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HETERONUCLEAR DIPOLAR COUPLINGS, TOTAL SPIN COHERENCE,

AND BILINEAR ROTATIONS IN NMR SPECTROSCOPY

Joel Richard Garbow

Abstract

The past few years have produced many important developments in

nuclear magnetic resonance (NMR) spectroscopy. Among the most signifi-

cant of these are advancements in the field of multiple quantum (MQ) NMR.

Multiple quantum spectroscopy has proven to be a very valuable technique,

both as a source of enhanced resolution and by providing information not

available in normal single quantum spectroscopy. This thesis is devoted

to the development and experimental demonstration of several new MQ NMR

methods.

In Chapter 1 a variety of different introductory topics are presen-

ted. The potential complexity of the NMR spectra of molecules dissolved

in liquid crystal solvents serves to motivate the development of multiple

quantum spectroscopy. The basics of MQ NMR are reviewed in Chapter 2.

An experimental search procedure for the optimization of MQ pulse

sequences is introduced.

Chapter 3 discusses the application of MQ NMR techniques to the meas-

urement of dipolar couplings in heteronuclear spin systems. The advantages

of MQ methods in such systems are developed and experimental results for

partially oriented [1- l3C] benzene are p~esented. Several pulse sequences

are introduced which employ a two-step excitation of heteronuclear MQ

coherence. A new multiple pulse method, involving the simultaneous

irradiation of both rare and abundant spin species, is described.



The problem of the broadening of MQ transitions due to magnetic

field inhomogeneity is considered in Chapter 4. The method of total

spin coherence transfer. echo spectroscopy (TSCTES) is presented, with

experiments on partially oriented acetaldehyde serving to demonstrate

this new technique. TSCTES results in MQ spectra which are sensitive

to all chemical .shifts and spin-spin couplings and which are free of

inhomogeneous broadening.

In Chapter 5 the spectroscopy of spin systems of several protons

and a l3C nucleus in the isotropic phase is discussed. The usefulness

of the heteronuclear bilinear rotation as a calculational tool is

illustrated. Compensated bilinear ~ rotations, which are relatively

insensitive to timing parameter missets, are presented. A new

technique for homonuclear proton decoupling, Bilinear Rotation Decoupling,

is described and its success is weakly coupled systems is demonstrated.
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Chapter 1: INTRODUCTION

1 2
Since its discovery nearly forty years ago ' , nuclear magnetic

resonance (NMR) spectroscopy has had a tremendous impact on the fields

of chemistry and physics. As a probe of local nuclear environment,

NMR has provided a wealth of information about molecular structure and

motion. In addition, it has become a standard analytical technique

useful for compound identification. Numerous texts have chronicled the

3-6development of NMR spectroscopy In this work we focus on a compara-

tively new branch of NMR spectroscopy - time domain multiple quantum

(MQ) NMR. This first chapter presents several topics which serve as

important background for the methods to be described in subsequent

chapters.

Most of the work in this thesis is described in a density matrix

7-4
formalism' and Section 1.1 introduces the statistical mechanical den-

sity operator. Its general properties and equation of motion are

examined and the equilibrium density operator for a group of nuclear

spins in high magnetic field is derived. Section 1.2 discusses the

various terms in the spin Hamiltonian, describing the interactions of

the nuclear spins with each other, with surrounding electrons, and with

externally applied magnetic fields. In Section 1.3 the major features

of the spectra of isotropic liquids and of molecules dissolved in liquid

crystal solvents are described. Dipolar couplings, which generally

dominate the spectra of partially oriented systems, are examined as a

source of both structural information and spectral complexity.

Section 1.4 examines the energy level diagram for a system of coupled

spins and develops an expression for the number of transitions as a func-

tion of multiple quantum order. In Section 1.5 the selection rules of

1



conventional NMR spectroscopy are reviewed and the resolution, of single

and multiple quantum spectra are compared. Section 1.6 presents a short

discussion of the effects of molecular symmetry on NMR spectra. The

chapter closes with an introduction to irreducible tensor operators,

whose simple transformational properties under rotations are described

(Sec. 1. 7).

1.1 The Density Operator

1.1.1 Definition

In quantum mechanics, one seeks to find wavefunction solutions to

the Schrodinger equation. A complete determination of these wavefunc-

tions provides a complete knowledge of the quantum mechanical system.

Each wavefunction represents a probability amplitude and, for an ensemble

of systems each described by I~(t», the expectation value·of any observ-..
able operator a as a function of time is given by

2 n
n
n
n

o

(I

II

(1.1)

I
II

For an ensemble of systems described by different wavefunctions I~k(t»,

~

having respective probabilities Pk , the expectation value of OCt) becomes

II
l I

IIl _

set:

We can expand each wavefunction I~k(t» in a complete orthonormal basis

I~k(t» L
k

= C (t) In>nn

<~k(t) I L
k

= <mlC (t)*,mm

(1. 2)

(1. 3a)

(1. 3b)

I 1
:: I
~ I
l j



[ where the expansion coefficients Ck(t) and Ck(t)* carryall of the time
n m

dependence of the system. Recognizing that

3

allows us to rewrite Equation 1.2 as

<OCt»~ = LPk ( L <nl~k(t»<~k(t)lm><m,oln».
k m,n

-+
Defining the operator pet) as

-+
the expression for <OCt»~ simplifies to

(1. 4)

(1. 5)

(1.6)

-+
<OCt»~ =

m,n
<nlp(t)/m><m/oln> = -+ -+

Tr (p (t)O) . (1. 7)

-+
pet) is known as the density operator and its matrix representation as

the density matrix. The density operator is very important in statis

8
tical mechanics and is discussed in detail in many texts. We see from

-+
Equation 1.7 that all observables of a system may be computed once pCt)

is known.

1.1.2 Equation of Motion

The equation of motion of the density operator can be easily

derived by starting from the Schrodinger equation

a -+
- itl at' ljJ ( t ) > = J(( t) IH t ) > •

-+
The definition of pet) in Equation 1.6 can be differentiated to yield

(1. 8)

(1. 9)



of nuclear spins. we must first discuss the interaction of these spins

In order to derive the equilibrium density operator for an ensemble

with a magnetic field. Classically, the energy of interaction E between

4 n
0
n
0
[1
!

t J
!

I

[J

[el

[1

l J

[1
II

[1

[ I

!J
,jl
U
g

a
uOJ

~

~

U

(1.10)

(loll)

(1.12 )

(1.13)

(1. 14)

(1.15 )

-+
= exp (-iJCt/fJ.)

E = -1.1 • H .
- -0

-+ -+ + +-1
pet) = U(t) p(O) U (t),

.
;- ( t ) = - (i /fJ. )[p(t), i (t) ] .

is easily integrated to

where

Inserting Equation 1.8 into the above expression produces the Von Neumann

. 9equatl.on :

-+
When the Hamiltonian X is time independent, this differential equation

+
also provides the formal solution for a time de.pendent Hamiltonian X(t).

+
with the propagator U(t) given by

and p(O) is the initial density operator at time t = O. Equation 1.11

1.1.3 Interaction of Nuclear Spins with a Magnetic Field

a magnet moment ~ and magnetic field Bo is

+
We associate with the nuclear spin operator I the magnetic moment operator

-+ JtU(t) = exp(-iT 0 K(t')dt'/Il).

10where T is the Dyson time-ordering operator



where YI is the nuclear gyromagnetic ratio. The Hamiltonian for the

nuclear spin-magnetic field interaction becomes

5

-+- -+-
X = -yit I • !!o. (1.16)

k
The total angular momentum of a nuclear spin I is Ii. [I (I + 1)] 2, the

-+-2
square root of the eigenvalue of I. In addition, we may simultaneously

-+-
specify the eigenvalue of one of the components of I, taken by convention

-+-
to be I , since

z

(f2, I ] = o.
z

(1.17)

-+-
For an I spin the eigenvalue of I , known as the Zeeman quantum number m,

z

can take on the (21+1) values -I, -1+1. .• 1-1, 1. With the static

field in the z-direction, the energy of interaction between the spin and

the field is, from Equation 1.14:

(1.18)

I
where w = Y H , the I spin Larmor frequency.

o I 0

Consider a spin system consisting of N spin-I nuclei (all of the

same spin species). Each energy level of this system can be classified

Iwith respect to .its total Zeeman quantum number m. This quantum number,
N

the eigenvalue of the operator I = \ I equals the sum of thez . L zi'
~=1 I

individual spin Zeeman quantum numbers (m = Lm.). The energy of inter
i ~

action of this spin system with the magnetic field is

E I
m

I I
= -m li.w

o
(1.19)

The experiments to be described in this thesis were all done in an

external magnetic field of 42.7 kGauss, corresponding to a proton



resonance frequency (yrHo/27T) of 182 MHz. For all spin-!2 nuclei and

many nuclei having spin r ~ 1, the interaction with the static field is

by far the largest which the spins experience and is the only one which

need be considered in determining the equilibrium density matrix.

1.1.4 Equilibrium Density Operator

We now calculate the equilibrium density operator for a spin system

of N spin-r nuclei (or an ensemble of such systems). The equilibrium

density matrix is diagonal, with each diagonal element given by the popu-

lation of its respective Zeeman level. The relative population of each

Zeeman level is given by the Boltzmann factor

6.

r
l

r~

I

r"
I

r -
I
l

exp(-E I/kT)/E I exp(-E I/kT).
m m m

(1.20)

The off-diagonal density matrix elements represent coherent super-

positions of states (coherences). At equilibrium, they are assumed to

be zero under the "hypothesis of random phases". Recall that a repre-

sentative off-diagonal element is C*(t)C· (t), where the bar representsm n

the average expressed in Equation 1.6. This element can be rewritten as

IC II C Iexp (i (a - a ) t) .m n n m
(1. 21)

If any of the off-diagonal terms are non-zero, there will be observable

properties of the spin system which oscillate with time. Since this is

contrary to the definition of thermal equilibrium, all off-diagonal ele-

ments must be zero.

The equilibrium density operator may therefore be written

;:; (1)
"EQ = Z

-+-
exp (-1f/kT) , (1.22)



f'"

!
-+-

where Z = Tr(exp(~/kT». In the high te~perature approximation, with

f~

I

(yIhHo/kT) « 1, this expression may be expanded to

~ 1, - (21 + 1) -N (yflH /kT)I .
'- 0 z

(1. 23)

Only the second term in this expression contributes to an observable NMR

signal. We therefore write the reduced equilibrium density matrix as

-+-
b11z ' with the temperature and magnetic field dependent constant b I given

by-(21+l)-N(yhH /kT), or simply as i. In the remainder of this thesis,
o z

explicit labeling of operators with an arrow (-+-) will be omitted.

1.1.5 Interaction Representation

Before concluding this section on density operators, it is useful

to introduce the concept of an interaction representation. Consider the

transformation from the laboratory frame of reference to one defined by

the transformation operator T. The Hamiltonian in this new reference

frame, X*, can be expressed as

We can transform the density operator in a similar manner:

...
p*=TpT'.

(1. 24)

(1. 25)

Using the relationships developed in Sections 1.1.1 and 1.1.2, it can be

easily shown that

[~

i
b

and

p*( t)
i= - h [p*(t), ~(t)] (1. 26a)

<O*(t» = Tr(p*(t)O), (1. 26b)



transformed frame of reference.

where <O*(t» is the expectation value of the operator 0 viewed in this

For NMR purposes, a particularly useful transformation operator is

given by

T = exp (- iwIt) ,
z (1. 27)

8 r
('
r~

I c

r~

t

f
,

where w is the carrier frequency of the applied radio frequency radiation,

as discussed in Section 1.2.2. This frame of reference is known as the

rotating frame and corresponds to observing the spin system from a frame

rotating at angular velocity w about the z-axis. In the rotating frame,

the interaction between the nuclear spins and magnetic field becomes

I= -(w - w)I
o z

I
=-~w I z' (1.28)

where ~wI is referred to as the I spin resonance offset. In the remainder

of this work all density matrices and Hamiltonians will refer to this

rotating frame and the asterisk will be dropped.

1.2 The Spin Hamiltonian

In this section we discuss the various terms in the spin Hamiltonian,

which describe the interaction of the nuclear spins with themselves, with

surrounding electrons, and with applied magnetic fields. Before doing

this, however, we address the question of units. Throughout this thesis

-1the spin Hamiltonian is expressed in rad'sec ,since these are the con-

venient units for calculating the evolution of the density matrix. The

resonance offset, chemical shifts, and spin-spin couplings measured in

~ experiments are expressed in units of Hz, however. In order to

reconcile this discrepancy, the following convention is adopted. Coupling

, , -1
constants which are primed (Dij , J ij ) are in units of rad'sec ,while



In the rotating frame, this inter-

r
{

r
I

r~

i
I

unprimed coupling constants (D .. , J .. ) are in Hz. Similarly, chemical
~J ~J

-1shifts w, and resonance offsets ~w are expressed in rad'sec ,while
~

v. = w./2~ and ~v = ~w/2~ are in Hz.
~ ~

1.2.1 Zeeman Interaction

As noted in Section 1.1.3, in many systems the interaction with the

static external field H is by far the largest which the spins experience.
~o

Although of great historical importance, this interaction is largely

uninteresting in modern magnetic resonance studies, however, and simply

provides a measure of wI = YIH .
o 0

action is largely removed and the coupling between the spin system and

an homogeneous external magnetic field is given by Equation 1.28. An

additional term,-w(r)I , must be added to this equation to account for the
~ z

spatial inhomogeneity of the external field. This term is subject to

the constraint

9

Th Z H 'I . ~ZEEMAN h be eeman am~ ton~an ~I t us ecomes

J(ZEEMAN = _(6w I + w(r»I •
I ~ Z

(1.29)

(1. 30a)

A similar expression holds for a second spin species S when it is present:

In this equation the resonance offset 6W
S is defined with respect to the

!
L::

1CZEEMAN
=

S
(1.30b)

r~

r
l. _--"

frequency of the S spin r.f. field. (When two spin species are present,

we transform into a doubly rotating frame defined by the frequencies of

the r.f. fields of both species.) Although the Zeeman interaction arises

from the coupling of the spins to an external field, it will often prove



10 r~

l

convenient to include it in the internal spin Hamiltonian, X1NT , as r1

discussed in Section 1.2.3.1.

The other terms in the spin Hamiltonian can be divided into two

parts:

rI .

r
r
I .

(1.31)

where X
rf

describes the effects of externally applied radio frequency

fields, and XINT those interactions which are internal to the spin

system. Contributions to XINT include those from chemical shifts, direct

and indirect spin-spin couplings, and quadrupolar couplings. Each of

these different interactions is discussed in Section 1.2.3.

1.2.2 Radio Frequency Fields (X
rf

)

The nuclear spins can couple to an oscillating radio frequency (r.f.)

field applied perpendicular to the static field. This interaction has

the form

[

(1.32)

for an r.f. field of frequency w, amplitude 2H
l

, and phase~. It is at

first surprising that the r.f. field should be capable of nutating the

spins at all for the usual case HI «HO' It is in fact only for a

Ifrequency w - w that the r.f. is effective. In the rotating frame,
a

the r.f. Hamiltonian is

I ;
I ..c

where

I~ = I cos~ - I sin¢
'1' y x

(1.33)

(1. 34)



In Equation 1.32, the counter-rotating component of theand wI = YIHl ·

radiation, oscillating at frequency 2w, has been ignored. Analogous

expressions hold for the interaction of an S spin with an oscillating

r.f. field.

1. 2.3 XINT

Each of the terms of XINT is conveniently written as a second rank

tensor coupling between two vectors. Expressed in Cartesian coordinates,

the coupling Hamiltonian is

11

:}(= X·A·Y =
::::=

x,y,z

L
i,j

X.A .. Y. ,
~ ~J J

(1. 35)

where A is a 3 x 3 matrix. Each internal Hamiltonian interaction must be
::::=

properly summed over all spins in the spin system. Throughout this

thesis, the spin system will consist of N coupled' protons (I = ~spins)

13
and perhaps a single C nucleus (S = ~ spin).

1.2.3.1 Chemical Shifts

In addition to the applied magnetic field H , each nucleus
o

experiences a small local field due to the electrons surrounding it.

This shielding effect, the chemical shift, can be written as

IXCS = -Y I
(1.36)

In high field, only the secular part of X
CS

(the part which commutes

with I ) is retained:
z

~S = _wI L cr i I . = -I
0; zz z~ .... ~

w. I ..
~ z~

(1. 37)

By convention, we take the sum of the chemical shifts to be zero

(I w. = 0). It is convenient to combine the chemical shift Hamiltonian
i ~



. h ~ZEEMAN (E 1 30 )
w~ t ""I q.. a:

XZ
I

= -2 w.I . - (tlwI+w(r»I •
i ~ z~ - z

(1. 38)

12 r

Collectively the interactions in this equation will be referred to as

the Zeeman terms. An analogous expression holds for the S spin Zeeman

term:
f'
!

= -w S - (tlwS+ (YS) w(r) )S .
S z Y - zI

1.2.3.2 Dipolar Couplings (~)

(1. 39)

As described earlier (Eq. 1.15)t we associate with each nuclear

spin 1 a magnetic moment~. The direct interaction of these moments

with one another is described by the dipolar coupling Hamiltonian xD:

:xD
II

= - '\ I.. D ~ •• 1..
L -~ ~~J -Ji<j

The dipolar coupling between spins i and j involves products of the

(1. 40)

[ -

components of their respective angular momentum operators, and is there

fore termed a bilinear interaction. The subscript on ~I emphasizes the

bilinear quality of this Hamiltonian. The elements of the coupling
,

matrix D.. are
~~J

,
Dijab =

2
-y h

I
3

r ..
~J

(3cose.. cose" b - 5 b)'
~J a ~J a

(1.41)

where r .. is the distance between nuclei i and jt S.. is the angle
~J ~Ja

between the i-j internuclear vector and the laboratory a-axis, and Sab

is the Kronecker delta. Retaining only the secular terms t the homonuclear

dipole-dipole interaction becomes



r~

i

r

I

where

~II = - L 0i'· (3I . I . - 1. • I.) ,
•• J Z~ zJ ""'~ ""'J
~<J

0i'J. = -(iIh/r~.) (12) C3cos
2e.. -1).

~J ~J zz

(1. 42)

(1.43)

13

When two different nuclear species are involved, the spin function

part of Equation 1.42 must be modified. This is because flip-flop terms

between unlike spins, which do not conserve energy, are forbidden. For

heteronuclear spin pairs

I 
I
;

~IS =-I 20i's I.S,i ·zz Z~ Z

where

1.2.3.3 Scalar (J) Couplings (~)

(1. 44)

(1.45 )

In addition to the direct coupling between nuclear magnetic

moments, there' is also an indirect coupling between spins via the elec-

trons. This interaction is referred to as the scalar or J coupling:

(1.46)

As indicated by its subscript, the scalar coupling Hamiltonian, xiI' is

also a bilinear interaction. The secular part of this coupling is

-I
i<j

, . l' ,
(J '. I. I . + -4 (J . . + J.. ) (1+. I . + I . 1+ . ) ] .

~Jzz z~ ZJ ~Jxx ~JYY ~ -J -~ J
(1. 47)

By algebraic rearrangement, this expression can be broken into isotropic

and anisotropic parts



where

and

xiI = - \' J: .1 .• I. - (1.
2

) \' J~ISO(3I iI . - I .• I.),
L 1.)-1. -J L 1.J Z zJ -1. -J

i<j i<j

, 1 ,
J .. = -3 Tr (J .. ) ,

1.) :=:::1.J

(1. 48)

(1. 49a)

14 '"!

n
f
\ ~

~ISO

1.)
(1.49b)

The spin operator part of the anisotropic term has exactly the same form

as the dipolar Hamiltonian ~I (Eq. 1.42). For protons, this term is

usually quite small and can be ignored. The high field homonuclear

J-coupling becomes

- I
i<j

(1. 50)

In describing the scalar coupling between heteronuclear spins, the

non-energy conserving flip-flop terms must once again be suppr~ssed.

The heteronuclear J-coupling Hamiltonian, xis' is

-I J~SI .S
i 1. Z1. Z

(1.51)

,
with J

iS
=

,
J· S .

1 ZZ
Because their spin operator parts are the same, it is

convenient to combine the heteronuclear dipolar and J-coupling Hamiltonians

into a single term XIS:

where

= ~S + ~S
,

= -I 2F· sI .S ,
i 1 Z1. Z

(1.52)

I
21TF

iS
(1. 53)



1.2.3.4 Quadrupolar Coupling

For nuclei having spin I ~ 1, there is an additional Hamiltonian

term resulting from the interaction between the nuclear quadrupolar

moment and electric field gradients arising from surrounding electrons

and nuclei. This coupling takes the form

15

I.-Y,-I..
-1 ::::::=1 ""1.

(1. 54)

In high field, the quadrupolar Hamiltonian becomes

J8
II

= \(eQ,Y, /41.(2I,-1»(3I2 ,-1.(I.+l»,
~ ~ ~zz ~ ~ Z~ ~ ~
~

(1. 55)

where Q, is the quadrupolar coupling constant of nucleus i, and V. the
~ ~zz

second derivative of the potential with respect to z at the nucleus,

a2y
az 2

1.3 Information Content of NMR Spectra

Having described the different interactions which comprise the spin

Hamiltonian, we discuss briefly the information content of NMR spectra.

The terms of the internal Hamiltonian of Section 1.2.3 depend on particu-

lar laboratory frame components of different second rank tensors. The

transformation from a molecule-fixed axis system into the laboratory

frame is of utmost importance in determining the sensitivity of an NMR

experiment to the different components of the spin Hamiltonian. This

transformation in turn depends on the thermodynam~c phase of the sample

being investigated. We consider the two phases which are of importance

in this work: (1) isotropic liquids and (2) liquid crystals. NMR

spectroscopy in solids has been discussed in considerable detail

elsewhere6 ,11-13.



1.3.1 Isotropic Liquids

In liquids, molecules are undergoing rapid isotropic motion. This

completely averages away all couplings between molecules. In addition,

for each intramolecular spin Hamiltonian term only the isotropic average,

given by the trace of the respective second rank tensor, survives this

motion. The dipolar and quadrupolar interactions are traceless and

therefore average to zero, along with the anisotropic part of the

chemical shift. The ffl1R spectra of isotropic liquids are thus deter-

mined by resonance offset, J-couplings, and isotropic chemical shifts.

1.3.2 Liquid Crystals

1.3.2.1 Partial Ordering and Anisotropic Motion

The NMR spectroscopy of liquid crystals and of molecules dis

. 14 15solved in liquid crystals has been the subject of several rev~ews '

and is discussed in greater detail in Appendix A. Here we make a few

general observations which allow the important features of such spectra

to be described. When placed in a large magnetic field, liquid crystals

become partially oriented, as do most dissolved solute molecules. This

ordering is describable by a set of motional constants, or order para-

meters, and the spin Hamiltonian becomes a function of these constants.

As in isotropic liquids, rapid translational diffusion in liquid crystal

systems averages out the couplings between molecules. Unlike the liquid

case, however, the motion of individual molecules is anisotropic. Due

to this anisotropy, the averaging of the dipolar and quadrupolar inter-

action tensors is incomplete and these terms contribute to the spin

Hamiltonian.

1.3.2.2 Dipolar Couplings and Structural Information

In this thesis, we are primarily interested in systems of

16
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line spectra, as first reported by Saupe and Englert

rr
Ii

coupled spin~ nuclei (protons and 13C) for which the quadrupolar inter-

action vanishes and the dipolar couplings are the principal unknowns of

interest. As described in Section 1.2.3.2, these spin-spin couplings

-3carry with them direct structural information through the terms r .. and
1.J

e... The proton NMR spectrum of most liquid crystal molecules themselves
1.J

tend to be very broad, with little observable fine structure. Small

molecules dissolved in liquid crystals, however, produce relatively sharp

in 196316 ,17.

Although these generally have a spectral width of several kHz, the width

of individual lines may be as little as 1 or 2 Hz. These spectra are

usually dominated by intramolecular dipolar couplings amongst the spins.

An illustration of NMR's sensitivity to molecular structure is pro-

vided by Figure 1.1, the proton spectrum of benzene dissolved in a liquid

crystal. Also shown are spectral simulations based on several different

models for the structure of benzene. The isotropic NMR spectrum of each

of these models shows the single line characteristic of liquid benzene.

Based on these simulations, it is very easy to identify the "correct"

structure of benzene.

1.3.2.3 Spectral Complexities

While serving to illustrate the usefulness of studying molecules

in liquid crystal solvents, Figure 1.1 also serves to warn us of the

potential complexity of such spectra. The spectrum of the highly sym-

metric 6-spin benzene molecule con~ains many non-degenerate transitions

(one expects, in fact, a total of 38 pairs of lines). For molecules

containing a greater number of spins or possessing less overall symmetry,

the number of observed transitions rapidly increases. This is illustrated

in Figure 1.2, which shows the spectra of a variety of different solute

17
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Figure 1.1. Single quantum proton NMR spectra of benzene dissolved
in a liquid crystal solvent. An experimental spectrum
is shown at the top. Below are several suggested models
for the structure of benzene alon~ with a simulated
spectrum for each. The isotropic spectrum of each of
these proposed structures is consistent with the known
single-line spectrum of liquid benzene. The sensitivity
of the spectra of molecules dissolved in a liquid crystal
to solute geometry can be clearly seen, and the "correct"
structure of benzene easily identified. (Figure courtesy
of Professor Zeev Luz.)
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Figure 1.2. Proton NMR spectra of several different molecules
dissolved in liquid crystal solvents. The
spectral complexity is seen to increase very
rapidly with the size of the solute molecule.
(Figure courtesy of Professor Zeev Luz.)
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molecules dissolved in liquid crystals. The complexity of the spectra

rapidly increases from top to bottom in this figure to the point that

individual transitions are no longer resolved. The inability to resolve

individual transitions clearly limits the size of the spin system which

can be studied and has provided much of the motivation behind the

18-21development of multiple quantum NMR in dipolar coupled systems . By

reducing the number of observed transitions, multiple quantum NMR

enhances spectral resolution and thereby makes possible the analysis of

larger and more complex spin systems.

1.4 Co~pled Spin Systems

1.4.1 Energy Level Diagram

In describing NMR spectroscopy in coupled spin systems it is useful

to refer' to an energy level diagram, such as that of Figure 1.3. The

labeling of Zeeman manifolds in this figure is appropriate for a system

of N coupled spin-~ nuclei, with energy levels sorted according to their

20

,[

total Zeeman quantum number,
I

m • In the high field limit, where

I '
[J(I:-lT' I2:] = 0, m is a good quantum number during free evolution of the

system. Within each Zeeman manifold splittings arise due to chemical

shifts and spin-spin couplings. The total number of energy levels is ZN,

with the number in each manifold given by the binomial coefficient

(1.56)

Consider the transition between a pair of energy levels i and j.

The order of this transition, n~., is defined as the difference in
~J

Zeeman quantum numbers between the two states

I I I
n.. - (m. - m. ) •
~J ~ J

(1. 5 7)
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Figure 1.3. Energy level diagram for a system of coupled nuclear spins.
The labeling of the energy levels is appropriate for a
system of N coupled spins~. Eigenstates are sorted by
their total Zeeman quantum number mI. Splittings within
a Zeeman manifold are due to chemical shifts and spin-spin
couplings. Allowed single quantum transitions. indicated
by solid arrows. occur between adjacent Zeeman manifolds.
The dashed arrows represent examples of normally forbidden
multiple quantum transitions.
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Single quantum transitions (n~. = ±l), indicated in Figure 1.3 by solid. ~J

arrows, are between adjacent Zeeman manifolds. The dashed arrows in the

figure provide several examples of multiple quantum transitions, which

are forbidden in conventional NMR experiments. In a general sense we

will use the term multiple quantum transitions to refer to all possible

transitions within a spin system, including those characterized by

n
I

= ±1.

1.4.2 Enumeration of Transitions

Consideration of Figure 1.3 allows us to enumerate the number of

possible transitions of each order. For a system of N coupled protons

in the absence of any molecular symmetry, the number of transitions of

Iorder n , Z I' is (excluding zero quantum):
n

22

rp

(1. S8a)

22
This is equivalent to the formul~ of Wokaun and Ernst :

(1.S8b)

,
The number of zero quantum transitions is

(1.59)

1.5 Selection Rules and Soectral Resolution

1.5.1 Conventional ~MR Spectroscopy

In conventional NMR spectroscopy, all allowed transitions are

characterized by the selection rule 6mI
= ±l. In CW experiments, this

selection rules derives from first order perturbation theory and results



Both the transition frequencies

only means by which

MQ line intensity to

r
I

from the relative weakness of the applied HI field23 . An equivalent

spectrum is obtained by Fourier transformation of the time domain signal
24

collected following a radio frequency pulse of nutation angle ; In

the Fourier transform experiment, the single quantum selection rule is a

result of the initial density operator being I and is independent of
z

the strength of H
1
2l . This is discussed further in Sections 1.7.2 and

2.1.

In the absence of symmetry the number of single quantum transitions

is, from Equations 1.58, (N~l)' The number of unique dipole couplings,

on the other hand, cannot exceed N(N-l)/2. Since the number of spectral

lines greatly exceeds the number of couplings, the single quantum spec-

trum contains much redundant information. As demonstrated by Figure 1.2,

this "overabundance" of information leads to a rapid loss of spectral

resolution with increasing spin system size.

1.5.2 Multiple Quantum (MQ) NMR Spectroscopy

.Multiple quantum transitions were first observed in the CW spectra

of liquids25 ,26. Theoretically such spectra can be explained by means

27of higher order perturbation theory

and lineshapes of these MQ lines are strongly dependent on the applied,

r.f. field strength HI' The proportionality of
I

f H . b H(2n -1) . . f hpowers 0 l' gl.ven y 1 ' l.S l.n act t e

different multiple quantum orders can be distinguished in CW experiments.

This dependence on r.f. field strength makes both the excitation and

interpretation of multiple quantum transitions by CW irradiation diffi-

cult and has served to severely limit the usefulness of the technique.

The past decade has seen the development of the much more powerful

and useful methods of time domain multiple quantum NMR, which have been

23



the subject of two recent reviews 2l ,28. The principles of multiple

quantum NMR in dipolar coupled systems are reviewed in Chapter 2 and

form the basis for the development of the method in heteronuclear spin

systems (Chap. 3) and for the technique of total spin coherence transfer

echo spectroscopy (TSCTES) described in Chapter 4. Here we merely point

out the potential advantages of MQ NMR with respect to spectral resolu-

tion. As described by Equation 1.58b,higher order multiple quantum

spectra contain many fewer lines than their single quantum counterparts.

At the same time these spectra contain enough lines to allow the various

dipolar couplings to be determined. Thus they provide enhanced spectral

resolution without a loss of 'information and, in fact, can sometimes

provide additional information which is absent from the normal single

21 28quantum spectra ' .

1.6 Effects of Molecular SYmmetry

In this section, we present a brief discussion of molecular symmetry.

29 30As discussed in numerous texts ' , symmetry plays a.crucial role in

determining NMR spectra and we will make frequent use of the principles'

of group theory and symmetry in subsequent chapters of this work. The

importance of molecular symmetry stems from the fact that both single,

quantum and multiple quantum transition operators are totally symmetric

in nature. This means that only transitions between states belonging to

the same representation are allowed. In the absence of relaxation pro-

cesses, which may be of lower symmetry and therefore able to induce

transitions between states of different symmetries, each irreducible

representation may therefore be treated separately.

For applications to NMR spectroscopy, a proper group theory treat-

ment involves consideration of the spin systems permutation symmetry.

24
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This is determined by enumerating all permutations of the nuclei to which

the internal Hamiltonian is invariant. Often the spin systems of inter-

est in NMR experiments are undergoing various intramolecular motions,

including internal vibrations, rotations about carbon-carbon single

bonds, and interconversion between different molecular conformers. If

this motion is sufficiently fast, motional averaging may in effect in-

crease the symmetry of K INT . In liquid crystals. this motion may also

effect the degree of molecular ordering, as discussed in Appendix A.

The permutation symmetry can be quite different from that of the

molecule as a whole. Often a permutation group is found to be isomorphic

with a standard molecular point group. Once the permutation group has

been determined, symmetry-adapted eigenstates can be generated. Within

each irreducible representation, the number of transitions of each order

is then easily counted. For systems of N coupled protons in the absence

of chemical shifts, a simpler procedure for"determining the number of

(N-l) and (N-2) quantum lines has been described
3l

.

1.7 Irreducible Tensor Operators

1.7.1 Definition and Properties

We conclude this chapter with an introduction to irreducible tensor

operators. Although most of the experiments in this thesis are treated

using standard angular momentum operators. it will occasionally prove

convenient to use irreducible tensor' operators because of their easily

calculated behavior under rotations. An irreducible angular momentum

tensor operator of rank ~ is defined
32

to be a set of (2.Q. + 1) operators

TQ.(-Q. s n:5 1.) which transform under rotations according to
n

25

T.Q.
n'

v(.Q.) (aSy).
n',n

(1.60)



where the terms vet) (~By) are Wigner rotation matrix elements and
n' ,n

D(~BY) = exp(iyI ) exp(iBI ) exp(i~I ).z y z

Racah's original definition of the operators T~ by the commutation

relationships

(1. 61)

26

[I , Ti
]z n = nT

i
n

z ~
=T [(i+n)(Z±n+l)]2

ntl

(1. 62a)

(1.6Zb)

is equivalent to that of Equation 1.60.

The coupling of commuting irreducible tensor operators is mathe-

matically identical to the coupling of angular momenta. As an example,

the direct product of two first-rank tensor operators, each operating on

a different spin, is a second-rank tensor operator, a first-rank tensor

operator, and a scalar (Tl ~ Tl = T2 + Tl + TO). More generally, for

the coupling of two commuting tensor operators:

(1.63)

where the quantity in angular brackets is a Clebsch-Gordon coefficient

and (i,j) label the spins. Table of Clebsch-Gordon coefficients and

1 . 1 . f h' l' b f d 1 h 30, 3Z-34ana yt~ca express~ons or t e~r eva uat~on can e oun e sew ere .

Here we simply note that the coefficient <~lnlL2nzlll~Z~n> is non-zero

only for 11.. 1 - 2. ZI ~ 2. ~ 2.1"+.(.Z and n l + nZ = n.

