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Abstract

We discuss the possibility that hadron bubbles formed in quark-gluon
plasmas below or slightly above the critical temperature start growing by
explosive déflagration or detonation processes. In these the phase
transition takes place in a thin layer of discontinuity propagating
outward from the point of bubble formation. Combustion theory is written
in relativistic form, and possible physical deflagration and detonation
bubble solutions conserving energy and momentum, producing ehtropy, and
satisfying correct boundary conditions are classified and numerically
discussed using the bég equation of state for quark matter. The
implications of these solutions to ultrarelativistic nucleus-nucleus

collisions and early cosmology are discussed.



I. INTRODUCTION

One of the remarkable predictions of Quantum Chfomodynamics is the

1-4

existence of a state of matter called the quark-gluon plasma. Unlike our

familiar hadronic wpr]d,bthe plasma phase is af 77$>/L223 expected to be
extremely simple and well described asymptotically by a Stefan-Boltzmann
equation of state. The transition from the hadronic to plasma worlds is
expected on general grounds to occur at a temperature T; ~.A@CD ~ 200 MeV.

5-12

Recent Monte Carlo lattice calculations have made great strides toward

| clarifying the details of that transition. There is mounting evidence now
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that this transition is first order. In other words, for zero chemical

potential it can be characterized by Tc and the latent heat per unit volume
y ,
NE = Eq—Ew AN
(3 QWL
In this paper we consider possible conseqdences of such a phase
transition. In particu1ér, we study the qUestion of whether the latent heat
released in the b]asma~hadron transition could lead to supersonic, explosive

bubbles of hadrons. We have in mind eventual app]icatibns to

4,14-19 20-22

ultrarelativistic nuclear collisions and to coSmo]ogy. In
cosmology, it is believed that the universe was very homogeneous in the plasma
epoch (t < 1 usec). One interesting question is whether the quark to hadron
phase transition could have produced large-scale fluctuationé that eventually

22 In nuclear collisions

led to the inhomogeneous universe we now observe.
at very high energies (E]ab.> 1 TeV per nucleon) there is mounting evidence
that a transient plasma state could be produced.4’14'19 One of the most
pressing issues in that field is to find conclusive signals for plasma

formation.4 If the transition leads to explosive hadron bubble growth, then

there may be striking consequénces of the transition for rapidity
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correlations, rapidity density f]uctuétions, azimuthal distributions, and low
E{L distributions. We return to these applications at the end.

However, the main purpose of this paper is to develop the theory of
detonation and deflagration bubbles in this modern context. Figure 1 defines
these two phenomena and illustrates the basic difference between them, 2324
If we imagine at time zero a uniform plasma for x > 0, then in both cases the
plasma is converted to hadrons along an assumed sharp fronf. That front eats
up the:p]a§ma at a constant rate. The difference between def1agration and
detonation is the relative flow ve]bcity of tﬁé produced hadron matter behind
the front. . Simp]y.put,‘Qef1agration refers to the case in which the hadrons
move in opposite direction to the front in the quark matter rest frame.
Detonations refer to the case in which the hadronic flow velocity is in the
same direction as the front, The assumption that the front has zero width is
only a crude approximation, Intpractice, that width is jn_ordér of the
reaction mean free paths, For;quérks and hadrons /E;D~ i fm offers the only
scale. Therefore, these idealizations can be expeéted to apply only to
systems of dimensionsz >> 1 fm and lifetime >>1 fm; | |

- The continuity equation of the energy momentum tensor‘constrains the flow
and front velocities as we show in Sect. iI. Furthermore, the requirement of
positive entropy production greatly constrains the exiéténce of such phenomena

as recently emphasized by Van Hove.zs

In the final analysis, the numerical
results, of course, depend on the detailed equation.of state of both hadronic
and quark matter. B

In this paper we restricf our study to a general bag-model equation of
state because it is simple yet genefa] enough to contain the essential

.properties of a first-order phase transition. In this model proper energy

densityE, pressure p, entropy density s of the hadron phase are given by

™

L



W

fe BT 0
Pn = 3% | (1.2)
S, = ‘//sah/r (l-%),
as a function of T. For the pjasma phase we take
= ga g; TY + B | | | | ),
P s 55 ~%B (:5)

sosBEee/T (g

where B is the bag constant. The constants 9 and g, are the degeneracy fac-

tors in the two phases. (For Ny boson and Ne fermion states g = n, * 7/8 nf.)
This equation of state leads to a first drdeprhaée transition at the

critical temperature T where Ph = Fq = Pc shown in Fig. 2. We define

now the critical ener‘gy densities £,= &, (T.) and € =& (T.) and note that

the latent heat per umt volume is just ag=¢ rEu® ‘OB %m th1s model. For
£,<E<Eg the system is in a mixed phase.

Afso illustrated in Fig. 2 are the dashed lines representing sdperheated
hadronié matter and subercoo]ed plasma. These extensions will play a crucial
role in the subsequent analysis. | |
| A 1fmitatfoh of ouf ana1ysis is that we assume the initial plasma is
stationary. In both cosmology and nuclear collisions the plasma is always in
a state of expans{on. This expansion has the effect of curving the detonation

and def1agration fronts. For realistic application of our results such

expansion effects will evehtua]ly have to be included. In this paper we
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restrict ourselves to the stationary plasmas to gain basic insight into such
explosive processes. Another question we do not discuss ﬁs the detailed

bubble formation mechan1'sm.26'27

We just assume a bubble has been formed
and study its expansion.

