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ABSTRACT 

Assumptions and procedures for the setting of space and time scales 
in arbitrary quantized media as well as their transformation properties are 
analyzed. In the particular case of a three dimensional linear dispersive 
ether Lorentz-type transformations are obtained. 
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I. INTRODUCTION 

For the description of media usually external parameters are in
troduced that are measurable in an "environment" outside the medium. 
Particularly the use of space and time variables relies on a frame of reference 
that need not necessarily be defined by measurements within the medium. 
Although there is no objection to this approach if it is defined, we shall at
tempt to describe the dynamics of the medium with the help of parameters 
that can be obtained internally rather than externally; thereby deliberately 
omitting the knowledge of an "outside world". 

Quantum theory provides an immediate connection between represen
tations of one and the same process described in various reference frames: 
since the square of quantum amplitudes has a probabilistic interpretation, it is 
invariant under coordinate transformations. Hence by comparing different 
descriptions of one and the same state the transformation properties of the 
quantum numbers involved can be obtained. In the case of space and time 
coordinates however, intents to "derive" transformation laws rigorously are 
meaningless, since there is no unique way of generating scales for space and 
time in a medium and no physical meaning to the concept of unique transfor
mations. Such a process requires two different types of input: 

(i) arbitrary conventions,which are in no way unique (such as 
synchronization) imposed upon measurements and; 

(ii) the dynamical (dispersive) property of the medium. 

Changes of these conditions alter transformation properties differently: 
change of the dynamical property means that a different type of medium is in
troduced, whereas change in conventions means that the same medium is 
described by different values of quantum numbers. 

By adopting concepts of synchronization introduced by A. Einstein 1 

and by assuming that sound propagating in the medium plays a similar 
role as light the covariant path can be followed closely. Although similar 
conventions cause similar formal structures of the transformation equations. 
this approach does not force relativistic results, since the behavior of scales 
for various media are found to depend on their dispersive properties: Only 
for homogenuous, isotropic linear media (from now on referred to as ether) 
are the transformation equations of Lorentzian type. 
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n. ON THE SETTING OF SCALES FOR TIME, SPACE AND ENERGY 

In what follows it is assumed that it would be (at least in principle) 
possible to construct measurement apparata for certain observables (space, 
time, internal quantum numbers, etc.) out of elementary processes in a 
medium such that a frame of reference can be created. In what follows we 
shall refer to this as a "system". Suppose further that this medium is solely 
described by observables that can be measured from within, e.g. there is no 
"outside look from above" that uses observables that cannot be measured 
by elementary processes in the medium (like looking at waterwaves with the 
help of light), since for an observer built out of the medium these observables 
would be hidden. 

A. The Setting of a Time Scale 

In what follows a brief and for the sake of simplicity not very general 
illustration of a measurement process that could lead to the definition of a 
time scale is given. 

Consider some excitation of a quantized medium with a dispersion 
relation w(p) and a clock built out of some elementary process in this medium, 
obeying the above relation. It is further assumed that it is (at least in 
principle) possible to measure phase differences in the state of this clock. 

We are now prepared to describe a transition of the clock, thereby 
defining a time scale: a time tA is assigned to the initial state. After the 
transition, a time tB is assigned to the final state. Both tA and tB may be 
arbitrary real numbers. From now on, the time scales in this system can be 
defined uniquely. To show this the description of a simple model that can be 
used as a clock is used. It is assumed that the state of the clock I wt} can be 
represented by two state vectors I I} and I I I} so that 

I wt} =1 I}cr(t)+ I //}c[[(t), (2.1) 

where q(t) = (/ I wt) and C[[ = {II I wt} respectively. It is further assumed 
that the dynamics of the state is given by (h = 1) 

i :tcr(t) = ECr{t) - wc[[(t), (2.2a) 

i :t C[[(t) = -wc/(t) + EC[[(t). (2.2b) 
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Since I I} and Ill} are no eigenstates, an oscillation between them occurs 
if the clock was initially at the time tA in the state I I} (so that after 
normalization Cr(tA) = 1 and C[[(tA) = 0). Alter a short calculation2 the 
probability to find this clock in the state I I} at a later time tB is found to 
be 

I Cr(tB) 12=1 {ItB I ItA} 12= coS2[w(tB - tA)]. (2.3) 

For the concept of equal time at spacially separated points we refer to A. 
Einstein's conventions for clock synchronization l . His conventions for gaug
ing spacescales within one frame of reference can be adopted as well; with 
the only difference that the available soundwaves of the medium instead of 
light have to be used. 

B. Comparing Scales 

It is assumed that within the same medium there exist two systems 
Sl and S2 with two space and time scales, defined by processes as outlined 
above. In order to compare these scales a transition process that can be 
measured from both systems has to be considered. Assume again a clock 
described as above by the amplitudes {WltlB I WltlA} in Sl and {W2t2B I 

W2t2B} in S2. As the square of these amplitudes have a probabilistic inter
pretation and by identifying I I2} withl II} =1 I} ans I II2} with I lId =1 II}, 
the following identities can be obtained: 

I {/t2B I It2A} 12=1 (/tIB I /tIA) 12, (2.4a) 

I {IIt2B I IIt2A} 12=1 (IItIB I I/tIA) 12 . (2.4b) 

These relations hold true for all times, and the clock can be described by the 
same type of evolution equation (2.2) from both systems. With the initial 
condition CH(tIA) = C2r(t2A). 1 the time-development of the I-state is 
given by 

COS
2

[WI(tlB - hA)] = COS
2[W2(t2B - t2A)]. (2.5) 

By comparing the arguments of the cosine and taking the limit for infinitesimal 
time differences the time-dilatation is obtained. 

dt2 WI 
(2.6) -

dtl W2 
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All arguments so far were made to convince the reader that the quantum 
mechanical action as a measure of transition amplitude that have a probabilis
tic interpretation has to be an invariant. 