When dealing with spin operators, we are often concerned specifically

with rotations due to applied r.f. pulses. Each r.f. pulse is described

by a nutation angle e and a phase ~, and corresponds mathematically to a

rotation by e about an axis in the xy plane. For r.f. pulses, Equation

1.60 can be simplified to



r
T~ d(2) (6) exp(i(n-n')~),
n' n',n

where

I~ = exp(-i~I)I exp(i~I),
't' z Y z

and the d(2)(6) are reduced Wigner rotation matrix elements
n',n

(d(2) (6) = V(2) (060)).
n',n n',n' ,

1.7.2 Single Quantum Selection Rule

(1. 64)

(1. 65a)

(1. 65b)

27

As described in Section 1.1.4, the equilibrium density matrix for

a spin system in high magnetic field is proportional to the operator

The angular momentum operator I corresponds to the
z

1
irreducible tensor operator TO. Following the application of an arbi-

trarily strong r.f. pulse, the density operator can contain (from'

I 1
Equation 1.64) only the terms TO' Ttl' with appropriate coefficients.

We now ask which spin states this density operator connects. Expressing

these spin states as angular momentum eigenfunctions 12m>, the matrix

element <22m2IT~12lml> can be evaluated by means of the Wigner-Eckart

32-34
theorem • According to this theorem ,

(1. 66)

Thus, as noted in Section

-

;""

where the first factor on the right-hand side is a Clebsch-Gordon co-

efficient and the second factor is a reduced matrix element which is inde-

pendent, of,magnetic quantum numbers. Since <2lmlQ.nlQ.lQ.22m2> = 0 unless

Q.
n = (m

l
- m2), Tn is an n-quantum operator.

1.5.1, a single r.f. pulse applied to a spin system at equilibrium excites

1
only single quantum (Ttl) transitions.



The creation of multiple quantum coherence requires a minimum of

two r.f. pulses. The first results in a density operator composed of

the irreducible tensor operators T~,±l' The evolution of this density

operator under a bilinear Hamiltonian (~I' ~I) can produce operators

i
TO,±l 'of rank i ~ 2. Application of a ~econd r.f. pulse then generates

operators T
i

of rank Inl ~ 2 which connect spin states differing by
n

greater than ±l in total Zeeman quantum number.

1.8 Summary

In this chapter several important topics have been discussed.

Density operators and irreducible tensor operators have been introduced

and the different spin Hamiltonian interactions described. In high

magnetic field, a spin system at equilibrium can be described by the

reduced density operator I. The single quantum selection rule observedz

in single-pulse Fourier transform NMR experiments is a direct consequence

of this fact.

The NMR spectra of molecules dissolved in liquid crystal solvents

are a rich source of structural and motional information. These spectra

become increasingly complex as the size of the spin system increases or

its sYmmetry decreases, however, to the point that individual transitions

are no longer resolved. By reducing the number of observed transitions,

time domain multiple quantum NMR can greatly enhance spectral resolution.

Furthermore, this enhancement can be achieved with no loss of information

about the parameters of the internal spin Hamiltonian XINT . Chapter 2 of

this thesis introduces multiple quantum ~ in dipolar 'coupled systems and

provides necessary background for the heteronuclear MQ experiments of

Chapter 3 and the TSCTES technique of Chapter 4.

28
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Chapter 2: MULTIPLE QUANTUM NMR

In this chapter, some of the basics of multiple quantum (MQ) NMR are

introduced. This subject has been discussed in considerable detail in

. 28 21 18-20 22 35-45 .the l~terature " " as well as ~n several recent Ph.D.

29

h 13,46-51t eses • Emphasis her~ is placed on those aspects of multiple

Techniques for distinguishing MQ orders

quantum NMR which are important in subsequent chapters of this work.

In Section 2.1, the single quantum NMR experiment is reviewed. The

basics of two-dimensional (2-D) NMR techniques are introduced in Section

2.2. Section 2.3 deals with the preparation and detection of multiple

quantum transitions. A variety of different pulse sequences for

accomplishing this excitation are introduced. The problems of inhomo-

geneous broadening of MQ transitions and of separating MQ orders are

discussed in Section 2.4. The sensitivity of a multiple quantum transi-

tion to magnetic field inhomogeneity is shown to be proportional to the

order of that transition, n I

are described which depend on this sensitivity and on the behavior of MQ"

coherence under phase shifts of the r.f. irradiation. In Section 2.5,

the question of multiple quantum line intensities is addressed. An

experimental search procedure useful in optimizing MQ excitation sequences.

parameter proportional phase incrementation (PPPI), is introduced and its

effectiveness demonstrated.

2.1 Single Quantum Fo~rier Transform NMR

The typical Fourier transform NMR experiment begins with the appli

cation of a I pulse to the eq·~i1ibrium spin system (p (O)=I
z
)' Taking

this pulse to be of phase 1, the density matrix following the pulse.

p(O)+, is



I .
x

(2.1)
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[

Free evolution of the spin system under the internal Hamiltonian yields

for p as a function of time:

r
i

nI -

!, -

(2.2)

For a spectrometer having quadrature detection, the two orthogonal chan-

nels of information can be represented by the detection operator

+iI.
y

From Equation 1.26b the observable signal as a function

Expanding this trace in the eigenbasis of X INT yields

(2.3)

= L <iIIxlj><j II+li> exp(iw .. t),
J l_i,j

(2.4)

where w .. = (w.-w.) and w. = <jlexp(i.J(INTt)lj>. This can be readily
J l J l J

simplified to

l<iII+lj>1
2

exp(iw .. t).
Jl

(2.5)

Upon Fourier transformation, the signal as a function of frequency becomes

sew) = 1
2

L l<ilI Ij>1
2

<S(w-w .. ).+ J li <j
(2.6)

Several significant points are worth noting. Since I+ only connects

states differing by 1 in their total Zeeman quantum number «iII+/j> = 0

I I
unless m. -m. = 1), Equation 2.6 demonstrates that only single quantum

l J
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transitions are observed. (This same result was derived using irredu-

cible tensor operators in Section 1.7.2). This result reflects the fol-

lowing facts: (1) The density matrix following a single pulse contains

only single quantum coherence and (2) the spectrometer only detects

oscillating magnetic dipole radiation. corresponding to single quantum

transitions. These two facts are important in the"design of pulse se-

quences for the excitati.on and detection of multiple quantum coherence.

as discussed in the next section. Equation 2.6 also demonstrates that

all single quantum lines have the same relative phase. In addition.

intensities of individual transitions are readily calculated once I+ is

expressed in the eigenbasis of X
INT

.

2.2 Two-Dimensional NMR Techniques

2.2.1 General Considerations

Time domain multiple quantum NMR is one example of a general class

of techniques known as two-dimensional (2-D)NMR. The concept of 2-D

experiments was first introduced approximately ten years ago in an

52unpublished lecture . Since that time a wide variety of 2-D experiments

53have been developed and several reviews have appeared in the liter-

31

54... 57
ature A schematic representation of the general 2-D experiment

is shown in Figure 2.1.

The propagator U acts on p(G) to produce a non-equilibrium initial

condition. The system is then allowed to evolve for the variable time

period t
l

. No attempt is made to monitor the signal during this time.

The propagator V serves to correlate the evolution~Uring t
l

with the

time period t
2

, during which signal is collected. The experiment is

repeated many tim~s, with t l being incremented by an amount 6t l with each

acquisition. The resulting two-dimensional data array expresses the
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PREPARATION EVOLUTION MIXING DETECTION

PROPAGATOR: J U exp (-iJl.I,l V exp (-i;'&ztzl

TIME VARIABLE: T t. r' 12
' -,

I
t

lIl. 11I2-1304l

Figure 2.1. Schematic diagram of the general 2-D NMR
experiment. Each of the four labeled time
periods is characterized by its respective
propagator and time variable. The propagator
U(T) prepares a non-equilibrium initial
condition which evolves for the variable time
tl under the Hamiltonian ~l. The propagator
V(T') serves to correlate this tl-evolution
with the time period t

2
(characterized by t~e

Hamiltonian ~2)' during which signal is
collected.
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observed signal as a function of time variables t
l

and t
2

, S(t
l
,t

2
). By

performing a double Fourier transformation with respect to both t
l

and

t 2 , a full 2-D spectrum, S(w
l

,w2), is obtained. The great power of this

method is in its ability to correlate the evolution of the system in an

unseen time dimension (t
l

) with the detected t 2-dependent signal. By

changing the propagators U and V as well as perhaps manipulating the

Hamiltonians during t
l

~nd t 2 (Xl and X2, respectively), an endless

variety of 2-D experiments can be designed.

2.2.2 The Multiple Quantum Experiment

Multiple quantum NMR experiments are inherently two-dimensional in

nature. This is because, as noted in Section 2.1, multiple quantum

transitions cannot be detected directly with the spectrometer. They

must instead be monitored by their modulating effects on the various

single quantum transitions detected during t 2 . For all of the multiple

quantum experiments in this thesis, a single point at t
2

= a is sampled

for each t
l

value. The propagator U serves to generate multiple quantum

coherence, while V mixes this coherence back to single quantum observables.

The density matrix as a function of U(T)., t l , and VeT') can be

written

33

(2.7)

l
Treating the x and y data channels separately, the observed signal

= Tr[V(T') exp(-tKItl)U(T)~(O)ut(T)exp(tKItl)Vt(T')IaJ.

(2.8)
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and

(2.9a) r
(

a(-T') (2.9b)

the trace in Equation 3.8 can be expanded in the eigenbasis of Xl to

Sa(T,T',t l ) = r <i/p(T) Ij><j!a(-T') Ii> eXP(iwjit l ).
i,j

(2.10)

The Fourier transform with respect to t
l

contains all of the frequencies

w.. for which the product <ilp(T) /j><jla(-T') Ii> is non-zero. Unlike
J~

the signal following a single r.f. pulse, we are no longer restricted to

the observation of single quantum transitions. Instead, subject to the

properties of the propagators U(T) and V(T'), all multiple quantum orders

can be observed. As an example, Figure 2.2a shows the zero through eight

quantum proton spectra of the pure liquid crystal pentylcyanobiphenyl-d
ll

in the nematic phase. In the next section, we examine the properties of

a number of different pulse sequences used for the excitation and detec-

tion of multiple quantum transitions. A more complete discussion of

multiple quantum transition intensities is postponed until Section 2.5.

2.3 Preparation and Detection of Xultiple Quantum Coherence

2.3.1 The Generalized Three Pulse Experiment

In this section we consider the preparation and detection of mul-

tiple quantum transitions. The simplest multiple quantum pulse sequence,

illustrated in Figure 2.3a, consists of three r.f. pulses. The first

two, separated by a fixed delay T, constitute the preparation period

which serves' to create multiple quantum coherences. Following evolution

for a time t
l

, the third pulse mixes the multiple quantum transitions

r -

1

I ~

b
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Figure 2.2. Proton multiple quantum spectra of the liquid crystal
pentylcyanobiphenyl-dll in the nematic phase. In all three,
the strongest 0, 1, 2, and 4 quantum lines have been trun
cated. (a) An experimental spectrum, displayed in magni
tude mode, is the average of six such spectra collected
with preparation times T ranging from 0.4 to 1.4 msec.
Only one half of the spectrum, which is symmetric about
its center, is shown. Separation of multiple quantum
orders was achieved by TPPI (Sec. 2.4.2.2). (b) An ultimate
T average (Sec. 2.5.2). (c) A simulated spectrum, based
upon the statistical madel (Sec. 2.5.3). (Figure courtesy
of Steve Sinton and Jim Murdoch.)
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XBL 533-86Z2

Figure Z.3(a). The basic three-pulse multiple quantum pulse sequence.
Each pulse is characterized by a flip angle a and
phase 0. Transverse magnetization components Ix and
Iy are sampled during tZ' . (b) The symmetry of the
preparation and mixing periods is emphasized by
imagining the multiple quantum experiment to be a
four-pulse experiment with I the detected operator.
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r
back into single quantum transitions. These then evolve into observable

signal after a fixed time T'. The preparation and mixing periods are

referred to jointly as excitation periods.

Much of the following discussion describes properties of the

multiple quantum preparation period. Because of the basic symmetry of

20 21preparation and mixing periods ' , the same considerations govern the

choice of pulse and timing parameters in each and the conclusions reached

apply equally well to both excitation periods. This preparation/mixing

period symmetry· is most easily visualized by imagining the basic multiple

quantum experiment to be a four pulse experiment with I the detected
z

operator (Fig. 2.3b). (The same conclusions which are drawn for this

pulse sequence also apply to the sequence of Figure 2.3a, where trans-

verse magnetization components are detected.) For this experiment, the

intensity of a transition i-j is given (from Eq. 2.10) by the product

37

(2.11)

This intensity is maximized when VeT') = Ut(T), for which

(2.12 )

The condition VeT') = Ut(T) requires reversing the phases of all

r.f. pulses as well as "choosing" T' = -T. The ability to effectively

"reverse time" by changing the sign of the effective Hamiltonian has been

58 59demonstrated ' • For spectra of non-overlapping lines, equivalent inten-

sities are obtained for the more easily achieved condition VeT') = U(T).

Each line now has its own phase factor, however, and spectra must be

displayed in magnitude mode. For spectra containing overlapping transi-

tions, these differing phase factors lead to a cancellation of intensity
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and time-reversal methods must be employed ' •

2.3.2 Specific Three-Pulse Sequences

We now evaluate the pulse sequence of Figure 2.3a for different

combinations of flip angles and phases. As described previously, the

spin Hamiltonian for a set of coupled protons contains terms due to

chemical shifts, resonance offset, dipolar couplings, and scalar

couplings. The problem of calculating the evolution of the spin system

under this Hamiltonian is a difficult one which generally requires use

of a computer. For molecules dissolved in liquid crystalline solvents,

the dipolar couplings are usually dominant. For the present, we assume

that the only terms present in the Hamiltonian are due to dipolar

couplings and p~rhaps a resonance offset, i.e., KINT =~I - 6wI z '

In Section 2.3.3 the consequences of relaxing this assumption are

discussed.

The propagator U(T) associated with two r.f. pulses having flip

angles 81 and 82 and phases ~l and ~2' respectively, which are separated

in time by a delay T is

38

r '

I

(2.13)

In evaluating this propagator it is convenient to allow the pulses.to

act directly on the term exp(-~INTT).

the dipolar Hamiltonian can be written

Recall from Equation 1.42 that

, 
c:;;

~II =- L D~ .(3I .1 . - 1..1.).
. . 1J Zl ZJ -1 - J
l<J

(2.14)

Labeling this as xD , wezz

~I' rotated by I pulses

define uD and uD as the dipolar Hamiltonian,
xx yy

of phases y and x, respectively:



r
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\

Jtl exp(-i I IY)~I exp(i I I y) =-I
,

= D.. (31 . I . - I .• I.) , (2.lSa)
xx i<j ~J x~ xJ ~~ ~J

Jtl ~ IX)~I exp(i ; Ix) =-I
,

=,exp(-i D.. (31 . I . - I .• I.) . (2 .1Sb)
yy i<j ~J y~ YJ ~~ ~J

Simple algebraic manipulation allows these to be rewritten

39

J<?
yy

=_.!..J<? _1 \' D' (I I +1 I)
2 zz 4. L. ij +i +j -i -j ,

~<J

= - 2
1 Jtl + -4

3
I D ~ • (1+. 1+. + I . I .).zz ., ~J 1. J -1. - J

1. <J

(2.l6a)

(2.l6b)

Thus the rotated dipolar Hamiltonian is a pure zero/two quantum operator.

The consequences of this will be explored below.

In describing the prepared density matrix p(T) it is convenient to

use a power series expansion:

2 ,
'T ,

= p(O) + iT[P(O),XINT ] - 2: [[P(O)'~INT]' ~INT] +...

where

(2.17)

(2.18)

We will assume that the first r.f. pulse is a (~)x pulse (6
1

=I,<P
1

= x)

and examine p(T) for different choices of 62 and <P 2 .

resonance offset, excites only

2.3.2.1

The

1T
6Z = I' <P z = x,

1T
sequence (I)x -

l1w = 0

1T
T - (I)x (Fig. 2.4a), in the absence of a

46 60even-quantum coherence' For this

pulse sequence the Hamiltonian ~~NT is given by ~y' With p(O) = I , the
z

prepared density matrix can be expanded according to Equation Z.17 as
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Figure 2.4. Multiple quantum pulse sequences.
(a) For ~w = 0, this sequence excites only
even-quantum coherence .. (b) For ~w = 0,
this sequence excites only odd-quantum
coherence. (c) This sequence excites both
even and odd-quantum coherence. (d)-(f)
Examples of multiple quantum sequences
incorporating ~ pulses into the preparation,
evolution, and mixing periods.
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2
= I + i, [I ,~ ] -.!-.2 [[ I ,~ ], ~ ] +...z zyy zyy yy (2.19)

41

As a direct result of the bilinear nature of ~ (Eq. 2.l6b), p(,) isyy

found to contain only even-quantum coherence (including zero) when these

commutators are evaluated. Zero quantum coherence first appears in the

2 0 h O
0 hOI h h, term 1n t 1S expans10n, w 1 e ot er even n-quantum co erences are

(n_l)47,6l
first observed in the term proportional to , .

2.3.2.2 7T
62 = I' ~2 = y, 6w = 0

7T 1TIn the absence of a resonance offset, the sequence ('&'-2) -, - (-2). x y
46 60

(Fig. 2.4b) excites only odd-quantum coherence ' . This is most easily

seen by inserting the identity

the propagator for the initial

becomes

exp(-i!.I )
2 y

1T
(I)x pulse.

exp (iI I y ) immediately after

The prepared density operator

x exp(~ ,) = exp(-~ ,)I exp(~ c).
xx xx y .xx

Expanding p(,) in a series yields

(2.20)

pel) = I + iT[I ,~ ]
Y Y xx

2
~2 [[I ,JIJ ],JIJ ] +...

y xx xx
(2.21)

which, upon evaluating the commutators, is seen to contain only odd-

quantum coherence. This selectivity results from the action of the bi

linear operator·xD (Equation 2.l6a)on the single quantum initial conditionxx

I 0 Obviously, single quantum coherence first appears in the ,-independent
y

term, while other odd n-quantum coherence is first observed in the term
o (n_l)47,61

proport1onal to ,



1T
2.3.2.3 6 2 = 4' 4>2 = x, ~w = °

1T 1T
The sequence (I)x - "[' - ("4-);( (Fig. 2.4c) excites both even and

odd-quantum coherence. If the ioitial C;)x pulse is viewed as a pair of

1T
(4)x pulses, the prepared density matrix can be written as r:

t :::r -
\

(2.22 )

The ro tated dipolar coupling Hamil tonian exp (-i*I)j{~I exp (i ~ Ix) equals

l(;;.rD +,fJ) which is itself a 0, :!:2 quantum operator. With an initial/2" zz yy'

density matrix which is a linear combination of those of Sections 2.3.2.1

and 2.3.2.2, it is easily seen that the expansion of peT) will contain

all orders of coherence.

2.3.2.4 ~w # °
The pulse sequences considered thus far have been analyzed

assuming no resonance offset.
1T

With 81 = 2' 4>1 = x, the preparation

sequence can be made to excite only even-quantum coherence, only odd~

quantum coherence, or both, depending on the choice of flip angle 9
2

and phase ~2' In the presence of a resonance offset, the pulse sequences

(~) - T - (~)- and (~) - T - (~) themselves give a mixture of even and
2 x 2 x 2 x 2 Y

odd-quantum coherence depending upon the value of (~WT).

Consider the even-quantum selective sequence of Figure 2.4a for

~W * O. The prepared density matrix is

= exp(-i~Ix) eXP(-iOC1I - ~wIz)T) exp(i~I)I exp(-i~I)_ ~ x z _ x

(2.23)

.
~ -

L



Since the secular dipolar Hamiltonian, by definition, commutes with I
z
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r
\

Equation 2.23 can therefore be simplified:

= exp(-i~ ,) exp(-i~wI ,)1 exp(i~wI ,) exp(i~ ,)
yy y z y yy

(2.24)

(2.25a)

{

l

= exp(-i~ ,)[1 cos(~w,)+I sin(~w,)] exp(i~ ,). (2.25b)
IT Z x IT

This is reminiscent of Equation 2.22, with a bilinear operator acting

upon an initial density matrix which is a linear combination of I and
Z

I. When ~w, = m~ only even-quantum coherence is observed, while pure
x

odd-quantum appears for ~w, = m~/2. For intermediate values pel) contains

a mixture of even and odd coherence.

2.3.3 Sequences Incorporating One or More n Pulses

Beginning with the basic three-pulse experiment of Figure 2.2a, a

wide variety of different multiple quantum pulse sequences can be

designed. A most common modification is the addition of rr pulses in the

, "middle of the preparation and mixing period (at times 2 and 2:

respectively) as well as in the middle of the evolution period, at time

t l /2 (Figs. 2.4d-f). The effect of these n pulses is to change the sign

of all spin Hamiltonian terms which are linear in I: (1) resonance
Z

offset, (2) chemical shift, and (3) magnetic field inhomogeneity. The

evolution period rr pulse is discussed in greater detail in Section 4.1.1.

Here we focus on the inclusion of ~ pulses in the multiple quantum pre-

paration and mixing periods.

Equation 2.25b emphasizes the sensitivity of even/odd selective

experiments to resonance offset, ~w. Incorporation of rr pulses into the

preparation and mixing periods insures that the arguments of Sections



2.3.2.1 and 2.3.2.2 remain valid in the presence of a non-zero resonance

offset. In addition, these pulses remove the effects of magnetic field

inhomogeneity,-w(r)I •
- z

2.3.4 Spin Systems Having Chemical Shifts

Until now, we have limited ourselves to a spin Hamiltonian composed

of dipolar couplings and a possible resonance offset. We now ask about

the preparation and detection of multiple quantum coherence in systems

having chemical shift differences between the spins. In isotropic sys-

terns, these chemical shift differences are required in order that the

bilinear J-coupling be capable of exciting multiple quantum transitions.

In anisotropic systems, non-zero chemical shifts allow the scalar

couplings to contribute to multiple quantum excitation. Due to the

relative size of dipqlar and scalar couplings, however, we will continue'

to neglect the J-couplings in the qualitative discussion of this section.

Because the scalar couplings are themselves bilinear operators, their

inclusion would not alter any of the conclusions drawn.

In the presence of chemical shifts, the multiple quantum sequences

of Figures 2.4a and b are no longer even/odd selective. As with a

non-zero resonance offset, this is because the spin Hamiltonian now

contains single spin operator terms. Unlike the resonance offset,

however, the chemical shift Hamiltonian does not commute with ~I and a

simplification like that of Equation 2.24 cannot be made. Horeover,

this lack of commutivity precludes the removal of chemical shift terms

by inclusion of single IT pulses, as in Figures 2.4d-f. The implications

of this fact with regard to the evolution period t
l

are the subject of

Chapter 4 on total spin coherence transfer echo spectroscopy. In terms

of the excitation periods, it means that even/odd selectivity cannot be

44
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restored by n pulses at 2 and 2:. These 'deviations' from even/odd

selectivity increase with increasing chemical shift magnitudes. This

selectivity can be restored, ·even in systems with large chemical shifts,

by using a train of closely spaced n pulses in both preparation and

mixing.

2.4 Inhomogeneous Broadening of MQ Lines/Separation of MQ Orders

In this section,the problems of the inhomogeneous broadening of

multiple quantum lines and separation of multiple quantum orders are

addressed. At first, the connection between these two subjects may not

be apparent. As will be demonstrated, however, both involve a consider-

ation of the evolution of multiple quantum transitions under Hamiltonians

proportional to the operator I. It is the order-dependent behaviorz

of multiple quantum lines under such Hamiltonians which both account

for the increasing susceptibility of higher order transitions to magnet

inhomogeneity and allow the separation of multiple quantum spectra by

order.

2.4.1 Sensitivity to Magnetic Field Inhomogeneity

Recall from Section 2.2.2 that the observed signal in a multiple

quantum NMR experiment can be written

Let's assume that the Hamiltonian Xl contains no off-resonance term and

examine the effect of its explicit introduction into the evolution period.

Since 1(1 commutes with the off-resonance term -~wI
z '

45

(2.27)



and Equation 2.26 becomes

46 r'
l

(2.28a)

=
. II p.j(-r)a .. (-T') exp(iw .. t

l
) exp(i.c..wi .... -m.)t

l
)·

i<j 1. J1. J1. • J
(2.28b)

IThus a resonance offset of lIw appears n ij times as lane to a multiple

quantum transition. The same is true of the magnetic :~eld inhomogeneity,

w(~) . Multiple quantum lines are broadened by an arno..:: proportional to

the order of the transition
S3

. This means that the hc··.~·geneity of the

magnetic field can limit the attainable resolution in Jltiple quantum

spectra in situations where it is not resolution 'limi:'~g in single

quantum spectroscopy. A rr pulse placed at themidpoi~ of the evolution

period will remove the inhomogeneous broadening due tJ tne magnet, but

often introduces other complications, as discussed in Chapter 4. This

fact provides one of the primary motivations for the Jevelopment of the

TSCTES method. Equation 2.28b also reveals that zero-~uantum transitions

if d b . f' ld . h . 53, hare una ecte y magnetl.c I.e l.n omogenel.ty anc 3S suc are a con-

venient observable for the measurement of transverse relaxation times

T 22
2 .

2.4.2 Separation of ~ultiDle Quantum Orders

In interpreting multiple quantum spectra, it is~.:'~~'!enient to sort

out transitions according to changes in the total Ze2~~~ quantum number,

In. At first, it might seem that this separation shoul~ be an easy

matter, since transitions of differing order differ :11 ~nergy by multiples

f .

(

( .

I
b

r"
Lu

I
of the Larmor frequency, w (Fig. 1.3).

o
However, it is precisely these



large energy differences which are removed in the resonant rotating frame

47

(Sec. 1.1.5). In this frame, transition frequencies are determined by

chemical shifts and spin-spin interactions and transitions of all orders

overlap completely. A variety of different approaches have been designed

which address the problem of separating multiple quantum orders. These

include shifts in the spectrometer reference frequency46, phase shifts of

. 37 19 41 62the appl~ed r.f. pulses ' , , and applications of pulsed magnetic

. 63-66 21
field grad~ents '.

2.4.2.1 Resonance Offset

Perhaps the simplest approach to the separation of multiple

quantum orders makes use of a resonance offset ~w. According to Equation

I
2.28b a transition i-j·evolves under an effective offset given by n .. ~w.

~J

By choosing ~w gr.eater than the spectral width of an indiyidual order,'

separation of transitions according to total change in Zeeman quantum

number is achieved.
I

Transitions of order n are centered about a

i
t-

I
frequency which is offset from zero by an amount n ~w. The increment

in t
l

must be chosen to allow sufficient bandwidth for a total of (2N+ 1)

orders.

There are problems associated with using resonance offsets to

separate multiple quantum spectra, however. If the receiver reference

frequency also serves as the carrier frequency for the r.f. pulses, going

far off-resonance may lead to an inability to excite the entire band-

width of transitions. This difficulty can be overcome through the use

of two different frequency sources. A more fundamental objection to

separating orders by a resonance offset is its incompatibility with

experiments which employ a spin echo during t
1

. Since the resonance



offset and magnet inhomogeneity terms are of the same form, any pulse

sequence which removes We!) will simultaneously remove the offset 6w.

In obtaining spectra which are free of inhomogeneous broadening, the

separation of multiple quantum orders is lost.

2.4.2.2 Time Proportional Phase Incrementation (TPPI)

ClearlY,alternative approaches for distinguishing between

orders are desirable. Two closely related methods take advantage of the

response of multiple quantum coherence to phase shifts in the irradia-

ting r.f. field. In Equation 1.34 the phase of the r.f., ~, was defined

by

48
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r
P
I

(2.29)

As this equation imp~ies, a phase shift 6~ corresponds to a rotat~on

about r :z

(2.30)

If each cf the pulses of the preparation period is phase shifted by an

amount ~~, the effect can be described by an overall phase shift of the

propagator U(T):

(2.31)

The effect on the detected signal S is easily calculated:a .

I
i<j

p .. (T)a .. (-r')<il exp(-iMI )Ii>
~J J ~ z

= L p .. (T)a .. (-r') exp(in~.21¢) exp(bJ .. t
1
).

i<j ~J J~ J~ J~

(2.32a)

(2.32b)
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Thus phase shifting the r.f. introduces an order-dependent phase factor

into the observed signal.

Suppose that the phase of each pulse in the preparation period is

incremented by ~$ with each increment in t
l

. We may then associate with

the phase shift ~$ a pseudo-resonance offset ~w', defined by ~w' = ~~: .
1

This technique is known as time proportional phase incrementation

19 41 .(TPPI) , and the s1gnal S is given by
a

49

(2.33)

Unlike a real offset, however, separation of orders is not

I
!
~

A simple TPPI multiple quantum pulse sequence is illustrated in Figure

2.5a. As with an actual resonance offset, the center of each multiple

quantum order in a TPPI experiment is shifted by an amount n~.~w' .
. J 1

lost if a

spin echo is used during the evolution period. To prevent foldback of

higher order spectra, ~$ should be chosen S i, while ~tl must be chosen

to provide a bandwidth which is sufficient to accommodate (2N + 1) orders.

TPPI was used in acquiring the spectra of Figure 2.2a.

2.4.2.3 Phase Fourier Transformation (PFT)

An alternate method for separating multiple quantum orders

based upon phase shifting the r.f. pulses is known as phase Fourier

transformation (PFT)37. Under this technique a series of experiments

are performed and the gathered free induction decays co-added. Within

each experiment the phases of the p!eparation period pulses are held

constant while a phase shift of all of these pulses by an amount ~¢ is

performed between experiments. As an example, co-addition of signal

from two experiments having relative preparation phases of 0 and rr retains
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Figure 2.5. (a) TPPI pulse sequence to allow separation of signal from
different multiple quantum orders. The phases of the two
preparation period ~/2 pulses are incremented with each
increment in tl while the phases of the pulses in the
evolution and mixing periods are fixed throughout.
(b) CTEF pulse sequence to allow selection of signal from
a single multiple quantum order. In this sequence the
time period T is fixed and the cross-hatched areas repre
sent application of a pulsed magnetic field gradient.
" is set equal to InIIT, where n I is the multiple quantum
order of interest. A coherence transfer echo is created
at time t 2 = 0 for this order only.
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only even-quantum transitions (odd quantum transitions can be obtained

by subtracting the f.i.d.'s from one another). This method is easily

generalized to allow other combinations of orders to be sorted. A total

of (2N+ 1) experiments must be performed to allow each multiple quantum

order to be individually distinguished. The time and storage require-

ments for such a series of experiments are approximately the same as in

the corresponding TPPI experiment. PFT and TPPI can also be combined

together as a means, for example, of separating and displaying only even

orders of coherence.

2.4.2.4 Coherence Transfer Echo Filtering (CTEF)

We discuss in this section a final means for separating the

various multiple quantum orders. Relying on the order-dependent behavior

of multiple quantum coherence under the influence of the magnetic field

inhomogeneity -ui,r) I , the method is known as coherence transfer echo
- z

filtering (CTEF)21. A typical multiple quantum pulse sequence incorpora-

51

ting CTEF is shown in Figure 2.5b. T
~ pulses at 2 and t 1/2 insure that

all dephasing due to-w(r)Iz has been refocussedat time t
l

. Multiple

quantum coherence is allowed to evolve freely for an additional time T.

Depending upon the homogeneity of H , a field-spoiling gradient may be
o

required during this time. During T each multiple quantum order accu-

mulates a "dephasing" factor given by

I

L (2.34)

~-

L~

1 '

t:

IT
As in other multiple quantum sequences, the final 2 pulse transfers co-

herence and rephasing as single quantum coherence begins. After a time

T', the accumulated phase factor is



I
I

(2.35)

I 35 63
When n T = T' a coherence transfer echo ' occurs and the signal at

this point is free of magnet inhomogeneity. Clearly a different T' is r
required to satisfy the echo condition for each multiple quantum order

In. By choosing T' appropriately and sampling at the point t
2

= 0, only

signal resulting from coherence which was nI_quantum during t
l

is de

tected. In order for this method to be effective, w(r)T must be large

enough that the echoes in T' resulting from the different multiple quan-

tum orders are well separated from one another. By sampling the signal

at several points in T' (each satisfying the condition T' = nIT for a

different n I ) it is possible,after some rearrangement of the data, to

obtain spectra for several multiple quantum orders simultaneously. In

practice, however, the spectra-presented in Chapters 3 and 4 were each

obtained in sepa~ateexperiments.

There are a couple of advantages to using CTEF to detect the dif-

In addition to thermal

One of these relates to

the concept of two-dimensional

ferent multiple quantum orders individually.

. 21or t l no~se

noise, which is an inevitable part of all NMR experiments, multiple

quantum experiments suffer from noise as a result of their two-dimen-

sional nature. This t
l

noise can result from any spectrometer insta

bilities which cause the preparation and mixing sequences to fluctuate

from one acquisition to the next during an experiment. This noise has

been shown to be multiplicative in nature, being proportional to the

. d f h d d' 121
magn~tu e 0 t e etecte s~gna By limiting the detected signal to

the order of interest only, CTEF helps to reduce t
l

noise. Additional

advantages which result from detecting a single multiple quantum order

are savings in computer storage space and, perhaps, experimental running

time.

L
b



2.5 Multiple Quantum Line Intensities

53

We return now to the question of line intensities in multiple quan-r,
2.5.1 Ensemble Averaging

f -=

L-.:

tum experiments. In order to take advantage of the enhanced resolution

of multiple quantum spectra, it is necessary to excite with appreciable

intensity the higher order multiple quantum transitions. In a system

of many coupled spins, the dynamics of the preparation and mixing periods

are exceedingly complex and it is unlikely that a single value of Twill

suffice to excite all of the desired transitions. Instead a series of

experiments are generally performed for a variety of different TIS.

Fourier transforms and magnitude spectra are calculated for each and the

magnitude spectra are co-added. It is hoped that the resulting ensemble

average contains more high-order lines with sizeable intensities than

the spectrum for any single preparation/mixing time alone. An experi-

mental search procedure which is very useful in choosing favorable values

for T is described in Section 2.5.5.

2.5.2 Line Intensity Computation

The complexities of the excitation period dynamics pose computational

as well as experimental difficulties. Analytical formulae have been

given for multiple quantum line intensities in several simple spin-~

systems. These include three-pulse excitation of AB 53 ,39,67, A
2

39 , and

~61 spin systems and AB systems under excitation sequences incorporating

1 · . / . . 68 d· 1· 69 R 1rr pu ses ~n preparat10n m1x1ng an ~n evo ut10n . ecent y, computer

programs have been written which can calculate line intensities for sys-

terns of up to eight spin-~ nuclei under a wide variety of excitation

51 61 70sequences ' , For non-selective sequences, these programs are

-

~

capable of performing two different types of computations.



The first are exact dynamics calculations based upon a particular

set of excitation parameters. The intensities thus generated can be

compared directly with those observed in an experimental spectrum with

the same parameters. A second approach involves calculating a so-called

54 r
(

r\ .