The outline of the paper is as follows: after reviewing relativistic
conbustion theory, we discuss the limitations imposed by positiye entropy
production. We then recover Van Hove's one-dimensional deflagration
so]utions25 and show the existence.of detonation solutions as we11. In
Sect. III we construct symmetric deflagration bubb1e.solutipns, and in

Sect. IV we cohstruct similarity detonation bubble solutions. Finally,

concluding remarks, reservations, and future Prob1em$ are diécussed in Sect. V.
II. Relativistic combustion theory

The physiea] processes we shé]]vdiscuss in this paper can be described as
follows. The system initially cons1sts of supercoo]ed quark g]uon plasma (see
Fig. 2) at rest with a uniform energy dens1ty'€ 2 - How th1s state is attained
and how great the supercooling is in cosmology of nucleus-nucleus collisions
is a separate dynamical question net discussed in this paper. However we can
motivate the possibility of supercool1ng at least in nuc]ear c0111s1ons as
follows: In the scaling reg1me15 18 1ong1tud1na1 expans1on of the plasma
leads to rapid cooling, &¥)= 5‘523(’3/7)”3 , where ¥ is the proper time.
Initially, E0%) > & but at some time Y 5 £C%d=<&q (see ‘Fig. 2), end for
>y the energy density is so emall that hadrons begin‘tq form; However,
there exists some eharacteristic proper‘time Y. fgﬁgio ~ [ fm for hadrons
to be formed in the plasma. Thus, hadrons begin to appear in the plasma only

after 't‘)_'}&...’ro . By that time, however, the proper energy density is
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reduced to €(3a¢‘!'°3=ea ('ya/"a*"'o ¥/3 . For the initial energy densities

4 in ultrarelativistic nuclear collisions, 6(72,\*f(”") €aq , it

accessible
follows that ECyr¥,)~ Eq /2 . This gives the order of magnitude estimate
of how much supercooling may occur in nuclear collisions. For the bag model,
with £Qv’-lB , we see in this way that supercooling to & ~2B may be
possible. As the plasma is supercooled it becomes unstable relative to the

26-27

formation of bubbles of hadron matter. Once a bubble has been formed,

27 We shall here study the

it can start growing by different means.
possibility that the region of hadron matter starts growing away from the
point’of formation as an explosive process, whereby the phase'tranSifion takes
place in a layer of negligible thickness propagating outwards. The problem is
then to determine the solutions allowed by the laws of relativistic
hydrodynamics and the boundary conditions specified by the physical
situation. In this section, we shall study the surface of discontihuity in
which the phase transition takes pﬁéce (Fig. 1),'and in the following two
sections we shall construct the solutions allowed by the assumption of initial
homogeneity.

We shall further specialize to a 1+ 1 dimensional situation, i.e., to
plane surfaces of discontinuity. The essential coordinates are then only

xO =t and xl = X, and the equation of motion of the system is

o

3,74+ 3T

aoTo\ - a‘ Tu

o o , (2.1

Y. . ! -
where ™ is its energy-momentum tensor. Everywhere but on the surface of

. .. Y . .
d1scont1nu1ty"r” is assumed to have a perfect fluid form
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1 = Tm = (E+pdU U - Fg y (2.2
where
w' = (Y, ¥v) § | )
= v Cxt) = tauh B0gt) , 3 (2.3)

is the covariant fluid velocity. To the right (left) of the surfacé of
discontinuity the fluid is_assumed to Be in thevsupercooled quark (hadfon)
phase. . |

The treatment of the problem can be essentially simplifiéd by going to
the frame in which the,sufface of discontinuity is at resf. The flow in that
frame is clearly steady, and the time derivatives in Egs. (2.1) vanish. They

can then be integrated to give TO1 = constant and Tl1 = constant or

. 2 2
(€, +pN ¥, v, = (6+p) % Vo

3

(E/*/_‘Dl\. b’:"’;z* Pr = (22'*’3,_) b:-z‘uz—-t,*.‘r)’- : , ‘(2"’\

where the notation is as in Fig. 3. From these one can solve

(WY = smh @, = PP CaHtP)
(€,-p— £, Y,_\ ( é:,.-r P

y (2:3)

'zr|2 - PioPaY ey ’Ufz (P.-Pl\(znfz\
(€,-8,) (€. > (¢, -ELSCCNP.—\

(2.6



These imply that

_ E\'Pﬁ-
’ZJ':’U',_ - €, -8,
v/v, = E2tP
\ iy R
€ +P2
vl - 1J‘,-—1I.,_ (Pl‘Pz\ (£u°£z\
- Trel
i - 'U|U2—

(€11 P YCEL P

Defining detonations and deflagrations ‘as in Fig. 3 we have from (2.8) the

conditions

De‘\’o-«'q'\'\ov\s N 'U;. >’U"' ) £2 .Pz E' Pl

.Deﬂqarq‘(’lons) v,> YUy £,- P2 = <, ‘l '

(z.10)

The first condition a physical combustion process has to satisfy is that

. . , 2 . _
the velocities v, and v, be physical, i.e., O< v, <1 y ¢“H 2. 0On the

£,,€,

and deflagrations. With the bag equation of state (&,=
Egs. (1)-(2)), the velocities are (measuring & in units of B)

_‘_ (8."82"‘13 (382_"':.\

A
U=
' 3 (eg"sz_\ (38’*'22""'\
e L (g, -5, +4) (35,+5,-%)
2 3

(€, -8, C3g +g,)