As in the case of time scales there is an arbitrariness in the transfor
mation of spacescales, since the procedures for comparing two scales in two 
different systems are not unique. An approach is chosen that does not lead 
to a preferred frame of reference by defining the two-way sound velocity c to 
be equal for all systems. Again A. Einstein's conventions 1 for the definition 
of this sound-velocity is adopted: Assume a rod of length AB in some system 
and a sound wave emitted, from A at a time tA, travelling to B where it is 
reflected and arrives at A at a later time tA'; then the two-way sound velocity 
is defined by c = 2AB/(tA' - tA)' Combining (2.6) with the convention of 
the invariance of the soundspeed leads to the transformation of space scales 

dX2 WI 
-=-
dXl W2 

(2.7) 

C. Comparing Energy Scales 

Although no choice for the relation between energy parameters in 
two different systems has been made yet, it is obvious from (2.6) and (2.7) 
that it will be of greatest importance to the transformation properties of the 
scales. 

It is now assumed that the clock under consideration is at rest 
relative to the second system S2, moving with a velocity VI (measured in 
Sd relative to S2. The system S2 itself is at rest relative to the medium. In 
this configuration WI can be identified with the dispersion relation 
WI = w(p), where VI = dw/dp. 

It is not clear at ,the first glance what value should be assigned to 
W2. Any arbitrary function £( VI ) can be identified with W2, there by defining a 
transformation law for the time scales. One possibility would be to accept a 
preferred frame of reference (namely Sd and set (the index 2 under 0 means 
that the object is at rest with respect to S2) 

W2(02) = wl(pd· 

This would result in Galileian-type transformation laws. 
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However, if it is not easy or impossible to distinguish between sys
t.ems bv measuring their mot.ion relative to the medium. the value of w, (0, ) 
for zero velocity (momentum) may be assigned to W2(02). More precisely, this 
can be formulated in the following way: if an object at rest in the rest 'frame 
of a quantized medium with the energy £1 (0) is transferred to another frame 
of reference S2 so that it is at rest there, an energy 

f2(0) = fl (0) (2.8) 

is assigned to it in the second frame. This is an "evident", although not a 
unique way of comparing energy scales in different systems with each other 
(given only measurements within the medium, it would in no way be easy 
to find an absolute measure of the velocity relative to its rest frame. Even 
if there exist criteria such as some sort of "cosmic background radiation" or 
a fundamental length, they could be considered as not important enough to 
spoil a convenient covariant-type notation). 

Equation (2.8) immediately leads to the relationship of time and 
space scales in the two frames of reference as a function of the dispersion 
relation: 

dt2 dX2 WI (p) 
dtl = dXl = w}(O)' 

(2.9) 

m. A LINEAR FIELD MODEL 

Generally the dispersion relation may depend not only on the momen
tum but for inhomogenuous media also on space coordinates of arbitrary 
dimensions and for nonlinear forces on the square of the amplitudes as well as 
on other parameters such as a fundamental length. In these cases considera
tions are subtle, since the sound velocity may depend on the frequency (and 
hence, scales would depend on the frequency chosen for synchronization). 
One of the most interesting examples however is a linear model that has been 
extensively discussed in the literature3 . It is a threedimensional continuous, 
homogenuous and isotropic fleld coupled linearly to its equilibrium position. 
This ether model applies also to very general analytic forces with three 
degrees of freedom not too far from equilibrium and is realized in a variety of 
physical situations (e.g. in solids etc.). 

The dispersion relation is given by w(p) = Jc2p2 + w~, where c 
and Wo are two constants. Again a configuration is considered in which a 
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clock travels with a velocity VI against a rest system 81 of the ether. The 
corresponding rest system of the clock is denoted by 82. With the help of 
VI = dWl(P)/dp the time dilatation is obtained from (2.9) 

dt2 = (1- (~)2)-1/2 
dt 1 C ' 

(3.1) 

and since VI equals - V2, the velocity measured in 82, 

2 2 1 2 
(dtl) = (dt2) - "2(dX2) . 

c 
(3.2) 

Since this relation holds true for all systems 82(v), the right side of (3.2) is 
an invariant, which implies Lorentzian-type coordinate transformations. 

The formal similarity with relativistic dynamics can be used to 
apply techniques developed in the framework of fourdimensional space-time. 
Consider for instance in a Gedankenexperiment two types of interactions 
within one and the same ether with two different soundspeeds. By using 
two clocks, working with the two interactions, two space and time scales are 
generated for one and the same system. Consequences of this situation can 
be made clear with the help of Minkowski diagrams: if the soundspeed d is 
greater than c, then the projection of a sound wave propagating with d on 
coordinate axes obtained by clocks and scales using waves of velocity c show 
the perception of a super luminal propagation and other causal "peculiarities" . 

We conclude with the remark that from above considerations the 
Lorentzian-type connectedness of space and time may be thought of as 
emerging from a specific kind of dispersive property of a quantized field 
combined with a set of basic conventions. With the same conventions more 
complicated structures of space-time emerge for nonlinear media. 
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