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The Geographic and Statistical Analysis
of Air Quality Data in the United States
Laura DerSI};e Johnson
Abstract

This dissertation contains the development and the application of ana-
lytic procedures for examining and exploring some air quality data collected by
the Environmental Protection Agency from 19874 through 1976. They are col-
lected at monitoring stations most of which are in metropolitan areas. These
data are irregularly distributed discrete point measurements. The techniques
explored here may be useful in other disciplines.with the same type of data.

The analysis is concentrated on two pollutants, suspended particulate
and sulfur dioxide. There are two reasons for this restriction: (i) they are the
most heavily monitored and {ii) they are of interest to the health field. The
state of Ohio is utilized as an example in most of these analyses. This is because
Ohio is the most thoroughly monitored state in the United States. A list of the
limitations of these data is given.

Interpolation schernes are explored and a model is chosen which is a

two-dimensional analogue of the moving average model in time series. The

model is

n 2
22(4{1/49) z;
¢, = L2
i ie(d"'/%)z

=1

where

e, = the estimated value at a point 1.
;= a measured value at point ;. _
d,, = the distance from the data poirt to the point of estimaticn.
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do= the smoothing parameter.

The choice of dy has been explored in great detail. Cross-validation was used
and several measures for the "best” d; were examined. This led to the develop-
ment of a much more efficient method for choosing a smoothing parameter, the
concept of local variability as a function of disk radius. Each disk radius
corresponds to a dg, so by minimizing the local variability function the most
appropriate dg can be chosen. Local variability functions were calculated for
Ohio, New York and Florida. This analysis as opposed to cross-validation makes
the task of modeling the entire United States a much smaller one. This model
combined with cross-validation has been useful in detecting outliers in these
data.

The evaluition of the moving average model led to comparing to
Akima’s rﬁethod of bivariate linear interpoclation. A cross-validatory comparison
for adequacy of estimation was done. Also, contour maps using each method are
drawn and compared. The local variability function analysis allows for com-
parison by cross-validation to not be a two-deep cross-validatory choice. Some
drawbacks to comparing cross-validation estimates are pointed out. How
different goals may prescribe different estimation techniques is discussed

The potential fcr further research 1n this fieid is shown. Time, which
may be important in these analyses, has not beer included because of data avai-
lability limitations. Using a time parameter similar to d¢. the current distance
parameter, has been suggested. Simulations may also be useful in evaluating the

moving average model. The distributional theory of the local variability theory

function is yet to be explored. Nichota 7 St
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CHAPTER ONE

Air Quality Data

Introduction

Air Quality has been a concern because of the potential hazardous
effect of pollution on health. Because of this concern the Clean Air Act of 1970
and EPA Regulations for State Implementation Plans (SIP's) require ambient air
-quality data resulting from air monitoring operations of State, Local, and
Federal networks to report each calendar quarter to the Environmental Protec-
tion Agency. These data must be transmitted to EPA Regional Offices within 45
days after each quarterly reporting period. Within 30 days, EPA Regional offices
must give these data to the EPA Aerometric and Emissions Reporling System
(AEROS) of which Storage and Retrieval of Aerometric Data System (SARUAD) has
been an operational part. AEROS is managed by National Air Data Branch, Moni-
toring and Data Analysis Division of Air Quality Plafming and Standards. The
National Air Data Branch (NADB) formed AEROS which is a large unified data sys-
tem with analysis capabilities, uniform procedures, and expanded storage capa-
bility. SAROAD is just one of the numerous subsystems of AERCS. SAROAD con-
tains the information on air quality. Anyone who has an interest can request
summaries of these data and they will be provided by EPA (19786).

EPA publishes an annual summary of all data submitted in an effort to
provide these data to participating agencies as well as the public. The air qual-
ity data which are discussed in this thesis are directly from computer reports

generated by EPA's on line computer system. The type of pdllutants considered



in this report and their corresponding sampling intervals are listed in Table 1.1.

TABLE 1.1. Summary of monitored pollutants and their sampling intervals.

Pollutant Sampling Interval
carbon monoxide : 1-hour
total hydrocarbons 1-hour
nitrogen dioxide 24-hour
nitrogen dioxide 1-hour
non-methane hydrocarbons 1-hour
total oxidants 1-hour
ozone 1-hour
sulfur dioxide 24-hour
sulfur dioxide {-hour
total suspended particulate 1-hour

sulfate 24-hour

The basic file | used in this work was produced as part of the
PARAP/PAREP (Populations at Risk to Air/Environmental Pollution) project. It
was derived from two major sources: 1974-1976 air quality summaries by air
quality monitoring stations, and an air quality monitoring station directory con-
taining latitude and longitude coordinates.

The air quality file came directly from 1974-1976 yearly summary data
in the Environmental Protection Agency's SAROAD databank. For each pollutant
and sampling interval and each monitoring station, data were first averaged over
all measurement methods (weighting by the number of observations). Then
three-year average calculations were derived from the yearly averages and
installed in SEEDIS ({Socio-Economic-Environmental Demographic Information
System).

The monitoring station directory was found to be incomplete and par-

tially erroreous. Manual checking was performed against other files and pub-



lished maps until the station coordinates were believed to be accurate within a
few kilometers in all cases.
At the outset of the research for this thesis these data were in SEEDIS
with the following known errors and omissions:
1. Much of the monitoring of air quality that was actually done
is not in SAROAD and thus is not available for this study.
2. Values for hydrocarbons seem systematically much teo high for
some known and some unknown reasons.
3. Some station values were discarded since they seemed so large

as to be erroneous (Compare Tables 1.2 and 1.2a.).

TABLE 1.2. Stations which were discarded.

Pollutant Station Arithmetic Geometric
_ Mean (ug/m3) | Mean (ug/ m3)
Non-methane Hydrocarbons | MT Billings 2700.44 2191.00
QOzcne NY Tcnawanda 316.615 300.265
Sulfur Dioxide NM Farmington 404.909 351.461
Sulfate TN Union City 152.800 152.800

TABLE 1.2a. Means and Standard Deviations of Pollutants Listed Above.

| | ]

Pollutant . Mean - | Standard Deviation !

i Non-methane Hydrocarbons { 253.38 35.38 |
Ozone 34.58 25.89
Sulfur Dioxide 13.57 8.89
Sulfate 7.06 0.11

The averages that are available from the yearly summaries are:



geometric means, arithmetic means, geotmetric standard deviations, and arith-
metic standard deviations The units are in micrograms per cubic meter. Since
the distribution of the data appears to be lognormal, a geometric mean is a
better measure of average concentration than an arithmetic mean. The
geometric mean is estimated by the average of the logarithms of the values,
exponentiated to maintain the correct units. The three-year arithmetic mean,

a, and the geometric mean, g, were derived in the following manner:

e

1

Ny
a= !
n

3
2 myin(gy)
i=1
g=e m
i = the ith year.

n; = the number of observations in year i.

3
n = Elni = the total number of observations in three year period.
i=

;= geometric mean at year i

™
Etn(oj)
)
n
gi= e *

a;= the arithmetic mean at year <.

bt 9;
= jgl'"-i

0; = the jth observed value.
7 = the index for the jth observation.
The three year average geometric mean g was set equal to zero if the geometric

mean for any vear was zero.



Potential Applications of Air Quality Data

From a public health perspective, probably the most important use of
these data is to measure and compare air quality across well-defined population
centers so that levels of human exposure for geographic regions can be
estimated. One obvious approach involves, using a statistical technique, calculat-
ing some average level of pollution for an area and correlating this average with
disease incidence for that area. Air pollution contour maps are alseo very useful
for examining high and low areas of pollution and their relationship to geo-
graphic clusters of disease. The problems of ecological correlations are well
known, and do not indicate that there is a correlation at the individual level. Yet
ecologic data are cheaper to analyze than undertaking a case-control study. In
most cases, a study is not performed at the individual level without strong indi-
cation from other types of evidence. This is because of the large expense
involved in such studies. Ecological studies are one way of indicating the poten- -
tial utility of such a study.

Estimating an avérage level of pollution for an area based on discrete
point observations from monitoring stations is is a challenging problem. Each
observation has an uncertainty associated with it. The amount of uncertainty is
not clear from examination of the data alone. The stations are clustered in
areas of high population density and within clusters, they are not evenly distri-
buted. Since the stations are not distributed geographically in a regular fashion
and one would expect values from adjacent stations to be highly correlated with
distance from one another, a simple non-weighted average is inadequate. Also,

estimates of human exposure may need to weight observations in more popu-



lated areas more heavily than observations taken in less populated areas. So
the sample mean is seriously biased as an estimate of human exposure. Often
what is done in this type of situation is to fit a curve and then take the average
of the interpolated points rather than the data itself. Sometimes, rather than
an interpolation curve, a weighted avérage of the data is used. Finding the best
method of interpolation or the best weights is a problem for which the statistical
theory is not well described. These data from PAREP are used here to apply
some of the existing statistical techniques. Thus the performance of these
methods used on these data can be examined.

Another useful summary of these data is through contour maps. Con-
tour maps can be used to show peaks and valleys in the pollutant concentra-
tions. For contour maps many points are to be predicted for a region. Perhaps
a different estimation procedure should be used to predict contours than that
which predicts only one ppint in a region. This possibility will be explored in the

Lhird chapter.

There are basically four different methods of geographic surface esti-

mation. These are: trend surfaces, moving averages, interpolation, and Kriging
(Ripley, 1981). Techniques similar to moving averages and Kriging are two-
dimensional generalizations of one-dimensional curve-fitting techniques (Grant,
1957). Interpolated surfaces go through every data point and are similar to
spline-fitted curves in one-dimension {Akima, 1978). Kriging is a method which
unlike the other methods explicitly considers the correlation between values of
the surface (Matheron, 1965). Kriging results in the "weight" of each point in a

cluster being reduced.



Data Limitations

Several factors associated with air pollution data cause a statistical
treatment of the data to appear intractable. This section will mention some of
the most important problems. Some of these can be solved at least partially. In
these cases an attempt to solve them has been made. In other cases which can-
not be solved a mention of them will be made so that future data collection can
be improved.

For each station measurement, there is an uncertainty associated with
its value. This uncertainty arises from several sources. For example, the
machine readings may be in error depending on the time of day, air tempera-
ture, humidity, and the skill of the person reading the measurement. This prob-
lem has been recognized in other areas such as blood pressure readings and
there are analytic techniques to take account of this. This uncertainty is usuali_y
viewed as being stochastic and its value is assumed to follow some knov?‘n distri-
bution. For air quality data, this same path could be followed. A further compli-
cation is that different stations might use differenﬁ measurmg methods. These
differences may be another source of variation not due to actual air quality.
Since the data in SEEDIS have already been averaged over measurement
methods {for each pollutant and sampling interval), the assumption that these
differences are random must be made in order to compare values across
regions.

The fact that each data value is a 3-year average lends ilself to two
important data reliability problems. Since each station was run (i), for various

amounts of time and (ii), at probably different times; each data value does not



measure exactly the same quantity. I'or example, an average which comes from
an instrument which ran each day of the three years is far movre reliable than
that from an instrument running once a week, assuming everythiné else is equal
about the two values.

Since the gases in the air are obviously affected by the weather, there
is seasonal variation in air pollution. Averaging over three years may be less
biased than one year averages because of seasonal variation and the fact that
measurements are not taken uniformly over the year.

Fortunately data on the percentage of time active are availabie over
the entire three years and this quantity is taken into account in these analyses.
Table 1.3 shows the average time stations were active for all pollutants and for
all stations in the United States (+territories) !. The percentage of time active

is calculated from the total number of observations in the following way.

. . _ 100N
Percentage of Time Active = 10967

where,

N = Number of Observations and

Y = 24 or 1 for 1-hour or 24-hour measurement sampling intervals.

1096 = the number of days in the three year period, 1974-1976.

So if a station is run once a week the number of observations is 156 and the per-

centage of time active would be as follows:

! The territories with monitoring stations are Guam, Virgin Islands, and Puerto Rico.

I &



Percent Time Active

24-hour intervals 100x 156/ 1096 = 14.27%
1-hour intervals 100x 156/ 1096x24 = 0.59%

(Data sampled on a 1-hour interval basis were usually from stations that

were run continuously.)

To see the empirical distribution of percent time active of the stations,

Figures 1.1 thru 1.11 show their distributions by pollutant for the whole US (+

territories).? From the total number of stations in each distribution, notice that
Sulfur Dioxide (24-hour interval) and Total Suspended Particglate (24-hour inter-
val) are measured more often than the others. Sulfur Dioxide (1-hour interval)
does not have the greatest mean percent time active but is one of the greater
ones at 41.5%. Sulfur Dioxide {1-hour interval) has more stations than any other
pollutant that is measured, which also enters into adequate monitoring. Thus
percent time active statistics indicate that sulfur dioxide and total suspended
particulate are the most extensively monitored.

Tables 1.3a. and 1.3b. show average activity times for all measured pol-
lutants. Average and median number of days (hours) per year are derived from
the percent time active formula. For daily measurements the possible number
of observations in one year, is approximately 365; while for hourly observations,
it is 242365 = 8760. This number gives an idea of the frequency of measure-

ment.

2 A percent time active greater than 100 percent can occur if a pollutant was simuitaneously
measured by two or more instruments at a station.



TABLE 1.3a. Activity Time for Poliutants Measured at 24-hour Intervals for
United States, 1974-76.

Percent Days/Year Number of
Time Active
Pollutant i . Active Stations
mean | median | mean | median
Nitrogen Dioxide 9.5 8.7 34.7 31.6 1796
Sulfur Dioxide 10.4 10.5 38.0 38.3 2440
Suspended Particulate 11.0 10.5 40.0 38.3 5473
Sulfate 4.9 2.7 18.0 9.6 1045

TABLE 1.3b. Activity Time for Pollutants Measured at 1-hour Intervals for United
States, 1974-786.

|
.Percen§ Hours/Year Number of
Time Active
Pollutant ) Active Stations
mean | median | mean | median
Carbon Monoxide 45.3 43.9 | 3968.3 3845.6 588
Total Hydrocarbons 40.1 31.2 | 3512.8 2733.1 205
Nitrogen Dioxide 43.5 38.2 | 3810.6 3346.3 353
Non-methane Hydrocarbons 24.2 22.3 | 2119.9 1953.5 80
Total Oxidants 52.1 52.1 | 4564.0 4559.6 121
Ozone 35.2 30.9 | 3083.5 2706.8 621
Sulfur Dioxide 41.9 36.1 | 3670.4 3162.4 1050

Another reliability problem is related to the fact that some stations
were not run for the entire three years (Table 1.4). Note that almost 60% of the
stations measuring any pollutant monitecred suspended pafticulate at some time
in the 3 years. This is the most actively measured of all pollutants. There is con-
siderable variability in the number of years stations were active. Since the data
available in SEEDIS do not indicate which stations were run in specific years, we
could assume that average air quality does not change substantialiy over this
time span, yet we know that meteorological and topographic factors deo change.
Then let us take this measure as an average measure of human exposure to air

quality during this time frame. With this approach a 1974 measurement can be

10



compared to those taken in 1976. In the future it would be preferred to elim-
inate this assumption but the data, although available, are not easily accessible

= at this time.

