
t~
..... , . . "~

LBL-16148
C'_~

----------------------------~----------------~ Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

8£RVf="r FY f'

-, on",.,~ Tl")qy

AUG 10 1983
U8RARYAND

DOCUMENTS SECTION

Presented at the Conference on Real-Time Computer
Application in Nuclear and Particle Physics J

Lawrence Berkeley Laboratory. Berkeley, CA,
May 15-19, 1983

. DATA ACQUISITION AT THEBEVALAC, .AN EXAMPLE:
THE HISS FACILITY

C. McParland

June 1983
TWO-WEEK LOAN COpy

This is a Library Circulating Copy
which may be borrowed for two weeks.

For a personal retention copy, call

Tech. Info. Division, Ext. 6782.

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

-

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

'\

DATA ACQUISITION AT THE BEVALAC, AN EXAMPLE: THE HISS FACILITY

Charles McParland
Nuclear Science Division, Lawrence Berkeley Laboratory

and Space Sciences Laboratory
University of California, Berkeley, CA 94720

The Heavy Ion Spectrometer System (HISS) is a
relativistic heavy ion research facility at the
Bevalac accelerator complex, Lawrence Berkeley
Laboratory (LBL). This spectrometer can provide
fields of up to 30K gauss within a volume of more than
3 cubic meters. This facility is equipped with a
number of large, flexible detector systems. Over the
last four years, a loosely coupled data acquisition
and analysis system has been written for use at this
facility. This system will be described in detail
with particular emphasis on development of high data
rate capabilities.

Hardware

Data Acquisition Computer

Data acquisition is performed on any of three
PDP-II front-end computers. Each of these has local
disk storage and magnetic tape (either 800 or 1600
BPI). In addition, each front-end is interfaced to a
single disk controller shared with a VAX 11/780.
Experimental data are acquired from a number of CAMAC
crates interconnected by a standard branch highway.
These branch highways are interfaced to each front-end
computer through a MBD programmable branch driver.
The only CAMAC hardware the data acquisition system
requires is a 12-channe1 input and 12-channel output
register used by data acquisition software. These
modules reside in stations 1 and 2 of each system's
crate number 1. The system does not require any
specialized interfaces or trigger modules. An
optional high-capacity CAMAC memory module (detailed
below) can be added to increase performance. Since
several major detector systems are shared among
experimental groups, dedicated CAMAC crates containing
their electronics are typically moved from one
front-end branch highway to another. It should be
~oted that all hardware (as well as system software)
is unmodified and supported either locally or by the
vendor.

Shared Disk System

The shared disk system consists of a single disk
controller with a single 80 Mbyte disk drive. This
controller emulates a Digital Equipment RM03 disk
system and uses the DEC-supplied software disk
~river. The controller is interfaced to all three
front-end PDP-II's and to the VAX (via the Unibus).
:ach processor accesses the disk as if it were a
}rivate1y owned device. The "sharing" function is
Jerformed by the controller, which round-robins among
311 four interfaces, pausing at each long enough to
service any pending disk requests. Latencies caused
~y multiple simultaneous requests appear to individual
systems simply as excessively long disk seek
~Derations. Since neither the RSX-I1M or VMS
"!Derating systems attempts seek-optimization for these
:isks, no system intervention is triggered.

A~a1ysis Computer

The analysis computer is a VAX 11/780 with
4 Mbyte of memory and over 1 Gbyte of on-line
s:orage. In addition to the shared disk system
described above, the system has a simple magnetic tape
drive (800/1600 BPI), a Versatec printer-plotter,
several line printers, three DECNET high-speed data
links, and a host of terminal interfaces.

This manuscript ~as printed from

PDP
1.,801 11145

~

DISK
STORAGE

TO
ACCFLERATO'i

CO/,iTRCL
SYSTEM

("OOCO~P IV}

HI55 COMPUTER SYSTEM

Software

Data Acquisition-DATACQ and the MBD

The set of programs that run on each of the
front-end acquisition machines is called DATACQ.*
These programs are an outgrowth of an earlier system
developed at LBL (QDA/MULTI). Although these systems
share a similar organization and command repertoire,
internally they are substantially different. These
systems differ prinCipally in their dealings with the
MBD.

