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Abstract

.The parameters proposed by W. D. Myers to descriﬁe the radial shape
dependence of the nuclear surface, are shown to be as useful as they are
.naturalQ For spherical nuclei, the central radius C, the charge radius R,
the quadratic radius Q are redefined, and-it is shown how they are interrelated
by-Myers' Surféce width b, flair Y3» érookedness Yy and the higher shape
parameter YS. All these quantities are calculated for some special charge
distribution functions. (For symmetric distributions, possessing a symmetry
center at C, the odd éurface moments b3Y3 and bsys vanish.) The connection of
the surface moments Fu = buY” with the volume moments FK that have been

M
extracted by K. W. Ford and J. G. Wills from muonic atoms, is indicated.
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l, Introduction

Most of the information that has been reported about the shapes of
‘atomic nuclei.consists of empirical values of "relative" parameters. By this we
mean quantities, Vhich can be defined only in terms of some assumed parametri-
zation that has to be adopted as_élose as possible to the true shape. In our‘
casé, one has to fit some "nuclear charge" distribufion p(r,8,¢), which can be

of electric or of baryonic nature, or could even be a one-particle potential,

or something else of that kind{ Well known examples are the central radius C

and the diffuseness parameter a of a Fermi function pc'{l + exp[(r - C)/a]}_l,

adopted somehow "best", e.g. by the least squares method, to the real distri-

bution function.

| On the qther hand, one sometimes encounters "absolute" parameters, which by
definition have a general and exact meaning as they do not depend on a specific
functional form for the density function. The most impértant example is the mean

square radius (r2 >l/2.

Other examples apply only to distribution functions p(r), that are

spherically symmetric. In this paper we shall disregard any anistropy of

distribution: TIf there were any we would simply confine our study to the orien-

tational average, which by construction is isotropic.

An absolute quantity of such kind is the half density radius

D:= R . (1.1)
" 750%
Here we have used the definition
-1 : ‘
R,:= £ ~(8) for 0<8<1 , (1.2)
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presupposing that the distribution function

f(r): = 1. o(r) ; v ‘ | ' (1.3)
Qc ‘

constructed by means of the cenfral,densijy

P = eo(0) | ' « (1.4)

falls monotonically and continuously from

£(0) = 1 to f(®) =0 , ) (1.5)

This guarantees the unique existence of the inverse f-l(e) within the unit

o+

interval 0 < 6 < 1. Therefore, D is the radius for whieh p(D) = pc. Another

example of this kind is the surface thickness

t:= Rygg - Rggg - ' - (1.6)

This is the distance between the radii where p(r) has the values
%5 P and 1%-'pc, respectively.

Though being abéolutely defined, in practice the quantities D and t
cannot be measured directly.l They have to be extracted approximately by some
paramétrization of the radial distribution that has been fitted somehow to the
experimental results. Luckily enough, the thickness t  has been reporte&l,to
stay rather invariant, if oneAreplaces one paiametrizatién by another one, that
fits equally well to the Observéd electron écattering data. This means that

t, which by defihition is a theoretical invariant, proves to be practically

invariant too.
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Yet there are theoretical objections that can be raised against this
concept of the surfaée thickness. The quantity t dépends sensitively on small
and irrelevant fluctuations one may éﬁpérimpoéé on.any accepted approximation
for p(r). Such an additioﬁ may évén cause the inverse f“l(e) to lose its
uniqéneéé. Eerhaps we méy explicitly exclude suéh a mishappening for some
f~interval including‘the points ] ? %6 and 6 = %6. But this subsidiary con-
dition, though not wholly‘unplausiblé, looks a little bit artificial accentuating
the arbitrariness of tbe two fractiohs, %5 and %6-, chosen to construct t. A
similar objection applies, of course, to the définition of D.

An even gfeater disadvantage of the concepts t and D is their being
"punctual" functionals of the distribution p(r). By this we mean the peculiar
property that one has to select a finite number of (necessarily) isolated points

from the continuous p(r) graph, disregarding the overwhelming majority of the

: #
other points. In the cage of t the minority contains two points, in the case

~of D it consists only of one point.

A really good definition of the nuclear radius and the surface width
has to be an "integral" one, taking into account all elements of the radial
distribution of (electric or nucleonic or dynamic) charge with.an appropriate

weight that changes continuously if one crosses steadily the nuclear surface.

A natural choice for this weight function is evidently the radial charge decrease

* i .
As we know from the mathematical theory of generalized functions, proposed by

P. A. M Dirac and Laurent Schwartz, a distribution f(r) need not even possess
"ordinate" values f(R) at sharp points R. The only values that generally exist,
are the "integral" or "mean" values f[¢] defined for a definite class of test

functions ¢(r) which being smooth, are not sharply localized on the r scale.
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-p'(r) or its multiple -=f'(r) as it may be derived from (1.3) and (1.4).

Because of the boundary values (1.5) we know already that the weight function

g(r)i= -7 (r) | - o (1.7)

i1s normalized to unity:

~f; dr glr) =1 . ) ’ _ (1.8)

Therefore, if (1.7) avoids negative values, we may be permitted to think of it

as the "probability density for a nuclear partigle to belong to the nuclear sur-

face." The quoted sentence cannot and shoﬁld not be taken as a provable or dis-

provable statement: 1if any, it conveys only some pictorial'meaning that tries

to indicate, how the function g(r) is going to be used. Should p(r) not decrease
monotonically, this "probabilify" could become negative. Fig. 1 gives a

graphical version of the ides,
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This consideration suggests the center [r] of the weight function g(r)

"as an objective and natural concept of the nuclear radius; and it suggests the

2 >l/2

mean square width ((r - [r]) of g(r) as an objective and natural concept

of the surface width b, besides some possible constant factor which might be

convenient. In'fhis'way wo arrive at tho'integral definitions thatvhave been
proposed by W.'D.‘Myersl2

We’shall proceed by demonstrdting,the universal usefulness of these
concepts. The'surfaoe width b turhsvout to iﬁté?oonnect in a quite general
and‘simple way the various guantities that have beén introduced by integral
defiritions, to play the roll of a "nucleoriradius" R. These simple inter- |

connections are valid as long as the condition
b <R o I _ (1.9)

is fulfilled, according to which the nuclear surface should be thin in com-
parison ﬁith its own curvature radius. This is esseotially the hypothesis,
which W. J. Swiatecki and his coworkersh’5 have systematically introduced into
the theory of nﬁcieaf structure. A many—particie system possessing this

property has been called by Swiatecki leptodermous, i.e. "of thin skin". A

rathervclose synonym seems to be the concept of a "homogeneous, condensed
system without lattice correlations' or simply the concept of a "perfect fluid".
In>part I of this-paber we shall develop the géneral theoryvmentioned |
above, vSome of the results have been already given by Hahn, Ravenhall, and -
Hofstadterl) approximdtely_andvin a more implicit'manner. ‘Part IT is devoted
to some special distribution functions, for which the occurring integrals will
be evaluated; There we shall assume some typical bell-shaped functions ga(r)
and proceed each time to the correspohding threéhold—shaped functions fu(r) by

means of the formula



r o .
f(r) =1~ f dr g(r) = f dr g(r)
0 ' r '

which integrates (1.7) according to the boundary condition (1.5).

