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INTRODUCTION

We discuss here the operation mechanism of self-correction coil with a
simple model. At the first stage, for the ideal self-correction coil case
we calculate the self-inductance L of self-correction coil, the mutual
inductance M between the error field coil and the self-correction coil, and
using the model the induced current in the self-correction coil by the
external magnetic error field and induced magnetic field by the
self-correction coil. And at the second stage, we extend this calculation
method to non-ideal self-correction coil case, there we realize that the
wire distribution of self-correction coil is important to get the high
enough self-correction effect. For measure of completeness of
self-correction effect, we introduce the efficiency n of self-correction
coil by the ratio of induced magnetic field by the self-correction coil and
error field. As for the examples, we calculate L, M and n for two cases;
one is single block approximation of self-correction coil winding and the
other is two block approximation case. By choosing the adequate angles of
self-correction coil winding, we can get about 98% efficiency for single
block approximation case and 99.8% for two block approximation case. This
means that by using the self-correction coil we can improve the field

quality about two orders.

IDEAL SELF-CORRECTION COIL WINDING CASE

For easier uderstanding of the principle of self-correction, we
introduce a model for the superconducting magnet with self-correction coil.
Of course we can solve this problem without using this kind of mode]l)’z),

but by using this model we can get the clear image of the situation and this

method is very useful for the non-ideal case which will be discussed later.



Figure 1 shows the model for ideal self-correction coil case, where !.0 is
the self-inductance of main dipole coil, L1 is the self-inductance of
error coil winding which is originated from incorrect coil position or
deformation of coil shape or saturation effect of iron yoke, etc., L2 is
the self-inductance of self-correction coil, M is the mutual-inductance
between the error coil and self-correction coil. R1 is the resistance of
main coil circuit, R2 is the resistance of self-correction coil circuit
and Il’ I2 are the currents in main coil and self-correction coil
circuit respectively.

The currents Il’ I2 are determined by solving the following

differential equations,

I, a1,

E=llg * L) g5 * 4Ry * Mo (1)
d, dI,

0=L, g * o Ry * M (2)

In practical case the main coil current I1 is controlled by current
control feedback system, so that the current 12 is given by solving the
equation (2) directly; for simplicity we assume R2 = 0, because the
self-correction coil operate under the zero resistance superconducting state
and its joint resistance is quite Tow compared to the self-inductance L2

2 H, the time constant of this

8

(for R, = 10710, L, = 10”

self-correction coil circuit is 1 = LZIR2 = 10~ sec), then from

equation (2),



assuming Il = I2 =0 at t = 0, we get the following result,

--—1 (4)

The induced current in the self-correction coil is Tinear proportional
to the current in the error coil winding, that is, to error field.

For the error coil winding, we assume the ideal current sheet coil,
which produces the error field. By introducing this error coil, we can
calculate the mutual inductance M between the error coil and self-correction

coil. This current distribution is expressed following equation,

11(9) =n N I1 cos(ne) (5)

where n is the multi-polarity of error field considered, Nl is the total
turns number per pole, I1 is the current in this error coil. The total
ampere-turn Nlll is determined by the strength of error field.

In the same way the current distribution of ideal self-correction coil

is given by following equation,

12(9) =n N2 I, cos (ne) . (6)

Figure 2 shows the arrangement of self-correction coil and error coil, where
R1 = error coil radius, R2 = self-correction radius, b = Iron (y ==)
Yoke inner radius.

The self-inductance L2 of this self-correction coil and
mutual-inductance M between the error coil and self-correction coil are

given as the following equations, (see Appendix),



Zn

. R R\
M = ‘;0{1 +(T2) }(ﬁf) .0 NN, (8)

By substituting the equations (7) and (8) to equation (4), we get the

induced current 12 in the self-correction coil,

)
xEy

The strength of magnetic flux density B by the ideal current sheet is

expressed following equation (see Appendix)

)

where current distribution is given by

By substituting I0 = Ny I, of equation (5) to equation (10), the
strength of magnetic flux density Bl produced by the error coil is

calculated,



n-1 2n
g o o N N1 I1 r i.4 El. 12)
1= " ?R] R1 b

In the same way substituting the I2 of equation (9) to the equation
(10), the strength of magnetio flux density 82 produced by the

self-correction coil is expressed,

R Zn
n-1 Zn 1 n
B, = - fgffg__(_[_ 1 +(E%) o ¥ {1 +(75 .(Eg) .
2 2R2 R2 b R2 2n R1 N2 |
n-1, 2n

LIS S Ry
RO

The induced current by the error field in the ideal self-correction

coil produces the magnetic field 82 which is completely the same strength
and in opposite direction to the error field and cancels out the error field
inside the self-correction coil.