The MBD CAMAC branch driver is a stored-program
processor with two external data paths. One is a
standard CAMAC parallel branch highway. The other is
a Unibus (DMA) access path to PDP-II memory. The
Unibus data path performs only full word transfers
(i.e., no byte addressing) and only addresses the
lower 64K words of PDP memory. Although schemes exist
to allow full 124K word addressing, these necessitate
unacceptable programming and performance concessions
within the MBD. The MBD therefore accesses that
portion of the lower 64K words of PDP-II memory not
occupied by the RSX 11M executive.

The MBD data acquisition program has sole
responsibility for actual CAMAC data acquisition.
Each interrupt trigger (of 12 possible) starts a
section of user-written MBD code that acquires and
formats an event. These events are of variable length
and contain a fixed header consisting only of a byte
count and event id. The remainder of the event is
formatted by the experimenter to contain the output

*We wish to acknowledge the efforts of F. Weik
(formerly of GSI) for major development of DATACQ.

originals provided by the author.

of whatever CAMAC modules are desired. The MBD code
places these events into a buffer area in PDP-I1
memory. When it appears that an event will cause a
buffer to exceed some predetermined length (currently
8K bytes), the MBD declares that section of PDP-11
memory to be a valid data buffer and releases it to
the program DATACQ. It should be noted that the MBD
is initially given a large area of memory by DATACQ,
and it is responsible for filling in and breaking up
this area into smaller, variable length data buffers.
The only restrictions placed on the MBD are that it
use only memory "given" to it by DATACQ and that it
not produce buffers exceeding a predetermined length.

DATACQ is primarily a sophisticated buffer
handling program. Although it does pass messages to
the MBD code (e.g., begin run, end run), its only real
task is to tog i veto memory to the MBO and then
distripute the results of the MBD's efforts to tape
and disk. The initial implementation of DATACQ passed
data buffers from the MBD directly to tape and disk.
This meant that during the time of actual tape and
disk transfer, these buffers were locked down and
unavailable to either DATACQ or the MBD. As the
Bevalac accelerator produces an experimental beam only
one second out of every six, it was felt that some
form of in-core data caching during the one-second
beam spill would be of great advantage. Accordingly,
the tape and disk output routines of DATACQ were
rewritten to pass data buffers off to a larger (up to
32k word) buffer in upper PDP-II memory. The transfer
was accomplished by use of system memory mapping
services and a programmed move loop. Although time
consuming, this method was able to release data
buffers to DATACQ far quicker than direct transfers to
tape would allow. Data transferred to this secondary
buffer area was subsequently routed to tape and shared
disk. In addition, data buffers within this area were
available, on a sampling basis, to any monitoring
Drogram requesting them.

Poor Performance!

Experience with this two-tiered buffering scheme
~ad shown performance of about 25-30K words/second in
~ typical experimental setup. Although this was
'IJithin a factor of two of the design goal, it was less
than spectacular performance. Investigation of the
system's behavior was undertaken. Parts of the MBD
1ata acquisition code were instrumented with writes to
3 CAMAC output mOdule. Resulting waveforms
jemonstrated that, on occasion, 40 to 100 milliseconds
~laDsed while the MBD waited for a buffer from
JATACQ. Further investigation revealed that this lost
time was distributed among extensive buffer
~onsistency checks within DATACQ, inter-task
:ommunication overhead, the extremely slow nature of
<ystem memory mapping directives, and, naturally, poor
-~gnetic tape performance. Although increased tape
sDeed (perhaDs 6250 BPI) would help performance, it
... as noted that other factors mentioned above were
'nhibiting full utilization of the secondary buffer
'emory--tape speed was not the limiting factor.

r ~rformance Regai ned!