IBL-1615

(1.10)
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Part T: GENERAL THEORY

2. Thé'éhggég‘diétribution

’ As.ﬁas mentioned in the introduction, we distinguish bétwéeﬁ at least
three'different meanings of "nuéléaf chﬁrgé" distribution p(r): the electrical
density Q(r);'thé nudleonic‘dénsity'ﬁ(r); of thé'bne‘pafticle*potential vir).
For most what fbllovs.it doés not métﬁer which of theée possibilities we choose.

‘The only exception stems from the fact, that the central mucleonic

- density né{= n{0) is a constant that;féries‘véry slovly‘if one changes Z or

N or both, - Thib isvffue insofar as'we cén heglect some.perturbétions, the most impor--
tant owahich.grg the following: 1. The effectvof the Coulomb field against
the'resistgncé bf'the isdspin forée*_thaf tends to make'thé ratio p(f): n{r)
as close to Ze2§A as:possible;A' 2. ;the neutron skin; aﬁd 3.  the compression
exerted by the surface tension againét_the'rigidity**‘Of nuclear matter.

These thrée»effects_and their inferférences-can be properly describéd'by _
Myefs' d:oplet ﬁodelS;h); if'is useful‘to ééﬁéider.a zérdth approximation
#hére.all such perturbations ére‘disregarded in order td simplify the dis-
cussidnvof the @uestions we are'treating now. Of course, we eventuallyicould
-add any correction that'should turn out iq be important. With this under-
standing invpind we are assumihg fhat nc—l; the mean volﬁme per‘nucieon, is

the same for all nuclei in their ground state. To convey the empirical value

of this constant of nature, it is as usuel as useful to teli_the value of the

‘nuclear radius constant r;, defiped‘by the equation

- : _ ,
This is closely related to the symmetry energy term in Weizsacker's mass
formula. ' o ' .
w : : : .
This is sometimes called "compressidility,” though it is in fact the inverse
of it, | |
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b 3 -1 e - ;
3 rc ‘.= nc . . : : : ) (211)
The experimental values)- seems to be close to r, = 1.135 fm.

Ifr n, "1s known, the central electrical density Q. can immediately

be calculated by the formula

Q =2 .. | - | (2.2)

which again disregards the Coulomb polarization. The assumption, that q(r)

is constant within the nucleus, varying proportionally with Z/A for different
nuclei, has béén introduced into the theory of nuclear éizes by L. R. B. Elton?
with remarkable succeSSB). In fact, Elton's hypothesis improved appreciably the
former, rather crude views on that subject. Now it has tovbe understood as the

correct basis for a more refined analysis as that of Myers and Swiatecki.

The central one-particle potential vo may also be connected with the

central density n_. First one has to calculate the Fermi sea depth

V.=V o+ e s ’ : (2.3)

using the Fermi level e_. The two depths vy and v

F F

are positive, whereas er

is negative. Then, one has to explout the equality,

2 . (2&)3/2 v 3/2

_ b
2 h2 - F ’ (2.4)

n -
which is well known from the Thomas-Fermi method. For, homogeneous nuclear matter
this coincides with Hartree's method. In writing (2.14), we have assumed that

N = Z, and that the one particle potential be velocity independent. Both
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assumptions can, of course, be abandoned, if one is ready to accept more com-
plicated formulae. The theory which we are now going to propose, does not depend

on such assumptions or complications.

3. The Charge Moments

Let f(r) now be any functions satisfying the boundary conditions (1.5).

It need not be monotonic, but we assume its norm
F: =[ f(r)rtar , _ . (3.1)

to be & finite, positive number. Then, for any continuous function ¥(r) we

define thé charge mean
o) e = F'f olr) £(x) r2ar , - (3.2)
. 0 ‘ |

provided the improper integration converges, including the cases where it
diverges definitely either to + ® or to - o ..

V-2

Of special interest are the power functions Y(r) = r for v > -1. We

shall employ the notation

F:= ‘}P‘ f(r) rY g =_F'(rv_2 Y . , : ' ' (3.3)
v 0 .

. o t
If- v becomes a natural number n, we encounter the n h charge moment Fn'

Further speéializing to n = 0 we arrive at the central radius

Cc:= f f(r) dr =FO = F'(I‘-.2 ) 5 . L ' . (3-’4)
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which fulfills the piauSible condition

] [£(r) - 8(C - z)] ar = 0 . ' (3.5)
o | | ,

This means that the deviationvof the real distributionbf(r) from the approximating
rectangular distribution 6(C - r) of radius C has to vanish in the mean. Here
the averaging is performed with an. extra weight faetorAr’z, applied in order to
compensate the geometrical factor r2. | |

This intefpretation of C leads one to consider énother conception of the
"nuclear radius,".simply by keeping the geometrical factor 2 uncompensated.

vThus we obtain the condition
f C[£(r) - O(R - r)r?ar = 0 , (3.6)
0 .

which implicitely defines the charge radius R: A more explicit definition is

given by thé formuls

<«

1.3, )2 dr = F. = F » .
v3R. fo f(r)r dr = F, = F . , (3.7)

As easily seen, R 1is the radius of that homogeneously charged sphere which

contains the same baryonic charge A as the real charge distribution n(r) = n, f(r).

‘Indeed, the total baryon number amounts to

A= —{. Y r2~n(r) dr = bw n_ F =.&£R3 n . (3.8)
/0 - :
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Using the nucléar‘radius constant r as introduced in (2.1), we obtain the well

known‘rélafion |
VR=rCAJ.'/3 . _ | | - (3.9)

The important pointrhere is, that r, does not depénd onA =N + 2 nor on

6 =N~ Z;'apﬁrt from some small perturbations. For ahy other notion of nuclear

radius the connegtion with the éonstant r, ='1;l3 fm is more involved.

5

A radius quantity which can be derived rather directly from electron scat-

tering experiments is the ggadratic radius'Q, as defined by the equation
2.2 |
%Q::(r ) . D | (3.10)

Its right hand side may be evaluated from the charge moments Fh and F2 according
to (3.3) or |

v F :
(X = ;+2 i | (3.11)
2

~which is valid for all numbers K = =2. The gquadratic radius Q is the special

+
case R, of the K"h—power radius

L= (KF3 (kyy1/K .
Rei= (5= (r > ) (3.12)

K. F. Fprd and J. G. Wi1159 have shown that K and R'< are the almost absolute
charge parameters of nuclei that are measured by the muonic atonms,

The factor %—in (3.10) normélizes Q to Be the.radius of that homogenously
charged sphére which_wduldvléad to the same mean Squafe (r?) as the real distri-
v bution. Should this sphere contain.the right nucleon number A, the homogenous
density ndlwbuld be less than the central demsity n = Q(C), that is assumed fo
beia natural constant. This "density aepression" exhibits Q to be a rather arti-
ficial quantity, though thé effect would not be'strong foj.heavy nuclei.

The question as to how much the radii C,R,Q differ, will be answered

in the next section.
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4. The QOriginal Surface Momenté
The order of magnitude, by which different radii differ, is the width

of the surface weight function g(r) defined in (1.7). Because of the normali-

zation (1.8), the averaging according to g(r) needs no normalization factor

(G =1). We may calculate the surface mean
el [ we e e o (1.1)
0 . | |

in each case where the integral is convergent.
The new averaging functional may be easily compared with the old one.