6.6 K

€y

= &

A

)

plane this leads to two disjoint regions, correspondﬁng to detonations

(2. 1)

(2,12
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which give the regions shown in Fig. 4.
A particularly interesting velocity configuratiqn is that corresponding
to the Jouguet condition, Vi = Ve1- For the bag equétion of state this,
using Eq. (2.11) and Vep = 1//32 corresbonds to the curves (see Fig. 4)

E = &,+2 ¢ 1/172’;;" | (2.13)

~ )

on the 'E‘)Ez_bléne.’ One can ‘namely prove that if we fix the initial energy
density 5; and study the initial velocity Vv, as a function of'é; , then an
extremum of Vo is obtained when 91 = V- To prove this, write
x=7;‘1);_,g=1f,/v;_vand calculate d?{f‘/a[e', using 'U_;;=a(}>, /dg, . This is
easily seen to vanish along x13=zgi, which proves the assertion.
Furthermore, along x5=zf5;‘_ one further finds that
2_42»15_7.' - - 11;3?:[ (2'2-4-(3:3 (E . S
Y - EPERY L (204)

l—af (s,-£,) (g, + P,_\"

Thus, according to (2.10), the extremum is a minimum for detonations and
max imum for deﬂagratioﬁs.

The second condition a physical process has to satisfy is that of
increasing entropy. This vca’n actually be derived from the equation of motion

(2.1) and the laws of thermodynamics. To see this, write

ARY My N ‘
T . = T(O) + AT | , (2:|S~\



where - :
v - MY ol ay oy
AT = 7H““prdﬁ + CH Qdu *JL(H u«H UL}Q
Thaid utu”- an >
&M = 3 T"’ Tuo(édu‘,( )
\A,]«v = qu—a Ut *z%«vbu ) (2.[6\

and %&] are the sheer and bulk viscosities and the heat conductivity.

v
Calculating \e“);TM one then easily finds

- ; Yy |
TQ»,(.SMV) = - ,L(yé“ AT L ) (2"7J

where the right-hand side is responsible for dissipation or entropy
product1on. The form (2.16) for this term is so constructed that entropy is
always increasing. Going to the rest frame of the discontinuity surface,
where the flow is steady, Eq. (2.17) implies that the condition of entropy

increase across the discontinuity is to be formulated as

i L - o
suy 2 s, 4 - . (2.18)

2
A physical illustration of this condition is given in Fig. 5. Using Eq. (2.5)
this is equivalent to

Se g (Eep) CETPY L (2.1a)
Ce,+ Py (€27 P -

.

sz
X
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Inserting Ts=£1p we finally have

f_‘— 2 1 V: gl‘*El , ). 5 . d?/d-‘- , (2203

52. TQ_ 22"'?!

as the entropy condition.

:with the bag model equation of state we can express temperatures in terms
of'énergy densities ahd fiﬁa thafuthe entropy condition physical pfocesses
have to satisfy is

(2. 0"y e o

3 -4\ = —ﬁ3zz+ &,

For &=0 this demands that EJ_-.-‘. 4. Near this end point the condition can be

approximated by

wrGfen  em

The regions corresponding to physical combustion processes of quark
matter to hadron matter are shown in Figs.~6Jand 7. One sees that
deflagrations are possible even if the quark hatfér is not quite supercooled;
after a def]agration front the hadron matter is.in a normal state.
Detonations demand more extreme conditions. The initial quark matter must be
strongly supercooled and the final hadron matter is left in a strongly
superheated state. Note also that the result depends quite'strong1y'on the

ratio of the degeneracy factors, as illustrated by Fig. 7.



-11-
A special point in Figs. 6-7 is that in which the AS=0 curve meets the
boundary of the deflagration region corresponding to Vi =V, = 0. Its
coordinates in the bag model are (cf. Fig. 2)
- \ = & :
£, = 3/(3'/31 1) W .

(2. 23)
2

E. = hrtge, = £q
This result holds even for a general equation of state: for Py =Py the
equality sign in (2.20) implies that also Ty =Ty iee., Py = Py = Pp-

Another special point is that in which the Jouquet curve Vi

Vis
intersects the As=0 curve. This corresponds to'the maximum value of &, for
which deflagrations are possible (Fig. 7).

The regions in the &,&, plane allowed by the velocity condition but
forbidden by the entropy condition for transition from quérk matter to hadron
matter become physical if we interchange the subscripts 1 and 2 in the entropy
condition. Equivalently, we may change the direction of the arrows in Fig. 3,
and the processes then become compression or decompression of hadron matter to
quark matter (Fig. 6).

As a first application of the results let us consider shocks in quark
matter. Shocks are distinguished from combustion processes by the fact that
the matter on both sides of the discontinuity surface obeys the same equation

of state. With the bag equation of state the entropy condition (2.20) is seen

to demand that

2 z
> 3¢ ) e =T, /T:_ | .(2,2_‘/)
3+r2

This holds if T, > T,, which further implies that &>&, . Shocks are

thus physical if



_12-

T\>T§_ & >E E P >E, P, V>V, (2.29)

) 2 )

As a second application, let us consider deflagrations from the surface
of quark matter to the vacuum, as described by Fig. 1. Figure 8 shows how the
flow velocity (Eq. (2.9)) and the deflagration velocity (v2 from Eq. (2.6))
depend on the values of &, and €,. One can observe the following:

- 66 supercooling is needed to deflagrations from the surface of quark
matter ejecting hadron to vacuum,

- the denser the ejected hadron matter is, the smaller its ejection
velocity tends to be,

- the deflagration front propagates extremely sTowly into quark matter.