The obvious antidote for such poor performance is
tr·')re memory. However, given the limitations of MBD
~jdressing and the time-consuming manner in which
"emory must be moved around within the PDP-11, we
c10se to place a large (256K word) memory buffer where
j~ would be of greatest advantage--in CAMAC. By
placing such a large memory at the top of the data
c1ain, the MBD is able to store collected events with
OJ regard for either room availability or buffer
f~rmatting considerations. It is only after storing a
ene-second spill of data that the MBD begins to
l~ansfer events into PDP-II memory. Thus, the

-2-
po __ 124K

PDP-11 Memory

The au •• t for Data Rate

existing, unaltered PDP-II code is given five seconds
to process and record one second's worth of data.
When data rate is not compromised, the system
inefficiencies detailed above suddenly become
acceptable. In recent tests of a similar experimental
setup, we have seen data rates of about lOOK
words/second instantaneous. It is somewhat amUSing to
see the PDP-11 finishing up tape and disk transfers
from the previous spill at the same time the MBD is
collecting experiment data from the current spill.

Shared Disk Architecture

Pieces of software in both the data acquisition
and the analysis machine are co-responsible for
writing and reading data in the appropriate shared
disk file. Unfortunately, while the disk controller
is capable of transparently processing disk I/O
requests from up to four computers, it is quite
ignorant of any higher level structure on the disk.
This on-disk file structure is built and maintained by
the operating system. In an effort to increase file
system throughput, all four operating systems (RSX and
VMS) maintain in-core caches of currently used
directories and disk allocation bit maps. Therefore,
it is impossible to maintain a dynamic and fully
shared file system on this disk. Our approach has
been to use standard file utilities to create three
large data files (one for each front-end) and a number
of small descriptor files. The file system access
codes for all these files and, in fact, for all file
directories residing on this disk are then modified to
deny all users the ability to create, delete, or
extend any file. In short, the disk contains a
standard--but static--fi1e structure. This allows the
use of standard system file I/O routines to access
both data and descriptor files.

Each front-end data file has a small associated
descriptor file. This file contains pointers to the
location within a data file of the latest data, the
oldest data, and the most recent beginning-of-run
dataset. In addition, counters are kept for the
number of updates by a given front-end and the current
calendar time of that front-end. These descriptor
files are updated only by the data acquisition program
in the front-end computer; all other processes have
read-only access. It is very important that the
algorithm for updating these files be both reliable

,

,

and restartable. In our application, restartability
implies the ability to determine the correct place to
append new data regardless of where and how the data
collection process stopped. The need is most evident
when the data acquisition machine crashes. Our
algorithm maintains each front-end data file as a
circular buffer. There exists, between the head of
the buffer (i.e., newest data) and the tail (i.e.,
oldest data), a large gap. Starting at the newest
data, the front-end appends data to a given file by
writing it into the gap between head and tail. Only
after all data are written to disk is a new set of
descriptor pointers calculated and written into the
appropriate descriptor file. This algorithm
guarantees a consistent on-disk data structure and has
proven itself restartable through great numbers of
system crashes. In the event of a front-end system
crash, analysis and monitoring programs running in the
VAX require no intervention. They simply await a
reboot of the data acquisition machine and the
subsequent availability of new data.