By partial integration we derive the identity
[¥v(r)] = f £(r)Y'(r) ar = F{r 2yt (r) ) ' (4.2)
0 :

provided the integral exists. Inserting a power function Y(r) = M owith u > o0,
we obtain the integrals

o]

G = ;/’ glr) rH ar = [ruj s (L.3)
Y 0 |

in some analogy with (3.3). A typical condition sufficient for convergence at

r &+ ® reads

0<glr)<Kk: rP1C forr>m , (L)

with some K and some positive €. An exponentially decaying g(r) would

suffice even for the highest u values..
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If we confine U to natural numbers m, wé gef thé mth original surface
moment:gms= [+*]. or course G, = 1, énd_becgUse,of (3.3) the relation
Gm = m-Fm_l holds for each positive m. If all thesg mémehts are given, the
weight function g(r) may be reconstructed, if its Fourier transform, the
character Y(k):= [exp i kr], is #lwhole'function (i.e. holomorphic in the
~whole k-plane). .Thé construction is rendered by the Fourier integral

kr

o glr) = f_: dk y(k)e ¥ of the Taylor series v(k) = E;=O(m!)_le(ik)m.

A camperison of (4.3) .and (4.2) with (3.3) exhibits the relation
G, =u-F . - I (4.5)

valid if § >0. By combining this and (L4.3) with (3.11), we‘may express the

former power averages by the new ones:

K _._§__ [rK+3! . | |
(r ) = TN . | (4.6)

for each K & -2,

For u =1, relation (k4.5) is reduced by (3.4) and (4.3) to the identity

C=F_aid
c=[x] o c=g (5.7}

which means that the central radius eqﬁals the mean radiuS'ifithis is weighted
by the surface distribution g(r). For u = 3, we deduce fram (4.5), (4.3), and

(3.7) the simple equation

23 =[r3] or R=gt3 | | (4.8)



-1h- - LBL-1615

Finally, the relation

5 | .G 1/2 : ‘ ‘ |
- Q=(G_5). ()

may be read off from (4.6) and (3.10) for k =2 (or pu = 5).

5. The Surficial Moments

By means of the functional (4.1) and its simplest nontrivial case (4.7)
we introduce the quantity

.V : o
Fv:= [{r = C)] . : (5.1)

for each non-negative Vv that does not destroy the convergence of the infinite

integration. If V is a natural number n, this becomes the nth’surficial moment

. |
- N
r = mz=o(_l‘)n m(g) c. mc;m . o : (5.2)

- ' ‘
(1) () = Gmm" which may be easily derived

The binomial identity Dy .
: n=0 : n''m

m

by binomial expansion of [1+ (x - 1)]™=x ,'yields the inversion

T M-
¢ =Y (M . (5.3)
n :
n=0
For noninteger exponents V. or u,‘one may write down similar formulae with
summations that extend to infinity, creating new convergence problems. We
shall concentrate on natural exponents.

For the two lowest values of n the central moments are trivial:

r.=¢,=1 |, ' , : - (5.4)
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and ' T
Fl = O, as G. =C s _ ' : | (5.5)
accofdiﬁg tolx(h;T) aﬁd (4.3).

But the next order is of special interest: ' The second central moment

Fé = 8] - [r12 L | : (5.6)

gives rise to the surface width

T

12 2172 | -
bi= T, = (G2- l) . (5.7)

Evidently, this iength quantity deli&eré the most important information on the
'§igg_of the_nuélear surface layer, whereas its location has already been speci-
fied by the surface radius C = Gl.'v | | | |
The higher moments add furthef.information that épecifiés the shape
of the surface layer whatever its position and/or size. Now, pure shape para-

v _ : t
meters are dimensionless quantities. Therefore we shall replace each n b central

moment T with n 2 3 by the B shape coefficient

Y= b OT _— o v : ' (5.8)

" For n < 3, one gets only the trivial values Yo T 1, Yi = 0, and Yo = 1. On the
other hand, the contribution of a term containing a coefficient Yo with n > 1

may likely be neglected to the extent, that (b/R)" is a negligible number accord-
ing to the hypothesis (1.9). This will be demonstrated by two typical examples,

that we are going to consigder.
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We would like to know, how the charge rédius' R and the quadratié'fadius
Q compares with the central radius C. According to (4.8), (4.9) ana (h.7),

the answer will be given when we shall have calculated G3 and G To this end

_ 5°
we insert (5.k4), (5.5), (5.7), and (5.8) into (5.3) in the cases m = 3 and m = 5.
This procedure yields | |

3

+300° + v, ‘ (5.9)

s
R = C 3

and

rR3Q° = ¢ + 10c7° + lOY3CZb3 + Sthb + Y5b5 ) - (5.10)

which are exact equations.

In the leptodermous case (1.9), it is useful to deduce expansions in

powers of the skin coefficient

Bi= -;j- <1 . ‘ , . ' (5.11)
i i 344 by i 1ts:
We obtain via b/C =B + B~ + §-Y3B 4+ ... the following results:
_ 2 1 3., - Ly ed4 . -
C=R-(1-8"-35yyB8+0 -3Y58"+ .. ) (5.12)

' 6
the terms indicated by dots being 0(B ), and

Q =R-[1+ % 8% + ggS-Y3B3 + g— (v, - %)Bh + %’<Y5,." %3)BS+“’] (5.13)

This is essentially Elton's formula? generalized from the Fermi function to

arbitrary leptodermous distributions. If b/C or b/Q is used instead of b/R,
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analogous expression arise. For the Fermi distribution a similar series, yet
with Y3 = 0, has been computed by Elton.7 Our derivation shows, that the,

result does not depend on the choice of a special parametrization.

> +_l_OC3b2 have

The approximate relationé R:”z C3 + 3Cb2 and R3Q2 = C
been stated implicitly by Hahn, Ravenhall,‘and Hofstadterl) in their Egs. (h)
to (7_), including Q2 ~ 02[1 + (1_02b2/02)]/[1 + (3b2/C2)], ‘the third line after
(6) if translated into our language.

The most important correction in (5.12) is due to the skin coefficient
B. The qualitative estimation C < R < Q confirms simple geometrical considerations:
The larger r values are stronger emphasized in R than in C, and even stronger

in Q +than in R. But from (5.12) and (5.13) we may deduce quantitative esti-

mations, e.g. limiting proportions ‘as

. R-C . g - C T \
lim = 1, lim = = : (5.1k)
g>0  B°R oo BTC 2

where Y35 Yys Ygs «.. 8re kept constant (or at least bounded).

These shépe coefficients are connected with smaller corrections to Q - C
and R - C. The flair Y3 is a simple measure of the shape asymmetry, being posi-
tive, if the tail of the charge distribution f(r) is relatively thin and long
(Fig. 1). It is not so easy to visualize the crookedness Yh; but the contortion
Ky: =) - 3 may be called a measure of how much less "trapezoidal" the distribution
f(r) really is than an error function. The subtraction of 3 is an example of
the "cumulative transformation', which switches from the original moments
G, = b'g, through the surficial moments [ =b'y_to the cumulants K _ = err.