The.s1owness of this flame front calls into question the relevance of

25 in nucleus-nucleus collisions: the

this type of surface emission
sysfem has disinteérated'1ong before the deflagration front could

probagate any appreciable distance.
111, Deflagration bubbles

In the previous section we have studied what happens across a single
surface of discontinuity. If we consider the grthh'of bubbies formed in
matter, a single surface of discontinuity is not enough to satisfy the
boﬁndary conditions. For symmetry feasons, the produced hadron matter must be
at'rest.wh11e either a single deflagration or detonation front (Fig. 1) leaves
the hadrons in motion. To stop the hadrons something must be done, and the
simplest possibi]gties arelshown in Figs. 9 and 10.

In case of symmetric deflagration bubbles, the system adjusts the final

velocity to zero by sending a supersonic precompression shock into the quark
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plasma. This shock compresses the energy density from £ to £,>&, and
accelerates the quark matter to a constant fiow velocity Vere After this a
def1a§ration front moving with a velocity Vigef > Vg €N transform the
compressed quark matter to hadron matter of energy density Eo and decelerate
it to zero velocity. Entropy production across the two fronts is guaranteed
by £|>>E1 (Eq. (2.25)) and by choosing €, and 8, within the physical region
in Fig. 6 (with Qa—bZ, and &€ ,¢,).

In case of symmetric detonation bubbles, the.primary detonation front
. causing the phase transition must arrive first (Fig. 9b). Just beyond it,
hadronic matter appears superheated to an energy density €}§>ézb and moving
with sound velocity relative to the detonation front. After that the |
deceleration to rest takes place via a similarity rarefaction wave, in which
both £ and Q are only fun_ctions of y = tanh—l(x/t) (Fig. 10c and d). The
point in which the bubble is formed is always taken as the coordinate origin.
The rarefaction zone and the zone of zero hadron velocity are separated by a
weak discontinuity moving with sound velocity. No entropy is produced across
this discontinuity. These results about detonation bubbles are derived in
detail in Sect. IV.

Consider then again deflagration bubbles. The relevant fluid dynamic
quantities (Figs. 10a and b) are the energy densities €,, &, and ¢y, the
deflagration front velocity Vdef> the shock front velocity ng’ and the
compressed quark matter flow velocity Ve (or the corresponding rapidities
Ydef» Yshe yf]). Out of these quantities we shall take the initial
quark matter energy density Qi as given. Further we have four conditions on
the velocities. Thé\first tells that the final hadron matter is at rest,
i.e., that the deflagration front velocity is just the back side velocity Vo

calculated from (2.6) (denoted by vy thefe):
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(p,—po\C£.+ Pe) _ oL (g -£,- ‘1)(32,1’5‘,}“1)’ NERE
(9.‘%3 (Eo*Pl\ 3 CS"&.OS ( 36, E, ,

z
?folef =

The second tells that the initial quark matter is at rest, i.e., that the
shock front velocity is just the front side velocity Vo calculated from

(2.6).

.

up = (P-P2YC(£,+P2) | ) 35%&-Y 5 (3.2)
| (e - NCEAPN T O & 3E,0A ’

The third and fourth conditions tell that the compressed quark matter flow
velocity -ve, is the relative velocity (2.9) calculated separately across the

two fronts:

7}‘1 = (E,-Eo)(Pl’Poy = 3(6.1"503(51’50'93 b)(3'3)
(8, + Po) (20 P (32, +€ (€, +380-4)

= G PP L3 _(s8) <yl gy
(£lrr_z._) Ctz*‘)i\ (32‘1;z-q)(5,f382’9)

Imposing the four conditions (3.1-4) leaves us with one degree of freedom not

determined by these phase space conditions. We could take this to be Vief

or 5;

To guarantee entropy production across the two fronts, t‘o and 5, have to
satisfy (2.21) or lie within the deflagration region in Fig. 6, and €, and Ez_
have to satisfy £,>82_. As 8, is an intermediate quantity not of direct |

interest we eliminate it by using (3.3-4) to express it in terms of Eo and 61
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The possib]e def]agration bubbles can then be analyzed as shown in

Fig. 11. The upber and lower parts of this figure are separated by the line
E=€,+4 ,y the .straight part of the physical deflagration region in &, .
Corresponding to each physical pbint é;)i} we, according to (3.3-4), have a
point &, &, satisfying §;<'£} in the lower part of the figure. In
particular, the curved boundary of the lower part.is the image of the curved
boundary of the upper part. Tﬁe parameters of physical deflagration bubbles
therefore correspond to the lower part in Fig. 11, and Figs. 1la and b show
what values of vy . and vy, correspond to given & & .