51 61
ultimate tau-averaged spectrum ' As the name implies, the computed

quantities are average line intensities which result from integrating

over all values of the preparation/mixing parameter T. Analytical

expressions for the required integrals over T are readily obtained,

making computation of the ultimate tau-average straightfonvard. The

savings in computational time when compared to making separate calcula-

tions for many different T'S are considerable and, as illustrated in

Figure 2.2b, ultimate tau-averaged intensities compare favorably with

those from an ensemble-averaged set of experiments. The discrepancies

in this figure between calculated and experimental intensities are due

largely to having considered a limited number of experimental T'S.

2.5.3 Statistical Model for Line Intensities

Both the analytical formulae and computer programs described in the

previous section require a knowledge of the parameters of the spin

Hamiltonian in order to compute line intensities. However, these chem-

ical shifts and spin-spin couplings are often the unknowns of interest

in multiple quantum experiments. In such cases, intensities serve to

confirm the correctness of the spin Hamiltonian parameter assignments,

r"I -

i

which are generally made based upon transition frequencies alone. This

leads to the question of whether a model exists which can give some ti
general information about expected intensities without requiring a de-

tailed consideration of the excitation dynamics.

I -

~
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A particularly simple model for multiple quantum line intensities,

the statistical model, assumes all symmetry allowed transitions (transi-

tions between states belonging to the same irreducible representation)

55

general system of N spin-~ nuclei was given in Equation 1.58b as

f~

\
I

to be equal in magnitude.
I

The number of n -quantum transitions in a

(2.36 )

For large N, this equation can be approximated as

Z I
n

N I 2
~ 4 exp[-(n) IN]. (2.37)

It is certainly correct

Thus, in the absence of any molecular symmetry, the number of transitions

per order has a Gaussian distribution. The statistical model therefore

predicts that the integrated intensity should falloff very rapidly with

increasing order, owing to the relatively few number of higher order

transitions. A similar conclusion is reached for systems having permu-

tation symmetry, if the available magnetization is divided equally among

all symmetry allowed transitions.

While providing a good qualitative estimate of line intensities,

the statistical model fails from a quantitative point of view (Fig.

2.2c). In particula~ it tends to underestimate the intensities of the

higher order transitions, especially in spin systems in which most of the

d . I I . h h 1 b . . 61~po e coup ~ngs ave t e same a ge ra~c s~gn

in its prediction that most of the available magnetization is distributed

amongst transitions of low order, however. This fact, in turn, has pro-

vided much of the motivation behind the development of the techniques of

selective excitation.



2.5.4 Selective Excitation

1 .. 70-73,20,47,44,21. 1 h d' dSe ective exc~tat~on ~nvo ves t e es~gn an use

of preparation and mixing sequences which excite only multiple quantum

transitions of a particular (high) order. Selective excitation sequences

56 r
l

r
I

consist of long trains of carefully

These sequences are quite demanding

spaced, phase shifted r.f. pulses.

. 47 72 73
exper~mentally , , , though the r ',

potential gains in signal-to-noise for high-order transitions are sub-

. 147 ,20,21 S l' .. d f
stant~a .. e ect~ve exc~tat~on sequences were not use or any

of the experiments described in this thesis.

2.5.5 Parameter Proportional Phase Incrementation (P?PI)

2.5.5.1 Motivation

Many experiments require the excitation of transitions of one

or more.high multiple quantum orders. The task of choosing preparation

and mixing period parameters which excite these transitions with appre-

ciable intensities is particularly important in light of the observation

that most of the available magnetization is distributed among the lower

orders. As noted previously, incomplete knowledge of the spin Hamiltonian

often precludes the use of a computer to aid in this task. One is

basically left with an experimental search problem. To this end, we

have developed a procedure for rapid search over excitation sequence para-

meters which is called the parameter proportional phase incrementation

74(PPPI) method. This search procedure is related to another which has

been described recently75. In close analogy to the TPPI method (Sec.

2.4.2.2), the PPPI experiment involves the simultaneous incrementation

of the search parameter and phase of the preparation period pulses with

each acquisition of a two-dimensional experiment. In this work,the

I:
I ",
o
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parameter most commonly searched over is the multiple quantum preparation

time, and the PPPI procedure is discussed in terms of this parameter.

2.5.5.2 Description and Experimental Demonstration

The generalized schematic representation of the two-dimensional

experiment shown in Figure 2.1 applies equally well to PPPI experiments

and is repeated for convenience in Figure 2.6a. The search over, is

made by fixing the value of t
l

and incrementing, and ,'(=,) on suc

cessive shots. That, and " can be varied simultaneously is a direct

result of the aforementioned symmetry of preparation and mixing periods.

We demonstrate the method on the four spin acetaldehyde molecule dis-

solved in the liquid crystal p-octylphenyl 2-chloro-4-(p-heptylbenzoyloxy)-

benzoate (Eastman 15320). The actual pulse sequence used is shown in

Figure 2. 6b with a single magnetization point at t 2 = 0 sampled for each

value of T.

Figure 2.7a shows one channel of the resulting proton NMR signal

with ,/2 varied from 12.80 to 17.92 msec. One component of the complex

Fourier transform of this signal is displayed in Figure 2.7b. The

contribution to this transform from the various orders of coherence

-4 $ n I
$ 4 are well separated due to the r.f. phase shifts associated

with each increment of T. The contribution from one value of n I is

shifted to the origin, all other orders are cleared, and an inverse

Fourier transform is then performed. The result is again a complex

function of T which is now specific to a particular order n I and free of

the extraneous modulation which the phase shifting introduced. The

Imagnitude of this function is shown in Figure 2.7d for n = 4, the total

spin coherence (Sec. 4.1.2). This is an excitation function, describing

I T
the magnitude of the n = 4 coherence for each value of 2. Additional
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(a)

LABEL: PREPARATION EVOLUTION MIXING DETECTION

PROPAGATOR: J U I exp(-iJl,t,) V exp (-i3J2 t 2)

TIME VARIABLE: T t, T' t2

,. ,. ,.
I.. I
I
I
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TT/2

XBL8110-6B02

Figure 2.6. The PPPI experiment. (a) Generalized schematic diagram of
the 2-D NMR experiment, reproduced from Figure 2.1. In
the PPPI experiment, the r.f. phase of U and the search
parameter characterizing both U and V are incremented from
one shot to the next. The signal is collected in t2 for
a fixed value of tl. (b) Actual pulse sequence used for
the PPPI search over the excitation parameter T. The
phase of the first three r.f. pulses is incremented along
with the excitation time T = T'. The other times and
pulse phases are held constant. For each value of T, a
single magnetization point is sampled at t

2
= o.



Figure 2.7. Collection and processing of data from a PPPI experiment.
(a) One channel of the proton NMR signal of partially
oriented acetaldehyde collected using the pulse sequence
of Figure 2.6b, with preparation time variable T/2
ranging from 12.80 to 17.92 msec. (b) One component of
the complex Fourier transform of the signal showing
contributions from the various multiple quantum orders
nI , -4 $ n I $ 4, well separated by incrementation of the
phase of the preparation pulses. (c) Response of a
single order (n I = 4) shif ted back to the origin to
remove the apparent offset attributable to phase
incrementation. (d) Display of the magnitude of the
inverse Fourier transform of the response in (c). From
this excitation function, the best values of the search
parameter T for the selected order may be chosen.
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Iexcitation functions for n = 2 and 4 over the range T = 2.0-14.0 msec

are shown in Figure 2.8, along with computer simulations of these

functions.

Figure 2.9 demonstrates the success of the PPPI search procedure.

The upper trace is the excitation function of Figure 2.7d, the lower

trace a section of this function on an expanded time scale. Superimposed

are discrete measurements of the nI
= 4 line magnitude from a series of

TPPI multiple quantum spectra using the pulse sequence of Figure 2.6b

with fixed t and variable t
l

•

2.5.5.3 Limitations

The use of PPPI to find a satisfactory excitation sequence for

the total spin coherence represents a particularly simple case, because

this coherence is always associated with a single transition frequency.

Within each multiple quantum order n I the excitation function measures

, 2
I L P •• (T) I , (2.38)

. . ~J
~,J

I I I
where the sum is restricted to i,j such that (m. -m.) = n. For spectra

~ J

containing non-overlapping transitions, however, the quantity which we

would like to maximize is

(2.39)

I
the sum of the magnitudes of all of the n -quantum lines. For the total

spin coherence, expressions (2.38) and (2.39) are equal and the PPPI

search procedure accurately measures the transition magnitude.

The situation for nI other than the total spin coherence is more

61
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complicated. Recall that the terms P • • (t) are themselves complex numbers
~J



Figure 2.8. Experimental and simulated excitation functions for

partially oriented acetaldehyde. Experimental functions

were collected using the pulse sequence of Figure 2.6b

with T ranging from 2.0 to 14.0 msec. Computer simulations,

shown below the experimental results, were generated using
51program EXFUNK . Param~ters used in the simulation of

this AB 3 spin system are JAB = 2.8 Hz, DAB = -179~0 Hz,

DBB • 458.6 Hz, and vAB • 1360.9 Hz. These simulations

reflect the computed quantity IE 'Pi
.(T)1 2 , where the sum

. J I I I
is restricted to those elements Pi. for which mi - m. = n .

I J I J
(a) n a 2 excitation functions. (b) n = 4 excitation

functions. (In order to achieve the observed fit between

experimental and simulated excitation functions, it was

necessary to shift their time scales by 50 ~sec with

respect to one another. This is attributed to possible

experimental timing errors.)
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Figure 2.9. The nI ~ 4 excitation function of partially oriented
acetaldehyde with excitation time variable T/2 ranging
from 12.80 to 17.92 msec. reproduced from Figure \2.7d.
(b) ~~gnitude of the four-quantum line intensity obtained
from a series of normal multiple quantum experiments with
fixed T and variable tl. The points for individual
experiments are superimposed on an expanded image of the
relevant portion of the nI ~ 4 excitation function.
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with generally different unknown phases. The situation can then arise

that for some fixed values of t l , I~' P.. (T)1
2

is small even though
~J

several of the individual terms have sizeable amplitudes. This is

illustrated in Figures 2.10a and b which show two and three-quantum

average excitation function magnitudes (I~' P .. (T)/2) and average
~J

squared coherence magnitudes (~' Ip .. (T)/2) calculated for partially
~J

oriented acetaldehyde.

The amount of nI-quantum coherence actually excited is always

greater than or equal to that measured by the excitation function. As

might be expected by considering the P .. (T) as random variables, this
~J

effect becomes more pronounced as the number of transitions in the order

of interest increases. Because of phase cancellation it is possible to

miss favorable preparation times T using the PPPI method. On the other

hand, one can be assured that a given T will always be at least as good

as measured by the excitation function and perhaps considerably better.

For orders containing several transitions, the choice of a T which is an

excitation function maximum does not guarantee that each of the transi-

tions will appear with appreciable intensity. It may therefore still be

necessary to ensemble average together several different T values to

assure that all lines are represented. The PPPI method is then helpful

in selecting a set of TIS for this ensemble average.

The PPPI method has been demonstrated by a search over the single

timing parameter T. It has been used repeatedly in the experiments of

subsequent chapters to optimize the excitation sequence. For spin sys-

terns which are smaller than about eight spins, it generally proves

possible to experimentally locate T'S for which non-selective experiments

give line intensities much greater than their average values. In larger

spin systems, selective excitation sequences (Sec. 2.5.4) may be required.
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Figure 2.10. Computed average excitation function magnitudes and

average squared coherence magnitudes for partially

oriented acetaldehyde. The former are described by

jr1pi.(t) 1
2 , the latter by r l Ip, .(t) 1

2 , where the
J ~

restricted sums are over all elements P" for which
I I I ~J

m. - m. = n. These curves were generated by computer
~ J 51

program EXFUNK using the parameters of Figure 2.8.

As demonstrated in. that figure, it is the average

excitation function magnitude which is the measured

quantity in a PPP1 experiment. ··For multiple quantum

spectra in which all lines are resolved, however, it

is the average squared coherence magnitude which we

would like to maximize. Because the individual

elements Pij(t) are themselves complex numbers, the

average squared coherence magnitude always places an

upper bound on the value of the average excitation

function magnitude. (a) n1 = 3 average magnitudes.
I(b) n = 2 average magnitudes.
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to produce this same result. As previously described, these sequences

may depend on several pulse and timing parameters and PPPI should also

prove useful in optimizing these parameters.
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Chapter 3: DETERMINATION OF DIPOLAR COUPLING CONSTANTS USING
HETERONUCLEAR MULTIPLE QUANTUM NMR

To this point, only homonuclear spin systems consisting of N coupled

protons have been considered. In this chapter we discuss the measurement

of dipolar coupling constants in partially oriented heteronuclear spin

systems of several protons and a single nucleus of another spin species.

In particular,we consider systems consisting of N protons (I spins) and

13
a randomly placed C nucleus (S spin). This is the situation commonly

13encountered in organic molecules where the 1% natural abundance of C

implies that it is highly unlikely that two carbon-13 nuclei will be

found in the same molecule. Other heteronuclear spins could also be

considered, though we assume throughout that S is a spin-~ nucleus.

In Section 3.1 we motivate "the development of heteronuclear multiple

quantum (HMQ) NMR methods for the measurement· of dipolar couplings
76

.

The advantages of studying heteronuclear spin systems are considered and

a schematic representation of both the single quantum and multiple

quantum experiments is given. A formalism for describing the behavior

of spin systems under a time-dependent Hamiltonian, average Hamiltonian

77-78
theory , is reviewed in Section 3.2. The technique of S spin single

79-93quantum local field spectroscopy and the less familiar I spin analog

are considered in Section 3.3, with particular attention given to their

resolution limitations.

Section 3.4 summarizes previous work on HMQ NMR and develops the-

oretically its advantages for the determination of heteronuclear dipolar

couplings in anisotropic systems. The information content of a variety

69

of HMQ experiments is discussed. Heteronuclear multiple quantum methods

are experimentally demonstrated in Section 3.5 through excitation of the



high quantum spectra of partially enriched [1_13C] benzene. Excitation

sequences are described which allow relative line intensities to be

easily calculated. Section 3.6 introduces the concept of scalar hetero-

nuclear recoupled interactions by multiple pulse (SHRIMP) and discusses

the incorporation of this new coherent averaging technique into the

evolution period of HMQ experiments. In Section 3.7 we discuss how the

HMQ spectra arising from different molecular species may be separated

from one another by introducing the S spin chemical shift into the evolu-

tion period.

3.1 Motivation

3.1.1 Advantages of Heteronuclear Spin Systems

In Chapter I we observed that NMR spectra grow increasingly complex

as the size of the coupled spin system is increased or its symmetry re-

duced. It is therefore, perhaps, surprising that one would wish to study

heteronuclear spin systems at all. However, there are several recognized

reasons why the apparent complication of introducing a heteronuclear spin

can actually simplify the problem. These reasons provide much of the

motivation behind the development of heteronuclear multiple quantum

methods.

The first possible advantage of the heteronuclear system over the

purely homonuclear case is that the number of heteronuclear couplings is

~. in con tras t to N(N - I) /2 homonuclear coupl ings. Consequen tly, bo th

the simulation and interpretation of a spectrum which is determined only

by heteronuclear unknowns are greatly simplified. While yielding a

simpler spectrum, the reduced number of heteronuclear couplings poses one

potential problem: there is less total information. However, this infor-

mation is reobtained if the S spins are randomly distributed among dif-

ferent sites throughout the molecule. In the absence of isotopic

70
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enrichment, this is always the case with l3C nuclei.

A second advantage to studying heteronuclear spin systems derives

from the fact that the spectrum of XIS (Eq. 1.52) alone is particularly

simple
79

, because the individual terms of this Hamiltonian commute with

one another. As noted previously, this commutation reflects the absence

of non-energy-conserving flip-flop terms. There are fewer transitions

and the relationships between transition frequencies and couplings are

simpler than for a sum of non-commuting terms (as is found for the homo-

nuclear case).

A third advantage to the study of heteronuclear systems is that the

heteronuclear spin (e.g., l3C, 15N, 31p ) will often have a la~ge chemi-

cal shift range, which can serve as a spre~ding parameter in the Wz
dimension of a 2-D experiment. In the 2-D experiment, each observed

dipolar splitting in wI can then be correlated with an S spin chemical

shift in w2 . In this manner heteronuclear dipolar couplings can be

associated with specific sites within the molecule.

The preceding paragraphs are not meant to suggest that the study of

heteronuclear spin systems need always be considered as an alternative

to studying purely homonuclear systems. In many cases, the measurement

of heteronuclear dipolar couplings can be used to supplement the measured

homonuclear couplings. As described further in Appendix A, each observed

dipolar coupling for a partially oriented molecule is a function of both

the elements of a dipolar Hamiltonian matrix and a set of order parameters.

Furthermore (Sec tion A. Z. 3), for non-rigid molecules it may be necessary

to specify a relative probability and one or more order parameters for

each of several different molecular conformations. For the homonuclear

spin system alone, the problem of calculating all of the unknowns of

71



interest may be underdetermined. Consideration of the heteronuclear

couplings can then provide additional needed information, allowing a

more complete solution to be obtained.

3.1.2 Physical Picture of Single Quantum and Multiple Quantum Methods

As with the measurement of other parameters, accurate determination

of heteronuclear dipolar couplings is dependent upon the ability to

obtain well-resolved spectra which in turn are highly sensitive to these

particular spin interactions. Measurement of heteronuclear couplings

can be complicated by homonuclear couplings among the abundant spins,

. which can be comparable in size to the heteronuclear interactions. This

limitation provided much of the motivation for the technique of l3C local

79-93
field spectroscopy ~ection 3.3.2), which focuses on the use of mul-

tiple pulse sequences to remove the dipolar couplings between abundant

spins. A schematic representation of the single quantum local field

experiment is given in Figure 3.1a. The proton spins independently

~xperience the local field of the l3C nucleus and vice versa. Couplings

between protons are assumed to be effectively absent, which simplifies

analysis considerably.

Even with this idealized removal of homonuclear interactions, the

l3C spectrum consists of 2N transition frequencies, corresponding to the

different ways of arranging the N proton spins up and down. Absent from

the single quantum local field spectrum of either spin species are the

algebraic signs of the heteronuclear couplings.

These difficulties are overcome through the use of heteronuclear

multiple quantum techniques. Instead of attempting to remove the homo-

nuclear couplings, we take advantage of these couplings to excite the

protons as a coherent group, as suggested by ·Figure 3.lb. This grouping
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Figure 3.1. Schematic representation of the single quantum random
local field and multiple quantum ordered local field for
a system of one l3C and N protons. (a) In the single
quantum experiment the protons are assumed to be uncoupled
from one another. A total of 2N different proton configu
rations are possible, one of which is shown. The carbon
spin may experience any of these different proton local
fields. (b) In the heteronuclear multiple quantum
experiment the protons are excited as a coherent group.
One of the six possible groups of five protons is
illustrated. This fewer number of ordered local fields
enhances spectral resolution by reducing the number of
possible transition frequencies. These frequencies
measure sums and differences of individual heteronuclear
couplings.



leads to an ordered field interaction between the protons and the 13C

spin. Transition frequencies are determined by sums of local fields,

thereby providing information on the relative signs of heteronuclear

coupling constants. The few distinct ways in which a large number of

the protons can be grouped restricts the number of possible transitions,

leading to increased spectral resolution.

3.2 Average Hamiltonian Theory

In much of what follows, we will want to consider the evolution of '

a spin system in the presence of a time-dependent r.f. field. This is

the domain of coherent averaging theory, which is also known as average

74
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Hamiltonian theory77,78,11,6 When the irradiation sequence is periodic

and cyclic, as defined below, average Hamiltonian theory prescribes a

means by which the irradiation can be replaced by an effective, time=

independent Hamiltonian. Average Hamiltonian theory has been reviewed in

11 6two recent texts ' and the brief account given here, which relies

11heavily on the treatment of Haeberlen , serves only to outline the

framework and notation of the method.

To begin, the Hamiltonian is separated into two terms

i -

(3.1 )

where the time-dependent r.f. is under the control of the experimenter

and the internal Hamiltonian is assumed to be time-independent. In

analogy to the transformation from laboratory to rotating frames

~ection l.l.~, we then go into an interaction representation defined

by the r. f. :

(3.2)
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where T is the Dyson time-ordering operator. In this representation,

the density matrix, in the absence of KINT , remains stationary. The

density matrix in this so-called toggling frame,p(t), evolves according

to

75

pet)

where (11 = 1)

(3.3)

and

Defining

Equation 3.3 in the normal rotating frame becomes

-1pet) = U(t)p(O)U (t).

(3.4a)

(3. 4b)

(3.5)

(3.6)

For a general, time-dependent r.f. field, evaluation of the propaga-

tor U(t) can be most tedious. Calculation of this propagator becomes

simpler if the Hamiltonian Xrf(t) is cyclic. In this case Urf(t) becomes

periodic with cycle time t :
c

I

L (3.7)

In particular, since Urf(O) = 1, the r.f. propagator is also unity for

all integer multiples of t c ' Furthermore, when Xrf(t) is cyclic, the

toggling frame internal Hamiltonian is also periodic:



allowing the propagator for multiples of t to be written
c

(3.8)

(3.9)
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The evolution of the density matrix is then given as:

(3.10)

This equation states the very important result that the long time evolu-

tion of the system can be calculated by considering the propagator

UINT(t) over a single cycle.

In evaluating UINT(tc ), it would be convenient to be able to write

this propagator as a single exponential. This· can be done using the

Ma
. 94gnus expans~on

( -

(3.11)

where

(3.l2a)

(3.l2b)

(3.l2c)

The term .j(0) is known as the average Hamiltonian while X(n) (n 2: 1) is

threferred to as the n order correction term to the average Hamiltonian.



r
If XINT(t) commutes with itself at all times, X(O) suffices to describe

the evolution of the system. Otherwise, other terms in the expansion

must be considered. For symmetric cycles having XINT(t) = XINT(t
c

- t),

all odd-order corrections terms X(n) vanishll .

3.3 Spectral Resolution of Single Quantum Methods

3.3.1 The Number of Transitions

In this section, the spectral resolution attainable by a variety of

single quantum methods is reviewed. As described previously with regards

to N}m in homonuclear spin systems, a convenient estimate of achieveable

resolution is obtained by enumerating the number of transitions allowed

with a certain technique. The ability to resolve individual transitions

requires roughly that

77

0.13)

I

l

~where Z is the number of allowed transitions, M2 is the square root of

the second moment of the spectrum, and TZ is the relaxation time which

determines the width of individual transitions. For a typical molecule

dissolved in a liquid crystalline solvent, the T
Z

relaxation sets an

upper limit of 10Z - 103 on Z.

Figure 3.Za illustrates the increase in spectral complexity which

accompanies an increase in the number of proton spins. The spin system

13considered in this figure consists of N protons and a C nucleus, in

the absence of any symmetry. The number of single quantum l3C transitions

in such a system is (~N),while the number of single quantum proton transi

tions is 2(N~l)' twice the number found in the absence of the carbon

spin. The logarithm of the number of allowed transitions Z as a function

13 1of N for both C and H spectra is plotted in this figure. In both cases,
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Figure' 3.2. Graph of loglO (number of spectral lines) vs. number of I

spins (N) for the I spin single quantum spectrum (0), the

S spin single quantum spec trum (0), and the (n 1= N-l ,
Sn = 0) HMQ spec trum (~). (a) 1(II ;e O. the case in which

homonuclear dipolar couplings are not removed or scalar

couplings are not negligible. (b) 1(11 = 0, the case in

which all homonuclear couplings are zero. Although this

limit is approached when ~I is removed in local field

spectra. the scalar terms ~I prevent its precise

realization.



79

Z grows exponentially with N, quickly resulting in spectra having far too

e
I

r~

(

many lines to allow extraction of useful coupling information. This

point is further illustrated by Figure 3.3a which shows a simulation of

the single quantum carbon spectrum of partially oriented [1- l3C] benzene.

Individual transitions are just barely resolved for this six proton spin

system.

3.3.2 S Spin Local Field Spectroscopy

Over the past few years, several groups have addressed the problem

f 'h 1 d· 1 I' constants 1·n so11'ds80- 84
o extract1ng eteronuc ear 1PO ar coup 1ng

85 13
and in liquid crystals using the technique of C local field spec-

As mentioned previously, it

troscopy. Recently this technique has also been applied to powder

1
86-93

samples rotating at the magic ang e

is couplings among the protons which are responsible for much of the

carbon spectral complexity. In l3C local field spectroscopy, one uses

1 1 1 77,78,95-98. l' d' , 99mu tip e pu se sequences or mag1c ang e 1rra 1at10n to

remove the proton homonuclear dipolar coupl~ngs. In addition, spectra

13due to inequivalent C's are sorted out by collecting proton decoupled

carbon spectra in a second time dimension. Double Fourier transformation

13of the resulting two-dimensional data array yields C spectra in the

absence of proton-proton dipolar couplings and separated in w2 by their

carbon chemical shifts. Figure 3.4a shows a typical S spin local field

spectroscopy pulse sequence.

13Figure 3.3b is a simulation of an ideal single quantum C local

field spectrum of partially oriented [1- l3C] benzene. A common feature

of all published pulse sequences designed to remove homonuclear dipolar

This accounts for theinteractions

couplings is a scaling of the proton chemical shifts and heteronuclear

1
OtIS) by a common factor K ~ f:f



Figure 3.3. Simulations of 13C single quantum spectra of partially
13 .

oriented [1- CJ benzene, generated by computer program

CARBOy51. The parameters used are those of reference [102J,

with all couplings expressed in Hz: 012 = -403.854,

013 = -77.498, 014 = -50.257, 015 = -1119.617, 025 =
-153.006, 035 2 -39.280, 045 :·-26.489; J12 = 7.549,

J
13

2 1.378, J 14 = 0.650, J 15 = 157.914, J 25 = 1.052,

J 35 = 7.653, J452 -1.257. (a) Stick simulation of normal

spectrum with XII fully operative. The presence of homo

nuclear dipolar couplings makes extraction of heteronuc1ear

coupling constants difficult. (b) Stick simulation of

local field spectrum with ~I = O. The multiple pulse scale

factor is 1/1:3. Although the total number of transitions

has been greatly reduced relative to (a), the density of

lines within each of the two well-resolved groups is

comparable.
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80-84(a) S spin local field spectroscopy pulse sequence
The S spins are first cross polarized during 'IS' They
evolve for the variable time tl with a multiple pulse
sequence applied to the protons. For each value of t l ,
a proton-decoupled free induction decay is collected
during tZ' Figures (b)-(d) provide 3 examples of possible
proton multiple pulse sequences. (b) WAHUHA77,78; this
four pulse sequence has a cycle time t c = 6, and a scale
factor K "" 1/13. (c) MREV-8 96 ; this eight pulse sequence
has t c "" 12, and K "" ..... 11/3. (d) HW-8 78 ; this eight pulse
sequence has t c = 12, and K = ~/3. In addition, the
resulting average Hamiltonian X(O) for this sequence is
secular.



We consider here the resolution

{

l~

decreased spectral width observed in this spectrum. Even for this rela-

tively simple spin system the tendency of the transitions to cluster into

unresolvable multiplets is apparent. Within the two well-resolved groups

of lines, the line density is similar to that of the unperturbed spectrum

of Figure 3.3a.

The high line density in Figure 3.3a can be traced to two different

sources. Owing to their scalar nature, the homonuclear J-couplings are

not removed by the multiple pulse sequences designed to average ~I to

zero. In addition, as demonstrated in Figure 3.2b, the number of transi-

tions increases exponentially with the number of protons N whether or not

the protons are coupled to one another. As a result, only the largest

proton-carbon coupling is usually resolved. This coupling, corresponding

in [1- l3C] benzene to the interaction between the carbon and its bound

proton, is measured directly by the splitting between the centers of the

two groups of lines in Figure 3.3b. The smaller couplings appear only as

a line broadening, which is difficult to analyze quantitatively.

3.3.3 I Spin Local Field Spectroscopy

An alternate version of the single quantum local field experiment

would be to measure the parameters of XIS by observing the abundant I

spins while again removing homonuclear dipolar couplings by means of a

multiple pulse sequence. Studies of this type have been made on protons

1
100,101

in solid state powder samp es

potential of this technique in studies of partially oriented molecules.

In the limit that U
II

= 0, the proton local field spectrum consists

of N pairs of lines. This dependence of the number of lines on N is

indicated in the lowest curve of Figure 3.2b. Each pair of lines is the

spectrum of a single proton, with a splitting given by 2KIF
iS

I. Thus
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Although the largest proton~

the parameters of XIS are available directly once the multiple pulse

scaling factor K is established. The resolution enhancement over the

l3C'local field spectrum is considerable, since the same information

formerly present in 2
N

lines is now present in only 2N lines. Still

missing from the spectrum, however, is information concerning the

relative signs of the FiS parameters.

As discussed in Section 3.3.2, the limit XII = 0 is never actually

reached due to the homonuclear J-couplings. This is illustrated in

Figure 3.Sa, the simulation of an idealized proton local field spectrum

of oriented [1_13C] benzene. The unperturbed proton spectrum of this

compound has been previously reportedl02

proton scalar coupling is less than 10 Hz, the spectrum of Figure 3.Sa

consists of multiplets spanning several times this value. Figure 3.Sb

illustrates the spectr~m of this molecule in the absence of any proton~

proton couplings. Comparison of these two spectra clearly indicates

that the homonuclear scalar couplings limit the accuracy with which the

couplings F
iS

can be measured by proton local field spectroscopy. None

theless, comparison of Figures 3.Sa and 3.3b does demonstrate the poten-

tial resolution advantage of I spin local field spectra over the S spin

version for the measurement of small heteronuclear couplings.

3.4 Heteronuclear Multiple Quantum NMR

3.4.1 Background

The principal focus of heteronuclear multiple quantum NMR experiments

to date has been the observation of dilute S spin transitions with the

greater sensitivity afforded by the abundance and larger gyromagnetic

ratio of protons. In solids, the multiple quantum transitions of the

. 103 104 14 105 106 3. 23 107
S" 1 sp~ns deuterium ' and N ' and the S ="2 sp~n Na
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Figure 3.5. Simulations of lH single quantum spectra of partially
, 13

oriented (1 - C] benzene. Parameters are again those

of reference (102]. (a) Local field spectrum with

uir = 0, multiple pulse scale factor = 1/13. The

information content relative to the corresponding l3C

local field experiment (Fig. 3.3b) is considerably

improved. The two largest FiS are given by the posi

tions of the two rightmost multiplets. Still, the

homonuclear scalar couplings, which are responsible

for the dense packing of spectral lines, limit the

accuracy with which FiS may be determined. (b) The

hypothetical local field spectrum in the absence of

all homonuclear couplings (Urr = 0).



A similar coherence

have been observed with the aid of proton cross polarization. In these

samples the spin system is of macroscopic dimension and the coherence

transfer is treated with a spin temperature formalism.

In liquids, HMQ experiments on I SCI,S = spin-~ nuclei) systems have
n

demonstrated such fundamental multiple quantum phenomena as the relax

108-110
ation of forbidden and degenerate coherences , heteronuclear co-

63
herence transfer echoes ,and the indirect detection of dilute spin

chemical shifts with enhanced sensitivitylll Recently the double

.. f l4u d d . h b b d Th l4Nquantum trans~t~ons 0 ., an euter~um ave een 0 serve. e l

double quantum spectrum of ammonium ion in aqueous solution has been de-

14 112tected using only N magnetization by spin-tickling the protons and

66
through transfer of coherence from the protons

transfer has been applied to the study of deuterochloroform and perdeu

113terated glycerol

In liquid crystals, the deuterium double quantum transition of

114partially oriented CH
2

DCN has been detected through proton magneti-

zation using a variety of different preparation and detection schemes,

including pulsed coherence transfer.

3.4.2 Formalism

Since the heteronuclear coupling Hamiltonian XIS contains no flip=

flop terms. the total Zeeman quantum numbers for each spin species

separately are good quantum numbers for free evolution of the system.

~t is therefore useful to characterize elements of the density matrix

describing the system by the quantities nI and nS defined such that

86 r
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I= n P I S
n ,n n ,n

[sz'p I s]
S= n p S·I

n ,n n ,n

(3.15)

(3.16)
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As before, nI is the difference in total I spin Zeeman quantum number

5between the connected states; n plays an analogous role for the Zeeman

quantum number of the 5 spin. The defining commutation relations of

Equations 3.15 and 3.16 insure that each set of indices represents a

separate spectrum which may be isolated by the techniques of TPPI, PFT,

and CTEF described in Chapter 2. The generalized diagram of Figure 2.1

applies equally well to HMQ experiments where now the propagators U and

V may involve irradiation of both spin species.

While the initial magnetization and detected magnetization can be

h f i h I S · h· 1 i d' 111,114,66 ft at 0 e t er . or. sp~ns, t e 's~gna -to-no se a vantage 0

using the magnetization of the spin with the gre~ter gyromagnetic ratio

is considerable. In most cases of interest, the I spins are protons and

only their magnetization'need be considered. As discussed in Section 3.7,

this is not inconsistent with making use of the 5 spin chemical shift as

a spreading parameter.

1For 5 = 2' a convenient operator basis for describing the dynamics

of the combined I-5 coherence is the simple products, one factor for each

I
~

spin, of the single spin operators

S = 113><0.1 S; = 10.><0.1

(3.17)

An analogous definition holds for the individual I spin operators: I+i ,

+1_ i , I Oi ' I;i; i = 1 to N. Any product of one such operator for each



Ispin may be classified with respect to the quantum number n by adding

88 r
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up the subscripts of the I spin factors. SThe quantum number n is'the

subscript of the S spin factor. The usefulness of this operator basis

is .that each of its members is an eigenoperator for evolution under Je
IS

and that it provides a compact description for the relevant part of the

prepared density operator for several of the experiments to be described.

3.4.3 Higher Order HMO Spectra

IThe heteronuclear multiple quantum spectra characterized by n = N,

SN- 1 and n = 0, :tl are of particular interes t because they have the

fewest number of transitions compatible with full determination of the

heteronuclear couplings FiS ' Each of these spectra will be discussed

for S = t with regard to the number of transitions and to the transition

frequencies in the limit that Je
II

=0 O. The transition frequencies are

approximate, since ~I is neglected. The important point is that the

number of transitions does not increase drastically when ~I is admitted,

unlike the situation observed for single quantum I spin local field spec-.

troscopy Section 3.3.3. Thus numerical inclusion of ~I' whose parameters

may be closely approximated by the liquid state values, does not seriously

affect the resolution and perturbs the frequencies only slightly from

the analytical forms given below.