Olde.t Data

Newe.t Data

.. • • • z

t

Beglnnlng-of-Aun

".rk

CIrcular DI.k File Scheme

The VAX makes experimental data available to user
Jrograms through the use of a standard program inter
:ace. This interface allows access to the following:
live data from any of the three front-end computers,
Jreviously collected data stored on disk, or a series
Jf special facility monitoring data sources. The data
;nterface is dealt with in detail elsewhere in this
'/01 ume (see A Uniform Data Interface, Mark Bronson).
~owever, a few details are worth mentioning here.
There is no single VAX process that polls the shared
1isk to look for recent data. Each process that opens
3 logical channel to the shared disk invokes subrou
:ines that perform this polling on the user's behalf.
~ small global section exists for each of three
:ront-ends. These sections contain, among other
~~ings, copies of the descriptor files mentioned
"3rlier. When more than one process has a channel open
~o live shared disk data, the data base routines inter
rogate a time stamp placed in the appropriate global
'ection. If a recent polling by some other process has
provided timely information, an unnecessary polling is
eliminated. Thus, a large number of analysis programs
(3n access the same live data source without imposing
~~ unacceptable overhead in descriptor file polling.
11 contrast, the actual data requested by separate
processes is not shared and m~st, unfortunately, be
r~ad by each process individually. It is our current
experience, though, that enough analysis tasks are

-3-
compute or display bound to not cause serious
contention problems for the use of the shared disk.

The use of a uniform data iflterface has given
experimenters a great deal of variety in analysis
packages. The Fermi lab MULTI analysis package has
been adopted for use with the uniform data interface
routines. The ease of redirection has made MULTI
useful in monitoring dipole engineering data
(cryogenic plant states, etc.) as well as experimental
data. Experimenters have also provided programs that
connect the uniform data interface to the CERN
HPLOT/HBOOK package. In addition, the large
FORTRAN-based analysis package LULU (see article by
H. Crawford, this volume) has been interfaced to these
subroutines and is currently in use for on-line
monitoring as well as off-line analysis. '

Observations

After several years' experience with this system,
we have found some of our initial assumptions borne
out. Our initial design sought to keep the
connections between front-end acquisition machines and
the VAX analysis machine quite "loose". We understood
that it would be unacceptable to allow the failure of
any single machine (e.g., system crash) to affect the
state of the others. However, we also sought to
eliminate any need for a spiders' web of
intercommuniating tasks spanning the gap betwen the
acquisition and analysis machines. We felt that close
participation between a VAX process and DATACQ would
violate the "clean" separation between data
acquisition and data analysis/monitoring and would,
inevitably, lead to stopped programs in unforeseen
system scheduler states.

Our initial decision has proven to be correct.
No real need has arisen for closer participation
(e.g., task-to-task communication) between machines.
We feel this is due to several factors. First, the
data accessing routines have proven to be both easy
and desirable for experimenters to implement. Simple
redirection of analysis programs among live and stored
data sources is a difficult feature to pass up. These"
routines cannot be fully implemented within the
confines of the PDP-II; they are available only on the"
VAX. Experimenters have incorporated these routines
into both large analysis packages and simple
monitoring programs. In each instance, we are able to
place the experimenter as "close" to live data as
seems necessary. As long as these routines obviate
the need to get "closer" to the data, programs will
not migrate into the front-end machine.

A second factor in attracting, and keeping,
experimenter code in the analysis machine is the VAX
itself. The variety of software tools available on
the VAX make it a far more pleasant and productive
programming environment than the POP-II. Freed from
the constraints of the 16-bit address space of the
PDP-II, data can be dealt with in a straightforward
manner using large data arrays.

Future Plans

As a final note, it should be noted that the
current shared disk installation has been implemented
at two additional beam areas. At these locations,
completely different experimental areas share a single
VAX 11/780 in the same manner as the three separate
front-end machines at HISS. An additional VAX 11/780
has just been purchased for use in a third shared disk
configuration. This system will be positioned to
offer on-line data analysis to the remaining Bevalac
experimental areas.

This work was supported by the Director, Office
of Energy Research, Division of Nuclear Physics of the
Office of High Energy and Nuclear Physics of the U.S.
Department of Energy under Contract DE-AC03-76SF00098.

'.

o

This report was' done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley'
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department 'of Energy to the exclusion of others that
may be suitable.

t" -
~,

TECHNICAL INFORMATION DEPARTMENT

LAWRENCE BERKELEY LAB ORA TOR Y

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

)-
..".,. 4'."

