
Proceedings of the
LBL -16321 (". I
UC-13

)(CONF-830950

Second International Wor~h~R
on Statistical Database 8ERKEt:;~~AT()~

Management
JAN 1 7 1984
LIBRARY ANO

DOCUMENTS SECTION

': September 27-29,1983 Los Altos, California
,:""J I' /
I ..

J r'
.. ~

~ Sponsors:

...... :.:.:
,:.~.. # .-;.:.:.:.:.:.:.:.:-.

'.......... J ••••••••••••••••••••••• ~.

:.:::::::::::::::::::::::::::::~: .. ' ".:.:.:.:.:.:.:.:.:.::: .. •...•....•........ ,. ' -.:.:.- .

__ '", Lawrence Berkeley Laboratory, University of California

U.S. Department of Energy, under Contract No. DE·ACQ3·76SF00098

(---~:.
For Reference

rT"
In Cooperation With:

r
\F

Not to be taken from this room ·r
Association for Computing Machinery, Special Interest Group on Management of Data I

American Statistical Association, Statistical Computing Section

IEEE Computer Society, Technical Committee on Database Engineering

Statistics Canada,

I '------------'--..

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

..
I

~.:--I. ... ,

. \
\ p

"

Proceedings of the
Sec~nd International Workshop on
Statistical Database Management

September 27-29, 1983 Los Altos,California

Roy Hammond and John L. McCarthy, Editors

~ Sponsors:

't,,'''' Lawrence Berkeley Laboratory, University of California

•
U.S, Department of Energy, under Contract No. DE·AC03·76SF00098

In Cooperation With:

Association for Computing Machinery, Special Interest Group on Management of Data

American Statistical Association, Statistical Computing Section
-

IEEE Computer Society, Technical Committee on Database Engineering

Statistics Canada,

PREFACE

The Second International Workshop on Statistical Database Management will be held
September 27-29, 1983 in Los Altos, California. The purpose of this workshop is to bring
together statisticians and computer scientists, statistical database system users and system
builders, to exchange ideas on statistical database management "Statistical databases" contain
statistical information or are used for statistical analysis, and they present recognized problems
that current data management and statistical software do not fully address.

The goals of this workshop are the same as its predecessor held in December 1981, but its
organization differs in a number of ways. The proceedings are being published prior to the
Workshop so that they can: 1) report research results and work in progress, 2) provide an
intellectual introduction to most of the workshop participants, 3) provide a point of departure
for working group discussions. Only a few of the papers will be presented orally at plenary
sessions of the three-day workshop. Working groups of five to ten participants each will
meet the first two days to discuss and draft reports on· selected topics which have been used
to organize these proceedings into sections. These reports will be presented on the final day
of the workshop and published in the winter, 1984 IEEE Dalabase Engineering Newsletter.

In response to our call for papers,t8 foreign and 42 U.S. paperS were submitted. Each
paper was evaluated by at least three program. committee members, and 46 papers were
accepted. In addition, 10\unrefereed papers were solicited for the section on Time Series and
Econometric Database Management as part of a special working group.

Participation in the Workshop is by invitation, and includes all authors of accepted papers,
members of the special Time Series and Econometric working group, and the program
committee members. About 80 statisticians, database researchers, . system developers, and
others are expected to attend. . \ .

As organizers of the 1983 workshop, we would like to extend our thanks to all authors who
submitted papers for consideration; to program committee members who read papers and
made valuable suggestions for improvement; to -Pam Weeks and Gwen Harlee who organized
the special econometric woiking group; to Carl Quong, LBL's Computing Science and
Mathematics Department Chairman, and Jean-Paui Trudel, Director-General at Statistics
Canada, who supported the workshop since its inception;. to Julia Snyder, Carole Agazzi,
Lesta Nadel, Meri Jones and Virginia Sveritek at Lawrence Berkeley Laboratory; and finally
to Mike Jeays, Dave Emery and Shirley Jones at Statistics Canada without whom the
workshop could not have taken place.

John L McCarthy,
General Chairman

,

Roy G. Hammond,
Program Committee Chairman

iii

ORGANIZING COMMITIEE

General Chairperson

John L McCarthy, Lawrence Berkeley Laboratory, USA

Program Chairperson

Roy G. Hammond, Statistics Canada, CantJda

Program Committee

Rick Becker, Bell Telephone Laboratories, USA

Francis Chin, University of Alberta, CantJda

Ivor Francis, University of Otago, New Zealand

Jerome Friedman, Stanford linear Accelerator Center, USA

James Gentle, IMSL, Inc., U.S.A

Ron Helms, University of North Carolina, USA

David Hoaglin, Harvard University, USA

Gregory A. Marks, Institute for Social Research,· USA

Wes Nicholson, Pacific Northwest Laboratory, USA

Gordon Sande, Statistics Canada, CantJda

Diane C.P. Smith, Computer Corp. of America, USA

Peter Stevens, Bureau of Labour Statistics, USA

Stanley Su, University of Florida, USA

Harry Wong, Lawrence Berkeley Laboratory, USA

iv

CONTENTS
,'l

Section. • page
1. How do Analysts Work? User Interface Issues '. .

Databases for Clinical Histories. . '. " 2
Anthony D. Ellimo.n

Features of a System for Statistical Databases. 9
Gultekin' Ozsoyoglu, Z. M erol Ozsoyoglu

Issues Related to Medical Statistical Databases . 19
John M. Long. Joseph R. Brashear

Management and Display of Data Analysis Environments for
Large Data Sets. 22

Robert A. Burnett; Paula J. Cowley. James J. Thomas

Model for a Qinical Research Database . 32
Anne I. Goldmo.n

Research Needs and Database Development: Push and Pull 39
Barbara M eierhoefer

Research Topics in Statistical Database Management 46
Dorothy Defining; 'Wesley Nicholson. Gordon Sande. Arie Shoshani

2. Workstations and Special Purpose Hardware

A. Multi-Tree Automation for Efficient Data Transmission " . 54
K.A. H azboun, J.L Raymond

A Relational Database Machine for Efficient Processing of Statistical Queries. 64
Hamid Farsi. John Tarter

SIBYL: An Economist's Workbench ' 73
Sandra Heiler. Rita F. Bergmo.n

3. Connecting Hetrogeneous Systems and Data Sources

ALDS Project: Motivation. Statistical Database Management Issues.
Perspectives. and Directions. , 82

James J. Thomas. David L Holl

Data Management without a Database Manager 89
Michael A. Fox

Development Implications of an Interactive. Portable. User Friendly.
Statistical Database Management System 95

Gordon L Schiff .. ". .

v

Distributed Data Management in a Minicomputer Network:
The SEEDIS Experience. 99

Deane Merrill, John MtCarthy, Fred Gey, Harvard Holmes

An Integrated Research Support System for Inter-Package Communication and
Handling Large Volume Output From Statistical Database Analysis Operations .. 104

Gary D. Anderson, Tim Snider, Barry Robinson, Jerry Toporek

Integrating Data and Documentation in a Multi-National Research Project:
the lEA Second International Mathematics Study . 111

Richard G. Wolfe

PASTE - A Tool to Put Application Systems Together Easily 119
Stephen E. Weiss, Pamela L Weeks

PIGAS - An Interactive Statistical Database Management System '. 124
M. Wartel/e, Andrew Kramar, P. Jan, D. Kruger

Simulators, Statistical Analysis, and Databases. 133
D.H. Scuse, A.N. Arnason

4. Time Series and Econometric Database Management

CANSIM, the Canadian Socio-Economic Management Information System 144
Martin PodehJ '

Diversification in Statistical Data Bases and its Consequences 148
Helen C. Poot

Econometric Time Series on DIALOG . 152
Robert T. Lundy

Evolution in Storage and Retrieval:
the LABST AT Data Base and Software System . 154

Gwendolyn L H arl/ee

Interactive Information Management with EPS . 157
Stephen R Childs

Meta Data: an Experience of its Uses and Management 167
Roger E. Cubitt

Problems, Plans and Activities Concerning the Economic Databases
at Statistics Sweden. 170

Lars Nordback
"

Proposal for a Workshop on Large Economic Data Bases 172
Phyliss Levioff ," ,

SAS Applied to StatistiCal Databanks Via a Command Language. 173
Inger Nilsson

vi

•

/ '
I

I

,"
'.

•

•

A Statistical Data Manipulation Language
G. Barsottini, J.C. F argel

5. Special' Data Types and Operators for Sta~tical Data. and Metadata .
Complex Data Types. and a Data Manipulation l.anguage for

178

Scientific ~d StatistiCal Databases' . . ~ : 188
Virginia A. Brown, Shamkant B. Navathe, Stanley Y.W. Su

Data Structures for Scientific Simulation Programs. '. . . . 196
Jean Bell

An Extension of Relational Algebra for' Sumniary . .Tables ',' 202
Z. M eral Ozsoyoglu. Gultekin Ozsoyoilu

How Baroque' Should a Statistical' Database Management System Be? 212
Frank Olleen '

How Far Should~' Database'System Go? (to Support a Statistical One) 220
Don Swartwout

An Integrated Macro-Economic Data Management System
Based on 'Multi:'" Dimensioilal. Arrays'. 223

M. Gibbons, M. David

6. Logical models, Metadata, and Data Transformation

Classification' of Metadata'. '. 230
Yvonne M. Bishop, Stanley R Freedman

Some Experiments in Evaluation of and Expert system for ,
Statistical Estimation on Databases 235

Neil C. Rowe

The ,GENISYS Data Definition Facilities. 245
A. Timothy Maness, Sue M. Dimelman

Logical and Physical Modeling of Statistical/Scientific Databases 251
Stanley Y.W. Su. Sham B. Navathe, Don S. Batory

Proposal of a Logical Model for'Statistical Data Base. 264
M aurizio Rafanelli, F obrizio L. Rica

Statistical Data Management Research at Lawrence Berkeley Laboratory • . 273
P. Chan, S. Eggers, F. Gey, H. Holmes, P. Kreps;' "
J. McCarthy, D. A/errill, .E. Olken, A. Shoshani, H. Wong

A Statistical Database Component of a Data Analysis and Modelling System:
Lessons from eight years of user experience 280

J OM C. Klensin

vii

SYSTEM/K: A' Knowledge Base Management System, , , , , , ,', , , , , , , , ,', , , , , 287
Mauro Maier, Claudio Cirilli '

7, Data CompressioJi, Storage, 'and File Organization
,

Computer-Indep.endent Data Compression for Large Statistical Databases
Fredric Gey,John L. MGCarthy, Deane Merrill, Harvard Holmes

296

Index Coding: A Compression Technique for Large Statistical Databases, , , , , , , , , 306
D,S, Batory

An Overview of CANTOR - A New System for Data Analysis
Ilkka Karasolo. Per Svensson

..............
, , . 315

Statistical Database Research Project in Japan and the CAS SDB Project , , , , , , , , 325
KohjiShibano. Hideto Sato

A Strategy for Implementing a Computer Efficient Database Management
System - Preliminary Research Report, . , , , 331

John Dixie. Philip Wake

Utilization of Character Reference' Locality for Efficient Storage of Data Base , , , , , 338
M.A. Bassiouni. K.A. H azboun

8, Security and Integrity Issues

Automated Cell Suppression to Preserve Confidentiality of Business Statistics , , ',' . , 346
Gordon Sande

An Information Theoretic Approach to Statistical Databases, and their Security:
A Preliminary Report .. , . , , , , , . , , , . , , , , , , , , , , .. , , , , . , .. 355

Mary McLeish

An Introduction to Sampling to Estimate Database Integrity , , , . . , , . . . , , , . .. , 360
Rick Greer

A Security Model for the Statistical Database Problem . . , , , , . , , , , , , 368
Dorothy E. Denning

Statistical Databases: Their Model, Query Language and Security. , , , , ~ , , 391
Zbigniew MichaJewicz '

9, Benchmarks and Performance Evaluation

Performance Prediction Methods'for Evaluating PDE Algorithms
on MIMD Machines , , , ... , , .. , ',' , , . , , , . , . , , , ,,' , , . . 404

Simon K, Fok, 'John R. Wilson. Harry G., Heard. Joseph A~ Parker

Using Statistical Software with a Database Management Data Theory, , . , ... 414
Robert J, Muller

viii

•

... .".

1. How do Analysts Work? User Interface Issues

Databases for Clinical Histories 2
Anthony D. Elliman

Features of a System for Statistical Databases. 9
Gultekin Ozsoyoglu. Z. M eraJ Ozsoyoglu

Issues Related to Medical Statistical Databases ' 19
John M. Long, Joseph R. Brashear

Management and Display of Data Analysis Environments for
Large Data Sets. 22

Robert A: Burnen, Paula J. Cowley. James J;'rThomas
, .

Model for a .. 9linical Research Database. , '. ~ 32
Anne I. Goldman

Research Needs and Database Development: Push and Pull. . .. '; 39
Barbara M eierhoefer

Research Topics in Statistical Database Management. 46
Dorothy Denning. Wesley Nicholson. Gordon Sande. Arie Shoshani . .