D
As noted in Section 3.3.2, the experimental removal of ~II by

multiple pulse sequences results in a scaling of the terms xi and XIS by

Ia common factor K. Because the discussion is simplified when n is a

good quantum number, it will be assumed in this section that the effective

Hamil tonian ~1 during the evolution period is

Xl
-(0) xJ L 2F' SI .S L J .. I. . I.. (3.18)=0 X + =0 -K -IS II i 1. Z1. Z i<j l.J-1. -J

( ~

l
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This effective heteronuclear coupling is obtained, for example, by

77the secular HW-8 multiple pulse cycle illustrated in Figure 3.4d, for

which K = i. Such a pulse sequence may be ~ugmented by simultaneous ~

pulses to both the I and S spins in-between cycles in order to remove

the Zeeman terms, and hence the magnetic field inhomogeneity, from the

evolution period. Other pulse sequences resulting in the Xl of Equation

3.18 are also possible.

3.4.3.1 nI
= N, nS

= 1

Consider first the evolution during t
l

of the total spin coher

ence (Sec. 4.1.2) of the combined I-S system. This coherence is charac-

I Sterized by quantum numbers n = N, n = 1 and the eigenoperator is

S+ IT I+i , which commutes with XIS. In fact, this coherence also commutes
i

with the homonuclear spin-spin couplings, so that its evolution under

the full spin Hamiltonian is determined only by the sum of the Zeeman terms.

89

3.4.3.2 I S
n = N, n = 0

The simplest case which can yield dipolar coupling information

I Sis that of the two eigenoperators with n = N, n = O.

and their commutators with xi~) are given by

[~(O) S± IT I ] ±K(~ F )(S± IT I )
IS' 0 +i = ~ is 0 +i·
iii

+
These are So IT I+i ,

i

(3.19)

Since the nI = N, nS = 0 operators commute with the I-I couplings,they

are the correct eigenoperators whether or not ~II has been removed. This

I Scommutator shows that the spectrum characterized by n = N, n = a con-

l sists of

sequence

spins at

a pair of lines with splitting 2K/rF. s l if a multiple pulse. ~
~

is used, or 21~FiSI if only a single ~ pulse is applied to both
t
l

~

time ~. A comparison of these two spectra prOVides a direct



experimental measurement of K which is free of inhomogeneous broadening.

3.4.3.3 n
I

= N-I, nS = I

I SThe 2N opera tors charac terized by n = N- I, n = 1 are eigen-

-(0)operators under XIS having eigenvalues determined by the commutators

90 r~! -

1,

r

(3.20)

This corresponds to a spectrum of N pairs of lines, each pair giving the

magnitude of one of the heteronuclear couplings FiS . No information re

garding the relative signs of these couplings is supplied. These transi-

tions therefore yield the same information as the S spin local field

experiments of Section 3.3.2, but the information is now present in 2N

rather than 2N lines. In contrast to I spin local field spectroscopy,

the presence of homonuclear I-I couplings does not increase the number of

lines in the nI = N-I, nS = I spectrum. Therefore, experiments done

without removal of homonuclear dipolar couplings, or those in which ~I

is removed but homonuclear J-couplings are not negligible, do not suffer

the loss in resolution seen in the corresponding single quantum local

field experiments.

r,

3.4.3.4 I S
n = N - 1, n = 0

I SFinally we consider the case where n = N- 1, n = O. There

are 4N eigenop~rators of x~~), whose eigenvalues are determined by the

commutators

(3.21)

where the sign preceding K is defined with respect to the superscript of
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L

I
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the S spin operator. Each eigenvalue is two-fold degenerate. The re-

sulting spectrum consists of N pairs of lines, with splittings propor-

tional to the sum of all but one of the I-S couplings. The one coupling

absent is different for each of the N pairs. We thus have N linearly

independent equations whose solutions give the N heteronuclear couplings

FiS ' including relative signs. When XII * 0, the degeneracy mentioned

above is lifted, and up to 2N pairs of lines are possible.

This analysis could easily be extended to lower order spectra with

equally simple expressions for the various eigenvalues. In the limit

that XII = 0, the spectra will always consist of pairs of lines whose

sp1ittings are proportional to sums and differences of the heteronuc1ear

coupling constants. As is the case for a homonuc1ear spin system, the

number of lines increases quite rapidly with decreasing n
I

, leading to a

loss of resolution. The heteronuclear Hamiltonian XIS is, however, fully

determined by the four spectra discussed above.

3.5 Experiments

3.5.1 .Pu1se Sequences and Spectra

Heteronuclear multiple quantum experiments were performed on [1- 13C]

benzene enriched to 90% and dissolved at 40 mo1% in Eastman 15320 nematic

liquid crystal. The temperature was regulated at 26.0 t O.l°C. The

homebui1t spectrometer, which is described in Appendix B, operates at

182 MHz proton Larmor frequency. Proton signal was detected throughout

with sampling of the transverse magnetization at time t z = O.

Figure 3.6 illustrates those portions of the [1- l3C] benzene energy

level diagram relevant to these experiments. Individual states are

sorted based on both their l3C Zeeman quantum number,mS,and their proton
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Figure 3.6.
. 13
[1- C] benzene energy level diagram. Energy levels are

sorted by total proton Zeeman quantum number (mI ) and by

13C Zeeman quant~m number (mS). This is useful in that

both mI and mS, and hence the differences nI = 6mI an~
S Sn 2 ~m , are good quantum numbers for free evolution of

Sthe spin system. Subspectra with n = 0 correspond to
Svertical transitions, while those with n = ±1 connect a

state in the left hand column with one on the right ..



is the total spin coherence from the unlabeled molecules.

r-'"
I

n
I

r
j
c-;

!

I ~
I

Itotal Zeeman quantum number,m. In the absence of heteronuclear flip-flop

terms, both of these are good quantum numbers of the system. On this

energy level diagram, spectra characterized by nS = 0 correspond to

vertical transitions, while those with nS
= ±l describe diagonal transi-

tions, connecting a state in the left-hand column with one on the right.

A simple pulse sequence for obtaining spectra characterized by

InII $ N, nS
= 0 is illustrated in Figure 3.7a. The pulse sequence of

Figure 3.7b employs, in addition, a pulsed magnetic field gradient to

allow signal from a single nI value to be selected by the CTEF technique

described in Section 2.4.2.4. Experimental spectra obtained for nI
= 5

and nI =6 using this latter sequence are shown in Figure 3.8a. The

n
I

= 6 spectrum shows a doublet whose splitting measures 2 ?Fis inde-
~

pendent of all I-I couplings. The small, central peak in this spectrum

The n I
= 5

spectrum consists of one pair of lines from the unlabeled molecules and

three pairs from [1- l3C] benzene molecules. The energy level diagram'

(Fig. 3.6) suggests that there should be eight pairs of nI = 5, nS
= 0

lines. An intensity calculation, discussed in Section 3.5.2, shows the

unobserved transitions to have small intensities for the excitation

sequence used. Theoretical stick spectra, with line intensities adjusted

for observed differences in experimental linewidths, is shown in Figure

3.8b.

~igure 3.7c illustrates a simple pulse sequence for obtaining spec

tra characterized by InII $ N, nS
= ±l while the sequence actually

employed, shown in Figure 3.7d, incorporate.s CTEF. As discussed in

Section 3.5.3, one generally expects to excite both nS = ±l and nS = 0

transitions with these sequences. The spectrum obtained for n
I = 5,

93



Figure 3.7. Simple HMQ NMR pulse sequences. (a) This pulse sequence
Sresults in excitation of coherences characterized by n = 0

and all values of InII $ N. 13C decoupling during

preparation and mixing serves to remove XIS from the

excitation dynamics. (b) The application of a pulsed

magnetic field gradient (cross-hatched areas) allows CTEF

selection of coherence characterized by a single n I value.

(c) This pulse sequence r~sults in excitation of coherences

characterized by nS • 0, tl. Following excitation of the
13protons with XIS removed, C decoupling is turned off

and XIS is allowed to act for a time TIS ~ IFiS /-
l

. A

rr/2 pulse on the 13C spins then changes the nS quantum

number of the HMQ from zero to tl. The mixing period

reverses these steps, allowing detection of proton

magnetization in t 2• (d) Again a pulsed gradient for

purposes of CTEF.
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Figure 3.8. I SIS(a) n = 5, n = 0, and n = 6, n = 0 multiple quantum

spectra of partially oriented [1 - 13C] benzene enriched

to 90%, obtained using the pulse sequence of Figure 3.7b.

Each spectrum is the average of sixteen 1024-point inter

ferograms acquired with a recycle delay of 2 sec. The

mixing period T' was less than InIIT due to the slow rise

time of the pulsed magnetic field gradient. For the
In = 6 spectrum, T = 5.000 msec, T = 1.000 msec,

T' = 4.300 msec, and ~t = 100 ~sec. The n I = 5 spectrum
1

was acquired wi th T = 6.540 msec, T = 1.380 msec,

T' = 5.404 msec, and ~tl = 100 ~sec. (b) Theoretical

stick simulations of nI = 5, nS = 0, and n I = 6, nS
= 0

spectra. These simulations were generated using the same

parameters as in Figure 3.3, with the dipolar couplings

being scaled to fit the experimentally observed splitting
. I

in the n = 6 spectrum. This simple scaling is sufficient,

because the ordering of benzene molecules in the nematic

liquid crystal is describable by a single order parameter

(Appendix A). Relative line intensities, whose calculation

is described in Section 3.5.2.3, were divided by the

experimentally observed linewidths to give the heights

shot~ in the simulation.
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which is not shown, consists of a single line at zero frequency.

nS = 0, ±l is shown in Figure 3.9, with line positions and assignments

for this spectrum tabulated in Table 3-1. I SThe n = 6, n = ±l spectrum,

98 r
I

n
r

3.5.2 Excitation Period Decoupling

3.5.2.1 Enhancement of High-Order Transitions

A significant feature of the pulse sequences of Figure 3.7 is

the use of l3C decoupling during the exci:ation periods. This has a

number of advantages. By removing the l3C spin from the excitation

dynamics, the size of the Liouville space available to the density

operator is reduced. Table 3-2 demonstrates one consequence of this

reduction. The sum of the line intensities within each order n1 has

been calculated for [1- 13C] benzene with and withou:: l3c decc.upling.

The t~bulated values are ultimate T averages (Sec. 2.5.2), representing
. 13

integrals over the excitation variable T. The C decoupling, on

average, increases the n
I = 6 and n1 = 5 intensities by factors of 3.1

and 1.1, respectively. This enhancement of the highest order coherence

is particularly large for a molecul~ like [1_13 C] benzene, where the

symmetry is, in effect, increased by l3c decoupling.

3.5.2.2 Simplification of PPP1 Search

The l3c decoupling also simplifies considerably the PPPI search

for favorable values of the excitation parameters T and T ' • This is

because the number of eigenfrequencies contributing to the excitation

dynamics is reduced and, more impo~tantly, because the signal during the

search comes from unlabeled molecules as well as labeled ones. This

would be particularly important in natural abundance samples where only

1% of the carbon nuclei are l3C. In addition, in molecules containing

('

I
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Figure 3.9. I 5n = 5, n = 0, ±l multiple quantum spectrum of partially
. 13

oriented [1- C] benzene enriched to 90%, obtained using

the pulse sequence of Figure 3.7d. This spectrum was

recorded with, = 6.540 msec, T = 1.380 msec, T' = 5.404

msec, and ~tl = 100 ~sec. The spectrum displayed here

is an average of magnitude spectra obtained for five

different values of TIS: 100,200,250,,300. and 350 ).lsec.

Fifteen 1024-point inteferograms were recorded for each

value of 'IS. Line positions and assignments for this

spectrum are tabulated in Table 3-1.



Table 3-1

Positions and Assignments of Lines in the nI =5, nS .. 0, :tl
13Spectrum of Partially Oriented [1- C] Benzene Shown in

*Figure 3.9

Observed L:'ne Theoretical Line
Position (Hz) Position (Hz) Assignment

4~ 34 S = 0n

176 168 S = :tln

879 892 S = 0n

1133 1155 S = :t1n

S **1651 1673 n .. 0

1739 1760 S .. :t1n

1788 1806 S .. :tln

1886 1914 Unlabeled molecules

2706- 2733 S .. :t1n

3566 3600 S = 0n

*All the lines in this spectrum occur in pairs.
Accordingly, only lines at frequencies greater than 0 Hz are
recorded in this table.

100

n
r
p
r'

l .

** This line is
Its intensity here
does riot appear in

Sassigned as n
is anomalously
Figure 3.8.

.. 0 based on its frequency.
large, however, since it II -
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Table 3-2

Number of Coherences and Total Magnitude Averaged Over L per Multiple

Quantum Order for [1- 13C] Benzene With and Without 13C Decoup1ing

During Preparation and Mixing

Total Magnitude
Multiple Quantum Number of Coherences Averaged over L

Order (n) Coupled Decoup1ed Coupled Decoupled

6 1 1 0.197 0.601

5 8 2 0.804 0.905

4 38 12 2.399 3.287

3 120 34 5.946 6.005

2 263 79 11.517 11.728

1 416 116 17.252 17.090

a 210 40 7.797 4.555
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13
two or more distinct C sites, the carbon decoupling allows the same

excitation sequence to be used to excite equally all of the "isomers".

In practice, optimal values for the excitation parameters T and T'

in the sequences of Figure 3.7 were chosen in separate PPPI searches.

(Recall that in the PPPI experiment itself T' is always held equal to

T.) These searches were conducted with 13C decoupling during both pre-

paration and mixing periods. The preparation time T was chosen from a

PPPI experiment having proton IT pulses in preparation and mixing. A

second PPPI search, in the presence of a magnetic field gradient (see

Figs. 3.7b and d) and in the absence of these IT'S, allowed an independent

choice for the mixing time To'. The time T was then selected by maxi-

mizing the height of the desired echo at t z = O.

3.5.2.3 Calculation of Relative Line rntensit~es

The excitation period decoupling also simplifies the calculation

of relative line intensities. As described in Section Z.5 the inten-

sities of individual multiple quantum. lines are, in general, complex

functions of the internal Hamiltonian and the r.f. pulses and timing

parameters whicn characterize the preparation and mixing periods. In

certain situations, however, the l3C decoupling allows the intensities, ,
of the transitions of labeled molecules to be related both to one another

and to those of the unlabeled molecules, regardless of the details of

the excitation periods. The principles will be illustrated by the cal-

I Sculation of the relative intensities of the n = 5, n = 0 transitions

shown in Figure 3.Sb.

I 13There are only two n = 5 coherences for the decoupled [1- C]

benzene molecule or equivalently for the unlabeled molecule. These are

known by symmetry to be associated with the operators

10Z r--;

I

fl

r

I-
e
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X5 L I It 11 I 12 I I= I+j
= "2 m = 2,AI ( C) ><m = -3 •
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(3.22a)

(3.22b)

The notation in the outer products specifies the proton Zeeman quantum

number, the irreducible representation, and the applicable permutation

12 13group, which is labeled by C or C to indicate that the group is

assumed to change to that of the unlabeled molecule when the l3C is

decoupled. 13For the [1 - C] benzene molecule the permutation group is

C2 and effectively reverts to D6 under decoupling. 1
The factor of 2 keeps

the normalization constant with the undecoupled operators and may also

1 + -be written as 2(SO + SO) •

At t l = 0, the Hamiltonian suddenly changes to Xl. For the experi

mental sequences of Figure 3.7,

(3.23)

t
1since the Zeeman terms are effectively removed by the rr pulses at :f .

IThe eigenoperators under the Hamiltonian of Equation 3.23 with n = 5,

n
S = 0 are

5 :!: I I ' 13
X .. Solm .. 3><m .. -2,Al ( C),a,:!: I 'a,:!:

5 = S:!: I 1_ 2 A (13C) Q + 1=-31XS,:!: 0 m - , 1 ,1oJ,-><m •

(3.24a)

(3.24b)

The plus signs in Equations 3.24 refer to[ .;

f =
t J

The eigenstates with index a or S (running from 1 to 4) must be numer-

ically calculated by 4 x 4 diagonalizations within the totally symmetric

ImII .. 2, ImSI .. t manifolds.

SIS
the m ""2 manifold, the minus signs to m



The relative intensities of the observed nI = 5, nS = 0 lines can

now be calculated in terms of inner products of the coupled and decoupled

eigenoperators. This will be discussed for transitions indexed by a,

though analogous expressions hold for those indexed by S. The ratio of

the intensity of a transition of the l3C-containing molecules to the cor-

responding transition of the unlaQeled molecules can be expressed in

terms of the mole fraction X
13

of labeled molecules and quantum mechanical

traces as:

104. r

(3.25 )

ImIISince the = 3 eigenstates are the same with and without decoupling,

the traces can be simplified to

(3.26 )

By the completeness property, there is a sum rule

(3.27)

This simply sta~es that the total intensities from the labeled and un-

labeled molacu]~s are in proportion to their mole ratio. This would not

be the casp. had ~IS played 4 role in the excitation dynamics.

The exprl":ision for relative line intensities given in Equation 3.26

is easily evaluated.
.. . I

By symmetry, the m = -2 eigenstate of the decoupled

molecule is the symmetric sum of the direct product states characterized

by five spins down (6) and one spin up (a):



f~

j

I

r~
\

r
I

= ~ [ISSSSSa> + ISSSSaS> + ISSSaSS>
... 6

+ ISSaSSS> + ISaSSSS> + laSSSSS>]. (3.28)

105

Once the various Al eigenstates of the coupled molecule with

I 13 I
computed, each of the inner products <m = -2,Al ( C),a,±lm =

I
m = -2 are

12
-2,A

l
( C»

t~

I

is formes simply by summing the coefficients of the particular eigen-

state, expressed in the direct product basis. Squaring the sum and

1multiplying by 2 X
13

= 0.45 gives the relative intensity of each

n I = 5, nS = 0 [1_13C] benzene transition. On this same scale the

In = 5 transition of the unlabeled molecules has an intensity of 0.05.

The resulting intensities for the lines of Figure 3.8a are shown as

a stick spectrum in Figure 3.8b. The theoretical sum of the intensities

in the five unobserved pairs is 8% of the total intensity. A similar,

Ibut simpler, analysis gives the relative intensities of the n = 6,

nS
= 0 transitions also shown in Figure 3.8. The sum of the satellites

is again related to the central transition from the unlabeled molecules

by their respective mole fractions.

3.5.3 STwo Step Excitation of n = 1 Coherence

The density operator prepared from I spin magnetization with S spin

decoupling c~ntains only coherences with n
S = O.

,
In order to introduce

I
i
t=O

S
±1 additional requirements have to be met. First, Xn terms , two

IS

be allowed to for a period of time 'IS
-1must act ~ FiS ' and then an S

pulse must be applied in order change the nS number of the HMQto quantum

coherence from zero to fl. Prior to the action of XIS' this pulse would

have no effect because at the time that the decoupling is turned off, the

S spin factor in each coherence is proportional to the identity (S; + S~).
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When XII is present along with XIS during the period LIS' as in

Figures 3.7c and d, the dynamics of the transfer of coherence to nS
= ±l

3.4.3.2,this eigenoperator evolves according to the sum ~ FiS indepen
~

dent of XII. Thus, if at the time the decoupling is discontinued the

In = N coherence is given by

As noted in Section

f -"

The total IIn .requires numerical calculation for a general value of

. h IN· i 1 hsp~n co erence n = ~s a spec a case, owever.

(3.29 )

at time LIS later it is given by

(3.30 )

where

(3.31 )

F (4 '1' F /)-1 a ~ dE· 3 30 . l·f·or TIS = L is ., IS· 2 an quat~on . s~mp ~ ~es to
i

(3.32 )

~ I
A 2 pulse at the S spin Larmor frequency converts this into n = N,

Sn = ±l coherence with complete efficiency. As noted in Section 3.4.3.1,

this coherence is invariant to both XII and XIS and thus gives a central

I(zero frequency) peak in the n • N proton spectrum. Equation 3.30 was

Iconfirmed by completely transferring the n = 6, nS = 0 l3C satellites

of Figure 3.8a into the central line when TIS was set equal to half the

inverse of the satellite splitting.



In fact, pulse sequences such as HW_8
78

(Fig.

r --

!

SThe same pulse sequences also result in n = ±1 spectra for other

values of nI (Fig. 3.9 and Table 3-1). For these lines even a relative

intensity calculation would require a computer-assisted exact dynamics

calculation. Thus the assignments of Table 3-1 were made on the basis

of frequency alone.

3.6 Scalar Heteronuc1ear Recoupled Interactionsby Multiple Pulse

3.6.1 Introduction

In Section 3.4.3, the spectrum of the higher order heteronuc1ear

multiple quantum coherences was discussed for an effective evolution

Hamiltonian (Eq. 3.18) from which ~I had been removed. As described

in Section 3.3.2 the multiple pulse sequences designed to remove ~I

scale the heteronuc1ear interactions and I spin chemical shifts by a

1
common factor K ~ 1:3 •

3.4d)which remove ~I and result in a secular average Hamiltonian (for

. I S _2. 1
which nand n are conserved) scale down Mr and XIS by a factor of 3 .

The scaling of XIS in these experiments is certainly undesirable since

it reduces the effective magnitude of the interactions being measured.

I . S
Although the assumption that nand n are both conserved during

the evolution of an HMQ experiment was convenient for the analysis of

Section 3.4.3, it is by no means a requirement of these experiments.

Relaxation of this assumption permits the use of a wide variety of

multiple pulse sequences for the removal of ~I' Many of these scale

down the parameters of Xts by less than does the HW-8 sequence and, in

addition, are designed for improved suppression of the homonuc1ear di-

95-98polar couplings . In this section we introduce a new multiple pulse

technique, scalar heteronuc1ear recoupled interactions by multiple pulse

(SHRIMP), which removes ~I while scaling the parameters of XIS by a

107



factor K 1=-13' The SHRIMP method has the advantage of generating HMQ

108 r

spectra having properly phased lines whose relative intensities are both

independent of excitation dynamics and easily calculated.

3.6.2 The SHRIMP Sequence

The SHRIMP technique involves irradiating both the I and S $pins

with the same sequence of r.f. pulses during t
l

• This keeps their

angular momentum components always parallel in the toggling frame. If

we also require that the Zeeman terms ~ and ~ vanish, then the desired

average Hamiltonian for the SHRIMP sequence is

J .. r .. I..
1.J-1. -J

(3.33)

~ -

The first term is the average Hamiltonian resulting from XIS' The nota

tion XreS indicates that the interaction has taken on the operator form

of a scalar coupling in spin space. This amounts to a recoupling of the

I and S nuclei so that flip-flop terms normally suppressed by the large

difference in Larmor frequencies are reintroduced.

At this point it is useful to clarify the meaning of the terms "size"

and "scale factor" as they relate to a Hamiltonian 'such as XIS' We

take as a measure of the magnitude of a particular interaction A the

norm of the matrix which describes that interaction. Symbolically, this

norm is written as II All . It should be noted that a close analogy exists

between the norm of a matrix and the property of length which can be

associated with a vector in 3-dimensional geometric space. Formally,

h f . h h f 11 . d f' . . 115t e norm 0 a matr1.x· as teo OW1.ng e 1.n1.ng propert1.es

1) II All > 0 unless Aij = 0 for all i,j, in which case IIAII = o.
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2) II aAll = all All for every real number a.

3) II A+ BII s II All + II BII •

A convenient definition of the norm of an (n x n) matrix is

109

II AI =[ I
i,j

(3.34)

Since IIAJ is invariant under unitary transformations, the norm can be de-

fined equivalently as the root-mean-square eigenvalue of the matrix A.

As we have seen, the unperturbed heteronuc1ear coupling between I

and S spins takes the form IS. Under SHRIMP, this interactionbecomes~z z
1instead, ~ loS. Since3 ...... ......

DI 0 sa 2 -OIS0
2

+ aI S II 2 + II ISO 2
...... ...... x x y y z z

and

HI S U = DI S R -USI,x x y y z z

the norm ofJCIoS is

".3('1
0
S·

1
-fiIlSB3 Z Z

(3.35a)

(3.35b)

(3.36)

1and the scale factor K describing this sequence is 1:3

A particular pulse sequence which leads to the average Hamiltonian

of Equation 3.33 is illustrated in Figure 3.10. It is describable in the

ABC
. 97

notat~on as

(ABC)(CBA)(ABC)(CBA)(ABC)(CBA)(ABC)(CBA).

-1
The letters indicate the toggling frame value of U f(I + S )U f andr z z r

(3.37)
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Figure 3.10. SHRIMP pulse sequence. SHRIMP removes homonuclear dipolar

couplings 9C~I) while recoupling the I and S spins. The

same sequence of r.f. pulses is applied to both spin

species. This reintroduces heteronuclear flip-flop

terms (of the form I+iS_) into the Hamiltonian XIS'

which then takes the form of a scalar coupling.

Parameters of this Hamiltonian are scaled by a factor
~ -1of 1/v3. The toggling frame value of U f(I + S )U f

97 r z z r
is indicated in ABC notation .
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r
specify a sequence in which the same pattern of r.f. pulses is given both

I and S spins. The sequence consists only of I pulses and is compensated

to give no contribution to the average Hamiltonian from ~I' even for

finite pulse lengths. Since it is symmetric, X(l) correction terms also

vanish.

3.6.3 Evolution Under SHRIMP

The average Hamiltonian of Equation 3.33 has fundamentally different

properties than either the unperturbed Hamiltonian or the previous mul-

tiple pulse Hamiltonian of Equation 3.18. The presence of heteronuclear

flip-flop terms in the SHRIMP Hamiltonian means that the Zeeman quantum

numbers of the individual spin species are not conserved. However, it

is true that

III

(3.38)

J

h

f

L

This implies that the sum of the Zeeman quantum numbers is conserved and,

in addition, that the Hamiltonian is isotropic in spin space. The

I Sprincipal consequence for HMQ experiments is that the sum (n + n ) is

conserved, though not the individual quantities.

An interesting consequence of Equation 3.38 is that the SHRIMP

sequence can serve as a cross polarization scheme. It transfers any

component of I magnetization to the corresponding component of S in much

h h H H h I . . 116 f ht e same way t at artmann- a n cross po ar1zat10n trans ers t e

spin-locked component.

3.6.4 HMQ Spectroscopy Under SHRIMP

In this section, the consequences of using the SHRIMP Hamiltonian

of Equation 3.33 as the evolution Hamiltonian Xl of an heteronuclear



multiple quantum experiment are discussed. Figure 3.11 shows the energy

level diagram relevant to high order HMQ spectroscopy of partially

·13
oriented [1- C} benzene under the SHRIMP Hamiltonian. Unlike the situ-

ation depicted in Figure 3.6, subspectral analysis is not applicable.

I SThe total spin coherence, characterized by (n + n ) = 7, is s~i1l

independent of all spin-spin· couplings. The transitions characterized

by (nI+nS) = 6 belong to the ~ irreducible representation, since they

all involve the totally symmetric states with (mI + mS) = ± ~. From the

energy level diagram of Fi~ure 3.11, there are apparently five pairs of

such transitions. One pair has no splitting, however, and constitutes

112 r
\ -

a degenerate central line. 13This is not peculiar to [1- C} benzene,

but is in fact a general feature which follows from the commutator of

(3.38). To see this, consider the operator formed from the total spin

h h h h i f h d . : 117 dco erence t roug t e act on 0 t e er1vat1on-superoperator generate

(3.39 )

This is clearly an (n I + nS) = N operator. Its conunutator with the SHRH1P

Hamiltonian of Equation 3.33 is zero, however, as is most easily seen by

noting that both terms on the left of Equation 3.39 do so commute. By

induction, this argument can be extended to prove that there is a center

line for every order (n I + nS). In general, then, there are as many pairs

of (n I + nS) = N transitions containing information on XI. S + X~I as there

are distinct I spins. This number is N for an unsymmetrical molecule and

4 for [1_13C} benzene. This is also the number of distinct heteronuclear

couplings Fis'

1
6
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Figure 3.11.
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XBt. 8110-7176 A

[1- 13C] benzene energy level diagram relevant

to SHRIMP spectroscopy. During evolution under

the SHRIMP pulse sequence (Fig. 3.10) the
I Sindividual spin quantum numbers m and m , and

I Shence the differences nand n , are not good

quantum numbers of the system. The sums (mI + mS)
I Sand (n + n ) are, however, conserved quantities.

113



We consider now the problem of exciting the (nI+nS) = N SHRIMP

coherences. For the same reasons as discussed in Section 3.5.2 it is

desirable to decouple the S spins during preparation and mixing periods.

Thus it is reasonable to consider at time t 1 = 0 the nS = 0 operators

prepared with decoupling. The conservation of (n! + nS) under the SHRIMP

Hamiltonian then requires that the initial condition be the proton total

spin coherence (nI = N) :

114 r
I

p ( t 1 =0) = X
N = ! II I +~ .

2 i ...
(3.40 )

During the evolution period this will evolve into other operators with

(nI + nS) = N so that at time t
l

, additional terms of order (nI = N-1,

nS = 1) will be present. These need not lead to I magnetization in t z'
Showever, since decoup1ing will tend to destroy any n = 1 coherence and

CTEF can be used to discriminate against nI * N coherence.

With these considerations it is possible to write the SHRIMP inter

ferogram with initial condition n1 = N as the autocorrelation func~ion

Tr«(XN(0)]txN(t
1
», The fact that the signal can be written as a single

autocorrelation function guarantees that all of the lines will appear

with the same phase. The intensities are found to be, in analogy to

Equation 3.26:

(3.41 )

A sum rule identical to Equation 3.Z7 holds. In Equation 3.41, the index

a, which labels the distinct pairs of lines, runs from 1 to the number of

i
if -

b
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distinct I spins, plus one. As noted, one pair falls at the center and

is thus degenerate with the signal from the unlabeled molecules. The

other pairs, in principle, are sufficient to determine the unknown para-

meters FiS '

3.7 Spreading Parameters in HMQ Spectroscopy with I Spin Detection

3.7.1 Motivation and Introduction

The discussion to this point has been for a single system consisting

of N spins I and one spin S. In some situations, most notably that in

which S represents l3c at natural ~bundance, the sample consists of a

collection of such systems. In such cases, it is important to be able to

distinguish the transitions arising from each system. An effective way

of doing this is to introduce a period in which the dynamics are deter-

mined by the chemicat shifts of the S spins. These chemical shifts then

serve as spreading parameters, which separate the spectra of the various

systems and facilitate their assignment to particular molecular species.

One way of infroducing S spin chemical shifts into heteronucle.ar

multiple quantum spectra is to detect S spin magnetization (with I spin

decoupling) during t z, as was done in local field spectroscopy experi

ments. Because of the reduced signal-to-noise ratio associated with

direct observation of the S spins, however, it is advantageous to intro

duce the evolution due to ~ into t
l

instead. This can be done by fol

Slowing the evolution of an n = ±l HMQ operator, but detecting I spin

magnetization in t Z' Such an indirect measurement of ~ has been

13 111
demonstrated in the liquid state spectrum of CH

3
I

S
In previous discussions of the evolution of n = ±l HMQ coherence,

emphasis has been placed on dipolar evolution (XIS) with the Zeeman term

~ being intentionally suppressed in the interest of removing the effect

115



("''e\

I

n

nt -

r
\

J
6



r
1

of magnet inhomogeneity. In this section, we indicate how the previous

pulse sequences may be augmented to achieve separation of the spectra

arising from different species according to U;. This can be done with a

sequence which remains immune to any inhomogeneity of the Zeeman terms

and, in addition, suppresses the signal from species which do not contain

an S spin.

Experiments which begin by preparing the total spin coherence

(n1= N) of the I spin system are of particular interest. As discussed

in Section 3.5.3, this term can be quantitatively converted into

(n
1 = N, n

S = tl) coherence and also serves as the initial condition for

HMQ spectroscopy under SHRIMP (Sec. 3.6.4). Figures 3.12a and b depict

pulse sequences designed to measure the quantity L F.
S

for each S spin
, ~

i
and to correlate this sum with the chemical shift Ws of the S spin.'

These serve as a prelude to the sequence of Figure 3.12c in which both

~ F
iS

and Ws are used to identify the HMQ transitions of the species
~

containing that S spin.

A common feature of all of these sequences is that the evolution

period is divided into two parts:

116

(3.42)

L
In a given experiment the ratio

particular ratio used is chosen

t la is held fixed as t
l

increases. The
t
lb

so as to allow resolution of all fre-

l
U

quencies appearing in the Fourier transform with respect to t
i

.

3.7.2 Correlation of ~JfiS with wS·
~

Each of the sequences of Figure 3.12 begins with the preparation of

(n1 = N, nS = 0) coherence under the preparation propagator U. In the



Figure 3.12. Pulse sequences for the correlation of heteronuclear

coupling constants with a spreading parameter. In these

sequences x = (Ny1+ Ys) / 2Ny I· (a) This pulse sequence

allows correlation of LFiS with the chemical shift Vs of

the 13C nucleus involv~d. The initial condition of
I Sinterest is the (n :oN, n =0) coherence. The resulting

spectrum for this coherence ~s a triplet of lines from
13 ..

each different C site. The splitting within each

triplet is proportional to iFiS' its center is propor

tional to the chemical shift of the carbon, vS. (b)

Incorporation of a pulsed field grad~ent allows CTEF

discrimination against all coherence not prepared as

nI
:0 N. (c) This sequence allows separation of SHRIMP

spectra by the chemical shift of the 13c involved.

Again, the initial condition of interest is (n I = N,

nS
:0 0). A SHRIMP sequence (not drawn) is applied

during t la and the time period 'IS is fixed.
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experiment
t la

time --2-

first

for a

(Fig. 3.l2a) this evolves according to ~ FiS (Eq. 3.19)
I S ~

, is converted' to (n =N, n =:tl) coherence for a time t
lb

,
S .. t laand then back to n = a for a second per~od --2- before mixing to observ-

able I magnetization.

The I spin ~ pulse during t lb refocuses that coherence'which spends

I Stime xt1b with quantum numbers (n = N, n = -1) and (1- x)t
1b

with

I S(n =-N, n .. -1). The fraction x, given by

x = (3.43)

is chosen to remove the effects of the inhomogeneous Zeeman terms for

this coherence alone. Other coherences, including all those arising

from systems not labeled by an S spin, may be suppressed by intentionally

increasing the range of We!) with a pulsed field gradient. As demon-

strated below, further suppression of unwanted coherence can be achieved

by shifting the relative phase of the S spin pulses in successive shots

(Sec. 2.4.2).

The spectrum resulting from Fourier transformation with respect to

t l is a triplet centered at

(3.44 )

\
h The splitting between the outer lines of this triplet is

(3.45 )

This allows association of L FiS for a particular S spin with the chemical
i

shift of that spin.