[ 3

TABLE 1.4 Frequency Distributions of Number of Years Active by Pollutant for
T the United States from 1974 thru 1976.

Sampling Percentage of Stations Active

at some time within:

Pollutant Interval (hours)

1 year 2 years 3 years
Carbon Monoxide 1 27.4 24.7 47.9
Total Hydrocarbons 1 33.2 21.0 45.8
Nitregen Dioxide 1 33.1 19.8 47.0
P Non-methane Hydrocarbons 1 32.1 28.4 39.5
Total Oxidants ' 1 24.0 19.8 56.2
Ozone 1 38.4 30.7 30.9
Sulfur Dioxide 1 33.4 31.3 35.3
Nitrogen Dicxide 24 24.3 26.5 49.2
Sulfur Dioxide 24 33.8 28.4 37.8
Suspended Particulate 24 23.3 19.4 57.3
Sulfate 24 33.2 50.5 17.3

Another important reliability issue is illustrated by the number of sta-
tions passing certain summary criteria. Table 1.5 shows these distributions by

pollutant. The criteria consist of the following (EPA 1978).

A. For continuous observations with sampling intervals of less than 24

- hours the criteria are:

1. Data representing quarterly periods must reflect a minimum of
75% of the total number of possible observations for the applicable

quarter.

2. Data representing annual periods must reflect a minimum of 757%

11



of the total number of observations for the applicable year.
B. For noncontinuous observations with sampling intervals of 24 hrs or
greater the criteria are as follows:

1. Data representing quarters must reflect a minimum of five

observations for the applicable quarter. Should there be no measure-

12

[

ments in one of the three months of the quarter, each remaining month

month must have no less than two observations reported for the

applicable pericd.

2. Data representing annual periods must reflect four quarters of

observations that have satisfied quarterly criteria.

These criteria insure that samples are fairly well spread over the sampling
period and that there are enough samples to be a reliable summary §f pollutant
level for the period of time covered. Asis shown in Table 1.5, many stations did
not pass these criteria. Sulfur dioxide and total suspended particulate have t_he

highest percentage of staticns which passed.
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TABLE 1.5. Frequency Distribution of Number of Years that Active Stations
Passed Summary Criteria by Pollutant for United States (+ territories) during
1974-76.

Pollutant Sampling Percentage of Active Stalions Passing For

Interval (hours)||0 years 1 year 2 years 3 years
Carbon Monoxide 1 46.4 25.3 16.3 11.9
Total Hydrocarborns 1 61.9 13.2 23.4 1.5
Nitrogen Dioxide 1 48.4 21.8 12.5 14.2
Non-methane Hydrocarbons 1 30.0 8.8 1.2 C.0
Total Oxidants 1l 36.4 20.1 27.3 15.7
Ozone 1| 158.1 26.6 i2.2 3.1
Sulfur Dioxide 1 51.2 285 13.1 7.1
Nitrogen Dioxide 24| 289 30.6 20.3 22.2
Sulfur Dioxide 24 26.9 24.7 20.8 27.6
Suspended Particulate 24 28.4 25.2 22.2 24.3
Sulfate 24 65.3 28.6 . 5.7 0.4

The irregular spatial distribution of the data points raises another data
analysis problem. Certain areas are monitored more heavily than other areas as
mentioned. The areas that are monitored most heavily are metropolitan areas
where population density is highest. The data are therefore available in the most
appropriate places for measuring human exposure. Yet for making general con-
tours plots, this can be a problem. Contour estifnates would be much more accu-
rate if the data were regularly distributed.

Outliers are a typical problem for any data set. Air quality data are no
exception. Basically there are two kinds of»outliers in air quality data. One kind
of outlier are those which are completely nonsensical such as a negative value of
concentration. A more subtle kind of outlier is one that does not follow the pat-
tern established by the other points. There are at least two ways these outliers
can arise; {i) measurement error and (ii) accurate measurements that are

measuring local values not representative of the region.

13



Another problem that is typical of any data set, especially a large one,
is the number of missing values. In the PAREP air quality data under study the
number of missing values is quite large and varies wi.th the pollutant. Table 1.6

| shows the amount of monitoring that took place in 1974-1976 for t_he whole US (+
territories) for all pollutant measurements under consideration. Total
suspended particulate and sulfur dioxide are thought to be respiratory irritants
(Landau, 1971), especially in combination, suggesting why they have been histor-

ically more heavily monitored than the other pollutants.

TABLE 1.6. Number of Active Stations By Pollutant.

— Pollutant Number of Active Stations |
Carbon Monoxide {1-hour interval) 588
Total Hydrocarbons (1-hour interval) 205
Nitrogen Dioxide {24-hour interval) 1796
Nitrogen Dioxide {1-hour intervatl) 353
* Nitrogen Dioxide {Either or both intervals) 2006
Non-methane Hydrocarbons (1-hour interval) 80
Total Oxidants (1-hour interval) 121
Ozone (i-hour interval) 821
Sulfur Dioxide {24-hour interval) 2440
Sulfur Dioxide (1-hour interval) 1050
* Sulfur Dioxide (Either or both intervals) 3409
Total Suspended Particulate (24-hour interval) 5473
Sulfate (24-hour interval) 1045

*Some stations used both sampling intervals.

For the analyses here, Digital Equipment Corporation's VAX 11/780
computer was used. For the more complicated analyses, a smaller area with
high monitoring density needed to be used in order not to use excessive
amounts of computer time. This was mostly for the sake of applying developed
statistical techniques and developing methods, not {or extrapolating tc the rest
of the country. A more efficlent technique as an alternative to that which is

presently used is developed. Two different machines were used with two different

14
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operating systems. The two operating systems were VMS and UNIX. In UNIX,
access to the statistical package, system S (Becker, 1981) was available. System
S was used for mrich of the analysis because of its interpolation and contour pro.-
grams. The VMS machine is the machine which houses SEEDIS and all the air

quality data.

Air Quality by Location

After checking for and removing most of the more obvious outliers
there were 6625 monitoring stations active in 1974-76 in all. Not all of the sta-
tions have values for all pollutants. Of the 6625 monitoring stations, there are
only 5777 distinct locations. In some cases the exact location of a station was
not known, in which case the population centroid of the corresponding city was
used. Assuming that monitoring stations are alike in the way they measure, the
measurements can be averaged at a location to have only one value of pellution
for each station with the same (lat,long) coordinate. This makes it easier to
investigate interpolation strategies by cross-validation techniques. A new file
was made with 5777 data points and installed in SEEDIS {Johnson (1982)). The
Air Quality Monitoring Station by Location {AQMSLOC) File is the one that is used
throughout the remainder of this study. Stations at the same location were con-
sidered as a single observation with a concentrétion equal to the geometric

mean (weighted by the number of observations) of the individual values.

15



Two Pollutants in Chio State ~

Tables 1.3 thru 1.6 showed that the most heavily monitored pollutants
are sulfur dioxide and total suspended particulate. Even though some pollutants
are monitored more often on the average, they have fewer stations and pass
summary criteria less often. These pollutants are also the most suspected
health hazards. We have restricted most of the statistical analyses to these two
pollutants. There are two main reasons for this restriction. There are muore
data for these pollutants which is important for predicting air quality and these
pollutants are also of interest to the health field. We also decided to analyze
only the state of Ohio because of the difficulty of analyzing 5777 data points at
once. Ohio has 455 stations within the boundary of the state. No reason existed
to analyze the whole nation at once, since the monitoring stations within or near
a hownogeneous area can be used to estimate the population exposure in that
area.' So for solid st_atistical results, the analyses shall be confined largely to the
state with the most monitoring stations and to the extensively moritored poilu-
tants. Estimation techniques should do "best” in the most densely monitored

areas, so the methodology will be examined and evaluated in these areas.

Methodological Perplexities

Stalistically, there are two interesting problems which can be explored
with these data. One is to map pollution gradients in detail for a regicn. The
other is to estimate an average level of pollution for an region in order to com-

pare with other geographic regions. These two ideas are connected through sur-

16



face estimation. The surface estimates points which can be used for making con-
tours and for calculating averages. A question that arises is whether the same
estimation procedure will do well for both purposes.

The statistical techniques for estimating a non-linear bivariate function
are described by the general name of non-parametric regression. The desirable
feature of non-parametric methods is that no distributional assumptions are
required for their validity. In fact non-parametric regression techniques are
used to estimate density. Commonly used non-parametric regression methods
include nearest-neighbor techniques, splines, kernels, and partition-based
methods. To estimate an arbitrary point in the plane by the technique of nearest
neighbors, the k nearest neighboring data points are used. The parameter, k,
usually remains constant and is the number the number of observations used for
predicting any point in the plane. Splines or bivariate polynomial interpolation
fit a polynomial of a ﬁxe.d degree to each triangle in the plane. The triangles are
defined by the data points. So‘ in spline fitting tc predict an arbilrary point in
ﬁhe plarie. one sees which triangle it lies in and applies the appropriate degree
polynomial, using the data at the vertices of the triangle, to determine the poly-
nomial coefficients; and then the fitted polyncmial is evaluated at the point of
interest. Partition-based methods take a particular size partition; then all the
points within this partition are used to evaluate arbitrary non data points in the
partition. The kernel methed uses a weighted average of the data points inside a
window. The size of the window is chosen in various ways. For example, its size
can vary with the number of data points or some other relevant parameter. The
moving average which is discussed in chapter two is c‘{assiﬁed under the family
of kernel techniques. Choosing the appropriate technique for a specific problem

is of interest.
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Suppose one has chosen a technique. Within a technique there are still
choices to be made of certain control parameters. For example, in nearest-
neighbor techniques the 'best’ k£ must be chosen. With splines, it is the choice of
the degree of the polynomial. In partition-based methods the size and type of
the partition should be carefully chosen. In the kernel method, not only the
weights need to be chosen, but also the size of the window.

There are a variety of methods for choosing techniques or control
parameters of a technique. Many questions arise as to which method of choice

should be used. Perhaps one method is better for choosing the estimation pro-

18

cedure overall while another is more useful for picking a control parameter.

Cross-validation can be used for both these tasks and will be explored. We shall
use cross-validation to choose between two methods of interpolation and also to
choose the control parameters of one of the methods. We wiil try to choose
between bivariate linear interpolation and a moving avefage method where the
moving average requires a choice of parameter. Stone (1973) discusses "choice
and assessment of a statistical prediction” appiying cress-validation criteria.
Summarizing the assessment of the two-dimensional moving average
model by the cross-validation technique can also be done in several ways. The
issue is not clear-cut. A loss function must be chosen which does not favor non-
optimal estimates. Ripley {1981) points out that squared error may be dom-
inated by a few data points which are outliers. Ripley also mentions that weight-
ing of the prediction errors by their standard errors and then forming a sum of
squares "‘biases the comparison in favor of covariances which give high standard
errors by means of small covariances at typical interpoint distances”. In other
words, outliers and inefficient eslimates must be considered when using a

squared errvor loss function. Perhaps some sort of trimmed squared error would

i
.



be the best to use. A trimmed squared error is the regular squared error with a
certain proportion of extreme high and low values removed from the data.
Different loss functions will be explored. |

The concept 'local variability’ which is a function of disk radius has
been developed. The minimum local variability gives a disk radius which con-
tains on the average the most homogeneous collection of points provided the
disks are drawn around cach station location. The disk radius has a correspon-
denice with the control parameter in the moving average method. Thus local
variability analysis is offered as an alternative to cross-validation for choosing
the parameter. By analyzing local variability the problem which arises in choos-

ing a loss function is eliminated.

An Overview of the Following Chapters

Chapter 2 gives a detailed description of the two-dimensional moving
average model. Important properties of the method are discussed. In the
SEEDIS implementation of this model, different values of the control parameter
can be selected. General utility of this kernel method for detecting outliers will
also be shown. The method for which sulfur dioxide 24-hour and 1-hour meas-
urements are combined and the adaptability of our model to this linear combi-
nation is given. Cross-validation is discussed as an integral part of the two
dimensional moving average model. Local variability is presented as an alterna-
tive to cross-validation. A control parameter is chosen using cross-validation for
sulfur dioxide and suspended particulate in Ohio State. Local variability func-

tions are calculated for the states of Ohio, New York and Florida to check con-
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sistency in the shape of our function.

Chapter 3 gives an expianation of the polynomial interpolation method
that is used. With sulfur dioxidé and suspended particulate in a heavily moni-
tored area, the state of Ohio, linear interpolation is done using system S. The
moving average is also calculated for the same pollutants. Linear interpolation
and the moving average model are compared for their usefulness in both con-
touring and estimation of a certain point in an area. Cross-validation is used to
assess which interpolation technique might be "better”. Some problems with
cross-validation estimates are pointed out.

Finally, chapter 4 contains a summary including a synopsis of the prob-
lems that arise in this kind of research, conclusions which can be drawn from

this study and the possibility for further research in this area.
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Figure 1.1. Frequency Distribution of Percentage of Time Stations were Active

for Carbon Monoxide Sampling in the United States (4 territories),
1974-76.
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Figure 1.2,

Frequency Distribution of Percentage of Time Stations were Active
for Total Hydrocarbon Sampling in the United States (+ territories),
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se Figure 1.3. [Frequency Distribution of Percentage of Time Stations were Active

for Total Oxidant Sampling in the United States (+ territories), 1974-76.
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Figure 1.4.

Frequency Distribution of Percentage of Time Stations were Active
for Ozone Sampling in the United States (+ territories), 1974-76.
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Frequency Distribution of Percentage of Time Stations were Active

for Nitrogen Dioxide 24-hr. Sampling in the United States (+ terri-

tories), 1974-76.
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Figure 1.5a,

Frequency Distribution of Percentage of Time Stations were Active for
Nitrogen Dioxide 24-hr. Sampling in the United States (+ territories),
1974-76. Window < 207.
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Figure 1.6.

Frequency Distribution of Percentage of Time Stations were Active for

Nitrogen Dioxide l-hr. Sampling in the United States (+ territories),

1974-76.
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Figure 1.7. Frequency Distribution of Percentage of Time Stations were Active
for Non-methane Hydrocarbon Sampling in the United States (+ terri-
tories), 1974-76.
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Figure 1.8 Frequency Distribution of Percentage of Time Stations were Active for

Total Suspended Particulate Sampling in the United States (+ territories),
1974-76.
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08 - Figure 1.8a. Frequency Distribution of Percentage of Time Stations were Active for

Total Suspended Particulate Sampling in the United States (+ territories),
1974~ 76. Window < 40%,
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800 — Figure 1.9. Frequency Distribution of Percentage of Time Stations were Active for
Sulfur Dioxide 24-hr. Sampling in the United States (+ territories), 1974-76.
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1000 — Figure 1.9a. Frequency Distribution of Percentage

of Time Stations were Active for
Sulfur Dioxide 24-hr. Sampling in the
United States (+ territories), 1974-76.
Window < 40%.
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Figure 1.10.