'.' '-

See Also ••.•

ALDS Project: Motivation, Statistical Database Management Issues,
Perspectives, and Directions. 82

Data Management without a Database Manager .. " 89

An Integrated Research Support System for Inter-Package Communication and
Handling Large Volume Output From Statistical Database Analysis Operations .. 104

Integrating Data and Documentation in a Multi-National Research Project:
the lEA Second International Mathematics Study . 111

Simulators, Statistical Analysis. and Databases. ; . . . 133

Data Structures for Scientific Simulation Programs. 196

Some Experiments in Evaluation of and Expert system' for
Statistical Estimation on Databases . 235

Statistical pata Management Research at Lawrence Berkeley Laboratory 273

A Strategy for Implementing a Computer Efficient Database Management
System - Preliminary Research Report 331

1

DATA-BASES FOR CLINICAL HISTORIES.

Anthony D. ELLIMAN.

BruneI University, Uxbridge, ENGLAND.

Medical researchers frequently investigate the progress of a disease or treatment by collect

ing a number of case histories. Data only becomes available when suitable patients present

themselves and each patient may need to be followed for some years. A study of this type is a

long term exercise. Such studies are only made possible by the availability of computers for

data collection and analysis.

Several data-base systems are available for clinical research, but many of these do not give

enough attention to the dynamic aspects of this type of work. To identify the problem areas

models for both the investigator's and patient's interaction with the data-base are presented.

L INTRODUCTION

In clinical research the data-base will hold

medical histories from known cases. These

case histories accumulate from clinical con

tacts with patients, and as such represent the

investigator's view of the world.

In medical research the data are subjected to

analysis to find evidence to support

hypotheses. Care is required to ensure that

the process of selecting and recording data

does not distort the record and thereby

invalidate the conclusions drawn from it. A

significant amount of the information in a

data-base comes from the relationships between

the items, and this can easily be distorted or

lost.

It is important to remember that, like a pho

tograph, the data-base is only a view of real

ity. Once the picture has been taken, the

2

imperfections and omissions are frozen into

the record. If the colours of the trees might

be important, colour film must be used; how

ever unless there were an interest in thermal

profiles,

required.

infra-red film would not be

In the same way a data-base is only

a partial record of reality, whose value

depends on the preservation of

which may prove to be relevant.

those facts

Since a data-base is only a partial reflection

of the real world it is important that all its

users understand the rules by which data were

selected for inclusion. In small groups all

users tend to participate in the data collec

tion process and build up a common under

standing of the selection rules. As the user

group grows or changes, the importance of

keeping a record of these rules becomes

paramount. When other research teams share

the data they must be able to see the rules by

which it was collected. One solution to this

d
I

I

CJ

•

problem is.to store the rules as part of the

data-base, i.e. the system should include a

data dictionary.

2. INVESTIGATOR BEHAVIOUR

A significant amount of medical research is

concerned with long term problems. In such

circumstances there will be a continuing

growth in the information and this wi1'l

present some difficulties. In the early 1970s

several American research centers were sur

veyed by Pa11ey to deteruiinethe data process

ing needs of clinical investigators[7j. ThiS

showed that in over twenty percent of the stu

dies, a single patient would be followed for

at least 500 days. Since patients enter a

sample at different times it seems reasonable

to assume that the data collection period

will genera1y cover several years. This sur

vey also suggests that a patient is likely to

be seen on several occasions during a study.

The naive solution is to collect paper records

during this period and transcribe them onto

the computer when they are complete: This

denies any advantages that might come from

using a computer system as part of the data

collection process. Constructing a model of

the investigator at work will help clarify

some of the possibilities.

Sibley's CLINFO system[8j uses a simple three

stage model.

1. Design study - decide what

are to be collected.

2. Collect data taking care

check its validity.

data

to

3

r

3. Review and summarise data using

graphical and statistical tech

niques.

Although the second and third stages may over

lap this model does not allow for a reassess

ment of the design. The initial selection of

data items is often intuitive and investiga

tors should conduct a pilot study to test the

design.

This is not enough. It would be a poor

researcher who spent several years collecting

data without learning anything from it. Fig

ure 2.1 shows a more complex model which

recognises the learning process that occurs

once data collection has begun. This model

contains a cyclic process of collection and

examInation of data followed by revision of

the study.

The first iteration models a pilot study but

these data are now retained within the full

sample and subsequent iterations take place

whenever the investigator wishes to review the

situation. This progressive construction and

analysis of the data-base allows the investi

gator to improve his observational techniques.

In addition changes may arise either from

the publication of other research or from the

desire to start formal collection of data

previously noted informally.

These changes can take several forms. They

may simply involve including additional obser

vations, or they ·may require changes or

refinement of items already held in the data

base. Finally they may take the form of

discontinuing the collection of items that

become clearly irrelevant to the study.

For data management software to be of value in

these circumstances, it must accommodate

changes in an easy and efficient manner. In

1977 Chen[S] described how an evolving view of

data can be handled by the entry-relationship

model. There can be major problems practical

problems in applying such conceptual changes

to live data, but fortunately the most likely

changes in research data are the easiest to

implement. Here again a data dictionary can

perform a valuable role. The system can take

a new description of the modified data items,

compare this with the existing description and

reorganise the data accordingly. The addition

or deletion of data items can be handled

automatically, but refinement of existing data

often requires action by the researcher.

Since it can identify the cases to which a

change applies and draw them to the

researcher's attention the computer can be a

considerable help in the updating process. If

the original data-base includes annotations or

references to a paper file this process is

further simplified.

3. PATIENT BEHAVIOUR

The investigator is not the only active parti~

cipant in a study. Unless it is a short in

patient study patients must return to the.

clinic or hospital for repeat examinations~

To study the implications of this the follow

ing model (figure 3.1) is proposed.

Clinicians usually see more patients than they

are following closely for research purposes.

Before entering the sample a patient faces a

selection process to determine whether his

case is "of interest". Those who are· chosen

must first be given

within the data-base.

a surrogate identity

This is followed by

4

recording a

of the first

clinical history and the results

examination. The investigator

may start treatment and

situation to develop.

patient is re-examined

then wait for the

Subsequently the

and the new results

recorded. This cycle of waiting and re-

·examination is repeated until enough informa

tion has been obtained and the patient leaves

the sample.

The waiting period causes some. difficulties.

At each re-examination the correct surrogate

must be found.within the data-base. Ideally

the intervals between the examinations are

consistent for all patients but in practice

patients do not make regular visits to clin

ics. Further problems occur when patients

move away or refuse to attend. The data-base

must. allow ·for both broken and truncated

series of examinations.

3.1 Dynamic Parameters

Many of the observations made during a .clini

cal study are spot checks on continuously

varying parameters such as pulse, blood pres

sure or weight. These .,measurements are usu-

ally repeated after each waiting period.

Frequently the interests of the researcher are

not focussed on the individual observations

but on the trends or changes in the measured

parameter. To test hypotheses about trends it

will be necessary to compare the profiles of

these "dynamic" parameters.

By way of example, consider the following

study of a treatment program for hypertension.

To examine the response to various drugs a

series of blood pressure readings is collected

for each patient. The researcher is

interested in the way in which blood pressure

•

•

•

falls following the start of treatment and

each patient is seen regularly at a Monday

morning clinic. But it is only possible to

compare readings taken at the same clinic when

the patients start treatment at the same time.

If Mr Jones starts treatment two weeks after

Mr Smith, then Mr Jones' readings must be com

pared with those of Mr Smith taken a fortnight

earlier. It is possible that MrJones and Mr

Smith will start treatment on different days

of the week. Here no t'wo Monday readings are

comparable and some form of interpolation will

be necessary.

It is common for ad-hoc' systems to store the

data on a relative time scale, such as blood

pressure at first clinic, blood pressure at

second clinic, and so on. The discrepancies

resulting from varying starting dates are usu

ally ignored. This solution, already unsatis

factory, becomes even more so in'the presence

of the irregularities and missed examinations

discussed above.

In general the reference points for comparing

profiles of dynamic parameters are best esta

blished when a particular hypothesis is to be

tested. Clearly a data-base that permits this

must not entangle the events with the observa

tions. In a paper record this is done by

recording a date (and time) at the head of the

sheet or in the margin. The way in which we

speak of time has been studied by Bruce[2] and

formal analyses of information by Brunjes[3]

and Bubenko[4] recognise the special role

played by time.

The most common implementations use a simple

time-stamping technique[8,10]. This has the

additional advantage that it is not necessary

to determine the criteria for an event before

any data are recorded. If the researcher

5

wishes to redefine an event he may do so. The

event time is re-evaluated for each patient

and the results re-ana1ysed in the light of

the new definition. Thus enabling different

sets of criteria to be tested which may lead

to a deeper understanding of the disease

processes involved.

An important contribution here is TOD, the

Time Oriented Database[6,9] This data-base

marks each measurement with a contact number

and records a list of contact dates for each

patient. In this way it is possible to iden

tify events, critical periods and profiles for

each case. An interesting development of TOD

is its use bi Blum as a test vehicle for a

knowledge based expert system in medical

research [1] •

Dekeyser and Bolour[11] have proposed a method

for modelling time within clinical applica

tions. This scheme permits more comple~ ques

tions relating to the time, duration or

sequence of events to be assessed. A good

representation of time also permits longitudi

nal models to be used in data validation[12].

4. CONCLUSION

A data-base system is

'clinical software.

an

Since

essential part of

between items are important

the relationships

this cannot be

based on simple matrix models of data; a more

advanced approach, possibly the network or

relational, model, is required. The inclusion

of a data dictionary not only provides docu

mentation but may also support automatic

verification of the data.

Collection and validation of data should be

viewed as a continuous process interleaved

with data analysis. As the study continues

the investigator will wish to modify the con

tent and structure of the data-base. The

data-base management software must be suffi

ciently flexible to allow this to occur.

Cases are generally followed over a signifi

cant time period. The time-stamping of obser

vations, determination of event times, and

analysis of trends are fundamental to medical

research. The data-base must support all

these activities. It should be possible to

define subsets of the data and event or refer

ence times at the analysis rather than data

collection stage.

The TOD database illustrates the structure

required for medical research projects. It

contains both schema or data dictionary and

information about the time at which measure

ments were taken. Within certain limitations

it permits data collection to run in parallel.

with data analysis.

References.

1.

2.

Blum, R.L. Automating

Clinical Hypothesis on

the Study of

a Time-Oriented

Database: The RX Project. Proceedings:

MEDINFO '80. Lindberg, and Kaihara, edi

tors. I.F.I.P. North Holland, pp. 456-

460, 1980.

Bruce, B. C. A Model for Temporal

References and Its Application in a Ques

tion Answering Program. Artificial

Intelligence, Vol. 3, pp. 1-Z5, 1972.

3.

4.

5.

6.

7.

8.

9.

6

. Brunjes, S • An Anamnestic Matrix

Toward a Medical Language. Computers and

Biomedical Research, Vol. 4, pp.571-584,

1971.

Bubenko, J. A. The Temporal Dimension

in Information Modeling. In Architecture

and Models in Data-base Management

tems. Nijssen, G., editor, Amsterdam,

North-Holland, 1977.

Chen, P. P. S. The Entity-Relationship

Model - A Basis for the Enterprise View

of Data. Proceedings: AFIPS National

Computer Conference, VoL 46, pp. 77-84,

1977.

McShane, D.J. et aL, TOD: A

Software System for the ARAMIS Data Bank.

Computer (I.E.E.E.), VoL 12, pp. 34-40,

November 1979.

Palley, N. A., and Groner, G. F.

Information. Processing Needs and Prac~

tices of Clinical Investigators -Survey

Results. Proceedings: AFIPS National

Computer Conference, Vol. 44,

723, 1975.

pp. 717-

Sibley, W. L. et al.,

for Clinical

Data Management

Research.

Proceedings: AFIPS National Computer

Conference, Vol. 46, pp. 63-68, 1977.

Weyl, S. et aL, A Modular Self-

Describing Clinical Databank

Computers and Bio-Medical

Vol. 8, pp. 279-293, 1975.

System.

Research,

Ie

10. Woodyard, M., and Hamel, B. A

Natural Language Interface to a Clinical

Data Base Management System. Computers

Vol. 14, and Bio-Medical Research,

pp. 41-62, 1981.

11. Dekeyser, L. J., and Bo1our, A. On

the Modelling of Time in a Clinical Data

Base Applications. Proceedings: Fifth

Annual Symposium on Computer Applications

,in Medical Care, I.E.E.E., New York,

pp. 311-316, 1981.

12. Veling, S. H. J., and Van't Hof, M.

A. Data Quality Control Methods in

Longitudinal Studies.

In: Klnathropometry ~, International

Series on Sport Sciences,

Beunen, G. and Simons, J.

University Park Press, 1980/1.

Ostyn, M.,

editors,

Figure 2.1 Model of Researcher Behaviour.

7

no

•

lose contact

Figure 3.1 Model of Patient Study Interaction.

8

•

FEATURES OF A SYSTEM FOR STATISTICAL DATABASES*

Gultekin Ozsoyoglu and Z. Meral Ozsoyoglu

Department of Computer Engineering and Science
Case western Reserve University

Cleveland, OH 44106

Abstract.