.'Coﬁparing Figé; (8, 11a), we see that the range of allowed deflagration
ve]bcities .e.xtendqs t\:o much higher values (~#C ) for bubble deflagrations than
for surface deflagrations. This is.because the flow velocity of the
pre-shocked quark matter boosts the small def]agration velocities in Fig. 8.
Deflagration bubbles thus have more of a chance of playing a fole in nucleus-
nucleus collisions.

| fn general, the numericé1'va1ues df the parameters have to be studied
numeriéa]]y. A éfmp]e analytic approximation can be obtained if we are close
to the line ;eparafing the two parts in Fig. 11, i.e., 5}’2;-'€/ is small.
This situation also covers the perhaps most natural phase transition sequence,
thét in which the phase transition happens by Just jumping across the mixed
phase from &, to £h==3F2 with p = p_ in the bag equation of state (Fig. 2),

since then £l7:‘!+3f>c and 84”3& . A simple calculation gives

2 X ‘
TVaet =~ 12 (51"50"“) y ©F 3'/31 )
2 . e=1 s -
Vi — (E-&-4) ‘&ef/v;cg _”’Pm
2 2 _
- - 305
IJ;k é; s . ( )
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The 1atent'ﬁeat released in the deflagration process goes into the
kineticienergy of the ever-lengthening column of compressed quark matter. To
quaﬁtify_this, let us calculate the total energy E(x) that passes a point x

during the deflagration process.

00
E(X> = Soit -‘—-Oﬂ'(x)f)

_ N\ w2 + _
- k(G T ) EEED GO

N As 1s natural for a s1m11ar1ty solution, this sca]es linearly with x. The
~coefficient of proport1ona11ty can again be s1mp1y approximated in the limit

of small €,-€,-Y

TEGN % 4 3P x | C(3.7)

The above results show that expansion via dpf]agratioﬁs is a physically
quite appealing candidate so1ution to the problem of hadron bubble growth in
quark matter. Both the initial quark and_fina] hadrpn energy densities are
reasonable. For 1nstan§e since.

( Co.2| GQ%M ' (3,9)
:aooMe\/

the range £;<{5 corresponds to hadron matter with the density of nuclear
matter or less, for reasonable values of the‘bég constant B. A slightly
problematic feature is the fact that the bubbles grow quite slowly,

Vgof < V¢» Unless the supercooling is sizab1e,‘£;ﬁ23.
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As emphasized above, these phase space considerations leave one degree of
freedom, the deflagration velocity, unspecified (in addition toii). The
determinationlof Vdef will require further dynamical jnput. For instance,
one may study the more microscopic structure of the deflagration front by
explicitly using the dissipative terms (2.16). The difficulty here is that
one does not know how the response coefficients 7}4’ and ¥ behave near T = Tc
and, even more fundamentally, that the discontinuity may be so abrupt that the
| fluid approacﬁ is not at all applicable. This remains an interesting topic of

further study.
IV. Detonation bubbles

In the Tast section we found that we could construct deflagration bubbles .
by first sending a precompression shock through the quark pTasma. To increase
entropy, the energy density of the shocked plasma had to be larger than that
of the initi§1 plasma. 'That energy is Supp]fed by the release of latent heat
at the deflagration front. The shocked quarks also acquire‘a net flow
velocity. It was possible to bring the hadrons to rest because the
deflagration front accelerates the hadrons away from the front. In contrast,
a detonation front decelerates the hadrons‘re1ative to the quarks. Therefore,
a detonation front fo]1owing a shock cannot bring the hadrons to rest relative
to the initial plasma. Suppose we try a solution with a shock following the
detonation wave. In that casé, fhe shocked matter is in the hadronic state
and we are seeking a way for the hadronic shock front to bring the superheated
hadrons to rest. Note from Fig. 6 that the hadronic matter must be highly
superheated, E\S>-£1‘, right behind the detonation front. Consider a shock

wave in that superheated hadronic matter with an energy density to the left of
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shock given by &, . We saw in Sect. III that positive entropy production
across the shock requires that f;>-5, . Therefore, the penalty paid for
bringing the superheated matter to rest is_to heat it up even hore. This is
clearly undesirable. v |

To circumvent this problem we seek a solution that leaves the final
hadron matter in a cooler normal state,éi,<’£ﬂ . For this purpose, we

23,24 A

consider a similarity rarefaction wave behind the detonation front.
rarefaction.wave allows the superheated hadron matter fo cool and expand in a
continuous way. The simplest possible rarefaction wave is a similarity wave,
i.e., one that depends only on x/t and hence is scale invariant.

To understand similarity rarefaqtion:waves we recall that the
hydrodynamic equations (QMT“\;() } can be expressed in this (1 + 1)

dimensional case-aslg.

(QA + VQé}Bg + (.>:+‘>) (v9«+ JB e =0 (1)

(“u-afw 9:\\? + (z-r!'a)(af\ffv'ég\g 0 (4.2)

where . -
£ o5y C5) G
4 = & eoa(:j:> (4

Here GQCafS\is the hydrodynamic flow rapidity and
(£, = Fank(© -3 - (4:5)

If we seek scale invariant solutions, then Z)P)B can be functions of the
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“rapidity" y only. In that case eqs. (4.1-2) reduce to
zrade t (£+P) 9.36 =0 , (&.6)

QJP + 6‘(&49)339 =0 . (4.1)

Noting that c)apu_{‘%]e » Where t[,"n ér/ae , these equations combine to yield

(73 3,0 =0 | , 4.8)
'z{“é—.’e + U (£+p) 639=O .(.9)

Equation (4.8) is solved by@=const or & = ¢ Ug |, 4.e.
9 = + o
q4* Ys , (4.10)

where Yo = th’lvs'is the sound rapidity. If we further specify that

P=1-§t£ then eq. (4.9) is solved by &= const or

kS
ECq) = ECtYs) e"P[ t '1;7:’:‘ Cy :3;\] a-n1)
The * refer to left (+) or right (-) moving similarity rarefaction waves
relative to the surrounding fluid.