These are generally defined by the expansion log‘[e—ikcy(k)] = i:=l(r!)_lKr(ik)r.

This delivers the first five of them to be Kl = Fl = 0, K. = Fé = b, K3 = F3,

2 | X . .
= - = - . f the first five of the deviation
Kh rh 3F2, and K5 F5 10F2F3 Therefore the

coefficients nh amount to nl = 0, n, = 1, n3f= Y3, ny = Yh—3, and n5 = Y5—10Y3.

For a normal distribution all but the second of the nn vanish.
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Part II: SPECTAL DISTRIBUTION

6. Symmetric Distribution

This semi-general section is devoted to that special class of distri-

butions, for which all shape coefficients y  with an-odd n vanish:
Yo=Y =Y, = 0t =0 . ' | (6.1
Y3 = Y5 =Yg = o | . (6.1)

From this one may deduce, that Ky = Kg = K = *=0 0, as y(~k)eEC = y(x)e T,

Another condition, evidently equivalent to (6.1), is the symmetry
g{C - s8) =g(Cc+s) , , - ' o (6.2)

with the understanding that

g(C+s)=0 if s>C . | ’ (6.3)

This amendment stems from the fact, that in all the integrations g(C - s) con-
tributes nothing for s > C. That this symmetry radiﬁs é really coincides
‘with the central radius (3.4), is easily inferred from (4.7).

If we insert the'symhetry condition to (l.lO),bwé find the correspbn&ing

cdndition

f(C-s)+f(C+s)=lA‘, I | (6.1)
ammended by

f(C+s) =0 if s>C - (6.5)

The half density radius (1.1) now coincides with the central radius,
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D=C ; ‘ ‘ v ' ‘ ' (6.6)
as is evident from (6.4) with s = 0.

7. The Incomplete-Gamma Distribution (IT))
This surface structure is shaped by a weight function proportional to
rl—l e—r/a

for some non-negative exponent A - 1 and some length a. Comparing

the normalization (1.8) with the construction

'(A):= (A= 121)1: = ./f dx xk—l e ¥ . (1.1)
0 ’

of the gamma or faculty function, we arrive at
-1 A - . .
V.o a_ (r ~-r/a. . .
' g(r):= T (a) e e ‘ _ (7.2)
According to (1.10) this corresponds to

£(r) = 1 - P(}, E) , ; - _ (7.3)

where use 1is made of the normalizedvincomplete gamma function

POx): = ﬂl'ﬂ‘[ ax e | (7.4)

As P(X;0) = 0 and P(A,®) = 1, the boundary conditions (1.5) are really ful-
filled.
Here it is easy to calculate the various moments."By partial integration

_(3.3) is evaluated to give
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(A + v - L | B |
_ A +v-1) V1 . o | (1.5)

F
Vo(v+1r)

and (4.3) then yields

o = Mt &= e

Because of the identity I'(x + 1) = x I'(x), the expressions (7.5) and (7.6) ful-

£111 eq. (L4.5). Now, (3.11) or (k.6) yiéld
K - 3 ‘T(X+K+3).K B : :
(r ) = =3 Tr + 3) a . (7.7)

As (L.T), (4.8), (4.9) show, we are especially interested in (7.6) with u = 1,

=3, 0= 5. The final results which are displayed in Fig. 3, read

c=x-a , . (1.8)
R=[A+ 10 +2)1Y3a , | (7.9)
Q= +3)-0+ w2 | (7.10)

By means of (5.2) we may now obtain the lowest central moments I, and proceed
by (5.7) and (5.8) to the surface width b and the lowest shape coefficients

Y, In that manner we achieve

D = >\]-/2 .8 . ‘ (7‘11)
and ] v .
= 2 o A+ 2 ., .5\ +6
Y3 Al72 s Yy T 3 - X T Y5 =l -1375— (Tflg)
Hence Kk, = a2, g = 6A_l, ko = 200732, e general result K, = (r-—l)!}\(e-r)/2

3 > L 5

. . ] A
for r = 2,3,4, ... may be easily derived via the characteristic function y(k)=(1-iak)".
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These results‘may be easily checked'wifh the eqs. (5.9) and KS,lO).

It is ieteresting fo compareffhe "integral" fadiivC, R, Q with the
ﬁpunctual"-radius D, and the "integral" tﬁickneés 2ﬁiwith fheA"punctual" thick-
ness t. To this end we have to evaluate (1.2), 1In the‘preeent case we need the
function X(A,p) inverse to P(A,x) with respect to the second variable, the first

-

vvariable being treated as a.constant-parameter. That'means;
P(A, X(X,p)) = p and X(}, P(A,x)) = x - (7.13)

by definition. Then

R, =X(A,1-8) +a , R o o (T7.1k)

so that D = X(X, 1/2)'a and t = [X(}, 1/10) - X(A, 9/10)]'a. These results, and

all the analogous ones which follow are shown graphicelly in Fig. 2.

8. The Generalized Error Function Distribution <“Ek)

Here g(r) is assumed to be proportional to exp (-Ir-CI /a ) with a

central radius C large enough to meet the leptodermous condition

&Y<y . | (8.1)

If A > 1, this permits us to completely disregard terms like exp (-Cx/ax) as com-

pared with 1, which we indicate by writing exp(QCA/aA) <<< 1. After normalization

we have :
v Sy =1 o A o
g(C + s) = %ﬂ Aé_l " exp (- 15470 | | - (8.2)
r(a—) a
and
' A
£f(C +s) = = [1 - sgns.P(A lg%—f] (8.3)



This satisfies the symmetry condition (6.2) exactly and’itsvamendment (6.3)
. accurately as long as (8.1) is fulfilled. Therefore (6.1) may be accepted,

which means, that F3 = Fs =.F7'=4;-f = 0. The even moments F22 are easily

calculated by (5.1). All these results are suﬁmarized Ey the formula

0 - . ' ’ for. | n ‘39537:.'».,
rA"H™L rmat + a7l &2 for n = 0,2,4,6,,

which, of course, should be implemented by (5;5). Thus -we obtain

-1y 1/2
_ (M), e

b = . | (8.5)
r(x1) | | | .
and
oY s L |
Y, = 0’ Y, = — Ye = 0 . (8.6)
3 L r(a1)2 5

These values may be inserted into (5.9) and (5.10) to yield R and Q, respectively.
The evaluation of (1.2) is easily performed delivering
v . . -1 : _
R, = C + sgn. (1-20)-Xx(A™~, |1-26]) ‘a . ‘ (8.7)

=1 . : .
2'X(A-l, h/S)A +a  besides D= C, which is a special case of

Therefore t

{6.6). Here X is again defined by (7.13).