We list desirable features of statistical databases (SOB) and summarize the
architecture and major features of a statistical database management sys
tem, called the System for Statistical Databases (SSDB). SSDB uses a seman
tic data model designed to facilitate the data manipulation tasks of sta
tistical database users. It incorporates tools to model operational popula
t~ons such as experiment~l, cleaned, interpreted and representative popula
tlons, and has the capaclty to model summary tables, histograms, matrices,
crosstabulations, scatter diagrams and two-dimensional plots. The data
model uses the compartmentalization concept to minimize the effects of SOB
security enforcement. The SSDB software is partitioned into certified and
uncertified modules, and the flow of control within SSDB is designed to
allow SOB security checking at execution time. Finally SSDB has a screen
oriented query language to manipulate summary and raw data. The paper con
cludes with a brief overview of the existing and proposed systems •

I. INTRODUCTION

Database researchers working on the
statistical database (SOB) security
problem usually define an SOB management
system (SDBMS)as "a database management
system that provides statistical infor
mation to users" where statistical
information is defined as simple summary
statistics such as SUM, COUNT, MEDIAN,
etc. of some data in the SOB. The SOB
security problem is then defined as con
trolling the use of the database in such
a way that "statistical" queries are
allowed but protected information in the
database cannot be inferred from
responses to queries~

While the above definition of SDBMS
is sufficiently general to investigate
the SOB security problem, a more useful
definition of SDBMS may be given by
observing the statistical usage of data
by statisticians and users from other
disciplines. These users employ a
stored collection of data to (a) execute
statistical data analysis procedures
that range from simple summary statis
tics to advanced procedures like
discriminant or factor analysis, (b)
rearrange and manipulate data either for
efficient storage and maintenance of
data or for input to procedures in (a),
and (c) to edit and tabulate summary

*This research is supported by the Na
tional Science Foundation under Grant
MCS-8306616.

9

data. Thus, .in this proposal we define
SDBMS as a database management system
that provides capabilities (i) to model,
store and manipulate data and (ii) to
apply statistical data analysis tech
niques to data in the SOB. Clearly data
modeling, storage and manipulation capa
bilities should be developed in a manner
suitable for the operational usage of
data by SOB users. We also believe that
an SDBMS should provide to users SOB
security enforcement capabilities.

With few exceptions, there are
presently two approaches used to meet
the needs of SOB users. One approach is
to use special-purpose SDBMS's for
specific applications (such as RAPID
[TuHC 79] for census-like applications
with very large, nearly static data).
The other approach (hereafter called the
statistical package approach) is to use
a statistical package (such as SAS [SAS
79]) for function (ii), and a file
management system plus customized appli
cation programs or utilities for func
tion (i). The statistical package
approach has few data modeling tools.
Data independence and data sharing are
usually difficult to achieve. There are
incompatibility problems among files
(each file usually has different lacel,
format and value conventions [ChaS 81]).
There are no powerful data manipulation
languages, and SOB security mechanisms
are nonexistent. One advantage of the
statistical package approach is that

users are free to choose any statistical
package they like. The current SOBMS
approach removes most of the above
listed disadvantages of the statistical
package approach, with the exception of
SOB security mechanisms. However, the
majority of current SOBMS systems are
limited in their capacity since they are
tailored to specific applications. We
think that the current SOBMS approach
should be enhanced hy utilizing advanced
data models for SOB~S, powerful query
languag~s that manipulate objects of
these models, and SOB security mechan
isms.

In Section II we discuss desirable
features of general-purpose SOBMSs. Sec
tion III summarizes design features of
the System for Statistical Oatabases
(SSOB). Section IV contains a brief
overview of the existing and proposed
SOBMSs with respect to the features dis
cussed in Section II.

II. OESlRABLE FEATURES OF AN SOBMS

This section argues that a
general-purpose SOBMS should have a
semantic data model with the capability
to manipulate various data objects com
monly used by SOB users, and that vari~
ous SOB security mechanisms should be
enforceable by the SOBMS.

A. The need for ~ semantic data model

Users of statistical packages who
perform statistical data analysis always
use conceptualizations of the real world
to model the data they deal with. In
social science research, for example, a
researcher (i.e. the SOB user) may want
to "describe social reality" or "to con
struct a social theory". The researcher
makes decisions about variables (i.e.
attributes of individuals) at the con
ceptual level and forms some generar-
ideas concerning the interrelationships
and causal effects of variables upon
each other. In current practice, the
above conceptualizations and data are
separated. Certainly a data model will
be useful to represent and maintain
these conceptualiza.tions, not only for
documentation purposes, but also for
implementation pur'poses. Several advan-.
tages follow from the data model
approach. First, providing the total
information contents of the SOB will
help users in their exploratory data
analysis by making them aware of the
richness of data. Second, it will
enable users to use simple aggregate
query expressions to request information
from the SOB because of the explicit
semantics of the data [Shos 82]. Third,

10

the data model will help in enforcing
integrity, validity and security of the
SOB. For example (due to the existence
of a unified data model) labeling, for
matting, value, and naming incompatibil
ities will disappear. Finally, the data
model, if designed properly, may also
serve as a data model of a conventional,
ordinary (i.e. ncorporate" [Oate 81])
database (COB), which may be desirable
for those applications where there are
SOB and COB users.

usually, during the exploratory
data analysis phase, original concep
tions of SOB users are modified through
an iterative process of alterations and
creation of new conceptions (inspired
perhaps due to alterations). This
iterative process may cause a data model
representation of the real world to
change or to be extended frequently.
Therefore, there may be a need for a
time period in which the SOB user exper
iments with a portion of the representa
tion while having exclusive control of
that portion. Once a part of the .
representation becomes more or less
stable, and the user reaches conclusions
about his understanding of the real
world represented by that part of the
datai he may move to "higher levels of
analysiS" requiring more complex
representations. Individuals in the
"lower level" form members of units in a
~higher level" ~hich is also represented
in the data model, and the iterative
process is repeated. From this brief
discussion of processes in statistical
research we conclude that an SOB seman
tic data model is indeed useful for
SOB~s.

Oue to the differences in data
manipulation characteristics, semantic
data models for SOB~s and COB~s should
differ. The special utilization charac
teristics of SOB~s necessitate incor
poration of new operational tools into
the SOB data models. An example may be
the tools to model representative,
experimental, interpreted or cleaned
subsets of the data. ~ther objects that
SOB users routinely use include summary
tables, histograms, crosstabulations,
scatter diagrams, two dimensional plots
[OzsO 82b], sets, vectors, matrices
[Shos 82, McCa 82b] and time series
[McCa 82b]. These needs arise not so
much from the semantic modeling aspect
of data, but from the operational needs
of SOB users. Since these abstract
objects are manipulated using different
operations, it is beneficial to define
customized operations for different
object types. This argument is in line
with recent advanced semantic data model

•

proposals that contain a rich set of
abstract data types and customized
operations for each type.

B. The need for new ~ languages

Once the conceptual models of
SOBMS~s are implemented using semantic
data models with new objects having
abstract data types, powerful data mani
pulation languages operating on these
objects are needed. For example, sum
mary tables are used by SOB users to
tabulate and compare redundant summaries
of raw data. Therefore, SOB data models
should naturally represent summary
tables, and there should be a database
language to define and manipulate sum
mary tables.

C. The need for SOB security mechanisms

The SOB is said to be compromised
when, using responses to queries, users
deduce protected information in the SOB.
Compromise usually occurs when the pro
tected attribute value of some record in
the SOB is uniquely identified as the
attribute value of a certain individual.

Protecting SOB~s from compromise is
a difficult task since there are various
inference mechanisms that may be
employed by users. The security problem
of the SOB involves inference and is
therefore inherently different (and more
difficult to solve) than the security
problem of COB~s related to access con
trol.

Some SOB~s used in application
areas such as political planning, medi
cal research and strategic defense plan
ning contain security-sensitive informa
tion. Researchers and practitioners in
database and statistical computing areas
generally agree that SOB security is an
important area. But there seems to be
little enthusiasm among statistical
software vendors and SOB users [LBLW 81]
for introducing costly, complex and res
trictive protection mechanisms into
SOB~s. The main objection of vendors of
statistical software packages is that
presently there is no demand from their
customers for SOB security protection
mechanisms ~owever, there have been
publicly reported incidents of SOB users
illegally deducing protected information
[Park 76]. As far as we know~ SOB secu
rity mechanisms are applied only in
census databases (in the form of secu
rity checks in 2,3-dimensional summary
tables) and in some medical databases
[SchI82]. Moreover, the majority of
recently proposed SOB security tech
niques [Oenn 82] are as yet untested in

11

real world SOB applications. We feel
.that any SOB architecture must be
designed to support a variety of secu
rity mechanisms available if and when
they are needed to enforce security.
However, the architecture should also
try to minimize any ill effect and cost
due to applying security restrictions by
encapsulating security-sensitive data in
the SOB.

O. Other advantages and potential prob
lems---

What other advanfages follow from
an "enhanced" SOBMS approach that con
tains a conceptual (semantic data)
model, a query language manipulating new
objects and a capability to enforce SOB
security mechanisms and to execute sta
tistical analysis .procedures by main
taining them within the SOBMS?

(a) Compared with users of the sta
tistical package approach, the task of
SOBMS users are simpler since. they need
to become familiar with only one
software system. Moreover, using inno
vative graphical query languages (such
as QBE [Zloo 77], Abe [Klug 81] or STBE
[OzsO 82a]) or user interfaces (such as

GUIOE [WonK 82]) the SOBMS approach may
be more user-friendly.

'(b) The enhanced SOBMS approach
removes potential incompatibilities and
the often problematic data transfer
between statistical package software and
file management or SOBMS software.

(c) Uniformity among operations
(syntactically and semantically) can be
achieved since one software system
stores and manipulates data, and exe
cutes statistical procedures.

(d) Users of the enhanced SOBMS
approach will use simpler and fewer
queries in their" statistical analysis
since all the tasks of retrieving data
from files, preparing data for input and
storing data after analysis, can be
expressed by queries of only one
language.

(e) Having a centralized control of
dat~ and a statistical procedures
library within the SOBMS allows the
utilization of a security technique
known as intentional resolution [Mins
76]. If a user would like a multiple
regression analysis, the SOB uses the
protected raw data without making it
available to users, and returns only the
results of the analysis to users. This
way users are provided with the results
of the analysis they request but

prevented from seeing the-protected raw
data input to the statistical procedure.
Another case might be to process the .
protected raw data and provide users
with an intermediate data analysis. An
example is to give users correlation
coefficient matrices (instead of the
protected raw data) for possible input
to procedures like factor analysis and
canonical correlation.

(f) Centralized control of data by
the enhanced SDBMS approach allows
execution-time SDB security enforcement.

What are the possible pitfalls of
the enhanced SDBMS approach? We envision
the following potential problems.

(1) Implementing SDB security
enforcement (such as a security kernel
or data-tagging [OzsC 82]) may make the
SDBMS software less efficient, and the
storage requirements may be higher. We
think that a careful testbed implementa-
tion will answer this question. .

(2) Feasibility qnd efficiency of
the implementation of a conceptual
(semantic data) model needs to be demon
strated on real life applications.

(3) A more important issue,
perhaps, is the acceptability of a con
ceptual data model to SDB users. A con
cern has been raised by practitioners in
the statistical computing area that .the
eagerness of SDB users to get on with
their research usually results in
bypassing the maintainance of simple
data definitions such as variable iden
tification [Mark 81]). This then raises
the user acceptability of the SDBMS
approach that requires a full conceptual
data model to be in place from the
start*. We think that all the advantages
listed above outweigh this inconvenience
to users. In the long run, users bene
fit from having a well-specified data
model by gaining a better understanding
of the data. Nevertheless, this problem
has to be investigated by experimenting
with a testbed implementation of the
enhanced SDBMS approach.

SYSTEM FOR STATISTICAL DATABASES (SSDB)

This section briefly discusses the

* In order to help solve this problem,
"stand-alone" views are proposed in
[OzsO 82b]. However, users are still
required to specify the schema of the
stand-alone view.

12

features of a general-purpose SDBMS, the
System for Statistical Databases (SSDB)
[OzsO 82b] designed as a response to the
problems listed in Section II. It should
be pointed out that SSDB is an ongoing
project, and several of its components
are currently being researched. However,
this section reports only those aspects
of the design that are currently con
cluded.

A. Architecture

SSDB architecture consists of three
levels, external level, conceptual level
and internal level, in the conventional
sense. The external level is concerned
with individual SDB user views~ the con
ceptual level defines the community view
(i.e. the conceptual view). The inter
nal level is concerned with secure,
efficient and effective access and util
ization of data. Figure 1 illustrates
the three levels. Each user has a data
definition and manipulation language to
~anipulate data objects at the external
level. SSDB is designed by modifying a
three level CDB architecture level by
level thereby making it potentially pos
sible to serve as a CDB to some users.

Conceptual Level:

At the ~onceptual level, there is a
Compartmentalized SDB Conceptual Model
and a Security Database. The conceptual
model uses the Heterogeneous Operational
Data Model (HODM) as the data model and
contains compartments of security
sensitive information. Figure 2
represents the conceptual level.

Conceptual Model consists of three
layers. Innermost layer, Data Model, is
concerned with the representation of the
real world in a natural and semantically
rich manner. The middle layer provides
tools to model representative, cleaned
and. interpreted subsets of data, and the
outermost layer is concerned with easy
and conv.enient representation of aggre
gate data (i.e. summary tables) and
other new objects of the SSDB such as
matrices, histograms, two-dimensional
plots, etc ••

The Security Database contains
security-related information for each
compartment such as security constraints
[ChiO 81], user groups and user
knowledge constructs [ChiO 81], query
and update history of abstract objects
[OzsC 82, ChiO 82, OzsO 81].