The ability to correlate I~ FiSI with Vs was demonstrated on the
13 J.

same sample of [1- C] benzene using the pulse sequence of Figure 3.l2b.

CTEF was used so that only magnetization resulting from n1 = 6 coherence

was sampled. Four different experiments were performed, the phase of

the first S spin I pulse being incremented by 90° in each successive

experiment. Data from these four experiments were combined so that only

Sthe triplet of lines belonging to n = -1 coherence was retained. The

effect of an S spin chemical shift was simulated by changing the 13C

synthesizer frequency.

Figure 3.13a shows the positions of the three lines as a function

13of C frequency offset, with the proton frequency set on-resonance. As

expected, these lines move in unison as the frequency is varied, the

,change in line position with changing offset frequency being determined
t 1bby the ratio --- = 0.49, as described by Equation 3.44. Figure 3.13b
t 1

shows similar results of experiments in which the 13C frequency is set

on-resonance and the proton offset frequency varied. Again, Equation
t 1a3.44 is confirmed. Finally, the effect of varying the ratio
t
1

(Equation 3.45)is illustrated in Figure 3.13c. The results of these
t 1aexperiments demonstrate that by an appropriate choice of the ratio ---,
t 1

separated triplets can be obtained and? FiS thereby correlated with Vs
J.

for several inequivalent S spins, without ever detecting S spin

magnetization.

3.7.3 Sorting of HMQ Spectra by Spreading Parameter

The correlation of ~ FiS with V s is useful in choosing the parameter
J.

TIS in the sequence of Figure 3.12c. This sequence begins with evolution

Iof n =N coherence under, for example, the SHRIMP Hamiltonian of Equation

3.33 for a time t 1a • Following a I S pulse, evolution for time t 1b , as

120
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Figure 3.13. LinerPositions as a function of ~\l13c' 6\1l
H

' and (tla/t l )

in n ~ 6 spectra of partially oriented

[1- l~C] benzene, collected with the pulse sequence of

Figure 3.12b. The spectrum obtained in each experiment

is a triplet of li~es; the position of each of these

lines is shown. All spectra were acquired with T = 4.304

msec, T = 1.025 msec, and T' = 4.266 msec. (a) 6\113
13 C

dependence: Line positions as a function of C frequency
1offset with H f~equency set on-resonance. Experiments

were run with 6t1a = 100 usec, 6t1b = 96 usec. The slope

of the least-squares fit to the position of each spectral

line is 0.488; the theoretical value is (6t1b /6t1) = 0.490

(Eq. 3.44). (b) 6\11 dependence: Line positions as a
1 H 13

function of H frequency offset with C frequency set on-

resonance. Experiments were run with 6t l = 100 usec,. a
6t1b = 96 usec. The slope of the least-squares fit to the

position of each spectral line is 0.120; the theoretical

value is (Ys/Yr) (6t1bht1) = 0.122 (Eq. 3.44). (c) (tla/t l )

dependence: Line positions as a function of the ratio

(t
1a

/t
l

) with both l3c and lH frequencies set on-resonance.

The center line, which contains no dipolar information,

remains stationary as a function of the fraction (tla/tl );

the splitting between the outer lines of the triplet varies

linearly with this parameter (Eq. 3.45).



in the sequence of Figure 3.l2a, shifts the SHRIMP spectrum for each spin

an amount proportional to vS• As t l is incremented the time LIS is held

fixed. In the Fourier transform with respect to t l , the intensity of a

given set of SHRIMP lines, corresponding to the heteronuclear couplings

to a particular S spin, varies as sin(8 IS ) as described by Equation 3.30.

A pulsed field gradient during t
lb

, phase shifting of S spin pulses,

and CTEF can again be usad to suppress unwanted coherence.

3.8 Conclusion

In this chapter, the measurement of heteronuclear dipolar couplings

in molecules containing N spin-I nuclei and one spin-S nucleus has been

considered. Several new approaches to the problem have been introduced

and experime~tally demonstrated. The exponential increase in spectral

complexity with the size of the spin system is a problem which was un-

solved by single quantum local field techniques. The multiple quantum

methods demonstrated allow spectroscopy at the resolution of individual

transitions for larger molecules than is otherwise possible.

Even when high-order multiple quantum coherence is observed, however,

the rationale for removing the effect of homonuclear dipolar couplings

still remains. This removal reduces the number of unknown parameters,

thereby simplifying spectral interpretation and simulation. The usual

approach is to irradiate only the abundant nuclei with a multiple-pulse

line-narrowing sequence. A new approach which involves the irradiation

of both spin species, SHRIMP, was introduced.

In addition to providing good spectral resolution, another desirable

feature of any experiment designed for large molecules is that it gener-

ates spectra whose relative line intensities can be readily simulated.

In general, this is difficult in multiple quantum experiments, because

122 r,
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of the complex dynamics of the excitation periods. The elimination of

this problem by the separation of homonuclear and heteronuclear excita

tion was demonstrated for the high order spectra of [1- l3C] benzene.

IFor the n = 5 spectrum, this calculation depended on the high molecular

symmetry. Both the SHRIMP method and that of total spin coherence

transfer echo spectroscopy (TSCTES) discussed in the next chapter lead

to relative line intensities which are independent of the excitation

periods, regardless of molecular symmetry.

In all of the experiments discussed,the final detection of

magnetization is at the abundant spin frequency, since this typically

gives greater sensitivity. Optimization of sensitivity may require

selective excitation of high-order coherence (Sec. 2.5.4), exactly as

in purely homonuclear experiments. The methods demonstrated in Section

3.7 allow heteronuclear multiple spectra to be labeled with the

resonance frequency of the lower sensitivity heteronuclear spin without

requiring that ~t be directly observed.
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Chapter 4: TOTAL SPIN COHERENCE TRANSFER ECHO SPECTROSCOPY

In Chapter 2, several of the problems associated with existing

multiple quantum NMR methods were described. These difficulties can

complicate the interpretation of multiple quantum spectra and limit the

accuracy of information which can be extracted from them. Among these

are problems resulting from: (1) the sensitivity of MQ transitions to

inhomogeneous broadening, (2) the complex dependences of MQ line inten-

sities on both parameters of the spin Hamiltonian and timing parameters

of the excitation sequence, and (3) the generally different and unknown

phases of MQ spectral lines. These latter two problems were discussed

in Sections 2.5 and 2.3 respectively, while the effects of inhomogeneous

broadening (w(r)I ) during the evolution period t l are considered below.
~ z

Solution of these problems has provided much of the motivation behind

the development of total spin coherence transfer echo spectroscopy

(TSCTES)65,118 and it will be shown in this chapter how all three can be

overcome by the TSCTES method.

In Section 4.1, a number of introductory topics are ·presented, in-

eluding a consideration of the effects of rr pulses in spin echo experi-

ments, a description of the total spin coherence, and a review of

coherence transfer echoes. Section 4.2 introduces the technique of total

spin coherence transfer echo spectroscopy, describes several different

TSCTES pulse sequences, and presents experimental results which demon-

strate the TSCTES technique. The relative line amplitudes in TSCTES

spectra, including phase, are considered in Section 4.3. In Section 4.4,

we discuss absolute integrated line amplitudes in TSCTES spectra. The

dependence of these amplitudes on r.f. flip angles, the number of protons

I
in the spin system (N), and the multiple quantum order of interest (n )
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are all considered. Various limitations on the applicability and infor-

mation content of TSCTES, including the effects of diffusion, are

described in Section 4.5.

4.1 Introductory Topics

4.1.1 Evolution Period Spin Echoes

As noted in Section 2.4.1, since the contribution of magnetic field

inhomogeneity to the multiple quantum linewidth is proportional to the

IS3
order of the transition n ,it can be resolution limiting even in

situations where it is negligible in the single quantum spectrum. This

h 1 d h i . fl' 36 l' 19,41as e to t e ncorporat~on 0 se ect~ve or non-se ect~ve IT

t

pulses at the midpoint, 21 , of the multiple quantum evolution period

(Fig. 2.4) in order to create a spin echol19 at time t
l

. While such an

echo does remove effectively inhomogeneous broadening, it creates new

difficulties, as discussed below.

In order to describe the effect of an evolution period IT pulse, we

first derive an expression for the signal observed in a multiple quantum

spin echo experiment. With reference to Equation 2.8, this signal can

be written as

125

SCt ( T , T I , t 1) = Tr (p ( T , T ' , t 1) I Ct ) (4.1a)

I
h

, -=

l
t
1

where R, the propagator for the IT pulse at 2:' is given by

R = exp ( irr I ).
Y

(4.1b)

(4.2)

Expanding in the eigenbasis of Xl' Equation 4.lb can be simplified to



(4.3)

This expression is discussed further in Sections 4.1.1.1 and 4.1.1.2 below.
t

The effect of a ~ pulse at :t is illustrated schematically in

Figure 4.1. On the left, the prepared spin density operator existing

during the first half of the evolution is depicted, for simplicity, by

two arrows representing ~oherent superpositions of the connected eigen-

states. After the ~ pulse, one of the two pictures on the right applies,

depending on whether or not

126' r
t

(4.4)

where
( --

(4.5)

I

K
l

is obtained from K
l

simply by reversing the signs of all of the Zeeman

terms

,
4.1. 1. 1 [Xl ,K

l
] = 0

The commutator of Equation 4.4 vanishes or is negligible when the

chemical shift differences among the spins are zero or negligible

compared to the spectral resolution. It also vanishes in the other

extreme of weak coupling, where the chemical shift differences are much

greater than the couplings between spins. This is because in the weak

coupling limit,mutual spin-flip terms (of the form 1+.1 .) may be dropped
1 -J

from Xl. In either of these cases, Figure 4.1b applies after the ~ pulse.

There is a one-to-one correspondence between coherences present before

and after the ~ pulse.
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Figure 4.1. Coherence transfer due to a IT pulse. (a) Two coherences

existing before the IT pulse are indicated by the single

and double arrows. (b) When [Xl' Jf.{] = ° (Eq. 4".4),

the rr pulse transfers each coherence to· a single other

coherence between states of opposite Zeeman quantum
I

numbers. (c) When [Xl.xl ] :j: 0, the situation is more

complicated. Several coherences arise from each of those

present before the rr pulse. This leads to a spectrum of

many lines at frequencies which are averages of those

occurring before and after the rr pulse.



This one-to-one correspondence is evident from an examination of
,

Equation 4.3. When [Xl,Xl ] = 0, the spin inversion state formed from

the eigenstate Ik>,

128

Ik> = Rlk>, (4.6)

is itself an eigenstate

a unless <£1 = <31.

<iIRlk> is

<tIRt!j> =

the one with

of Xl. Thus the only non-zero matrix element

<il = <kl. Similarly, the matrix element

This allows the quadruple sum in Equation

r '

4.3 to be collapsed to

(4.7)

where the dummy index k has been relabeled as j.
,

In cases where the commutator [Xl,Xl ] vanishes, an average

Hamiltonian (Sec. 3.2),

-(0)
J( =

1
(4.8)

accounts accurately for the spectrum observed by Fourier transformation

with respect to t
l

. This spectrum, having transitions at frequencies

1
-2(w.7+w

i
7), is free of all Zeeman terms. In liquids such a limit is

J1 J

f d J 120,121.. i i h bre erre to as -spectroscopy ; 1n an1sotrop c systems t as een

19 41
used to describe multiple quantum echo spectra • of systems with small

or zero chemical shifts. If the goal is to measure spin-spin couplings.

this situation is satisfactory. However. the removal of inhomogeneous

broadening is gain-ed at the expense of chemical sh-ift information, which

may be of intrinsic interest or may at least be an aid to line assign-

ments, particularly in liquids.

It -
k,



,
4.1.1.2 [Xl,Xl ] * 0

The situation is different when the commutator (4.4) is not negli-

gible. This situation results when the chemical shift differences and

spin-spin couplings are of comparable magnitude. In this case, the

density operator after the ~ pulse is represented by Figure 4.lc. Many

of the spin inversion states Ik> are no longer eigenstates of Xl and,

for a given eigenstate Ik>, several of the matrix elements <iIRlk> may

129

therefore be non-zero. IFrom each coherence of order n prepared

originally, there may be a transfer (via the ~ pulse) to several coher

Iences of order -n. The resulting spectrum cannot be characterized by

an average Hamiltonian and, in fact, contains more Fourier components

(at frequencies -f(w. i + wk2» than would be expected from any plausible
. J

energy level diagram. This is illustrated in Figure 4.2b, which shows a

computer simulated single quantum spin echo spectrum of partially oriented

acetaldehyde. This spectrum, which is symmetric about zero frequency,

contains more than twice the number of lines seen in the normal single

quantum spectrum, whose simulation is shown in Figure 4.2a. The observed

line positions in the spin echo spectrum are at the averages of pairs of

transition frequencies of the normal spectrum.

The spin echo spectrum is reasonably insensitive to chemical shifts,

though they do enter into the line positions in an attenuated form. More

troublesome is that the plethora of lines created complicates spectral

analysis and reduces resolution. Analytical expressions have been de-

h 122-124 d l' 1 69. h l'rived for t e single quantum an mu t1P e quantum sp1n ec 0 1ne

positions and intensities of several small spin systems. In addition, a

computer program has been written which is capable of calculating multiple

h f f 1 d
. 51

quantum spin ec 0 spectra 0 systems 0 up to seven coup e sp1ns



Figure 4.2. Simulated spectra of partially oriented acetaldehyde.

Simulations of this AB3 spin system are with parameters

JAB a 2.8 Hz. DAB • -179.0 Hz. DBB -.458.6, and

vAB a 1360.9 Hz. (a) Normal single quantum spectrum,
51generated by computer program SQSPEC . (b) Single

quantum spin echo spectrum, generated by computer
51program SPECHO • This spectrum. which is symmetric

about zero frequency. contains more than twice the

number of lines seen in the normal spectrum in (a).

n
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4.1.2 Total Spin Coherence

4.1.2.1 Definition

The TSCTES method depends upon the unique properties of the

total spin coherence, defined as the coherent superposition of the

extreme eigenstates of a coupled spin system. This transition corre-

sponds to the simultaneous flipping of all spins from down to up. Its

operator may be written either in bra-ket notation or as the product of

single spin operators. For a system of N spin-~ nuclei these forms are:

132 r

!

r'

N

IT I+i .
i=l

(4.9)

The total spin coherence is one example of a spin inversion transition.

Spin inversion transitions connect eigenstates which can be formed from

one another by replacing all individual spin states Is> by la> and la>-

by Is>.

4.1.2.2 Properties

Due to the bilinear nature of spin-spin couplings, coherences

between spin inversion pairs commute with ~I and ~I and thus evolve

independently of both. In addition, the total spin coherence (4.9) com-

mutes with all chemical shift differences. Thus the total spin coherence

evolves independently of all terms in the spin Hamiltonian except for the

homogeneous and inhomogeneous Zeeman terms, -(6w+w(r»I. It is this
- z

property which forms the basis of TSCTES experiments.

4.1.3 Coherence Transfer Echoes

Central to the TSCTES technique is the phenomenon of the coherence

r:
!

125 35 63transfer echo ' , . I h H h . h 119 hn contrast to tea n sp1n ec 0 ,t e co-

herence transfer echo iovo1ves a change in the magnitude of the order of



r~

r•

Icoherence,n ,before and after the echo pulse. This effect has been

63
demonstrated for a system of several coupled protons and used for the

suppression of signal from all but one order of coherence (coherence

transfer echo filtering), as described in Section 2.4.2.4.

The TSCTES method uses the phenomenon of coherence transfer echoes

to produce pure absorption phase multiple quantum spectra with homo

Igeneous linewidths for any order n. The line positions for a system of

coupled spins are the same as would be obtained in a perfectly homogeneous

magnet. The relative line intensities are calculable from the eigen-

vectors of XlNT and are independent of the excitation dynamics. Thus

this version of multiple quantum NMR overcomes all three of the problems

described in the opening paragraph of this chapter.

4.2 TSCTES Pulse Sequences and Spectra

4.2.1 Generalized TSCTES Experiment

A generalized schematic diagram of the TSCTES experiment is

133

shown in Figure 4.3a.

total spin coherence.

The propagator U acts on p(O) = I to prepare
z

Although it is possible to employ selective

\
~

excitation methods (Sec. 2.5.4) to prepare only this coherence, the

propagator U will, in general, also excite other multiple quantum orders.

Means of suppressing that signal which does not originate as total spin

coherence will be discussed below. Presently we focus on the evolution

of the N-quantum coherence, whose coefficient is the density matrix

element p -N/2,N/2°

As mentioned in Section 4.1.2.2, the total spin coherence is sensi-

tive only to the homogeneous and inhomogeneous Zeeman interaction,

- (t.w + w(r ) ) I .- z

nt1This N-quantumcoherence evolves freely for a time ~,
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Figure 4.3. TSCTES pulse sequences. N is the number of coupled protons
in the spin system, -n the multiple quantum order of
interest. (a) Generalized schematic of the TSCTES experi
ment. W represents a pulse or pulse sequence for transfer
ring coherence from N-quantum to -n-quantum. (b) Single
quantum (n -1) TSCTES pulse sequence. Choice of the r.f.
nutation angle 81 is discussed in Section 4.4.2. (c)
Simple multiple quantum TSCTES sequence. The cross-hatched
areas specify a pulsed magnetic field gradient for CTEF
selection of -n-quantum coherence. In the present experi
ments, the static ma~netic field inhomogeneity was such
that no external gradient was required. (d) Phased-line
multiple quantum TSCTES sequence. Coherence which is -n
quantum during t

l
is channeled back through the total spin

coherence by the second 6
1

pulse before mixing to single
quantum. CTEF and TPPI are both required to distinguish
signal arising from the coherence transfer pathway of
interest, as discussed in the text.



where -n is the order of the desired spectrum (1 ~ n ~ N). The linear

dependence of dephasing rate on multiple quantum order causes P-N/Z,N/Z

to accumulate a total phase factor of

135

(4.10)

during this time. Following this free evolution, a transfer of coherence

takes place under the action of the homogeneous propagator Wand the

system evolves for an additional time t l at the frequencies of interest.

For lines of order -n, the accumulated phase factor during t
l

,

(4.11)

just cancels the offset precession and inhomogeneous dephasing which
nt

loccurred during ~, resulting in the formation of a coherence transfer

h
35,63

ec 0 • The only modulation of this echo is due to the chemical shift

I
t-::

differences and spin-spin couplings acting during t
l

. Signal arising
nt

from coherence which is not N-quantum during Nl and -n-quantum during

t
1

decays rapidly due to the inhomogeneous Zeeman interaction, -w(r)I .
~ z

For n * 1, the echo modulation as a function of t l is not directly

observable and the propagator V is required to mix the multiple quantum

coherence back to single quantum coherence. Fourier transformation of

the interferogram S(t
1
,t Z) with respect to t

l
yields the homogeneous

-n-quantum spectrum.

4.2.2 Experimental Results

The experiments were performed on CH
3

CHO dissolved in Eastman 15320

liquid crystal. The temperature was regulated at 26.0 ~ O.loC and

sampling of transverse magnetization occurred at t 2 = a only.



4.2.2.1 Single Quantum TSCTES

The homogeneous single quantum TSCTES spectrum shown in Figure

4.4b was obtained with the pulse sequence of Figure 4.3b. Parameter pro-

portional phase incrementation (Sec. 2.5.5) was employed to choose a

preparation time T favorable for the excitation of the total spin coher-

ence. Figure 4.4a is the normal one pulse single quantum spectrum and

serves to illustrate the inhomogeneity of the static magnetic field. The

simulation in Figure 4.4c confirms the sensitivity of the TSCTES spectrum

to spin-spin couplings and chemical shift differences.

Figure 4.6a displays the single quantum TSCTES spectrum obtained

with an initial value of t
l

a O. In contrast to the magnitude spectrum

of Figure 4.4b, this spectrum is presented in phase sensitive mode. All

lines in this spectrum are either absorptive or emissive. Both this

interesting phase property and the relative intensities of these spectral

lines will be discussed in Section 4~3.3.

4.2.2.2 Multiple Quantum TSCTES

Figure 4.3c illustrates a pulse sequence used to collect multiple

quantum TSCTES interferograms. CTEF is employed to select out that co-

herence which is -n-quantum during t 1 . Two and three-quantum spectra of

oriented acetaldehyde, obtained using this pulse sequence, are displayed

Ln Figure 4.5. Within the spectral resolution (-2 HZ), all transition

frequencies in these spectra are consistent with the internal Hamiltonian

parameters of Figure 4.2.

~ultiple quantum TSCTES spectra having phased lines of easily calcu-

labl~ relative intensities are obtained with the pulse sequence of Figure

4.30. In contrast to the sequence in Figure 4.3c, coherence which spends

time t 1 as -n is transferred back to the total spin coherence before

being mixed to observable signal. Here CTEF serves to discriminate
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Figure 4.4. Single quantum magnitude mode spectra of partially oriented
acetaldehyde. (a) The normal single-pulse Fourier trans
form spectrum, showing the inhomogeneity of the magnetic
field to be greater than 1 ppm. (b) The single qua~tum

TSCTES spectrum, obtained using the pulse sequence of
Figure 4.3b, is the average of three 4096-point interfero
grams. These were collected with T = 3.884 msec, ~tl =
200 usec, e = 90°, and a recycle delay of 1 sec. (c)
The simulation of this spectrum, generated with computer
program NQECHOSI using the same parameters as in Figure 4.2.
Lines of E symmetry are absent because they do not correlate
with the totally symmetric total spin coherence.



f; -

I

I 
6

I _
L



r
I

(0)

138

l
L':

U

(b)

....~ I. .~ .... ,~

I I I I
-2 -I 0 2

kHz
XBL 8210'2906

Figure 4.5. Multiple quantum TSCTES spectra of partially
oriented acetaldehyde using the pulse sequence
of Figure 4.3c. Each magnitude spectrum is
the average of two 4096-point interferograms
acquired with T ~ 3.884 msec and a recycle
delay of 2.1 sec. (a) The 2-quantum spectrum
shows a total of 8 lines. For this spectrum
T = 9.052 msec, ~tl = 160 ~sec and 61 = 120°.
Only a portion of the total bandwidth is
displayed. (b) The 3-quantum spectrum
contains 4 lines and was collected with
T = 5.564 msec, 6t l = 200 ~sec, and 61 = 139°.



Figure 4.6., TSCTES spectra of partially oriented acetaldehyde, displayed

in phase sensitive mode, acquired with T = 3.884 msec and

a recycle delay of 2.1 sec. (a) The single quantum TSCTES

spectrum shows all lines as either absorptive or emissive,

as discussed in Section 4.3.3. The spectrum was collected

using the pulse sequence of Figure 4.3b and is the average

of three 4096-point intetferograms with At l = 200 Ilsec,

(tl)o • 0, and 61 • 104°. The line positions in the simu

lated stick spectrum are the same as those in Figure 4.4c,

the relative amplitudes being $iven by Equation 4.22. (b)

The 3-quantum TSCTES spectrum collecting using the pulse

sequence of Figure 4.3d. TPPI was used to separate out

signals originating from different multiple quantum orders.

This spectrum is the average of four 8192-point interfero

grams with T • 2.091 msec, At1 = 20 Ilsec, 61 = 139°, and

62 • 104°. Line positions in the simulated stick spectrum

were calculated based on the parameters given in Figure

4.2, and relative·line amplitudes are given by Equation 4.24.

139 r
i

r '

L



r
I

-n
u
n
r
I '

(0)

(b)

I

I

I

140

L
U

~ 8
- l~

- L
u

I I I
-2 -I 0 2

kHz
XBL 8210-2907



n
I

r '

l



r
\

against coherence which is not N-quantum during time T. In addition to

CTEF, a second "password" is required to separate out signal which origin-

ates as total spin coherence. That additional discrimination is necessary

is most easily seen by considering a specific example.

Assume that the spectrum of interest is the 2~quantum TSCTES spec-

trum of a four spin system. The appropriate coherence transfer pathway

can be schematically represented as:

141

- 2 - 1. (4.12)

I
\

CTEF alone, however, cannot distinguish this desired pathway from the

following alternate route:

- 1 - 1, (4.13)

which also leads to spectral lines that are free of inhomogeneous

broadening. The characteristic modulation properties of multiple quantum

coherences under phase shifts of the r.f. irradiation (Sec. 2.4.2) can

serve to distinguish these two cases from one another. The phased

3-quantum spectrum of Figure 4.6b was obtained using TPPI as the second

password. This results in a clean separation of the signal contributions

from the pathways (4.12) and (4.13) to different spectral regions.

4.3 Relative Line Amplitudes

4.3.1 Irreducible Tensor Operators

In the following sections on intensity and relative phase of TSCTES

lines, it will prove useful to represent multiple quantum coherences as

irreducible tensor operators. tIrreducible tensor operators T were
n

introduced in Section 1.7 of this thesis. These tensor operators are

normalized just as are outer products of normalized states:



(4.14)

142 f-~

I
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NThe total spin coherence can be represented as the tensor operator TN:

TN = IN/2><-N/2/.
N (4.15) n

\

According to Equation 1.64 the rotation of an irreducible tensor

2
operator T by an r.f. pulse of nutation angle e and phase ~ can be

n

described by:

-1 '\D (e,~) = L
n'

T2 d(2) (e) exp(i(n-n')~).
n' n',n '!'

(4.16)

In the following discussion it will be the magnitude of the coefficient

d(~) (6) and not the phase facfor exp(i(n-n')~) which is important. Both
n ,n

factors will be common to all lines of a given observed spectral order n.

The former will enter into the efficiency of the experiment, while the

latter can be adjusted to unity by the choice of the r.f. phase or by

overall phase manipulation of the complex data array.

4.3.2 General Form of the TSCTES Signal

As with any NMR experiment, the measured TSCTES signal is Tr(p(t)I+)

(Eq. 2.3). We shall first derive a general expression for the TSCTES

signal based upon the schematic diagram of Figure 4.3a, and then consider

the specific pulse sequences of Figures 4.3b and d.
,

We define the Hamiltonian JCINT as

rt -
I
\

! 
b

x'
INT

(4.17)

the internal Hamiltonian minus the homogeneous and inhomogeneous Zeeman

terms. It is assumed that TPPI in the preparation period and CTEF in the

mixing period are used to select the coherence transfer pathway of interest.
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Along with the coherence transfer echo formed at t l , the labeling of

signal with these two passwords allows us to determine the -n-quantum
,

TSCTES signal from the evolution (during t l ) under XINT of a density

operator p(n)(T) which is given at t
l

= 0 by

143

(4.18 )

Taking the propagator W to be a strong y-pulse of flip angle 61 allows

this density operator to be simplified to

The signal at t 2 = 0 can then be written as

Ci = X,Y.

(4.19)

(4.20)

Expanding Equation 4.20 in the eigenbasis of X gives the TSCTES signalINT

as an interferogram in t
l

:

I P~~)(T)(X .. (-T'-T) + iY .. (-T'-T» exp(iw .. t l ).
~J J ~ J ~ J ~

i,j (4.21)

I
L

u

! .
I
1.3

In the general sequence of the form of Figure 4.3a and the particular

sequence of Figure 4.3c,even the relative amplitudes of the different

TSCTES lines of order n depend on the mixing period. For the sequences

of Figures 4.3b and d, however, these relative amplitudes are independent

of both preparation and mixing dynamics. It is these sequences which we

now consider in greater detail.

4.3.3 Relative Single Quantum TSCTES Line Amplitudes

For the single quantum experiment (Fig. 4.3b), the propagator V is

omitted because the -I-quantum Cbherence is directly observable during t l .
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Thus I+(-T'-T) is simply equal to 1+ and the intensity of a given line n
is given by the product

(4.22)

The first term in this expression is the coefficient of the total spin

coherence prepared by the propagator U(T). The second factor is a Wigner

rotation matrix element, which expresses the efficiency with which single

quantum coherence is prepared from the total spin coherence by a pulse

of nutation angle 81 , Optimal choice of this angle is discussed in

Section 4.4.2. These first two factors are common to all lines. The

third factor expresses the extent to which a particular transition i-j

N
is represented in the resultant single quantum operator T_

l
, while the

final term is the normal magnetic dipole detection period matrix element.

As demonstrated in Figure 4.6a,a11 of the single quantum TSCTES

lines are either absorptive or emissive. In addition, the sum of the

lines in this spectrum is zero. Qualitatively this is easily understood.

The signal immediately following the transfer of coherence W is rigorous

ly zero, due to the orthogonality of T~l and the detection operator 1+,

I
which is a T

l
tensor operator. The point t

l
= 0 in the free induction

decay therefore vanishes and, since this point is equal to the integral

of the resulting spectrum, the sum of the spectral lines must be zero.

A quantitative treatment of relative line intensities and phases

requires examination of the final two terms of the expression (4.22).

The matrix elements <iIT~llj> are, to within a common phase factor, all

real as are the elements of the detection matrix 1+. Thus all of the

single quantum TSCTES lines have, to within a sign, a common phase. In

addition, the algebraic signs of the elements <iIT~llj> alternate between

51
+ and - as the Zeeman quantum numbers m. and m. are changed by one

~ J

n
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In weakly coupled systems a similar relationship holds for the signs of

the terms <i/I+/j>5l and for these systems the positive and negative

spectral lines originate in two orthogonal subspaces.

The simulation shown in the lower portion of Figure 4.6a is based

upon the expression in (4.22). The matrices describing I+ and the

rotated total spin coherence in the eigenbasis of XINT were computer

calculated. The relative intensity and phase of each line was then

determined by taking the product of the appropriate matrix elements.

The common factor PN/ 2 ,-N/2(T) is discussed in Section 4.4.3.

4.3.4 Relative Multiple Quantum TSCTES Line Amplitudes

We turn now to the multiple quantum TSCTES pulse sequence of Figure

4.3d. Here the propagator V channels -n-quantum coherence back through

the total spin coherence before the final mixing to detectable single

quantum signal. The mixing thus serves the same purpose as the prepara-

tion: to interconvert total spin coherence and magnetization. Defining

145

(4.23)

we can write the coefficient of the i-j transition (Eq. 4.21) for the

sequence of Figure 4.3d as

(4.24)

£ --

U The first three factors on the right are common to all lines of the

chosen order. The first is the coefficient of the total spin coherence

in the prepared density matrix P(T)t the second the coefficient of this

same coherence in the "devolved" detection operator. The last two factors

are both non-negative and real, ensuring that all lines will have a
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common phase. The appropriate Wigner rotation matrix element comes into

Equation 4.24 squared, because coherence is first transferred from

N-quantum to -n and then back. For the same reason, the factor reflec

ting the extent to which the i-j transition is represented in TN enters
-n

as the magnitude squared. As in the single quantum case, the relative

phases and intensities of all -n-quantum lines are independent of the

propagators U, V, and W.

To simulate the 3-quantum TSCTES spectrum of Figure 4.6b, the den-

sity matrix resulting from rotation of the total spin coherence was

computer calculated. Individual line intensities were then computed by

taking the magnitude squared of the appropriate terms in this density

matrix.

4.4 Absolute.Integrated Intensities

4.4.1 Motivation

In the preceding section, the relative intensities of TSCTES lines

were discussed. We address now the important question of absolute spec-

tral intensity in TSCTES experiments. The overall intensity of a TSCTES

spectrum depends upon: (1) the excitation of the total spin coherence

(T~), (2) the multiple quantum order of interest (-n), and (3) the effi

cient transfer of coherence TN
N ~ TN. The dependences on the first two-n

of these will be discussed in Section 4.4.3. First, however, we consider

the optimization of coherence transfer between multiple quantum order~.

4.4.2 Optimization of Pulse Angles

The dependences of the single and multiple quantum TSCTES line inten-

sities on the pulse angle 6
1

of Figure 4.3 are given, respectively, by

(4.22) and (4.24). In addition, for the sequence of Figure 4.3d, the
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factor P_N/2,N/2(-T'-T) in (4.24) has an implicit factor ~~~1(62)

describing the transfer of coherence ~ ~ T~l' The relevant Wigner

rotation matrix element can be found in standard angular momentum

33 34texts·' :

147

(4.25)

(

l

Explicit tabulations of these coefficients have been given for

o S N S 7126 •

In order to demonstrate the dependence of coherence transfer effi-

ciency on the r.f. nutation angle, two sets of 2-quantum TSCTES experi-

ments were performed using the pulse sequence of Figure 4.3d. The first

set involved varying the flip angle 61 with the value of 62 held constant

(6 2 ... 104°). For each value of 61 , the sum of the line intensities in

the 2-quantum spectrum was recorded. Figure 4.7a shows a plot of this

total normali~ed spectral intensity as a function of 6
1

, The solid line

·22
is the theoretical curve, described by the function sin 61 (1- coS6 l ) .

Figure 4.7b shows results from a second set of experiments in which flip

angle 62 was varied with 6
1

constant (61 '" 120°). The theoretical curve,

3described by the function sin 6
2

(1- coS6
2
), is also shown.

The expression for dN(N) given in Equation 4.25 is easily maximized,-n

to yield optimal values of the nutation angle 6, 60PT ' for different

values of Nand -no For the four spin acetaldehyde system (N ... 4), 6OPT

equals 104 ° for n:or 1, 120° for n'" 2, and 139° for n = 3. Each of the

TSCTES spectra displayed in Figures 4.5 and 4.6 were obtained with 61

(and, when relevant,62) chosen according to this list.
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Figure 4.7. Dependence of 2-quantum line intensities on the r.f. nuta

tion angles 81 and 82 of the pulse sequence in Figure 4.3d.

Plotted line intensities are proportional to the sum of the

magnitudes of the eight 2-quantum lines. (a) Line inten

sity as a function of 81 with 82 = 104°. The theoretical

curve is described by the function sin 28l (1- COS81)Z

(b) Line intensity as a function of 82 with 81 =120°.

Here the theoretical curve is described by sin382(1 - cos8 Z) .
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4.4.3 Dependence of Intensities on Nand n

We derive in this section expressions for the absolute integrated

and average TSCTES line intensities for the sequence of Figure 4.3d,

expressed as a fraction of the total equilibrium magnetization. These

intensities depend on both the number of spins,N,and the multiple quantum

order,-n,observed.

The total spectral intensity for the sequence of Figure 4.3d, S(n,N),

is found by summing (4.24) over all lines .using the identity of Equation

4.14:

149

(4.26)

This is most easily

The

any

maximum value of PN/2 _N/2(T) for initial condition
, . N20 ,47

unitary preparation pr~pagator U(T) is 2

p(O) = I
z

and

seen by considering the two level system comprised of the mI =± ~

Zeeman levels. 1TAn N-quantum selective 2 pulse transfers the entire

population difference between these two states into total spin coherence.