In the limit A » © we arrive at the trapezoidal distribution, (T = GE_)

] [ o]
" defined by

....]_.

g(C + s) = %-a 6 (a - Is]) , (8.8)
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or

ers) =g -y L - (8.9)

As z-T(z) + 1 for z » 0, we get r = (n'j+‘l)"l a® for all even n, yielding

= & v =9 .
b -‘@ y a.nd Y, =% (8.10)
or K = ~-6/5. Therefore,
RS = c3+ ca®, R%QZ=¢0+ ?— 3.2+ ca® . o (8.11)
Finally we have
’Re =C+ (1-28) & , . , (8.12)
of course, so that t ='-§- ca= -g Y3+ b=1.6a-= 2.77128'129,,+D.
Forvk = 2, the simple normal or error function distribution (I ='GE2 = IFm)
comes about. Its definition is
’ ot g2 1 ' Sy
g(C +g) = 7—117§ exp (- ;2-) s f(C +35) = E(l - erf ;) s (8.13)
vhere the error function
x ) . :
| . . 2 .
erf xi= —os ™ ax =sgn x - P(x%,1/2) (8.1k)
: 1/2 S , .
T 0 :
g i —l.i.z ..V.;—n_l‘n._’ : . .
is usedi S;nceIF =555 > ‘e if n is evep, we have
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thus the =Xxcess K), vanishes as do all the other deviations*Kn. We get
R3 = c3 + % C a2 . R3-Q2 = CS:+ 5 c3a2 + -lf-cah . (8.16)

Finally,

Ré =C + erf'l(l-ze)-a . , _(8.17)

and therefore

t =2 erf-l(%d-a.= Vgierf_l (gd'ﬁ = 1.812u'a = 2;563-b

), defined by

Putting A = 1, we obtain the Laplace distribution, (L = GE,

g(C + s) = i-a—le-lsl/a‘ , f(C +s) = 8(-s) +~%sgn s.e—lsl/a .(8.18)

N

n _
Now Pn = n! a for even n values, so that

b=/2a , v, =6 . (8.19)
or Kh = 3, and -
R3=c2+ 6ca’ , R3-Q%=c®+ 20032 + 120ca" . (8.20)
Finally we find
0

R. =C .. sgn (1—29)‘log(l - Il -'26l)'a s | (8.21)

yielding

t =2 log 5'a = V2 log 5'b = 3.21887'58,°a = 2,27608'89,b.
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9. The Fermi Distribution (F = PL_)

This much used shape is obtalned by the following construction:

_ s/a
g(C'+ g)i= %- (coth S )2 g7t ?*“E—E7E;§ . - (9.1) ,
l+e
which leéds to the usual expression
£(C + 8) = —(1 ) = Lo | 5 (9.2)
s - tanh T ————— . _ v .

2a

The symmetry conditiohs (6.2), (6.3) or (6.4), (6.5) are practically fulfilled as

long as the lepﬁodermous condition

2a€Cc , | - | (9.3)

C/a -C/a

js valid, ensuring e ~/® <«< 1 which means that e can be gquite safely neglected

if it is compared with 1. The moments.becéme

0 for n

| = 335979'v” s ‘
Fn = S : o v S _ (9.4)
(1 - 2% Z(n)a"  for n= 2,460,
: V . : N oo -
besides (5.5) and (5.4). 1In these expressions Rieman's zeta function z(s):= Zk=l k°
- occurs which for integer arguments may be obtained from the formula
l L .
g(n):= —(-2-7L)-— (1) -fn n for n = 2,4,6,° ", (9.5)
10

where Bn denotes the n'th Bernoulli number__as defined for example in A. & S.

*

Since B, = 1/6 and Bh = -1/30, we obtain

* ) ' ‘ . : _ '
We would like to remark that Kh for the Fermi distribution has - the same magnitude
as for the trapezoidal distrlbutlon (which we have considered in the last section),

but with opposite sign.
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il
b - /é-a 9 ‘Yh - 5 ] (906)
or K =<§ Conse uently,
)4 5 . ) q_ Y$
R3 = ¢34+ 7°ca® . R3Q2 =c” + %giﬂ2C332 + :3(--1rhCaLL . (9.7)

These equations are accurate as long as e—C/a is negligible, for which we

use to write e_C/a.<<<l. Finally one obtains
-1)a , : (9.8)

Ry = log (6

which implies

t = Lhelog 3:a'= h;3l/2 n”l-log 3:b = h.39hhh'915h7-a = 2.L42278'6798) ‘b .

If we allow the parameter a to vanish, we get simply the rectangular

distribution (R), which is defined simply by

glr) = 6(r -R) , f£(r)=8(R-1r) . (9.9)

Here C = R = Q and all Fn = 0 so that b vanishes, whereas the shape coef-
ficients Y, lose all their meaning (n > 3). Of course, the same limit
would have been achieVedbin the trapezoidal distribution, as given by (8.8) or
{8.9), if the surface thickness had been set to zero, or for any other distribution 7
law in the 1limit b = 0. The rectangular distribution corresponds to the simple

idea of the liquid drop model.
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10. The Powerlike Distribution (PL,)

There is a simple distribution with the property that 1 - f£(r) would
behave like -_(r/D)A if r <D,and £(r) like (r/D)™ if r > D. This is the

- powerlike distribution, defined by

[f(r):= [1+(-11;—7)__>‘]'."l , (10.1)
which is equivalent to
gr) =2 &M e M2 | (10.2)

The exponent should A be positive.  In order to compute the moments (3.3) or (L.3)

we need the Beta function

| 1 | - |
= p-1 -1 _ I'(p)-T(q) _ (.. :
B(p,q):= _/; dt t7 (1-t)" T = __%__q_yr > ¥ a) - Blayp) (10.3)
in the special case p = l-q, which is given by the identity

B(l—q,q) = F(q)-l"(.l—q) = E-lTﬂ'?r_E . ' (10.4)

.We are encountering the argument q = (v + 1)/A = u/A, if we switch from Fv'to

by means of (L4.5), using the substitution t: = [1 + (r/D)X]—l. The result

57 SR S (10.5)

Gu T sin m u/A o

is valid if u < A, and finite if u < A. 'Proceeding as in the previous sections

we obtain these results:
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0= 2 ;5

sin /X - | (10.6)

3m/A )1/3-D

R = (g3 5mm

, '_ _ (10.7)

- (2.sin BWZA)l/Q.D

F:»)
I

and

1/2

tan /A - 1) , ' o ’ (10.9)

b=( 77/}\

provided A > 2, otherwise it is infinite. Similarly we could calculate the
higher central moments and the shape coefficients, but we refrain from writing
down the rather cumbersome results even for Y3, Yy, and YS. Yet we should like

to remark that this distribution is not symmetric, so its Y3 and Y5 need not

-1 )i (9H/A _ g=1/A

vanish. We have Ry = (6 ~ - 1 * D, so that t = )D.

S

. : o 2
If A > 1, each of our quantities becomes a series in powers of &, where

1 -
= = < . (10.10)
= F XS |
We arrive at the following formulae

N

- 12, 1 B )
c-(.1+26 *5 8+ ).D (10.11)
) 3 99 k. . | |
R-(1+26 t5 8+ )D., .(10.12)
108 h

Q= (1+ 4s° + 3220 + .. ’  (10.13)
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and
b=g(l+Es2s 0)p,B8=601-56+..0) (0.1
10 T 5 .
besides
ok | a )
Y3_ 5 6(l+ o-) ’ Yh— 5 (l+ -o.) . -YS__ .. . (10.15)

We see that the skewness is'relatively small but fails to vanish. This reflects
the‘fact, that the distribution now is alﬁost but not preciseiy symmetric.

If D, r, and A all become large in such a manner that the quantities
D - - S K S
ai= ¥ and s:= D-r , ‘ » (10.16)

stay constant, the powerlike distribution goes over to a Fermi distribution

with C = D. This follows from the fact that
,(%JA + exp z- for A >® - | (10.17)

under the stated conditions. ' One may easily check that in this
limit (10.1k%), (10.15) would coincide with (9.6), (6.1). For large yet finite
A, the final equality of C with D should be replaced by the expression
2 Loy
m.a m a
= — + + cee )
C. .(l+g—D2 %EI‘DTI )D

n

(10.18)

which follows from (10.11), (10.10), and (10.16). Likewise (10.12)

and (10.13) correspond to the tWo quantities that are given by (9.7).



11. The Thomas-Fermi Distribution for a Power Law Potential (TPA)

Here it is assumed that the nucleonic density h(r), that is related to
our distribution function f(r) accorﬁing to (1.3) and (1.4) with p(r): = n(r),

can be derived from a Thomas-Fermi model with a one particle potential that

obeys & (truncated) power iaw. This power law poténtial may be formulated as

follows:

V(R): = v -[1 - c%.-)*]-e(_no -r) o (11.1)

with positive constants \or RO,'and A. We omitvany dependence on spin or isospin.
The potential box is filled by neutrons and pfotons in equal numbers up to a
common Fermi level eps which is, of course, bound to -Va < ep < 0. In order to
simpiify the formulae to come, #e use the Fermi sea depth (2.3) end introduce,

according to Fig. 1,

v : .
L= (JEy1/A _ '
Ry: = (vo) - R, . : (11.2)
Thus we obtain the particle density from the well known formula
3/2
n(r): =25 . (B [eg - v(r)1¥? (11.3)
3m h

vhich in our case yields n(r) = nc-G(RF -r).[1 - (r/RF)A]3/2, where n_ is given

by (2.4). This means,

£(r) = [1 - G2 ot =) | (11.4)
Hence, Ry = (1 —,62/3)1-”‘ Ry so tha£ D=(1- 2‘_2/3)1“-1%17 and

t={[1 - (1/10)2/3]1/2 -[1- (9/10)2/3]1/A}-RF. It is not necessary to write
down g(r), because now the calculations are most easily done via (3.3) and. (L.5),

Jumping over the definition (L4.3) of Gu. This' quantity becomes
&
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(2 & i |
=W . 'RIFJ.= [r'“], s : h (11.5)

: *
for any U 2 0. We may notice that Cg)$:= P(gQ = ﬁ-/?‘. Our results read:

ENEE - , | |
C_—_-_..é_._‘x__ _'VRF,’ o _ (11.6)

3,1y,
(§'+ XJ.

"(é): (i):v 13

-1'3='~(—g—+——_-)—'— T Rg s ‘ (11.7)
| (2>" G+ 3] /2 - , |
Q= ( v (3 2)' Ry | | (11.8)
‘and o ,M :
b= —(-g-'+ %‘-)!2 (%)! }-. 1 v - Cc . | (11.9)

3vy 3 2y, (1,2

.
Again we refrain from writing down the lengthy expressiqns for Y3, Yh’ and YS in
the most general case. |

The most 1mportant cases, those of large A, may be treated by the Taylor

expansion

0gl(a + 2)!] = Logle: ) +Z L "'1’(1 +a) - | (11.10)
: r=1
which uses the digamma function Y(z): = I (z)/F(z) end is valid if ]z| <1 + a.

From this and (11.5) one obtains’

= R; expz —%\‘- '(-})%)r . . for \ > u‘> 0 (11.11)
' r=1 ' o v
with the coefficients ﬁr = Y (r—l) (20 - w(r-l)(l) that may be evaluated by means

of the zeta function:

2-2/3)1/A « R and

Cw ' /
By the way, Ry = (1 - 92/3)l/k Rp so that D = (1 - ¥

= vf[l'— (11102312 - 1 - (9/10)2/3]1/X} .
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—(%-103 L) - ’  forr =1,
k, = B (11.12)
(-DF(r-1)t 27 [(1437) - (1-2"7) ¢(x)]  for r = 2,3,4,
The eprnentiatibn is performed by the inverse of the cumulant transformation
mentioned at the end of Part I, yielding
e = w . u ] | -
GU Ry [l + Z = ( ) for A > u=0 ,(11‘13)
with the new coefficlents
’ o
s [s/2] B ' £ T
. . E: s ] v »
&g Z e« .. 8(s, II].rQr) nl —6‘:—_— s - (11.14)
= = = sre r= r! gl o
N 0. 02,0 O 0 . r
where 8(s,t): = Gst'

Inserting (11.13), (11.14) into (5.2), (4.7) we obtain for the surficial

moments the expression

o (n)

- Z Yis , L (-1)n‘m< ) (n) (11.15)

=5

s=n
vhere the modified coefficients Yim) are to be computed from the numbers (n—m+mr) r.
in the same way as the previous coefficients é; are to be computed from the numbers
Er’ which means that _
' 8 [s/2] 1 Op A O ' '
(n) 2: }: z: s (n-mtm’) ¥ k r
" = 1 . . . ’
Yo! = ! (s, ¥ r ) ] 7 : (11.16)
0,=0 0.,=0 g =0 r=1 r=1 r! o !

1 2 E ) r
Originally, the sum for rn has run from s = 0 to «», but the first n terms cancel out

according to the binomial identity
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E: (-1 )n-m ( )m =n!é cn for s = 0, 1, 2, «ves m, (11.17)

which may bé checked by differentiating Z ( )" ( ) = (l - x)n at x = 1 up to
n times. The circumstance that Yén)-y§n) = Yini = 0 makes F of the order of

(RF/A)n or 5 only, even though A > 1 and hence RF > b. Accordingly,'all the
Yn stay in the order of 1. Their magnltude is given approxi@ately by the first

nonvanishing term (s = n), which may be summed up by means of (11.17) too:

Y(n)_ n '(fi)n—m ) Y(n) 0_0 E:[n/Q]v. . é=d d(n,§: §=lro

n m=0 "m’ . 'nm o=0
n = n-m ,n,.n ror ~ ~ Gr Op
(-1) ()n [m * (k-6 k) “/r! “o1]

=0 m' T r=l

implying

Thus Yﬁn) is to be computed from the numbers 0, kg,vA3, PN §3 in the same way

A

as gn‘is tg be computed fromvthe.numbers kl, 2, 3, ey kn.

When (11.11) is inserted into the formulae (4.7), (4.8), (4.9), one
finds o -
= Rp-exp T

} R ©(11.19)

§JNW>
mIm >

r=1
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N 1:r 3F . ;s 1 ]
R = Rpexp E: T = RF°[1 + E: - (11.20)
r=1 3\ s=] A
1’; r o7 R © A |
- R 53 . op.iey =L _,
© T Bpexe/, Ty T By [1_+ 5t s (11.21)- -

Here k_ is to be taken from (11.12) and é's from (11.13), whereas ;S and,ggS are

obviously obtained by the same expression as és save that ir has been replaced by

L. 3" . kr or%— : (Sr—3r) . ll;r, respectively. - Furfhermbre, by inserting (11.15)

3
into (5.7) we arrive at
2
" " 1", 1 "
W |y Yy -y |
b=RF..._).\g. 1+ 3 + 2,)422 + o . e (11.22)
. . 1" " ' .
2Y2>\ 8Y2 A

using the abbreviation Y'r'1: = Yz(12)' In order to achieve nuinerical results, we

infer from (11.12), (11.1k), and (11.18) the values

M (1) = . E_ = '
k, = V(1) =- 2 [3 - log 2] = - 1.28037 23 »
A (2) = . 10 = '
= v =+ 1.2 . [2 5~ 1" z(2)] = 1.15457 63 ,
, (11.23)

~ o (3) = _5up .y .28 . = - 2.16790"
k=Yg | =-22- b5z -3-13)] = - 2.16790'9g
£, = Yih)_3[Yé2)]2 - 6.2A.‘[3 : %% - T - g = 6.27003'3¢ ,

o W5 a2 (3) - o 2uy L - '
kg Y~ =107, vy = -24.-2 . [16 - 355 - 15 z(15)] = -2k.57251'0, . g

Note that z(2) = 'rr2/6 and z(L4) = 1Th/90 according to (9.5). Now the coefficients
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g =k ek Qh Tk
A _ /\2 A; A: _ A2 A _ ,\2 A .
g, = ki+k, r, =k +3k R Q= kl+8k2 s (11.24)
g, = k3+30 & +k P = E3+9k k +9k , 4, = k+2bk k _+he6k
3 171273 ? 3 ? 3 1 12 3 °
and

n -"l\ " AA v 020 i,'\2. A A 1 2

o=k . v 2ﬁlk2+k3 » oy = 2kt Sko o+ 2k ko + ) ko (11.25)
may easily be computed

If RF r, and A all become large in such a way that

RF‘ :

a: = 3= and s:=r-C (11.26)
or x: = RF - r stay constant, we finally arrive at the last distribution to be
discussed.

12, The Thomas-Fermi Distribution for an Exponential Léw Potential (E = TPm)

In this case, the one particle potential has the following form:

o r-R0 :

v(r): = Vg [1 - exp ] - e(Ro -r) (12.1)
with p051t1ve constants vo 'O’ and a. We now put

, _»vo

Rpt = Ry - & + log o~ (12.2) -

0 N V.
F
using (2.3), and obtain from (11.3) a density leading to
| r-Ry 3/2 |
f(r): = [1 - exp ] '-G(RF -r) (12.3)
or Ry = Rp + a log (1 - 6%/3), 5o that D = Rp - 0.9941L1559, a and t = 2.44811'0, a.
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Using the binomial series and partial integration we may easily evaluate .

(4.3), (1.7), yielding

e 0] . X
s My A~ s _U-s ' >
E: (-1) (S) Yo R for y =0
with
?o: = -g- f © 7 (1 -~ e_x)l/2 dx for _G> o .
o) o

If U assumes an integer value m, the summation terminates jusf after s =

(12.4)

(12.5)

The

upper limit of integration was originally x = XF: = RF/a, but we have replaced it

~Xp

by « assuming that R, >> a so that e <<< 1. The two most simple cases of the

¥

integral are

8 . .
Yo = 1s Y, = k) =3 - log L = 1.28037'23

(12.6)

The first holds because of normaslization, and the second may also be deduced with

the variable w: = (1 - e-'x)l/2 which yields

A 2
Yy = lm o, 3

These two values suffice to ensure by (4.7) that

C = RF -Y, - a=D- 0.28622'6,,

[2w + CANE I (1 + w3) log (1 + w) + (1 - W3) log (1 - W)]i;g

(12.7)

The higher moments may be calculated by binomial expansion of the square root in

(12.5) which leads to the series

? =5V E: ﬁ__)____(1/2 : ~for 0 > 0

g k-l
k=1 k’

- (12.8)
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(o]

k=k+1 T8

If o 2’2 it can be evaluated rather quickly because the rest term I
be thoroughly estimated on both sides by rather simple integrals. With K = 50,

L0, 30, 20 for ¢ = 2, 3, 4, 5 (respectively) we obtained

Yo = 3 %0.93130'98, = 2.79392'9 ,

?3 = 9% 0.96686'16, = 8.70175’&8 ,

. ' (12.9)
L o= ' = '

Yy 36 X 9.98378 136 35.41612 g »

Y5 = 180 x 0.99199'Th, = 178.5595,

For 0 = 1 we had to go until K = 400 in order to obtain.y; = %-- 0'85358'15h’ thus

confirming the previous result (12.6).
After inserting (12.6) and (12.9) into (12.4), and this in turn into

(5.7), and after introducing the numerical constants

g =Y, - Y7 = 1.15457'6,
1 | 3 | (12.10)
v =YY% - l.o7h51'2,
We arrive at the results
b=y a - (12.11)

Accordingly t/b = 2.27834'6, for this distribution. Now. egs. (5.12), (5.13), and

(5.11) tell us that

R

1]
Q
e

4]
bd'ih

+
o

%
(4]
-

(12.12)
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In order to obtain the higher order corrections we have to sum up (5.2) aftéf

the insertion of (12.4) and (12.7). Using the binomial expansion

G = BB IRV )" and the taentity (D)(*)(®) = (2T

. _ ¢n n-m .m D¥MFSHY _n-S-V _V+s AV 2 n s+V, ,n-V-s
we find I‘n = 20 Zv=0 s=0(_l) .8 1's (s+v) ( s ) m-s
_ 0 n-s _n-s-v s+v , n S+v, AV n-v n+m n-v-s
= Zom0 Zy=0 RF (-a)™7 (L) Co) vy vy 2o (<177 (7 7.7). Now the

identity Z ( l)‘j (?) = 6k0’ taken from (11.17) as valid for all* natural k, shows

with k=n=u, u=s+v, and J=m-s that Z (_l)n+m(n—v—s)_( 1)™S. 507 (n~u) (-1)"*5s

m-s ' ' J =0 3 nu’
RS ¢ SRS o n-u - u—sA _1)ats . . . ps
Consequently Fn Zoao Zy=g BF (-a)* ) (¢ ) s( 1) 6nu which simplifies
to
n .
n 8 ,n, "n-s v .
z: 17 Q) vy v, S _ (12.14)

s=0
Inserting (12.6), (12.9) into this rather compact result, and this together with

(12.10) into (5.8), we find (besides Yo =1, Y, =0, v, = 1) these values

= (3 a2 234,23 | _
_ ~ A A ,A A ,\h _
vy = Yy, - bygy, o+ 6Y2Yl 3yl)/ : = 7.70353', (12.15)
Yo = (T - ST, + 107,57 - 107,55 - 99)/3° = -3b.6296
5 5 L' 31 7 “Tfe'y 1 ’ 8

v

The deviations Kn require more complicated formulee when expressed in terms of the |

integrals §s'

* . )
1; 0( 1)3 ( ) = (l—l)k = ,Ok = (SkO prevails for all natural numbers k including k=0,

because 0° = 1 is, though often questioned or even denied, certainly a true

statement.
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Yet there is another method to attain the coefficients Kn' If in (11.15)
the limiting procedure A » « with RF/A + a is performéd, only the first term

survives. Thus we havé for the present distribution the simple result

rn‘= a® Yﬁn) . o - ' (12.16)
and therefore Y, (n)/[Y(Q)]n/Z by (5.8) and (5 T). Comparison with (12.1k4)
shows now that Y(n) Es_o nl) ) n s Ys’ but we are at present more interested

in the representation (11.18), regardless of its more complicated appearance. The

reason: as it is the inverse of the cumulant transformation it mey easily be

inverted to yield the cumulants Kr = arKir) simply as

- T e - |
Ko=a - (1 -6.,)- -k . | | (12.17)

The deviation coefficients Kp = b_rK. are therefore given by the formula

~r/2

Kf = (1—6 )_- k /k , Which (reproducing Kl—o K —l) produces by means of

(11.23) the numerical results

K3 = _1071"7)46'0 °
= b.70353', (12.18)
Ks = "’17015508 °

They turn out, when the relstions Y3 = K3, Y), = Kh+3"YS = K5+10K3 are employed,
to be accurately consistent with our pfevious results displayed in (12,15). They
may be inserted into (5.9) and (5.10) in order to acquire R and Q besides C and D,

which quantities have been given already in (12.7) and (12.6).
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13. Numerical Results and Discussion

In Fig. 2 we have shown the ratio v = t:2b of the punctuai surface
thickness t to the integral surface thickness 2b. This quotient depends.
remarkably on which distribution is choseh,'being about 25% higher for the
traperoidal distfibutioh (1) than'for the Laplacian one (L).

Now let us compare C and Q with R. According to eas. (5.12) and (5.13)
or (5.14) the ratios c¢: = C/R and q: = Q/R both differ from unity by quantities
which have thé same order of magnitude as the Quantity g: = 62 = (b/R)2. The
numerical results are given in the Table and Fig. 3 for different distribution
laws. In both cases we have accompanied the o-scale by a nonlinear A-scale by

assuming6 that

b = 0.92g fm (13.1)
independently of A, whereas R is, as shown at (3.9), proportional to A;/3 with
r =R - a™1/3 2 1.13, fm. From these empirical dats we find that

S = 0‘818 . A"l/3 - (13.2)

and thus 0 = 0.669 . A_2/3. In case of the power like distribution (PLA)’ the

square radius Q = g * R becomes ® at Yy = w/A = w/5 = 0.6283 which corresponds to

g 0.1132 and B = 0.3365, and © attains its greatest possible value 0.157% at

L}

Yy =1n/A= 0.8580 which corresponds to B = 0.397l and ¢ = 0.6728. This means that

the leptodermicity condition B << 1 completely breaks down, for this distribution,
at 0 ® 0.1 or A = 30. The generalized error function distribution (GEA) cannot
be included simply into the Table and Fig. 3, because it depends, besides a and A,

on the third parameter C uncoupled from the two other ones. This consideration
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does not apply to Fig. 2, because this shows a - local surface property for which
the value of the radius C (or R) ié irrelevant. In the cases of the one-
parametric distributions (T, N, F, L) the validity of all results is confined

1/8

to the condition that e << 1.
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FIGURE CAPTIONS

Fig. 1. ‘Qualitative picture of a'surface distribution with positive flair

K3 and positive contortion Ky,

Fig. 2. The punctual (10% to 90%) thickness t in units of the integral thickness

Fig.

2b as a function of the distribution parameter A for fou} different distri=-
bution laws: incomplete gamma (FI'), generalized error (Gﬁ), power like (PL),
and Thomas-Fermi for a power-law potential (TP). Speciai cases (for
particular values.of A) are also indicated: normal (N), trapezoidal (T),

Laplace (L), Fermi (F), and Thomas-Fermi for an exponential-law potential (E).

3. The central radius C and the quadratic radius Q iﬁ units of the charge
radius R as a function of the width-square b° in units of R2, for eight different

distribution lews (PL, II', TP, E and L, F, N, T).



Tabie. The Ratios ¢ =

C/R and q = Q/R for Different Distributicn Laws and Different Values of B = b/R.

.

=C_=

OOOOOOvOOOOOOOOOOOO

? ey ‘e v r S °E % irp Oy Iy b S A (R 9 A

.00 -1.000C  1.0000 1.0000  1.0000 1.0000 1.0000 1.0000 1.0000  1.0000 _1;6000' 1.0000 1.0000 1.0000 ®

.01 0.9898 0.9899 ° 0.9900 - 0.990k  0.9906 1.0185 1.0198 1.02k2 1.02h5 1.0247 1.0252 1.0253 1.0269 546.6
.02 0.9793° 0.9797 0.9800 - 0.9810 0.9817 1.0327 1.0371 1.0468 "1.0479 1.0490 1.0507 1.0511 1.0582 193.2
.03 0.968: - 0.969L 0.9700 0.9717 0.9731 1.0hk7T 1.0533 1.0679 1.070k 1.0728 1.0765 1.0776 1.0954 105.2
.0k 0.957C 0.9589 0.9600 0.962k  0.9648 1.0553 1.0689 1.0878 1.0920 1.0962 1.1025 1.1047 1.1kok 68.3
.05 0.9452  0.9482 © 0.9500  0.9530 _70.9568 ' 1;06#9' 1.0841  0.106k 1.1128 -~ 1.1192 1.1287 1.1324 1.196k L8.9
.06 0.9327 0.9374 0.9401- 0.9436 0.9491 1.0736 1.0991 - 1.1239 1.1329  1.1418 1.1551 1.1609 - 1.2685 37.2
.07 0.9196 0.9263 0.9301 0.934k1  0.9415 1.0817 1.1139 1.1k0k 1.1523 1.1641 1.1816 1.1902 1.3660 29.5
.08 0.9057 . 0.9151 0.9202 0.9245 0.9342 1.0892 1.1287 1.1559 1.1711 1.1861 1.2082 1.2203 1.5077  2k.2
.09 0.8906 0.9037 0.9103 0.9148 0.9271 1.0962 1.1435 1.1705 1.1893 1.2077 1.23hk9 1.2513 1.7388 20.2
.10 0.8747 .0.8921. 0.900% 0.9050 1.9202 -1.1027 1.1584 1.1843 1.2069 1.2291 1.2616 1.2832 2.2120 17.3
.11 0.8571 0.8802 '0.8905 0.8951 0.9135 1.1088 1.173hk 1.197k 1.2241 1.2502 1.2884 1.3161 L4.2795 15.0
.12 0.837: 0.8681 0.8806 0.8851 0.9070 1.11kk .1.1886 1.2097 1.2407 -1.2710 1.3152° 1.3502 o 13.1
.13 0.8147 0.8558 0.8708 0.87h9 0.9007 1.1195 1.2039 1.221k  1.2570 1.2916 1.3419 1.3854 @ 11.7
.b 0.7871  0.8431  0.8610 0.8646 1.8945 1.1242 1.219% 1.2324 1.2728 1.3120 1.3687 1.4219 10.4
.15 0.749Z  0.8302 0.8513 0.8541 0.8886 1.128% 1.235h 1.2k29 1.2883 1.3322 1.3954 1.4598 ® 9.k
.16 0.8169  0.8416  0.843h 0.8828 1.1320 1.2516 1.2529 1.3035 1.3521 1.k220 1.4992 "o 8.5
.17 ——— 0.8033 0.8319 0.8326 0.8772 1.1351 1.2682 1.2624 1.3183 1.3719 1.4486 1.5k40k4 o 7.8
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