External level:

At the external level,. there are

•

virtual and stand-alone user views.
Virtual views are either derived or
exact replicas of a part of the concep
tual model. Processing a query about a
virtual view involves the usual
processes of mapping the query to con
ceptual model and to inter,nal model, and
optimization. Stand-alone views are not
completely mappable to the conceptual
model. Stand-alone views are introduced
to manage the iterative stage (i.e.
unstable data representation) of users·
exploratory data analysis where data or
its parts are experimental and are not
shared, and the corresponding model is
not stable. processing a query about a
stand-alone view involves mapping the
query to the internal level and optimi
zation.

Internal level:

With the exception of matrices and
vectors, all objects of HODM are
represented as nested relations [OzsO
83] at the internal level of HODM. A
nested relation is a relation with set
valued or simple-valued columns.

File organization techniques for
nested relations are currently being
investigated. Since SSDB is general
purpose and allows updates, existing SDB.
file organization techniques such as
transposed files and cross product files
[EggS 80] have to be modified. Another
research problem is the maintenance of
aggregate values in the presence of
updates to the database.

For compartments in the internal
model, all data has security-related
tagging [OzsC 82]. The tagging is used
in verifying correctness of the physi
cally retrieved data during execution
time.

B. Data Model

The HODM is designed by modifying
the Data Abstraction (DA-) Model [SmiS
77a, SmiS 77b]. The main reason for
choosing the DA-model is that opera
tional characteristics of SDB users can
be incorporated into the data model as
specialized generalization hierarchies
of the DA-model, thus making this model

. a natural choice. It should be pointed
out that the query language of SSDB does
not utilize the structure (i.e. various
hierarchies of HODM). The structure of
HODM is used for browsing through the
model 'integrity checking, SDB security
enforcement and documentation. Query
language of SSDB refers directly to
abstract objects for data manipulation,
and avoids navigation through the

13

structure of HODM.

DA-Model:

The DA-model uses aggregate and
generic objects to name relationships
and classes. The real world is modeled
as a set of aggregation hierarchies
intersecting with a set of generaliza
tion hierarchies. In the HODM, each
abstract object forms a population about
which statistical analysis can be be
performed. Within compartments there are
additional constraints placed upon gen
eralization hierarchies [ChiO 81].
Innermost layer of HODM uses only aggre
gation and generalization hierarchies,
and is a semantic data model for cor
porate database (CDB) users as well as
for SDB users. Figure 3 contains a
university database.

Teacher

e9denotes a cluster
[SmiS 77b]

Figure 3. Representation of university
database using the DA-Model

Operational Data Model (ODM):

ODM is used for the middle layer of
the conceptual model of SSDB, and incor
porates hierarchies of various types of
populations, called operational popula
tions, that are needed because of the
operational characteristics of SDBs.
There are four types of operational
populations, representative, inter
preted, cleaned and experimental popula
tions, each created (perhaps itera
tively) from a population of the DA
Model called main population. Each type
of population may form a hierarchy. Each
type of operational population has a
prefix (e.g. RP,IP, CP, EP) to indi
cate its type.

(a) Representative populations (RP)
are user-specified subsets of data.
They are created to facilitate the effi
ciency of the operation, or due to
either the inability to process large
amounts of data or the sufficiently gen
eral nature of the conclusions drawn
from representative samples using sta
tistical procedures.

(b) Interpreted populations (IP)
are created by classifying individuals

in a given population using different
interpretations of individuals~ attri
bute values. For example, "U.S.-made
cars" may be interpreted as "cars with
at least 85% U.S.-made parts" or "cars
produced by U.S.-companies".

(c) Cleaned populations (CP) are
created by eliminating some of the indi
viduals in them by selection tests that
involve user requests or processing
missing, suppressed and perturbed values
and correctness ranges.

(d) Experimental populations (EP)
are user-created temporary subsets of
other populations. They are used mainly
to draw conclusions about phenomena not
yet modeled by the database.

Figure 4 contains a representation
of a university database using OOM.
CP-SECRETARY-PERMITTEO contains all
those secretaries who are not assigned
to security-related jobs (i.e. a cleaned
population). IP-EXPERIENCEO-ENGINEER-l
and IP-EXPERIENCEO-ENGINEER-2 are two
different subsets of engineers selected
according to different "experience" cri
teria. Within a generalization hierar
chy (or more correctly, ~set hierar
chy) , notations ~ and 4~ denote
upward and downwa·rd existence dependency
respectively (i.e. existence of a popu
lation is defined through the existence
of other populations). Similarly, nota
tions ~ and ~ denote upward and
downward existence dependency within an
aggregation hierarchy respectively. For
example, IP-EXPERIENCEO-ENGINEER-l is
existentially dependent to ENGINEER, and
RP-ASSIGNMENT is existentially dependent
to ENGINEER and RP-PROJECT.

Heterogeneous Operational Oata model
(HOOM) :

HOOM is used for the outer layer of
the conceptual model of SSOB, ahd incor
porates new objects to help users model
data according to their data manipula
tion needs. These objects are summary
tables, crosstabulations, matrices, his
tograms, scatter diagrams and two
dimensional plots. Reference [OzsO 82b]
briefly describes operations involving
these objects. It should be pointed out
that histograms, scatter diagrams and
two-dimensional plots are mostly viewed
as visual comparison aids utilized by
SOB users and thus operations involving
them are restrictive.

Among the new objects in HOOM, sum
mary tables are very common. In fact,
the Table Processing Language System
[Uslb 80] produces only summary tables.

14

As an example a summary table scheme is
shown graphically below:

OCP
CANCER-PATIENTS OCP SEX

I AGE COUNT COUNT

In this example, the summary table name
is CANCER-PATIENTS. It has a column
category attribute forest consisting of
two trees. The first tree has a single
node, OCP. The second tree has two nodes
OCP and SEX where the root of the tree
is OCP. The row category attribute
forest consists of a single attribute
AGE. In a summary table, each cell is
defined by a set of row category attri
butes (which appear in a root-to-leaf
path in a row category attribute tree)
and a set of column category attributes.

C. Query Language

All populations at the conceptual
model of SSOB are represented as rela
tions. SSOB uses a screen~oriented,
two~dimensional query language, called
Summary-Table-by-Example (STBE) to mani
pulate summary table and relations [OzsO
82a]. STBE is a relational-calculus
based language. It is similar Zloof~s
Query-by-Example [Zloo 77] and may be
considered as an extension of
Aggregates-by-Example [Klug 81].

O. Security Considerations

In [OzsC 82] we have argued that.
for secure processing, SOBMS should be
certified to guarantee that it works
correctly. However, since certification
is not an easy task, the software for
certification should be minimized. The
SOBMS of SSOB is grouped into modules
and only a very small part of the SOBMS
is certified. Execution flow within
SOBMS is designed as follows. Popula
tion and attribute types (i.e. logical
object types) involved in the query are
derived by certified modules. A certi
fied security kernel accesses the physi
cal database and retrieves physical
objects. After a secure mapping of phy
sical and logical objects (each physical
object in a compartment is tagged by its
logical name), SOB security enforcement
rules are applied. Procedures in sta
tistical procedures library are not cer
tified, but they run isolated from users
and other SOBMS modules.

One may thInk that certification is
too big a task for SSOB. However, there
is already a successful implementation
effort. [Oowp 77, OowP 79] that applies

almost the same scenario above with the
exception of SDB security enforcement.
Moreover, a majority of the SDB protec
tion techniques can be implemented with
very small code. Therefore we think
that the proposed SDBMS execution flow
is practical. We should also note that
we propose tagging for only those
objects that are in compartments.

Since we design SSDB as a general
purpose SDBMS suitable for various
applications we allow updates in the
SDB. Consequently there should be some
secure update handling mechanisms for
objects in compartments. In [OzsO 81]
we discuss a variety of update handling
techniques that enhance security in a
single population.

IV. DATA MODELS AND QUERY LANGUAGES OF
EXIST~SDBMS>S

To contrast the design characteris
tics of SSDB with other systems, this
section briefly surveys data models and
query languages of existing SDBMS"S.
Other characteristics of current SDBMS"s
can be found in [Shos 82].

The discussion below should not be
interpreted as a claim that the systems
below are not successful. Indeed there
are reports [Hamm 81 and others] that
they are very successful for use in
those applications fOr which they are
targeted. However, we think that for a
general-purpose SDBMS, requirements
listed in Sectioh II should also be
satisfied.

A. Data Models

Traditional data models are used in
existing SDBMS implementations and pro
posals. For example, RAPID [TuHC 79],
and the Table Producing Language System
[Uslb 80] use the traditional re16-
tional network, and hierarchical models
respectively.' Recently Ikeda and
Kobayashi [IkeK 81] reported an SDBMS
implementation on top of a relational
DBMS. '

There are only three semantic data
models specifically proposed for SOB"s:
SAM* (Semantic Association Model) [Su
82], the cluster and cross product
hierarchies of SUBJECT [ChaS 81] and the
infological framework of RAM [RapS 75,
Sund 78]. The first two models are
structured, redundant, and similar to
semantic networks. SAM* has seven dif
ferent association (relationship) types
and supports sets, matrices, vectors,
and time series as complex data types.
A proposed implementation of SAM* uses

15

G-(generalized) relations. Cluster and
cross product hierarchies of SUBJECT use
the concept of summary sets, distinguish
between category and summary attributes
for semantic modeling and simpler query
expressions of summary statistics, and
utilize cluster and cross-product
abstractions to model both raw data and
matrix representation of summary data.
From the examples in reference [ChaS
81], cluster abstraction is a combina
tion of generalization abstraction of
[SmiS 77b] and attribute association of
SAM'''. Cross product abstraction is, on
the other hand, a new data modeling tool
proposed to represent summary data using
a n-dimensional matrix data type. The
infological framework of RAM uses ele
mentary messages of groups of objects.
To represent statistical surveys, a box
structure which is always a n
dimensional cube (not an arbitrary
structure) is used.--Classification of
objects. according to their data types is
not mentioned.

B. Query Languages

Existing query languages of CDB"s
can be used to produce summary statis
tics. However, the syntax and semantics
for statistical queries are usually not
well-defined. Moreover, operations on
objects with complex data types (such as
matrix, summary table, etc.) do not
exist.

.Aggregates-by-example (Abe) [Klug
81] is a language proposed to ease the
task of formulating statistical queries.
Abe is a relational query language simi
lar to Query-by-Example (QBE) [Zloo 77].
It uses thesubquery concept to simplify
complex statistical query expressions.

Among user interfaces, SUBJECT uses
a set of seven menu driven commands (not
a query language) that includes browsing
·capabilities in the cluster and cross
product hierarchies to help users locate
and retrieve aggregate information.
GUIDE [WonK 82] is a graphics-based user
interface that contains subject direc
tories, help messages, zooming facili
ties and partial query formulation
features.

C. SDBMS Implementations and Proposals

Presently there are various SDBMS
implementations and proposals. These
systems include RAM[Sund 78], SUBJECT
[ChaS 80], RAPID [TuHC 79], SEEDIS [McCa
82a], Ikeda and Kobayashi"s system [IkeK
81], Table Processing Language System
[Uslb 80], System S [BecC 78], GENISYS
[ManD 81] and others. The common

features of all these systems are:

1) None has any SDB security
mechanisms.

2) Except RAM and System S, all of
the above systems interface to a sta
tistical package for statistical
analysis procedures. RAM has a "macro
data processing subsystem". ~ystem S
maintains and utilizes statistical pro
cedures as functions (about 250) in an
interactive environment.

3) Except System S, SUBJECT, and
Ikeda and Kobayashi~s system, none of
the above systems model and support
abstract data types. System S uses vec
tors, matrices, and time-series as con
crete objects without a data model.
Cross product abstraction of SUBJECT can
be considered as an object with a matrix
data type, but SUBJECT does not have
explicit operations for the cross pro
duct abstraction. The system of Ikeda
and Kobayashi uses the summary table
object, but has very limited operations
involving summary tables.

4) Since abstract object types are
not supported, none of the above have
query languages manipulating abstract
objects.

REFERENCES:

[BecC 78] Becker, R.A., Chambers,
J.M., "Design and Implementation of the
S System for Interactive Data Analysis",
Proc., IEEE COMPSAC Conf., Nov 1978.

[ChaS 81] Chan, P.,Shoshani, A.,
"SUBJECT : A Directory Driven System for
Organizing and Accessing Large Statisti
cal Databases", Proc., VLDB Conf., 6,
1980. -- ----

[ChiO 81] Chin, F.Y. and Ozsoyoglu,
G., "Sta.tistical Database Design," ACM
TODS, 6, 1, March 1981.

[ChiO 82] Chin, F.Y., Ozsoyoglu, G.,
"Auditing and Inference Control in Sta
tistical Databases," IEEE TSE, 8, 6,
Nov. 1982.

[Date 81] Date, C.J., An Introduction
to Database Systems, Vol-.-I, Third Ed.,
Addison-Wesley, Reading, Mass., 1981.

[Denn 82] Denning, D.E., Cryptography
and Data Security, Addison-Wesley, Read
ing, Mass., 1982.

[DowP 79] Downs, D., Popek, G.J.,
"Database Management Systems Security
and INGRES," Proc., VLDB Conf., 1979.

16

[EggS 80] Eggers, S., Shoshani, A.,
"Efficient Access of Compressed Data,"
Proc., VLDB Conf., 1980.

[Hamm 81] Hammond, R., "Metadata in
the RAPID DBMS," Proc., LBL Wor kshop ~
SDBMS, Dec. 1981.

[IkeK8l] Ikeda, H. , Kobayashi, Y.;
"Additional Facilities of a Conventional
DBMS to support Interactive Statistical
Analysis", Proc., LBL Workshop ~ SDBMS,
Dec. 1981.