In practical case, because error field includes many multipole
components, to correct these error field components we need the same number
of self-correction coil. Figure 3 shows this case, where because orthogonal
property of each self-correction coil, there is no coupling between each

self-correction coil.

NON-IDEAL SELF-CORRECTION COIL WINDING CASE

(a) Single block approximation

Figure 4 shows the simplified model for non-ideal self-correction coil
system, where L1 is the self inductance of error coil winding, L2 is the

self-inductance of self-correction coil fundamental mode, AL is its high



mode. (In non-ideal self-correction coil case, due to the imperfection of
self-correction coil winding distribution, an additional self-inductance al
of higher mode appear). M is the mutual-inductance between the error coil
winding and self-correction coil.

The currents I1 and I2 in the circuit are decided by solving the

follwoing differential equations;

dIl d12
E=(L0+L1)—d-£—+IlR1+M-a—

d12 dIl W
0=(L2+AL)d—t-+IZR2+ME-

In the same way as the ideal self-correction coil case, because current
I1 in the main dipole coil current is controlled by the current control
feedback system, the current 12 is solved directly as following, assuming

R2 =0 and Il = 12 =0att =0;

dI, d1
(L2+AL)—+M—=O (15)
dt dt
M
2= CrE - M (18)

For the error coil winding, we assumed the ideal coil winding, then the
current distribution of this error coil is expressed as following,
11(9) =N N1 I1 cos (ne) (17)

where n is the multi-polarity of error field considered and N1 is the

total turn number per pole.



Figure 5 shows the current distribution of single block approximation
for self-correction coil. Here we introduce "reduced space" to make it
easier to express the coil winding distribution. The angles % and ée in
the reduced space correspond to eoln and ée/n in real space. Because of
periodic property of self-correction coil winding distribution (see Figure
Al), we need only two parameters se/n and 90/n for 1 block approximation
case.

By using the Fourier expansion we get the following expression for one

block approximation coil case (see Appendix),

n

i (o) = Ly p cos{n(2 - 1) . of (18)

%=1

where

. 80
In _ 4nN212 cos{(ZR-l) . 90}. s1n{(2l-1) " TZ}
28-1 n(22-1) 56/2

In this single block approximation case, because of imperfect
approximation to cos (ne) distribution shape, the higher order mode current

n
components IZR-] (2=2, ..., ) appear. According to this, the self-inductance

L of this self-correction coil winding is expressed as follows (see Appendix).

n
L = ﬂgl Log 1 (20)

n
where self-inductance L22—1 for each mode is given,



n
) ““0(122_1)2 0, 2n(21-1)) ,
bopy ==z — *§ 1 "\ © f I
8u0nN 2 coszl(Zi—l) : 90]' sin2 I(ZR—I)-%?I
n2 -1)% (s0/2)°

R 2n(22-1)
LNC

From the discussion above we realize that self-inductance of non-ideal

self-correction coil consist of its fundamental mode L? and higher
n
order mode L2£—1'
The mutual-inductance M between the error coil and this single block

approximation self-correction coil is expressed (see Appendix),

Z2n n

R1 R2 cos(eo)- sin (se/2)
M= 2u0{1 +(—b) } (RT) - n NN, T (22)

From orthogonal properties of cosine function the magnetic coupling
exist only between error coil winding and fundamental mode of single block
self-correction coil winding.