'FWe can now construct a rarefaction wave joining a region with zero flow
rapidity ©= 0 to one with finite flow rapidi’ty right behind the detonation
front (located at y = ys) as in Fig. 10c,d. Note that there is a "weak"
discontinuity of @ and g at y = Y- These quantities are continuous across
that front but their derivatives are discontinuous. The weak discontinuity
propagates in the final hadroﬁ rest frame at precisely the speed of sound
(y = yé). Furthermore, the velocity of the hadronic matter relative to the

detonation front is also the speed of sound since Ur-el = ;ﬂ(a(adef\—:]det\= Uy
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from eq. (10). We have thus derived fully relativistically the classical

23,24

Jouguet condition for detonations.

The energy density in the hadron matter is then given by

1wty - Y .
E'—E‘Q v Uﬂc\e{\ _ 5018 v ('3 3:\ )(‘1-!2)

where by definition, €, = e(Jdef\ and &= E(y). This solution is shown in
Fig. 10d. 'A qualitative comparison of detonation and deflagration bubbles is
seen in Fig. 9. |

To fix the value of Ydet W€ musf join'thfs solution td.that of the
quark matter across the detonation front. From the detonation conditions
derived in Sect. II, we see that Ydef is just the rapidity of the quark

matter in the detonation front rest frame. Thérefore

. ] . y 38'*—2;—” ,
éde{: = '\Lou\t\ ["-ru _ 32;;2‘ ] -("’"3)

The Jouguet condition requires for similarity rarefaction waves states that

the velocity Vi of the hadrons behind the detonation front is v_ in the

S
front rest frame. ThisAcondition led to Eq. (2.13), expressing E} in terms of

€,. With Eq. (2.13),

we see that yuit i5 now a function of &, alone.
However, only a limited range of 62 are allowed by the requirement of positive
entropy production. For a fixed degeneracy ratio gllgz, only those
(&,,€,) are allowed that satisfy Eq. (2.21).
Numerical examples of similarity detonation bubbles are shown ih Fig. 12

by the dashed line labeled Jouguet detonation. Notice that all detonations

involve signififantTy more supercooling of the plasma than do weak
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deflagrations. Nevertheless, both types of solutions leave the final hadronic
matter in a cool, normal state. For detonations the rarefaction
wave was crucial in obtaining this final state.
Finally, we shall quote a few more results characterizing the detonation
bubble solutions. The world line of a fluid element, i.e., the equation of
the curve in the'similarity rarefaction zone of Fig. 9b, can be obtained by

integrating dx/dt = v(x,t) = tanh(y - ys) =

dx . We-Us | (4 m)

At |~ vyXx/E

If Xo is the point from which the detonation starts moving the particle, its

path is given by

t-x= A (t+x)'""% )
- /= v, ' | -,
A = et /1 Yet x,,) S (4.15)
/ *'1C?ef_ Yet )

and if the particle is pushed to the point Xqs then the relative distance

covered by the particle is

sy -
X\ mXo . oy 1tVdet o o5 (qdet™ds) 1 ~(4.16)
Xo = 1+Vg . Vet

As we have a similarity solution, this is independent of Xq*
Another quantity of interest is the energy E(x) passing through the point
x during the course of the detonation. Calculating as for deflagrations in

Eq. (3.6) and using Eq. (4.12) we find
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| o
Ecy = §, oLt T70,¢)

et L 2Gegy
det . Sin “Ys =3 (y4- b
= x Z¢, d mh =73 c U NN .(L";r;)
3 J %
,_ 4s SMJ\:] _ _
As is expected of a similarity solution, this again is linearly proportional
to x. The farther away from the start of the explosion one is, the greater is
the energy of the explosion.

V. Concluding remarks .

"In this paper we have developed relativistic combustion theory and found
two new solutions corresponding to explosive bubble formation. These
correspond to deflagration and detonation processes. The energy er1ing these
solutions comes from the latent heat liberated in the plasma-to-hadron
transitions. The exiétence of’tﬁése solutions requires supercooling of the
plasma to insure positive entropy production. The main difference between
these solutions lies in the way in which the latent heat is used up. In
deflagration bubbTes'fhe energy is used to preheat and accelerate the quark
matter via a shock wave. In detonation bubbles the energy is used to
superheat and acce]erate_hadronic matter. Both solutions lead to "cool"
hadronic matter with no f]bw velbcity in‘a bubble whose radius grows linearly
with time. The energy propagates radially outwards in a shell whose thickness
also grows linearly with time.

In this section we propose possible consequences of such explosive bubble
formation in ultrarelativistic nuclear collisions. In addition, we list key

issues that remain unresolved and some problems needing further -investigation.
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If we accept for the moment that such bubbles can be formed in the
expansion phase of nuclear collisions, then what observable consequences may
they lead to? As mentioned'in Sect. iI, the rapid longitudinal expansion of
the plasma can easily lead to supercooling of the plasma to £€~€g/2, The |

28 could also help in supercooling the plasma.