[Klug 81] Klug, A., "Abe--A Query
Language for Constructing Aggregates
by-Example", Proc., LBL Workshop on
SDBMS, Dec. 1981.

[LBLW 81] Panel Session: Data Manipu
lation Issues of SDBs, Proc., LBL
Workshop on SDBMS, Dec. 1981. ---

[ManD 81] Maness, A.T., Dintelman,
S.M., "Design of the Genealogical Infor
mation System," Proc., LBL Workshop ~
SDBMS, Dec. 1981.

[Mark 81] Marks, G.A., "Characteris
tics and Evolution of the OSIRIS Data
Definition Languages," Proc. LBL
Workshop ~ SDBMS, Dec. 1981.---

[McCa 82a] McCarthy, J.L., et al., "The
SEEDIS Project: A Summary Overview",
Lawrence Berkeley Lab., LBL-14083, 1982.

[McCa 82b] McCarthy, J.L., "Metadata
Management for Large Statistical Data-
bases", Proc., VLDB Conf., 1982.

[Mins 76] Minsky, N., "Intentional
Resolution of Privacy Protection in
Database Systems," CACM, 19, 3, March
1976. --

[OzsC 82] Ozsoyoglu, G., Chin, -.Y.,
"Enhancing the Security of Statistical
Databases with a Question-Answering Sys
tem and a Kernel Design", IEEE TSE78, 3,
May 1982. --

[OzsO 81] Ozsoyoglu, G., Ozsoyoglu,
Z.M., "Update Handling Techniques in
Statistical Databases", Proc., LBL
Workshop on SDBMS, Dec. 1981. ---

[OzsO 82a] Qzsoyoglu, Z.M., Ozsoyoglu,
G., "STBE--A Database Query Language for
Manipulating Summary Data", Report CES-
82-2, CWRU, July 1982.

[OzsO 82b] Ozsoyoglu, G., Ozsoyoglu,
Z.M., "SSDB-An Aichitecture for Statist
ical Databases", Report CES-82-ll, CWRU,
Oct. 82.

[OzsO 83] Ozsoyoglu, Z.M., Ozsoyoglu,
G., "An Extension of Relational Algebra
for Summary Tables", Report, CES-83-3,
CWRU, March 1983.

[Park 76] Parker, D.B., crime~. Com
puter, Scribner's, New York, 1970-

[SAS 79] SAS Institute, Inc., SAS
User's Guide, Raleigh, N.t." 1979.

[Schl 82] Schlorer, J., "Query Based
Output Perturbations to Statistical
Databases", Technical Report, Univ. of
Ulm, Oct. 1982.

[Shos 82] Shoshani, A., ,"Statistical
Databases: Characteristics, Problems
and Some Solutions", Proc., VLDB Conf.,
1982. -- ----

[SmiS 77a] Smith, J .M." Smith, D.C.P.,
"Database Abstractions: Aggregation" "
CACM, 20, 6, June 1977.

[SmiS 77b] Smith, J.M., Smith D.C.P.,
"Database Abstractions:Aggregation and
Generalization", ACM TODS, 2, 2, June
1977. ---

external
level

virtual
view

virtual
view

conceptual level

internal level

[Su 82] Su, S.Y.W., "SAM*: A Seman
tic Association Model for Corporate and
Scientific/Statistical Databases," Tech.
Rep. #8182-6, Database Systems Research
and Development Center, Univ. of
Florida, Gainesville, Florida, June
1982.

,[Sund 78] Sundgren, B., ;'RAM--A Frame
work for a Statistical Production Sys
tem," Tech. Rep., National Central
Bureau of Statistics, FACK, Stockholm,
Swede,n, July 1978. . .

[TuHC 79] Turner ,M., Hammond, R.,
. Cotten,P., "A DBMS for Large Statistical
Databases", Proc., VLDB 1979.

[Uslb 80] Bureau of Labor Statistics,
"Table Producing Language System", Ver
'sion 5, Washington, D.C., July 1980.

[WonK 82] Wong, H.K.T., Kuo, 1.,
"GUIDE: Graphical User Interface for
Database Exploration," Proc., VLDB
Conf." 1982. -- --

[Zloo 77] Zloof, M.M., "Query-by
Example: A Database Language," IBM Sys
tems Journal, 1977.

stand-alone
view

stand-alone
view

Figure 1. Levels oE the SSDB architecture

17

Compartmentalized SOB
Conceptual Model

The Data Model

The OOM

The HOOM

SECURITY DATABASE

User Groups Il Compartments in I
. the OA, aDM, HOOM

Security
Knowledge

Base

User Knowledge
. Constructs

(A pr ior i info.)

Query History
of populations
in compartments

Protection
mechanisms in

compartments

Security
Constraints

Update History
of populations

Figure 2. Conceptual Level of SSOB.

Figure 4. Representation of the database of employees, assignments and
projects using OOM

18

•

ISSUES RELATED TO MEDICAL STATISTICAL DATABASES*

John M. Long, Joseph R. Brashear
University of. Minnesota, 2829 University Avenue S.E., #408

Minneapolis, Minnesota 55414

Abstract

The underlying system for most if not all medical statistical databases is the patient
medical record whose automation is still in a development stage. The automation of
this underlying system is not standardized and its standardization is the subject of
debate. Ethical and legal considerati'ons add to the difficulty in generating statistical
databases containing medical data regardless of its use in demographic, epidemiologic, ..
or other research and planning applications. None of these problems appear to have short
range solutions. To minimize the impact of these problems on statistical databases in
support of planning and research needs, the structure and content of statistical data
bases using medical data can and should be kept as simple as possible.

1. BACKGROUND

The medical tradition in the United States
places a high value on the one-to-one
doctor patient relationship. This aspect
of medical tradition has had a decided
impact on medical record computerization
in that the provi der is entrusted with the
responsibility for a patient's medical
data including its dispersion to other
users. As there are different types of
medical care providers, there are differ
ent types of medical record databases.
The style and format of each varies with
the anticipated use of the data. Content
and organizatiDn varies with perception
of standards and the style of the medical
practice.

To date, the approach to formation of
medical record databases remains highly
individualized. There is no widely
adopted standard even though several sys
tems have been proposed or developed. The
degree of automation varies widely. The
possibility of automation in the forseeable
future is often in doubt.

Amidst this apparent disarray, there is
evidence that the need for systemization
and standardization has been recognized.
Medical record database systems have been
developed for individual hospitals and
medical practices. Systematic approaches
to the organization of the medical record
have been propounded. Standards for collec
tion, maintenance, and dispersion of medi-'
cal data are being developed.

2. UNIQUENESS OF THE MEDICAL RECORD

Are medical records so unique that they require
specially designed database management systems?
At one time the new user was so overawed by com
puting that he failed to grasp the realistic
potential and limitations of computers. This
position seems to be reversed in medical appli
cations. The computing professionals can be so
overwhelmed by the field of medicine that they
fail to realize that they are faced with an
essentially but not totally standard problem.
Even among those who do understand both the
computer's capabilities and the medical record,
there are substantive differences of opinion
regarding the unique position held by the medical
record ..

An overwhelming characteristic of the medical
record is the enormous amount of data about each
individual that is collected over time. A large
amount of data is being collected and recorded
in a variety of ways by one group of individuals
to describe or monitor another group of individ
uals. Progress in medical science brings.about
a shift in priorities, needs and emphases. The
health care provide.rs cannot anticipate the
impact of future developments on their practice.
However, they have a clear responsibility to see
that the patient is protected and benefits from
medical progress. Therefore, there is a tendency
to collect every scrap of data possible.

3. SPECIAL DESIGN PROBLEMS

The attempts to computerize medical records
coupled with recognition of a need for medical
data by users outside of the traditional

*The authors' concerns for these problems are related to the maintenance of and abstracting from the
medical records of patients enrolled in the Program on the Surgical Control of the Hyperlipidemias
(POSCH) a national multiclinic clinical trjal supported by the NHLBI grant #HL15265-10.

19

provider-patient relationship has led to
increasing concern about privacy. One
cannot design flat files of data which
allow individual items to be picked off
for use without consideration of this
issue. Either external or internal
restrictions, probably both, are
necessary.

Tradition has placed the responsibility
for protection of medical data with its
custodian, the provider. This gives the
provider of medical care direct control
over the dissemination of a large body of
medical data. Even when a patient has
given blanket consent for release of data,
the provider will still exercise control
over what data are actually released.
This circumstance is based partly on
ethical and legal considerations. However,
release of data is also affected by its
availability and cost to access.

Users of medical data are forced to go to
a source which is fragmented, unsystematic
and non-standard. The data source ,the
provider, is faced with the choice of
refusing a request, undertaking a costly
abstracting chore,.or simply providing
the entire record and hoping for the best.

4. IMPACT ON DATABASE DESIGN

There are recognized and legitimate needs
for data to be extracted from i ndi vi dua 1
medical records and aggregated for
analysis. There are legit.imate reasons
for the many different approaches to
medical record computerization by
providers. All of these become points of
conflict which tend to cloud or overwhelm
basic computing desjgp~issues.

For the moment, let us consider the
extremes of two dimensions of the ques
tion. The many concerns of the provider
lead to a comprehensive accumulation of
data about each individual over long
periods of time. The dynamic nature of
medical science results in highly variable
or as yet undefined retrieval character
istics. Security measures beyond simple
secrecy are required and access should be
severely limited.

These design considerations are very
di fferent from those for a statistical
database containing medical data. The
content of the database is defined before

20

data accumulation begins and does not
change over the life of an analysis
effort. The lifetime of the database can
be controlled to be as brief as possible.
The amount of data collected on each
individual can be minimized to alleviate
the need for extreme security measures.

These two different sets of design character
istics probably cannot be reconciled in any
expedient manner. The question should become
one of whether they ought to be reconciled.
Integrated database systems which satisfy
diverse needs for access to large databases do
exist. However, there is control over the
structure and content of the underlying data.

We contend that the degree of control and
standardization required cannot be attained in
a reasonable time frame for the medical record.
The debate over medical record databases will
continue. The highly individualistic and
entrepreneureal nature of health care delivery
will be an impediment to rapid progress.
Rather than continue to debate thegl oba 1
issues of medical record database design in
every arena, let us solve some computing
problems.

If we regard the comprehensive medical record
database as a black box source of medical data,
we can segregate and simplify many of the issues.
The content of the black box, control over
access to it, safeguards against inappropriate
use, and patient consent to use individual data
become the concern of the provider. The
structure of the comprehensive database and its
degree of automation become a choice for the
provider. Willingness to provide data becomes
a legal or ethical decision for the provider.

The user of a statistical database containing
medical data has fewer design decisions to make.
To assure privacy and security, the minimum
number of data items which will serve a specific
purpose will be requested and the life span of
the statistical database should be limited. The
concept of informed consent by the patient for
a specific use will do away with concern about
combining or linking data. The variance in
degree of automation within the black box
will force a simplified or minimal data struc
ture.

A part of good design practice is recognition
of the fact that we cannot impose radical
changes on data sources to meet computing
requi rements. We can make the result of a
computer application so desirable that the

data source will want to cooperate and will
take steps to reduce"the cost of coopera
tion.

Selected References

1.

2.

3.

Je1ovsek, et a1, Guidelines for User
Access to Computerized Medical Records,
"Journal of Medical Systems" 2:241,
1978.

Long,JM, Brashear, JR, The POSCH
Information Management System:
Experience with Alternative
Approaches. "Journal of Medical
Systems" 4:355-366, 1981.

Oberst, et a1, com~uter Applications
to Private Officeractice, "Springer
Verl i ng", Fall 1983.

21

MANAGEI4ENl' AND DISPIAY OF
DATA ANALYSIS ENVIRC.HttENl'S FOR LARGE DATA SETS *

Robert A. Burnett, Paula J. Cowley, and James J. Thomas
Pacific Northwest Laboratory
Richland, Washington 99352

Data analysis is typically an iterative process in which the choice of the next analysis
operation is largely detecnined by the results of previous operations on the data set.
With large data sets, many analysis paths may be explored before meaningful results are
obtained. Along each path, the analyst creates a sequence of "data analysis
environments," each environment being a frame or "snapshotn of the data set and associated
descriptions, conditions, IOOdels, and analysis results. The data analysis environment may
be changed incrementally through temporary data roodifications, subsets, samples, or
statistical operations; or, the analyst may wish to restore the conditions of a previous
environment as a starting point from which a new analysis path can be generated. Existing
analysis systems, however, lack facilities to maintain, save, or restore all of the
components required to completely describe or reconstruct a data analysis environment.

This paper describes ongoing research at Pacific Northwest Laboratory (PNL) in data
management and display techniques for multiple data analysis environments. Specifically,
research is being conducted in four major areas: (1) the development of a roodel of the
data analysis process incorporating the concepts of data analysis environments; (2) the
design and use of data modification definitions (differential files) to represent multiple
versions of a large data base; (3) the use of data dictionaries/directories to manage,
describe, and control multiple data analysis environments; and (4) the application of
graphical display and interaction techniques to the examination and selection of data
analysis environments. The results of these research efforts will be integrated to
provide a new dimension in interactive data analysis.

* Work supported by the U. S. Deparbnent of EnerW, contract DE-AC-06-76RLO 1830.

