. The only effect of transverse flow is then to 

redistribute the transverse momenta of pions. 24  In the fragmentation 

regions, transverse expansion converts entropy from mesonic to baryon degrees 

of freedom, thereby lowering the pion multiplicity. For small A reactions, 

transverse expansion can have, on the other hand, an indirect influence even 

in the central regions. If the transverse dimension, R, becomes comparable to 

the parton mean free paths, then ideal hydrodynamic flow cannot be justified. 

Therefore, the isentropic curves in Fig. 2 are more relevant for heavy nuclear 

collisions than for hadron-hadron or hadron-nucleus collisions. 
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FIGURE CAPTIONS 

Fig. 1. 	Energy density versus temperature for two sets of bag model 

parameters as described in text. Curves 1 and 2 correspond to 

strong and weak first order transitions between the hadronic and 

quark—glue plasma phases. 

Fig. 2. 	The energy density c at the onset of scaling hydrodynamics versus 

total pion pseudorapidity density reduced by A 213 , where A is 

atomic number of the smaller nucleus in central nuclear collisions. 

Dashed curves 1 and 2 correspond to scaling hydrodynamic expansion 

with the equations of state shown in Fig. 1. The solid dots locate 

= 	
for each. The solid curve corresponds to expansion along 

the path of maximum entropy production. It also coincides with 

Bjorken's relation with meff = 0.4 GeV. The average reduced 

density in p collider events 19  and in the Si + Ag JACEE event 2 ' 

are also shown. 
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