Frequency Distribution of Percentage of Time Stations were Active for

Sulfur Dioxide 1-hr. Sampling in the United States (+ territories),
1974-76,
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00 Figure 1.11. Frequency Distribution of Percentage of Time Stations were Active for

Sulfate Sampling in the United States (+ territories), 1974-76.
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Figure l.1la. Frequency Distribution of Percentage of Time Stations were Active for

Sulfate Sampling in the United States (+ terrltorles)
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CHAPTER TWO

Geographic Estimation of Air Quality

The Two-Dimensional Moving Average Model

Observations of air quality from monitoring stations are given and we
- wish to estimate the air quality for an entire geographic area. The sample
points arise from stations which are not always in the area and which are not
placed on a regular grid. The monitoring stations are placed where observers
are available, usually in metropolitan areas rather than more rural or suburban
regions. Under these circumstances, the sample mean may be seriously biased
as an estimator of the mean level of pollution. An alterﬁative is to fit an interpo-
lating surface to the data. There are many methods of interpolating or smooth-
ing data. Ripley (1981) gives an excellent review of the various smoothing tech-
niques which apply to this problem. He briefly discusses trend surfaces, moving
averages, splines, tessellations, triangulations, and Kriging. These methods esti-
mate a surface from spatial data and use this surface to estimate values at given
points within a geographic region.

The model we will explore is similar to the kernel method of non-
parametric regression and is also like a moving average used in time series
models. A time series moving average estimates a specific point as a weighted
average of the points nearby in time where the weights change as a function of
the distance to the point of estimation The method described here is similar to
this approach where instead of ohe-dimensional time we are using two-

dimensional geography. The coordinates are the latitute and longitude of the
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measurements. The weights change as a function of the geographic distance

and the percentage of time a station was active. The weights can be written as

-.5d2/d
W= (X X;)=p;e 4/ 4§

where p; = the percentage of time station i was active and d; = distance between

x and x;. The parameter dg is a control parameter. The units of d; and dg are of

distance which is expressed in kilometers. The choice of dgis discussed in detail

in this chapter. Its value may change for different problems. These weights are-

used in the PAREP project for estimating pollution concentration at population
centroids in geographic areas. According to Merrill (1982), this choice of w; was
made for three reasons: "i) the estimated function should be smooth in the
vicinity of the measured points; ii) the estimated function need not pass directly
through all the measured points; iii) the area integral of the estimated function
should be finite, so that distant points can be ignored in the calculation.” Con-
tinuing with the notation of the section on moving averages in Ripley (1981), we

can write

w.

i
3

Wy
i=1

}\1-‘:

The A;'s are the weights used in the moving average model.

N = the number of stations used in the average.

Then
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i=N
Y. \=1 and, for a fired do, as d;=0, w;-p;
i=1

These weights are relative weights and their sum is 1. For a fixed dg, as the dis-
tance from the point of estimation to a station gets smaller, the weight in the
weighted average for that station's value approaches the percentage of time

that station was active.

The estimate at x is then given by

) i=N
(%)=& Mz (x)

where z(x;) is the logarithm of the observed concentration at x;.

Strictly speaking this surface does not interpolate, i.e. pass through ail the

measured points, since A; does not tend to 1 as d;»0. For any specific station i

with a non-zero percentage of time active, p;, %;*0 as d; »0, and therefore the
i

function e is differentiable at x;. Ripley gives a more detailed discussion on the
differentiability of these kinds of estimates and a complete review of this gen-

eral estimation procedure.

A drawback to this estimation procedure is that the moving average is
easily biased to clustered data points. If the point we are trying to estimate is
equidistant from 10 clustered points on one side and i point on the other side,
the estimate will be dominated by the 10 clustered points. Also let us examine

the following situation,
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where X is the point to be estimated and and S; represents the station values.
Assume that all stations are equidistant from the point of estimation and when

the percentage of time active are all equal the weights for the estimate of x are

~the same in both situations. If we suppose that these two situations have the

same atmospheric and pollution conditions, the example in a. where the
estimated point has stations on both sides may be more accurately estimated
because in a. the relevant point is surrounded by points while in b. there are
only measurements on one side of the point of interest and therefore there is no
information about possible pollutiod coming from the other side.

The parameter dg is a smoothing parameter which defines the shape of
the weighting function. The shape should make the weights so that they are
large for measurements within a radius of the estimated point where the varia-
bility of concentrations within that radius is assumed to be small. The value of

dg, should be large enough to smooth out insignificant variability among
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adjacent stations, yet small enough to preserve significant trends over larger
geographic areas. In order to avoid producing estimates for poorly monitored
areas, we have excluded pointé more than 3dg km away if they are the nearest
points to our point of interest. If there are stations within 0 to 3dy km of our
point of interest, then measurements out to 4dg km are used in the in the mov-
ing average model. The 4dq criterion is used in order to avoid sharp discontinui-
ties in the predicted surface. If we included only stations within 3dgq in the cal-
culation, there would be a sharp discontinuity at the midpoint between 2
predicted points which are 8dg km apart. Because of the shape of the weights
and the number of points in the estimate the larger the dy the flatter the sur-
face will be. See Figure 2.1 for curves of weight functions for constant p;. Each
curve corresponds to a different dy which covers 1, 2, 5, 10, 20, and 50 km. The
flattest curve occurs for d¢g=50 km and thus gives the smoothest contour map.
Likewise the steepest curve is for dg=1 kan and this gives the least smooth map.
See Figure 2.2 to see Lhe weight as a function of dg for a d; of 1 km. In the
extreme case, as dg tends to = the weights do not depend on d;; all peints in the
area of interest, [, will be used and the predicted surface would be entirely flat.
The absolute weights would all be 1 so our estimate would be simply the
unweighted average of all points in D.

The two-dimensional moving average model has been implemented in
SEEDIS so that given a particular set of points specified by latitude and longi-
tude coordinates, estimates of air quality for these coordinates can be made.
Values of dg the user can select are dg = 1, 2, 5, 10, 20, and 50 km. Deciding
which dg to choose is not straightforward and an attempt to answer this question
is discussed in detail in this chapter. A method for choosing dg will be given

which is data dependent and could therefore be incorporated into SEEDIS and
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provide automatic and rational choice of this critical parameter.

Just as air quality varies from point to point, it also varies over time.
Air quality changes in response to changes in industrial activity, vehicle use, and
weather conditions. The inclusion of a time parameter in the model, say tg, in
the same way as the distance parameter, dg is therefore a useful extension.
Given a series of data values over time, one could could use data from year £ to
predict data in year ¢t +At. If Af is large then the weight shduld be small for that

value. A possible choice for the weights wy is

w =pse -5(d2/d§ +t2/t§ .

These are analogous to the weights given earlier where £{; = number of years
difference between the year the measurement was taken and the year for which
one wants to estimate. Time, {;, is analogous to a third dimension of the two
dimensional distance. This could be done if a time series of data were available;

the time parameter, g, could be analyzed in the same way that we are exploring

the distance parameter dy.

Combining Data from 1-Hour and 24-Hour Sampling Intervails

for Sulfur Dioxide

In order to illustrate the two dimensional moving average model that is
discussed above, sulfur dioxide and suspended particulate in Ohic State are used
for reasons of data density and availability. Using two pollutants also provides a
comparison between two different kinds of air quality measurement which by
their nature might require different estimation téchm‘ques. Sﬁlfur dioxide gen-

erally is measured in two ways. Gas bubbler data from a 24-hour sampling inter
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val are normally collected manually every sixth day; automatic air sampling dev-
ices usually provide continuous measurements for regular l-hour sampling
intervals. One way to estimate sulfur dioxide levels would be to proceed twice;
first using data from 1-hour sampling intervals and second using measurements
from 24-hour sampling intervals, yielding two independent estimates for the
same variable, the concentration of sulfur dioxide. It is more useful to have a
single estimate of sulfur dioxide for the area. If we just use l-hour data for our
estimate we have ieft out all the information cobtained from the 24-hour data,
and vice versa. If 1-hour data and 24-hour data are measuring the same aspect
of sulfur dioxide, then the estimate which contains the most information about
sulfur dicxide is clearly one that combines 1-hour and 24-hour data in a reason-
able way.

Before applying the two dimensional moving average model, we com-
bined the levels of sulfur dioxide at each station location. If a station measured
sulfur dioxide only at 1-hour intervals then the combined measure was the aver-
age of the l-hour measurements. Similarly, if a station had measured sulfur
dioxide only with 24-hour sampling then the combined measure was the average
of the 24-hour measurements. If a station had both l-hour and 24-hour meas-

ures of sulfur dioxide, they were combined in the following manner.

Let
z;» = the average of 1-hour measurements at monitoring station i.
z;4= the average 24-hour measurements at monitoring stationi.
Pin = percent time active of 1-hour monitor at station i.

Pig = percent time active of 24-hour monitor at station i.
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(Note: If a station had neither a 1-hour nor a 24-hour measurement of sulfur

dioxide, then it is regarded as missing and left out completely.)

Our combined measure is

_PinZintPig2y

b Pin +Puy

Denote

Pic =Pin +Pig

The estimate of the combined observation at any point in a region where d; is

the distance from a station to the point of estimation is

1= _
‘ 2 e( .5«(3/«:@)%c
— =

243
p.
i=1
8o = ——
ipu e {-.5d%/d§)

1c
i=n
i=1
where n = number of stations within the prescribed window.

Since

Dic 2ig =Pig 2id +Pin Zin

then

1= -5 a/dz
i(szm*‘szm)e( 7 d0)

i=1
i= ~-5d2/d 2
_2pice( 5/ 30)

i=1

2. =
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and thus

i=n i=n
Y e M )5 S pe
i=1 i=1

S (-5d@rdd) T (-5df/dE)
Pige + ). Ppne
&P Zpe

(-.5d3s dg)zih.

ec =

which is equivalent to

num 24+num 1
e.=
¢ dengs+den,

where
num;=numerator of estimate from data sampled at j-hour intervals.
and

den; =denominator of estimate from data sampled at j-hour intervals.

Note that this is just a weighted average of the hourly and daily estimate where
each is weighted by its respective monitoring density.

The above result makes it easy to combine estimates which can be
obtained from the moving average model for 1-hour and R4-hour data
separately. That is, one can either combine l-hour and 24-hour data at each
station before applying the model; or one can combine the model results
obtained separately from 1-hour and 24-hour data. The results are the same.
The monitoring density, expressed as the effective number of full time stations
per unit area, quantifies the amount of data available around a particular point.

It is defined as
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2ndé

where the sum is over all active stations in the area of interest. The denomina-

maonitoring density =

tor, 2nd§, is a normalizing factor chosen so that the area integral of the density
over the entire U.S,, i.e.

{; monitoring density dA=5§::p‘

is the total number of effective full time stations. This was first discussed in Sel-
vin, et. al. (1981). Since combining R24-hour and 1-hour data amounts to a
weighted average and the model is also a weighted average, it is easy to gen-
erate estimates of a combined data point from the estimates of the uncombined
data point as long as numerators and denominators are readily attainable.

Combining 1-hour and 24-hour data produces many more active sta-
tions for sulfur dioxide. The number for the combined data is only 2368 whereas
for 24-hour alone the number is 1592 and for 1-hour alone the number of active
stations is 202. Therefore sulfur dioxide is the second most well monitored in
terms of the number of stations; if we combine nitrogen dioxide 1-hour and 24-

hour data we have only 1218 stations (almost half as many). Nitrogen dioxide

ranks third for number of active stations running in the United States.

Cross-Validation (CV) as an Integral Part of the Modeling |

To choose the "optimum" value of dy and investigate the accuracy of
these weighted averages. a predicted value for each station was produced from
observations from other nearby stations (excluding the station's own value), and

compared to the actual value observed at the selected station. By varying d,,
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several estimates were generated for comparison with each observed value. The
method of choosing the "bes!’ dg from all these estimates will be explained.

Two approaches were used to compare these estimates with their
observed values in Johnson et al. (1982), employing correlation coefficients and
squared error loss. Weighted and unweighted correlations were used in Johnson
et al. (1982) and found to yield an inappropriate summary of the cross-
validatory predictions because in small samples Lhe correlation coeflicient
reflects a negative bias. In the extreme case of only two stations, the estimate
made by leaving one out and predicting the other produces a correlation which
is bound to be negative. Thus squared error loss was chosen as a function for
measuring adequacy of various values of dg. Squared error loss is defined as the
sum of the squared residuals, where the residuals are defined as the estimted
value minus-the observed value. Yet squared error loss must be used very care-
fully for it can be heavily biased by outliers.

Using the method of cross-validation to choése dg is an expensive task.
It requires n(n-1) calculations, where n is the number of stations. Since
n = 5777 stations for the whole United States, about 3 million calculations are
required to cross-validate the entire United States. In order to facilitate cross-
validatory estimates for any state, a file was created which has the cross-
validatory estimates at each station location for dg=1, 2, 5, 10, 20, and 5C km for
total suspended particulate. Total suspended particulate data were used
because these data are more abundant than those of any other pollutant. These
estimates can be extracted without running the moving average model to get
the cross-validation estimates.

So far we have only discussed using cross-validation as a method for

choosing a parameter within a particular modeling technique. Cross-validation
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can also be used for choosing among completely different rnethods. When we
choose a different dy, we are merely changing a control parameter within a
given modeling technique. This is less difficult than choosing between two com-
pletely different models. Choosing a model by cross-validation is not quite as

straightforward as choosing parameters and will be discussed in Chapter 3.

Utility of Surface Estimation to Detect Outliers

The model can be used not only for estimating pollutant concentra-
tions for an area, but also as a method for detecting outliers. In fact it is the
cross validatory feature which makes this possible. In a large data set such as
this (n = 5777) it is extremely laborioué to look for outliers in the usual way of
visually perusing the data. The cross-validating estimates and graphic analysis
allow one to analyze a 1afge data set and quickly identify outliers.

With a relativély good method of estimation and a large sample, one
would expect the estimates of an observed value to be correlated with the
observed values. Graphically, we can compare the estimates with the
corresponding observed values by means of a scatterplot. We would expect most
of the points to fall on a 45 degree trend line. Gross outliers can be identified
easily from one of these scatterplots. These techniques have often been used in
regression analysis (Snedecor and Cochran, 1967).