22

1.0 PRCBID1S AND OPPORlUNITIFS
IN ANALyzrm IARGE Dl\TA SETS

Data analysis is typically an iterative process
made up of many operations that collectively
refine the data. The analyst uses various data
manipulation functions and statistical
algori thins to extract useful information. The
course of an analysis is often charted "on the
fly" via a sequence in which the next operation
is dependent upon the results of previous
operations. Often the analyst will pursue a
particular path and then decide to return to a
previous point in the analysis to try a
different approach [Denning, et al 1983].
However, it may be ilnpossible or, at best,
difficult and time-consuming to restore the
analysis to a previous state.

While these observations apply regardless of
the size of the data set, the difficulties
associated with data analysis are compounded as
the size of the data set grows. As the number
of data variables increases, a more lengthy
analysis may be required to derive a set of
meaningful statistics, since there are more
opportunities for unforeseen relationships.
Operations on data sets with a large number of
observations tend to require more time and more
computer resources. The end result is a
considerable amount of time and effort required
to organize and manage the analysis of a large
data set.

Data processing activities on a computer are
performed within the context of a "computing
environment." This environment is defined ~
the hardware, the operating system, and the
application software being used. Software is
usually developed and tested with the aid of
the operating system and associated program
development tools which constitute a
"programming environment." Similarly, during
an interactive data analysiS seSSion, the
analyst is working in an ever-changing
"analysis environment" of available or
currently active data elements, stored results
from prior analysis steps, sampling or
selection criteria, available operations, and
other system or user-supplied specifications.
These factors describe the relevant
surroundings or "data analysis environment"
which has been established ~ the operations
performed on the original data set and ~ the
software environment. We can define a data
analysis environment as a combination of the
following components:

(1) the state of the currently active data
set or subset, including any temFOrary
IOOdifications to the original data set,
new records or variables which may have
been added, and analysis results which

23

have been stored for later review and
possible additional analysis

(2) the status of operational and user
interface parameters (data selection or
sampling conditions, convergence
criteria, default command options,
plotting parameters, etc.) which affect
the mode of interaction, the
interpretation of commands, and the
disFOsition of analysis results

(3) a description or listing of the sequence
of analysis operations which produced
this environment from a prior known
environment

(4) information describing the statistical
IOOdelbeing used in the analysis

(5) comments entered ~ the analyst to
descr ibe the environment and document the
analysis process.

Although each statistical or data manipulation
operation potentially creates a new (though
perhaps only slightly different) data analysis
environment, several steps may be required
before a useful set of results are obtained.
Multiple operations are often required to move
from one well~identified stage of the analysis
to the next stage. Only the analyst knows for
sure when a significant new data analysis
environment has been reached. The analyst
should therefore have the means to name,
describe, and save a distinct data analysis
environment for later identification and use.

During the exploratory stages of an analysis,
many of these environments may be created
temporarily for hypothesis testing. Thus many
data analysis environments may be created,
examined, and then either discarded or set
aside for possible later use. The analyst is
confronted with the problem of managing and
referenCing these environments.

CUrrent statistical packages do not provide
facilities to maintain complete data analysis
environments as defined above. Some statistical
analysis packages allow the user to save
elements of the current environment1 however,
there are limitations in the types of
information which can be saved and the
flexibility and efficiency of saving and
restoring the environment. For example, the
Minitab statistical package [Ryan, et al 1981]
allows the user to save a "worksheet," which
consists of a snapshot of the working data set
at the time the worksheet was saved. However,
there is a limitation in the size of the
worksheet that Minitab can handle, and there is
no provision for saving only a subset of the

worksheet. In addition, there is no provision
for storing descriptive information about how
the user arrived at that particular worksheet.
Log files of Minitab command sequences can be
saved, but the user must keep track of which
log files are associated with each worksheet.

The'S' language and system for interactive
data analysis, developed at Bell Laboratories
[Becker and Chambers 1981], goes much farther
than most statistical analysiS packages in
allowing the user to define COlIJIX)llents of an
environment. The user can define new data
structures as the analysis progresses. The
results are returned as data structures that
become part of the data base. 'S' also allows
the analyst to maintain a journal of the steps
taken during the analysis session. The analyst
can edit this journal to remove superfluous
commands and then apply the edited journal file
to the same data set or to a different data
set.

Several data and file management systems have
same features similar to those described
above. DA~IEVE [Digital Equipment
Corporation 1980] allows the user to define
"collections" which are usually created ~
subsetting the data set in sane way. BASIS
[Battelle Development Corporation 1981] allows
the user to save operations as procedures that
can be re-executed as desired.

These techniques can be viewed as limited
approaches to the definition and storage of
data analysis environments. However, these
systems lack facilities to automatically
maintain a record of the saved environments and
their relationships to each other and to the
overall analysis. In addition, they require
the entire data base snapshot to be physically
saved, together with additional information
which the software may require to enable a
complete restoration of the environment •. This
is usually not practical for large data sets.

It is even more difficult to return to a
previous data analysis environment if that
environment has not been explicitly saved. The
analyst must somehow try to undo the operatiOns
which have resulted in changes to the data set
since the prior environment was established.
However, it may be difficult or impossible to
back out previous analysis steps because the
data base updates may be irreversible. The
user's only option may be to restore an earlier
version of the data set from a backup copy and
repeat the previous sequence of operations to
reconstruct a prior analysis environment.

Two problems may occur when the user tries tQ.
restart a previous analysis sequence: 1) The
data set may be so large that it is very

24

time-consuming to re-establish the desired
environment; and 2) the analyst may not
remember or have access to the exact sequence
of steps which were used to construct the
former environment.

In practice, the user normally maintains an
abstract or high-level view of the manner in
which a particular environment was created and
the significance of that environment with
respect to the overall analysis. Often
information of this type is noted briefly on a
sheet of paper and subsequently misplaced. If
comments about the analysis process are
included as part of the environment, they can
be extremely useful to the analyst,
particularly when returning to a data set after
a period of time [Denning, et al 1983]. These
analysis descriptions can provide documentation
of the rationale for applying a particular
operation to the data set.

Another useful item of information is a
description of the statistical model being used
in the analysis. Same statistical packages
allow the analyst to define the model directly
to the system. For example, the GLIM
(Generalised Linear Interactive Modelling)
system [Baker and Nelder 1978] allows the
analyst to define a model formula and then
determines and performs the appropriate
analysis steps without user intervention.

In Slm1!llary, there is a need for tools. to
maintain high-level descriPtions of data
analysis environments for the user's
convenience and to provide rapid restoration of
previous environments. The discussion above
has described many areas where facilities to
manage, display, and control data analysis
environments can be of significant help in
performing an analYSis. Many of these problems
are not serious for small data sets but become
critical in terms of time and difficulty when
the data set is la:rge.

2.0 CXHE?TS AND SOF'lWARE NEEDS
FOR DATA ANALYSIS EN\1IRCHmN1'S

This section describes a new approach to data
analysis based uJ;X>n the management and display
of networks of data analysis environments.
These concepts have evolved from work in data
management and analYSis systems in the Analysis
of Large Data Sets (ALDS) project at Pacific
Northwest Laboratory (PNL) over the past four
years.

Data manipulation operatioris form a large part
of interactive data analysis, especially during
the early stages of preparing a data set for
analysis, and also during the exploratory

, ,

phases of the analysis itself. The AIDS Data
Editor (ADE) [Thomas, et al 1981], an
interactive data editor and subset generator,
was developed to provide some of these data
manipulation capabilities. Experiences with ADE
during its use to manipulate and to subset a
number of large data sets at PNL led to the
identification of some important
characteristics of the data manipulation
process for large data sets. One of these
characteristics was the need to be able to
fully control and verify the current status of
the processing envirorunent. This is especially
critical for large data sets because the
consequences of an incorrectly specified
operation or a processing error tend to grow
exponentially with increasing size of the data
set [Mllller 1970]. Full control xooans the
analyst can interrupt any process at any time,
determine the status, and decide whether to
continue the process or abort it, saving
partial results if appropriate.

A second important characteristic of data
manipulation is the significant number of
conditions or envirorunental parameters that are
often attached to a data manipulation operation
or sequence of operations. For example,
subsets of a data set are frequently defined by
speCification of a logical (Boolean) condition
for case selection, by a specification for
random sampling, or both types of
specifications. cases and variables for
inclusion in the subset may also be explicitly
specified. It was found to be important for the
analyst to be able to specify and verify each
of these conditions individually via
clause-structured commands. It is also
important for the analyst to be able to quickly
and freely move from one subset to a previously
defined subset or to move back to the full data
set and have the associated conditions or
envirorunental parameters automatically carried
along. From these and other characteristics of
the data manipulation process, the concept of
temfOrary data manipulation envirorunents was
conceived. The broader concept of data
analysis envirorunents has been a natural
outgrowth of these ideas.

Another direct result of the development of and
experimentation with ADE was the concept of
"virtual subsets," It is usually impractical
and often prohibitive to physically store
subsets of a large data set if the subset is a
significant fraction of the entire data set or
if many subsets must be simultaneously
maintained. A virtual subset is a definition
of a subset1 this definition may be in terms of
fOinters to the included cases and variables or
in terms of a description of the selection
conditions that define the subset. In ADE,the
virtual subset is stored in lieu of physically

25

replicating the actual data values included in
the subset. A physical subset is generated
only UfOn explicit request by the user. The
concept of virtual subsets led to the idea of
storing data modification descriptions and
virtual subset definitions in differential
files to represent temfOrary versions of a
large data set.

The concepts of dynamic data manipulation
envirorunents, virtual subsets, process control
and verification, and user speCification of
envirorunental conditions via clause-structured
commands were embodied in an interaction model
for manipulation of large data sets [Thomas

.. 1982] • This model was developed to formally
decompose and describe the interaction
sequences between the analyst and the system
during interactive exploration and data
manipulation, and to provide a framework for
the eValuation of the impact of large data sets
on the design of interactive data analysis
software.

Current research at PNL is addressing several
problems in the management and display of
multiple data analYSis envirorunents for large
data sets. We are developing and evaluating
techniques to provide the user with control and
flexibility to examine existing envirorunents,
define new envirorunents, establish simultaneous
parallel analysis activities in multiple
envirorunents, and easily move the "interaction
window" from one envirorunent to another. The

. data manipulation/interaction model is being
extended and refined to more fully model the
data analysis process as a network of
interrelated data analysiS envirorunents. The
model will serve as a frame of reference for
evaluating the effectiveness of the methodology
and for comparing alternative techniques.

TO accomplish the above objectives, we are
conducting and integrating research efforts in
three major areas:

(1) the design and use of multiple
differential files to store variations of
a master data set in the form of data
modification definitions and subset
definitions, each differential file
representing a different "virtUal data
set"

(2) the development of a data
dictionary/directory system to maintain
definitions of data analysis
envirorunents. These definition would
include logical (user-level) comIOOnts,

. descriptions of associated statistical
models, and access fOinters to a)
differential files containing definitions
of the physical state of the virtual data

set associated with each environment, and
b) journal files containing the sequence
of analysis operations which produced
each environment

(3) the development and evaluation of
graphic-based display and interaction
techniques that would provide the analyst
with a) a graphical representation of the
currently active analysis environments
and their interrelationships, and b) a
convenient means of graphically
selecting, monitoring, and controlling
multiple data analysis environments.

The following sections describe each research
area in greater detail.

2.1 DATA mDIFICATION DFSlUP1'IONS

Frequently during a data analysis session, the
analyst wishes to temporarily modify one or a
few data values and repeat a series of analysis
steps on the modified data set. For example,
it may be necessary to ranove one· or more
outliers or supply estimated values for missing
data items. In fact, the analyst may want to
generate several independent versions of the
data set, each containing a different set of
data modifications based on different
criteria. Each version of the data set would
represent part of a unique data analysis
environment. statistical procedures could then
be applied to each of the resultant data sets,
with the option of returning to one or more of
the modified data sets and performing
additional analyses, redefining the procedures,
or augmenting the modifications.

It would not be desirable to directly store the
temporarily modified values in the master data
base, even if the original values were saved
and could be restored later. If this were
done, other concurrent users would have to be
tanporarily denied access to the updated
portion of the data set. An alternate approach
would be to generate a local physical copy of
the data base (or a subset thereof) for each
set of tanporary modifications. With large
data sets, however, it is generally inpractical
or impossible to do this, especially if many
subsets or modified versions of the data set
must be maintained.

For situations in which the modifications apply
to a small fraction of the entire data . set; a
better approach would be to store updated
records and/or concise descriptions of the
individual modifications separately from the
data base in a modification file or
"differential file" [severance and Lohman
1976]. During a data base access, the

26

appropriate updated values from the
differential file would be substituted for the
corresponding original values stored in the
main data base. This would in effect allow
multiple users to maintain local modifiable
copies of a data set without requiring
redundant data storage. Interference among
temporary updates by different users is also
eliminated.

The concept of using differential files to
store updates to a data base is not new
[Severance and Lohman 1976]. Historically,
there have been two major uses of such files.
One use has been to provide an effective way to
inplanent backup and recovery in a data base
environment [Aghili and Severance 1982;
Verhofstad 1978; Batory and Gotlieb 1982]. The
second application has been to save updates to
a data base until all the updates can be
applied at once in a batch mode (e.g.,
[Battelle Development Corporation 1981]).

We are extending the differential file concept
to the inplanentation of multiple versions of a
large data set for multiple concurrent data
analysis environments.