NSimilar arguments place an upper bound of 2 on the magnitude of

P_N/ 2 ,N/2(-T'-T) also. Substituting these maximum values into Equation

4.26, setting 81 = 60PT ' and dividing by the total equilibrium magneti-

. T (I 2) N2 N h . f . 1 " f ( N) .
zat~on, r z = --4-' t e opt~mum ract~ona magnet~zat~on, n,L, ~s

found to be

L f(n,N) (4.27)

Finally, it is necessary to rememb~r that the number of lines of order

-n among which this magnetization will be shared also depends on Nand n.

In Equation 1.58b the number of n-quantum lines for a system of N spins-~,

Z(n,N), was given for an unsymmetrical spin system as



(4.28)

Dividing (4.28) into (4.27) gives the mean. fractional magnetization per

TSCTES line which can be detected in t 2 • The logarithm (base 10) of

this quantity is plotted in Figure 4.8 for 2 ~ N ~ 16 and n = N-l and

N-2.

4.5 Limitations on TSCTES

4.5.1 System Size, System Isolation, and Linewidths

The results of Section 4.4, summarized by Figure 4.8, place an

obvious signal-to-noise limitation on TSCTES. This is similar to that

for other multiple quantum experiments discussed in previous chapters.

For acetaldehyde and other small spin systems, the simple multiple

quantum excitation sequences of Figures 4.3b-d are sufficient to excite

a substantial amount of N-quantum coherence. For larger systems, there

is increasing necessity for the selective excitation of the total spin

coherence.

A more subtle requirement of the TSCTES experiment is that of sys-

tern isolation. If the system is only approximately limited to N spins,

the N-quantum transition will be broadened or split by interactions with

other spins. This structure will then be convoluted into all lines of

the TSCTES spectrum.

In this regard it should be noted that even when all lines are re

-ij
solved Lorentzians, the TSCTES linewidth (FWHM), VI , is given by

~

150 r
\

n
r, -

L
(4.29)

where vfj is the usual homogeneous linewidth for the i-j transition.
~

Equation 4.29 expresses the fact that the irreversible dephasing of the

total spin coherence is not removed from the dynamics by the echo.
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Figure 4.8. The logarithm (base 10) of the mean fractional magnetiza

tion per TSCTES transition, [f(n,N)/Z(n,N)), as a function

of the number of spins N for observed orders n = N-l(O) and

n = N-2(e). The calculation assumes optimum excitation

periods and pulse angles for a TSCTES pulse sequence

similar to Figure 4.3d. The decline in [f(n,N)/Z(n,N))

with increasing N is due to the greater number of

-n-quantum transitions and the decreasing effectiveness

of both exciting the total spin coherence and of trans

ferring it to order -n and back.



Molecular motion from one region of magnetic field

4.5.2 Diffusion

As is the case for all echo techniques, TSCTES lines are susceptible

to residual inhomogeneous broadening due to the effects of transl~tional

d Off 0 119,127-130
~ us~on •

to another during the evolution period imparts a random time dependence

to the inhomogeneous Zeeman interaction and thus leads to an incomplete

refocusing. In such a case, Equation 4.29 underestimates the linewidth.

In order to measure the effect of diffusion on linewidth, the

magnetic field homogeneity was intentionally spoiled by misadjustment of

the room temperature shims. Single quantum signal following a single

pulse in the resultant field decayed in approximately 1 msec. Table 4-1

shows measured one, two, and three-quantum TSCTES linewidths for par-

tially oriented acetaldehyde in this field. Also shown are the linewidths

measured in standard spin echo experiments employing a single IT pulse at
t

lthe midpoint of the evolution period, 2: TSCTES lines are seen to be

more sensitive to the effects of diffusion.
nt

lTo understand this effect the time period ~ and the Hamiltonian

term -w(!)Iz must be explicitly reintroduced into the problem. The total

spin coherence experiences an inhomogeneity of magnitude -Nw(!) during
nt

lthe time ~, while -n-quantum coherence feels the inhomogeneity as

+nw(!). If one treats the difference in magnitude between Nw(!) and

nw(!) as a time dependence in the size of the magnetic field inhomogeneity,

Equation 5 of reference [128] can be used to compare the relative sensi-

tivities of TSCTES and standard spin echo experiments to diffusion.

Evaluation of this expression does predict the observed greater sensiti-

vity to inhomogeneous broadening of TSCTES lines. A major contributing
nt

1factor is the additional time period in TSCTES experiments, ~, over
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Table 4-1

Linewidths of Multiple Quantum TSCTES and Standard Multiple
Quantum Spin Echo Experiments for Partially Oriented Acetal

dehyde in an Inhomogeneous ~1agnetic Field

Multiple Quantum TSCTES Linewidth Spin-echo Linewidth
Order (n) (Hz) (Hz)

1 4 2

2 5 3

3 7 4

4 5

153



which the effect of diffusion must be considered. A more quantitative

treatment of diffusional effects is difficult because these experiments

were not performed in the presence of a well-defined magnetic field

gradient. It is apparent, however, that diffusion will not seriously

limit the resolution of TSCTES experiments except in extremely inhomo-

geneous static fields.

4.5.3 Information Content: Symmetry and Referencing

As already noted (Fig. 4.4), the lines observed with TSCTES always

belong to the totally symmetric representation. This is because the

total spin coherence itself has ~ symmetry and any unitary propagator

W only connects this coherence with other transitions of the same sym-

metry. For' -(N-l)-quantum spectra this is not a problem because all

such transitions are of Al symmetry. For lower orders .this can be incon-

venient, since transitions of other representations may be more sensitive

to certain combinations of Hamiltonian parameters which one would like

to extract from the spectra.

Finally, although TSCTES preserves chemical shift differences within

a group of coupled spins, it is incapable of measuring differences

between isolated systems. This places a limit on the technique's use-

fulness in mixtures and precludes the referencing of TSCTES spectra to

an external standard.

4.6 Conclusion

The technique of total spin coherence transfer echo spectroscopy

has been demonstrated for both single quantum and multiple quantum spec-

tra. Spectra which are sensitive to both chemical shift differences and

spin-spin interactions between coupled protons are obtained in the
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absence of broadening due to inhomogeneity of the static magnetic field.

In general, multiple quantum lines are of random phase and have relative

intensities which are difficult to calculate, due to the complex dynamics

of the excitation periods. Experiments which first excite and then

channel signal back through the unique total spin coherence produce

multiple quantum TSCTES spectra having phased lines and easily simulated

relative intensities. The r.f. nutation angle dependence of coherence

transfer processes has been analyzed by means of a tensor operator

description and confirmed by experiment. An analysis'of the line

intensities shows that TSCTES should find numerous applications in

coupled spin systems of moderate size.

The extension of TSCTES to heteronuclear systems consisting of
I .

several coupled protons and a l3C nucleus is straightforward. Multiple

quantum spectroscopy of these systems was discussed in Chapter 3.

Heteronuclear TSCTES experiments in such systems may begin with exci-

tation of the total spin coherence of the protons or of the combined

proton/ l3C spin system. In a manner analogous to that described here,

heteronuclear TSCTES spectra can then be collected which are sensitive

to carbon-proton couplings as well as proton-proton couplings and

chemical shifts.
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Chapter 5: APPLICATIONS OF HETERONUCLEAR BILINEAR ROTATIONS

In Chapter 3, we discussed the measurement of dipolar couplings in

partially oriented molecules consisting of several coupled protons and a

13randomly placed C nucleus. In this chapter, we consider various

aspects of the NMR spectroscopy of such molecules in the liquid state,

where the dipolar couplings are averaged to zero. In recent years, a

variety of simple double resonance experiments have been performed which

make use of the J-coupling between heteronuclear spins in liquids to per-

form useful site-selective manipulations. The problems approached

include: (1) the transfer of polarization from one spin species to

h 131-139 (2) h f . d . f h 1 1 . 1anot er , tea orement~one creat~on 0 eteronuc ear mu t~p e

h 63,66,108-113 (3) b ' f 13 . 11'quantum co erence , 0 servat~on 0 C sate ~te spectra

'h . f f h h b d 12C . .w~t out ~nter erence rom t e muc more a un ant conta~n~ng groups

140 141 13, ,(4) selection of carbon signal from C nuclei having a partic-

136 142-144ular number of directly bound protons' , and (5) creation of

. . 136 145 146certain non-equilibrium populat~on distribut~ons (J-order) , , .

These seemingly diverse experiments actually have a strong resemblance

to one another. They all consist of irradiating one or both spin species

156 f""'
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with several strong r.f~ pulses of nutation angle

time by periods of free evolution on the order of

~ d .2 or ~, separate ~n

-1(J
IS

) ,the inverse

of the heteronuclear coupling constant between the spins of interest.

The purpose of this chapter is twofold. The first is to develop a

density operator formalism for the dynamics of these double resonance

experiments. We then use this formalism in the design of novel pulse

sequences for the isolation of satellite spectra and for homonuclear

decoupling of protons in liquids.
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Throughout this chapter we shall continually emphasize the bilinear

nature of the heteronuclear scalar coupling. In Section 5.1, the con-

cept of a heteronuclear bilinear rotation is defined and various operator

identities are collected. The usefulness of the bilinear rotation as a

calculational tool is demonstrated in Section 5.2 by explicit calculation

of the density operators which are prepared in several known experiments.

In Section 5.3, the compensated heteronuclear bilinear rr rotation (CHBrr),

designed to be less sensitive to J IS than a simple bilinear rr rotation,

is introduced. This relative insensitivity to J
IS

is experimentally

demonstrated and the CHBrr is applied to the problem of the selective

detection of l3C satellite proton spectra. Finally, the problem of

homonuclear decoupling in liquids is examined in Section 5.4. A new

decoupling technique which takes advantage of the heteronuclear scalar

coupling bewteen a l3C and its bound (satel~ite) protons, Bilinear

Rotation Decoupling (~IRD)147, is introduced and experimentally

demonstrated.

5.1 Heteronuclear Bilinear Rotations

5.1.1 Isolated I S Spin Systems
n

We begin by reviewing the algebra involved in simple bilinear rota-

tions of the components of spin angular momentum. Initially we shall be

13concerned with systems composed of a single C nucleus (S spin) bonded
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to n magnetically equivalent protons (I spins). The spin Hamiltonian

(For consistency with reference [147], the sign of the heteronuclear

\
t-:;

f
I

L~

- } -

for the I S system is
n

x = -(6wI + w(r))I
- z

S (Ys)- (6w + -- w(r))S + JI'SI S .
YI - Z z z

(5.1)

coupling has been reversed relative to Equation 1.51.) The homonuclear



scalar couplings, which commute with all components of I spin angular

momentum, have been omitted from Equation 5.1 and can be rigorously

ignored throughout this discussion.

It will prove convenient to remove the Zeeman terms in Equation 5.1

from the evolution by applying ~ pulses to both spin species. The

simplest pulse sequence which does this and is cyclic (in the sense of

average Hamiltonian theory) is

158

( ,

(5.2)

where (~I,5) represents simultaneous ~ pulses applied to both I and 5
x x

spins. The propagator for this sequence is

U(t) = exp(-i~(I +5 » exp(-iJC 2t ) exp(i1r(I +5 » exp(-iJC'£)x x x x 2
(5.3a)

(5. 3b)

\ -

The term J~5Iz5z is the average Hamiltonian i(O) over the cycle defined

by (5.2). In this case the effective Hamiltonian is equal to i(O), since

the Hamiltonian commutes with itself at all times and all correction

terms therefore vanish. Equation 5.3b shows that the Zeeman terms do

not contribute to the evolution at time t.

~

If the pulse sequence of (5.2) is sandwiched between hard 2 pulses

applied to one or both spin species, the resulting propagator is of the

form: f 
b

U(t)

p x,y,z

(5.4)

a = x,y,z.



Since all I operators commute with all S operators, the propagator of

. Equation 5.4 describes a rotation about the "p"-axis for I operators

and about the "a"-axis for S operators. For S operators the factor
,

(IpJIst) plays the role of an "angle" and we can write the effect of this

propagator on the components of ~ in the following general form:

159

(5. Sa)

p = x,y,z; a,b,c = x,y,z or cyclic permutation.

Formally equivalent expressions describe the effect of these propa-

gators on the components of 1. Equations 5.Sa-c follow directly from

the expansion of the exponentials and hold regardless of the number of

equivalent protons bonded to the l3C• To simplify the sine and cosine

terms, however, we must take into account this number. Expressions for

the three most common cases: IS, I 2S, and I 3S are given below. Deriva

tions of these expressions can be found in Appendix C.

l
f :

l
f

= t =,

IS

2I
p

(5.6a)

(5. 6b)

(5.6c)

(5. 6d)



(5.6e)
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. (J~st) Z(J~st) . 3(J~st)= ZIp s~n ,-Z- cos -Z- - 8Ipl I pZ I p3 s~n -Z-·

(5.6f)

When the propagator (5.3) acts on proton (I) operators, only

Equations 5.6a and 5.6b are relevant, with S replacing I. This is
P p

because a single l3C nucleus is always assumed. An important special I
,

spin analog of Equations 5.5b and c is the case Z6 =JISt = Z~ (Fig. 5.1):

",

( c

1

exp(-iZ6I S b)I exp(iZ6I S b ) = -I .. p a, ,c q,r p a, ,c q,r (5.7)

This will be termed a heteronuclear bilinear ~ rotation, since it has

the property of inverting two components of 1. This result holds for

11 t I S · h t . the one l3C ;n tha sys ems , s~nce eac pro on exper~ences • e same
n

way. The important point to be made is that unlike an r.f. ~ pulse, the

bilinear ~ rotation, resulting from the heteronuclear scalar coupling,

13is selective to those protons bound to a C.

5.l.Z Coupling to Non-Satellite Spins

To this point, the discussion of bilinear rotations has been limited

are coupled to other protons in the spin system, however. The full spin

to an isolated I S group.
n

13Often the C nucleus and its bound protons I .
b

Hamiltonian for the system must, of course, include these couplings,

which complicate the description of heteronuclear bilinear rotations.

Nonetheless, with regard to bilinear rr rotations, we will continue to

treat the effective Hamiltonian as a pure bilinear coupling between the
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Figure 5.1. Simple Bilinear ~ Rotation. The strong proton

~/2 pulses and periods of free evolution

combine to produce a propagator of the form,
U(t) = exp(-iJ1SI S t). This correspondsx z
to a·rotation about the proton x-axis, with

the nutation angle given by the product
,

J1St/Z. Choosing t = 4, = 1/J1S results in

a nutation angle of ~ radians.



l3C and its satellite protons, ignoring all couplings to non-satellite

spins. Justification for this is provided by considering the relative

magnitudes of the interactions involved.

Typical heteronuclear scalar couplings between a l3C spin and its

satellite protons range between 120 and 250 Hz and, for a large group of

molecules, can be correlated with the degree of s-character in the l3C_H

bond148 , as illustrated in Table 5-1. For many molecules, long-range

carbon-proton couplings and homonuclear proton scalar couplings range

from 0 to 20 Hz, with the larger values usually found in compounds con-

taining multiple bonds. Recall from Equations 5.5 and 5.7 that the time-

scale for the bilinear ~ rotation is determined by the heteronuclear

coupling to the satellite protons, Jis. Because this coupling is gener

ally an order of magnitude or more larger than all couplings to non=

satellite protons, we assume throughout that the effect of these cou-

pIing is negligible on the bilinear ~ rotation timescale.

5.2 Application of Bilinear Rotation Formalism to Pulse Sequence Analysis

Having developed the concept of bilinear rotations, we now apply

the operator formalism of Section 5.1 to the analysis of several recently

published experiments. The experiments to be reviewed in this section

involve the transfer of coherence between protons and l3c nuclei. We

will show how carbon and proton magnetization operators can be rotated

into one another by successive application of propagators of the form

of Equation 5.4.
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Hybridization

Table 5-1

Representative Heteronuclear Couplings

J as a Function of 13C Orbital13C_H
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5.2.1 Enhancement of Carbon Signal

We begin by considering two pulse sequences which are useful for

the enhancement of 13C signal: 1NEPTR134-136 and DEPT138 ,139. Both

accomplish this enhancement by manipulation of the heteronuclear

J-coupling to allow the magnetization of the protons, with their larger

gyromagnetic ratio, to be converted into 13c magnetization. These two

techniques have the advantage over the nuclear Overhauser effect (NOE)

149,150 of being independent of relaxation mechanism.

5 •2•1. 1 INEPTR

The INEPT pulse sequence with refocusing, INEPTR, is illus-

trated in Figure 5.2. The first proton pulse establishes the initial

164 r~

I
I

condition p(O)+ = bIIy

the propagator

The remainder of this sequence is described by

exp(-:iJ('1') exp(ii(I +S » exp(-i.J(1').x x (5.8)

In this propagator, phases for all pulses have been indicated for con-

creteness, though only those indicated in the figure are of consequence.

By inserting the identity [exp(i1T(I +S » exp(-i1T(I +S »] twice, thex x x x

propagator of Equation 5.8 is easily simplified to

, 1T ,
U(21'+b.) = exp(-iJISI S b.) exp(-i -2 (I +S » exp(-iJIsI S (21'».z z y y z z

(5.9) I '
b

The rightmost factor of this propagator acts on the initial condition

for 2T - _1_- 2J
1S

•

-2b I I Sx z

(5.10)
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Figure 5.2. INEPTR134-136 pulse sequence. Polarization is most

efficiently transferred from protons to carbon for

T = 1/2JIS • An additional delay of ~ is required if a

proton-decoupled free induction decay is to be collected.

The optimal value of this delay depends upon the number

of protons bound to the carbon.



7T
It is convenient to treat the simultaneous I pulses at time 2~ as if

they occur sequentially.

pulse is

7T
The density operator following the (I)y proton

166

r

136 145 146which is recognized as describing J-order ' ,

(5.11)

For an IS spin

system, this sequence has inverted the populations of one of the two

proton transitions.

sequence, yielding

A (2!.) l3c pulse completes the first half of this
2 y.

(5.12)

Due to the presence of the proton operator I , immediate proton decoupling
z

will result in no observable carbon signal, since Tr(S+(I S » vanishes.z x

A waiting period 6 is thus"required, leading to the density operator

, ,
p(2~+6) = exp(-iJISI S 6)[2b I I S ] exp(iJISI S 6)z z z x z z

(5.13)

the coefficient of

3, respectively.

The result is 60PT

To choose an optimal delay time 6 for IS, I
2
S, and I

3
S spin systems,

the sine function in (5.13) must be expanded according to Equations 5.6b,

5.6d, and 5.6f, respectively. The optimal value is found by maximizing

the operator I appearing in each of these expressions.
p

III -1 1
=~'~' and (-J-)(tan (J"l» for n = 1,2, and

IS IS 7T IS v~

The value of 60PT for these and larger values of n

the theoretical maximum enhancement of

h b · . 1 151 . have een g~ven prev~ous y ,w~t out

It is

sions. The 13c
YI(-) for n = 1Y ,

S
n ~ 2)

signal enhancement due

2, and 3 respectively.

explicit density operator expres
YI YIto INEPTR is --, --, and 1.16 x
YS YS

These values fail to reach (for
1 YI 152,153
n~(-)

YS

ru
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interesting to note that this failure is accompanied. by the appearance

in the density operator of terms involving the products of spin operators.

These would become heteronuclear multiple quantum coherence upon appli-

7Tcation of a proton 2 pulse.

5. 2. 1. 2 DEPT

An alternate technique for the enhancement of l3c signal,

Distortionless Enhancement Polarization Transfer (DEPT), is illustrated

167

in Figure 5.3. 13For C spectra acquired without proton decoup1ing, the

DEPT sequence, as its name implies, provides the same enhancement for

each line of the 13C multiplet without phase distortion. As described

13 1in Section 5.1, the C and H 7T pulses in the DEPT sequence serve to

remove the Zeeman terms from the Hamiltonian. In analyzing DEPT, we

will assume that the Hamiltonian contains only the heteronuclear coupling
,

JIsIzS z though, for computational convenience, the proton 7T pulse at

time T will be omitted from the propagator.

The first proton pulse of the DEPT sequence establishes the initial

condition 0(0)+ 3 -bIIx . The remainder of this sequence is described

by the propagator

h The rightmost factor of this propagator acting on -bII
x

yields:

(5.14)

, ,
= exp(-iJISIzSzT) [-bIIx ] exp(iJISIzSzT) =

for T - _1_- 2J
I5

.

-2b
I

I 5
Y z

(5.15 )
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Figure 5.3. DEPT138 ,139 pulse sequence for the transfer of magnetization

from protons to carbon. The delay T is chosen equal to

Jl • The optimal value of the flip angle e depends upon
IS

the number of protons which are bound to the carbon, in

much the same way as the delay ~ in the INEPTR sequence

(Fig. 5.2).
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Rewriting exp(-i ~Z S ) as exp(-irrS ) exp(i zrr S ) allows the, remainder ofx x x

the propagator (5.14) to be rewritten as

(5.16)

1For T =---- this expression can be further simplified toZJIS '

169

(5.17)

The density operator at time 3. can now be computed as

p(3.) = exp(iZeI S ) exp(i rrz S ) [-ZbII S ] exp(-i ~ S ) exp(-iZeI S )
Y z x Y z Z x y z

(5.18a)

= exp(iZeI S ) [-ZbII S ] exp(-iZeI S )y z y y y z

= -ZbII [S cos(ZeI ) + S sin(ZeI )].y y, y x y

(5.18b)

(5.18c)

\
h

The similarity between p(3.) and the density operator prepared by

the INEPTR sequence (Eq. 5.13) is readily apparent. In fact, by asso-
,

ciating the flip angle Z6 with the INEPTR parameter J IS6, ~e can use the

considerations of Section 5.2.1.1 to choose optimum flip angles for IS,

IZS, and I 3S spin groups. This similarity between INEPTR and DEPT has

139been noted recently •

5.Z.2 Suppression of Non-Satellite Proton Magnetization

We consider next two pulse sequences useful for the suppression of

non-13C-bonded (non-satellite) pro;on magnetization and suggest a third"

related method. The first of these, illustrated in Figure 5.4a, has

appeared in the literature in two slightly different f 140,141 Twoorms .
f

13c rrI C experiments are performed, one with a pulse at T and a second with
\_ 3

13 and the resulting free induction decays are cosubtracted.no C pulse
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Figure 5.4. Pulse sequences for suppression of non-satellite proton
140,141magnetization . (a) With T = 1/2Jrs ' signal from

13experiments performed with and without the C IT pulse

are subtracted from one another. (b) T is chosen equal

to 1/4Jrs and initial proton magnetization is saturated.

Addition of signal from two experiments having the

indicated pulse phases enhances suppression of

non-satellite magnetization.



'II'The initial density matrix following the proton (I)x pulse is

171

Non-satellite protons experience only the proton ('II') pulse
y

at time T. and for these spins PNON(2T) = I y . For the experiment with

13
no C pulse. the proton 'Il' pulse decouples protons from carbon. so that

for satellite protons PSAT (2T) is also I y ' When 'Il' pulses are applied

to both spins. however. the protons and carbon remain coupled and the

protons experience a bilinear 'II' rotation. This rotation inverts the

spin operator for satellite protons: PSAT (2T) = -Iy . (Formally

speaking. a second pair of 'II' pulses should be applied to the carbon and

proton spins at 2T as in (5.2) to fulfill the cyclic r.f. requirement of

average Hamiltonian theory. Their omission changes nothing. however).

Thus the signal attributable to satellite spins is of opposite sign in

these two experiments. while non-satellite signal is of the same sign.

trated in Figure 5.4b. The presaturation period destroys all proton

magnetization. leaving the system describable by the carbon operator S •
z

Fo Howing the

under the now

13 'II'
C (Z)x pulse. p(O)+ = bSSy and the system then evolves

. ,
familiar U(t) - exp(-iJ1SlzSzt) propagator for a time

1--'2J
1S

'

for 2T 1=--2J
1S

. (5.19)

'II'Proton and carbon I pulses rotate this density operator into

(5.20)



The important point is that only satellite protons experience this co-

herence transfer. We also note that a simultaneous 180 0 shift of the

phases of the first 13c pulse and the final 1H pulse leaves the prepared

density matrix unchanged, while any residual signal from non-satellite

protons is inverted by the proton phase shift. Addition of free induc-

tion decays from experiments with phases x and xreinforces signal from

satellite protons and further suppresses non-satellite magnetization.

The preceding sequence is effective in suppressing non-satellite

proton magnetization, but sacrifices a factor of YH/Yc = 4 in signal=

to-noise by starting with l3C magnetization. This sacrifice can be

avoided in the following proposed double coherence transfer experiment.

Satellite proton magnetization is first transferred to the carbons.

The remaining proton magnetization, which is due to non-satellite pro-

tons, is then spoiled by a pulsed magnetic field gradient. Finally,

the stored l3c magnetization is transferred back to the protons for

detection. The pulse sequence is illustrated in Figure 5.5.

This sequence will be analyzed for an IS spin system. The first

half of the experiment is simply the INEPTR sequence with ~ = 2T. From

Equation 5.13, this sequence results in the density operator

172 f"
I

r

p(4T) = bIS •
- Y

(5.21 )

A (f)x 13c pulse stores this magnetization along -Sz' and is followed by

spoiling of all proton magnetization by application of a pulsed magnetic

field gradient. Following this spoiling, a (f)x 13c pulse restores

carbon magnetization to the transverse plane:

(5.22)
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Figure 5.5. Proposed experiment for suppression of non-satellite

proton magnetization. With T = 1/2Jrs ' the first half

of this experiment is simply INEPTR (Fig. 5.2). The

"SPOIL" can be achieved by applying a pulsed field

gradient. As discussed in Section 5.2.2, the remainder

of this sequence is similar to that of Figure 5.4b.

Signal-to-noise is enhanced by a factor of YH/Yc = 4

over that experiment.
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t

This is the same density operator as is produced by the initial (;)x l3C 0
pulse of the previous sequence (Fig. 5.4b), except that the total magne-

tization has been enhanced by (YH/YC), Free evolution of the system

1fproceeds as before and, following the proton and carbon 2 pulses,

2b I I S •
Y z (5.23)

A final delay period of 2. is required if the proton spectrum is to be

acquired with l3C decoupling. Phase shifting of the proton and carbon

pulses can be easily incorporated into this sequence to provide further

suppression of non-satellite signal.

5.3 Compensated Heteronuclear Bilinear 1f Rotations (CHB1f's)

5.3.1 Motivation

In many magnetic resonance experiments it is critical to be able to

accurately adjust r.f. pulse flip angles. Particular problems may result

in situations where the range of chemical shifts, finite sample size,

and r.f. field inhomogeneity combine to cause different parts of the

sample to experience different nutation rates and angles. Consideration

1
154-156of these problems has led to the use of composite r.f. pu ses ,

whose effectiveness in compensating for a range of pulse lengths and

resonance frequencies has been demonstrated. Recently, the general

problem of off-resonance spin inversion has been treated

. 157 158
comprehens~vely ,

In heteronuclear bilinear rotations, the nutation frequency is pro-

portional to J 1S ' When two or more different coupling constants are

present in a system, it becomes impossible to choose a single time such

that all carbon-proton pairs experience the same rotation angle. This is

similar to' the observed sensitivity of cross polarization efficiency in



r~

I
liquids to a distribution of scalar couPlings133 ,l37. In analogy to

composite r.f. pulses, we introduce in this section compensated hetero-

nuclear bilinear rr rotations (CHBrr's).

5.3.2 Definition and Properties

Figure 5.6 illustrates an example of a CHBrr pulse sequence. The

propagator for this sequence can be written as the product of three pro-

pagators, corresponding to alternate rotations about the y and x co-

ordinate axes:

175

(5.24)

The time T is chosen to result in a perfect bilinear rr rotation for some

1representative scalar coupling, Jis (T = 4Jo ). rr pulses on both spin
IS

species aga~n serve to remove the ~ffects of all Zeeman interactions and

chemical shifts.

A compensated bilinear rr rotation is much less sensitive than the

simple bilinear rr of Figure 5.1 to misadjustments of T. Its use allows

effective bilinear rr rotations to be given to carbon-proton pairs whose

couplings vary over a range of values centered about Jis. This is

important, because in many molecules the different scalar couplings,
between carbons and their satellite protons span a range of values. In

Section 5.3.3, the relative insensitivity of the inversion efficiency of
Jist

the CHBrr to bilinear nutation angle (--2--) is demonstrated. Its use in

a novel method for suppressing non-satellite proton signal is described

in Section 5.3.4.

5.3.3 Insensitivity to Nutation Angle Misadjustments

The experiments described in this section were performed on samples
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Figure 5.6. Compensated bilinear ~ rotation, produced by

alternate rotations about the proton x and y

The time period 4, is chosen equal to l/J~s

some representative heteronuc1ear coupling

This sequence is much less sensitive to the

value of J IS than is the simple bilinear ~

rotation of Figure 5.1 ..

axes.

for
o

J IS '

exact
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of benzaldehyde isotopically enriched with 13C at the aldehyde carbon.

Approximately O.Z% ditertbutylnitroxide was added to each sample to

shorten its T
I

relaxation time.

To compare the sensitivities of simple and compensated bilinear

rotations, two sets .of experiments were performed on a sample which was

90% aldehyde carbon-l3 enriched, using the pulse sequence of Figure 5.7a.

One set was performed with ~ given by a simple bilinear TI rotation

(Fig. 5.1), a second set using a CHBTI (Fig. 5.6). Within each set of

experiments, the delays between hard pulses making up the bilinear

rotation were varied, corresponding to the variation in bilinear nutation

angle which results in a sample having a range of J IS values. The time
t
l2: was held fixed throughout and was chosen long enough (100 msec) to

allow complete dephasing of magnetization due to magnetic field inhomo-

geneity. For these experiments this inhomogeneity was approximately

15 Hz (0.08 ppm).

The sequence of Figure 5.7a creates a spin echo at time t l for the

13C-bound aldehyde protons only. Following acquisition of the second

half of this echo during t z' the free induction decay was Fourier trans

formed and the size of the signal due to the satellite aldehyde protons

was measured. The results of these experiments are shown in Figure 5.8.

177

Also shown are theoretical curves

tion of bilinear nutation angle e

for inversion efficiencies as a func
JiST

= --Z--. Expressions for these effi-

l
I
L

ciencies, which are derived in Appendix D, are given by

~ (1- cose)

for simple bilinear rotations and

~1 2 e 2 e 2 e 2
(I) [(cose (1 + sin (I» + cos (I» + (Zsinesin(I» ]

(5.25a)

(5.25b)
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Figure 5.7. (a) Pulse sequence for demonstrating the

sitivity of CHBTI's to the value of J
IS

•

either a simple TI rotation (Fig. 5.1) or

relative insen
xU representsTI

a CHBTI (Fig. 5.6).

For satellite protons, the bilinear TI causes a spin echo

at time t
l

, the second half of which is sampled during t
Z

.

(b) Sequence for suppressing non-satellite magnetization,

incorporating the sequence of Figure 5.4a at its beginning

for enhanced suppression. The pulses at (t
l

/2) describe

a CHBTI (Fig. 5.6).
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Figure 5.8. Comparison of inversion efficiencies of a simple bilinear

~ rotation (e) and a CHB (.) as a function of bilinear

nutation angle. Data points represent the magnitude of

the satellite proton signal for a sample of CH
3

CHO, 90%

enriched in the aldehyde carbon, for the experiment of

Figure 5.7a (t l = 200 msec). The nutation angle was

varied by changing the delays between the pulses making

up the bilinear rotation. Theoretical curves are given

Equations 5.25a and 5.25b, respectively.

,



for compensated rotations.

The relative insensitivity of the CHBTI can be clearly seen in Figure

5.7, demonstrating that it can be used to give a good TI rotation over a

much wider range of heteronuclear J-couplings than the simple bilinear

rotation. In particular, note that for a nutation angle misadjustment

of 30%, the CHBTI still inverts with 96% efficiency, while the comparative

figure for the simple rotation is only 79%.

5.3.4 Suppression of Non-Satellite Proton Magnetization

The use of a bilinear TI rotation in the previous section to echo

only the l3c satellites suggests an additional way of suppressing magne-

tization from non-satellite protons. To demonstrate this, a pair of

experiments were performed using the pulse sequence of Figure 5.7b on a

benzaldehyde sample which was 10(0 carbon-13 enriched in the aldehyde"

carbon. This sequence, which is similar to that of Figure 5.7a, incor-

porates the sequence of Figure 5.4a at its beginning to enhance suppres-

sion of non-satellite magnetization. The spectrum resulting from this

13sequence with the C TI pulse at time T included is shown in Figure 5.9b.

Figure 5.9c was obtained by cosubtracting spectra obtained with and

without this l3C TI pulse. The spectrum of Figure 5.9a, which is included

for reference, was obtained in a similar experiment in which the bilinear
t
l

TI at :f was replaced by a single proton TI pulse. Unlike the bilinear TI

rotation, which is selective to satellite protons, this TI pulse echoes

all of the proton magnetization at t l , allowing a normal free induction

decay to be collected in t Z'

As Figure 5.9 illustrates, the experiment of Figure 5.7b greatly

enhances the relative size of the satellite signal, reducing the dynamic

range "problems often encountered when looking for satellites in natural

180 .
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Figure 5.9.
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Demonstration of suppression of non-satellite proton

magnetization for a sample of CH
3

CHO, 10% enriched in the

aldehyde carbon. (a) Spectrum obtained by sampling the

second half of a normal spin echo, with t l = 200 ms. (b)

Spectrum obtained using the pulse sequence of Figure S.7b

with the 13C rr pulse at t included. Again t
l

= ZOO msec

and the second half of the echo was sampled during t Z'

(c) Spectrum obtained by subtraction of signals collected
13with and without the C rr pulse at t. using the sequence

of Figure 5.7b.
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abundance samples. We note that one could greatly reduce the required

delay time t
l

through the use of a pulsed magnetic field gradient to

cause more rapid dephasing of the magnetization. Also, as Figure 5.9

13demonstrates, the proper choice of phase for the last C pulse renders

the satellite lines in-phase, independent of t
l

• This is because the

heteronuclear J-coupling, like the Zeeman interaction, can be removed

from the evolution during t
l

by the bilinear TI rotation.

5.4 Bilinear Rotation Decoupling (BIRD)

5.4.1 Background

Effective broadband proton homonuclear decoupling is a longstanding

problem in the NMR of molecules in solution. As discussed in Chapter 3,

the multiple pulse sequences designed to remove homonuclear dipolar

couplings are ineffective in removing homonuclear J-coup~ings due to

their scalar nature. In weakly coupled systems, methods of homonuclear

decoupling are known. Spin tickling with a weak r.f. field
159

is pos-

121 160sible for well-resolved multiplets. The method of J-o spectroscopy ,

allows extraction of pure chemical shift spectra in weakly coupled systems

by manipulation of a two-dimensional data array without actual decoupling

during the evolution period. A similar method, which allows the re-

cording of homonuclear decoupled absorption spectra without requiring

the collection of a two-dimensional data array, has also been described
161

.