29

transverse rarefaction wave
The seeds for bubble formation .could come either from large fluctuations
of the initial energy density with respect to the transverse coordinate, high
P hard scattering centers, or the féw heavy quarks produced. These bubbles
would grow and acquire more energy until they reach the plasma surface. If
that surface is a deflagration front as Van Hove suggested,25 then it is
relatively stationary because of the smallness of Vdef ~ 0.1 as shown in:

Fig. 8. Thus, the bubble can expand until Y~R, the nuclear radius, is
reached. As the bubb]e reaches the surface, the outward—direéted energy flux
could lead to an azimuthally symmetric b]ast of hadronic material with mean
transvefse rapidity, Yy = y% + yf1; Hefe Y is the mean transverse

rapidity due to random thermé] motion‘and yf] fs the transverse collective
flow rapidity due to the bursting of the'bubble. For typical freezeout
temperatures —Fvvqr, yr =~ 1.5. For yg, ~(ydét or ys£’~ 1, we estimate
'<fi>'”‘“x5L'81— ~ 1 GeV/c, which is signjficant1y larger than usual hadronic
<.f§?~ 0.4 GeV/c. The azimuthal symmetry may not be perfect for bubb1e§
produced at finite transverse coordinate. However, it would be easy to
distinguish such bubbles from normal jets by correlating the hagnitude ot the
total transverse energy per unit rapidifyldﬁgﬂa,with the azimuthal

asymmetry. Normal jets with the same ciﬁ[Jj-wou1d be much morevasymmetric in

<¢. Multiple medium fa_jets could be ruled out if the rate of bubble formation

is larger than_the predicted multi jet rate.
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A second important feature of bubble growth is its localization in
rapidity space. Consider a bubble formed at ¥=7% , X =X, t = (3;:,xz{&in
a particular frame. The bubble front cannot arrive at the original z = Q

before tc.= to + Z,. However, if tc )_RJ§ then the transverse

rarefaction wave28 wi]] have passed through the center of the plasma at

z = 0, and the conditions for bubble growth may no longer hold. Thus,_zo
must be close enough to the origin that tc‘< RJ§. _Since,the rapidity of the
bubble center is aof-ﬂn(‘to*zo/?'o> » to < RY3 implies that ,j,,<fn RVZ/3, .
Thus, the total rapidity width influenced by a bubble is Ay < 2 ln R
Bubble growth in heavy nuclear co11isjqns may thus lead to medium-range
rapidity correlations with éa*hl-q ;“

We also note that bubble production leads to extra entrqpy productions.
Since the rapidity density dN/dy reflects the entropy density,>° bubble
formation could lead fo enhanced rapiqity density fluctuations. The magnitude
of the enhancement depends, of course, on the degree of supercooling. In
addition, if multiple bubbles are produced within AJVQQU\K of each vother,
then the bubble walls could collide and lead to even greater entropy
production in avnarrow rapidity band. “

In summary,_we'pfopbse'three observab1e consequences of explosive bubble
formation in supercooled p1vas_mas: (1) Tlarge Jg/cﬁ correlated with near
azimuthal symmetry, (2) medfnm;range rapidity correlations growing ae |
A:) ~ 284 R , and (3) enhanced rapidity_ den_'sity fluctuations. We note,
furthermore, that such phenomena may haye been observed already in some
cosmic-ray events. 31 For example, in the Concord event anomalous
f]uctuetions in the pseudo—rapidity distribution is corre1ated with medium

PL ~ 0.5-1 GeV/c and éppfoximate]y azimuthal symmetry. In the Texas Lone

Star event large rapidity fluctuations are also seen. On the other hand, two
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very high energy nuclear collision events reported by the JACEE

32 have smaller rapidity density fluctuations. The Centauro

collaboration

and Chiron events exhibit an unusually iarge fu_distribution of secondaries.

Perhaps these features are related to detonation waves. Clearly, much more

data are required before any conclusions can be drawn.

While the above proposed consequences of bubble growth are plausible,
many theoretical issues remain unresolved at present. Serious application of
combustion phenomena to nuclear collisions 6r cosmology muét_await resolution
of the following problems:

1. On the technical side the effect of finite chemical potentials and more
realistic equations of state need to be exp]ored; Also, we have only
considered 1 + 1 dimensionaT combustions. The full 3D spherical
symmetric bubble solutions need to be investigated. That 3D bubbles
could behave differently from 1D bubbles can be anticipated from the

33 that 3D deflagration fronts in chemical explosions are

observation
unstable and that flames actua11y propagate in a turbulent rather than
simple hydrodynamical manner. The same mechanism may operafe in
quark-gluon plasmas. |

2. Bubble growth in expanding systems needs study. In general, expansion
will lead to curved shock and flame fronts in Fig. 9. Where these curved
fronts intersect a critical‘curve v = Lc ~ RY3 will determine the
extent of the medium-range rapidity correlations.

| 3. The nature of the seeds for bubble formation needs investigation. If

fluctuations in the energy density indeed prbvide the seeds, can flame

fronts propagate in unhomogeneods plasmas?® What is the probability of

forming a bubble?
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Can local thermal equilibrium be achieved and maintained on both sides of
the flame front? Naively, we expect that if the relevant mean free paths
are small compared to the dimension of the system (<< R ), then local
thermal equilibrium can be maintained. However, Van Hove conjectured25
that quasi equilibrium may also be reached at early times if we
concentrate on inclusive observables. For nuclear collisions,
longitudinal expansion leads to rapid time variations, dhbne /3Y °§ >
independent of the transverse dimension. Ideal hydrodynamics requires

A << (Mu\i/aﬂ-‘ . Simple estimates] give A« @CzT)_L Yot , where &
is the effective strong coupling. If «3%<l , then transport corrections
to ideal hydrédynamics are required. Flame propagation may thus have to
be studied via the Navier-Stokes equation (eq. (2.15)-(2.17)) due to the
rapid longitudinal expansion. even for very large nuclei.
The thickness of the flame front will in any case require solution of the