The design of a differential file for data
analysis applications involves selection from
among several different logical
representations. The most straightforward
technique for storing a data modification is to
sinply store each updated record in the
differential file. This approach is often
combined with a multiple hashing scheme, called
a Bloom filter [Gremillion 1982], to help
determine . whether the most recent version of a
record is in the differential file or in the
main data base, thus attanpting to avoid an
exhaustive search of the differential file for
each data base request.

Another method of storing a data modification
is to store a description of the modified
record or variable rather than the complete set
of values contained in the record or variable.
For example, if only one field in a record were
updated, one could sinply store the record
identifier, the field identifier, and the
updated value. The most concise form of data
modification description is a symbolic vector,
in which an entire variable is defined by a
data transformation in the form of a stored set
of computational rules (e.g., an equation)
involving other variables in the data base.
The concept of storing descriptions of data
modifications is similar to the concept of
virtual subsets (data base subset descriptions)
as inplanented in the AIDS Data Editor [Thomas,
et al 1981]. A modified data set or subset, as
represented by data modification descriptions
stored in a differential file, could be defined
as a "virtual data set."

In the course of research at PNL in the above
issues, several specific questions are being
addressed: What types of data and file
structures are most effective for storing data
modification descriptions for data analysis
environments? How should a differential file
be organized to facilitate efficient access to
the virtual data set? How should permanent
updates to the main data base be handled to
avoid invalidating existing virtual data sets
as stored in differential files?

2.2 DATA DIC'l'IONARIFS/DIROC'IDRIES
FOR DATA ANALYSIS ENIJIRCDlEN1'S

Traditionally, data dictionaries have been used
to store meta-data describing the various data
bases implemented on a data base management
system (DBMS), as an aid to the data base
administrator [Curtice 1981; Martin 1977; Date
1982], and more specifically, as an information
resource for corporate data bases [Plagman and
Altshuler 1972]. Data dictionaries may be
combined with a data directory to form an
integrated Data Dictionary/Directory (DD/D)
which additionally provides information on the
location and structure of data base
components. This information is needed by the
DBMS to access the required data. Thus a DOlO
can be used to control access, to insure
integrity, and to enforce security in a data
base system.

The data dictionary/directory concept has been
used frequently in general scientific and
business data base management systems, but has
seldom been used in statistical data analysis
systems. However, such -a capability is
required for the development of an interactive
data analysis system which allows the analyst
to save multiple data analysis environments,
examine the set of environments which are
relevant to the current analysis, and
arbitrarily select and restore a previous
environment. such a system needs a mechanism
to organize and manage information describing
each of the data analysis environments and
their relationships to one another. .

We are developing a two-level Data
Dictionary/Directory System (DD/DS) to manage
multiple data analysis environments. The
system includes a top-level DOlO to describe
the original data base and the entire
collection of data analysis environments
(modified data sets and subsets, various
parameters and options, models, analysis
results, surmnary statistics, and COIlll'!el1ts) that
have been derived from the Original data base.
The top-level or master DOlO contains pointers
to the locations of differential files

27

containing definitions of subsets and
modifications; these files comprise the second
level of the DO/DS. Each modification
description file in turn contains a description
of a modified data base state in terms of
differences from the original or main data
base. The master DO/D also contains high-level
user-supplied descriptions of each environment
and pointers to journal files containing the
command sequences (operations) which produced a
given environment from a previously referenced
environment. In surmnary, the ID/DS serves as
an information resource and data base access
control mechanism for an entire analYSis of a
large data set.

The DO/D must be capable of storing textual
comments supplied by the analyst to further
describe the environment. Other factors such
as information required to generate displays of
data analysis environments (See Section 2.3)
needs to be included in the Data
Directory/Dictionary System. Research is being
conducted to determine the best configuration,
content, and organization of data
dictionaries/directories to facilitate the
management of data analysis environments.

~velopment of a data dictionary/directory
system to organize and manage multiple data
analysis environments is an outgrowth of
ongoing work at PNL in the development and
evaluation of data dictionaries/directories for
large self-describing transposed data bases
[Burnett and Thomas 1982]. A preliminary data
dictionary/directory system has been
implemented and tested. The system is
interfaced to the ALDS data management software
and provides access control to data bases
stored in multiple Self-Describing Binary (SOB)
data files [Burnett 1981; Burnett and Thomas
1982] •

2.3 GRAPHICAL INrERFACES '10
DATA ANALYSIS ENVIROlfo!Et1l'

During the interactive, exploratory phases of
data analysis, many analysis environments may
be created. To be useful, each of these
environments must be easily distinguishable and
identifiable. Recently the need has been
expressed for "automated cartography of
exploration" in data analysis [Tukey 1982]
(e.g., a roadmap showing where the analyst is
and where he has been during the analysis
process). We are developing and evaluating
alternative methods of graphically representing
information that describes a collection of
related data analysis environments. The
representation techniques must allow the
analyst to easily visualize the relationships
among multiple environments, to identify and

select a specific environment, to obtain more
detailed information about an environment, and
to verify the manner in which a particular
environment was created.

sane research has been done in the area of
graphical interfaces to data base systems. For
example, a system called GUIDE [Woog and Kuo
1982], developed at Lawrence Berkeley
Laboratory, uses a graphical network
representation of data elements and their
relationships as a means of "guiding" the user
in the formulation of a data base query. The
higher-level relationships among a set of data
analysis environments could also be represented
using similar graphical techniques. A network
graph can be used to depict a starting
environment (often the original data base) and
the environments that have subsequently been
defined by the analyst. Each node of the graph
represents an environment. The directed paths
between nodes indicate the ancestor-descendant
relationships among the various environments.
Figure 1 illustrates one way in which a network
of data analysis environments could be
presented.

Network structures, as presented to the analyst
on a display device, cannot show a complete
description of an individual analysis
environment. The user must therefore be able to
select an environment and request more detailed
information on that environment. The detailed
information could be represented graphically,
as text, or as a combination of text and
graphics.

Color and geometry can be used to convey
information about data analysis environments.
Environments that arise from such operations as
subsetting and transformations could be
represented using different colors and shapes
to discriminate among different classes of
environments and operations.

Several techniques have been developed in the
areas of word processing and editing [Meyrowitz
and Van Dam 1982; Lerner 1982] that can be
applied to graphical representations of data
analysis environments. Both the Xerox Star
workstation [Xerox Corporation 1982] and
Smalltalk [Ingalls 1978] use a screen that is
capable of displaying a full page of a document
plus a large menu area. The Star presents
"graphical icons" that resemble the entity to
which the user is referring. The user performs
a task by using a "mouse" to move the cursor to
the appropriate icon on the screen. For
example, to save a file, the user moves the
cursor to the file folder icon. To dispose of
a file, the user moves the cursor to the trash
can icon.

28

The Apollo Domain system [Apollo COmputer Inc.
1982] is an example of a system which gives the
user the ability to create "windows" on the
display screen, move these windows around, and
change their sizes. The display screen can be
compared to a desk; the windows then become
documents on the desk and the windows can
overlap like pieces of paper on the desk.
Multiple windows can be active at one time.
The user can make the window of interest more
prominent and still be able to see the other
windows.

There are disadvantages to using a conventional
single-screen alphanumeric terminal to display
data analysis environments. When the analyst
brings up the graphical display of
environments, the screen showing the latest
data analysis activity is lost. Rather than
using a single conventional terminal, some of
the multiple windowing techniques described
above can be applied, or more than one screen
can be used. If two or more screens are used,
one screen could depict the latest data
analysis activity while another is used to
display information . on the enviromnents. A
third device could be used for data plots. A
sample . three-screen configuration, shown in
Figure 2, consists of an alphanumeric control
terminal used by the analyst to interact with
the system, a graphics device to display the

·various data analysis enviromnents, and a
high-resolution display device on which graphs
of data sets are displayed. A split screen,
such as the one that Star uses, could be used
instead of two screens to display the latest
activity and the envirorunents at the same
time. Moving the windows around, as Apollo
does, allows the analyst to concentrate his
effort on the area of primary concern - either
the analysis activity or the enviromnent - and
to move easily from one to the other.

The discussion above describes same ways in
which data analysis environments can be
presented to the user. Research is being
performed to determine the best display
techniques for graphically representing data
analysis environments and allowing the analyst
to interactively manage and control the data
analysis process. TOpics being investigated
include: What information is required to
convey the essential characteristics of a data
analysis environment to the analyst? How
should this information be presented? How can
window-based systems and conventional
workstation configurations be used most
effectively?

3.0 roMMARY

This paper has described a si.nple model of the
data analysis process as a treelike structure
of data analysis environments. The leaves of
the tree represent different data analysis
environments defined during the course of the
analysis and the branches represent different
analysis paths. The need for techniques to
control, manage, and display these environments
has led to research in the areas of (1) the
storage of data modification descriptions in
differential files, (2) the use of data
dictionaries/directories to manage, describe,
and control multiple data analysis
environments, and (3) the application of
graphical display and interaction techniques to
the examination and selection of data analysis
environments.

4.0 REFEREtI:ES

Aghili, H., and D. G. Severance. 1982 • "A
Practical Guide to the Design of
Differential Files for Recovery of On-Line
Databases. " ACM Transactions .QIl Database
Systems. Vol. 7 No.4, W. 540-565.

Apollo Computer, Inc. 1982. &lQllQ System
User's Guide. Release 4.0. Chelmsford, MA.

Baker, R. J., and J. A. NeIder. 1978. k
~ System Manual. Rothamsted Experimental
Station, Harpenden, Herts, England.

Batory, D. S., and C. C. Gotlieb. 1982. "A
Unifying Model of Physical Databases." ACM
Transactions 9D. Database Systems. Vol. 7 No.
4, W. 509-539.

Battelle Development Corporation. 1981.
~ User's Guide. Columbus, Ohio.

Becker, R. A., and J. M. Chambers. 1981. ~ =
A. Language ,gng System .f2I. ~ AnalYsis.
Bell Laboratories, Murray Hill, ID.

Burnett, R. A. 1981. "A Self-Describing Data
File Structure for Large Data Sets." In
Conputer Science .Bn!1 Statistics: Proceedings
.Qf ~.lltll s.wmsitun .Qll .tm Interface. W.
359-362. Springer-Verlag, New York, NY.

Burnett, R. A. , and J. J. Thomas. 1982.
"Data Management Support for Statistical
Data Editing and Subset Selection." In
proceedings .Qf .tm ~ .Lma Workshop .QIl
Statistical Database Management. W.
88-102. Lawrence Berkeley Laboratory,
Berkeley, CA.

29

Curtice,R. M. 1981. "Data Dictionaries: : An
Assessment of CUrrent Practice and
. Problems. " In proceedings .Qf .the Seventh
. International Conference m ~ ~ .oru;g
Bases. Cannes, France.

Date, C. J. 1982. M Introduction j;,Q Database
Systems. 3rd ed., Addison-Wesley, Reading,
MA.

~ing, D., W. Nicholson, G. Sande, and A.
Shoshani. 1983. National Research Council
~ ~ m statistical Database

. Management. Washington, D.C.

Digital Equipment Corporation. 1980.
Datatrieye-ll Y2.....Q. .User's Guide. Maynard,
MA.

Gremillion, L. L. 1982.· "Designing a Bloom
Filter for Differential File Access."
Comnunications .Qf ..tbe. .A.ClL. Vol. 25 No.9,
W. 600-604.

Ingalls, D. H. H. 1978.. "The Srnalltalk-76
Prograrraning System: Design and
Impl~entation. " In Proceedings .Qf j:;bg
Principles. .Qf Programming Languages
s.wmsitun.

Lerner, E. J. (ed.) 1982. "Prograrraning for
Nonprogranuners. n ~ Spectrtun. Vol. 19 No.
8. W. 34-38.

Martin, J. 1977 • Conputer Data-base
Organization. Prentice-Hall, 1977.

Meyrowitz, N., and A. Van Dam. 1982.
"Interactive Editing Systems: Part I and
II." ACM Conwting SUrvfW? Vol. 14 No.3,
pp. 321-415.

Muller, M. E. 1970. nComputers as an
Instrument for Data Analysis. "
Technometrics. Vol. 12 No.2, W. 259-293.

Plagman, B. K., and G. P. Altshuler. 1972.
nA Data Dictionary/Directory System within
the Context of an Integrated Corporate Data
Base. " In ~ Conference Proceedings:
f.Qll Jlo.int. Conputer Conference. Vol. 41 ,
Part II, pp. 1133-1140. AFIPS Press,
Montvale, ID.

Ryan, T. A., B. L. Joiner, and B. F. Ryan.
1981. MINITAB Reference Manual. Duxrury
Press, Boston, MA.

Severance, D. G., and G. M. Lohman. 1976~
"Differential Files: Their Application to
the Maintenance of Large Databases. " Aa1
Transactions .Qll PatabaseS,Ystems. Vol. 1 No.
3, W. 256-267.

Thomas, J. J. , R. A. Burnett, and J. R.
Lewis. 1981. . "Data Editing On Large Data
Sets." In Computer Science and Statistics:
Proceedings .Qf ~ .l31.b QyDmsiwn .QJl ~
Interface. W. 252-258. Springer-verlag,
New York, NY.

Thomas, J. J. 1982. "A User Interaction
Model for Manipulation of Large Data sets,"
In Conputer Science .smQ Statistics:
Proceedings.Qf ~ .l4.th Syrrmsium QJl ~
Interface, Troy, NY.

'l\1key, J. W. 1982. "Another Look at the
Future. II In COmputer Science .mld
statistics: Proceedings.Qf ~ lltb
Syrrmsiwn .QIl ~ Interface. Troy, NY.