Figure 2.3 shows, for individual stations, a scatterplot of the logarithm
(base e) of the measured geométric mean of total suspended particulate con-
centration plotted against the estimate of the legarithm of the geometric mean.

The smoothing parameter dg, was chosen to be 50 kilometers. Fifty kilometers
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was chosen for Lhe sake of example and to be sure to estimate each observed
value. Given each station’s location, the moving average using the described
weights was used to predict the vélue of pollution at each station location. Each
station's estimate does not include its own measured value. Since the distribu-
tion of the geometric means are lognormal (a skewed distribution), logarithms
of estimates and observed values were taken. Figure 2.3 shows some extraordi-
narily low observed values. The points that are particularly suspicious are those
which have observed values (i.e. logarithm of geometric mean) exactly 0.00. In
addition, other obvious outliers have observed values less than one. Also this
plot provokes questions about the data; for exampie, in Figure 2.3. why is the

estimate of one point so much smaller than the estimates of the others?

Perhaps this point is near the points with the observed values less than one.

This plét suggests examining all the data where the obéerved value is
less ‘than or equal to 2.00 to see if there was some reason why these values are
so low. It was found that all the stations with an observed value equal to 1.00
(log=0.00.) were active exactly 0.091 percent of the time, corresponding to a sin-
gle 24-hour measurement during the 3-year period 1974-76. From now on, if a
station had only one measurement its pollutant value is considered missing.
Since most of these stations seem tq be in the same geographic area it is rea-
sonable to suggest that observers in this area designated missing values as 1.00.
So these stations should be considered missing and not used in the estimation
procedures. The value with the low estimate but a normal observed value is a
station located next to those outliers whose observed values were designated
1.00. As soon as these spurious data points were removed from the sample, the
remaining observed values had more reascnably si_zed estimates (See Figure

2.3a.). Figure 2.3a. shows the revised scatterplot obtained after the spurious
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values of Figure 2.3 were removed. Thus this model can be used to "launder’ the

data, a process which in large data sets is otherwise tedious.

Choosing dg for Ohio State with Sulfur Dioxide and

Suspended Particulate Data

Sulfur dioxide and suspended particulate data for the state of Ohio
were used to illustrate the selection of an optimal dg. From 1974 through 1976
there were 185 active stations for sulfur dioxide and 388 active stations for total
suspended particulate. For dd= 1, 2, 5, 10, 20 and 50 km, the two dimensional
moving average model was used to predict the observed value at the location of
each of the active stations by leaving out the station's own value. The difference
‘between the moving average model prediction and the oibserved value is the
error ih the estimate. We would like to choose the. dg with the smallest predic-
tion error.

Four composite measures of error were calculated. Let
z; = logarithm of the pollutant concentration at location x.

e; = logarithm of the estimate at location x; from surrounding data points.

Logarithms were taken because geometric means are assumed to have
a lognormal distribution, i.e. the logarithm of the geometric mean is distributed
normally. These measures of error are more easily inferpreted for normally dis-
tributed data. Therefore the analysis will be done using logarithrﬁs of the

observed values and the logarithrus of the estimates throughout the thesis. When



values are discussed they are the logarithm of the geometric mean concentra-

tion unless otherwise mentioned.

The mean value is
i=n
zZ = 2 2.
i=1
The variance of values is
l n
Szz = —E (Zi —5)2.
ni:l
The weighted variance of the values is
‘Zpi( z,—Z)?
i=]

2]’1 |
i=1

In all these formulas,

s2, =

= the number of stations that could be estimated.

The error measures are:

(LF) Loss Function

(WLF) Weighted Loss Function

ipi(zi—ei)z
WLp = &2
ip-;
i=1
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(RSE) Ratio of Squared Errors

_ 1 &
RSE = mSE ig(zi—ei)z

(WRSE) Weighted Ratio of Squared Errors

) 1
WRSE S e ipl (Z-i —e; )2
P 53, 5

[ Ng™

(MAE) Mean Absolute Error, Percent

Z;—e; | X 100

=1
MAE‘-—nEg;

(WMAE) Weighted Mean Absolute Error, Percent

WHMAE = ——— 3" p, |z,—e; | x 100
Zy,p ‘!
i=1
(MPE) Mean Percent Error
bz _eil
MPE =3~ "Iy 100
i=t nz;

(WMPE) Weighted Mean Percent Error

These formulas are similar to those used by Breiman (1977) for comparing ker-
nel and Parzen multivariate density estimation techniques. The weights are
added because if a station is not very active then the observed value at that sta-

tion is not as reliable as the more active stations: therefore the reliability of our



estimate is to some extent a function of the station.activity as well as the esti-
mation procedure. For these error functions to reflect the adequacy of the esti-
mation procedure and not the station activity they are weighted according te
the percentage of time active.

These functions were computed for total suspended particulate data in
Chio. Table 2.1a. shows the values of each function for different values of dy.
Figure 2.4a. presents the same data in graphical form (Values are scaled so that
functions appear on the same plvot.). If one looks only at the unweighted loss
functions, the value of dg which minimizes the loss for most of these functions is
5 kilometers. The ratio of squared errors (RSE) is the only one which is not con-
sistent with this choice of an optimal dq. This probably reflects the small local
variability of suspended particulate relative to the global variance. This will be

discussed in more detail later in this chapter.

TABLE 2.1a." Unweighted Loss Functions by dg (km) for Suspended Particulate in
Ohio State. '

do(km) LF RSE | MAE | MPE

1 .07562 | *.500 4.9 4.9
) 2 .06907 .539 4.8 4.9

5| *06586 B21 | *4.8 | *4.0
10 || .06945 .6986 4.9 4.9
20 08111 .836 5.3 7.4
50 .09337 .963 5.6 3.7

* indicates the minimum value and thus corresponds to the optimum dj.

In Table 2.1b., the weighted loss functions are computed for the same
values of dg. Figure 2.4b. is a plot of these functions (values are scaled so that
functions appear on the same plot.). These functions give a different optimal dg

than the unweighted measures. All of these weighted measures of error indicate
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2 km as an optimal value of dgy for the weights in the moving average. In the

weighted case, we have more consistency amongst loss functions in the choice of

. dg than in the unweighted case.

TABLE 2.1b. Weighted Loss Functions by dg (km) for Suspended Particulate in
Ohio State.

do{km) WLF | WRSE | WMAE | WMPE
I —————
1 .0633 425 4.5 4.4

2| *0519 | %404 | *42| %1
5[ .0531| .477 4.3 4.2
10| .0565 | .533 44| 43
20 | .0673 | .631 4.7 4.6
50 | .0836 | .803 5.3 5.2

* indicates the minimum value and thus corresponds to the optimum dg

Table 2.2a. and 2.2b. are the analogues to Tables 2.1a. and 2.1b. for sul-
fur dioxide (1-hour and 24-hour data combined). Notice that for all loss func-
tions the sample mean does "better” in terms of squared error than does the
moving average modei. This could reflect a large local variability in sulfur diox-
ide relative to the global variance. It also suggests that there is some bias in the
cross-validatory estimates of the model. The possibility of bias is explored in
Chapter 3. We observe a larger local variablility for sulfur dioxide data than for
suspended particulate data. This could arise from measuring problems such as
a large measurement error or biased measurements. It could also mean that
the moving average model is inherently wrong for modeling sulfur dioxide.
Unlike suspended particulate, sulfur dioxide is a specific chemical compound
which may diffuse or transform‘to other compounds in the atmosphere. Hence
there might be a high local variability since S0, concentration may always be

changing, whereas suspended particulate includes many compounds of a certain
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size (eg. dust) which may not be as apt to change in concentration. Figure 2.5a.
and 2.5b. present in graphic form the data of Tables 2.2a. and 2.2b. graphically

(Values are scaled so that all 4 functions be presented on the same plot.). )

TABLE 2.2a. Unweighted Loss Functions by dg for Sulfur Dioxide in Ohio State.

do(km) | LF | RSE | MAE | MPE
@

1 434 | 442 | 57.0| 549
2| 2052 *3.56 | 39.9] 382
5| 217 | 398 | 38.7| 38.1
10 2.11 | 421 39.8 | 39.9
20| 200 | 432 )| 39.7| 398
50 ) *1.80 | 395 | *38.2 | *37.5

* indicates the minimum value and thus corresponds to the optimum dg

TABLE 2.2b. Weighted Loss Functions by dg for Sulfur Dioxide in Ohio State.

dolan) | WIF | WRSE | WMAE WMPE |
1| 349 | 391 | 466 431

2| 189 | *2.42 | *27.7 | *258

5| 1.63| 282 | 289 27.1

10| 1.60| 293| 306| 295

20| 156 296 | 31.1| 298

50 *138| 268! 31.6]| 29.7

* indicates the minimum value and thus corresponds to the oplimum dg

Measuring Local Variability

Perhaps a more efficient method for finding the optimal dg than leaving .
one out and estimating the moving average for each data point is to find a meas-
ure of local variability (LV) as a function of dq and find that dy which minimizes
it. That is, in the moving average model the dy chosen by cross-validation should

be approximately that dg, corresponding to a radius of disks drawn around each



point, for which the point values inside the disks are the most homogeneous. In
other words, any other choice of dg should lead to a disk radius which, on the
average, gives more heterogeneity among points within the disks. This section
explores a method for estimating this local variability function.

The disk radius is determined by dg in the following manner. Recall
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that the moving average model is a weighted average of the values of the points -

surrounding the point of estimation. The weights are proportional to

= pe -.5df/ df '

wy

In the moving average model, points within four times dg are used in the aver-

age; yet the points that are a distance of four times dy give an absolute weight of

w; = e™® = .0003p;

which can be a small relative weight. Since the weights in the model are relative
weights, a point which is far away, say 2.9 dg, can have a.weight=1.0 if it is the
only point within 3xdg. Therefore choosing a significant weight as a function of
dg is an arbitrary choice and may depend on the particular data set and its pre-
cision.

Local variability is measured in the following manner. A disk is drawn
around every point, defined by the station location, in the entire geographic
area of interest. The radius of these disks is chosen as a function of d¢. (See Fig-
ure 2.6.) For a large enough radius there will be other points besides the center
point contained inside these disks. In addition, each point will be the center of
exactly one disk (i.e., for every point there is an associated disk for which 1t is
the center). For each point we can calculate a mean and a variance using the

points which lie in its associated disk for a specific radius r. For example, the
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disk associated with z; has the following mean and variance:

Disk Mean
it
zj
= — i=1
T k"
Local Variance for point z;:
% (z—%)°
o k-l

k; = the number of points inside the associated disk.

We will call the variance inside each disk the local variance for that point using
radius . To calculate the local variability of the entire region for a particular r,
we take a weighted average of the local variances.

Since a point may be in more than one disk we should weight the points
accordingly. The precise method by which to weight the local variances for an
overall measure of local variability is difficult to decide, so a method is explored
which seems to be valid for intuitive reasons. We will examine the two most
extreme cases first. Suppose the radii were chosen so small that no point is in
more than one disk. We would then have local variances which were undefined
since there are no "degrees of freedom”. That is, it is impossible to calculate a
variance from only one value per disk. If we choose the radius large enough,
every point would be in every other point's disk and each disk would have the
same mean and variance, namely the mean and variance of the entire region. In

this case we would want the weighted average of the so-called local variances to
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equal the variance of any one of thern and thus there are N-1 degrees of free-

dom, where N = the number of stations in the region. If we weight each point by

1!11_1 where n; = the number of disks containing the point i. (See Figure 2.6.)

then the average of the local variances in this case will equal the variance of any

one of them, which is what we want.

A Now let‘; us examine the cases other than these two extreme examples.
We could think of each disk having k;—1 "degrees of freedom’” where k; is the
number of points in each disk. If each disk were independent of every other disk
(i.e. no overlapping disks) then this would be valid and the weights would be 1
and local variability could be measured by just the average of the local variance

given by each disk. But since there is overlap, we have given each point a weight

of #where n;= the number of disks containing point i. This way each point

still contributes a weight of 1 to the average local variability of the region since

each point appears in the sum of squares n; times. The total weight each point

- n.
contributes to the total sum of squares is 2 nl.L_
In order to normalize variability we need a denominator which
expresses the number of degrees of freedom associated with the local variabil-

ity. The number of degrees of freedom should take acrount of both the number

of data points in each disk and the amount of overlap. Therefore we have chosen

N
the denominator to be N -3, ni—which gives the expected answer in a few simple
i=1"%
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cases. These cases are given below.

More formally one can express this measure in the following manner.

(LV) Local Variability

_ == ™
LV = v T ]
i:lm

where
N = the total number of points in the region of interest.
z; = the value of pollution at a point.

Z; = the mean value corresponding to the disk associated with z;.

Let us examine this formula in light of a few examples to see its

plausibilty.

CASE 1. Every point is in only one disk. The disk radius is small so that no vari-
ances can be calculated. There are no degrees of freedom. I[n this casen; = 1

and thus the denominator of LV is zero. Therefore, as should be expected LV is

undefined in this case.

CASE 2. The disk radius is large enough that every point lies in every other

point's disk. Thenn;=N and k;=N and

N N z—f)z N _
)P Emon)r i 2 (z:-Z;)
LV = j=li=l _i=1
- N T N-1
N_ —_
:g'xN

which is simply the sample variance of the points for the entire region. This is
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the variance we would expect in this case since the local variance becormes the

global variance with a disk radius this large.

CASE 3. Suppose there are no overlapping disks but there are m discrete clus-
ters of points. In this case each cluster ﬁas its own mean and sum of squares
associated with it. Each point has the same disk and thus the same mean and
sum of squares associated with it as any other point in its cluster. In this case
n; = k;, where k; is the number of points in the jth cluster, and

FREEL 8ty

LV— = j=li=1
N- ﬁ 1 N-m

This is similar to the within mean square in one way analysis of variance

(Scheffe’, 1959).

CASE 4. Suppose each point has only one other point in its disk. So there are a
series of two overlapping disks which do not contain any other points. In this
casen; = 2foralliand

ﬁi—m—z 2SS (mg)
_ j=li=l

j= 11.1
LV = N = v

This is similar to case 3 with two points in each cluster. This generalises to the

case where every point is in k disks which do not overlap, then

PIPIEREN

— J=1li=1
LV = K
k

In other words this is the case, similar to case 3., whére there are m clusters

with with an equal number of points, k, in each cluster.

68



69

Local variability is directly related to the control parameter in the

model described earlier. The number of nearby points which are used in the
estimate of a particular point is related to the dg in this model. If dq is large,
this implies that the local variability is high and we can give relatively large
weight to points far away from the point of interest in its estimation. Likewise, if
dg is chosen to be small, points far away will be given relatively small weight
since the minimum local variability occurs at a smaller disk radius. Points
further than 4xdg were given zero weight by the two-dimensional moving aver-
age. This restriction was arbitrarily chosen because for a particular weighting
scheme (i.e. dp), values beyond 4xdg kilometers are assumed to have no
influence.