Substituting the equations (20), (21), (22) to equation (16) we get the

induced current I2 in the self-correction coil,

I, = - — === f
Eg; L o4
n ] R1 B 80 §0
. (El,) (fﬁ) { (—b—) }cos 8y, + SN T)/(-?) ;
-4 Ny Rl Si cosz{(22-1) " 90} Sjn2 {(22~1) r ﬁg} 1
=1 (20-1)° . (s0/2)°



The strength of magnetic flux density B1 by the error coil is

expressed in the following equation,

Zn
p I;nN n-1 R
o - - A () () 24)
1 1 b

The strength of magnetic flux density 82 by the induced current in

the self-correction coil is expressed as follows,

n Z2n
uoll & n-1 R2
B2 =—_—'2"'RE-' . “R_‘Z_ . ]. +"b"" . (25)

where the fundamental mode of current Fourier component 122_1 (2=1) are

given from equation (19),

In } 4n N, 12 cos o, . sin(se/2)
1~ T * se/2

from equations (23), (25), (26),

| 2
cote, s (|1 |
52 cosz{(ZQ— 0} sin { (20-1) %?} .=1 . (Eg)Zn(Zﬂ-l)}
f=1

(22-1)° . (s0/2)°

(27)

For measure of completeness of self-correction effect, we introduce the

efficiency n of self-correction coil by the ratio of induced magnetic field



by the self-correction coil B2 and error field Bl;

B
n =g (28)

1

Then the efficiency n of self-correction coil for single block

approximation is, from equations (24) and (27),

From equation (20), we realize that in non-ideal self-correction coil

case, to the self-inductance L, in addition to the contribution of
n

2L~
the other hand as shown in equation (22), the contribution to the

fundamental mode L?, the higher mode contributions L 1 exist. On

mutual-inductance M is fundamental mode only. Because of this additional

higher mode contribution aL to the self-inductance L (see Figure 4), the

efficiency n of non-ideal self-correction coil become lower than 1.

10



(a) Multi-block approximation

To get a good self-correction efficiency n, we require the
self-correction coil which is good approximation to ideal cos(ne)
distribution. For this purpose we can use the multi-block configuration.
By superposing the single block case, we can calculate the current Fourier

coefficient 1" 1 of multi-block approximation current distribution.

S 20—
And using this IS 0g_1» We can calculate L, M and n.

We discuss here how to solve the L, M, n for multi-block
self-correction coil case.

Figure 6 shows the current distribution of multi-block self-correction
coil case, where 05, 805, Ni represent the center position, width and
coil turn number of i-th coil block in the reduced space.

Then the current distribution i(e) for whole self-correction coil is

expressed in the following equation. (Superposition of each block current

distribution equation (18)),

(o]

Z 5 521508 ln(zz - 1) 9] (30)

2=1
where
v
n max n -
Ig 29-1 = Z Ig 291 (1) (31)
i=1
n _ 'ﬂlnN('i)I2 cos | (22-1) 9(1)]s1n' (29~1) . _5_%"_).]
Lo-1(1) = <12y (172

where IM’_1 (i) is (2 -1)-th mode current Fourier coefficient of i-th coil

block and Is 5 1 js the summation of (2£-1) — the mode current Fourier

coefficient over whole coil block.

ik



The self-inductance L, mutual-inductance M are expressed in the

following equations,

Bl
n (In )2 R ZH(R—l)
L __"Mo''s 20-1 T 1.2
20-1 =~ 2n(22-1) b g

L N 8, nN 2 coSZ{(ZE_l) 90(1')] s‘in2 ‘(22-1) 592(1)

R 2n(2%-1)
2
+ —
x 41 : ( s ) (32)
n 2n n
wo ol (F2) L (M) g/
= 2 Ry b

i ; . . 2n)
%x - (_R§>” cos [9(1)]. sin {69(1)/2] A .,.(ﬁ) n
g ANy (s0(i)/2) b
n

where L2£-1 is a self-inductance of each-mode for the self-correction

Il

eotly 185 L? is for fundamental mode, Lg is for 2nd higher mode
etc.

The relation between I1 and 12, currents in error coil and
self-correction coil is given by the following same equation discussed
before, (see equation (4)),

L= -1

g 1

12



The strength of magnetic flux densities Bl’ 32 by the error coil
winding and the induced current in the self-correction coil winding are

expressed as the following equations respectively.

“oIIan ( =1 /Rl\zn‘
By i T 1+\_)
1 2Ry Rl) { b }
(34)
wols'y [ r\-1 1 (RZ)Z”}
Bl = = — +| £
2 2R1 (Rz) b
where ISl is the current distribution Fourier coefficient of fundamental
mode, given by following equation (see equation (31)),
Tnax
n . cos {9(1)}. sin{se(i)lZ}
I an(i) 1 35
sl ~ 3 % g (35)

o se(i)/2

From the equations discussed above we can calculate the efficiency n of

this self-correction coil. (See equation (28)).

13



Example 1. Single block approximation self-correction coil.

As for example, we calculate self-inductance L, mutual inductance M and
efficiency n for single block approximation self-correction coil case.
Figure 7 shows the sextupole self-correction coil geometry and its current
distribution in the reduced space. Figure 8 (a), (b), show the current
Fourier coefficient 132_1 and self-inductance Lgﬂ—l of this single
block approximation sextupole self-correction coil (see equation (19),
(21)). Fiqure 9 gives the efficiency n of this self-correction coil (where
we also represent the efficiencies n of this kind of self-correction coil
shown Figure (7) for quadrupole (n = 2), decapole (n = 5)). When we choose
se small, for example se = 1° or 4°, the current Fourier coefficient
Igﬂ-l decrease slowly against mode number £ and because of this
self-inductance Lg£_1 decrease slowly, that is the contribution of
higher mode to the total self-inductance is large, i.e. the efficiency n for
this small se self-correction coil is low.

If we choose the se = 60°, then because o, = §6/2 = 30°, the current
Fourier coefficient (equation 14) Igﬂ_l becomes zero for £ =2, i.e.,
the 2nd mode. This fact corresponds to the efficiency n peak at se = 60°
(n =98%) in Figure 9. The small difference of efficiency n between
quadrupole (n = 2), sextupole (n = 3) and decapole (n = 5) at low &6 on
Figure 9 comes from the difference of shielding effect of iron (u = « ) Yoke
for different multi-polarity n (see equation (29)).

Figure 10 shows also the sextupole self-correction coil geometry and
its current distribution in the reduced space, in this case we fixed the
§6 = 10° and changes the current block center angle o, from 5° to 85° to
see the 6, dependence. Figure 11 gives the calculated efficiency n of

this self-correction coil. Because of the small se value, efficiency n is

Tow.

14



Example 2. Two block approximation self-correction coil.

As for example of two block approximation self-correction coil we
choose the two shell type self-correction coil. Figure 12 shows the
sextupole self-correction geometry and current distribution in the reduced
space. In this geometry, if we neglect the coil thickness for simplicity,
the combination of 6 = 78° and 6, = 42° gives the zero current Fourier
coefficients Igﬁ-l for 2nd and 3rd mode (£ =2, 3). (Of course, it is
very easy to take into account the finite coil thickness.)

Table 1 gives the parameters of two-shell type self-correction coil.

Table 2 shows the current Fourier coefficients Igﬂ—l’
self-inductance LZz—l for each mode, total self-inductance L and mutual
—-inductance M between this two shell type self-correction coil and error
coil (where we assume the total turn number per pole of error coil Nl is
1) and the efficiency n.

In this two block approximation case we can cancel out the 2nd and 3rd
mode self-inductance Lg, L15 by adjusting 015 Oy, the higher mode
contribution to the total self-inductance L becomes small and get the high

efficiency of self-correction coil n = 99.8%.
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TABLE LIST

Table 1. Parameter table of 2 shell type self-correction coil.

Table 2. The current Fourier coefficient Igﬂ-l’ self-inductance

Lgﬂfl’ L, mutual-inductance M and efficiency n for 2

shell-type self-correction coil.

REFERENCES

(1) Richard A. Beth. INDUCED EMFS IN TWO-DIMENSIONAL FIELDS, Proceedings

The Fourth International Conference on Magnet Technology, Brookhaven,
1972, p. 600.

(2) A. Dael, F. Kircher, J. Perot. USE OF SUPERCONDUCTING SELF-CORRECTING
HARMONIC COILS FOR PULSED SUPERCONDUCTING DIPOLE OR MULTIPOLE MAGNETS
1974 APPLIED SUPERCONDUCTING CONFERENCE, Oakbrook, I1linois USA, 1974.
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TABLE 1

ne=3 : Sextupole
Rl = 4 : Main Coil (Error Coil) Radius
R2 = 3 cm : Self-correction Coil Radius
b=25cm : Iron (p =) Shielding Yoke Radius
o] = 78° : Coil 1 Angle (Reduced Space)
6, = 42° : Coil 2 Angle (Reduced Space)
N1 = 39 turns : Coil 1 Turn Number
N2 = 21 turns : Coil 2 Turn Number
TABLE 2
CurrentBFourier Coeff, Self-inductance
Izﬂflllg ;
Mode No. Multi-Polarity Coill Coll 2 Total La _1
M [Turns] EH/M]
1 3 1.07x10° 7.32x101  1.80x10°  2.24x107°
2 ~2.95x10" 2.95x100  1.1ax107°  2.87x107Y
3 15 1.09x100  -1.09x101  -3.81x107% 1.91x10718
4 21 ~1.63 _1.43x100  -1.59x101  2.38x107°
5 27 ~3.76 3.76 2.19x107°  3.52x107Y/
6 33 6.66 9.73 1.64x100  1.61x1075
7 39 ~7.69 -8.80x1071  8.57 3.72x107°
8 45 7.30 -7.30 0 0
9 51 -5.88 6.73x10"1  6.55 1.66x107°
10 57 3.85 5.63 9.49 3.12x107°
Total self-indutance L = 2.24 x 1072 [H/M]
Mutual inductance M = 1.89 x 107 [H/M]
Induced current Ip = 11.4 [A]

in self-correction coi
(AB/B0 at 1 cm = 1077 at B0 = 5T)

Efficiency n = 0.9978
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Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figitra ‘1.1,

Figure 12.

FIGURE CAPTIONS

The model of magnet system with ideal self-correction coil.
Configuration of magnet with self-correction coil.

The model of magnet system with many ideal self-correction coils.
The model of magnet with non-ideal self-correction coil.

Single block self-correction coil current distribution.

Multi block self-correction coil current distribution.

Single block sextupole self-correction coil current
distribution -- se dependence.

Single block sextupole self-correction coil current Fourier
coefficients ISE—I and self-inductance components

Lgﬂ—l for higher mode.

Single block self-correction coil efficiency n -- se dependence.

Single block sextupole self-correction coil current distribution
—-- §o dependence.

Single block self-correction coil efficiency n —- e dependence.

Two block approximation self-correction coil shell type current
distribution
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Efficiency of Self-correction Coil
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APPENDIX A

(a) Self-inductance L for ideal coil winding.
The current distribution of ideal current sheet (multi-polarity m,
radius R and infinite thickness) is expressed in the following equation,
i(e) = Imcos(me) (AL)
where Im is the normalization factor of current distribution,
If the current sheet coil is connected in series, coil turn number
distribution n(e) will be expressed the following way,
i(e Im
n(e) = =1 - cos(me) (A2)
0 0
where Iy is the current in the coil.

The total turn number per pole N is calculated by integrating n(e) from

e =0toe=n/2m,

w/2m Im T/ 2m Irn
N = n(e)de = e cos(me)de = s (A3)
0 0 0 0

From this result the current distribution i(e) of equation (Al) is expressed,

} i(e) = Ig = mN - cos(me) (A4)

The vector potential Az for the ideal current sheet of equation (A4) is

expressed as the following equation,

2
A"; = oo {1 + (g) " } (%)m cos(me)
2m
2
_ uNT, {1 + (%) m} (%)m cos(me) (A5)
2

where R is the coil radius and b is the iron (u =«) Yoke inner radius.

Al



Then the flux linkage per unit Tength ¢@m between the coil and its

induced magnetic flux is expressed as following,

m
‘l_’m = / AZ(R,e) + n(e)de (A6)
o »
from the equations (A5), (A2), and (A4),
m 2m m I
em = olm . { 1% (%—) }(%) : I—mcosze de
-7 Zm 0
2m
T . R ) 2
From the following equation, we get the self-inductance L,
enf = LI =%m, (A8)
Zm
L= 1+ (E—) } mNZ, (A9)
2 _

where L is the self-inductance of unit length [H/m].

(b) Self-inductance L for non-ideal coil winding

In the previous discussion, we calculated the self-inductance L of
ideal current sheet. But in practical case it is very difficult to make
such a coil, so that we must make an approximation coil. We discuss the
practical case here.

Figure (Al) shows the single block approximation current distribution
where 10 is the peak current density, elln, 92/n, 93/n, e4ln,
express the block position and se/n, eoln represent width and center

position of current block respectively.
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There are the following relations between 815 B9y B3, 8, 60,

and C
81 = 6, - se/?, 6, = 6 + §6/2,
By = - By, 8 =1 - 8y,
0 * 8, = 20, (A10)

and for normalization of current density,

=
—
1]

1059/n

i, = nNI /se. (A11)

From the formula of Fourier analysis,

f(x) = inggo a. cos ( m;x ) for [=2, 2] (A12)
1 L mat
A =7 f(t) - cos ( : dt) (A13)
-9 %
by putting «/n te g, we get,
i(e) = > I; cos(nme) (A14)
m=20
n n m/n
I = — }/ﬁ i(e)cos(nme)de (A15)
m -
2 —n/n

Current Fourier coefficient IQ is calculated following ways,

7 e,/n e,/n
II:= 2mo / 2 cos(nme)de - f 4 cos(nme)de
" Byl ag/n (AL6)
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by putting ne » t, i.e. nde = dt,
. ) )

ik _2_1_3 fz cos(mt)dt - chos(mt)dt
T

m

| 3 (A17)
= Eig 1 sin(mez) - sin(mgl) - sin(me4) * sin(me3)
Tm (A18)
from the equations (Al0)
sin(meB) = sin(mnr - mez) = (—)m”lsin(mez)
(A19)
sin(meq) = sin(mn - mel) = (—)m_lsin(mel)
then,
n 2i m-1 y m-1 .
In=_0[(@+ (=)77) - sin(mey) - (1 + (-)77) - sin(me;)]
T
0 (m = even)
= ' (A20)
ilg sin(mez) - sin(mel) (m = odd)
i

Using the equations (AlQ),

sin(mel) = sin(me_ * mse/2) = sin(me )cos(mse/2) * cos(meo) sin(mse/2)
sin(mez) g u
then
Igz 1 = 8 - 1‘o cos[(22-1)e ] - sin[(28-1) - se/2].
- m(22-1) i

From the equation (All),

IS ;= 4nNI0 cosl (2R« 1) » 90] - sin[22 -1) - ¢8/2]
o1 = ;
w(22-1) se/?
where 2 =1, 2, 3.,.... (A21)

AG



We get the following equations for single block current distribution

shown in Figure Al.

o0

i(e) " cos[n(2g-1)e]

B BT (R22)
U ~ 4nNI0 cos[(22-1) - 90] « sin[(22-1) - s0/2]
20-1 7 '

where % expresses the mode number, there exist the following relationship

between the mode number £ and multipolarity M,

=
]

n ¢ (2%~ 1),
£, & By o » (A24)

The vector potential Az(x,e) for the single block coil is given as a
superposition of the vector potential Ag(r,e) for each ideal current

distribution, from the equation (A5) and (A22),

A,(r,e) = ¥y Azn(ZSL-I) (r,e)

=1
I 2n(20-1) (20-1)
AZ(ZR—I)(X,Q) . —;%(%}}T* ‘I1 ¥ (%) " ](%) ” cos [ n(22-1)9l

(A25)

The coil turn distribution n(e) is given, using equation (A22),

o0 n
n(e) = E IZS&'-l/Io s cos!n(ZQ' - 1)9]
=1

Then the flux linkage per unit length between the single block coil

and its induced magnetic flux is given,
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-m ,Q,':]. 2n(2£ ]

‘Pn=f de 9%1 ¥ ol {1+(R) 2“}

X Igl'—ll/lo . cosl n(22-1) . 9] « COS {n(ZR'—l)e}
i (A26)

. 2
mg (199 1) oy 2n(20-1)
- ;5 27T [ 1+(5) I, \he7)

The self-inductance L of the single block coil is given, (see equation (A8))

00

Lo X"
g =1 20-1
n 2 2n(22-1)
L 4= mo(Iog 1/16)" )1+ (%) (A28)
- 2201

_ 8ugnV®  cos[(20-1)a ] sin’[(2e-1)se/2] , ‘1 A (2) 2"<2ﬂ-1)}
i(28-1)° (s0/2)° (A29)

As shown in equation (A26), from the orthogonal property of cosine function,
the self-inductance L of this coil is the sum of L 0-1 of each mode.

As for the special case, we consider about se » 0 case, that is s-function
type current distribution, where for simplicity we set 8y = 0, then from

equation (A29),

2
81.1 nN
Loy =

(22_1)3 T (se/2)°

2 2n(22-1)
- BughN- o Jq 4 (R A30
mpt e (™ 0
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In this case the total self-inductance L

co 2 =] R 2”(2;3’_1)
L = E Lgﬂ.-]- = 8u0nN E 1+ B = o
=1 =l (22-1) (A40)

does not converge.

The explanation of this divergence of L is given following; The magnetic

energy Umag produced by a coil is given,

/s

“ (h41)

Umag-_--lgLI

On the other hand Umag is also given by the following equation

2
Umag=%/5—-du' (A42)

In this s-function type current distribution case, coil is made of infinite
thick filament conductor, the magnetic flux density B on the filament
conductor diverge to infinite and integral of B2 also diverge to

infinite. From the equation (A41) we get L = « in this case.

This special case result makes us know that it is very important to
take into account the width of winding coil for the calculation of
self-inductance L.

The convergence of total self-inductance L for the finite coil width is

guaranteed by following discussion, because a numerator of equation (A29) is

cos?[(24-1) 0,1 - sin[(22-1) - s0/2]1 =1,

then,

2 o L] R 2n(2£—1)
L<Lmax = SZutl” o 1 X 1+ X (B)
r80° U PYRTE R = PRI

where both sumation terms in right side converge. .
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APPENDIX B

(a) Mutual-inductance M between two ideal coil windings .

We assume the two ideal current sheet in the iron (y =<«) Yoke.
Figure Bl shows the error coil (Coil 1) and self-correction coil (Coil 2)
and the iron (p =«=) Yoke.

The current distribution for error coil (Coil 1) is expressed,

11(9) = Ilmcos(me) = leIlcos(me), (B1)
where m is the multipolarity of this current distribution, N1 is the total
turn number of coil per pole and I1 is the current in the coil.

The vector potential Az(r,e) produced by this current distribution is

given.

e
An; (r,0) = "011N1 (£ )m {1 + (E%_)m} cos(me) (B2)
2 R
1:

Because the current distribution for self correction coil (Coil 2) is
expressed as following,
12(9) = I2ncos(ne) = nNzIzcos(ne) (B3)

the coil turn number distribution nz(e) is given,

”2(9) = 12(9) = Egg_. cos(ne) = nNzcos(na) (B4)
I
2 2
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The flux linkage per unit length ¥mn between the magnetic flux produced by

ideal coil 1 and ideal coil 2 is, for R2 < Rl case.

m
Pmn = j(; A(Rys0) . nz(a)de (B5)
I,mN R\ I :
L s _g) . PR cos(me) + cos(ne)de (B6)
2m R1 I2 -7

{: 0 (n £m)
2
L {l +(R1) n} : ( fg)n . anNzl1 (n =m)
R

g b 1 (87)
From the definition of mutual-inductance M,
emf =S5=Mi. (B8)

We can calculate the mutual-inductance per unit length M,

R 2m R\T
M= " 1+( 1) (2).m.N1N2 (B9)
Z2 b ﬁ;

From the discussion above we find that two coil coupled magnetically only

when the multipolarity of both coils are the same.

(b) Mutual-inductance M between an ideal coil and a non-ideal coil.

We assume an ideal current sheet for outer error coil and a non-ideal
inner self-correction coil. (See Figure Bl). For the current distribution
of error coil, we assume following ideal current distribution,

il(e) = lellcos(me) (B10)

The vector potential Az(r,e) produced by this ideal current distribution is

2
AMr,e) = YoltM | 1'*(R1 ) . . (r \" cos(me) (B11)
z 7 B (ﬁl)
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We assume the single block approximation coil for self-correction coil, from
the equation (A22) the coil turn distribution is given,

=]

In
n(e) = X 20-1 . cos[n(2£-1) . o] (B12)
o | Io
122-1 _ 4nN2 . cos[(2£—1)90] sin[(2£-1)se/2] (B13)

I0 n(2L-1) se /2

The flux linkage per unit length YmS between ideal error coil 1 and
non-ideal self-correction coil (single block approximation coil) is given in

the following equation:

' 2m m
R R
PmsS = *ol1™ |1 +( 1) <_2)
2m b/ R

_ 1
X X Pl »
b 1 5 ~//' cos(me) . cos[n(2£-1)e]de (B14)
-
0 (mtnor £41).
i 2y Ny N, ki " . cose, . sin(se/2) (m=n and £=1)
By 58/2 (815)

From the orthogonal property of cosine function, the self-correction coil
couples with the error field through the fundamental mode (2=1) only.

The mutual inductance M is given by the following equation,

2m m .
M=2s {1+ (R R2) " . mNyN, . €058;- sin(se/2) g5y
0 — 12 5672
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