23 it is known

Navier-Stokes equations. In the nonrelativistic case,
that the thickness depends on both the chemical reaction rate and the
therhé] conductivity of the system,. For the plasma, there is
considerable uncertainty in the reaction rate. Naively, we guess that
44;L°'~ 1 fm/c provides the only natural time scale. However, the probIem
here is how long does it take for the nonperturbative vacuum fluctuations
to re—estab]ish themselves in the presence of quark-gluon plasma. Even

if Age

aco 1S the final answer, then we are faced with the problem that time

variations due to longitudinal expansion are initially on the same

order. Thus, the idealization of thin flame fronts may be too crude.
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6. What happens when the flame front hits the plasma surface How does the
energy flux get transformed into produced hadrons What is the influence
of the transverse rarefaction wave on the bubble growth Observable
consequences of explosive bubbles depend on the resolution of these
questions.

7. Probably the most basic and difficult question is whether the extreme
supercooling of the plasma can actually occur. It could be that the
required métastab]e supercooled and superheated phases do not exist! Or,
if they exist, the barrier between them could be too large. At this
time, even the relevant order parameters characterizing these phases are
poorly understood. The detonation bubbles are especially vulnerable to
uncertainties about the superheated hadronic phase.

Given the above uncertainties and reservations, great care must be
exerciéed in applying these bubble solutions. Nevertheless, they may provide
a hint that novel bulk phenomena could occur in quark-gluon plasmas. If
exp]osivé bubble growth does occur, the resulting striking signatures could

provide diagnostic information on the properties of that plasma.
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Figure Captions

Space-time development of one-dimensional deflagration and
detonation fronts converting quark-gluon matter, Q (dotted lines),
into hadronic matter, H (dashed lines).

Schematic diagram of energy density and pressure p as a function of
temperature (fof éero chemical potentia1). ,At Tc, the pressures
in the two phases are equal, but there is a latent heat per unit
volume €o-&,.. The dashed curves indicated the state of
superheated hadronic matter and supercooled quark matter.

Fluid variables in the rest frame of the discontinuity. The-
difference between detonations and deflagrations is in the relative
magnitude of the velocities..
Kinematic domains in which the continuity equations can_be satisfjed
with physical flow velocities 0% 'Uf'é 4 in both hadron and
quark phases. Dashed lines (Eq. (2.13)) correspond to the Jouguet
condition, in which the hadron flow velocity is equal to the sound
velocity in hadronic matter.

Schematic diagram illustrating how entropy can increase across a
deflagration front due to increased volume in hadronic phase in
spite of the redu;tion of the internal energy density 5;<f§2.
Positive rate of -entropy production restricts def]agrafions and
detonations in the quark phase to domains in (5\»81) indicated. The
AS =0 curve is calculated for 91/92 = 2/3 for illustration.
Above that curve Q » H discontinuities lead to negative entropy

production. However, H » Q-discontinuities (compression or

-decompression) lead then to positive entropy production.
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Curves of AS=0 for different degeneracy ratios in the bag model.
The dashed curves correspond to the Jouguet condition.
The dependehte of Vdef] (the velocity with which the deflagration
front penetrates quark-gluon plasma of energy densityéi) and Vout
(the velocity with which hadron matter at energy density E) is
ejected dut of the surface) on &, and €, with the bag equation of
state. Physical surface deflagrations are allowed only in the
region bounded byVé} = £} *”713 and the upside—dowﬁ‘parabolic

curve marked with fiXedrgi/g2 values. Degeneracy ratios

91/92 closer to unity allow a greatér physical domain. The

positive parabolic curves of constant Vdef1 show that physical
def]agration velocities are very small. The hadron ejection
velocities as shown by the vertical rays extend to high velocities.
Space—timé growth of hadron bubble via deflagration front following
precompression shock (a) or via detonation front followed by
rarefaction wave (b). The weak discontinuity at the rarefaction
front moves with the speed of sound. Paths of quarks and hadrons
indicated by dotted and dashed lines, respectively. Both solutions
are symmetric and scale invariant. See Fig. 10 for detailed flow
characteristics.

Flow rapidity © (= ‘]‘k’,l[“ ) and proper energy density £ as a
function of y = th’l(x/t) for symmetric deflagration (a,b) and
detonation (c,d) bubbles as in fig. 9. The rapidity of the
deflagration (detonation) fronts are indicated by Yot (ydet)‘

The precompression shock rapidity is Ysn and the rapidity of sound
is Y (vS = th ys). Note that in detonations superheated

hadronic matter replaces the preheated quark matter in the

transition region in which 6 > 0.
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Fig. 11. Symmetric deflagration parameters. The figure is divided into two
parts by the straight line £=£,+4B  (thick line). For
E>E,+4B the ordinate is the proper energy density £, of the
preheated quark matter. For€< &,+4YR the ordinate is the energy
density € of the initial supercooled quark matter.- The abscissa is
‘the energy density &, of the hadron matter formed. The curves
- correspond to curves of“cohstaht deflagration front velocity,
Vyef? in part (a) and'to constant shock -velocity, Ven in part
(b). - The domains allowed by AS_>.o are bounded by curves marked
with appropriate va1ues.of‘gllgz.
Fig. 12. The initial quark energy density, & , versus final hadronic energy
- density, o, for symmetric weak deflagration (Vdef) and Jouguet
detonation bubbles. Note that detonation requires significantly

more subercoo]ing of quark matter than does deflagration.
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Bag Model Combustion Kinetics
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