Verhofstad, J. S. M. 1978. "Recovery
Techniques for Database Systems." Aa1
COmputing SUry~r Vol. 10 No. 2, W.
167-195 •.

Wong, H. K. T., and I. Kuo. 1982. "GUIDE:
Graphical User Interface for Database
Exploration. " In Proceedings .Qf ~ Eighth
International Conference .Qll ~ LiWm. l6l.tg
~ Mexico City, Mexico, W. 22-32.

Xerox Corporation. 1982. amo. ~
Information ~stem Reference Guide. Dallas,
TX.

30

ENVIRONMENT B

SUBSET #1
OFA

ENVIRONMENT F

SUBSET
OF B

ENVIRONMENT A

ORIGINAL DATA
SET

ENVIRONMENT C

SUBSET #2
OFA

ENVIRONMENT D

TRANSFORMATION
OFA

ENVIRONMENT E

REGRESSION
RESULTS

ENVIRONMENT G

ANALYSIS RESULTS

ENVIRONMENT H

COMBINATION OF
D AND E

Fi gure 1. A Graphi ca 1 Representati on of Data Ana lys is Envi ronments

DISPLAY OF DATA
ANALYSIS ENVIRONMENTS

ALPHANUMERIC
CONTROL TERMINAL

Figure 2. A Three-screen Configuration for Data Analysis

31

HIGH-RESOLUTION

DATA DISPLAY

MODEL FOR A CLINICAL RESEARCH DATABASE

Anne Ipsen Goldman, Ph.D.

Associate Professor, Biometry Division, University of

Minnesota, Minneapolis, MN 55455

Abstract

A model for the organization of.a clinical research database is described. The model is based mainly

on the Minnesota Bone Marrow Transplant and the Leukemia-Lymphoma Databases which are characterized

by patient data with non-rectangular format, prospectively collected as patients are followed. The

SIR data management system is used because of its flexibility and the ease with which statistical

analysis files can be created. A main focus of the file organization is an emphasis on events rather

than lab values as endpoints. Records for patients, event labels, and protocol are separate case

types and linked together during retrieval.

1. INTRODUCTION

Researchers in clinical medicine are finding

that a professionally designed and managed

database can be a crucial component in the

effective conduct of their research, particu

larly of chronic disease. These databases

have a complex structure of data collected

from many sources as patients enter the pro

ject over time and are followed during the

course of their disease. The principal pur

pose is to provide data for statistical anal

ysis of research concerning patient care.

Patient care may also be aided indirectly by

providing information for clinical management,

for scheduling of clinic visits, and for ac

counting purposes; but those activities are

ancillary and not the raison d'~tre of the

database.

The organization of the database and the admin

istrative structure that supports it depends on

the type of clinical research being conducted.

The main types of research organization are:

cooperative clinical trial, cooperative study

group, comprehensive cancer center, research

group, registry, single instution-sing1e trial.

The associated databases differ mainly in com

plexity because of the number of clinical cen

ters involved, the types of patients enrolled,

and the amount and sources of the data to be

collected. It is worthwhile to give some

examples and characterize some of the differ-

ences.

Examples of the largest Cooperative Clinical

32

Trials are the recently concluded cardiovascular

trials (MRFIT [1] and HDFP [2]) • These had

10.to 20,000 participants, followed at over 20

clinics for a period of 5 to 7 years, but all

participants were enrolled in one protocol. The

data were centrally managed and analyzed by a

coordinating center. Although the database for

such a trial may contain a vast amount of complex

data, the primary purpose may be the estimation

and testing of treatment group differences for a

single parameter. In addition, however, ancillary

studies may be added to the main protocol and many

analyses of subgroups carried out.

Cooperative Study Group. The Veterans Administra

tion has a long history and a well deserved repu

tation for conducting excellent cooperative stud

ies [3J. They are also common in cancer research

(e.g., the groups knoWn as ECOG, CCSG, CALGB).

These have many cooperating clinical centers, each

submitting data for a few patients (typically less

than 50), enrolled in one of a changing variety of

randomized trials for different cancer diagnoses.

Each trial may have only 100-200 patients followed

for 1 to 3 years. Again, a central statistical

center manages and analyzes the data.

This work was partially supported by the National

Cancer Institute Grant P01-CA21737 and by the

Coleman Leukemia Research Fund.

The National Cancer Institute has designated

and supports Comprehensive Cancer Centers.

They are similar to the previous but are loca

ted at a single institution. There are still

many protocols, but not all are randomized

trials; the patients have different types of

cancer, but all are treated at one large re

ferral hospital. The statistical activities

are carried out by an "Epi-Stat" unit which

may create one or more statistical databases.

Research Groups exist at single institutions,

and specialize in a single disease (e.g.,

Leukemia, Diabetes) or treatment mode (radia

tion therapy, bone marrow transplantation).

The investigators of such a team may represent

a broad spectrum of disciplines and research in

terests such as chromosome abnormalities, graft

rejection, infections, immune function, chemo

therapy, etc. If their data management and sta

tistical needs are extensive, they may have a

statistical support unit which creates and uses

one or more databases for analysis.

Data from patients with a particular disease may

be placed on a Registry. Examples are the In

ternational Bone Marrow Registry and the SEER

Cancer Reigstry [4, 5, 6~. These databases

contain all the patients with a particular

disease (e.g., breast cancer) or group of di

seases (e.g., any cancer), from one or more

institutions or geographical area. The data

collected includes demographics and details

of diagnosis but information on treatment and

follow-up may be lacking. The usual purpose

of the database may be to estimate incidence of

disease and factors associated with differences.

Oniy well managed registries can provide ade

quate data for such purposes. In keeping with

this purpose the number of variables may be

more limited and the database organization

simpler than for the previous types.

When a s1ng1e trial is conducted at a single

institution, a complex database may not be

needed. The quality of the research is, how-

33

ever, improved if the data are prospectively

collected, especially if a number of patients

are to be followed over a period of time or

the patient records and the protocol are complex.

Although the different types of clinical research

described above vary in the types and complexity

of their databases, they have many features in

common. The data deal with individual patients

rather than aggregates. The records within a

case are arranged in ru1hierarchy or tree-structure

which may be cross-linked in a network. The data

are ideally collected prospectively, hence the

database continuously changes over time as new

patients are enrolled and current patients fol

lowed. Because statistical analysis requ~s a

static database, subsets of the data are periodi

cally retrieved from the parent database to create

statistical databases for analysis of individual

research projects. This paper describes a model

for the administration and organization of clinical

research databases. The model has evolved over

time and is particularly suited for working with a

research group as characterized above. It is pri

marily based on two University of Minnesota data

bases: the Bone Marrow Transplant Database and the

Leukemia-Lymphoma Database. There has also been

experience with databases from several other pro

jects starting with the VA-NHLBI Mild Hypertension

Study [7] (a cooperative trial 1974-76), and two

still-ongoing projects in Testis Cancer [7]and
Breast Cancer.

2. THE PATIENT DATA

The Bone Marrow Transplant database currently has

350 patients registered with 90-120 to be added

each year. The Leukemia-Lymphoma database has

1100 patients with 120 new cases expected yearly.

Patients are registered on the database on ad

mission. Demographic data, details of the diagno

sis, history and past treatment are part of the

baseline information collected. Results of spec

ial laboratory studies, such as hematology, genetic

match for transplantation, cell markers, pathology

reports, and chromosome studies, are also collected

according to the needs of special studies.

During hospitalization and subsequent fo110wup

at clinic visits, details on chemo-therapy and

other treatment, occurrences and dates of re

sponse, side-effects, infections, recurrenCe

of disease, and death are recorded as they

happen. The patient may be entered on' one or

more research protocols, some of which involve

randomization to one of several study arms.

The details are recorded on a special proto

col record which can be protected with special

passwords to mask double-blind randomization

codes. Throughout the fo110wup period, any

special or repeated 1abo,ratory or other data

specified by protocols are also recorded.

Whenever possible, the data are, collected and

coded soon after the event happens. Although

the hospital chart is used as a guide, it is

seldom explicit nor complete enough 'for re

search purposes. Additional data and error

corrections are extracted from conferences

with attending physicians and nurses while

the events are still fresh in their minds.

3. DATABASE STRUCTURE AND MANAGEMENT

There are two features of the data which

necessitate the use of a database structure

rather than an ordinary computer file for

storing the data: the non-rectangular for

mat of the file schema and the prospective

nature of the data collection process. The

schem a is case oriented, where the primary

case type consists of the data for a patient,

organized as an hierarchy of records collected

in a tree structure. There are many differ

ent record types corresponding to registration,

lab., pathology, chromosome, treatment, event

records, etc. Since many records of the same

type can best be described with a non-rectangu

lar schema.' The data are prospectively col

lected and continuously updated and upgraded

as the patient is followed. It is' therefore

necessary to be able to add data and new

patients in a routine manner. Neither of

34

these activities are within the scope of a simple

data file. Some of the record types are very

long, especially the complex laboratory reports,

containing several sort keys to order the reports

by date, sample n~ber, subsamp1e, procedure,

etc. Some record types are very brief, containing

only a date of onset, an event code, and possibly

a date of resolution.

Creation and maintenance of the database is

carried out using the SIR (Scientific Information

Retrieval) system. This system has several fea

tures which are extremely important to our type

of databases: (1) ease of scheme modification,

(2) analysis software interface, (3) archiving of

files, and (4) networking of case types. The

creative use of these capabilities is the hallmark

of our databases and has made possible cost and

efficiencies as well as extensive quality control

of the data.

a. Ease of schema modification. In a long-term

project involving many researchers and many pro

tocols, it is inevitable that frequent changes

have to be made in the database structure. The

Bone Marrow Transpiant Database started out with

very limited goals of recording a little informa

tion about the 50 or so patients a year being

transplanted. By starting small, we quickly had

a working, usable system. It has seen major

growth and several extensive overhauls over the

last three years as the usefulness of the data

base became realized. Record types have been

added, others removed; labels for new codes are

added as needed, and the whole file has been re

structured several times.

b. Analysis software interface. Many reports

are produced directly by SIR, especially for

quality assurance, data management, patient sum

maries, and general administrative purposes. SIR

is, however, not designed for statistical analysis

but does have the capability of easily retrieving

cases and records according to specifications of

the user. These retrieval files can be stored

as system files directly readable by SPSS, BMDP

or SAS statistical packages or even IMSL and

other FORTRAN language programs. Variable

names and labels from the SIR file automatically

become part of these retrieval files. As

pointed out at the beginning of the paper

the main purpose of the database is statis-

tical analysis of research projects. For

preliminary examination of parts of the

database, a temporary retrieval file is crea-

ted and analyzed. Final analysis of a pro-

tocol is usually a process which extends

over a period of time, while the database is

continuously changing. Analysis must be per

formed on an unchanging, stable file. Conse

quently, at the close of a protcol or other

research project, a separate file is created con

taining only those patients and variables

specified in the protocol fo r analysis. After

the report is finished, that file and some of

the special procedures which were used for its

analysis are stored on a magnetic tape. This

file then provides permanent documentation

for the protocol report and is available if

a manusript needs to be revised, sometimes many

months after the file was created. The com

plex main database is thus the parent of a ser

ies of static statistical databases used for

analysis.

c. Archiving of files. Another feature of SIR

is that the whole database, including its as

sociated procedure file can be readily archived,

stored on tape, and brought back to disk. For

smaller or less active databases, such as the

Testis Cancer llitabase, there is no point in

paying for disk storage of the database during

periods when it will not be accessed. An

automatic archiving procedure has been de

signed for use by an oncology nurse with

only on-the-job computer training. She brings

up the file when needed for analysis or data

input, and the project assistant periodically

archives any changed files and clears the

disk. Similarly, the cost of keeping a large

database constantly on-line can be consider-

35

able. If only part of the file is active during

a work week, it is possible to keep such a sub

file on the disk, while the rest is archived until

needed. The cost effectiveness or archiving de

pends not only on the structure and usage of the

database, but also on the charging algorithm of

the computer center. A check on this algorithm

can sometimes reveal unsuspected ways of saving

on storage costs.

d. Networking. The Bone Marrow Database has 3

different kinds of cases. The central type is

obviously that containing the records of a

patient. There are, however, two other types

which can be linked during retrieval: the proto

col case and the event label case. We have 37

protocols of which 21 are active at the moment.

Some of these are simple treatment protocols,

describing treatment for a single rare disease

with only one or two patients enrolled. Most

protocols are for research to study transplant

preparatory regimen, prevention of infection,

graft-versus-host disease, or maintenance chemo

therapy. A single patient may be enrolled on

several protocols and every patient is enrolled

on at least one. Just keeping track of the

information concerning the protocols, which

patients are enrolled and to which arm they have

been randomized is a non-trivial data management

problem. In addition, it is necessary to monitor

that eligible patients are enrolled, that the

rate of accrual is as projected by the sample

size estimation, and that special data needed

for the study are being collected. By having a

case type which describes protocols, there is a

two-fold gain: the protocols become easier to

administer and when the time comes to analyze,

a link between the protocol case and the enrolled

patient cases is automatic.

The third type of case is really a file of labels.

When the database was first designed, most labora

tory reports in the patient's chart and many
I

clinical signs, such as daily maximum temperature,

were coded and stored. Two problems with this

approach were quickly discovered: The amount

of storage required was prohibitive, and most

of the information was useful only for daily

patient management, but was not in usable form

for research purposes. