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The Geographic and Statistic al Analysis 
of Air Quality Data in the Vnited States 

By 
Laura Derelle Johnson 

Abstract 

vii 

This dissertation contains the development and the application of ana-

lytic procedures for examining and exploring some air quality data collected by 

the Environmental Protection Agency from 197~ through 1976. They are col-

lected at monitoring stations most of which are in metropolitan areas. These 

data are irregularly distributed discrete point measurements. The techniques 

explored here may be useful in other disciplines with the same type of data. 

The analysis is concentrated on two pollutants. suspended particulate 

and sulfur dioXide. There are two reasons for this restriction: (i) they are the 

most heavily monitored and (ii) they are of interest to the health field. The 

state of Ohio is utilized as an example in most of these aaalyses. This is because 

Ohio is the most thoroughly monitored state in the Cnited States. A list of the 

limitations of these data is given. 

Interpolation schemes are explored and a model is chosen which is a 

two-dimensional analogue of the moving average model in time series. The 

model is 

where 

e'i. = the estimated value at a pOint i 
x; = a measured value at point j . 
d,.J = the dlstance from thE' data poir.~ to the poir.t of est irnatlCn 
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d o= the smoothing parameter. 

The choice of do has been explored in great detail. Cross-validation was used 

and several measures for the "best" do were examined. This led to the develop­

ment of a much more efficient method for choosin?; a smoothing parameter. the 

concept of local variability as a function of disk radius Each disk radius 

corresponds to a do. so by minimizing the local variability function the most 

appropriate do can be chosen. Local variability functions were calculated for 

Ohio, New York and Florida. This analysis as opposed to cross-validation makes 

the task of modeling the entire United States a much smaller one. This model 

combined With cross-validation has been useful in deteCting outliers ill these 

data. 

The evaluation of the moving average model led to comparing to 

Akuna's method of bivariate linear interpolation. A cross-validatory comparison 

for adequacy of estimation was done. Also, contour maps using each method are 

drawn and compared. The local variability function analysis allows for com­

parison by cross-validation to not be a two-deep cro~s-validatory choiC'e. Some 

drawbacks to comparing cross-yalidation estimates are pOinted out. How 

different goals may prescribe different estimation techniques is discussed 

The potential for further research m ~his t:e~d is shown. Time, wt-...:.ch 

may be important in these analyses. has not been included because of data avai­

lability limitations. Using a time parameter simila.:- to dc. the current distanCE 

parameter. has been suggested. Simulations may also be useful in evaluatmg; the 

moving average model. The distributional theory of the local ... "anability theory 

fun~tion is yet to be explored. 

.... 



CHAPTER ONE 

Air Quality Data 

Introduction 

Air Quality has been a concern because of the potential hazardous 

effect of pollution on health. Because of this concern the Clean Air Act of 1970 

and EPA Regulations for State Implementation Plans (SIP's) require ambient air 

. quality data resulting from air monitoring operations of State, Local, and 

Federal networks to report each calendar quarter to the Environmental Protec­

tion Agency. These data must be transmitted to EPA Regional Offices within 45 

days after each quarterly reporting period. Within 30 days, EPA Regional offices 

must give these data to the EPA Aerometric and Emissions Reporting System 

(AEROS) of which Storage and Retrieval of Aerometric Data System (SAROAD) has 

been an operational part. AEROS is managed by National Air Data Branch, Moni­

toring and Data Analysis Division of Air Quality Planning and Standards. The 

National Air Data Branch (NADB) formed AEROS which is a large unified data sys­

tem with analysis capabilities, uniform procedures, and e}.l'anded storage capa­

bility. SAROAD is just one of the numerous subsystems of AEROS. SAROAD con­

tains the information on air quality. Anyone who has an interest can request 

summaries of these data and they will be provided by EPA (1976). 

EPA publishes an annual summary of all data submitted in an effort to 

provide these data to participating agencies as well as the public. The air qual­

ity data which are discussed in this thesis are directly from computer reports 

generated by EPA's on line computer system. The type of pollutants considered 

1 



in this report and their corresponding sampling tnte:-vals are listed in Table 1.1. 

TABLE 1.1. Summary of monitored pollutants and their sampling intervals. 

Pollutant Sampling Interval 

carbon monoxide 
I total hydrocarbons 

nitrogen dioxide 
nitrogen dioxide 
non-methane hydrocarbons 
total oxidants 
ozone 
sulfur dioxide 
sulfur dioxide 
total suspended particulate 
sulfate 

1-hour 
I-hour 
24-hour 
I-hour 
I-hour 
1-hour 
I-hour 
24-hour 
1-hour 
I-hour 
24-hour 

The basic file used in this work was produced as part of the 

PARAP /PAREP (Populations at Risk to Air/Environmental Pollution) project. It 

was derived from two major sources: 1974-1976 air quality summaries by air 

quality monitoring stations. and an air quality monitoring station directory con-

taining latitude and longitude coordinates. 

The air quality file came directly from 1974-1976 yearly summary data 

in the Environmental Protection Agency's SAROAD databank. For each pollutant 

Clnd sampling interval and each monitoring station. data were first averaged over 

all measurement methods (weighting by the number of observations). Then 

three-year average calculations were derived from the yearly averages and 

installed in SEEDIS (Socio-Economic-Environmental Demographic Information 

System). 

The monitoring station directory was found to be incomplete and par-

tially error-eous. Manual checking was performed against other files and pub-
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lished maps until the station coordinates were believed to be accurate within a 

few kilometers in all cases. 

At the outset of the research for this thesis these data were in SEEDIS 

with the following known errors and omissions: 

1. Much of the monitoring of air quality that was actually done 

is not in SAROAD and thus is not available for this study. 

2. Values for hydrocarbons seem systematically much too high for 

some known and some unknown reasons. 

3. Some station values were discarded since they seemed so large 

as to be erroneous (Compare Tables 1.2 and 1.2a.). 

TABLE 1.2. Stations which were discarded. 

I I 
Arithmetic 

Pollutant Station Mean ( j.,Lg 1m3) 
Geometric 

Mean (j.,Lg 1m3) 

I Non-methane Hydrocarbons I MT Billings It 2700.44 
I Ozone NY Tonawanda 316.615 
! Sulfur Dioxide II NM Farmington i 404.909 

Sulfate TN Union City I 152.800 

2191.00 
300.265 
:351..;61 
152.800 

TABLE 1.2a. Means and Standard Deviations of Pollutants Listed Above. 

Pollutant 

! Non-methane Hydrocarbons 
I Ozone 
I Sulfur Dioxide 
I 

I Sulfate 

Mean· 

253.38 
:34.58 
13.57 
7.06 

Standard Dev,::,:: i 
25.89

1 

8.89 
0.11 I 

The averages that are available from Lhe yearly summaries are: 
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geometric means. arithmetic means. geometric standard deviations. and arith-

metlc standard deviations The units are in micrograms per cubic meter. Since 

the distribution of the data appears to be lognormal. a geometric mean is a 

better measure of average concentration than an arith...'TIetic mean. The 

geometric mean is estimated by the average of the logarithms of the values. 

exponentiated to maintain the correct units. The three-year arithmetic mean. 

d. and the geometriC mean. g. were derived in the following manner: 

i = the ith year. 

i=1 a=--'--
n 

g=e n 

~ = the number of observations in year i. 

3 
n = 2: ~ = the total number of observations in three year period. 

i=1 

[Ji = geometriC mean at year i 

n{ 

Ltn(oj) 
j=1 

CIt = the arithmetic mean at year i. 

~ o· 
CIt= 2: _J 

j=1 ~ 

OJ = the jth observed value. 

j = the index for the jth observation. 

The three year average geometric mean g was set equal to zero if the geometric 

mean for any year was zero. 
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Potential Applications of .Mr Quality Data 

From a public health perspective, probably the most important use of 

these data is to measure and compare air quality across well-defined population 

centers so that levels of human exposure for geographic regions can be 

estimated. One obvious approach involves, using a statistical technique, calculat­

ing some average level of pollution for an area and correlating this average with 

disease incidence for that area. Air pollution contour maps are also very useful 

for examining high and low areas of pollution and their relationship to geo­

graphic clusters of disease. The problems of ecological correlations are well 

known, and do not indicate that there is a correlation at the individual level. Yet 

ecologic data are cheaper to analyze than undertaking a case-control study. In 

most cases, a study is not performed at the individual level without strong indi­

cation from other types of evidence. This is because of the large expense 

involved in such studies. Ecological studies are one way of indicating the poten­

tial utility of such a study. 

Estimating an average level of pollution for an area based on discrete 

point observations from monitoring stations is is a challenging problem. Each 

observation has an uncertainty associated with it. The amount of uncertainty is 

not clear from examination of .the data alone. The stations are clustered in 

areas of high population density and within clusters. they are not evenly distri­

buted. Since the stations are not distributed geographically in a regular fashion 

and one would expect values from adjacent stations to be highly correlated with 

distance from one another. a simple non-weighted average is inadequate. Also. 

estimates of human exposure may need to weight observations in more popu-
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lated areas more heavily than observations taken in less populated areas. So 

the sample mean is seriously biased as an estimate of human exposure. Often 

what is done in this type of situation is to tit a curve and then take the average 

of the interpolated points rather than the data itself. Sometimes, rather than 

an interpolation curve, a weighted average of the data is used. Finding the best 

method of interpolation or the best weights is a problem for which the statistical 

theory is not well described. These data from PAREP are used here to apply 

some of the existing statistical techniques. Thus the performance of these 

methods used on these data can be examined. 

Another useful summary of these data is through contour maps. Con­

tour maps can be used to show peaks and valleys in the pollutant concentra­

tions. For contour maps many points are to be predicted for a region. Perhaps 

a different estimation procedure should be used to predict contours than that 

which predicts only one point in a region. This possibility will be explored in the 

Lhird chapter. 

There are basically four different methods of geographic surface esti­

mation. These are: trend surfaces, moving averages, interpolation, and Kriging 

(Ripley, 1981). Techniques similar to moving averages and Kriging are two­

dimensional generalizations of one-dimensional curve-fitting techniques (Grant, 

1957). Interpolated surfaces go through every data point and are similar to 

spline-titted curves in one-dimension (Akima, 1978). Kriging is a met.hod which 

unlike the other methods explicitly considers the correlation between values of 

the surface (Matheron, 1965). Kriging results in the "weight" of each point in a 

cluster being reduced. 
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Data Limitations 

Several factors associated with air pollution data cause a statistical 

treatment of the data to appear intractable. This section will mention some of 

the most important problems. Some of these can be solved at least partially. In 

these cases an attempt to solve them has been made. In other cases which can­

not be solved a mention of them will be made so that future data collection can 

be improved. 

For each station measurement. there is an uncertainty associated with 

its value. This uncertainty arises from several sources. For example. the 

machine readings may be in error depending on the time of day. air tempera­

ture. humidity. and the skill of the person reading the measurement. This prob­

lem has been recognized in other areas such as blood pressure readings and 

there are analytic techniques to take account of this. This uncertainty is usually 

viewed as being stochastic and its value is assumed to follow some known distri­

bution. For air quality data. this same path could be followed. A further compli­

cation is that different stations might use different measuring methods. These 

differences may be another source of variation not due to actual air quality. 

Since the data in SEEDIS have already been averaged over measurement 

methods (for each pollutant and sampling interval). the assumption that these 

differences are random must be made in order to compare values across 

regions. 

The fact that each data value is a 3-year average lends iLself to two 

important data reliability problems. Since each station was run (i). for various 

amounts of time and (ii). at probably different times; each data value does not 
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measure exactly the same quantity. For example, an average which comes from 

an instrument which ran each day of the three years is far more reliable than 

that from an instrument running once a week, assuming everytr..ing else is equal 

about the two values. 

Since the gases in the air are obviously affected by the weather, there 

is seasonal variation in air pollution. Averaging over three years may be less 

biased than one year averages because of seasonal variation and the fact that 

measurements are not taken uniformly over the year. 

Fortlmately data on the percentage of time active are available over 

the entire three years and this quantity is taken into account in these analyses. 

Table 1.3 shows the average time stations were active for all pollutants and for 

all stations in the United States (+territories) 1. The percentage of time active 

is calculated from the total number of observations in the following way. 

where, 

N = Number of Observations and 

Y = 24 or 1 for I-hour or 24-hour measurement sampling intervals. 

1096 = the number of days ir.. the three year period, 1974-197f>' 

So if a station is run once a week Lhe number of observations is : 56 and the per­

centage of time active would be as follows: 

I The territories with monitoring stations are Guam, Virgin Islands, and P'.lerto ~ko. 
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24-hour intervals 
1-hour intervals 

Percent Time Active 

100X156/1096 ::; 14.2% 
100x156/1096x24::; 0.59% 

(Data sampled on a 1-hour interval basis were usually from stations that 

were run continuously.) 

To see the empirical distribution of percent time active of the stations. 

Figures 1.1 thru 1.11 show their distributions by pollutant for the whole US (+ 

territories).2 From the total number of stations in each distributior... notice that 

Sulfur Dioxide (24-hotir interval) and Total Suspended Particulate (24-hour inter-

val) are measured more often than the others. Sulfur Dioxide (l-hour interval) 

does not have the greatest mean percent time active but is one of the greater 

ones at 41. 5%. Sulfur Dioxide (l-hour interval) has more stations than any other 

pollutant that is measured. which also enters into adequate monitoring. Thus 

percent time active statistics indicate that sulfur dioxide and total suspended 

particulate are the most extensively monitored. 

Tables 1.3a. and 1.3b. show average activity times for all measured pol-

lutants. Average and median number of days (hours) per year are derived from 

the percent time active formula. For daily measurements the possible number 

of observations in one year. is approximately 365; while for hourly observations. 

it is <!4x365 ::; 8760. This number gives an idea of the frequency of measure-

ment. 

• 2 A percent time active greater than 100 percent can occur if a pollutant was simultaneously 
measured by two or more instru:nents at a station. 
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TABLE 1.3a. A.ctivity Time for Pollutants Measured at 24-hour Intervals for 
United States, 1974-76. 

Percent 
Days/Year I Number of I 

Time Active 
Pollutant 

Active Stations I 
mean median mean median I 

Nitrogen Dioxide 9.5 8.7 34.7 31.6 1796 ! 
Sulfur Dioxide I 10.4 10.5 38.0 38.3 2440 I 

Suspended Particulate 11.0 10.5 40.0 38.3 5473

1 Sulfate 4.9 2.7 18.0 9.6 1045 

TABLE 1.3b. Activity Time for Pollutants Measured at i-hour Intervals for United 
States, 1974-76. 

Percent I 

I 
Number of 

Time Active 
Hours/Year 

Pollutant 
Active Stations 

mean median mean median 

Carbon Monoxide 45.3 43.9 3968.3 3845.6 I 588 
Tot~ Hydrocarbons 40.1 31.2 3512.8 2733.1 I 205 
Nitrogen Dioxide 43.5 38.2 3810.6 3346.3 353 

! Non-methane Hydrocarbons 24.2 22.3 2119.9 1953.5 80 
Total Oxidants I 52.1 52.1 4564.0 I 4559.6 121 
Ozone 

I 
35.2 30.9 3083.51 2706.8 621 

Sulfur Dioxide 41.9 36.1 3670.4 3162.4 1050 

Another reliability problem is related to the fact that some stations 

were not run for the entire three years (Table 1.4). Note that almost 60% of the 

stations measuring any pollutant monitored suspended particulate at some time 

m the 3 years. This is the most actively measured of all pollutants. There is con-

siderable variability in the number of years stations were active. Since the data 

available in SEEDIS do not indicate which stations were run in specific years, we 

could assume that average air quality does not change substantially over this 

time span, yet we know that meteorological and topographic factors do change. 

Then let us take this measure as an average measure of human exposure to air 

quality during this time frame. With this approach a 1974 measurement can be 

10 

-. 



, 

compared to those taken in 1976. In the future it would be preferred to elim-

inate this assumption but the data, although available, are not easily accessible 

at this time. 

TABLE 1.4. Frequency Distributions of Number of Years Active by Pollutant for 
the United States from 1974 thru 1976. 

Sampling Percentage of Stations Active 
at some time within: 

Pollutant 
Interval (hours) 

1 year 2 years 3 years 

Carbon Monoxide 1 27.4 24.7 47.9 
TolruHydrocarbons 1 33.2 i 21.0 45.8 
Nitrogen Dioxide 1 33.1 19.8 47.0 
Non-methane Hydrocarbons 1 32.1 28.4 39.5 
Totru Oxidants 1 24.0 19.8 56.2 
Ozone 1 38.4 30.7 30.9 I 

Sulfur Dioxide 1 33.4 31.3 35.3 
Nitrogen Dioxide 24 I 24.3 26.51 49.2 
Sulfur Dioxide 24 33.8 28.4 37.8 
Suspended Particulate 24 23.3 I 19.4 I 57.3 
Sulfate 24 33.2 50.5 I 17.3 

Another important reliability issue is illustrated by the number of sta-

tions passing certain summary criteria. Table 15 shows these distributions by 

pollutant. The criteria consist of the following (EPA 1976). 

A. for continuous observations with sampling intervals of less than 24 

hours the criteria are: 

1. Data representing quarterly periods must reft.ect a minimum of 

75% of the total number of possible observations for the applicable 

quarter. 

2. Data representing annual periods must reft.ect a minimum of 75% 

11 



of the total number of observations for the applicable year. 

B. For noncontinuous obsen7ations with sampling intervals of 24 hrs or 

greater the criteria are as follows: 

12 

1. Data representing quarters must reft.ect a minimum of five 

observations for the applicable quarter. Should there be no measure­

ments in one of the three months of the quarter, each remaining month. 

month must have no less than two observations reported for the 

applicable period. 

2. Data representing annual periods must reft.ect four que:.rters of 

observations that have satisfied quarterly criteria. 

These criteria insure that samples are fairly well spread over the sampling 

period and that there are enough samples to be a reliable summary of pollutant 

level for the period of time covered. As is shown in Table 1.5. many stations did 

not pass these criteria. Sulfur dioxide and total suspended particulate have the 

highest percentage of stations which passed. 



TABLE 1.5. Frequency Distribution of Number of Years that. Active Stations 
Passed Summary Criteria by Pollutant for United States (+ territories) during 
1974-76. 

I 

Pollutant Sampling Percentage of Active Stations Passing For 

Interval (hours) o years 1 year 2 years 3 years 

Carbon Monoxide 1 46.4 25.3 16.3 11.9 
Total Hydrocarbor.s I 1 61.9 13.2 23.4

1 

1.5 
Nitrogen Dioxide 1 48.4 21.8 12.5 14.2 
Non-methane Hydrocarbons 1 90.0 8.8 

1.21 
0.0 

Total Oxidants 1 36.4 20.1 27.3 15.7 
Ozone 

~I 
158.1 26.6 12.2 3.1 

Sulfur Dioxide 51.2 28.5 13.1 7.1 
Nitrogen Dioxide 

~~ 
28.9 30.6 20.3 22.2 

Sulfur Dioxide 26.9 24.7 20.8 27.6 
Isuspended Particulate ~~ 28.4 25.2 22'1 24.3 
Sulfate 65.3 28.6 5.7 0.4 

The irregular spatial distribution of the data points raises another data 

analysis problem. Certain areas are monitored more heavily than other areas as 

mentioned. The areas that are monitored most heavily are metropolitan areas 

where population density is highest. The data are therefore available in the most 

appropriate places for measuring human exposure. Yet for making general con-

tours plots, this can be a problem. Contour estimates would be much more accu-

rate if the data were regularly distributed. 

Outliers are a typical problem for any data set. Air quality data are no 

exception. Basically there are two kinds of outliers in air quality data. One kind 

of outlier are those which are completely nonsensical such as a negative value of 

concentration. A more subtle kind of outlier is one that does not follow the pat-

tern established by the other points. There are at least two ways these outliers 

can arise; (i) measurement error and (ii) accurate measurements that are 

measuring local values not representative of the region. 

13 
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Another problem that is typical of any data set, especially a large one, 

is the number of missing values. In the PAREP air quality data under study the 

number of missing values is quite large and varies with the pollutant. Table 1.6 

shows the amount of monitoring that took plac<:! in 1974-1976 for the whole US (+ 

territories) for all pollutant measurements under consideration. Total 

suspended particulate and sulfur dioxide arc thought to be respiratory irritants 

(Landau, 1971), especially in combination, suggesting why they have been his tor-

ically more heavily monitored than the other pollutants. 

TABLE 1.6. Number of Active Stations By Pollutant. 

I pollutant Number of Actiye Stations I 
I Carbon Monoxide (l-hour interval) 588 I 
I Total Hydrocarbons (i-hour interval) 205 I 
I Nitrogen Dioxide (24-hour interval) 1796 
I Nitrogen Dioxide (l-hour interval) 353 
I 

I
· • Nitrogen Dioxide (Either or both intervals) 2006 

Non-methane Hydrocarbons (i-hour interval) 80 
I Total Oxidants (l-hour interval) 121 
I Ozone (i-hour interval) 621 
I Sulfur Dioxide (24-hour interval) 2440 
! Sulfur Dioxide (i-hour interval) 1050 I 
I • Sulfur Dioxide (Either or both intervals) 3409 
I Total Suspended Particulate (24-hour interval) 5473 ' 
I Sulfate 24-hour interval 1045 

·Some stations used both sampling intervals. 

For the analyses here, Digital Equipment Corporation's VAX.. : 1 /780 

computer was used. For the more complica~ed analyses, a smaller area with 

hlgh monitoring density needed to be used in order not to use exceSSlve 

amounts of computer time. This was mostly for the sake of applying developed 

statlstical techniques and developing methods, not for extrapolating to the rest 

of the country. A more efficlent technique as an alternative to that which is 

presently used is developed. Two different machines were used with two different 



operating systems. The two operating systems were VMS and UNIX. In UNDC, 

CI.(;cess to the statistical package, system S (Becker, 1981) was available. System 

S was used for mIlch of the analysis because of its interpolation and contour pro­

grams. The VMS machine is the machine which houses SEEDIS and all the air 

quality data. 

Air Quality by Location 

After checking for and removing most of the more obvious outliers 

there were 6625 monitoring stations active in 1974-76 in all. Not all of the sta­

tions have values for all pollutants. Of the 6625 mOnitoring stations, there are 

only 5777 distinct locations. In some cases the exact location of a station was 

not known, in which case the population centroid of the corresponding city was 

used. Assuming that monitoring stations are alike in the way they measure, the 

measurements can be averaged at a location to have only one value of pollution 

for each station with the same (tat, long) coordinate. This makes it easier to 

investigate interpolation strategies by cross-validation techniques. A new file 

was made with 5777 data pOints and installed in SEEDIS (Johnson (1982)). The 

Air Quality Monitoring Station by Location (AQMSLOC) File is the one that is used 

throughout the remainder of this study. Stations at the same location were con­

sidered as a single observation with a concentration equal to the geometriC 

mean (weighted by the number of observations) of the individual values. 
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Two Pollutants in Ohio State 

Tables 1.3 thru 1.6 showed thg.t the most heavily monit.ored pollutants 

are sulfur dioxide and total suspended particulate. Even though some pollutants 

are monitored more often on the average, they have fewer stations and pass 

summary criteria less often. These pollutants are also the most suspected 

health hazards. We have restricted most of the statistical analyses to these two 

pollutants. There are two main reasons for this restriction. There are more 

data for these pollutants which is important for predicting air quality and these 

pollutants are also of interest to the health field. We also decided to analyJ':e 

only the state of Ohio because of the difficulty of analyzing 5777 data points at 

once. Ohio has 455 stations within the boundary of the state. No reason existed 

to analyze the whole nation at once, since the monitoring stations Within or near 

a hOlnogeneous area can be used to estimate the population exposure in that 

area. So for solid statistical results, the analyses shall be confined largely to the 

state with the most mOnitoring stations and to the extensively mor..itored pollu­

tants. E.:;LimatlOn techniques should do "best" in the most densely monitored 

areas, so the methodology will be examined and evaluated in these areas. 

Methodological Perplexities 

StaListically, there are two interesting problems which can be explored 

with these data. One is to map pollution gradients in detail for a regicn. The 

other is to estimate an average level of pollution for an region in order to com­

pare with other geographic regions. These two ideas are connected through sur-

16 



face estimation. The surface estimates points which can be used for making con­

tours and for calculating averages. A question that arises is whether the same 

estimation procedure will do well for both purposes. 

The statistical techniques for estimating a non-linear bivariate function 

are described by the general name of non-parametric regression. The desirable 

feature of non-parametric methods is that no distributional assumptions are 

required for their validity. In fact non-parametric regression techniques are 

used to estimate density. Commonly used non-parametriC regression methods 

include nearest-neighbor techniques, splines, kernels, and partition-based 

methods. To estimate an arbitrary point in the plane by the technique of nearest 

neighbors, the k nearest neighboring data points are used. The parameter, k, 

Il£ually remains constant and is the number the number of observations used for 

predicting ilIly point in the plane. Splines or bivariate polynomial interpolation 

fit a polynomial of a fixed degree to each triangle in the plane. The triangles are 

defIned by the data points. So in spline fitting Lo predict an arbiLrary point in 

the plane, one sees which triangle it lies in and applies the appropriate degree 

polynonual, usmg the data at the vertices of the triangle, to determine the poly­

nomial coefficients; and then the fitted polynomial is evaluated at the point of 

interest. Partition-based methods take a particular size partition; then all the 

points within this partition are used to evaluate arbitrary non data points m the 

partition. The kernel method uses a weighted average of the data points inside a 

window. The size of thG window is chosen in various ways. For exam.ple. its ;;ize 

can vary with the number of data paints or some other relevant parameter. The 

moving average which is discussed in chapter two is classified lUlder the family 

of kernel techniques. Choosing the appropr'iate technique for a specific problem 

is of interest. 
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Suppose one has chosen a technique. Within a technique there are still 

choices to be made of certain control parameters. For example, in nearest­

neighbor techniques the 'best' k must be chosen. With splines, it is the choice of 

the degree of the polynomial. In partition-based methods the size and type of 

the partition should be carefully chosen. In the kernel method, not only the 

weights need to be chosen, but also the size of the window. 

There are a variety of methods for choosing techniques or control 

parameters of a technique. Many questions arise as to which method of choice 

should be used. Perhaps one method "is better for choosing the estimation pro­

cedure overall while another is more useful for picking a control parameter. 

Cross-validation can be used for both these tasks and will be explored. We shall 

use cross-validation to choose between two methods of interpolation and also to 

choose the control parameters of one of the methods. We wiil try to choose 

between bivariate linear interpolation and a moving average method where the 

moving average requires a choice of parameter. Stone (1973) discusses "choice 

and assessment of a statistical prediction" appiying cross-validation criteria. 

Summarizing the assessment of the two-dimensional moving average 

model by the cross-validation technique can also be done in several ways. The 

issue is not clear-cut. A loss function must be chosen which does not favor non­

optimal estimates. Ripley (198!) pOints out that squared errol' may be dom­

inated by a few data paints which are outliers. Ripley also mentions that weight­

ing of the prediction errors by their sli:ill.dard errors and then forming a sum of 

squares "biases the comparison in favor of covariances which give high standard 

errors by means of small covariances at typical interpoint distances". In other 

words. outliers and metIicienl eslimates must be considered when using a 

squared errol' loss function. Perhaps some sort of trimmed squared error would 
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he the best to use. A trimmed squared error is the regular squared error with a 

certain proportion of extreme high and low values removed from the data. 

Different loss functions will be explored. 

The concept 'local variability' which is a function of disk radius has 

been developed. The minimum local 'rariability gives a disk radius which con­

tains on the average the most homogeneous collection of pOints provided the 

disks are drawn around each station location. The disk radius has a correspon­

dence with the control parameter in the moving average method. Thus local 

variability analysis is offered as an alternative to cross-validatton for choosing 

the parameter. By analyzing local variability the· problem which arises in choos­

ing a loss function is elimina.ted. 

An Overview of the Following Chapters 

Chapter 2 gives a detailed description of the two-dimensional moving 

average model. Important properties of the method are discussed. In the 

SEEDlS implementation of this model. different values of the control parameter 

can be selected. General utility of this kernel method for detecting outliers will 

also be shown. The method for which sulfur dioxide 24-hour and l-hour meas­

urements are combined and the adaptability of our model to this linear combi­

nation is given. Cross-validation is discussed as an integral part of the two 

dimensional moving average model. Local variability is presented as an alterna­

tive to cross-validation. A control parameter is chosen using cross-validation for 

sulfur dioxide and suspended particulate in Ohio State. Local variability func­

tions are calculated for the slates of Ohio, New York and Florida to check con-
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sistency in the shape of our function. 

Chapter 3 gives an expianation of the polynomial interpolation method 

that is used. With sulfur dioxide and suspended particulate in a heavily moni­

tored area. the state of Ohio. linear interpolation is done using system S. The 

moving average is also calculated for the same pollutants. Linear interpolation 

and the moving average model are compared for their usefulness in both con­

touring and estimation of a certain point in an area. Cross-validation is used to 

assess whlch interpolation technique might be "better". Some problems with 

cross-validation estimates are pOinted out. 

Finally. chapter 4 contains a summary including a synopsis of the prob­

lems that arise in this kind of research. conclusions which can be drawn from 

this study and the possibility for further research in this area. 
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Figure 1.1. Frequehcy Distribution of Percentage of Time Stations were Active 
for Carbon Monoxide Sampling in the United States (+ territories), 
1974-76. 
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Figure 1.2. Frequency Distribution of Percentage of Time Stations were Active 
for Total Hydrocarbon Sampling in the United States (+ territories) 
1974-76. 
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Figure 1.3. Frequency Distribution of Percentage of Time Stations were Active 
for Tota) Oxidant Sampling in the United States (+ territories), 1974-76. 
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Pigure 1.4. Frequency Distribution of Percentage of Time Stations were Activ e 
for Ozone Sampling in the United States (+ territories). 1974-76 
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Frequency Distribution of Percentage of Time Stations were 
for Nitrogen Dioxide 24-hr. Sampling in the United States ( 
tories), 1974-76. 
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Figure I.Sa. Frequency Distribution of Percentage of Time Stations were Active for 
Nitrogen Dioxide 24-hr. Sampling in the United States (+ territories), 
1974-76. Window < 20%. 
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Figure 1.6. Frequency Distribution of Percentage of Time Stations were Active for 
Nitrogen Dioxide I-hr. Sampling in the United States (+ territories), 
1974-76. 
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figure 1.7. Frequency Distribution of Percentage of Time Stations were Active 
for Non-methane Hydrocarbon Sampling in the United States ( + terri-
tories), 1974-76. 
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Figure 1.8 Frequency Distribution of Percentage of Time Stations were Active for 
l'otal Suspended Particulate Sampling in the United States (+ territories), 
1974-76. 
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Total Suspended Particulate Sampling in the United States (+ territor ies) , 
1974- 76. Wi.Ed.Qw < 40%. 
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Figure 1.10. Frequency Distribution of Percentage of Time Stations were Active for 
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Window < 20%. 
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CHAPTER TWO 

Geagraphic Estimatian .of Air Quality 

The Two-Dimensianal Maving Average Madel 

Observatians .of air quality fram manitaring statians are given and we 

wish ta estimate the air quality for an entire geographic area. The sample 

paints arise from statians which are nat always in the area and which are nat 

placed an a regular grid. The manitaring statians are placed where .observers 

are available, usually in metrapalitan areas rather than mare rural .or suburban 

regians. Under these circumstances, the sample mean may be seriausly biased 

as an estimatar .of the mean level .of pallutian An alternative is ta fit an interpa-

lating surface ta the data. There are many methods of interpalating or smoath-

ing data. Ripley (19B 1) gives an excellent review .of the variaus smaathing tech-

niques which apply ta this prablem. He briefly discusses trend surfaces, moving 

averages, splines, tessellatians, triangulations, and Kriging. These methods esti-

mate a surface fram spatial data and use this surface ta estimate values at given 

paints within a geagraphic reg ian. 

The model we will explore is similar to the kernel method .of non-

parametric regression and is also like a moving average used in time series 

madels. A time series maving average estimates a specific point as a weighted 

average of the pOints nearby in time where the weights change as a functicn .of --. 
lhe distance ta the paint .of estimaticn The methad described here is similar ta 

this approach where instead of cne-dimensianal time we are using tWa-

dimensianal geography. The coordinates are the latitute and longitude of the 



measurements. The weights change as a function of the geographic distance 

and the percentage of time a station was active. The weights can be written as 

where Pi = the percentage of time station i was active and d.;. = distance between 

x: and XL. The parameter do is a control parameter. The units of d.;. and do are of 

distance which is expressed in kilometers. The choice of do is discussed in detail 

in this chapter. Its value may change for different problems. These weights are 

used in the PAREP project for estimating pollution concentration at population 

centroids in geographic areas. According to Merrill (1982), this choice of "'i was 

made for three reasons: "i) the estimated function should be smooth in the 

vicinity of the measured points; ii) the estimated function need not pass directly 

through all the measured points; iii) the area integral of the estimated function 

should be finite, so that distant points can be ignored in the calculation." Con-

tinuing with the notation of the section on moving averages in Ripley (1981), we 

can write 

The Ai'S are the weights used in the moving average model. 

N = the number of stations used in the average. 

Then 
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i=N 
l: Ai= 1 and, for a fi:red do, as ~ 40, CJi .... Pi. 
i=l 

These weights are relative weights and their sum is 1. For a fixed do, as the dis-

tance from the point of estimation to a station gets smaller, the weight in the 

weighted average for that station's value approaches the percentage of time 

that station was active. 

The estimate at x is then given by 

i=N 
e (x)= ~~i(~) 

i=1 

where z (Xi) is the logarithm. of the observed concentration at Xi. 

Strictly speaking this surface does not interpolate, Le. pass through all the 

measured points, since ~ does not tend to 1 as ~ .... 0. For any specific station i 

with a non-zero percentage of time active, Pi, ~o as ~ .... 0, and therefore the 
CJi 

function e is differentiable at Xi. Ripley gives a more detailed discussion on the 

differentiability of these kinds of estimates and a complete review of this gen-

eral estimation procedure. 

A drawback to this estimation procedure is that the moving average is 

easily biased to clustered data paints. If the point we are trying to estimate is 

equidistant from 10 clustered paints on one side and 1 point on the other side, 

the estimate will be dominated by the 10 clustered points. Also let us examine 

the following situation, 
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a. 

b. 

where x is the point to be estimated and and S;. represents the station values. 

Asswne that all stations are equidistant from the point of estimation and when 

the percentage of time active are all equal the weights for the estimate of x are 

the same in both situations. If we suppose that these two situations have the 

same atmospheric and pollution conditions. the example in a. where the 

estimated point has stations on both sides may be more accurately estimated 

because in a. the relevant point is surrounded by pOints while in b. there are 

only measurements on one SIde of the point of interest and therefore there is no 

information about possible pollution coming from the other side. 

The parameter do is a smoothing parameter which defines the shape of 

the weighting function. The shape should make the weights so that they are 

large for measurements within a radius of the estimated point where the varia-

bility of concentrations within that radius is asswned to be small. The value of 

do. should be large enough to smooth out insignificant variability among 
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adjacent stations. yet small enough to preserve significant trends over larger 

geographic areas. In order to avoid producing estimates for poorly monitored 

areas, we have excluded points more than 3do km away if they are the nearest 

points to our point of interest. If there are stations within a to 3do km of our 

point of interest. then measurements out to 4do km are used in the in the mov­

ing average model. The 4do criterion is used in order to avoid sharp discontinui­

ties in the predicted surface. If we included only stations within 3do in the cal­

culation. there would be a sharp discontinuity at the midpoint between 2 

predicted pOints which are 6do km apart. Because of the shape of the weights 

and the number of points in the estimate the larger the do the flatter the sur­

face will be. See Figure 2.1 for curves of weight functions for constant Pi. Each 

curve corresponds to a ditl'erent. do which covers 1. 2. 5. 10. 20. and 50 km. The 

flattest curve occurs for do=50 km and thus gives the smoothest contour map. 

Likewise the steepest curve is for do=l krn and this gives the least smooth map. 

See Figure 2.2 to see Lhe weight as a function of do for a r:4 of ~ km. In the 

extreme case. as do tends to 00 the weights do not depend on r:4; all pOints in the 

area of interest. D. will be used and the predicted surface would be entirely flat. 

The absolute weights would all be 1 so our estimate would be simply the 

unweighted average of all points in D. 

The two-dimensional moving average model has been implemented in 

SEEDIS so that given a particular set of points specified by latitude and longi­

tude coordinates, estimat.es of air quality for these coord.inates can be made. 

Values of do the user can select are do = 1. 2. 5. 10. 20, and 50 km. Deciding 

which do to choose is not straightforward and an attempt to answer this question 

is discussed in detail in this chapter. A method for choosing do will be given 

which is data dependent and could therefore be incorporated into SEEDIS and 
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provide automatic and rational choice of this critical parameter. 

Just as air quality varies from point to point, it also varies over time. 

Air quality changes in response to changes in industrial activity, vehicle use, and 

weather conditions. The inclusion of a time parameter in the model, say to, in 

the same way as the distance parameter, do is therefore a useful extension. 

Given a series of data values over time, one could could use data from year t to 

predict data in year t +M. If M is large then the weight should be small for that 

value. A possible choice for the weights '!.LIt is 

_ -.5(~2/ doe +ti
2/ta) 

'!.LIt-'pi,e . 

These are analogous to the weights given earlier where ti, = number of years 

difference between the year the measurement was taken and the year for which 

one wants to estimate. Time, ti" is analogous to a third dimension of the two 

dimensional distance. This could be done if a time series of data were available; 

the time parameter, to, could be analyzed in the same way that we are exploring 

the distance parameter do. 

Combining Data from l-Hour and 24-Hour Sampling Intervals 

for Sulfur Dioxide 

In order to illustrate the two dimensional moving average model that is 

discussed above, sulfur dioxide and suspended particulate in Ohio State are used 

for reasons of data density and availability. Using two pollutants also provides a 

comparison between two different kinds of air quality measurement which by 

their nature might require different estimation techniques. Sulfur dioxide gen-

erally is measured in two ways. Gas bubbler data from a 24-hour sampling inter 



val are normally collected manually every sixth day: automatic air sampling dev­

ices usually provide continuous measurements for regular l-hour sampling 

intervals. One way to estimate sulfur dioxide levels would be to proceed twice: 

first using data from l-hour sampling intervals and second using measurements 

from 24-hour sampling intervals, yielding two independent estimates for the 

same variable, the concentration of sulfur dioxide. It is more useful to have a 

single estimate of sulfur dioxide for the area. If we just use l-hour data for our 

estimate we have left out all the information obtained from the 24-hour data, 

and vice versa. If l-hour data and 24-hour data are measllring the same aspect 

of sulfur dioxide, then the estimate which contains the most information about 

sulfur dioxide is clearly one that combines l-hour and 24-hour data in a reason­

able way. 

Before applying the two dimensional moving average model, we com­

bined the levels of sulfur dioxide at each station location. If a station measured 

sulfur dioxide only at l-hour intervals then the combined measure was the aver­

age of the l-hour measurements. Similarly, if a station had measured sulfur 

dioxide only with 24-hour sampling then the combined measure was the average 

of the 24-hour measurements. If a station had both l-hour and 24-hour meas­

ures of sulfur dioxide, they were combined in the following manner. 

Let 

Z'ih. = the average of l-hour measurements at monitoring station i. 

zid = the average 24-hour measurements at monitoring station i. 

P'ih. = percent lime active of l-hour monitor at station i. 

Pid = percent time active of 24-hour monitor at station i. 
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(Note: If a station had neither a 1-hour nor a 24-hour measurement of sulfur 

dioxide, then it is regarded as missing and left out completely.) 

Our combined measure is 

Denote 

The estimate of the combined observation at any point in a region where d,. is 

the distance from a station to the point of estimation is 

where n = number of stations within the prescribed window. 

Since 

then 



and thus 

which is equivalent to 

where 

numj =numerator of estimate from data sampled at j-hour intervals. 

and 

den; =denominator of estimate from data sampled at j-hour intervals. 

Note that this is just a weighted average of the hourly and daily estimate where 

each is weighted by its respective monitoring density. 

The above result makes it easy to combine estimates which can be 

obtained from the moving average model for l-hour and 24-hour data 

separately. That is. one can either combine l-hour and 24-hour data at each 

station before applying the model: or one can combine the model results 

obtained separately from l-hour and 24-hour data. The results are the same. 

The monitoring density, expressed as the effective number of full time stations 

per unit area, quantifies the amount of data available around a partlcular pOint. 

It is defined as 
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·t· de·t L:Wi man'!. onng ns'I. y = 2rrdff 

where the sum is over all active stations in the area of interest. The denomina-

tor. 2rrdff. is a normalizing factor chosen so that the area integral of the density 

-. over the entire U.S .. Le. 

5777 r monitoring density d.A = L: 'Pi . 
~s i=l 

is the total number of effective full time stations. This was first discussed in Sel-

vin. et. al. (1981). Since combining 24-hour and 1-hour data amounts to a 

weighted average and the model is also a weighted average. it is easy to gen-

erate estimates of a combined data point from the estimates of the uncombined 

data point as long as numerators and denominators are readily attainable. 

Combining i-hour and 24-hour data produces many more active sta-

lions for sulfur dioxide. The number for the combined data is only 2368 whereas 

for 24-hour alone the number is 1592 and for i-hour alone the number of active 

stations is 202. Therefore sulfur diOxide is the second most well monitored in 

terms of the number of stations; if we combine nitrogen dioxide i-hour and 24-

hour data we have only 1218 stations (almost half as many). Nitrogen dioxide 

ranks third for number of active stations running in the United States. 

Cross-Validation (CV) as an Integral Part of the Modeling 

. To choose the "optimum" value of do and investigate the accuracy of . 
these weighted averages, a predicted value for each station was produced from 

observations from other nearby stations (excluding the station's own value). and 

compared to the actual value observed at the selected station. By varying do. 



several estimates were generated for comparison with each observed value. The 

method of choosing the "be .. !.:: do from all these estimates will be explained. 

Two approaches were used to compare these estimates with their 

observed values in Johnson et ai. (1982), employing correlation coefficients and 

squared error loss. Weighted and unweighted correlations were used in Johnson 

et rU. (1982) and found to yield an inappropriate summary of the cross-

validatory predictions because in small samples lhe correlation coefficient 

refiects a negative bias. In the extreme case of only two stations, the estimate 

made by leaving one out and predicting the other produces a correlation which 

is bound to be negative. Thus squared error loss was chosen as a function for 

measuring adequacy of various values of do. Squared error loss is defined as the 

sum of the squared residuals, where the residuals are defined as the estimted 

value minus the observed value. Yet squared error loss must be used very care-

fully for it can be heavily biased by outliers. 

Using the method of cross-validation to choose do is an expensive task. 

It requires n(n -1) calculations, where n is the number of stations. Since 

n = 5777 stations for the whole United States, about 3 million calculations are 

required to cross-validate the entire United States. In order to facilitate cross-

validatory estimates for any state, a file was created which has the cross-

validatory estimates at each station location for do=l, 2, 5, 10,20, and 50 km for 

total suspended particulate. Total suspended particulate data were used 

because these data are more abundant than those of any other pollutant. These 

estimates can be extracted without running the moving average model to get 

the cross-validation estimates. 

So far we have only discussed using cross-validation as a method for 

choosing a parameter within a particular modeling technique. Cross-validation 
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can also be used for choosing among completely different methods. When we 

choose a different do. we are merely changing a control parameter within a 

given modeling technique, This is less difficult than choosing between two com-

pletely different models. Choosing a model by cross-validation is not quite as 

straightforward as choosing parameters and will be discussed in Chapter 3. 

Utility of Surface Estimation to Detect Outliers 

The model can be used not only for estimating pollutant concentra-

tions for an area. but also as a method for detecting outliers. In fact it is the 

cross validatory feature which makes this possible, Tn a large data set such as 

this (n = 5777) it is extremely laborious to look for outliers in the usual way of 

visually perusing the data. The cross-validating estimates and graphic analysis 

allow one to analyze a large data set and quickly identify outliers. 

With a relatively good method of estimation and a large sample. one 

would expect the estimates of an observed value to be correlated with the 

observed values. Graphically. we can compare the estimates with the 

corresponding observed values by means of a scatterplot. We would expect most 

of the points to fall on a 45 degree trend line. Gross outliers can be identified 

easily from one of these scatterplots. These techniques have often been used in 

regreSSion analysis (Snedecor and Cochran. 1967), 

Figure 2.3 shows. for individual stations. a scatterplot of the logarithm 

(base e) of the measured geometric mean of total suspended particulate con-

centration plotted against the estimate of the logarithm of the geometric mean. 

The smoothing parameter do. was chosen to be 50 kilometers. Fifty kilometers 
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was chosen for the sake of example and to be sure to estimate each observed 

value. Given each station's location, the moving average using the described 

weights was used to predict the value of pollution at each station location. .Each 

station's estimate does not include its own measured value. Since the distribu-

tion of the geometric means are lognormal (a skewed distribution), logarithms 

of estimates and observed values were taken. Figure 2.3 shows some extraordi-

narily low observed values. The pOints that are particularly suspicious are those 

which have observed values (Le. logarithm of geometriC mean) exactly 0.00. In 

addition, other obvious outliers have observed values less than one. Also this 

plot provokes questions about the data; for example, in Figure 2.3. why is the 

estimat.e of one point so much smaller than the estimates of the others? 

Perhaps this point is near the pOints with the observed values less than one. 

This plot suggests examining all the data where the observed value is 

less than or equal to 2.00 to sep. if there was some reason why t.hese values are 

so low. It was found that all the stations with an observed value equal to 1.00 

(tog=O.OO.) were active exactly 0.091 percent of the time, corresponding to a sin-

gle 24-hour measurement during the 3-year period 1974-76. from now on, if a 

station had only one measurement its pollutant value is considered missing. 

Since most of these stations seem to be in the same geographic area it is rea-

sonable to suggest that observers in this area designated missing values as 1.00. 

So these stations should be considered missing and not used in the estimation 

procedures. The value with the low Estimate but a normal observed value is a 

station located next to those outliers whose observed values were designated 

1.00. As soon as these spurious data pOints were removed from the sample, the 

remaining observed values had more reasonably sized estimates (See Figure 

2.3a.). Figure 2.3a. shows the revised scatterplot obtained after the spurious 
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values of Figure 2.3 were removed. Thus this model can be used to "launder" the 

data, a process which in large data sets is otherwise tedious. 

". 
Choosing do for Ohio State with Sulfur Dioxide and 

Suspended Particulate Data 

Sulfur dioxide and suspended particulate data for the state of Ohio 

were used to illustrate the selection of an optimal do. From 1974 through 1976 

there were 185 active stations for sulfur dioxide and 398 active stations for total 

suspended particulate. For do= I, 2, 5, 10, 20 and 50 km, the two dimensional 

moving average model was used to predict the observed value at the location of 

each of the active stations by leaving out the station's own value. The difference 

between the moving average model prediction and the observed value is the 

error in the estimate. We would like to choose the do with the smallest predic-

tion error. 

Four composite measures of error were calculated. Let 

z, = logarithm of the pollutant concentration at location X'\. 

e1 = logarithm of the estimate at location X'\ from surrounding data points. 

Logarithms were taken because geometric means are assumed to have 

-• a lognormal distribution, i.e. the logarithm of the geometric mean is distributed 

normally. These measures of error are more easily interpreted for normally dis-

tributed data. Therefore the analysis will be done llsing logarithms of the 

observed values and the logarithms of the estimates throughout the thesis. When 



values are discussed they are the logarithm of the geometric mean concentra-

tion unless otherwise mentioned. 

The mean value is 

i=n 
Z=2: Zi' 

i=1 

The variance of values is 

The weighted variance of the values is 

f; Pi (Zi -z)2 
S~ = ~i=~I~ ______ ~ 

l;Pi 
\=1 

In all these formulas. 

n = the number of stations that could be estimated. 

The error measures are: 

(LF) Loss Function 

n 2: (Zi -ei)2 
\=1 LF= -----n 

(WLF) Weighted Loss Function 

f;Pi (zi -ei)2 
WLF = ~\=~1~ ______ _ 

f;Pi 
i=1 
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(RSE) Ratio of Squared Errors 

(WRSE) Weighted Ratio of Squared Errors 

(MAE) Mean Absolute .Error, Percent 

MAE = ~ t Iz,;-e,; I x 100 
nz i=1 

(WMAE) Weighted Mean Absolute Error, Percent 

WMAE = ! ~p,; !Z,; -ei ! x 100 
z2:P,; \=1 

\=1 

(MPE) Mean Percent Error 

(WMPE) Weighted Mean Percent Error 

WMPE= 

f:p,; IZi -ei I 
i=1 Zi 

n x 100 
2:p,; 
i=1 

These formulas are similar to those used by Breiman (1977) for comparing ker-

nel and Parzen multivariate density estimation techniques. The weights are 

added because if a station is not very active then the observed value at that sta-

tion is not as reliable as the more active stations; therefore the reliability of our 
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estimate is to some extent a function of the station activity as well as the esti-

mation procedure. For these error functions to reflect the adequacy of the esti-

mation procedure and not the station activity they are weighted according to 

the percentage of time active. 

These functions were computed for total suspended particulate data in 

Ohio. Table 2.1a. shows the values of each function for different values of do. 

Figure 2.4a. presents the same data in graphical form (Values are scaled so that 

functions appear on the same plot.). If one looks only at the unweighted loss 

functions, the value of do which minimizes the loss for most of these functions is 

5 kilometers. The ratio of squared errors (RSE) is the only one which is not con­

sistent with this :::hoice of an optimal do. This probably reflects the small local 

variability of suspended particulate relative to the global variance. This will be 

discussed in more detail later in this chapter. 

TABLE 2.1a. Unweighted Loss Functions by do (km) for Suspended Particulate in 
Ohio Stale. 

do(km) LF RSE MAE MPE 

1 .07562 *.500 4.9 4.9 
2 .06907 .539 4.8 4.9 
5 *.06586 .621 *4.8 *4.0 

10 .06945 .696 4.9 4.9 
20 .08111 .836 5.3 7.4 
50 .09337 .963 5.6 I 5.7 

* indicates the minimum value and thus corresponds lo the optimum do. 

In Table 2.1b., the weighted loss functions are computed for the same 

values of do. Figure 2.4b. is a plot of these functions (values are scaled so that 

functions appear on the same pIaL). These functions give a different optimal do 

than the unweighted measures. All of these weighted measures of error indicate 
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2 kIn as an optimal value of do for the weights in the moving average. In the 

weighted case, we have more consistency amongst loss functions in the choice of 

do than in the unweighted case. 

TABLE 2.1b. Weighted Loss Functions by do (km) for Suspended Particulate in 
Ohio Slate. 

do(km) WLF WRSE WMAE WMPE 

1 .0633 .425 4.5 4.4 
2 ·.0519 ·.404 ·4.2 ·4.1 
5 .0531 .477 4.3 4.2 

10 .0565 .533 4.4 4.3 
20 .0673 .631 4.7 4.6 
50 .0836 .803 5.3 5.2 

• indicates the minimum value and thus corresponds to the optimum do 

Table 2.2a. and 2.2b. are the analogues to Tables 2.1 a. and 2.1 b. for sul­

fur dioxide (l-hour and 24-hour data combined). Notice that for all loss func-

tions the sample mean does "better" in terms of squared error than does the 

moving average model. This could retIect a large local variability in sulfur diox-

ide relative to the global variance. It also suggests that there is some bias in the 

cross-validatory estimates of the model. The possibility of bias is explored in 

Chapter 3. We observe a larger local variablility for sulfur dioxide data than for 

suspended particulate data. This could arise from measuring problems such as 

a large measurement error or biased measurements. It could also mean that 

the moving average model is inherently wrong for modeling sulfur dioxide. 

Unlike suspended particulate, sulfur dioxide is a specific chemical compound 

which may diffuse or transform to other compounds in the atmosphere. Hence 

there might be a high local variability since S02 concentration may always be 

changing, whereas suspended particulate includes many compounds of a certain 
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size (eg. dust) which may not be as apt to change in concentration. Figure 2.5a. 

and 2.5b. present in graphic form the data of Tables 2.2a. and 2.2b. graphically 

(Values are scaled so that all 4 functions be presented on the same plot.). 

TABLE 2.2a. Unweighled Loss Functions by do for Sulfur Dioxide in Ohio State. 

do (km) LF RSE MAE MPE 

1 4.34 4.42 57.0 54.9 
2 2.52 *3.56 39.9 38.2 
5 2.17 3.98 38.7 38.1 

10 2.11 4.21 39.8 39.9 
20 2.00 4.32 39.7 39.8 
50 *1.80 3.95 *38.2 *37.5 

* indicates the minimum value and thus corresponds to the optimum do 

TABLE 2.2b. Weighted Loss Functions by do for Sulfur Dioxide in Ohio State. 

d 
1 3.49 
2 1.69 
5 1.63 

10 1.60 
20 1.56 
50 *1.38 

3.91 
*2.42 
2.82 
2.93 
2.96 
2.68 

46.6 
*27.7 
28.9 
30.6 
31.1 
31.6 

43.1 
*25.8 
27.1 
29.5 
29.8 
29.7 

• indicates the minimum value and thus corresponds to the oplimum do 

Measuring Local Variability 

Perhaps a more efficient method for finding the optimal do than leaving 

one out and estimating the moving average for each data point is to find a meas-

ure of local variability (LV) as a function of do and find that do which minimizes 

it. That is, in the moving average model the do chosen by cross-validation should 

be approximately that do, corresponding to a radius of disks drawn around each 
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point, for which the point values inside the disks are the most homogeneous. In 

other words, any other choice of. do should lead to a disk radius which, on the 

average, gives more heterogeneity among points within the disks. This section 

explores a method for estimating this local variability function. 

The disk radius is determined by do in the following manner. Recall 

that the moving average model is a weighted average of the values of the points· 

surrounding the point of estimation. The weights are proportional to 

In the moving average model. points within four times do are used in the aver-

age; yet the pOints that are a distance of four times do give an absolute weight of 

Wi = e-a = .0003Pi 

which can be a small relative weight. Since the weights in the model are relative 

weights, a point which is far away, say 2.9 do, can have a weight=l.O if it is the 

only point within 3xdo. Therefore choosing a Significant weight as a function of 

do is an arbitrary choice and may depend on the parUculcU' data set and its pre':' 

cis ion. 

Local variability is measured in the following manner. A disk is drawn 

around every point, defined by the station location, in the entire geographic 

area of interest. The radiUS of these disks is chosen as a function of do. (See Fig-

ure 2.6.) For a large enough radius there will be other pOints besides the center 

point contained inside these disks. In addition, each point will be the center of 

exactly one disk (Le., for every point there is an associated disk for which it is 

the center). For each point we can calculate a mean and a variance using the 

points which lie in its aSSOCiated disk for a specific radius r. For example, the 
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disk associated with Xi has the following mean and variance: 

Disk Mean 

Local Variance for point !I;: 

k~ 

2:Xj 
_ j=l 
X'=--

"' ki 

ki = the number of points inside the associated disk. 

We will call the variance inside each disk the local variance for that point using 

radius r. To calculate the local variability of the entire region for a particular r, 

we take a weighted average of the local variances. 

Since a point may be in more than one disk we should weight the points 

accordingly. The precise method by which to weight the local variances for an 

overall measure of local variability is difiicult to decide, so a method is explored 

which seems to be valid for intuitive reasons. We will examine the two most 

extreme cases first. Suppose the radii were chosen so small that no point is in 

more than one disk. We would then have local variances which were undefined 

since there are no "degrees of freedom". That is, it is impossible to calculate a 

variance from only one value per disk. If we choose the radius large enough, 

every point would be in every other point's disk and each disk would have the 

same mean and variance, namely the mean and variance of the entire region. In 

this case we would want the weighted average of the so-called local variances to 
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equal the variance of anyone of them and thus there are N-1 degrees of free-

dom, where N = the numbp.r of stations in the region. If we weight each point by 

_1_ where ~ ;: the number of disks containing the point i. (See Figure 2.6.) 
1l.t 

then the average of the local variances in this case will equal the variance of any 

one of them, which is what we want. 

f N(Xi.-x )2 

i=l ~ 
N-l 

Now let us examine the cases other than these two extreme examples. 

We could think of each disk having k,; -1 "degrees of freedom" where k;, is the 

number of pOints in each disk. If each disk were independent of every other disk 

(i.e. no overlapping disks) then this would be valid and the weights would be 1 

and local variability could be measured by just the average of the local variance 

given by each disk. But since there is overlap, we have given each point a weight 

of _1_ where ~ = the number of dlsks containing point i. This way ear.h point 
~ 

still contributes a weight of 1 to the average local variability of the region since 

each point appears in the sum of squares 'not times. The total weight each point 

contributes to the total sum of squares is ~ _1_ = 1. 
;=1 'not 

In order to normalize variability we need a denominator which 

expresses the number of degrees of freedom associated with the local variabil-

ity The number of degrees of freedom should take acr.ount of both the number 

of data points in each disk and the amount of overlap. Therefore we have chosen 

the denominator to be N - ~ _1-which gives the expected answer in a few simple 
';=1 ~ 
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cases. These cases are given below. 

More formally one can express this measure in the following manner. 

'. (LV) Local Variability 

where 

N = the total number of pOints in the region of interest. 

;z; = the value of pollution at a point. 

X; = t.he mean value corresponding to the disk associated with ;z;. 

Let us examine this formula in light of a few examples to see its 

plausibilty. 

CASE 1. Every point is in only one disk. The disk radius is small so that no vari-

ances can be calculated. There are no degrees of freedom. In this case ""-i = 1 

and thus the denominator of LV is zero. Therefore, as should be expected LV is 

undefined in this case. 

CASE 2. The disk radius is large enough that every point lies in every other 

point's disk. Then""-i =N and k; =N and 

f f (Xi -X; )2 
. 1'1 N Lv=J=t= N 

N_~_l 
;=I N 

which is simply the sample variance of the pOints for the entire region. This is 



the variance we would expect in this case since the local variance becomes the 

global vl'lriance with a disk radilll': this large. 

CASE 3. Suppose there are no overlapping disks but there are m discrete clus-

tel's of pOints. In lhis case each cluster has its own mean and sum of squares 

associated with it. Each point has the same disk and thus the same mean and 

sum of squares associated with it as any other point in its cluster. In this case 

~ :: kj' where kj is the number of points in the jth cluster, and 

N ~ (zt-Xj)2 ~ ~(Xi-Xj)2 ~.~ k· 
LV:: J=!,,=I 1 

. N-f-l 
:: j=Ii=1 

N-m 
i=1 k j 

This is similar to the within mean square in one way analysis of variance 

(Schefi'e', 1959). 

CASE 4. Suppose each point has only one other point in its disk. So there are a 

series of two overlapping disks which do not contain any other pOints. In this 

case ~ :: 2 for all i and 

This is similar to case 3 with two pOints in each cluster. This generalises to the 

case where every point is in k disks which do not overlap, then 

N.f:."t (~_Xj)2 
LV = ~j_=.:...;l i;...=...:.l ___ ...., 

N-K. 
k 

In other words this is the case, similar to case 3., where there are m clusters 

with with an equal number of points, k, in each cluster. 
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Local variability is directly related to the control parameter in the 

model described earlier. The number of nearby pOints which are used in the 

estimate of a particular point is related to the do in this model. If do is large, 

this implies that the local variability is high and we can give relatively large 

weight to pOints far away from the point of interest in its estimation. Likewise, if 

do is chosen to be small. pOints far away will be given relatively small weight 

since the minimum local variability occurs at a smaller disk radius. Points 

further than 4xdo were given zero weight by the two-dimensional moving aver-

age. This restriction was arbitrarily chosen because for a particular weighting 

scheme (Le. do), values beyond 4xdo kilometers are assumed to have no 

infiuence. 

The disk radius where the minimum local variability occurs is similar 

to do and the 4xdo restriction in the two dimensional mOving average model. Tn 

fact, points within this radius are on the average more similar in concent.ration 

than pOints outside lhis radius. Therefore we should weight pOints within this 

distance relatively high and pOints beyond the disk radius should be essentially 

disregarded 

Using Ohio as an example, local variability is calculated for various disk 

radii. The radii were chosen as a function of do. For each do, two disk sizes were 

chosen. One was 4xdo which is just the same size that the moving average model 

uses in selecting stations to compute its estimate of a pOint. 1 Since the weights 

in the moving average model are distance-dependent, we expect it to do well for 

disk radii where the local variability is small. Ohio is chosen so that We can t.:om-

1 Since stations further than about 3do have negligible weights in the two dimensional moving 
average model, and since these estimates are supuressed for points furL1.er t..1.an 3do from any active 
station, one might argue that a disk radius of 3do would have been more appropriate than 4do. 
Nevertheless, the choice of 3do or 4do does not change the conclusions of this section. 
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pare our choice of disk radius with our cross-validatory choice of do in the previ-

ous section. In Figures 2.7a. and 2.7b. the local variability is shown as a function 

of disk radius for Suspended Particulatp. and Sulfur Dioxide respectively. Tn 

Tables 2.3a. and 2.3b. the actual values which were calculated for Ohio are given. 

For comparison with the cross-validatory choices of the previous section. we 

chose disks c~rresponding to do = 1. 2. 5. 10. 20. and 50 km. This correspon­

dence is arbitrary but is based on the moving average model as it has been used 

in the PAREP project. The other disk size was chosen so that the absolute 

weights in the averagp. would never be smaller than .01. The relationship of the 

absolute weights to the relative weights which are used in the average is not 

always the same and therefore a disk size which corresponds directly to the 

weights in the two-dimensional moving average cannot be predicted. 

TABLE 2.3a. Local Variability as a function of do for Suspended Particulate in 
the State of Ohio. 

do (km) disk radius (km) Local Variability Hdflf 

1 3.03 .0583 141.80 
1 4.00 .0573 173.28 
2 4.29 ·.0562 181.37/ 
2 8.00 .0597 240.35 
5 10.74 .0614 264.68 
5 20.00 .0662 326.96 

10 21.47 .0671 334.21 
10 I 40.00 .0819 372.48 
20 I 42.94 .0837 375.20 
20 I -' 80.00 .0927 390.68 

50 I 107.36 .0945 393.21 
50 200.00 .0957 396.03 
•• 500.00 .0972 397.00 

• The smallest local variability. corresponding to the optimal do . 
•• do is that value which gives a disk radius large enough to contain all 
the points in Ohio. Notice that "df"=N-1 since there iiI'e 398 active 
stations for suspended particulate in the region. 
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The disk radius which gives disks that are more homogeneous than 

those given by other radii corresponds to a do = 2 km. These results are the 

same as those given by cross-validation using weighted loss functions (Table 

2.1 b.) and similar to that obtained using the unweighted loss functions (Table 

2.1a.). This result along with the shape of LV suggest that local variability may 

be another method for choosing the optimal do which is much faster than choice 

by cross-validation. 

TABLE 2.3b. Local Variability as a function of do for Sulfur Dioxide in the State of 
Ohio. 

do (km) disk radius (kIn) Local Variability "df" 

1 3.03 .2129 50.37 
1 4.00 .1934 66.70 
2 4.29 .1984 71.00 
2 8.00 .1930 101.46 
5 10.74 ·.1887 113.73 
5 20.00 .1989 135.56 

10 21.47 .2008 137.58 
10 40.00 .2526 162.65 
20 42.94 .2644 164.31 
20 80.00 .3166 177.30 
50 107.36 .3468 180.41 
50 200.00 .4063 183.10 
•• 500.00 .5069 184.00 

• The smallest local variability, corresponding to the optimal do . 
•• do is that value which gives a disk radius large enough to contain all 
the points in Ohio. Notice that "df"=N-l since there are 185 active 
for sulfur dioxide stations in the region. 

For sulfur dioxide, the cross-validatory analysis using weighted loss 

functions suggests a do = 2 km while the unweighted analysis leans toward a do = 
50 km. This implies that sulfur dioxide has a higher local variability than 

suspended particulate. Local variability analysis shows this is true. Table 2.3b. 

gives a minimum at a disk radius of 10.74km which corresponds to do = 5 km, 
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Figure 2.8a. Local Variability as a Function of Disk Radius for Suspended 
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which is between the two confiicting values in the cross-validatory analysis. 

There are at least two reasons why sulfur dioxide may have a higher local varia-

bility. 

In order to determine the actual optimum disk radius, LV was calcu- .-
lated for disk radii increments of one kilometer. In Figure 2.8a. local variability 

is shown as a function of disk radius between 5 and 10 km for suspended particu-

late. In Table 2.3a., when local variability is at a minimum the disk radius is 

equal 4.29 km. Yet, Figure 2.8a. indicates that a radius of 5 km, corresponding 

to a do of approximately 2 km, gives the minimum local variability for suspended 

particulate. 

In Figure 2.8b. local variability is shown as a function of disk radius 

betweem 5 and 20 km for sulfur dioxide. This plot shows an expansion around 

the disk radius equal to 10.74 km giving the minimum shown in Table2.3b. In 

the Figure, one can see that beyond 10.74 km, LV decreases further to a 

minimum of .1812 at disk radius of 14 km; it then increases and continues to 

increase steadily to the maximum variability (Le. sample variance for all values 

in the region). It is also interesting to note the slight instability of the curve at 

smaller disk radii. This instability is expected since with small ki, in each disk 

we expect LV to be extremely sensitive to the addition of new points with incre-

ments in disk radius. Also, some instability can be expected from other sources 

of variation, as is seen in Figure 2.8a. Here LV is increasing steadily but also 

varies from a steady increase. 



Consistency in the Shape of Local Variability 

In order to further explore our results with Ohio. the same calculations 

for New York and F'lorida are shown. here. New York and Florida were chosen 

because these states have the second and third largest number of monitoring 

stations respectively. For each state. the basic shape of the curve showing local 

variability as a function of disk radius is the same. Also. the curves showing 

local variability for sulfur dioxide seem to be similar across all three states. 

(Tables 2.4a .. 2.4b .. 2.5a. and 2.5b .. along with Figures 2.9a. thru 2.12b.) 

TABL.E 2.4a. Local Variability as a function of do for Suspended Particulates in 
New York State. 

do (km) disk radius (km) Local Variability "dfu 

1 3.03 .0484 75.69 
1 4.00 .0480 92.47 
2 4.29 .0493 98.27 
2 8.00 ·.0481 132.76 
5 10.74 .0516 154.79 
5 20.00 .0608 202.26 

10 21.47 .0631 208.31 
10 40.00 0808 245.42 
20 42.94 .0837 248.50 
20 80.00 .0974 265.88 
50 107.36 .1033 269.99 
50 200.00 .1107 273.30 
•• 700.00 .1168 275.00 

• The smallest local variability. corresponding to the optimal do . 
•• do is that value which gives a disk radius large enough to contain all 
the points in New York Stale. 
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TABLE 2.4b. Local Variability as a function of do for Sulfur Dioxide in New York 
State. 

do (km) disk radius (km) Local Variability "df" 

1 3.03 .2023 40.18 
1 4.00 .1851 48.51 
2 4.29 .1845 51.06 
2 8.00 .1615 71.95 
5 10.74 ·.1614 83.07 
5 20.00 .2080 103.33 

10 21.47 .2079 104.21 
10 40.00 .2588 114.86 
20 42.94 .2608 115.95 
20 80.00 .3085 124.62 
50 107.36 .3537 128.44 
50 200.00 .3739 131.49 
•• 700.00 .3839 133.00 

• The smallest local variability, corresponding to the optimal do . 
•• do is that value which gives a disk radius large enough to contain all 
the points in New York State. 

TABLE 2.5a. Local Variability as a function of do for Suspended Particulates in 
Florida State. 

do disk radius (km) Local Variability "df" 

1 3.03 .0580 48.73 
1 4.00 ·.0546 69.20 I 
2 4.29 .0563 72.56 
2 8.00 .0574 . 105.35 
5 10.74 .0608 122.99 
5 20.00 .0654 151.83 

10 21.47 .0668 155.72 
10 40.00 .0716 176.02 
20 42.94 .0716 177.97 

20 I 80.00 .0841 191.81 
50 107.36 .0866 194.26 
50 I 200.00 .0918 200.73 
•• 500.00 .0907 201.00 

• The smallest local variability, corresponding to the optimal do . 
.. do is that value which gives a disk radius large enough to contain all 
the pOints in Florida State. 
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TABLE 2.5b. Local Variability as a function of do for Sulfur Dioxide in Florida 
State. 

do (km) disk radius (km) Local Variability "df" 

1 3.03 .2365 46.82 
1 4.00 .2308 59.74 
2 4.29 .2298 62.00 
2 8.00 ·.2176 81.64 
5 10.74 .2325 90.68 
5 20.00 .2426 105.83 

10 21.47 .2423 107.50 
10 40.00 .3138 118.06 
20 42.94 .3151 118.75 
20 80.00 .3222 127.46 
50 107.36 .3452 131.39 
50 200.00 .3595 134.17 
•• 900.00 .4017 184.00 

• The smallest local variability, corresponding to the optimal do . 
•• do is that value which gives a disk radius large enough to contain all 
the pOints in Florida State. 

For all three states, the minimum of local variability for suspended 

particulate occurs at a disk radius smaller than that for sulfur dioxide. Also 

each state has a different size diSk which gives minimum local variability. Since 

there are different dispGrsion and dilution mechanisms in different geographic 

areas we should expect this inconsistency in choice of disk radius across states 

for each pollutant. In fact if we look at Figures 2.8b., 2.9b., 2.10b., 2.llb. and 

2.12b. where LV are expanded about the minimum we find that the minima seem 

to occur at the following disk radii: 

State 

Ohio 
New York 
Florida 

Disk Radius (km) 

Suspended Particulate 

5 
1 
5 

Disk Radius (km) 

Sulfur Dioxide 

14 
10 
8 

To view local variability curves on one graph over the whole range of 

disk radius (from only one "degree of freedom", Le. disk radius so small that 
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Figure 2.9b. Local Variability as a Function of Disk Radius for Suspended 
Particulate in New York State (expanded about the minimum). 
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Figure 2.10a. Local Variability as a Function of Disk Radius 
for Sulfur Dioxide in New York State. 
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Figure 2.IOb. Local Variability as a Function of Disk Radius for Sulfur Dioxide 
in New York State (expanded about the minimum). 
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Figure 2.11a. Local Variability as a Function of Disk Radius for Suspended Particulate 
in the State of Florida. 
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Figure 2.1Ib. Local Variability as a Function of Disk Radius for Suspended Particulate 
in the State of Florida (expanded about the minimum). 
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Figure 2.12a. Local Variability as a Function of Disk Radius for Sulfur Dioxide in 
the State of Florida. 
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only one disk contains another point all the way to disks of a large enough size 

to contaIn the entire region). the logarithm (base e) of the disk radius was plot­

ted against LV These curves are shown in Figures 2.13a. thru 2.15b. 

There are basically three regions on each curve. The first region is 

called the Undefined Region. This area ranges from disk radius of 0 to a disk 

radius large enough to have at least one disk containing two pOints. The size of 

the undefined region is determined by the particular geographic area one is 

studying and the geographic distribution of stations in that area. The second 

region is called the Region of Degeneracy. The Undefined Region is actually 

included in the Region of Degeneracy. The degenerate region corresponds to. 

disk radii which are too small to have enough pOints in each disk to estimate 

variance within each disk. This area is not specifically defined but can be 

estimated by looking at the "degrees of freedom" and the plots of the logarithm 

of the disk radius vs. LV, The "degrees of freedom" specify the amount of over­

lap and therefore how many points lie in each other's corresponding disks. The 

Region of Degeneracy is deSignated in each of the plots. yet the line drawn is a 

dotted one indicating that the boundary of this region is not sharp. The third 

region is for disk radii greater than those in the degenerate region. These disk 

radii are large enough to contain enough pOints so that the variance around a 

point can actually be measured. It is in this area where the optimum choice 

exists for disk size. 

The choice of these areas is given by the shape of the curves and the 

degrees of freedom. Except the curve for New York's suspended particulate 

local variability (Figure 2.14a.). each curve has basically the same shape. The 

curve climbs initially as the disk radius gets larger. It climbs steeply as the 

number of degrees of freedom increases. Then at some point it decreases into a 
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trough-like area. This is the area where the optimal disk radius is chosen. Then 

it increases to the maximum, which is the (global) sample variance for the 

entire state. For the sake ofexampl'e, plots of the number of degrees of free-

dom for Ohio state's suspendEid particulate against disk radius and logarithm of 

the disk radius are given in Figure 2.16a. and 2.16b. Note that "df" increases 

quickly when disk radii are small and then levels out as the disks get large 

enough to include almost every station in the area. Degrees of freedom are a 

monotonic function of disk radius. The plot of "df" versus the log of the disk 

radius is an S-shaped curve. The area of degeneracy is chosen as the area where 

LV is increasing rapidly and stops right before the trough-like area. It increases 

becauses the number of degrees of freedom are increasing rapidly giving more 

disks containing more than one station and therefore a variance can be calcu-

lated. 

It is relatively easy to choose the optimum disk radius if LV has the 

functional behavior shown in most of these curves. Suppose LV does not 

increase steadUy but bounces around injtially as in Figurp. 2. 14i'\. Using the 

method described in the previous paragraph, we would choose the minimum 

which lies in the area of degeneracy, since it is the first trough-like area after a 

rapid increase. This disk radius is only one kilometer. Knowing something 

about the spatial distribution of monitoring stations, we see that one kilometer 

would allow hardly any stations Lo have another near enough to have a variance 

associated with it. With this choice, the area of degeneracy stops at a radius of 

.5 kilometers corresponding to an LV with 8 degrees of freedom. This implies 

N 
that 2: 1I'"-i = 268. Since there are only 276 stations altogether, '"-i must be 1 

i=l 

for most stations. Thus at a disk radius of .5 kilometers, there are an 
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insufiicient number of points to calculate local variability and thus LV should be 

considered degenerate. Therefore, care must be t.aken in the choice of areas. 

We must closely examine the number of degrees of freedom t.o see how reliable 

LV is at various disk radii. 

Perhaps there are two ways one can use local variability to choose the 

"best" disk radius. One method is to choose the minimum disk radius greater 

than the degenerate area's upper limit, which is 4xdo in the proposed scheme. 

This method might not be the best since LV is data dependent, causing the curve 

to tluctuate around the minimum making it difficult to find the true minimum. 

Another method which is harder to define because it does not involve chOOSing a 

particular point, instead involves choosing a region of disk radii for a Region of 

Homogeneity. In each of the curves of the logarithm of the disk radius versus 

local variability, after the region of degeneracy there is a trough-like area and 

then l.V starts to increase rapidly. We could call this t.rnugh-like area the region 

of homogeneity. It is better to choose a large disk radius to get more pOints 

which will give a a more precise estimate~ This argument might suggest a 

method which chooses the largest possible disk radiUS before LV starts increas­

ing rapidly. Another method might be to take the disk radius in the middle of 

the trough. This is analogous to choosing do and 4xdo in the moving average. 

The middle of the trough may be our choice of do and the end of the trough may 

give us our upper limit. In other words one should not take any pOints into the 

estimate which are outside the area of homogeneity. Which point is taken as giv­

ing the most homogeneous disk is probably not critical for estimation. Yet it is 

important, however, to know which disk radii not to use, and those disks can be 

determined by investigating the relationships between local variability and disk 

radius. 
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Minimizing Local Variability as an Alternative to Cross-Validation 

The two dimensional moving average m.odel bas been used to estimate 

an average pollution concentration for particular geographic areas such as 

census tracts and counties. The interest in calculating an average pollution 

level is one of measuring human exposure. Thus the model is usually calculated 

for the latitude and longitude equal to that of the population centroids. To 

determine the best value of the parameter do, cross-validation techniques were 

used (Selvin et. rU. 1980, Selvin et. ai. 1981, Johnson et. ai. 1982). Using the 

concept of local variability requires less computer time, besides the fact that 

local variability is of interest in its own right. For example, comparing across 

states or across pollutants to indicate different dispersion mechanisms can be 

done by analyzing the local variability function. 

For precticting the pollution concentration at the centroid of a geo­

graphic area, cross-validation chooses a do. This do gives a disk radius which 

corresponds to a disk for which the centroid is the center. The two-dimensional 

moving average model is applied to all the points inside this disk for the "best" 

prediction of the centroid's concentration. Since we have not measured the 

concentration at the centroid point itself, we cannot use it to choose a disk 

radius. Yet if we assume that the region of interest has a certain geography 

associated with it which prescribes a disk radius that is most appropriaLe, we 

can then cross-validate every value in the region and choose the do which does 

the best on the average for this region. We then can use this as the do in our 

centroid prediction. Another method which is much faster because we do not 

need to use the model with so many data sets, is to measure local variability as 

a function of disk radius. We would then use the do which corresponds to the 
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disk radius which gives us the smallest local variability. 

The local variability method is superior to cross-validation for at least 

two reasons. It is computationally faster: since LV is only a double sum. It is 

more straightforward: that is. one does not face the problem of which goodn~ss 

of tit function to look at in the analysis of the residuals in cross-validation. All 

one needs to do is to select that disk radius which minimizes LV. Another advan­

tage of LV is that it is non-parametric. where in cross-valdation the choice of 

disk radius (Le. do) depends on the form of the weighting function. Other rea­

sons why it may be superior are given in Chapter 3. 

Local variability analysis CQuld probably be used for choosing parame­

ters in other methods of surface estimation. In nearest neighbor regression. LV 

analysis could give the optimal number of neighbors to include in an estimate. 

For partition-based methods the size of the partition can be chosen by LV 

analysis. Local variability can be ploUed as a function of the number of nearest 

neighbors or the size of the partition and thus the minimum local variability 

could correspond to the optimum number of neighbors or partition size in the 

same way it does do. 
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CHAPTER THREE 

Comparing Two Methods of Surface Estimation 

", Akima's Method of Bivar.iate Interpolation 

Akima (1978) proposed a method and algorithm for bivariate interpola-

tion and smooth surface fitting for irregularly distributed data pOints. Since air 

quality monitoring stations are not distributed regularly, we could perhaps 

apply the method in this case. Obviously the two-dimensional moving average 

model is not the only method for estimating a surface from discrete data pOints. 

One question that arises is which method is the "best" method for geographic 

estimation of air quality. Perhaps one method is better for some applications 

while the other is better' for others. Before attempting to answer this question, 

we must first ask, "What does 'best' mean?". Once we have a definition of "best" 

then we can find a method for determining the best estimation scheme. In this 

section, Akima's method of interpolation will be compared to the two-

dimensional estimation procedure discussed in the previous chapter. 

First, let us outline Akima's general method. The interpolating func-

tion is smooth with continuous first order partial derivatives. The xy plane or 

geographic region of interest is divided into triangular cells using the max-min 

criterion of Lawson (1972). This is called the Delaunay triangulation which is 
o· 

explained later in this section. Each data point is the vertex of a triangle. 

Akima's method is based on the following three assumptions. The first assump-

tion is that the value of the function at a point (x ,y) in a triangle can be interpo-

lated by a fifth-degree polynomial. 
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Thus twenty-one coefficients need to be determined for each triangular 

region. The second assumption is that the values of the function and its first and 

second order partial derivatives are given at each vertex of the triangle, which 

gives eighteen of the twenty-one coefficients needed. The third and final assump-

tion is that the partial derivative of the function differentiated in the direction 

perpendicular to each side of the triangle is, at most, a polynomial of degree 

three in the variable measured in the direction of the side of the triangle. The 

third assumption gives estimates of three additional coefficients for the 

required number. This method is recommended by Akima, yet air quality data 

pOints are so far apart in some cases that estimating first order partial deriva-

tives at the data points would be presumptuous to say the least. If there were 

information on wind velocity or gas dispersion for these data, estimates of first 

and second order derivatives is conceivable. Since we do not have any additional 

data" linear interpolation in the triangles bounded by the data pOints was used 

here. The following equation was estimated for each triangle. 

Z(x) =q Oo+q loX +q OIY· 

The three coefficients in linear interpolation are easily defined by the three data 

pOints. This technique of surface estimation differs from the two-dimensional 

mOving average model in at least three ways. First of all. Akima's method is 

defined everywhere within the convex hull of the data and the moving average 

method will not estimate points which do not have stations within a certain 

radius. Secondly, linear interpolation estimates a surface which necessarily 

contains all the data pOints where the two-dimensional moving average surface 

does not necessarily go through any of the data points. Lastly, the interpolation 
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method predicts a surface which is not smooth, that is, on the lines connecting 

the data pOints the surface is continuous but not differentiable. Unlike Akima's 

method, the surface predicted by the moving average is differentiable every:-

where it is defined. 

It is fairly obvious that a triangulation from several data pOints is not 

unique. Different grids or triangulations would of course lead to different piece-

wise functions for interpolating the data. We used the Delaunay triangulation 

which can be found using the max-min angle criteria. The following criteria are 

used. If a set of four points are vertices of a quadrilaleral with each interior 

angle smaller than 1T', then there are two possible ways to partition it into two 

triangles (See Figure 3.1). Lawson (1972) prefers the choice that maximizes the 
\ 

minimum interior angle of the two triangles produced. So in this case, we would 

choose (a) in Figure 3.1. The intuitive reasoning behind this method is that the 

chosen triangles are as equal in size as possible. Triangles constructed in this 

manner distribute the data over the area more evenly. 

In order to compare Akima's method with the model described earlier, 

we first triangulate the data pOints and then fit a plane to the vertices of each 

triangle. This method clearly does not smooth the data, whereas, where the sur-

face estimated by the two-dimensional moving average is defined, it is smooth. 

Smooth, in this context, means that at least first order derivatives are defined. 

The resulting surface of Akima interpolates the data, that is, it passes through 

all the given points, and is defined everywhere in the convex hull of the data 

pOints. It, therefore, is most appropriately applied when precise z-values are 

given or the errors are negligible. In air quality we know the errors are large 

and therefore this method is probably not appropriate for that reason alone. 

However it is useful to consider it as a comparison to other surface-fitting 
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(a) 

( b ) 

Figure 3.1. The Delaunay triangulation is chosen in (a). It 
gives the maximum minimum interior angle of the two 
angles produced. 



techniques. Unlike this bivariate linear interpolation (BLI) method, the moving 

average is (i) smooth where it is defined, (ii) not. defined everywhere within the 

convex hull of the data points, and (iii) does not interpolate the pOints. First how 

the definition of "better" needs to be determined and then we can define the 

superior technique. 

Linear Interpolation of Sulfur Dioxide and Suspended Particulate 

Data in Ohio State 

The Statistical Package known as the System'S (Becker, 1981) was used 

to perform linear interpolation on the data from two pollutants, sulfur dioxide 

and suspended particulate, in Ohio. The estimate of sulfur dioxide was a combi-

nation of 1-hour and 24-hour data, defined as described in Chapter 2. The 

suspended particulate data are taken on a 24-hour basis. Values for 1600 equally 

spaced pOints in a 40 by 40 rectangular grid were estimated using linear interpo-

lation. That is, 40 pOints equidistant over the range of latitude and 40 points 

equidistant over the range of longitude are chosen. Akima's interpolation is per-

formed for all possible pairs of these chosen latitudes and longitudes. Figure 3.2 

and 3.3 show the contour maps derived by linear interpolation for suspended 

particulate and sulfur dioxide respectively. 

In the contour map of suspended particulate most of the higher con-

centrations occur in metropolitan areas. The three highest levels on the map 

seem to be in the vicinity of Cleveland, Cincinnati, and Toledo. The area around 

Steubenville appears as an elevated plateau. Columbus and Findlay also have 

high levels of suspended particulate concentration. The high plateau effect may 
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come from the sparseness of data and the simplification which is made by the 

triangulation. Also one is likely to see high levels of suspended particulate in 

agricultural areas and not necessarily metropolitan areas. 

Like suspended particulate. sulfur dioxide is high in Toledo. Cleveland 

and Steubenville as shown by these contour maps. On the other hand. unlike 

suspended particulate. Cincinnati does not seem to have a very high level of sul-

fur dioxide. Toledo, Cleveland and Steubenville seem to be the only metropoli-

tan areas of high concentrations of sulfur dioxide. 

There are at least three questions which arise in examination of t.hese 

maps. 

1. Are there enough data to make accurate contours using this method? 
2. Does the method really apply? 
3. Are there enough data to make accurate contours using any method? 
4. What is the "variability" of these maps? 

We will compare the interpolated contours with contours given by the two-

dimensional moving average model. In general this interpolation method shows 

what we would expect from a contour map of pollution concentrations in Ohio. 

Usually. high pollutant concentrations in the metropolitan areas and lower con-

centrations outside these areas are shown. But also. we must remember that it 

is the metropolitan areas that are most thoroughly monitored and there is some 

variability associated with these estimated contours. The actual variance of a 

contour map is not known but its existence has been shown by Diaconis and 

Efron (1983) USing the bootstrap method. The data were resampled and for each 

sampling an estimated map was drawn from the sampled data. It was found that 

the estimated contours do change from one sampling to another. Some parts of 
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the contour maps change more from one sampling to another than other areas. 

The areas that change more have a higher variance in the contours than those 

that change less. The map itself could incorporate the variance associated with 

the contour lines by shading. possibly with color. The areas with a high variance 

could be colored gray. whereas the areas with a low variance and thus more 

confidently estimated contours might be shaded a darker color. Contour maps 

from the two-dimensional moving average estimation procedure will be given in 

the next section. 

Contour Maps Given By The Two-Dimensional Moving Average 

For the same 40 by 40 grid that was linearly interpolated in the previ­

ous section. a value at each of the 1600 pOints was estimated using the two­

dimensional moving average. The do which was selected by cross-validation and 

local variability analysis for suspended particulate was 2 km. The do chosen for 

sulfur dioxide was 5 km using local variability analyses and 2 km using the 

cross-validation techniques (although not all cross-validatory functions agreed 

on this choice). The grid was calculated for do=1. 2. 5. 10. 20 and 50 km for both 

sulfur dioxide and suspended particulate. The contour maps from each estima­

tion procedure were drawn. Figures 3.4 thru 3.15 show the contour maps by pol­

lutant and do. 

Thus. the smaller the parameter do. the more difficult it is to estimate 

a grid point by the two-dimensional moving average because of the window 

definition. That is. if do is 1 km then only points within 3 km of some active sta­

tion can be estimated. There are very few points within 3 km of an active sta-
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Figure 3.6. Con'our ~p Produced from the Two-dimensional Moving Average (~.5) for Suspended Particulate in Ohio State. 
(40 by 40 grid.) 
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Figure 3.7. Contour Map Produced by the Two-dimensional Moving Average (do=lO) for 
Suspended Particulate in Ohio State. 
(40 by 40 grid.) 
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Figu,e 3.B. Con'ou, flap P,oduced by the Two-dimensional Moving Average for Suspended Particulate in Ohio State. (do: LO) 
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Figure 3.9a. Active Nonitoring Stations Measuring Suspended Particulate in the State of Ohio, 1974-76. 
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figure 3.10. Contour Map Produced 
Sulfur Dioxide in (lliio State. 
(40 by 40 grid.) 
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Fisure 3.11. Contour Nap Produced f roUi the Two-dimensional Moving Average (d.=2) for Su lfur Dioxi.de in Ohio State. 
(40 by 40 grid.) 
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Figure 3.13. Contour Map Produced from the Two-dimensional Moving Average (d,=lO) for Sulfur Dioxide in Ohio State. 
(40 by 40 grid.) 
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Figure 3. )4. Cuntour Map Produced from the Two-dimensional Moving Average (d
o

=20) for Sulfur Dioxide in Ohio State. 
(40 by 40 grid.) 
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figure 3.15. Contour ~p Produced by the l~o-dimensional Moving Average (d.-50) for Sulfur Dioxide in Ohio. 
(40 by 40 grid.) 

............................ 

. ' ....... 

... 

· · · · · · · · · · · : · · · · · · · · · 

) 

· ................ 
. . ..... 

~ " ....... . ..... . 

............. 

··········r············ 

· · · · · 
! 

· · · i 
.,': 
· . · . · . · . It tUbe7LV~lie 

: : .................................. . 

'. 

t \ 

I-' 
I\) 
I\) 



" 

Figure 3.150. 

\0 .... 

Active Monitoring Stations Measuring Sulfur Dioxide in the State of Ohio, 1974-76. 

...... 
f\J 
Lv 



124 

tion. In fact only 56 paints out of 1600 are estimated by the moving average with 

do = 1 km for sulfur dioxide. Using the contouring algorithm described in Sys­

tem S. these points are not close enough to each other to estimate any contour 

lines. Only 96 out of 1600 grid points were estimated for suspended particulate 

with do = 1 km. As do increases the contours get flatter because more stations 

are being t~en into the estimate. 

In chapter 2 .. both cross-validation and local variability analysis show 

that for suspended particulate a do equal to 2 km is preferred. For these con­

tour maps. a do = 2 km does does not gIve a very informi'\tive contour map. 

Several inferences could be made from this observation. One is that these data 

are too sparse to derive contour maps from them. Another might be that the 

window definition is too stringent. For do = 1. 2 or 5 km. the contours are not 

estimable from a 40 by 40 grid whereas for do = 20 or 50 km the contours are 

too flat to distinguish any pi'\l'ti.cularly high or low concentrations. Therefore. it 

seems that a do = 10 km gives the most information in a contour map. Sulfur 

dioxide contour estimation by the two-dimensional moving average model 

behaves very similarly. Thp. value of do which gives the most informative contour 

maps is around 10 or 20 kIn. This do is greater than that which is chosen for 

suspended particulate probably because there are not as many active stations 

for sulfur dioxide and therefore we may need a larger do to estimate a grid 

point. These maps produced by the moving average with the optimal do indicate 

areas where there is no information. Thus if we use a larger do. the contours 

produced will have more variability. 

It is helpful to compare these contour maps with the spatial distribu­

tion of stations in Ohio. Figures 3.9a and 3.15a show the active mOnitoring sta­

tions on the map for suspended particulate and sulfur dioxide. The variance of 
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the contour lines is increased for regions of no data. 

Comparing Contour Maps Obtained by Two Methods of Estimation 

If we want to compare the two different methods of contour map esti­

mation that we have described. first we must choose a do for weights in the mov­

ing average so that we can compare one contour map from the two-dimensional 

moving average estimation procedure to one from bivariate linear interpolation. 

Suppose we choose the do which was determined by local variability analysis in 

the previous chapter. Since this analysis does not give an exact choice. we 

select a do which is near the minimum. We will get the most information from a 

do which is large enough to include a sizeable number of stations in the estimate 

but not so large as to substantially increase the local variability function. In 

chapter 2. this is described as the end of the "trough-like" region. In order to 

estimate a grid point by the two-dimensional moving average model there must 

be a station within 3xdo. The larger the do. the more grid points there are that 

are estimable with any confidence by this model. Using more stations in the 

estimate also improves precision. Thus do should be taken as ·large as possible 

before the local variability increases rapidly. 

If we look at Figure 2.l3a to choose the proper do for suspended parti­

culate in Ohio, we see thal the largest point we can choose before local variabil­

ity increases quickly towards the maximum. is at a disk radius of about 21 km 

which corresponds to a do of apprOximately 5 km (Table 2.4a .. chapter 2). This 

correspondence is achieved by dividing the disk radius by 4. Since this do is not 

large enough for this model to adequately predict contours (See Figure 3.6). 
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perhaps the next best map to use for comparison of the moving average 

predicted contours of suspended particulate with those estimated by Akima's 

method is that. estimated with do = 10 km. This do corresponds to a total disk 

radius of 40 km or log of radius of 3.7 which does not give a particularly high 

local variability (See Figure 2.13a.). Yet if we increase do to obtain nice contours 

it is done at the cost of increasing the variability of the contours. 

We choose do for sulfur dioxide in the same manner. In chapter 2, Fig­

ure 2.13b, the largest disk radius we can choose before local variability 

approaches its maximum value is also about 21 kilometers. Again, this 

corresponds t.o a do of about 5 kilometers. Unfortunately, this do is also not 

large enough to predict a full contour map using this 40 by 40 grid (see Figure 

3.12.) In the same way, the next best map to use for comparison is that 

predicted by the moving weighted average with do = 10 kilometers. This d. o also 

does not give an excessively high value for local variability. 

It is evident that the two-dimensional moving average model as it is 

defined here is not particularly useful for generating contour maps. That part of 

thi~ model which chooses do seems Lo select a disk radius which is not large 

enough to predict with any confidence the grid pOints of a particular size grid. 

Even if bivariate linear interpolation is not the intuitive method to use for these 

data, it is able to estimate all the pOints within the convex hull of the data 

pOints. Perhaps in using this estimation procedure for contouring, we need to 

choose the grid size after we choose the do. For if we have a grid with a higher 

density we might be able to have stations within the proper disk radius so that 

this model can estimate with confidence a greater number of grid points. In Fig­

ure 3.16a, we have an area in the grid which is not estimable with any reliability 

by this moving average model because the stations are too far from the grid 

." 

t· 
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Figure 16a. Grid points are too far from Stations to be'estimated~ 
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Figure 16b. By doubling the grid density in 16a. some grid points 
are now 'estimable~ 
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peints. Yet, if we deuble the grid density as in Figure 3.16b, at least seme peints 

in this same area are new reliably estimable since the grid peints are new cleser 

to. the statiens. 

The stale ef Ohio. is centained within a circle with a radius equal to. 500 

kilemeters. A 40 by 40 grid gives grid peints, at mest, abeut 12.5 kilemeters 

apart. Because ef the irregular spatial distributien ef the data peints the twe­

dimensienal meving average medel cannet estimate all the peints in a 40 by 40 

grid. Let us examine hew the estimated centeur reliability changes if we deuble 

the grid peint density. In other werds we will chem~e an 80 by 80 grid whi.ch will 

give grid pOints, at mest, 6.25 kilemeters apfU't. 

Figures 3.17 and 3.10 shew bivariate linear interpelat.ed cont.eurs using 

an 80 by 80 rectangular grid. If we cempare these Figures with Figures 3.2 and 

3.3 respectively, where the centeurs were estimated by bivariate linear interpe­

latien using a 40 by 40 grid, we see that the grid densit.y dees net change the 

general shape of the map very much. As expected, the 80 by 80 grid estimation 

do.es give a little mere detail in the centeur lines and this is the enly difference 

in the centeurs preduced frem these lwe grid densities. These contours are pre­

duced by the algerithm "centeur" frem system S (Becker, 1981). 

If we use an 80 by 80 grid to. predict centeurs frem the twe-dimensienal 

estimatien precedure, rather than frem bivariate linear interpelatien, we will 

see, fer small do, very different centaur lines frem these obtained with a 40 by 

40 grid. Fer large do, that is do equal to. 20 er 50 km. the centeur maps ebtained 

frem an 80 by 80 grid are exactly these that were obtained from a 40 by 40 grid. 

This is shown by cemparing Figure 3.9 with Figure 3.19 and Figure 3.8 with Fig­

ure 3.20. Yet fer smaller do the maps de change drastically with the grid den­

sity. Fer do = 10 km, centeurs estimated by a 40 by 40 grid (Figure 3.7) are net 
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Figure 3.17. Contour Map of Suspended Particulate in Ohio Obtained from Bivariate Linear 
Interpolation Using an 80 by 80 grid. 
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Figure 3.19. Contour Map of Suspended ~rticulat. in Ohio State Using the Two-dimensional 
Moving Average witll d.~50 km for an 80 by 80 Grid. 
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Figure 3.20. Contour Map of Suspended Particulate in Ohio State Using the Two-dimensional 
Mov ing Average with do =20 kill for an 80 by 80 Grid. 
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Figure 3.22. Contour Map of Suspended Particulate in Ohio State Using the Two-dimensional 
Moving Average ( da =5 km) for an 80 by 80 Grid. . 
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figure 3.23. Contour ~p of Suspended I~rtjculate in ~io Oblained fram the Two-dimensian~l Moving Average ( 4=2 km) for an 80 by BO Grid. 
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extremely different from those estimated for an 80 by 80 grid (Figure 3.21) 

using the same model. The only difference is that in the 80 by 80 grid estima­

tion with do = 10, contour lines are extended further and appear smoother than 

in the 40 by 40 grid. In Figure 3.22, contours estimated using this model with do 

equal to 5 km and an 80 by 80 grid, more grid points are estimable than in the 

same estimation with a 40 by 40 grid (Figure 3.6). Comparing Figure 3.5 with 

3.23 where do = 2 km, more estimable pOints with the 80 by 80 grid are shown. 

Thus in using this model to produce contour lines, the estimability of these lines 

is dependent on the grid density used. 

This is not a fundamental difference between the moving average 

method and bivariate linear interpolation. In order to generate reasonable con­

tour lines, the grid must be dense enough to track detailed variability in the 

predictive function. In the moving average the amount of detail depends upon 

do, whereas, in bivariate linear interpolation, it does not. 

Although more grid points are estimable in an 80 by 80 grid, the con­

tour maps with do equal to 2 or 5 km are still not very informative. Looking at 

the contour map with a grid density of 6400 points for the two-dimensional mov­

ing average model with do = 5 km. which was chosen by LV (local variability) 

analysis. we see that many pOints are estimated but the contour lines are not 

complete (Figure 3.22). This is a expected when using this model for contour 

analysis. For small do. this moving average is a discontinuous surface because 

of the way it is conditioned. A point cannot be estimated if there are no active 

monitoring stations within 3xdo. Now. if do is large enough or if we had a higher 

station density this situation will never arise. But for small do and lhe station 

density as it is. inestimability is likely to arise. In the ignorance of topographi­

cal and meteorological factors, the 3xdo restriction in this model is sensible in 

," 
... 
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the sense that it prevents the two-dimensional moving average from producing 

meaningless estimates. 

Comparison of Point Prediction from 

Two Methods of Geographic Estimation 

In the previous section, it was concluded that for estimating contours, 

bivariate linear interpolation does a more complete job possibly at the cost of 

contour variability than the two-dimensional mOving average estimation pro­

cedure. In this section a comparison of these two methods of surface estimation 

in terms of their ability to correctly predict values of specific points is 

attempted. Cross-validation is done for each method. That is, using each 

station's location and omitting the observed value at that station, a concentra­

tion is predicted by the other n-1 stations. Bivariate linear interpolation and the 

two-dimensional moving average model are used to obtain two estimates of the 

concentration. Assuming that the observed values are true values, we obtain an 

assessment of each method in estimating the true concentrations. 

Comparing techniques by cross-validation when one method involves 

cross-validation as an inherent part requires an inordinate number of calcula­

tions and is beyond the scope of this dissertation. As Stone (1974) pOints out in 

his article on cross-validatory choice and assessment of statistical predictions, 

this comparison would require a "two-deep" cross-validation analysis. For exam­

ple, let us consider the two-dimensional moving average estimation procedure 

that is presented here. If we were to make the two-dimensional moving average 

model estimate of each station's concentration, we should omit that station and, 



then taking the n-1 points which remain, run the model. As a part of this pro­

cedure we need to choose a value of do, by cross-validating the remaining n-1 

pOints. In ot.her words we would be using n-2 points to predict each of the n-1 

pOints in our choice of do. 

It is difficult to clearly see whether the choice of do would change in 

the moving average from station to station in the "twp-deep" cross-validatory 

analysis. Since local variability analysis is given as an alternative to the cross­

validatory choice, let us examine how this function may change in a technique 

assessment situation. One question which arises is that of t.he need to calculate 

a local variability function for each station from n-1 stations leaving the station 

of interest out. This needs to be done because we are comparing two methods, 

one of which requires LV (local variability) analysis. Leaving one station out 

probably does not change the shape or the trough area of the LV curve drasti­

cally Since it is these aspects of the curve which are important in choosing do we 

should not have to recompute the LV curve for each station. Figure 3.24 shows 

five different LV curves for Ohio. Each curve corresponds to leaving a different 

station out. These stations were chosen at random from a random-digit table 

(Hoel. Port and Stone, 1971). The stations are arranged in alphabetical order by 

location and these random numbers were used to choose the five stations by 

using them as the order of the stations. The numbers chosen were 039, 3135, 175, 

326, and 001. This was done so that a random number of stations were chosen 

rather than just the first five. The value for the concentration for these 

numbers is 56.9897, 67.9664, 45.8159, 167.003, 61.6569 micrograms per cubic 

meter. The range of concentration in micrograms per cubic meter for Ohio 

State is from 26.1539 to 194.6105. The five numbers chosen seem to be a fair 

sampling from this range. They are not all in the center. 
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Figure 3.24. Local Variability as a Function of the Logarithm 
of Disk Radius for Suspended Particulate in Ohio State. Each 
curve corresponds to leaving one point out of the calculations. 
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Figure 3.24 shows that the shapes of the LV curves are very much the 

same. All these curves have the same area of degeneracy and the same trough­

like area as the curve for LV vs. logarithm of the disk radius for all the stations. 

This function is shown in Chapter 2, Figure 2.13a. Therefore for each of the five 

stations we would choose the same area of degeneracy and the same do based on 

the same minimum disk radius. In light of this example, it seems clear that the 

shape of the LV function for a particular area is fairly insensitive to the omission 

of a station. Therefore for comparing the two techniques, the minimum disk 

radius given by the original LV curve with no stations omitted was used for the 

estimation of each station's concentration. This leave-one-out method is a way 

to understand the variability of the local variability function and thus the varia­

bility associated with the chosen do. This is very similar to the Jackknife 

method for estimating the variance of an estimate. Bootstrapping may be 

another method for estimating the variance of the LV curve. Instead of leaving 

one out, the boot.strap would resample the data with replacement and find the 

LV curve for each sample. 

Different pOinls that are left-out in the n.bove analysis affect the LV 

curve in various ways. The disk radius at which the left-out point would be 

included depends on the distance to the nearest station. It is at this disk radius 

that the LV curve is affected by the left out paint. The relative size of the con­

centration of the left out point affects the size of the change in the local variabil­

ity. 

Using a do of 2 kilometers for suspended particulate in Ohio state, we 

have calculated the two-dimensional moving average model for each data point, 

leaving the point itself out of the calculation. Bivariate linear interpolation of 

the same data points was also done. For comparing adequacy of estimation, the 
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four functions described in chapter 2 were used. These functions are weighted 

by the percentage of time active for predicted station (See Chapter 2). To rem-

ind the reader of their construction they are given below. 

(WLF) Weighted Loss Function 

n 
2:Pi (Zi -ei)2 

WLF = .;;...i=...;;I ___ _ 
n 
)'p. 
"-i \ 

i=1 

(RWSE) Ratio of the Weighted Squared Errors 

RWSE = -n-;;..l-- I;pdzi -ei)2 
2:Pi siw i=l 
i=1 

(WMAE) Weighted Mean Absolute Error, Percent 

WMAE = n
1 

.i:Pi IZi -ei I x 100 
Z2:Pi \=1 

i=1 

(WMPE) Weighted Mean Percent Error 

WMPE= 

I;Pi IZi -ei I 
i=1 Zi 

n x 100 

LPi 
i=1 

Table 3.1 and 3.2 show the results from the cross-validation of each method for 

suspended particulate and sulfur dioxide respectively. For suspended particu-

late stations, 302 out. of 398 were estimable for cross-validating the moving aver-

age model with do = 2. This means that 302 stations had at least one station 



within 6 lan. Similarly, the number of stations estimable by the moving average 

model with do = 5 for sulfur dioxide was 155 out of 185. 

TABLE 3.1. Loss Functions for Cross-Validation of the Moving Average Model (do 
= 2 lan) and Bivariate Linear Interpolation for Suspended Particulate in Ohio 
State. 

Function The Model BLI 
WLF .0519 .0537 
RWSE .404 .515 
WMAE 4.2% 4.03% 
WMPE 4.1% 3.99% 

TABLE 3.2. Loss Functions for Cross-Validation of the Moving Average Model (do 
= 5 km) and Bivariate Linear Interpolation (BLI) for Sulfur Dioxide in Ohio State. 

Function The Model BLI 
WLF 1.63 .2959 

RWSE 2.82 .566 
WMAE 28.9% 12.0% 
WMPE 27.1% 12.0% 

For suspended particulate in Ohio State, the squared error loss and the 

ratio of weighted squared errors are smaller for the two-dimensional moving 

average model than they are for Akima's method. The mean absolute error and 

the mean percent error are very close although those for ELI are slightly 

smaller. The greatest difference seems to be in the ratio of weighted squared 

errors. In the next section the plots show that for suspended particulate the 

estimates produced by both methods are unbiased. Thus the difference in RWSE 

for the two methods shows that the moving average model explains about 10 

percent more of the variance than does prediction by ELI. Therefore the two-

dimensional movmg average estimation procedure is possibly a "better" method 

to use than ELI for point prediction of suspended particulate in Ohio. 
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In Table 3.2. the results are shown for sulfur dioxide point prediction. 

For all loss functions. BLJ is far superior to the two-dimensional moving average 

estimation procedure. SquarF~d error loss is reduced by one fifth. Absolute and 

percent errors are cut in half by using BLI instead of this moving average model. 

The ratio of weighted squared errors is larger than 1.0 in the moving average 

model. In the next section it is shown that the cross-validation moving average 

estimates are biased for sulfur dioxide. That is. they consistently underestimate 

the observed value. The bias is estimated at about -1.06 km. The bias was suh-

tracted from each estimate and the loss functions were recalculated. Table 3.3 

gives the results of the moving average eslimate of sulfur dioxide with biased 

removed compared to BLJ. There is no apparent bias in bivariate linear interpo-

lation of sulfur dioxide. Table 3.3 shows that. bivariate linear interpolation still 

prevails over the two-dimensional moving average model for sulfur dioxide point 

estimation. 

TABLE 3.2a. Loss Functions for Cross-Validation of the Moving Average Model. (do 
= 5 km). Minus the Bias and Bivariate Linear Interpolation (BLI) for Sulfur Diox­
ide in Ohio State. 

Function The Model BLI 
WLF I .951 .2959 

RWSE 1.86 .566 
WMAE 25.5% 12.0% 
WMPE 23.6% 12.0% 
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The Occurrence of Bias In Cross-Validation Estimates 

Bias can occur in cross-validation estimates using a moving average 

method. Let us consider the following four pOints as monitoring stations . 

• 
a 

• • 
b c 

• 
d 

We will cross-validate using a two-dimensional moving average similar to the 

model described. Suppose that point a has a very high concentration of 50 

f.Lg / m 3, and points b, c and d reported low concentrations, all equal to 1 f.L/ m 3. 

Now let us predict each point by cross-validation. 

1. Prediction of concentration at station a, leaving the observed value at a out of 

the calculation, involves pOints b an c since the window around a contains a, b 

and c. The weights applied are .6 and .4 to band c respectively. Point b has a 

slightly higher weight than point c because it is slightly closer to point a. Then, 

Cross-Validation Estimate of a = .6(1) + .4(1) = 1 f.Lg/m3. 

Therefore, 

ReSidual of Cross-Validation Estimate = 1 - 50 = -49 f.Lg / m 3. 

The residual is defined as the estimate minus the observed. 
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2. Predicting the concentration at point b, leaving b's own observed value out 

involves a , c and d. Point a has weight equal .01 since it is relatively far away, 

Point c has weight, 5 and point d has weight .49. Thus, 

Cross-Validaion Estimate of b = .01(50) + .5(1) + .49(1) = 1.04 J.1-g 1m3. 

And, 

Residllal of Cross-Validation Estimate = 1.04 - 1.00 = .04 J.1-glm 3
. 

3. Predicting point c by cross-validation involves points a , b and d. The weight 

assigned to point a for estimating c is .008. Point b is given weight equal to .492 

and point d is given weight .5. Therefore, 

Cross-Validation Estimate of c = .008(50) + .492(1) +.5(1) = 1.03J.1-glm3 . 

And, 

Residual of Cross-Validation Estimate of c = 1.03 - 1.00 = .03 J.1-g 1m3. 

4. Prediction of point d is rather easy sincp. it involves paints band c. Both 

these paints have concentrations = 1 J.1-g 1m3. Therefore the estimate of d's con­

centration by cross-validation is 1. which has a residual of zero. 

The sum of the residuals in this example is -48.3 which gives an average 

of -12.1. similar to what is shown with the cross-validation estimates of sulfur 

dioxide is large and negative (Figure 3.28 and 3.31), This example exaggerates 

the effect that is seen in Ohio. The average bias for Sulfur Dioxide in Ohio is 

estimated to be -1.06. Also the simple average of these four points does better 

in this example than the cross-validatIon estimales. For example, the mean 

value is 13.25, which gives the following four residuals: -36.75, 12.25, 12.25, and 
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12.25. Naturally, the sum of the residuals is zero since the mean is unbiased. 

The squared error loss for the simple average is 1800, whereas for the weighting 

scheme with cross-validation, the squared error is about 2401. Subtracting the 

bias, as calculated, from squared error, we obtain 2257 for the variance of the 

cross-validatory estimates. This is still larger than using the sample mean of all 

the data. The crucial difference between the sample mean's squared error and 

the cross-validation squared error is the fact that the sample mean contains all 

the data while cross-validation leaves the point out that we are trying to esti­

mate. This plays a large part in creating the bias that we see here. This prob­

ably happens because of an occasional high concentration reported in an iso­

lated area or where most concentrations are low. The data are sparse so it is 

likely that an occasional high value will not be near many ot.her points. Perhaps 

this does not happen with BLI because points are weighted equally, no matter 

how far they are from the estimated point. This is an interesting phenomena 

that occurs when cross-validating some estimation procedures with limited data 

sets. It is also interesting to note that the average of all four pOints does better 

in terms of squared error loss in this example. 

The "Better" Method 

Obviously, it is impossible to recommend a method of surface estima­

tion which works "well" in all circumstances. Therefore it is imperative that we 

be very cautious in evaluating a technique before employing it. This chapter has 

shown methods for the evaluation of a technique in comparison with another 

method. We have compared the two-dimensional moving average estimation 
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procedure and Akima's bivariate linear interpolation in terms of their ability to 

estimate contours and predict values at specific pOints. Although Akima's 

method of bivariatf! linear interpolation seems questionable because it may give 

too much weight to outliers with the predicted surface going through every data 

point, it seems to do almost as "well" and sometimes better than this moving 

average model. 

Regarding contour map estimation, because of the missing regions in 

the surface estimated by the two-dimensional moving average, contour lines are 

incompletely predicted. Although Akima's surface is not differentiable every­

where, it is continuous within the convex hull of the data pOints and therefore 

the estimated contour lines using this method are complete. Confusion with the 

moving average model lies in the way do is chosen. It. is chosen on the basis of 

point prediction and the best do for predicting points may not be the best do for 

estimating contour lines. The best do for contouring relies heavily on the 

sparseness of the data and the window, which in our construction of the moving 

average model is 4xdo. From this analysis one might immediately conclude 

that, for contouring, a method which estimates a continuous surface like 

Akima's, is "better" than something censored like the model presented in the 

previous chapter. Statistically speaking, contour lines drawn in areas of no 

information are very unreliable and there is question as to whether they are 

worth considering as valid estimates. It is then the comparison of these two 

techniques which is useful. From the contour maps of both methods we can get 

a feeling for the reliability of these estimated contour lines. We can look at the 

Akima map to get a feeling for the high and low spots. Then by examining the 

map estimated by the two-dimensional moving average we can see that if we 
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truly believe in the 4xdo 1 cut-off, that some of the Akima contour lines are 

drawn right through areas of no data. The moving average model model is 

"beUer" than bivariate linear interpolation in the sense that it shows the areas 

where there is little or no information. 

Point prediction is really what the two-dimensional moving average 

estimation procedure was designed to do. It was proposed by Selvin, et. at. 

(1981) as a method for estimating the air quality of one point, the population 

centroid of a county or any geographic area. This estimate was used as a value 

for ecological regression analysis of air quality on mortality. If we were to use 

Akirna's method to estimate this point it would be similar to a nearest neighbor 

approach but not exactly. We would need to draw the Delaunay triangulation of 

several points in the area of interest, find the triangle containing the population 

centroid, then estimate a plane using the vertices of that triangle, and find the 

value of the population centroid in that plane. This is almost like taking the 

three pOints nearest to the centroid except the Delaunay Triangulation may not 

yield the triangle with the three nearest pOints in all cases. For example, in the 

foUowing Figure, the 3 closes pOints are ACD; yet the triangulation uses ABD. 

t Since stations farther L>w.n about 3xdo have negligible weights in the model, and since model 
estimates are suppressed for ooL,ts further than 3xdo from any active station, one might argue that 
the window is actually of 3xC£o. Nevertheless, the choice of 3xdo or 4xdo does not change the con­
clusions of this section. 

.' .. 
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Figure 3.25. The Vertices of the Triangle Containing the Centroid are not the 
Closest Vertices to the Centroid . 

A 

D 
centroid B 

C 

It may be that for point prediction, taking the three nearest point rather than 

the Delaunay triangle does better although these are probably the same in most 

cases. At any rate, in comparing the moving average with Akima's method for 

point prediction, there were very different resulls for the two pollutants used. 

For suspended particulate, the two-dimensional moving average does a little 

"better" than the interpolation technique since the ratio of the weighted 

squared error is smaller. The values of the loss functions for the moving average 

model are consistently and subslantially smaller than those for BLI. Yet for sul-

fur dioxide, interpolation does "better" than the mOving average procedure for 

point prediction because of the consistently and substantially smaller values of 

the loss functions for BLI. 

We have compared the two methods using several summary measure-

ments including loss functions, percent variance, absolute error and absolute 

relative error, all weighted by the percentage of time active. 'These are the 

measures that were used to determine, on the average, which method is 

"better". Emphasis should be given to the fact that these measures are "on the 
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average" and often we are interested in predicting only one specific point. Fig­

ures 3,26 thrn 3.33 show the cross-validation estimates compared with the 

observed values on a point by point basis. If we contrast these plots by method 

for sulfur dioxide (Figures 3.28 and 3.29), it is clear that bivariate linear interpo­

lation predicts pOints "well" much more consistently than the two dimensional 

mOving average model; while with suspended particulate, the scatterplots, Fig­

ure 3.26, for the moving average, and 3.27, for Bivariate Linear Interpolation, of 

estimate versus observed values are not very different. All these plots have a 

definite positive trend except the plot of the moving average estimate versus the 

observed for ~ulfll.r dioxide concentrations in Figure 3.28. This plot has a slight 

positive trend but also shows consistent underestimation of sulfur dioxide con­

centration by this methoci. The average bias was estimated to be about -1.06 

km. Occurrence of bias when cross-validating a limited data set like this one is 

explained in the previous section. 

The residual is defined as the estimate minus the observed value. The 

residual is plotted as a function of the observed for all methods with each pollu­

tant in Figures 3.30 thru 3.33. All the residual plots, except the moving average 

for sulfur diOxide are roughly centered at zero. This is because of the bias which 

has occurred in the moving average estimate of sulfur dioxide. Bias has not 

occurred for any of the other method-pollutant combinations. Bias probably 

does not occur wi.th bivariate linear interpolation for sulfur dioxide because the 

stations are weighted equally. These plots confirm and show, In more deLail. 

what the summary measures in the previous section suggest. 

The summary measures of tit are sensitive to outliers in the data for we 

are comparing our estimates to observed values. These observed values may 

not be close to the true value because of statistical variation or simply because 
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they are outliers. Therefore we must be cautious in the interpretation of these 

kind of analyses and the conclusions which are drawn. Drawing scatterplots like 

those shown in Figures 3.26 thru 3.33 are useful for examining the estimation 

procedure in more detail than just one summary statistic. 
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Figure 3.26. Cross-validated moving 
average estimates (do =2 km) of • 
Suspended Particulate in Ohio 
as a fuoclion of the Observed 
Value. 
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Figure 3.27. Cross-validated moving 
average estimates ( :5 km) of 
Sulfur Dioxide in Ohio as a function 
of the Observed Value. 
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Figure 3.29. Cross-validated BLI estimates for 
Sulfur Dioxide in Ohio as a function of the 
Observed Value. 
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Figure 3.30. Residuals of cross-validated moving average 
estimates (~=2) plotted as a function of the observed 
values for Suspended Particulate in Ohio • 
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Figure 3.31. Residuals of cross-validated moving average estimates 
(~=5) plotted as a function of the observed values for Sulfur 
Dioxide in Ohio. 
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I Figure 3.32• Residuals of Cross-validated 
BLI estimates plotted as a function of 

• • the Observed Value for Suspended Parti-
culate in Ohio. 
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Figure 3.33. Residuals of Cross-validated BLI estimates 
plotted as a function of the Observed Value for Sulfur 
Dioxide in Ohio. 
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CHAPTER FOUR 

Conclusions and Further Applications 

Summary 

In this document, 1974-76 air quality data for two pollutants from the 

EPA SAROAD data bank for two pollutants, have been described. Several sum­

mary statistics have been calculated for all pollutants in the whole United States 

to obtain a sense of the completeness of the data set. Limitations of these data 

have been discussed. The data have been summarized in such a way so as to 

facilitate analysis. Two pollutants and one state have .been chosen to test the 

analytic techniques; in principle the same techniques can apply to any pollutant 

and any region if data were complete enough. The chosen pollutants and state 

have the highest average monitoring density. Limitations of statisti.cal methods 

commonly used are discussed.. 

A two-dimensional moving average model is chosen for estimating pol­

lutant concentrations from these data. This model is a weighted average with 

the weights being an exponential function of the squared distance of the data 

from the point of estimation. Distant data points. which have negligible weight, 

are ignored. Properties of this model are discussed; its drawbacks and advan­

tages are pointed out. The functional form of the weights has a smoothing 

parameter which controls the relative weighting of nearby and distant data 

points. The parameter is chosen by cross-validation. Several functions are used 

to select the 'best' value of the parameter. Different functions yield different 

optimum values. Local variabilily as a concept is explored and a statistic which 

measures local variability is created. The smoothing parameter, do, is discussed 

.~ 
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as a function of local variability. The optimal smoothing parameter is suggested 

as being equivalent to that which gives the minimum local variability. Local vari­

ability is discussed as an alternative to cross-validation for choosing the param­

eter in the moving average model. Local variability and cross-validation ana­

lyses are compared for sulfur dioxide and suspended particulate data in Ohio 

State. Consistency in the shape of the local variability function is shown in three 

states, Ohio, New York and Florida. The actual value of the optimal do varies 

across these ditIerent geographic regions. The optimum value of the smoothing 

parameter is found to be larger for sulfur dioxide than for sllspended particu­

lates in each state. 

Assessment of the moving average model is made by comparing it to a 

more commonly used method. Akima's method of bivariate linear interpolation 

is used for comparison and is explained. Linear interpolation is performed for 

Ohio using suspended particulate and sulfur dioxide data. Contour maps of 

these data are drawn. using both methods. The model is used to estimate con­

tour maps with several distinct values of the smoothing parameter covering a 

wide range. The dependency of the model's ability to estimate contour lines on 

the grid density is shown. These methods are compared in terms of their ability 

to estimate contour maps and to predict specified points. Local variability is 

used to make these comparisons by cross-validation rather than a "two-deep" 

cross-validatory analysis. Residuals are plotted and summary statistic calcula­

tions are discussed for choosing the 'best' method. It is found that the two­

dimensional moving average model does as well and sometimes better than 

Akima's method of interpolation for suspended particulate prediction. For the 

sulfur dioxide data, Akima's method appears Lo make more accurate and less 

biased predictions than the moving average. The occurrence of bias in cross-
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validating geographically sparse data using the moving average method is 

shown. 

Further Research 

Simulations of these data from actual distributions may be very helpful 

in determining what values a parameter like do should have. how densely scat-

tered the data points should be in order to perform a valid analysis, and possibly 

investigating the distribution theory of local variability. There are several distri-

butions one could assume in order to simulate air quality data. One possibility is 

that each city's industrial centroid is like a point source of air pollution. In this 

case one might assume a bivariate normal distribution centered on the indus-

trial portion of the city. One could vary the bivariate normal distribution to 

yield many different simulations. There are many other possibilities, for exam-

pIe treating each industry, commuting freeway, and other emitting source 

separately, treating the city as a sum of bivariate normal distributions. The pos-

sibilities are endless and probably none of them adequately represent the true 

situation. 

The author believes that one of the most original and statistically 

promising results of this thesis is the concept local variability. The statistical 

theory of the measure we call local variability, that is defined in Chapter 2 may 

prove very useful for choosing parameters such as do. The statistical properties 

of local variability might lend themselves to the calculation of a confidence 

interval associ<;\ted with the .chosen disk radius. Local variability has been pro-

posed as an alternative to cross-validation for this problem; it could be explored 
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as a possible alternative in other problems which involve cross-validation. It 

could also be applied to time series or trend analysis in one dimension, espe-

cially in cases where the data are irregular. 

.... Boot-strapping, a new inventive method for estimating the distribution 
. " 

of a statistic (Diaconis, 1983), could be applied to the local variability function. 

Through the boolstrap, a confidence interval on the chosen disk radius could be 

estimated. That is, with each bootstrap sample the minimum local variability 

may change slightly giving different optimal disk radii, one from each bootstrap 

sample. There would then be a distribution of optimal disk radil. one from each 

bootstrap sample, from which a confidence interval could be estimated. The 

bootstrap could also be used for estimating variability associated with the con-

tour maps and the predicted points. For predicting pOints, jack-knifing may also 

be helpful for examining the distribution of the estimate. The bootstrap, jack-

knife and local variability are all data driven methods. These techniques do not 

require any distributional assumptions, therefore they are very useful for inter-

preting these data. 

Time trends in the air quality data could be analyzed. Some ten years 

of data of reasonable quality are now available through the Environmental Pro-

tection Agency. The time trend analyses could be very helpful in understanding 

these data which are three-year averages, a single point in time. A time-

geographic series could also result in some new data analytic techniques. 

This thesis analyzes some of the problems associated with geographic 

.' data and creates a concept applicable to other analyses. Many problems remain 

to be solved. The variability of estimates is an area of great interest and is still 

a wide open field for study. Although not addressed here, the inclusion of other 

information like meteorologic and topologic factors certainly lends itself to 
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understanding geographic air quality data. From a statistical standpoint. the 

concept of local variability could be applied to many data analytic problems. 

Through this dissertation there is hope that others will find interesting ideas for 

their own research. 

'~ 



165 

References 

Akima. Hiroshi (1978) A Method. n/ .8ivaria.te Interpolation and Smooth Sur/ace 

Pitting for Irregularly Distributed Data Points. ACM Transactions on Mathemati­

cal Software, Vol. 4, no. 2. June 1978. 

Akima, Hiroshi (1978) Algorithm 526: Bivariate fnterpolation and Smooth Sur­

lace Pitting lor Irregularly Distributed Data Points. ACM Transactions on 

Mathematical Software Vol. 2, no. 1. pp. 160-164. 

Becker. Richard A. and Chambers John M. (1981) Sa la:n.g1Lage and system for 

data analysis. Bell Laboratories, January. 

Bengtsson, B.E. and Nordbeck, S. (1964) Construction 0/ isarithms and isa­

rithmic maps by computers. BIT. Vol. 4, pp. 87-105. 

Breiman, Leo, Meisel. W. and Purcell, E. (1977) Variable Kernel Estimates of Mul­

tivariate Densities. Technometrics, Vol. 19, no. 2. 

David, M. Geostatisticsl Ore Reserve Estimation. Elsevier. Amsterdam. 

Davis. J.C. and Cullagh. M.J. (Editors. 1975) Display and Analysis 0/ Spatial Data. 

Wiley. New York. 

Delfiner. P. ( 1976) Linear Estimation 0/ nonstationary spatial phenomena. 

Advanced Geostatistics in Mining Industry. M. Guarascio, C.J. Huijbregts, and M. 

David, Eds. Reidel. Dordrecht. pp. 49-68. 

Diaconis. Persi and Efron. Brad (1983) Gomputer-intensive m.ethuds in Statis­

tics. Scientific American. Vol. 248, no. 5. pp. 116. 



C.A. Eades. Chart - A Graphic Display Analysis System. Lawrence Berkeley Lab 

Report. Unpublished LBL Report. 

EPA (1976) AEROS. Aerome tric and Emissions Reporting System Information. 

R. Faith and Sheshinski.. R. (1979) Misspecification of trend in spatial random 

function interpolation tJ.Jij;h application to oxidant mapping. SIMS Technical 

Report No. 28. September. 

Grant. F. (1957) A problem in the analysis of geophysical data. Geophysics. Vol. 

22. pp. 309-344. 

Green. P.J. and Sibs on. R. (1978) C()mputing Dirichle t Tessellations in the Plrm.e. 

Computer Journal. Vol. 21. pp. 168-173. 

Hatten. Dorothy (1978) Interpretation. Interpolation and Adjustment of Oceano­

graphic Fields. Norfolk State College. Dwight Dierterle and Arthur Tingle. 

Research Advisors. 

Hoel. Port and Stone (1971) Introduction to Statistical Theory. Houghton Miflin. 

pp. 220-221. 

Y. Horie and D. Bicker (1979) Final Report for Development of Data Base for 

Human Exposure to Air Pollution in the South Coast Air Basin. Contract A 7-

163-30. October. 

Johnson. Laura D. (1982) 1974-1976 Air Quality by Location. SEEDIS data docu­

ment LBID-357-CD. January. 

Johnson. Laura D .. Merrill. D.W .. and Selvin. S. (1982). Predicting a continuous 

166 

1;. ... 

-t-, 



spatial variable from discrete point measurements. LBL Report LBL-14235, 

March. 

Journel. A.G. and Huijbregls, C.J. (1978) Mining Geostatistics. Academic Press, 

London. 

Kendall. M.G. (1976) 1'ime Series. Second Edition, Hafner Press. 

Landau, E. (1971) The Nashville Air Pollution Study. Sulfur Dioxide and Bron­

chial. Asthma - A Multivariate Analysis. Int. J. Env Studies Vol. 2 pp. 41-45. 

Lawson, C.L. (1972) Generat7.on of a Tri.angular Grid. with application to contour 

plotting. Section 914, Tech. Mem. No. 299, California Institute of Technology. 

Lehmann, E.L. (1975) Nonparametrics, Statistical Methods based on RanJcs. 

Holden-Day, Inc., San Francisco. 

MacCracken M.C. and Sauter G.D., Editors, (1975) Development of an Air Pollu­

tion Model for the San Francisco Bay Area. Lawrence Livermore Laboratory 

Report UCRL-51920, Volumes 1 and 2, October. 

Matheron, G. (1965) Les Variables Regionalisees et leur Estimation. Masson, 

Paris. 

McLain D.H. (1976) Two dimensional interpolation from random data. Computer 

Journal. Vol. 19 pp. 178-181; 384. 

R. Mendelsohn and Orcutt G. (1979) An Empirical analysis of air pollution dose­

response curves. J. Env. Management Vol. 6 pp. 85-106. 

Merrill, Deane W. (1982) Problems in Spatial Data Analysis. LBL Report LBL-

167 



168 

14047. February. 

D.W. Merrill,Jr., Sacks, S.T., Selvin, S., Hollowell, C.D., and Winkelstein, Jr., W. 

(1978) Populations-At-Risk-To-Air Pollution (PARAP): Data Base Description and 

Prototype Analysis. LBL Report UCID-8039, August. 

Merrill, D. (1981) 1974-1976 Air Quality for Individual Monitoring Stations. 

SEEDIS data document LBID-357-AZ January. 

W. R Ott (1980) Models of Human Exposure to Air Pollution. SIMS Technical 

Report No. 32, July. 

Powell. M.J. and Sabin, M.A. (1977) Piecewise q'lJ.adrrtti.c approximation..t;; on tri.a:n.­

gles. ACM Transactions on Mathematical Software, Vol. 3, pp. 316-325. 

Brian D. Ripley (1981) Spatial Statistics. Wiley. October. 

Sager. Thomas W. (1976) Relating Spatial Distributions of Pollutants to Health 

Effects. SIMS Technical Report No.1. 

Scheffe'. Henry (1959) Analysis of Variance. Wiley Publications in Statistics. pp. 

57-58. 

Selvin, S., Merrill. D., Kwok, L .. and Sacks. S. (1981) Ecologic Regression Analysis 

and the Study of the Influence of Air Quality on Mortality. LBL Report LBL-

12217. September. 

Selvin. S .. Sacks, S.T., Merrill. D.W .. and Winkelstein, W. (1980) The relationship 

between cancer incidence and two pollutants (total suspended particulate and 

carbon monoxide) for the Sa:n Francisco Bay Area. LBL Report LBL-10847, June. 

-." 

-<\. 



.(. 

• ,. 

169 

Sibson, R. (1980) The Dirichlet Tesselation as an aid in data analysis. Scandina­

vian Journal of Statistics, Vol. 7, pp. 14-20 . 

Sibson, R. (1980) A vector identity for the Dirichlet Tessellation. Mathematical 

Proceedings of the Cambridge Philosophical Society, Vol. 87 pp. 151-155. 

Sibson, R. (1978) Locally equiangular triangulations. Computer Journal, Vol. 21, 

pp. 243-245. 

Snedecor and Cochran (1967) Statistical Methods. Iowa State University Press. 

Wahba, G. and Wold, S. (1975) A Completely Automatic French (Ju:rve: Pitting 

Spline FUnctions by Cross Validation. Communications in Statistics, Vol. 4, no. 

l,pp.1-17. 

Whittemore, Alice S. and Korn, Edward L. (1980) Asthma and Air Pollution in the 

Los Angeles Area. SIMS Technical Report 35, March. 

Winkeistein, W., Levin, Lynn, Johnson, Kathryn (1982) RE: "Health Effec ts of Par-

ticulate Pollution: Reappraising the Evidence" Letters to the Editor. AJE, Vol. 

115, no. 3, pp. 471-475 . 



-'. 

This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely th'C,se of the­
author(s) and not necessarily those of The Regents of 
the University of Califorriia, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply - approval or recommendation_ of the 
product liy t~e University of California or the_U.S. 
Department of Energy t6 the exclusion of others that 
may be suitable. 

- --------------



:.. .. ~> '"-<'-

TECHNICAL INFORMATION DEPARTMENT 

LAWRENCE BERKELEY LABORATORY 
UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

.~~..J. ~ 

:11 