The disk radius where the minimum local variability occurs 1s similar
to dg and the 4Xdg restriction in the two dimensional moving average model. In
fact, points within this radius are on the average more similar in concentration
than points outside this radius. Therefore we should wéight. points within this
distance relativély high and points beyond the disk radius should be essentially
disregarded

Using Ohio as an example, local variability is calculated for various disk
radii. The radii were chosen as a function of dg. | For each dg, two disk sizes were
chosen. One was 4xdg which is just the same size that the moving average model
uses in selecting stations to compute its estimate of a point.! Since the weights
in the moving average model are distance-dependent, we expect it to do well for

disk radii where the local variability is small. Ohio is chosen so that we can com-

! Since stations further than about 3dg have negligitle weights in the two dimensional rnovingA

average model, and since these estimates are suppressed for points further than 3dg from any active
station, one might argue that a disk radius of 3dg would have been more appropriate than 4dg.
Nevertheless, the choice of 3dg or 4d does not change the conclusions of this section.



pare our choice of disk radius with our cross-validatory choice of dg in the previ-
ous section. In Figures 2.7a. and 2.7b. the local variability is shown as a function
of disk radius for Suspended Particulate and Sulfur Dioxide respectively. In
Tables 2.3a. and 2.3b. the actual values which were calculated for Ohio are given.
For comparison with the cross-validatory choices of thé previous section, we
chose disks corresponding to dg =1, 2, 5, 10, 20, and 50 km. This correspon-
dence is arbitrary but is based on the moving average model as it has been used
in the PAREP project. The other disk size was chosen so that the absolute
weights in the average would never be smaller than .01. The relationship of the
absolute weights to the relative weights which are used in the average is not
always the same and therefore a disk size which corresponds directly to the

weights in the two-dimensional moving average cannot be predicted.

TABLE 2.3a. Local Variability as a function of dg for Suspended Particulate in
the State of Ohio. .

dgo (km) || disk radius (km) | Local Variability | "df"
1m=m
1 3.03 .0683 | 141.80
1 4.00 .0573 | 173.28
2 4.29 * 0562 | 181.37
2 8.00 .0597 | 240.35
5 10.74 .0814 | 264.68
) 20.00 : .0662 | 326.96
10 21.47 0871 | 334.21
10 40.00 0819 | 372.48
. 20 42.94 .0837 | 375.20
20 - 80.00 .0927 | 390.68
50 107.36 .0945 | 393.21
50 - 200.00 .0957 | 396.03 |
i 500.00 0972 | 397.00

* The smallest local variability, corresponding to the optimal dg.

** dg is that value which gives a disk radius large enough to contain all
the points in Ohio. Notice that "df"=N-1 since there are 398 active
stations for suspended particulate in the region.
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The disk radius which gives disks that are more homogeneous than

those given by other radii cdrresponds to a dg = 2 km. These results are the

71

same as those given by cross-validation using weighted loss functions (Table .

2.1b.) and similar to that obtained using the unweighted loss functions (Table
2.1a.). This result along with the shape of LV suggest that local variability may
be another method for choosing the optimal dy which is much faster than choice

by cross-validation.

TABLE 2.3b. Local Variability as a function of dq for Sulfur Dioxide in the State of

Ohio.
d¢ (km) || disk radius (km) | Local Variability 'df”
1 3.03 .R1R9 50.37
1 4.00 .1934 66.70
2 4.29 .1984 71.00
2 8.00 .1930 | 101.46
5 10.74 *1887 | 113.73
5 20.00 .1989 | 135.56
10 21.47 .2008 | 137.58
10 40.00 2526 | 1862.85
20 42.94 2844 | 164.31
20 80.00 .3166 | 177.30
50 107.36 .3468 | 180.41
50 200.00 4063 | 183.10
s 500.00 5069 | 184.00

* The smallest local variability, corresponding to the optimal do.

** dg is that value which gives a disk radius large enough to contain all

the points in Ohio. Notice that "df'=N-1 since there are 185 active
for sulfur dioxide stations in the region.

For sulfur dioxide, the cross-validatory analysis using weighted loss
functions suggests a dg = 2 km while the unweighted analysis leans toward a dg =
50 ‘km. This implies that sulfur dioxide has a higher local variability than
éuspended particulate. Local variability analysis shows this is true. Table 2.3b.

gives a minimum at a disk radius of 10.74km which corresponds to dq = 5 km,
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which is bétween the two conflicting values in the cross-validatory analyéis.
There are at least two reasons why sulfur dioxide may have a higher local varia-
bility.

In order to determine the actual optimum disk radius, LV was calcu-
lated for disk radii increments of one kilometer. In Figure Z.Sa. local variability
is shown as a function of disk radius between 5 and 10 km for suspended particu-
late. In Table 2.3a., when local variability is at a minimum the disk radius is
equal 4.29 km. Yet, Figure 2.Ba. indicates that a radius of 5 km, corresponding
to a dg of approximately 2 km, gives the minimum local variability for suspended
particulate.

‘In Figure 2.8b. local variability is shown as a function of disk radius
betweem 5 and 20 km for sulfur dioxide. This plot shows an expansion around
the disk radius equal to 10.74 km giving the minimum shown in Table 2.3b. In
the Figure, one can see that beyond 10.74 km, LV decreases further to a
minimum of .1812 at disk radius of 14 km,; it then increases and continues to
increase steadily to the maximum variabﬂity (i.e. sample variance for all valueé

in the region). It is also interesting to note the slight instability of the curve at
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smaller disk radii. This instability is expected since with small &; in each disk ‘

we expect LV to be extremely sensitive to the addition of new points with incre-
ments in disk radius. Also, some instability can be expected from other sources
of variation, as is seen in Figure 2.8a. Here LV is increasing steadily but also

varies from a steady increase.



Consistency in the Shape of Local Variability

In order to further explore oﬁr results with Ohio, the same calculations
for New York and Florida are shown here. New York and Florida were chosen
because these states have the second and third largest number of monitoring
stations respectively. For each state, the basic shape of the curve showing local
variability as a function of disk radius is the same. Also, the curves showing
local variability for sulfur dioxide seem to be similar across all three states.

(Tables 2.4a., 2.4b., 2.5a. and 2.5b., along with Figures 2.9a. thru 2.12b.)

TABLE 2.4a. Local Variability as a function of dgy for Suspended Particulates in

New York State.
dg (km) ‘ disk radius (km) | Local Variability | "df"
1 3.03 .0484 75.89
1 4.00 .0480 92.47
2 4.29 .0493 98.27
2 8.00 * 0481 | 13R.76
5 10.74 .0516 | 154.79
5 20.00 .0608 | 202.26
10 21.47 .0631 | 208.31
10 40.00 0808 | 245.42
20 42.94 .0837 | 248.50
20 80.00 .0974 | 265.88
50 107.38 .1033 | 269.99
50 200.00 .1107 | 273.30
> 700.00 1168 | 275.00

* The smallest local variability, corresponding to the optimal do.

** d, is that value which gives a disk radius large enough to contain all

the points in New York State.
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TABLE 2.4b. lLocal Variability as a function of dg for Sulfur Dioxide in New York

State.
d . . Variabilit -
| (km) dlslf‘rradlus =:(I(m)_ Local Variabilily df
1 3.03 .2023 40.18
1 4.00 .1851 48.51
2 4.29 .1845 51.06
2 8.00 .1615 71.95
5 10.74 * 1614 83.07
5 20.00 .2080 | 103.33
10 21.47 2079 | 104.21
10 40.00 .2588 | 114.86
20 42.94 .2808 | 115.95
20 80.00 .3085 | 124.62
50 107.36 .3537 | 128.44
50 200.00 .3739 | 131.49
i 700.00 .3839 | 133.00

* The smallest local variability, corresponding to the optimal 2.

** dg is that value which gives a disk radius large enough to contain ail

the points in New York State.

TABLE 2.5a. Local Variability as a function of dq for Suspended Particulates

Florida State.

dq || disk radius (km) | Local Variability "df
1 3.03 .0580 48.73
1 4.00 * 0546 69.20
2 4.29 .0563 72.56
2 8.00 0574 | 105.35
5 10.74 .0808 | 122.99 |
5 20.00 .0854 | 151.83
10 21.47 .0668 | 155.72

- 10 40.00 .0716 | 178.02
20 42,94 Q716 | 177.97
20 80.00 .0B41 | 191.81
50 107.36 .0B66 | 194.26 |
50 200.00 .0918 | 200.73
= 500.00 .0807 | 201.00

* The smallest local variability, corresponding to the optimal dg.

** dy is that value which gives a disk radius large enough to contain all

the points in Florida State.

in



TABLE 2.5b. Local Variability as a function of dg for Sulfur Dioxide in Florida

State.
do (km) | disk radius (km) | Local Variability | "df"
1 3.03 .2365 46.82
1 4.00 .2308 59.74
2 4.29 .2298 62.00
2 8.00 * 2176 81.64
5 10.74 .R385 90.68
) 20.00 24286 | 105.83
10 21.47 2423 | 107.50
10 40.00 .3138 | 118.06
20 42.94 .3151 | 118.75
20 80.00 .3R222 | 127.48
50 107.36 .3452 | 131.39
50 200.00 3585 | 134.17
** 900.00 —.4017 | 184.00

* The smallest local variability, corresponding to the optimal dy.

** dj is that value which gives a disk radius large enough to contain all
the points in Florida State.

For all three states, the minimum of local variability for suspended
particulate occurs at a disk radius smaller than that for vsulfur dioxide. Also
each state has a different size disk which gives minimum local variability. Since
there are different dispersion and dilution mechanisms in different geographic
areas we should expect this inconsistency in choice of disk radius across states
for each pollutant. In fact if we look at Figures 2.8b., 2.8b., 2.10b., 2.11b. and
2.12b. where LV are expanded about the rmmrnum we find that the minima seem

to occur at the following disk radii:

Disk Radius (km) Disk Radius (km)

disk radius (from only one "degree of freedom", i.e. disk radius so small that

State Suspended Particulate  Sulfur Dioxide
Ohio 5 14
New York 1 10
Florida 5 8

To view local variability curves on one graph over the whole range of
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Figure 2.9b. Local Variability as a Function of Disk Radius for Suspended
Particulate in New York State (expanded about the minimum).
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Figure 2.10b. Local Variability as a Function of Disk Radius for Sulfur Dioxide
in New York State (expanded about the minimum).
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Figure 2.12b. Local Variability as a Function of Disk Radius
for Sulfur Dioxide in the State of Florida (expanded about
the minimum).
0.240 —
0.235
0.230
L
v
0.2¢5
0.220 -
0.215 | | | i | |

F] 4 6 Disk Radius 8 (km) 10 12 14

L8



only one disk contains another point all the way to disks of a large enough size
to contain the entire region), the logarithm (base e) of the disk radius was plot-
ted against LV. These curves are shown in Figures 2.13a. thru 2.15b.

There are basically three regions on each curve. The first region is
called the Undefined Region. This area ranges from disk radius of 0 to a disk
radius 1aLrge enough to have at least one disk containing two points. The size of
the undefined region is determined by the particular geographic area one is
studying and the geographic distribution of stations in that area. The second

region is called the Region of Degeneracy. The Undefined Region is actually

inctuded in the Region of Degeneracy. The degenerate region corresponds to.

disk radii which are too small to have enough points in each disk to estimate
variance within each disk. This area is not specifically defined but can be
estimated by looking at the "degrees of freedom” and the plots of the logarithm
of the disk radius vs. LV. The "degrees of freedom" specify the amount of over-
lap and therefore how many points lie in each other's corresponding disks. The
Region of.Degen'eracy is designated in each of the plots, yet the line drawn is a
dotted one indicating that the boundary of .this region is not sharp. The third
region is for disk radii greater than those in the degenerate region. These disk
radii are large enough to contain enough points so that the variance around a
_point can actually be measured. It is in this area where the optimum choice
exists for disk size. | |
The choice of these areas is given by the shape of the cur\?es and the
degrees of freedom. Except the curve for New York's suspended particulate

local variability (Figure 2.14a.), each curve has basically the same shape. The

88

curve climbs initially as the disk radius gets larger. It climbs steeply as the

number of degrees of freedom increases. Then at some point it decreases into a
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trough-like area. This is the area where the optimal disk radius is chosen. Then
it increases to the maximum, which is the (global) sample variance for the
entire state. For the sake of example, plots of the number of degrees of free-
dom for Ohio state's suspended particulate against disk radius and logarithm of
the disk radius are given in Figure 2.18a. alnd 2.16b. Note that "df" increases
quickly when disk radii are small and then levels out as the disks get large
enough to include almost every station in the area. Degrees of freedom are a
monotonic function of disk radius. The plot of "df" versus the log of the disk
radius is an S-shaped curve. The area of degeneracy is chosen as the area where
LV is increasing rapidly and stops right before the trough-like area. It increases
becauses the number of degrees of freedom are increasing rapidly giving more
disks containing more than one station and therefore a variance can be calcu-
lated.

It is relatively easy to choose the optimum disk radius if LV has the
functional behavior shown in most of these curves. Suppose LV does not
increase steadily but bounces around initially as in Figure 2.14a. Using the
method described in the previous paragraph, we would choose the minimum
which lies in the area of degeneracy, since it is the first trough-like area after a
rapid increase. This disk radius is only one kilometer. Knowing soruething
about the spatial distribution of monitoring stations, we see that one kilometer
would allow hardly any stations Lo have another near enough to have a variance
associated with it. With this choice, the area of degeneracy stops at a radius of

.5 kilometers corresponding to an LV with 8 degrees of freedom. This implies

N
that ) 1/mn; = 268. Since there are only 276 stations altogether, n; must be 1

i=1

for most stations. Thus at a disk radius of .5 kilometers, there are an
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insufficient number of points to calculate local variability and thus LV should be
 considered degenerate. Therefore, care must be taken in the choice of areas.
We must closely examine the number of degrees of freedom to see how reliable
LV is at various disk radii.

Perhaps there are two ways one can use local variability to choose the
"best" disk radius. One method is to chocse the minimum disk radius greater
than the degenerate area’'s upper limit, which is 4xdg in the proposed scheme.
This method might not be the best since LV is data dependent, causing the curve
to fluctuate around the minimum making it difficult to find the true minimum.
Anotber method which is harder to define because it does not involve choosing a
| particular point, instead involves choosing a region of disk radii for a Region of
Homogeneity. In each of the curves of the logarithm of the disk radius versus
local variability, after the region of degeneracy there is a trough-like area and
then 1.V starts to increase rapidly. We could call this trough-like area the region
of homogeneity. It is better to choose a large disk radius to get more points

which will give' a a more precise estimate. This argument might suggest a

method which chooses the largest possible disk radius before LV. starts increas-

ing répidly. Another method might be to take the disk radius in the middle of
the trough. This is analogous to choosing Ido and 4xdg in the moving average.
The middle of the trough may be our choice of dy and the end of the trough may
give us our upper limit. In other Words one should not take any points into the
cstimate which are outside the area of homogeneity. Which point is taken as giv-
ing the most homogeneous disk is probably not éritical for estimatibn. Yet it is

| important, however, to know which disk radii not to use, and those disks can be

determined by investigating the relationships between local variability and disk

radius.
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Minimizing Local Variability as an Alternative to Cross-Validation

The two dimensional moving average model has been used to estimate
an average pollution concentration for particular geographic areas such as
census tracts and counties. The interest in calculating an average pollution
level is one of measuring human exposure. Thus the model is usually calculated
for the latitude and longitude equal to that of the population centroids. To
determine the best value of the parameter dg, cross-validation techniques were
used (Selvin et. al. 1980, Selvin ef. al. 1981, Johnson et. al. 1982). Using the
concept of local variability requires less computer time, besides the fact that
local variability ié of interest in its own right. For example, comparing across
states or across pollutants to indicate different dispersion mechanisms can be
done by analyzing the local variability function.

For predicting the pollution concentration at the centroid of a geo-
graphic area, cross-valid;tion chooses a dg. This dg gives a disk radius which
corresponds to a disk for which the centroid is the center. The two-dimensional
moving average model is applied to all the points inside this disk for the "best"”
prediction of the centroid's concentration. Since we have not measured the
concentration at the centroid point itself, we cannot use it to choose a disk
radius. Yet if we assume that the region of interest has a certain geography
associated with it which prescribes a disk radius that is most appropriate, we
can then cross-validate every value in the region and choose the dg which does
the best on the average for this region. We then can use this as the dg in our
centroid prediction. Another method which is much faster because we do not
need to use the model with so many data sets, is 'té measure local variability as

a function of disk radius. We would then use the dg which corresponds to the
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disk radius which gives us the smallest local variability.

The local variability method is superior to cross-validation for at least
two reasons. It is computationally faster; since LV is only a douk->1e sum. It is
more stra.ightforward; that is, one does not face the problem of which goodness
of fit function to look at in the analysis of the residuals in cross-validation. All
one needs to do is to select that disk radius which minimizes LV. Another advan-
tage of LV is that it is non-parametric, where in cross-valdation the choice of
disk radius (i.e. dg) depends 6n the form of the weighting function. Other rea-
sons why it may be superior are given in Chapter 3.

Local variability analysis could probably be used for choosing parame-
ters in other methods of surface estimation. In nearest neighbor regression, LV
analysis could give the optimal number of neighbors to include in an estimate.
For partition-based methods the size of the partition can be chosen by LV
analysis. Local variability can be plotted as a function of the number of nearest
neighbors or the size of the partition and thus the minimum local variability
could correspond to the optimum number of ﬁeighbérs or partition size in the

same way it does dg.
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CHAPTER THREE

Comparing Two Methods of Surface Estimation

Akima's Method of Bivariate Interpolation

Akima (1978) proposed a method and algorithm for bivariate interpola-
tion and smooth surface fitting for irregularly distributed data points. Since air
quality monitoring stations are not distributed regularly, we could perhaps
apply the method in this case. Obviously the two-dimensional moving average
model is not the only methed for estimating a surface from discrete data points.
One question that arises is which method is the ""best” method for geographic
estimation of air quality. Perhaps one method is better for some applications
while the other is better for others. Before attempting to answer this question,
we must first ask, “What does 'best’ mean?”. Once we have a definition of "best”
then we can find a method for determining the best estimation scheme. In this
section, Akima's method of interpolation will be compared to the two-
dimensional estimation procedure discussed in the previous chapter.

First, let us outline Akima's general method. The interpolating func-
tion is smooth with continuous first order partial derivatives. The zy plane or
geographic region of interest is divided into triangular cells using the max-min
criterion of Lawson (1972). This is called the Delaunay triangulation which is
explained later in this section. Each data point is the vertex of a triangle.
Akima’'s method is based on the following three assumptions. The first assump-
tion is that the value of the function at a point (z.,y) in a triangle can be interpo-

lated by a fifth-degree polynomial.
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2(z.y)=) SZ_fq,-;zjy"
j=0k=0

Thus twenty-one coeflicients need to be determined for each triangular
region. The second assumption is that the values of the function and its first and
second order partial derivatives are given at each vertex of the triangle, which
gives eighteen of the twenty-one ccefficients needed. The third and final assump-
tion is that the partial derivative of the function differentiated in the direction
perpendicular to each side of the triangle is, at most, a polynomial of degree
three in the variable measured in the direction of the side of the triangle. The
third assumption gives estimates of three additional coefficients for the
required number. This method is recommended by Akima, yet air quality data
points are so far apart in some cases that estimating first order partial deriva-
tives at the data points would be presumptuous to say the least. If there were
information on wind velocity or gas dispersion for these data, estimates of first
and second order derivatives is conceivable. Since we do not have any additional
data.;lineair interpolatiori in the triangles bouﬁded by the data points was used
here. The fouowmg equation was estimated for eéch triangle.

Z(X)=qo0+q 10% +q01¥-

The three coefficients in linear interpolation are easily defined by the three data
points. This technique of surface estimation differs from the two-dimensional
moving average model in at least three ways. First of all, Akima’'s method is
defined everywhere within the convex hull of the data and the moving average
method will not estimate points which do not have stations within a certain
radius. Secondly, linear interpolation estimates a surface which necéssarily
contains all the data points where the two-dimensional moving average surface

does not necessarily go through any of the data points. Lastly, the interpolation
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method predicts a surface which is not smooth, that is, on the lines connecting
the data points the surface is continuous but not differentiable. Unlike Akima's
method, the surface predicted by the moving average is differentiable every-
where it is defined. |

It is fairly obvious that a triangulation from several data points is not
unique. Different grids or triangulations would of course lead to different piece-
wise functions for interpolating the data. We used the Delaunay triangulation
which can be found using the max-min angle criteria. The following criteria are
used. If a set of four points are vertices of a quadrilateral with each interior
angle smaller than m, then there are two possible ways to partition it into two
triangles (?ee Figure 3.1). Lawson (1972) prefers the choice that maximizes the
minimum interior angle of the two triangles produced. So in this case, we would
choose (a) in Figure 3.1. The intuitive reasoning behind this method is that the
chosen triangles are as equal in size és possible. Triangles constructed in this
manner distribute the'da-ta over _the area mofe evenly.

In orc‘ierv to cbmpare Akima’'s method with the model described earlier,
we first triangulate the data points and then fit a plane to the vertices of each
triangle. This method clearly does not smooth the data, whereas, where the sur-
face estimated by the two-dimensional moving average is defined, it is smooth.
Smooth, in this context, means that at least first order derivatives are defined.
The resulting surface of Akima interpolates the data, that is, it passes through
all the given points, and is defined everywhere in the convex hull of the data
points. It, therefore, is most appropriately applied when precise z-values are
given or the errors are negligible. In air quality we know the errors are large
and therefore this method is probably not appropriate for that reason alone.

However it is useful to consider it as a comparison to other surface-fitting
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(b)

Figure 3.1. The Delaunay triangulation is chosen in (a). It
gives the maximum minimum interior angle of the two
angles produced.



techniques. Unlike this bivariate linear interpolation (BLI) method, the raoving
average is (i) smooth where it is defined, (ii) not defined everywhere within the
convex hull of the data points, and (iii} does not interpolate the points. First how
the definition of "better” needs to be determined and then we can define the

superior technique.

Linear Interpolation of Sulfur Dioxide and Suspended Particulate

Data in Ohio State

The Statistical Package known as the System S (Becker, 1981) was used
to perform linear interpolation on the data from two pollutants, sulfur dioxide
and suspended particulate, in Ohio. The estimate of sulfur dioxide was a combi-
nation of 1-hour and 24-hour data, defined as described in Chapter 2. The
suspended particulate data are taken on a 24-hour basis. Values for 1600 equally
spaced points in a 40 by 40 recté.ngular grid were estimated using linear interpo-
lation. That is, 40 points equidistant over the range of latitude and 40 points
equidistant over the range of longitude are chosen. Akima's interpolation is per-
formed for all possible pairs of these chosen latitudes and longitudes. Figure 3.2
and 3.3 show the contour maps derived by linear interpolation for suspended
particulate and sulfur dioxide respectively.

In the contour map of suspended particulate most of the higher con-
centrations occur in metropolitan areas. The three highest levels on the map
seem to be in the vicinity of Cleveland, Cincinnati, and Toledo. The area around
Steubenville appears as an elevated plateau. Columbus and Findlay also have

high levels of suspended particulate concentration. The high plateau effect may
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come from the sparseness of data and the simplification which is made by the
triangulation. Also one is likely to see high levels of suspended particulate in
agricultural areas and not necessarily metropolitan areas.

Like suspended particulate, sulfur dioxide is high in Tolede, Cleveland
and Steubenville as shown by these contour maps. On the other hand, unlike
suspended particulate, Cincinnati does not seem to have a very high level of sul-
fur dioxide. Toledo, Cleveland and Steubenville seem to be the only metropoli-
tan areas of high concentrations of sulfur dioxide.

There are at least three questions which arise in examination of these

maps.

Are there enough data to make accurate contours using this method?
Does the method really apply?

Are there enough data to make accurate contours using any method?
What is the "variability” of these maps?

LN

We will compare the interpbl_ated contours with coﬁtours given by the two-
dimensioﬁal moving average model. .In general this interpolation method shows
what we would expect from a contour map of pollution concentrations in Ohio.
Usually, high pollutant concentrations in the metropolitan areas and lower con-
centrations outside these areas are shown. But also, we must remember that it
is the metropolitan areas that are most thoroughly monitored and there is some
variability associated with these estimated contours. The actual variance of a
contour map is not known but its existence has been shown by Diaconis and
Efron (1983) using the bootstrap method. The data were resampled and for each
sampling an estimated map was drawn from the sampled data. It was found that

the estimated contours do ¢hange from one sampling to another. Some parts of
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the contour maps change more from one sampling to another than other areas.
The areas that change more have a higher variance in the contours than those
that change less. The map itself could incorporate the variance associated with
the contour lines by shading, possibly with color. The areas with a high variance
could be colored gray, whereas the areas with a low variance and thus more
confidently estimated contours might be shaded a darker color. Contour maps
from the two-dimensional moving average estimation procedure will be given in

the next section.

Contour Maps Given By The Two-Dimensional Moving Average

For the same 40 by 40 grid that was linearly interpolated in the pr’ievi-
ous section, a value at each of the 1600 points was estimated using the two-
dimensional moving average. The dq which was selected by cross-validation and
local variability analysis for suspended particulate was 2 km. The dq chosen for
sulfur dioxide was 5 km using local variability analyses and 2 km using the
cross-validation techniques (although‘not all cross-validatory functions agreed
on this choice). The grid was calculated for dg=1, 2, 5, 10, 20 and 50 km for both
sulfur dioxide and suspended particulate. The contour maps from each estima-
tion procedure were drawn. Figures 3.4 thru 3.15 show the contour maps by pol-
lutant and dg.

Thus, the smaller the pararneter‘dg. the more difficult it is to estimate
a grid point by the two-dimensional moving average because of the window
definition. That is, if dg is 1 km then only points within 3 km of some active sta-

tion can be estimated. There are very few points within 3 km of an active sta-
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Figure 3.7. Contour Map Produced by the Two-dimensional Moving Average (d =10) for
Suspended Particulate in Ohio State.
(40 by 40 grid.)
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Figure 3.8, Contour Map Produced by the Two
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Figure 3.9a. Active Monitorin
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Figure 3,10, Contour Map Produce
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Figure 3,11, Contour Map Produced from
Sulfur Dioxide in Ohio

(40 by 40 grid.)
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Figure 3.12. Contour Map Produced from the '
Sulfur Dioxide ijn Ohio State,
(40 by 40 grid.)
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Figure 3,15,
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tion. In fact only 56 points out of 1800 are estimated by the moving average with
dgo = 1 km for sulfur dioxide. Using the cont9uring algorithm described in Sys-
tem S, these points are not close enough to each other to estimate any contour
lines. Only 96 out of 1600 grid points were estimated for suspended particulate
with dg = 1 km. As dg increases the contours get flatter because more stations
are being taken into the estimate.

In chapter 2, both cross-validation and local variability analysis show
that for suspended particulate a dg equal to 2 km is preferred. For these con-
tour maps, a dg = 2 km does does not give a very informative contour map.
Several inferences could be made from this observation. One is that these data
are too sparse to derive contour maps from them. Another might be that the
window definition is too stringent. For dg = 1, 2 or 5 km, the contours are not
estimable from a 40 by 40 grid whereas for dq = 20 or 50 km the contours are
too flat to distinguish any particularly high or low concentrations. Therefore, it
seems that a dg = 10 km gives the most information in a contotjr map. Sulfur
dioxide contour estimation by the two-dimgﬁsional .moving average model
behaves very similarly. .The value of do'which gives the most informative cbntour
maps is around 10 or 20 km. This dg is greater than that which is chosen for
suspended particulate probably because there are not as many active stations
for sulfur dioxide and therefore we. may need a larger dy to estimate a grid
point. These maps produced by the moving average with the optimal dg4 indicate
areas where there is no information. Thus if we use a larger dg, the contours
produced will have more variability.

It is helpful to compare these contour maps with the spatial distribu-
tion of stations in Ohio. Figures 3.9a and 3.15a show the active monitoring sta-

tions on the map for suspended particulate and sulfur dioxide. The variance of
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the contour lines is increased for regions of no data.

Comparing Contour Maps Obtained by Two Methods of Estimation

If we want to compare the two different methods of contour map esti-
mation that we have described, first we must choose a dg for weights in the mov-
ing average so that we can compare one contour map from the two-dimensional
moving average estimation procedure to one from bivariate linear interpolation.
Suppose we choose the dy which was determined by local variability analysis in -
the previous chapter. Since this analysis does not give an exact choice, we
select a dg which is near the minimum. We will get the most information from a
do which is large enough to include a sizeable number of stations in the estimate
but not so large as to substantially increase the local variability function. In
chapter 2, this is described as the end of the "trough-like" region. In order to
estimate a grid point by the two-dimensional moving average model there must
be a station within 3xdg. The larger the dg, the more grid points there are that
"~ are estimable with any confidence by this model. Using more stations in the
estimate also improves precision. Thus dg should be taken as'large as possible
before the local variability increases rapidly.

If we look at Figure 2.13a to choose the proper dg for suspended parti-
culate in Chio, we see thal the largest point we can choose before local variabil-
ity increases quickly towards the maximurm is at a disk radius of about 21 km
which corresponds to a dq of approximately 5 km (Table 2.4a., chapter 2). This
correspondence is achieved by dividing the disk radius by 4. Since this dg is not

large enough for this: model to adequately predict contours (See Figure 3.8),
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perhaps the next best map to use for comparison of the moving average
predicted contours of suspended particulate with those estimated by Akima's
method is that estimated with dg = 10 kmm. This dg corresponds to a total disk
radius of 40 km or log of radius of 3.7 which does not give a particularly high
local variability (See Figure 2.13a.). Yet if we increase dg to obtain nice contours
it is done at the cost of increasing the variability of the contours.

We choose dy for sulfur dioxide in the same manner. In_chapter 2, Fig-
ure 2.13b, the largest disk radius we can choose before local variability
approaches its maximum value is also about 21 kilometers. Again, this
corresponds to a dg of about 5 kilometers. Unfortunately, this dq is also not
large enough to predict a full contour map using this 40 By 40 grid (see Figure
3.12.) In the same way, the next best map to use for comparison is that
predicted by the moving weighted average with dg = 10 kilometers. This dg also
does not give an excessively high value for local variability.

It is evident that the two-dimensional moving average model as it is
defined here is not particularly useful for generating contour maps. That part of
this model which chooses dy seems Lo select a disk radius which is not large
enough to predict with any confidence the grid points of a particular size grid.
Even if bivariate linear interpolation is not the intuitive method to use for these
data, it is able to estimate all the points within the convex hull of the data
points. Perhaps in using this estimation procedure for contouring, we need to
choose the grid size after we choose the dg. For if we have a grid with a higher
density we might be able to have stations within the proper disk radius so that
this model can estimate with confidence a greater number of gfid points. In Fig-
ure 3.16a, we have an area in the grid which is not estimable with any reliability

by this moving average model because the stations are too far from the grid
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Figure 16a. Grid points are too far from Stations to be 'estimated’,

D

| (2]

Figure 16b. By doubling the grid density in 16a. some grid points
are now 'estimable’.




points. Yet, if we double the grid density as in Figure 3.16b, at least some points
in this same area are now reliably estimable since the grid points are now closer
to the stations.

The state of Ohio is contained within a circle with a radius equal to 500
kilometers. A 40 by 40 grid gives grid points, at most, about 12.5 kilometers
apart. Because of the irregular spatial distribution of the data points the two-
dimensional moving average model cannot estimate all the points in a 40 by 40
grid. Let us examine how the estimated contour reliability changes if we double
the grid point density. In other words we will choose an 80 by B0 grid which will
give grid points, at most, 6.25 kilometers apart.

Figures 3 17 and 3.18 show bivariate linear interpolated contours using
an 80 by 80 rectangular grid. If we compare these Figures with Figures 3.2 and
3.3 respectively, where the contours were estimated by bivariate linear interpo-
lation using a 40 by 40 grid.. we see that the grid density does not change the
general shape of vthe map very much. As expected, the 80 by 80 grid estimation
does give a little more detail in the contour lines and this is the only difference
in the contours produced from these Lwo grid densities. These contours are pro-
duced by the algorithm "contour” from system S (Becker, 1981).

If we use an 80 by 80 grid to predict contours from the two-dimensional
estimation procedure, rather than from bivariate linear interpolation, we will
see, for small dg, very different contour lines from those obtained with a 40 by
40 grid. For large dg, that is dg equal to 20 or 50 km, the contour maps obtained
from an B0 by 80 grid are exactly those that were obtained from a 40 by 40 grid.
This is shown by comparing Figure 3.9 with Figure 3.19 and Figure 3.8 with Fig-
ure 3.20. Yet for smaller d¢ the maps do change drastically with the grid den-

sity. For dg = 10 km, contours estimated by a 40 by 40 grid (Figure 3.7) are not

128



Iigure 3.17. Contour Map of Suspended Particulate in Ohio Obtained from Bivariate Linear
Interpolation Using an 80 by 80 grid.
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Figure 3.19, Contour Map of Suspended Particulate in Ohio State Using the Two-dimensional
Moving Average with d,=50 Kk for an 80 by 80 Grid.
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Figure 3.20. Contour Map of Suspended Particulate in Ohio State Using the Two-dimensional
Moving Average with do=20 km for an 80 by 80 Grid.

50

0

CL.: Cleveland A *
F = Findla '.
St = Steubenit Uf-:e

.
-----
"""""

AN



133

3utAol TRUOTISUBWIP-OM],

w.mwz e MR Ry
L hepung- 4

PUeondY) ="7)

*pr19 08 £q g ue 103 (O1=°p ) d8eiaay
9yl 8utspy oty ut aijendtiaed papuadsng jo dey inojuo) 7 g 9Ind1]




Fipure 3.22. Contour Map of Suspended Particulate in Ohio State Us1ng the Two-dimensional
Moving Average ( d,=5 km) for an 80 by 80 Grid.
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Figure 3,23,

Contour Map of Suspended Particulate ip

Moving Average ( d=2 km) for an 80 by 80 Grid.
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extremely different from those estimated for an 80 by BO grid (Figure 3.21)
using the same meodel. The only difference is that in the 80 by 80 grid estima-
tion with dg = 10, contour lines are extended further and appear smoother than
in the 40 by 40 grid. In Figure 3.22, contours estimated using this model with dg
equal to 5 km and an 80 by 80 grid, more grid points are estimable than in the
same estimation with a 40 by 40 grid (Figure 3.6). Comparing Figure 3.5 with
3.23 where dg = 2 km, more estimable points with the 80 by B0 grid are shown.
Thus in using this model to produce contour lines, the estimability of these lines
is dependent on the grid density used.

This ‘is not a fundamental difference between the moving average
method and bivariate linear interpolation. In order to generate reaéonable con-
tour lines, the grid must be dense enough to track detailed variability in the
predictive function. In the moving average the amount of detail depends upon
dg, whereas, in bivariate linear interpolation, it does not.

Although more grid points are estimable in an 80 by 80 grid, the- con-
tour maps with dg equal to 2 or 5 km are still not very informative. Looking at
the contour map with a grid density of 6400 points fer the two-dimeqsional mov-
ing average model with d¢ = 5 km, which was chosen by LV (local variabﬂity)
analysis, we see that many points are estimated but the contour lines are not
complete (Figure 3.22). This is a expected when using this model for contour
analysis. For small dg, this moving average is a discontinuous surface because
of the way it is conditioned. A point cannot be estimated if there are no active
monitoring stations within 3xXdg. Now, if dg is large enough or if we had a higher
station density this situation will never arise. But fer small d¢ and thé station
density as it is, inestimability is likely to arise. In the ignorance of topographi-

cal and meteorological factors, the 3xdg restriction in this model is sensible in



137

the sense that it prevents the two-dimensional moving average from producing

meaningless estimates.

Comparison of Point Prediction from

Two Methods of Geographic Estimation

In the previous section, it was concluded that for estimating contours,
bivariate linear interpolation does a more complete job possibly at the cost of
contour variability than the two-dimensional moving average estimation pro-
cedure. In this section a comparisbn of these two methods of surféce estimation
in terms of their ability to correctly predict values of specific points is
attempted. Cross-validation is done for each method. That is, using each
station's location and omitting the observed value at that station, a concentra-
tion is predicted by the other n-1 stations. Bivariate linear interpolation and the
two-dimensional moving average model are used to obtain two estimates of the
concentration. Assuming that the observed values are true values, we obtain an
assessment of each methodv in estimating the tfue concentrations.

Comparing techniques by cross-validation when one method involves
cross-validation as an inherent part requires an incrdinate number of calcula-
tions and is beyond the scope of this dissertation. As Stone (1974) points out in
his article on cross-validatory choice and assessment of statistical predictions,
this comparison would require a "two-deep" cross-validation analysis. For exam-
ple, let us consic_ler the two-dimensional moving average estimation procedure
that is presented here. If we were to make the two-dimensional moving average

model estimate of each station's concentreition, we should omit that station and,



then taking the n-1 points which rerﬁain, run the model. As a part of this pro-
cedure we need to choose a value of dg, by cross-validating the remaining n-1
points. In other words we would be using n-2 points to predict each of the n-1
points in our choice of dyg.

It is difficult to clearly see whether the choice of dg would change in
the moving average from station to station in the "two-deep” cross-validatory
analysis. Since local variability analysis is given as an alternative to the cross-
vélidatory choice, let us examine how this function may change in a technique
assessment situation. One question which arises is that of the need to calculate
a local variability function for each station from n-1 stations leaving the station
of interest out. This ne>eds to be done because we are comparing two methods,
one of which requires LV (local variability) analysis. Leaving one station out

probably does not change the shape or the trough area of the LV curve drasti-

cally Since it is these aspects of the curve which are important in choosing dg we
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should not have to recompute the LV curve for each station. Figure 3.24 shows

five different LV curves for Ohio. Each curve corresponds to leaving a different
station out. These stations were chosen at random from a random-digit table
(Hoel, Port and Stone, 1971). The stations are arranged in alphabetical order by
location and these random numbers were used to choose the five stations by
using them as the order of the stations. The numbers chosen were 039, 385, 175,
326, and 001. This was done so that a random number of stations were chosen
rather than just the first five. The value for the concentration for these
numbers is 56.9897, 67.9664, 45.8159, 167.003, 61.6569 micrograms per cubic
meter. The range of concentration in micrograms per cubic meter for Ohio
State is from 26.1539 to 194.6105. The five numbers chosen seem to be a fair

sampling from this range. They are not all in the center.
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Figure 3.24 shows that the shapes of the LV curves are very much the
same. All these curves have the same area of degeneracy and the same trough-
like area as the curve for LV vs. logarithm of the disk radius for all the stations.
This function is shown in Chapter 2, Figure 2.13a. Therefore for each of the five
stations we would choose the same area of degeneracy and the same dg based on
the same minimum disk radius. In light of this example, it seems clear that the
shape of the LV function for a particular area is fairly insensitive to the omission
of a station. Therefore for comparing the two techniques, the minimum disk
radius given by the original L.V curve with no stations omitted was used for the
estimation of each station’s concentration. This leave-one-out method is a way
to understand the variability of the local variability function and thus the varia-
bility associated with the chosen dg. This is very similar to the Jackknife
method for estimating the variance of an estimate. Bootstrapping may be
another method for estimating the variance of the LV curve. Instead of leaving
one out, the bootstrap would resample the data with replacement and find the
LV curve for each sample. _ | .-

Different points that are left-out in the above arialysis affect the LV
curve in various ways. The disk radius at which thé left-out point would be
included depends on the distance to the nearest station. It is at this disk radius
that the LV curve is affected by the left out point. The relative size of the con-
centration of the left out point aflects the size of the change in the local variabil-
ity.

Using a dg of 2 kilometers for suspended particulate in Ohio state, we
have calculated the two-dimensional movihg average model for each data point,
leaving the point itself out of the calculation. Bivariate linear interpolation of

the same data points was also done. For comparing adequacy of estimation, the
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four functions described in chapter 2 were used. These functions are weighted

- by the percentage of time active for predicted station (See Chapter 2). To rem-

ind the reader of their construction they are given below.

(WLF) Weighted Loss Function
3 2
2 z; —e;)
WLF = -—n_..._
PN
i=1
(RWSE) Ratio of the Weighted Squared Errors

RWSE = ——— ' py (2 —e;)?
j N 53w =1

. M=

1

t

(WMAE) Weighted Mean Absolute Error, Percent

Zp,

WHMAE = x 100

—et

(WMPE) Weighted Mean Percent Error

n 2-—-2‘
2P e
WMPE = '———————-x 100

ZPi
i=1

Table 3.1 and 3.2 show the results from the cross-validation of each method for

suspended particulate and sulfur dioxide respectively. For suspended particu-

late stations, 302 out of 398 were estimable for cross-validating the moving aver-

age model with dy = 2. This means that 302 stations had at least one station
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within 6 km. Similarly, the number of stations estimable by the moving average

model with dg =5 for sulfur dioxide was 155 out of 185,

TABLE 3.1. Loss Functions for Cross-Validation of the Moving Average Model (dg
= 2 km) and Bivariate Linear Interpolation for Suspended Particulate in Ohio
State.

Function | The Model BLI
WLF .0519 | .0537
RWSE .404 .515
WMAE 4.27% | 4.03%
| WMPE 417 | 3.99%

TABLE 3.2. Loss Functions for Cross-Validation of the Moving Average Model (dq
= 5 km) and Bivariate Linear Interpolation (BLI) for Sulfur Dioxide in Ohio State.

Function | The Model BLI
WLF 1.63 | 2959
RWSE 2.82 5686
WMAE 28.9% | 12.0%
WMPE 27.1% | 12.0%

" For suspended particulate in Ohio State, the squared ez;ror loss and the
ratio of weighted squared errors are smaller for the two-dimensional moving
average model than they are for Akima's method. The mean absolute error and
the mean percent error are very close although those for BLI are 'slightly
smaller. The greatest difference seems to be in the ratio of weighted squared
errors. In the next section the plots show that for suspended particulate the
estimates produced by both methods are unbiased. Thus the diﬁerence in RWSE
for the two methods shows that the moving average model explains about 10
percent more of the variance than does prediction by BLI. Therefore the two-
dimensional moving average estimation procedure is possibly a "better” method

to use than BLI for point prediction of suspended particulate in Ohio.
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In Table 3.2, the results are shown for sulfur dioxide point prediction.
For all loss functions, BLI is far superior to the two-dimensional moving average
estimation procedure. Squared error loss is reduced by one fifth. Absolute and
percent errors are cut in half by using BLI instead of this moving average model.
The ratio of weighted squared errors is larger than 1.0 in the moving average
model. In the next section it is shown that the cross-validation moving average
estimates are biased for sulfur dioxide. That is, they consistently underestimate
the observed value. The bias is estimated at about -1.06 km. The bias was sub-
tracted from each estimate and the loss functions were recalculated. Table 3.3
gives the results of the moving average estimate of sulfur dioxide with biased
removed compared to BLL There is no apparent bias in bivariate linear interpo-
lation of sulfur dioxide. Table 3.3 shows that bivariate linear interpolation still
prevails over the two-dimensional moving average model for sulfur dioxide point

estimation.

TABLE 3.2a. Loss Functions for Cross-Validation of the Moving Average Model, (dq
= 5 km), Minus the Bias and Bivariate Linear Interpolation (BLI) for Sulfur Diox-
ide in Ohio State.

Function | The Model BLI

WLF 951 | .2959
RWSE 1.88 .568
WMAE 256.6% | 12.0%

WMPE 23.6% | 12.0%
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The Occurrence of Bias In Cross-Validation Estimates

Bias can occur in cross-validation estimates using a moving average

method. Let us consider the following four points as monitoring stations.

hY

We will cross-validate using a two-dimensional moving average similar to the
model described. Suppose that point a has a very high concentration of 50
ug /7 m3, and points b, ¢ and d reported low concentrations, all equal to 1 u/ m?.

Now let us predict each point by cross-validation.

1. Prediction of concentration at station a, leaving the observed value at a out of
the calculation, involves points b an c since the window around a contains a, b
and ¢. The weights applied are .6 and .4 to b and ¢ respectively. Point b has a

slightly higher weight than point ¢ because it is slightly closer to point a. Then,

Cross-Validation Estimate of a = .6(1) + .4(1) = 1 ug/ m?3
Therefore,
Residual of Cross-Validation Estimate = 1 - 50 = -49 pg/ m3,

The residual is defined as the estimate minus the observed.
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2. Predicting the concentration ai: point b, leaving b’s own observed value out
involves a , ¢ and d. Point a has weight equal .01 since it is relatively far away.
Point c has weight .5 and point d has weight .49. Thus,

Cross-Validaion Estimate of b = .01(50) + .5(1) + .49(1) = 1.04 ug/ m?

And,

Residual of Cross-Validation Estimate = 1.04 - 1.00 = .04 ug/ m?3.

3. Predicting point ¢ by cross-validation involves points a , b and d. The weight
assigned to point a for estimating c is .008. Point b is given weight equal to .492

and point d is given weight .5. Therefore,

Cross-Validation Estimate of ¢ = .008(50) + .492(1) +.5(1) = 1.08ug/ m3.
And,

Residual of Cross-Validation Estimate of ¢ = 1.03-1.00 = .03 ug/ m?2.

4. Prediction of point d is rather easy since it involves points b and c¢. Both
these points have concentrations = 1 ug/ m?3. Therefore the estimate of d's con-
centration by cross-validation is 1 which has a residual of zero.

The sum of the residuals in this example is -48.3 which gives an average
of -12.1, similar to what is shown with the cross-validation estimates of sulfur
dioxide is large and negative (Figure 3.28 and 3.31). This example exaggerates
the effect that is seen in Ohio. The average bias for Sulfur Dioxide in Ohio is
estimated to be -1.06. Also the simple average of these four points does better
in this example than the cross-validation estimales. For example, the mean

value is 13.25, which gives the following four residuals: -36.75, 12.25, 12.25, and
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12.25. Naturally, the sum of the residuals is zero since the mean is unbiased.
The squared error loss for the simple average is 1800, whereas for the weighting
scheme with cross-validation, the squared error is about 2401." Subtracting the
bias, as calculated, from squared error, we obtain 2287 for the variance of the
cross-validatory estimates. This is still larger than using the sample mean of all
the data. The crucial difference between the sample mean’'s squared error and
the cross-validation squared error is the fact that the sample mean contains all
the data while cross-validation leaves the point out that we are trying to esti-
mate. This plays a large part in creating the bias that we see here. This prob-
ably happens because of an occasional high concentration reported in an iso-
lated area or where m;)st concentrations are low. The data are sparse so it is
likely that an occasional high value will not be near many other points. Perhaps
this does not happen with BLI because points are weighted equally, no matter
how far they are from the estimated point. This is an interesting phenome‘na
that occurs when cross-validating some estimation procedures with limited data
sets. It is also interesting to note that the average of all four points does better

in terms of squared error loss in this example.

The "Better' Method

Obvioﬁsly. it is impossible to recommend a method of surface estima-
tion which works "well” in all circumstances. Therefore it is imperative that we
be very cautious in evalualing a technique before employing it. This chapter has
shown methods for the evaluation of a technique in comparison with another

method. We have compared the two-dimensional moving average estimation
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procedure and Akima's bivariate linear interpolation in terms of their ability to
estimate contours and predict values at specific points. Although Akima's
method of bivariate linear interpolation seems questionable because it may give
too much weight to outliers with the predicted surface going through every data
point, it seems to do almost as "well” and sometimes better than this moving
average model.

Regarding contour map estimation, because of the missing regions in
the surface estimated by the two-dirnensional moving average, contour lines are
incompletely predicted. Although Akima's surface is not differentiable every-
where, it is continuous within the convex hull of the data points and therefore
the estimated contour lines using this method are> complete. Confusion with the
moving average model lies in the way dg is chosen. It is chosen on the basis of
point prediction and the best dq for predicting points may not be the best dq for
estimating contour lines. The best dg for contouring. relies heavily on the
sparseness of the data and the window, which in our construction of the moving
average model is 4xdg. From this analysis one might immediately conclude
that, for contouring, a method which estimates a continuous surface like
Akima's, is "better” than something censored like the model presented in the
previous chapter. Statistically speaking, contour lines drawn in areas of no
information are very unreliable and there is question as to whether they are
worth considering as valid estimates. It is then the comparison of these two
techniques which is useful. From the contour maps of both methods we can get
a feeling for the reliability of these estimated contour lines. We can look at the
Akima map to get a feeling for the high and low spotAs. Then by examining the

map estimated by the two-dimensional moving average we can see that if we
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truly believe in the 4xdgy ! cut-off, that some of the Akima contour lines are
drawn right through areas of no data. The moving average model model is
"better” than bivariate linear interpolation in the sense that it shows the areas
where there is little or no information.

Point prediction is really what the two-dimensional moving average
estimation procedure was designed to do. It was proposed by Selvin, et. al.
(1981) as a method for estimating the air quality of one point, the population
centroid of a county or any geographic area. This estimate was used as a value
for ecological regression analysis of air quality on mortality. If we were to use
Akima's method to estimate this poiht it would be similar to a nearest neighbor
approach but not exactly. We would need to draw the Delaunay triangulation of
several points in the area of interest, find the triangle containing the population
centroid, then estimate a plane using the vertices of that triangle, and find the
value of the population centroid in that plane. This is almost like taking the
three points nearest to the centroid except the Delaunay Triangulation may not

yield the triangle with the three nearest points in all cases. For example, in the

following Figure, the 3 closes pointé are ACD; yet the triangulation uses ABD.

1 Since stations farther than about 3Xdg have negligible weights in the model, and since model
estimates are suppressed for points further than 3Xdg from any active station, one might argue that
the window is actually of 3Xd. Nevertheless, the choice of 3Xdq or 4Xdq does not change the con-
clusions of this section.



Figure 3.25. The Vertices of the Triangle Containing the Centroid are not the
Closest Vertices to the Centroid.

centroid

C
It may be that for point prediction, taking the three nearest point rather than

the Delaunay triangle does better although these are probably the same in most
cases. At any rate, in comparing the moving average with Akima's method for
point prediction, there were very different results for the two pollutants used.
For suspended particulate, the two-dimensional moving average does a little
"better" than the interpolation technique since the ratio of the weighted
squared error is smaller. The values of the loss functions for the moving average
model are consistently and substantially smaller than those for BL]. Yet for sul-
fur dioxide, interpolation does "better” than the moving average procedure for
point prediction because of the consistently and substantially smaller values of
the loss functions for BLI

We have compared the two methods using sex;eral summary measure-
ments including loss functions, percent variance, absclute error and absolute
relative error, all weighted by the percentage of time active. These are the
measures that were used to determine, on the average, which method is

"better”. Emphasis should be given to the fact that these measures are "on the
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average' and often we are interested in predicting only one specific point. Fig-
ures 3.28 thru 3.33 show the cross-validation estimates compared with the
observed values on a point by point basis. If we contrast these plots by method
for sulfur dioxide (Figures 3.28 and 3.29), it is clear that bivariate linear interpo-
lation predicts points "well” much more consistently than the two dimensional
moving average model; while with suspended particulate, the scatterplots, Fig-
ure 3.26, for the moving average, and 3.27, for Bivariate Linear Interpolation, of
estimate versus observed values are not very different. All these plots have a
definite positive trend except the plot of the moving average estimate versus the
observed for sulfur dioxide concentrations in Figure 3.28. This plot has a slight
positive trend but also shows consistent underestimation of sulfur dioxide con-
centration by this method. The average bias was estimated to be about -1.06
km. Occurrence of bias when cross-validating a limited data set like this one is
explained in the pfevious section. |

The residual is defined as the estimate minus the observed value. The
residual is plotted as a funétion of the observed for all methods with each pollu-
tant in Figures 3.30 thru 3.33. All the residual plots, except the moving average
for sulfur dioxide are roughly centered at zero. This is because of the bias which
has occurred in the moving average estimate of sulfur dioxide. Bias has not
occurred for any of the other method-pollutant combinations. Bias probably
does not occur with bivariate linear interpolation for sulfur dioxide because the
stations are weighted equally. These plots confirm and show, in more delail,
what the summary measures in the previous section suggest.

The summary measures of fit are sensitive to outliers in the data for we
are comparing our estimates to observed values. These observed values may

not be close to the true value because of statistical variation or simply because

)
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they are outliers. Therefore we must be cautious in the interpretation of these
kind of analyses and the conclusions which are drawn. Drawing scatterplots like
those shown in Figures 3.26 thru 3.33 are useful for examining the estimation

procedure in more detail than just one summary statistic.
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Figure 3,31. Residuals of cross-validated moving average estimates
s (d4,=5) plotted as a function of the observed values for Sulfur
Dioxide in Ohio.
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Figure 3.33. Residuals of Cross-validated BLI estimates
plotted as a function of the Observed Value for Sulfur
Dioxide in Ohio.
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CHAPTER FOUR

Conclusions and Further Applications
Summary

In this document, 1974-76 air quality data for two pollutants from the
EPA SAROAD data bank for two pollutants, have been described. Several sum-
mary statistics have been calculated for all pollutants in the whole United States
fo obtain a sense of the completeness of the data set. Limitations of these data
have been discussed. The data have been summarized in such a way so as to
facilitate analysis. Two pollutants and one state have been chosen to test the
analytic techniques; in principle the same techniques can apply to any pollutant
and any region if data were complete enough. The chosen pollutants and state’
| have the highest average monitoring density. Limitations of statistical methods
comzﬁonly used are discussed.

A two-dimensional moving average model is chosen for estimating ’pol-
lutant concentrations from these data. IVThis movdel is a weighfed average with
the weights being.'an exponential function of the squared distance of the data
from the point of estimation. Distant déta points. which have negligible weight,
are ignored. Properties of this model are discussed; its drawbacks and advan-
tages are pointed out. The functional form of the weights has a smoothing
parameter which controls the relative weighting of nearby and distant data
points. The parameter is r,;hosen by cross-validation. Several functions are used
to select the 'best’ value of the parameter. Different functions yield different
optimum values. Local variabilily as a concept is explored and a statistic which

measures local variability is created. The smoothing parameter, dg, is discussed



161

as a function of local variability. The optimal smoothing parameter is suggested
as being equivalent to that which gives the minimum local variability. Local vari-
ability is discussed as an alternative to cross-validation for choosing the param-
eter in the moving average model. Local variability and cross-validation ana-
lyses are compared for sulfur dioxide and suspended particulate data in Chio
State. Consistency in the shape of the local variability function is shown in three
states, Ohio, New York and Florida. The actual value of the optimal dg varies
across these different geographic regions. The optimum value of the smoothing
parameter is found to be larger for sulfur dioxide than for suspended particu-
lates in each state.

Assessment of the moving average model is made by comparing it to a
more commonly used method. Akima's method of bivariate linear interpolation
is used for comparison and is explained. Linear interpolation is performed for
Ohio using suspended paf'ticulate and sulfur dioxide data. Contour maps of
these data are drawn using both‘ methods. The model is used to estimate con-
toﬁr mapé with several distinct values of the smoothing parameter covering a
wide range. The dependency of the model's ability to estimate contour lines on
the grid density is shown. These methods are compared in terms of their ability
to estimate contour maps and to predict specified points. Local variability is
used to make these comparisons by cross-validation rather than a "two-deep”
cross-validatory analysis. Residuals are plotted and summary statistic calcula-
tions are discussed for choosing the 'best’ method. It is found that the two-
dimensional moving average model does as well and sometimes better than
Akima's method of interpolation for suspended particulate prediction. For the
sulfur dioxide data, Akima's method appears Lo make more accurate and less

biased predictions than the moving average. The occurrence of bias in cross-
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validating geographically sparse data using the moving average method is

shown.

Further Research

Simulations of these data from actual distributions may be very helpful
in determining what values a paraméter like dg should have, how densely écat-
tered the data points should be in order to perform a valid analysis, and possibly
investigating the distribution théory of lt;cal variability. There are several distri-
butions one could assumé in order to simulate air quality data. One possibility ié
that each city's industrial centroid is like a point source of air pollution. In this
case one might assume a bivariate normal distribution centered on the indus-
trial portion of the city. One could vary the bivariate normal distribution to
yield many different simulations. There are many other possibilities, for exam-
ple treating each industry, commuting freeway, and other emitting source
separately, treating the city as a sum of bivariate normal distributions. The pos-
sibilities are endless and probably none of them adequately represent fhe true
situation.

The author believes that one of the most original and statistically
promising results of this thesis is the concept local vériability. The statistical
theory of the measure we call local variability, that is defined in Chapter 2 may
prove very useful for choosing parameters such as dy. The statistical properties
of local variability might lend themselves to the calculatiqn of a confidence
interval associated with the chosen disk radius. Local variability has been pro-

posed as an alternative to cross-validation for this problem; it could be explored



163

as a possible alternative in other problems which involve cross-validation. It
could also be applied to time series o'r trend analysis in one dimension, espe-
cially in cases where the data are irregular.

Boot-strapping, a new inventive method for estimating the distribution
of a statistic (Diaconis, 1983), could be applied to the local variability function.
Through the boolstrap, a confidence interval on the chosen disk radius could be
estimated. That is, with each bootstrap sample the minimum local variability
may change slightly giving different optimal disk radii, one from each bootstrap
sample. There would then be a distribution of optimal disk radil, one from each
bootstrap sample, from which a confidence interval could be estimated. The
bootstrap could also be used for estimating variability associated with the con-
téur maps and the predicted points. For predicting points, jack-knifing may also
be helpful for examining the distribution of the estimate. The bootstrap, jéck-
knife and local variability are all data driven methods. These techniques do not
require any distributional assumptions, therefore they are very useful for inter-.
preting these data.

Time trends in the air quality data could be analyzed. Some ten years
of data of reasonable quality are now available through the Environmental Pro-
tection Agency. The time trend analyses could be very helpful in understanding
these data which are three-year averages, a single point in time. A time-
geographic series could also result in some new data analytic techniques.

This thesis analyzes some of the problems associated with geographic
data and creates a concept applicable to other analyses. Many problems remain
to be solved. The variability of estimates is an area of great interest and is still
a wide open ﬁelld for study. Although not addressed here, the inclusion of other

information like meteorologic and topologic factors certainly lends itself to
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understanding geographic air quality data. From a statistical standpoint, the
concept of local variability could be applied to many data analytic problems.
Through this dissertation there is hope that others will find interesting ideas for

their own research.
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