In order to decouple a group of equivalent spins from all of its

neighbors, o~e must be able to single out and manipulate that group in-

dependently of other spins in the system. As has been illustrated in

previous sections of this chapter, the heteronuclear coupling between a

carbon spin and its satellite protons provides a convenient means for

doing this. The l3C nucleus distinguishes the satellite protons from
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all others and can be thought of as supplying a local decoupling field

capable of nutating those protons to which it is coupled. In this

section, a new method of homonuclear proton decoupling which takes

advantage of the scalar coupling between protons and carbon is demon-

strated. Our description of the technique will be in terms of the now

familiar heteronuclear bilinear rotation and hence is termed Bilinear

Rotation Decoupling (BIRD)l47.

5.4.2 Weakly Coupled Systems

In a weakly coupled system, a single bilinear rotation is sufficient

to cause homonuclear decoupling. For simplicity we will assume that our

spin system contains a single satellite proton, though this discussion

is equally valid for a group of equivalent satellite protons. Weakly

coupled systems are characterized by chemical shifts, a resonance offset,

magnetic field inhomogeneity, and truncated homonuclear scalar couplings:

183

:K = - ~ w. I . - (AW + W(r) ) I -
i 1 Z1 - Z

(5.26)

Labeling the satellite proton as spin "k", the effect of a bilinear .,..

rotation can be written as (Eq. 5.7)~

If this bilinear rr is followed immediately by a strong proton rr pulse,

I
I

i * k.

(5.27a)

(5.27b)

the overall effect is to invert the I operator associated with all
Z

protons except the one bonded to the 13C.

Figure 5.10a illustrates the use of a bilinear rr rotation and an

adjacent strong rr pulse to give the simplest BIRD pulse sequence. The
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Figure 5.10. Pulse sequences for removal of J-couplings by BIRD. uP
1T

represents a bilinear 1T rotation about the proton p-axis.
H1T a strong proton 1T pulse of phase p. (a) A single
p

bilinear 1T/strong 1T combination is sufficient for

decoupling a weakly coupled system. Shown below the

pulse sequence is the toggling frame value of the

coupling IziIzk between satellite and non-satellite

protons. The notation is Ipilpk = PP. (b) Decoupling in

strongly coupled systems requires a minimum of four bi

linear 1T/strong 1T combinations. The toggling frame

value of the proton-proton coupling (fi • .!k) is shown

below the pulse sequence.
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box labeled ~ represents either a simple or compensated bilinear ~

rotation. As with the multiple quantum experiments of Chapters 2-4, the

experiment is two-dimensional in that signal is sampled (at the point

indicated by the broken line) as a function of t l , which is incremented

on successive shots. The BIRD spectrum is then obtained by Fourier

transformation with respect to t l •

As described in the discussion of Figure 5.4a (Sec. 5.2.2), appli-

cation of average Hamiltonian theory to this simple BIRD sequence re-

quires a second bilinear ~ rotation of opposite phase at time t l • Its

omission, however, 'can only effect the overall phase of the observed

signal. In a toggling frame representation, a homonuclear coupling term
I t l

JikIziIzk duri~g the first time period :r becomes -JikIziIzk in the

seco~d period 21 • The average Hamiltonian for this scalar coupling is

zero, and since the Hamiltonian commutes with itself at all times, all

correction terms to X(O) are zero. Similarly, the heteronuclear J-coupling

also averages to zero. The chemical shift term for the satellite proton,

-wkIzk ' is preserved, however, along with the Zeeman terms (-(~W+W(!»Izk)

for this spin. Two alternate representations of this version of the BIRD

experiment using, respectively, energy levels and magnetization vectors,

are given in Figure 5.11. In this figure, I labels a satellite proton

and I' a non-satellite proton.

In practice a method is needed for detecting only that signal

arising from satellite protons. One possibility, which is described

further in Section 5.5, is to transfer coherence from protons to carbon

13
at time t l and to then detect C magnetization in t Z. For the experi-

ments described here, selection of satellite signal was accomplished by
, ~

substituting the pulse sequence of Figure 5.4a for the proton 2 pulse

at the start of the BIRD sequence. Cosubtraction of signals from

185
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Figure 5.11. Schematic representation of BIRD using energy levels and

magnetization vectors. A satellite proton is indicated

by I, while I' represents a non-satellite proton. The

sequence begins following a ~/2 proton pulse with the

proton spin vectors in the x-y plane(l). Free evolution

of the system for a time t l /2(2) causes precession of

these vectors due to the chemical shift and heteronuclear

coupling(3). A strong proton ~ pulse(4) rotates the

magnetization vectors 180 0 about the pulse axis(5). For

the I spin this also interchanges the identity of the spin

vectors with respect to the 13C• The bilinear ~ rotation(6),

felt only by I, rotates that spin's magnetization vectors

back, without interchanging their identities. Free evolu

tion for an additional time t l /2(8) brings these two

vectors back into line(9), with preservation of the I spin

chemical shift (oI) and without broadening due to coupling

to other protons. The I' spin chemical shift (01') has

been removed by this sequence; the final width of its spin

vector reflects the preservation of coupling to other pro~

tons not explicitly included in the energy level diagram.
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experiments with and without the l3C rr pulse at T leads to reinforcement

of satellite proton magnetization and cancellation of magnetization due

to non-satellite protons.

As a demonstration of the BIRD method, Figure 5.12 shows the results
\

of experiments performed on samples of 95% ethanol in water. In these

experiments the samples were contained in 2 mm diameter sample bulbs and

spun horizontally at 60-80 Hz. The linewidths of -2 Hz in these spectra

are dominated by residual magnet inhomogeneity. Figure 5.l2a is the

familiar proton spectrum of the methyl and methylene protons of ethanol.

In Figure 5.l2b we observe the same proton multiplets superimposed upon

the much larger splittings due to the heteronuclear scalar couplings in

an isotopically enriched sample. Figure 5.l2c illustrates the BIRD

spectrum of the same sample. All multiplet structure has been collapsed,

while the chemical shifts are accurately preserved in the positions of

the resulting singlet lines. ,Signal at the center of this spectrum is

due to incomplete suppression of non-satellite proton magnetization.

5.4.3 Incorporation'of BIRD into 2-D Experiments

One of the major advantages of BIRD is that the homonuclear de-

coupling is accomplished in a single time dimension and does not require

accumulation and manipulation 'of a two-dimensional data array. This ob-

servation suggests the use of the BIRD sequence to provide decoupling in

the t l dimension of a wide variety of different' 2-D experiments. As an

example, a pulse sequence for heteronuclear chemical shift correlation

which incorporates BIRD decoupling is illustrated in Figure 5.l3b.

The correlation of the chemical shifts of l3C spins with those of

131protons coupled to the carbons was first suggested several years ago

and has since become a standard two-dimensional NMR techniQue162 ,163.
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Figure 5.12. Spectra of ethanol illustrating removal of J-couplings by

BIRD. Samples were spun horizontally at 60-80 Hz. (a)

Normal spectrum of the methyl and methylene protons of

unenriched ethanol in CHC1
3

(1:2 v/v). (b) l3C satellite

spectra of [a - l3C] ethanol and [13 - l3C] ethanol in

CHC1
3

(l:1:4 by volume, 90% isotopic purity at the labeled

position). Non-satellite proton magnetization was sup

pressed, as described in the text. (c) BIRD spectrum of
13the C enriched sample, collected using the pulse

sequence of Figure 5.l0a with a compensated bilinear

rotation used as~. Non-satellite magnetization has
1T

again been suppressed.
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Figure 5.13. Heteronuclear chemical shift correlation pulse sequences.

(a) Normal shift correlation 162 ,163, with evolution

, during t 1 determined by proton chemical shifts

homonuclear J-couplings. Delays ~l and.~2 are

as in an INEPTR experiment. (b) Incorporation

and

chosen

of BIRD

sequence, which enhances spectral resolution by removing

homonuclear J-couplings during t
1
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The basic pulse sequence for performing this experiment is illustrated in

Figure 5.l3a. The carbon ~ pulse in t l serves to decouple protons from

carbons in this time dimension. The evolution of initial proton magneti-

zation during t l is therefore determined by proton chemical shifts and

homonuclear J-couplings. The delay periods 6
1

and 62 along with the ;

pulses applied to both spin species serve to transfer proton magnetiza-

tion to carbon magnetization via the heteronuclear scalar coupling, J IS '

To optimize this transfer, the delay 61 is set equal to Jl , while the
IS

optimal value of 62 depends upon the number of satellite pro~ons in the

same way that the delay 6 did for the INEPTR experiment (Sec. 5.2.1.1).

13For each value of t
l

, a proton decoupled C free induction decay is

then collected in t 2 • Following double Fourier transformation, the 2-D

spectrum" correlates carbon chemical shifts in w2 with the chemical shifts

and homonuclear J-couplings of satellite protons in wI'

The incorporation of BIRD into this sequence is achieved simply by

replacing the l3C ~ pulse at :1 by a bilinear ~ rotation/strong proton

~ pulse combination (Fig. 5~13b). In this experiment, the same correla-

tion between carbon and proton chemical shifts can be observed with the

enhanced resolution afforded by homonuclear proton decoupling in wI'

Heteronuclear chemical shift correlated spectra obtained with BIRD have

164been reported recently . (A closely related experiment, w~ich also

incorporates a bilinear ~ rotation at the midpoint of the evolution

period, and which is useful in discriminating between short-range and

long-range heteronuclear J-couplings, has been described
l65

.) Incorpor-

ation of BIRD into other two-dimensional experiments is anticipated and

should prove useful in enhancing spectral resolution, especially in

studies of large spin systems.
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5.4.4 Strongly Coupled Systems

It is interesting to consider the extension of BIRD to strongly

coupled spin systems. Strongly coupled systems are usually considered

those in which the scalar coupling between the protons is comparable in

magnitude to the difference in chemical shifts between them. For

satellite protons, however, strong coupling occurs when

192 r
i{ -

(5.28)

The Hamiltonian describing the scalar interaction between strongly

coupled spins is the untruncated J-coupling

(5.29)

Unlike the truncated scalar coupling, this term cannot be inverted with

a single bilinear rr rOtation. In fact, a minimum of four bilinear IT

rotations, with appropriate phase shifts of the r.f. pulses, is required

for decoupling. Figure 5.llb illustrates one simple pulse sequence for

the removal of proton J-couplings in strongly coupled systems. In this

figure, Uy refers to the propagator for a bilinear IT rotation which
IT

inverts I and ~ for the satellite proton, while leaving I alone. Uy
z x Y IT

is related to ~ by a 90° phase shift:
IT

U
y = exp(-i ~2 I )~ exp(i ~2 I ).
IT Z IT Z

(5.30) I '
6

A strong proton IT pulse of appropriate phase follows immediately after

each bilinear rotation.

In order to calculate the effect of this four "pulse" sequence,

average Hamiltonian theory is once again used. This calculation is per-

formed in an interaction representation defined by the four bilinear IT



rotations and accompanying proton IT pulses. In this toggling frame, the

value of

193

I .. I
-~ .....k (5.31)

for the windows between bilinear rotations is indicated in Figure 5.13b.

The notation used is that

(5.32)

L
L
! ;
L

and cyclic permutations. The average Hamiltonian for these windows is

found by summing:

x(O) a: (XX+YY+ZZ) + (XX-YY-ZZ) + (-XX-YY+ZZ) + (-XX+YY-ZZ) = o.
(5.33)

13Thus the co~p1ing between the C-bound proton "k" and all other protons

vanishes to this order of approximation. The coupling of this satellite

proton to the carbon spin also vanishes, on average, while its chemical

shift is preserved.

5.5 Conclusion

In this chapter we have considered the liquid state spin dynamics

of systems consisting of several protons and a 13C nucleus. The concept

of a bilinear rotation has been introduced and its usefulness as a

calculational tool demonstrated. Of particular interest are bilinear

rotation sequences having a bilinear nutation angle of 1T radians. The

natural spread in the magnitude of heteronuclear coupling constants

J IS leads to an inevitable spread in bilinear nutation angles. Compen

sated bilinear IT rotations, designed to be less sensitive to misadjusted

timing parameters, have been introduced and their relative insensitivity

to these errors demonstrated.



Compensated bilinear rr rotations have been incorporated into new

experiments to suppress non-satellite proton magnetization and to allow

dynamic homonuclear proton decoupling in weakly coupled systems (BIRD).

BIRD has an advantage over decoupling by spin tickling due to its

broadband nature. As noted in Section 5.4.3, an advantage over 3-0

spectroscopy is that decoupling is accomplished in real time in a

single time dimension. One disadvantage of BIRD is that it is only

sensitive to those protons bound in magnetically equivalent groups to

l3C spins. This lowers the available magnetization at natural abundance

and means that protons in other binding environments do not appear in

the BIRD chemical shift spectrum.
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Appendix A: NMR IN LIQUID CRYSTAL SOLVENTS

Much of this work has been concerned with the NMR spectroscopy of

molecules dissolved in liquid crystalline solvents. As described in

Chapter 1, it is the combination of being partially oriented by a large

magnetic field and rapid molecular diffusion which makes liquid crystals

attractive NMR solvents. In this appendix, we review some of the pro-

perties of liquid crystals and of molecules dissolved in liquid crystal

solvents. In particular, we show how the experimentally measured coupling

constants and chemical shifts depend upon a set of parameters which de-

scribe molecular ordering with respect to the external magnetic field.

The discussion in this appendix is limited to thermotropic liquid

crystals - pure compounds which exhibit a mesophase within a particular

temperature. range.

Section A.l discusses the structure of nematic liquid crystals and

their interaction with an external magnetic field. In Section A.2, a

quantitative treatment of ordering in liquid crystals is developed. The

Saupe order tensor is defined and the complications involved in de-

scribing the ordering of non-rigid molecules are described. In Section

A.3, the spin Hamiltonian for partially ordered systems is developed in

terms of the order tensor, with emphasis on the required coordinate

transformations. Spherical tensor· operators are described in Section

A.4 and the different spin Hamiltonian interactions are discussed in

terms of these operators.

A.l The Liquid Crystalline State

A.l.l Structure and Classification of Mesophases

The liquid crystalline state was first reported nearly a century

ago. Since that time, many compounds have been found to form this
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mesophase, which is intermediate between liquid and solid. All compounds

which exhibit the liquid crystal phase are composed of long rod-like

molecules. Many texts have been written about the structure and pro

perties of liquid crysta1s166-l68 and their use as NMR solvents has been

rev~ewed14,15. Th I' id t 1 hit f t d f~ e J.qu crys a p ase ar ses ou 0 a en ency or

the rod-like molecules' long axes to align parallel to one another. The

preferred orientation of the long axes is described by a unit vector

known as the director. There are actually several different liquid

crystalline phases which are divided into three basic categories based

upon their degree of molecular order: nematic, cholesteric, and smectic.

We will be concerned here with nematic liquid crystals, which

exhibit the lowest degree of molecular ordering. There is no positional

ordering of the centers of mass of the molecules in this mesophase, as

illustrated schematically in Figure A.la. A representation of the

smectic A phase is shown, for contrast, in Figure A.~b. Many nematics

form one or more other liquid crystalline phases as well. As the meso-

phase haVing the lowest degree of molecular ordering, however, the

nematic is always the first formed upon cooling the isotropic liquid.

The addition of a solute molecule depresses the nematic-to-isotropic

transition temperature.

A.l.2 Orientation by External Magnetic Fields'

In the absence of external constraints, ordering in nematic liquId

crystals is limited to local domains and the orientation of the director

varies continuously throughout the sample. This can change in the

presence of an external magnetic field, however. Liquid crystal mole-

cules interact with magnetic fields due to an anisotropy in their

196 r,
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Figure A.l. Pictorial representation of two thermotropic liquid crystal

phases. Since the molecules in a liquid crystal are under

going rapid fluctuations, this figure actually represents

a snapshot taken at one particular instant in time. (a)

In the nematic phase, the long axes of the rod-like liquid

crystal molecules align preferentially along the director

axis n. (b) In addition to aligning along the director,

molecules in the more highly ordered smectic A phase

stack together in planes perpendicular to n. (Figure

courtesy of Steve Sinton.)
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diamagnetic susceptibility. The free energy of this interaction is14

198

(A. 1)

,"
i -

where H is the strength of the magnetic field, e the angle between the
o

field and director axes, and AX ... XII - x.t is the anisotropy in the bulk

diamagnetic susceptibility. The component XII is that along the liquid

crystal molecule's long axis while ~ is the component perpendicular to

it. For most thermotropic liquid crystals, including the Eastman 15320

used in all experiments described in this work, AX is positive and the

free energy is lowered by alignment of the director with the direction

of the magnetic field. In a magnetic field as large as 42 kGauss this

alignment is complete, with the director parallel to the magnetic field

throughout the sample.

Molecules dissolved in liquid crystals interact with the surrounding

solvent •. In an effort to minimize free energy, the solute molecules

orient with respect to the liquid crystal in response to this interaction.

In a magnetic field, the result is a net ordering of the solute molecules

with respect to the field. It is surprising that molecules having tetra-

hedral symmetry such as CH4 and (CH3)4Si should have a preferred orien

tation in a liquid crystal. The NMR spectrum of dissolved tetramethyl-

silane does show a triplet of lines attributable to proton-proton dipolar

couplings, however169 . Possible explanations will be discussed in

Section A.2.3.3.

The director specifies the direction of average orientation of the

liquid crystal long axes and in a magnetic field points along the direc-

tion of the field. The individual liquid crystal molecules are hardly

(

(
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static, however. In Section 1.3.2.1 we noted that rapid translational

diffusion is taking place. In addition, the long axes of the liquid

crys~al molecules are fluctuating rapidly and temperature-dependently

about the director. The director therefore represents a time or en-

semble average and Figure A.la an instantaneous snapshot of the nematic

liquid crystal. The order parameters to be discussed in subsequent

sections are themselves averages over these molecular fluctuations and

acquire their temperature dependence from them.

A.2 Quantitative Description of Ordering

A.2.l Saupe Ordering Tensor

In order to describe NMR spectroscopy in liquid crystals,a quanti-

tative description of the partial molecular ordering in such systems

must be introduced. More specifically, we ask how each of rhe spin

Hamiltonian terms described in Chapter 1 must be modified to take into

account this ordering. For the time being we assume that both the

liquid crystal and any dissolved solute are rigid molecules~ The

problems posed by molecules undergoing large internal motions will be

addressed in Section A.2.3. Recall that each of the interactions of

XINT can be described as a 3 x 3 second rank Cartesian tensor. In a

high field experiment, the measured quantity is the laboratory frame zz

component of this tensor. The task is one of expressing this quantity

199
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in terms of a molecule-fixed coordiriate system defined by the axes

x', y', z'.
{ "L: Transformations from one coordinate system to another are described

32-34in many standard texts Specifically, the second rank tensor A in
:::::

the laboratory frame can be related to its form in a molecule-fixed

coordinate system, A', by the transformation matrix R:
::::: :::::
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(A.2)

(In this appendix primes are used to specify tensor interactions in a

molecule-fixed axis system and not to indicate units of angular frequency.

-1Couplings and chemical shifts are given throughout in units of rad·sec •

The author apologizes in advance for any confusion caused by this change

in notation.) The tensor corresponding to each of the Hamiltonian

interactions is real, so that RT = R-I • We are interested in the zz

component of A, given by:
~

r

where e is the angle between the laboratory z-axis and the moleculeza

(A.3)

fixed a-axis (a:8 x: y: z' ) . Following some algebraic manipulations, this

can be written

, , ,
1 x'r'z... -
3 a,S

, , ,
, 1 x,~,z

A S(3cose cose S - 0 S) + -3 2.a za z a
a

,
Aaa

where A' is the isotropic average of A' (A' = 1 Tr(A'».
~ 3::::=

(A.4)

Finally, we must allow for the fluctuations about the director dis-

cussed in the previous section. This is done by averaging the angle=

dependent terms of Equation A.4:

(A.5)
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The matrix SaS is the Saupe ordering matrix
170

It can be readily seen

r~
t -

that this matrix is both symmetric and traceless. Thus, for the uniaxial

nematic mesophase there are a maximum of five independent, non-zero

matrix elements or order parameters. These are traditionally taken to

be Szz' Sxx_yy' SXy' Sxz' and SyZ (where the primes have been dropped).

Each can range in value from -0.5 to 1.0 and all are zero for an

isotropic liquid.

This formalism applies equally well to describing the ordering of a

nematic liquid crystal or of molecules dissolved in it. The solute and

solvent will be described by two different ordering matrices and there

is, in general, no obvious way to relate these. In particular, one or

another of these ordering tensors may be simplified due to molecular

symmetry, as discussed below. It is generally true, however, that the

more highly ordered a liquid crystal is, the greater will be the ordering

o·f a dissolved solute molecule.

In molecules with symmetry, it is possible to reduce the number of

non-zero order parameters by a judicious choice of the molecular axes

x', y', Z'. For example, in molecules containing an axis of rotation

C (n ~ 3), choosing z I along C results in a single non-zero order para-
n n

meter, S . Similarly, in molecules with a mirror plane, the choice ofzz

z' perpendicular to this plane reduces the number of order parameters to

independent, non-zero order parameters required for molecules belonging

to the different point groups has been givenl?l

(
t

three: (S - S ), and· S
xx yy xy A complete table of the number of

!
l -.

f -

L.ot

A.2.2 Spherical Harmonic Expansion

We mention briefly an alternate description of the ordering in

nematic liquid crystals by means of a probability function. We define
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the function p(e,~) as the probability per unit solid angle that the

director has polar angles e and ~ with respect to the molecule-fixed

axis system x', y', z'. The problem then becomes one of evaluating

172Snyder has suggested expanding p(e,~) in real spherical

harmonics. The relevant ones are the 5 real functions of order 2 (2 = 2),

the familiar d-orbita1s. The expansion of p(e,~) can be written as:

f~

i

( ,
;

+C D +C D
yz yz xy xy

In this equation the D's are the real representation of the five

d-orbita1s:

D 2 2 = (41\') -12-15!2(3cos2e - 1)
3z -r

(A.6)

D 2 2
x -y

-1 -1 ~ 2= (41\') 2 15 (sin ecos2~)

-1 ~D = (41\') 15 (sinecosecos~)
xz

D = (41\')-115~(sinecosesin~)
yz

The five C's are motional constants which can be easily related to the

elements of the Saupe ordering matrix. Again, symmetry can reduce the

number of motional constants required to describe the ordering.

A.2.3 Non-Rigid Molecules

A.2.3.l Exact Description

To this point the discussion has been limited to rigid molecules.

(A. 7)

Many liquid crystals and dissolved solutes are in fact non-rigid molecules,
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undergoing rotations about carbon-carbon single bonds, rapid interconver-

sion between different conformations, and/or vibrations. The problems

of describing the ordering in such molecules and of determining how

these motions ultimately effect the NMR spectrum have been the subject

of considerable debate in the literature. As an illustration, we con-

sider the ordering of a molecule which is interconverting between two or

more different conformations.

Recall from Equation A.5 that for a rigid molecule the measurable

component of a tensor interaction A is given by:
~

(A.8)

1
The order parameter SaS is 2 <3cosSzacosS zS - 0aS>' where the brackets

represent an average over all orientations of the molecule. In the case

of a non-rigid molecule, the zz component of A is properly written:
~

(A) = At + ~3- L <A' D (1
2

) (3cosS cosS D - 0 D) >.
~ zz D alJ za ZIJ a.., ,a, ..,

(A.9)

In this equation the brackets represent averages over all internal motions

and orientations of the molecule. When the intramolecular motion consists

of rapid interconversion between n different conformations, this equation

may be rewritten

(A)
~ zz

(A.lO)

where the superscript n refers to the nth molecular conformation, P is
n

the probability of this conformation, and the angular brackets again

represent an orientational average.
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A.2.3.2 Simplifying Approximations

While providing a formal solution to the problem, Equation A.10

also illustrates the difficulty in determining the structure and ordering

of molecules undergoing internal ~otion. Up to 5n order parameters may

be required, as well as probabilities and geometries for each of the n

conformations. It is often difficult, if not impossible, to determine all

of the unknown parameters from the NMR spectrum. In an effort to

simplify this problem, it is often assumed that the average orientation

of a non-rigid molecule is independent of its conformation. In mathe-

matica1 terms, this assumption allows the following simplification of

Equation A.10:

(A) = AT + 32 \ A' S. ~ zz L. < a.S> a.S'
a.,S

where <A' >= \ P A,n and the ordering is now described by a single set
a.S L. n a.S

n
of order parameters. The simplification is referred to as "A-S

separation,~73 The problem is one of specifying the conditions under

which this approximation is justified. Two different criteria have

recently been described.

d ' B 11 d d L 173,174 h ' f .Accor ~ng to urne an e ange , t e lmportant actor ~s

the relative timesca1es for internal motion and molecular reorientation.

They consider ordering in the so-called weak-collision limit, in which

conformational change involves no reorientation of the molecule as a

whole (and both motions are assumed fast on an NMR timescale), Defining

Lv as the conformational lifetime and k as the rate of reorientation,

they proceed to consider the limiting cases of slow interconversion

(k « L-
l ) and fast interconversion (k »T-

1). In the fast interconver-
v v

sion limit, it is always possible to describe the ordering by a single

set of "average" order parameters. In the limit of slow interconversion

f~,
i .,



one generally needs to specify a different set of order parameters for

each conformation. Depending upon the symmetry of the molecule, it may

be possible to choose a molecule-fixed axis system such that one set of

order parameters suffices in this limit also, however.

175Emsley and Luckhurst , on the other hand, argue that timescale

arguments can be misleading and adopt instead a statistical mechanical

205

approach. They treat the observed tensor components (A) as equilibrium
~ zz

properties of the system which they evaluate in terms of inter- and

intramolecular potentials. In their scheme, "A-S separation" is justi-

fied whenever the external potential is independent of internal molec-

ular coordinates. Clearly the proper choice of molecule-fixed axis

system is crucial in this regard. When an axis system which separates

intermolecular potential from internal motion cannot be found, a single

set of order parameters is no longer sufficient.

RecentlY,an attempt has been made to reconcile the relative time

176scales and equilibrium statistical mechanics points of view . A

complete description of the ordering of non-rigid molecules in the

liquid crystalline phase is clearly a complex problem and many unanswered

questions remain. In the general case described by Equation A.IO, the

number of unknowns to be determined greatly exceeds the number of inde-

pendent dipolar couplings and the NMR spectrum must be supplemented with

information from other sources. Often it may be possible to separate

the effects of internal motion and molecular reorientation (Eq. A.II)

or to make other simplifying approximations which make the problem more

tractable. A more detailed treatment of the ordering of non-rigid mole-

cules and of the role which multiple quantum NMR can play in elucidating

48
this ordering can be found in the recent Ph.D. theses of Sinton and

50
Drobny •



nematic solvent.

A.2.3.3 Ordering of Molecules of High Symmetry

We return now to the ordering of molecules of high symmetry

such as CH4 and (CH3)4Si. For rigid molecules whose symmetry is described

by the point groups T, Td , 0, or 0h all five order parameters are zero.

Thus we expect them to show no preferred direction of orientation in a

Yet the NMR spectra of CD 177,178 (CH) Si169
4 '3 4 '

(CH ) C
169

and other similar molecules show unmistakable anisotropic3 4

splittings as evidence of partial ordering.

169
Snyder and Meiboom explained the observed (CH3)4Si spectrum by

postulating a distortion of the solute molecule due to an anisotropic

pressure exerted by the liquid crystal solvent. Such angular deforma-

tions alone were. unable to explain later experimental results for dis-

solved methane, however. An alternate explanation has been offered by

174
Burnell and deLange who sugg~st that the methane molecule is not

tetrahedral at all instants in time due to normal vibrations of the C-H

bonds. A coupling between these vibrations and molecular reorientation

can then lead to a net ordering of the methane. This is very similar to

the explanation of Emsley and Luckhurst l75 whose criterion for non-zero

dipolar coupling in molecules of Td symmetry is a dependence of the

ordering potential on vibrational state.

The correct explanation for the ordering of molecules of high sym-

metry is probably a combination of solute distortion and vibration-reori-

entation coupling. The splittings observed in the spectra of these

molecules, which reflect a solute-solvent interaction, are generally two or

more orders of magnitude smaller than those typically seen for partially

ordered molecules of lower symmetry. When analyzing the spectra of mole-

cules dissolved in liquid crystals, it is usually assumed that interactions

f""
206 I
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between solute and solvent are negligible. The relatively small split-

ting seen in the spectra of molecules of Td symmetry provides good

support for this assumption.

A.3 The Spin Hamiltonian in Partially Oriented Systems

Equation A.5 expresses the measurable component of a tensor inter-

action A in terms of the elements of that tensor in a molecule-fixed
,

axis system (Aas ) and the components of the Saupe ordering matrix (SaS).

In this section we consider this expression more explicitly for the

three spin Hamiltonian interactions of interest in this work: scalar

couplings, dipolar couplings, and chemical shifts.

A.3.l Scalar Couplings

The scalar coupling is the easiest of the three interactions to

describe. As discussed. in Section 1.2.3.3, the anisotropic portion of

the J-coupling is negligibly small for proton spin systems. The re

maining isotropic coupling, given by t Tr(~'), is a scalar which commutes

with all rotations. The scalar coupling thus has no orientational

dependence.

A.3.2 Dipolar Couplings

The dipolar coupling constant between spins i and j was given in

Equations 1.43 and 1.45 as (-y.y.h/2r~.)(3cos28.. -1). This expression
~ J ~J ~J zz

applies when spins i and j occupy fixed positions with respect to each

other and the external magnetic field. At room temperature, rapid vibra-

tional motion is occurring, however (a typical vibrational period is

_10-13 sec), and the dipolar coupling must be averaged over this motion:

D..
~J

Yiy
·
h 3 2= - 2) «r:.)(3cos 8i · -1».

~J JZz
(A.12)



Since the vibrational period is generally much shorter than the time for

Z08 r
I
i
\ -

c
molecular reorientation, it is usually assumed that these two are uncor-

related (the validity of this assumption was discussed in Section A.Z.3.Z).

This allows the two terms within the bracketed expression of Equation

A.lZ to be averaged separately:

r
L=

c
-yiyjh -3 Z

D.. = _.::.Z.......- <r .. ><3cos e.. -1>,
1J 1J 1JZZ

(A.13)

where only the angular factor is dependent on molecular reorientation.

We now evaluate the dipolar coupling constant D.. in terms of the
1J

components of dipolar and ordering tensors expressed in a molecule-fixed

axis system defined by x', y', z'. It is actually convenient to start in

the principal axis system (PAS) of the dipolar tensor, defined by the

axes a, b, c. Taking the c-axis along the internuclear vector, the di-

polar interaction in this frame may be written:

(

-1 0
-y.y.h 3

O (PAS) = 1. J <r- > 0 -1
ij Z ij

o 0

(A.14)

This tensor is next transformed into the x', y', z' axis system. The
I

component of this transformed tensor, (D .. ) 0' is:
1.J (l1oJ

I

(D .. ) 13
1.J (l

'-yiyjh -3 .
= 2 <r .. >[3cos6 cos6

S
-8 S],

1.J (lC c (l
(A.lS)

where 6 is the angle between the molecule-fixed axis (l and the c-axis
(lC

of the PAS, and the explicit ij subscript has been dropped from the

angular terms.
I

Finally, we combine the expressions for (D .. ) 13 with
1.J (l



[ elements of the Saupe ordering tensor to write the measurable zz

component of the dipolar tensor as:
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D ••
J.]

(3cose cose a - 0 a) Sal,ac ~c a~ a~
(A.16)

,
where we have used the fact that Dij = O. This equation may be

expanded and rearranged to

D.. =
J.]

-Y.Y.h
J. ]

2
-3 2 2 2

<r .. >[(3cos e, -l)S, ,+ (cos e, -cos e ,)(5, ,-5, ,)
J.] Z C Z Z x c y c x x y y

+ 4(cose , cose , )5 , , + 4(cose , cose , )S , ,
xc yc xy xc zc xz

+ 4(cose , cose , )S , ,l.
y c z c y z

(A. I?)

Again, because the dipolar tensor for each pair of spins is diagonal in

its own PAS, each angle in Equation A.l? has an implicit ij subscript.

A.3.3 Chemical Shifts

The expression for the chemical shift in partially ordered spin

systems is

, , I

i -, 2 x,~,z

w = -w [ a + - 2.
i 0 i 3 a,S

a, as al.
J.a~ a~

(A.lS)

i-I
The first term on the right hand side of this equation, -woa i , is the

isotropic chemical shift. In general, the chemical shift measured in

the liquid crystalline phase will differ from that in an isotropic liquid.(
l:

Th~s difference, given by 6w.
J.

the chemical shift.

w,
J.

+ i-,w a.,
o J.

measures the anisotropy of

Several factors can contribute to the anisotropy in the shielding

at a particular nucleus i. Included among these are effects due to
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surrounding electrons, neighboring nuclei, and the bulk properties of C
the sample as a whole. As discussed in Chapter 8 of Emsley and Lindonl4 ,

it is often difficult to separate out the different contributions to ~wi.

Even when this is possible, interpretation of the chemical shift

anisotropy in terms of molecular parameters is difficult.

A.4 Spherical Tensor Operators

A.4.1 Coordinate Transformations

The preceding sections have demonstrated the importance of trans-

formations between coordinate systems. In the most general case, 3 such

transformations are required to describe a second-rank tensor interaction

in the liquid crystalline phase:

f~

\

Molecule-fixed
PAS ~ Coordinate System ~ Director frame ~ Laboratory frame. (A.19)

For"a nematic liquid crystal in high magnetic field, the director lies

along the laboratory z-axis and the last of these transformations is

unnecessary. To this point, all transformations have been expressed in

Cartesian coordinates and have been given in terms of either a rotation

operator (R) or the direction cosines of the angles between coordinate
~

systems axes. In this section we demonstrate the use of spherical tensor

operators in simplifying the general description of rotations. (The use

of irreducible tensor operators to simplify the description of rotations

in spin space was described in Section 1.7).

A complete description of coordinate transformations and spherical

30 32-34tensor operators can be found in several texts' and will not be

repeated here. Before referring to these sources, the reader is warned

that different authors use different conventions in their definitions of

f

b



r'
'-

211

rotation operators and coordinate systems, and care must be taken when

comparing results between sources. The following discussion is based

upon a right-handed coordinate system and is consistent with the rotation

. . f 5·1 32convent1ons 0 1 ver •

A.4.l.l Transformations in Geometric Space

The relationship between any two coordinate systems (x,y,z)

and (x' ,y' ,z') can be specified by the Euler angles (a,S,y) defined in

. 32-34the convent1onal way These three angles describe the successive

rotations required to transform one coordinate system into the other.

The rotation operator R(aSy) is defined as

R(aSy) = exp(iy2 ) exp(iS2 ) exp(ia2 ),z y z

where the angular momentum operators Q. and Q. are the "generators of.
y z

infinitesimal rotations" about the y and z axes, respectively. This

rotation operator describes the transformation of a function fer) from

one coordinate system to another:

(A.20)

(A.21)

where f'(r) is the value of the transformed function and the positional

coordinates r are expressed in the new coordinate system.

The nine components A.. of a second rank Cartesian tensor may be
1.J

decomposed into a scalar of rank zero

A.. ,
1.1.

(A.22a)

an anti-sYmmetric tensor of rank one

(A.22b)
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and a symmetric, traceless tensor of rank two

(A.22c)

Each irreducible tensor operator of rank 1 contains (21 + 1) independent

components. When appropriately chosen, these (21 + 1) components At
n

transform among themselves under rotations according to

1

2
n'=-2..

2.. (2..)
A ,v, (aSy) ,n n ,n (A. 23)

where the V(~) are elements of the Wigner rotation matrix of rank t.
n ,n

Thus the transformation of a tensor operator A from one coordinate system
~

to another is greatly simplified by decomposing that operator into

spherical tensor operators A1 •
~

tExpressions for the components A of the
n

spherical tensor operators which can be constructed from a second rank

cartesian tensor A are given in Table A-I.
~

For a series of coordinate transformations such as that shown in

(A.19), Equation A.23 can be applied repetitively with different sets of

Euler angles. In liquid crystals, we have seen that due to molecular

fluctuations, the transformation from a molecule-fixed axis system to the

director frame involves an ensemble or time average over orientation.

In terms of spherical tensor operators, this average is achieved by sub-

stituting motionally averaged

<V\2..)(aSy» in Equation A.23.
n,n

Wigner rotation matrix elements

The elements <V(~) (aSy» can be expressed
n ,n

f
t

in terms of a set of motional constants similar to those introduced by

172Snyder (Sec. A.2.2). These constants themselves can be directly

related to the components of the Saupe ordering tensor.



Table A-I

Construction of Spherical Tensor Operators from the
Components of a Second Rank Cartesian Tensor A::::::
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h
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t
l

Spherical Tensor
Operator Component

Cartesian Tensor
Components

-(1/13) (A +A +A )xx yy zz

-(i/.fi)(A -A )
xy yx

-(1/2)(A -A ±i(A -A ))zx xz zy yz

(1/16)(3A - (A +A +A ))zz xx yy zz

+(1/2)(A +A ±i(A +A ))xz zx yz zy

(1/2)(A -A ±i(A +A ))xx yy xy yx
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A.4.2 More Spin Hamiltonians

In this final sectio~we express the dipolar coupling and chemical

shift Hamiltonians in terms of spherical tensor operators. A more

complete discussion of this subject may be found in Appendix A of

Mehring6 • In Equation 1.35, each Hamiltonian was written in terms of a

second-rank Cartesian tensor:

[

r

CA.24)

Alternatively, this Hamiltonian can be expressed as the sum of the scalar

products of irreducible tensor operators of rank 2, 1, and o. The scalar

product of ~o irreducible tensors can be written in terms of their

respective' components as

f ~

[

R.

L
o=-R.

CA. 25)

with a particular spin Hamiltonian then being given by

2 20
:If = L L

20=0 n"-2o
CA.26)

R. R.In practice, the tensor operators A and T are generally chosen such
~ ~

that the former operate only on spatial variables and the latter solely

on spin functions.

A.4.2.1 Dipolar Couplings

In the case of the dipolar coupling, the tensor At is composed
~

of the various elements of the Cartesian dipolar tensor D..• These are
~l.J

combined into the tensor components At according to Table A-I. The
n

I .

C
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r: angular momentum operators in spherical tensor form are:

= - ;;'(1 + iI )
y2 x Y

= 2:-(1 - iI ).12 x y

(A.27)

Irreducible tensor operators Tt of rank 2, 1, and 0 are constructed from
n

the angular momentum operators for spins i and j according to Equation

1.63 of Chapter 1.

A.4.2.2 Chemical Shifts

For the chemical shift, we first take the scalar product of

the shift tensor g and the static field ~o' The resulting terms,

H = cr H' H = cr . H • H = cr HO' are combined into the three com-crx xz 0' cry yz 0' crz zz
1ponents of an irreducible first rank tensor A :

Al = Ho crz

All = - ;;'(H + iH )
y2 crx cry

A
l = ~-(H - iH ) .
-1 12 crx cry

1The scalar product of A with the angular momentum tensor operators of

Equation A.27 yields the chemical shift Hamiltonian in tensor form.

(A. 28)



Appendix B: GAMMA HIGH-FIELD NMR SPECTROMETER

The experiments in this thesis were all performed on a home-built

spectrometer operating at 182 MHz proton resonance. This spectrometer,

the third constructed in our laboratory, is referred to as the "gamma"

and is the subject of this appendix. In Section B.l the spectrometer's

magnet and shim system are discussed. Brief mention is made of the

gamma's computer and its various peripherals in Section B.2. The low

power electronics necessary to generate r.f. pulses of differing lengths

and relative phases are the subject of Section B.3. Section B.4 is

devoted to a discussion of high power r.f. amplifiers, while the sample

probe and its related circuitry are described in Section B.5. The

receiver and phase sensitive detector are discussed in Section B.6. The

final two sections describe circuitry which is more digital in'nature.

Section B.7 deals with the sampling, analog-to-digital conversion and

computer storage of audio frequency signals, while the gamma's 8-bit

variable phase shifter and controller board are described in Section B.S.

B.1 Superconducting Magnet and Room Temperature Shims

B.1.1 The Magnet

The spectrometer is built around a persistent superconducting

solenoid manufactured by Bruker Instruments. The magnet is operated at

a field of approximately 42.7 kGauss. At this field, the resonance

frequencies of the most commonly studied nuclei are:

216
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182.00 MHz

45.77 MHz

27.94 MHz .



room temperature shims are provided:
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In addition to the main field, there are also three superconducting

shims: One oriented along the direction of the main field (z) and two

mutually orthogonal shims in the transverse plane (x and y, respectively).

Current in these shims is adjusted by means of an external heater and a

Hewlett-Packard 6259B DC Power Supply. Connection to the magnet is

through a charging rod supplied by Bruker. The bore of the magnet is·

approximately 3.5 inches in diameter, with the center of the magnetic field

located roughly 14 inches above the base of the bore tube (24 inches

below the top of this tube).

B.I.2 Room Temperature Shim System

Contained within the magnet bore is a set of room temperature shims

purchased from Cryomagnet Systems (Indianapolis, IN). The center of

these room temperature shims is located 14.6 inches above the top of the

bottom-mounting flange. The room temperature shim tube runs through

the bore of the magnet and is secured by a locking ring on top. The top

half of the shim tube can be replaced with a supplied spinner bearing to

permit conventional z-axis sample spinning. A total of 14 different

o 1 2 5
6 axial shims (z • z • z •... z )

2 2 2 2
and 8 radial shims (x, y, xy, x - y • xz, yz, x z. y z). The axial

shims are controlled by a matrix board supplied by Cryomagnets. the

radial shims by a homebuilt power supply. At the present time. the room

temperature shims provide no field-lock circuitry.

B.2 Gamma Computer System

B.2.1 Nova Computer and Peripherals

The operations of the gamma spectrometer are directed by a Data

General NOVA2 minicomputer. This computer has a 16-bit word length and



32 kbyte of core memory. The computer is supported with a Diablo 4234

10 Mbyte dual-platter disk drive. Half of this storage is provided on a

fixed platter, the remaining 5 Mbyte are on a removable pack. A Data

General 6030 315 kbyte single density floppy drive allows data and

programs to be transferred to floppy for long-term storage. The gamma's

console is an ADM-3 CRT manufactured by Lear Siegler, the display scope

is a Hewlett-Packard 1300 x-y Scope. A complete description of the

t t · t SPEC has been prov~ded179spec rometer opera ~ng sys em •

B.2.2 EIA/TTL Toggle Box

In its normal configuration, the Main port of the spectrometer's

console is connected to the Nova computer and the auxilliary (Aux) port

is connected to the pulse programmer's microprocessor. Occasionally,

however, it is necessary to interchange the connections to the Main and

Aux ports. The EIA/TTL toggle box allows this to be done without

actually having to swap cables. The box, whose schematic is shown in

Figure B.l, has two different push-button selectable states: (1) Main=

to-Nova, Aux-to-Microprocessor, (2) Main-to-Microprocessor, Aux-to-Nova.

The box also contains a 4PDT switch which allows the Aux and Main port

cables to be jumpered directly together, thereby removing the console

from the circuit. This permits the console to be turned off once an

experiment is started. In addition, the Aux port of the console may be

disabled by means of a 2PDT switch.

B.) Low Power r.f. Electronics

The experiments described in this work require the ability to

generate r.f. pulses of various lengths and relative phases at both lH

and l3C carrier frequencies. (Since a wide variety of other nuclei can

be studied, the non-proton frequency will be referred to as the X

218
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frequency throughout much of the remainder of this chapter.) The gamma

is a dual channel spectrometer, capable of producing pulses at two dif-

ferent r.f. carrier frequencies simultaneously. In this section, the low

power r.f. circuitry required to provide this capability is described.

The opening and closing of all r.f. switches is controlled by TTL levels

supplied by the spectrometer's microprocessor-based pulse programmer.

Details concerning the construction and use of this pulse programmer are

. 50 179
prov~ded elsewhere ' . Here we deal only with the various r.f.

components and switches themselves.

We begin with an overview of the manner in which the r.f. pulses of

appropriate length, phase, and carrier frequency are generated. As with

most NMR spectrometers, phase generation on the gamma is performed at an

intermediate frequency known as the IF. Pulses at this frequency are

then mixed with a second frequency, the so-called local oscillator (La),

to generate the appropriate NMR frequency. On the gamma the IF is

30 MHz, the proton La is 152 MHz, and the l3c La is 75.8 MHz.

One of the major advantages of generating pulses at the IF is the

ease with which we may switch from one nuclear frequency to another.

This is done by simply changing the frequency of the La (along with a

bandpass filter or two). The relative phase at the nuclear frequency

is completely controlled by the generated IF pulse. Thus no adjust-

ments to the phase-generating circuitry need be made upon switching

carrier frequencies. An additional advantage to using an IF is that

30 MHz is a more convenient frequency at which to generate phase shifts

than many nuclear frequencies, due to its relatively long wavelength.

B.3.l IF/La Generation

In its current configuration, the gamma spectrometer receives its
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10 MHz reference signal from the back of a Programmed Test Sources

PTS 40 frequency synthesizer discussed below. This 10 MHz signal is

used as the external reference input to the gamma's X LO frequency

synthesizer (Sec. B.3.2) as well as being the source of 30 MHz and

100 MHz frequencies. This is illustrated in Figure B.2, a schematic

of the IF/lH La box. The generation of a 30 MHz signal is shown in the

lower branch of this figure where, following amplification by an Anzac

AM-l02, the 10 MHz input is tripled to 30 MHz, and filtered. This

30 MHz signal, which will become the IF for both lH and X frequencies,

is then sent to the LO/IF Generator (Fig. B.3).

The 10 MHz reference in the upper branch of Figure B.2 is used to

generate the proton La. A "times 10" circuit makes the 10 MHz into

100 MHz, which is then amplified by an AM-l02 and fed into an Anzac

MD-143 double-balanced mixer. The second input to this mixer is pro-

vided by doubling the output of a PTS 40 frequency synthesizer. This

synthesizer, which operates over the range 0.1-40 MHz in 0.1 Hz steps,

provides the means for adjusting the proton carrier frequency. The

mixer output is amplified (Anzac AM-lOS), filtered (Texscan 4BClS2/S),

and split (Anzac TU-SO) into two proton La signals. One of these two

is input to the lH Generator ,(Fig. B. 6a) , the other serves as the La

reference to the Receiver (Fig. B.9).

B.3.2 La/IF Generator (Fig. B.3)

The 30 MHz output of the IF/IH La (Fig. B.2) is amplified by an

221
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AM-l02, filtered, and split into three signals by a pair of Anzac THV-SO's.

These three IF signals are then fed, respectively, to the Phase Sensitive

Detector (Fig. B.9b) and lH and X Quadrature Generators (Fig. B.4).
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The X-frequency LO is generated directly by a Harris PRD Electronics

7828 frequency synthesizer, which operates over the range 0-80 MHz, is

I c1ick-settab1e" in steps of 1 kHz, and has a vernier dial adjustment

over the range 0-999 Hz. The LO is split by a TU-50 into two signals

which are fed to the X Generator (Fig. B.6b) and Receiver reference (if

X signal is to be detected), respectively.

B.3.3 1H/ X Quadrature Generation (Figs. B.4 and B.S)

1Both the H and X sides provide four r.f. channels having relative

phases 0°, 90°, 180°, and 270°. These are labeled as y, x, y, and x,

225

respectively. 1Quadrature generation is very similar for both H and X

frequencies and is illustrated in Figures B.4 and B.S. As indicated in

Figure B.4b, the X frequency IF is simply amplified by an AM-lOS before

being split into its four phases. The proton IF, on the other, hand,

goes through a digitally controlled phase shifter (Sec. B.8), is ampli-

fied· (AM-lOS), filtered, amplified a second time (AM-l02), clipped with

a pair of crossed diodes to ground, and filtered. again (Texscan 3LD60/CC)

before being split into its four phases.

Figure B.S illustrates the Quadrature Generation boxes for both lH

and X frequencies. The 30 MHz IF is split by a 0°/90° hybrid (Anzac

JH-127) and then by a pair of 0°/180° hybrids (Anzac DV-SO) to produce

four mutually orthogonal phases. These are trimmed using 0-90° variable

phase adjusters (Merrimac PSS-2-30) and 0-20 dB variable attenuators

(Merrimac ARS~l) and fed into four sets of dual r.f. switches (Summit

571). Each of these pairs of switches is individually controlled by a

TTL level supplied by the pulse programmer, allowing the desired pulse

phase to be selected. The four r.f. lines are then recombined (Anzac

t
L

}j

DS-3l2) and, on the proton side, amplified (AM-102) before going to the

1H or X Generator.
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B.3.4 lH/X Generators (Fig. B.6)

The IF pulse from the proton quadrature box passes through a variable

attenuator and is mixed with the proton LO (Fig. B.2) using an Anzac

MD-143 mixer. After filtering (K&L Microwave 182/20), the resulting

1pulse at the H carrier frequency is switched a second time (Daico SPST

100C128lA), passes through a capacitor (15 pf) to remove any DC offset,

is amplified (AM-IDS), passes through a crossed pair of noise diodes,

is filtered again (Texscan 3BD182/5-CC), and amplified (AM-l02). A

variable attenuator, consisting of aID-turn 1 kQ potentiometer to

ground, allows the amplitude of the pulse to be fine-tuned before it is

sent to the proton high-power amplifier.

The 30 MHz pulse on the X side is mixed with the X LO (Fig. B.3)

using an Anzac MD-143. After filtering and amplifying (AM-IDS), the

resulting pulse at the X carrier frequency is switched (pair of Summit

571 switches), amp~ified (AM-IDS), and trimmed (potentiometer to ground)

before going to the X high-power amplifier.

B.4 High-Power Amplifiers

High-power amplification of the proton pulses· is provided by an

Amplifiers Research (AR IDOL) broadband r.f. transmitter. With an input

of -1 V p-p this class A amplifier is capable of providing an output of
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100-200 watts.

5 jJsec.

IT
This results in typical 2 pulse lengths of approximately

!
I
l ,

I .
!
i _
L~

On the X side an Electronic Navigation Industries (ENI 3S0L) pro-

vides low power amplification. This class A amplifier supplies 50 dB of

amplification over the frequency range 250 kHz - 105 MHz. The output of

the ENI drives a Drake L-7 Linear Amplifier, a high-power tuned transmitter

which has been modified to operate at frequencies of 16, 28, 46, and



(al

30 114HZ
FROM

I", QUAD

'H L.O '~2

(bl

30 114Hz
FROM

)( QUAD

'MIX GENERATOR

228

n

30

)( 1.0 76/~8

i
TTL.

DWG 789AI

X XMIT

Figure 8.6. 1H/X Generators. 1(a) H channel. (b) X channel.

f
L



229

56 MHz. In this configuration, a 1 V p-p input to the ENI results in an

output in excess of 400 watts from the L-7. (One kilowatt or more of

output may be obtained from the L-7 by driving it with a second AR

amplifier.) TypicallY,a variable attenuator (Kay Elemetrics 432D) is

1placed on the input to the ENI to allow H and X frequency pulse lengths

to be more easily matched.

B.5 Probes

All of our probes are tuned L-C circuits designed to resonate at

one or more nuclear frequencies. The probes used are of three basic

types: (1) single-tuned, (2) double-tuned with two orthogonal coils,

and (3) double-tuned with a single r.f. coil. The construction of

probes for spinning samples at the magic angle is described elsewhere
l2

.

B.5.l Single-Tuned Probes

Figure B.7a is the schematic drawing ofa common probe circuit de-

signed to resonate at a single frequency. High-power pulses are input

to the probe from one of the transmitters. The tuning capacitor (C
l

)

is home-built, consisting of an inner cylindrical copper conductor and

outer copper bell separated by a teflon d~electric. This capacitor is

adjusted by sliding the inner conductor into and out of the dielectric.

Matching capacitance (to 50 n impedance) is provided by one or more

non-magnetic mica or ceramic capacitors (Cz)(commonly used caps include

variable miniature ceramic disks manufactured by Erie and small, fixed~

value capacitors made by American Technical Ceramics). The sample coil,

a solenoid of 5-15 turns, is made from 18 or 20 gauge bare copper wire

and has a diameter of 6-7 mm. At 180 MHz, the Q for this type of tuned

circuit is typically -100.
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Figure B.7. NMR probes. (a) Single-tuned probe circuit.
(b) Double-tuned single-coil circuit.
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B.5.2 Double-Tuned Probe

Double resonance experiments, such as those described in Chapters 3

and 5 require a probe tuned to two different frequencies. One possible

design makes use of two orthogonal r.f. coils. One tuned circuit in

such a probe is identical to Figure B.7a, the other is similar except

that a saddle-shaped Helmholtz coil, mounted outside of the proton

solenoid,is the inductive element. The two tank circuits in this probe

design share a common ground point. When the two r.f. coils are proper-

ly adjusted (to ensure orthogonality), good isolation between the two

channels may be obtained'. When used on the low frequency (X) side,

Helmholtz coils are often found to break down at power levels in excess

of -200 watts.

For very high power applications, or when one is trying to accurately

match proton and X power levels, it is convenient to adopt a double-

d . 1 '1 b d . 180,181tune , s~ng e co~ pro e es~gn • The probe used for experiments

. h' k 1 h .. 1 . . . 180 . 11 d .
~n t ~s wor emp oys t e transm~ss~on ~ne c~rcu~t ~ ustrate ~n

Figure B.7b. The tuning (Cl , C
3

) and matching (CZ' C4 ) capacitors in

this circuit, as well as the coil itself, play the same roles

single-tuned probe. The two transmission lines are of length

as in a
),H .
4' .where

I
I

f

f 
L

>..H is the wavelength at the proton frequency within the coaxial cable.

Point A in this circuit looks like a high impedance at the proton fre-

quency while point B appears to be ground. At the X frequency, where the

transmission lines are much less than one-quarter wavelength, the roles

of A and B are reversed. In this manner, the same coil may be used for

irradiation and/or detection at two different frequencies. Isolation

between the two channels can be a problem with this circuit design. In

this regard, one often starts with transmission lines which are longer
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A
H

than Ir and trims them down until good isolation is achieved. Although

it has been claimed that this probe design optimizes the signal-to-noise

182ratio at the low frequency at the expense of high frequency performance ,

the sensitivity of the proton channel was adequate for all experiments

described herein.

B.S.3 Temperature Regulation

In Appendix A, the dependence of the ordering of a thermotropic

liquid crystal on temperature was described. Because of this sensitivity,

NMR probes used in studying these systems must be capable of carefully

regulating the sample temperature. The probe used in this work has this

capability. It is equipped with an evacuated double-walled glass dewar

which screws directly onto the probe head. A copper-constantan thermo-

couple junction measures the temperature near the sample. Air is blown

into the probe head by means of an evacuated transfer line which also

serves as the probe's support rod. For high temperature studies, an

external heater may be used to warm the air while low temperature studies

may employ an ice bath, N2 gas and a dry ice/ethanol bath, or NZ gas

bubbled directly froman ~-N2 dewar for cooling. Fine temperature regula

tion is achieved by means of a small resistive heater which is placed

within the probe's air transfer line. The temperature at the thermo-

couple junction is monitored by a digital temperature controller (Newport

Laboratories). A home-built,unit (Electronics Shop DWG 859Al) supplies

current to the resistive heater anytime the temperature falls below a

preset value. In this way temperature regulation to within ~O.l~C can

be achieved.

B.S.4 Horizontal Sample Spinning

For the liquid studies of Chapter S, the probe head was modified to

Hu

f
L
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accommodate a horizontal sample spinner. The spinner, constructed of

Delrinpolymer, is a modification of the double-bearing, double-drive

d · d f . 1 .. b· 1 b12 S' .es~gn use or mag~c ang e sp~nn~ng pro es ~n our a . p~nn~ng

speeds of 0-150 Hz are achievable with this particular spinner. The

liquid samples themselves were sealed in 4 mm diameter glass beads

(Kontes 897020). Although Delrin sample tubes were machined, optimal

resolution (-2 Hz) was obtained by placing the sample bead within a

section of standard glass NMR tube fitted with Delrin end caps.

B.5.5 Receiver Protection and Noise Reduction

When high-power pulses are applied to the probe, care must be taken

to protect the receiver preamplifier. In addition, the low-level noise

produced by the high-power transmitters in their quiescent state can

significantly degrade the signal-t9-noise of an experiment. The circuit

illustrated in Figure B.8 addresses both of these problems. Several

crossed diode pairs placed after the bandpass filter help to block the

transmitter noise. In practice, diode pairs are usually added until the

observed noise level is approximately the same as that seen with the

receiver input terminated to ground.

A pair of crossed diodes to ground attached to a quarter wavelength

cable at the observed frequency protects the preamplifier. When a pulse

is applied, these.diodes open and the receiver appears as a high impedance

to the transmitter, with the bulk of the power going directly into the

probe. Typically a (distorted) signal of 0.5-1.0 V p-p leaks through to

the preamp during a pulse.

B.6 Receive"r

The gamma's receiver, which is set up for quadrature detection, is

of the superheterodyne type. The Larmor frequency serves as a carrier
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for the signal of interest and is removed in a two-stage mixing process.

The resultant audio frequency signal is a free induction decay in the

235

rotating frame defined by the carrier frequency, w, of the observed

nucleus. By detecting signal in this manner, it is very easy to make

the receiver a broadband device capable of detecting any nuclear fre-

quency. The only requirement is that the preamplifier itself be a

broadband unit.

B.6.l Preamplifier/IF Amplifier (Fig. B.9a)

Upon coming from the probe, the nuclear signal is first amplified

by a two-stage preamplifier. Since the noise figure of the receiver is

almost completely determined by that of the preamp, the choice of pre-

amplifiers is particularly important. The first stage of the preamp is

an Avantek UTa 511 (Gain = 15 dB, Noise figure =2.5 dB), the second

stage an Avantek UTa 512 (Gain = 20 dB, Noise figure = 4 dB). Following

amplification, the signal is filtered using a bandpass filter centered

about the appropriate Larmor frequency. It is then mixed (Anzac MD-143)

with the appropriate La, amplified by a homebuilt amplifier (25 dB @

30 ± 1 MHz), and sent to an IF strip amplifier (RHG Electronics

Laboratory, EVT30l0). This amplifier provides 20 dB of fixed gain plus

50 dB of variable gained controlled by a front panel-mounted potentio-

meter. The output of the IF strip is filtered (Texscan 4BM30/3-CC) and

goes to the Phase Sensitive Detector.

B.6.2 Phase Sensitive Detector (Fig. B.9b)

t-oLi At this point the signal of interest is riding upon a 30 MHz IF

carrier. It is next split into two channels (Anzac TU-50), each of which

is then input into an Anzac MD-143 mixer. The 30 MHz reference IF

(Fig. B.3) goes through a variable delay line and is split into two
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channels (Anzac JH-127) having relative phases of 0° and 90°. Each of

these channels becomes the second input to one of the above-mentioned

mixers. The outputs of these mixers form two channels of audio signal,

designated as OO(Buffer 1) and 90° (Buffer 2) which then feed into the

Offset/Audio Gain/Receiver Blank box.

B.6.3 Offset/Audio Gain/Receiver Blank

One of the two chan~els of the Offset/Audio Gain/Receiver Blank box

is shown in Figure B.lO. As its name implies, this box performs several

different functions. Frontpanel-mounted potentiometers allow the d.c.

offsets of the two channels of audio signal to be individually adjusted.

In addition, this box provides a fixed amount of audio gain and contains

two junction-FET analog switches for receiver blanking. These switches

are normally open and must be closed by applying a HL TTL level (from the

pulse programmer) to allow signal to be sampled.

The two channels of audio frequency signal then go to a set of audio

filters (Rockland 452 Dual HI/LO). These filters have a maximum cutoff

frequency of 100 kHz and provide 20 dB of switchable, optional gain.

The output of the audio filters is sent directly to the Data Acquisition

System.

B.7 Data Acquisition System

Figure B.ll provides an overview of the gamma's Data Acquisition

System while Figure B.12 focuses in on the sample-and-hold and analog=

to-digital converter (ADC) associated with each of the data channels.

Signal from the output of the audio filters is input to the sample-and=

hold (DATEL SHM-2). When a sampling pulse (TPl from pulse programmer)

is given, it causes the SHM-2 to hold its voltage level, which is then

digitized by the ADC (Datel ADC-EHlOB). This conversion·process takes
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approximately 2 usee, after which the SHM-2 goes back into sampling mode.

The ADC-EHlOB is a 10-bit ADC operated in bipolar mode which can accept

analog signals within the range -5 V-+ +5 V.

The remainder of the circuitry of Figure B.ll is concerned with the

transfer of the 10-bit digital words into the computer memory. The

process, which involves taking the parallel outputs of the two ADC's

and reading them into the computer in serial fashion has been described

in detai1
50

. The requirements of digitization and data transfer limit

the maximum sampling rate to one complex data point every 5 usee.

B.8 Digitally Controlled Phase Shifter

The Quadrature Generator (Fig. B.5) is capable of producing pulses

having relative phases of 0 0
, 90 0

, 180 0
, and 270 0

• Often, multiple

quantum experiments require pulses of other phases, however. Examples

include experiments involving TPPI or PPPI, as well as those employing

selective excitation sequences, as described previously. To accomplish

these, the gamma has available a digitally controlled phase shifter

(Daico 10000898-30) which can generate phase shifts in units of 2n/2S6

radians. The phase shifter, which operates at 30 MHz, produces a phase

shift between its input and output which is specified by an 8-bit digital

word. It has a settling time of approximately 2 usee and is displayed

schematically in Figure B.13.

The controller board for generating the appropriate 8-bit digital

word is shown in Figures B.14 and B.IS. The phase box can be operated

in either of two different modes. In Manual mode, the phase shift 6~ is

determined by the Manual set thumbwheel switches, with available settings

ranging from 0-3778 .

In Increment mode, the 8-bit word is the sum of control words from

241
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two independent circuits: (1) an increment counter and (2) a RAM. The

increment counter is stepped by an amount determined by the Increment

thumbwheel switches each time the backpanel INC is strobed. This counter

is reset tc 0 by pulsing the backpanel RESET and is constructed as a

"wrap-around" addition circuit so that overflows are automatically

handled correctly. TPPI experiments are easily carried out in this way,

with 6~ chosen as discussed in Section 2.4.2.2.

When a more intricate series of phase shifts is required, the

available RAM circuitry can be used. The phase box RAM can accommodate

a total of 1024 8-bit words. At the present time these must be loaded

individually by hand, though a computer interface is planned. The RAM

address counter is reset by strobing the backpanel RAC INIT, and is

incremented with a pulse to the backpanel RAM. Any arbitrary pattern of

phases may be programmed into and clocked out of the RAM. The 8-bit

control word is always the sum of the current value of the increment

counter and the current RAM word. A more detailed discussion of the

h b h b Od dSOp ase ox as een prOV1 e

As currently configured, the proton IF feeds through the phase box

immediately before being quadratured into four orthogonal phases (Fig.

B.4). This is convenient for multiple quantum preparation sequences

which require two or more different phases. However, some way is needed

to switch between phase-shifted preparation period pulses and fixed-phase

mixing period pulses. To do this, the toggle circuitry of Figure B.IS

has been installed. \fuenever the front panel select is set to Manual,

the phase is determined by the value of the Manual set switches. In

Increment mode, the control word can be toggled between the sum

(Increment counter + RAM word) and the value of the Manual set switches

by means of the backpanel Manual/Increment Toggle. In a typical multiple



quantum experiment, two toggle pulses are required per shot. The first,

following the preparation period, toggles from phase-shifted to constant-

phase pulses and the second, after the mixing period, restores the phase

box to Increment mode before the next shot. The toggle circuitry can

be reset by strobing the backpanel Manual/Inc~ement Reset or by

depressing the red frontpanel button.
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Appendix C: EXPANSION OF TRIGONOMETRIC FUNCTIONS INVOLVING
SPIN OPERATORS

As discussed in Section 5.1.1, the propagator U(t) =

exp(-iJisIpSbt) appears to S angular momentum operators as a rotation

about the "b"-axis. The effect of this propagator on the operator S
a

was given in Equation 5.5b as:

(C.l)

In order to simplify this expression further we must expand the trigo-

nometric functions. These expansions require that the number of

13equivalent I spins (protons) coupled to the S spin ( C) be taken into

account. This appendix sketches the expansion of sin(lpJist) and

COS(IpJ~st) for IS, I 2S, and.I3S spin systems.

C.l IS

For an IS spin system,

1
2 1= -p 4

1
3 1

I= -p 4 p

or, more generally,

In = 2-n for n evenp

In = 2(1-n)1 for n odd.p p

(C.2a)

(C. 2b)

(C.3a)

(C.3b)

[ ~

I Substituting these identities into the power series expansions for sine

and cosine yields Equations 5.6a and b:

COS(IpJ~st) _ COs(J~st) (C.4a)
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For the I 2S system,

2I
P

,
. (JISt)sJ.n -

2

248

(C.4b)

r"
l

r
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or, more generally,

I 2 = 1:. + ZI I
P Z pI pZ

. (C. Sa)

(C.Sb)

I(2n+l) = I
P P

I 2n ~ 1:. + 2I In> 0p 2 pI p2' .

Substituting these expressions into sine and cosine expansions yields

Equations S.6c and d:

C. 3 .!~

Finally, we consider the I
3

S spin system, for which

(C.6a)

(C.6b)

(C.7a)

(C.7b)

(C.8)

r~

I -

The grouping together of Ipl and I pZ in this equation allows us to expand

the sine and cosine terms ~sing the trigonometric identities
Hu

sin(x + y) = sin(x)cos(y) + sin(y)cos\x)

cos(x+y) = cos(x)cos(y) - sin(x)sin(y)

(C.9a)

(C. 9b)
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to give

(C .IOa)

(C.IOb)

Equations (C.4) and (C.7) may now be used to expand the individual sine

and cosine terms of Equation C.IO:

(C .lla)

Application of the double angle formulas

sin(2x) = 2sin(x)cos(x)

(C.llb)

(C.12a)

i
!r- cos(2x)

2
= 1 - 2 sin (x) (C. 12b)

i

L
and collection of terms yields the final results given in Equations 5.6e

and f:
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(C .13b)
r
t=

1
Li
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Appendix D: BILINEAR TI ROTATION INVERSION EFFICIENCIES

In Section 5.3.3 simple and compensated bilinear TI rotations were

compared with respect to their sensitivities to missets of the bilinear

nutation angle e(e = TIJISt). For the experiment of Figure 5.7a, the size

of the observed satellite proton signal provides a measure of the degree

to which the bilinear rotation takes the operator 1+ = I + iI into
x y

I = I - iI
x y

Equations (5.Z5a and b) gave theoretical expressions for

this inversion efficiency as a function of e. In this appendix, these

two equations are derived.

D.l Simple Bilinear TI Rotation

The propagator U(e) for the simple bilinear TI rotation

u(e) = exp(-iZeI S ).x z (D .1)

Its effect on the operator 1+ is easily calculated:

exp(-iZ8I S )1+ exp(iZeI S ) = I + iI cos(e) + ZiS I sinexz xz x y zz (D.Za)

(D. 2b)

The inversion efficiency is given by the coefficient c of this equation,

which can be computed as

r
n

The traces in Equation D.3 can be simplified as follows:

(D.3)

(D. 4a)
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I

Tr(1+(1 + i1 cose» = Tr(1Z - coserZ)x y x y

z= [Tr(I )] (1- cose) ,x

giving the coefficient c as (Eq. 5.Z5a):

1
c = (2') (1 - cose) •

D.Z Compensated Bilinear IT Rotation

For the compensated bilinear rr rotation, the propagator U(e) is

u(e) = exp(-ieI S ) exp(-iZeI S ) exp(-ieI S).x z y z x z

(D. 4b)

(0.5)

(0.6)

G
[

rI ., -

(~I .

Its effect on the operator 1+ is most.easi1y calculated by considering

the three factors on the right hand side of Equation D.6 sequentially:

exp(-ieI S )1+ exp(ieI S ) = I + iI cos(eZ) + Zi1 S Sin(Ze),x z x z x y . z z

e 6exp(-iZ61 S )[1 +iI cos(-Z) + ZiI S sin(-Z)] exp(iZ61 S )yz x y zz yz

(D.7a)

x exp(i6I S )x z

+ 2IzszCisin(I)cos(~)Cl+coS6) - sinecos(I». (D.7c)

As before, the coefficient of 1_, c, can be computed as

,
!
b

c =
Tr[I+(UC6)I+U

t
C6»]

Tr(I+I_)
(0.8)

The trace in the numerator of Equation 0.8 can be simplified as follows:



r ~

I 253

(D.9)

giving the coefficient c as

(D.IO)

The magnitude of this coefficient, which gives the inversion efficiency

of the compensated TI rotation, is (Eq. S.25b):

(
f--

l,

l

1 2 e 2 e 2· e 2!.:
2 [(cose (1 + sin (2» - cos (2» + (2sinesin (2"» ] 2 (D.ll)
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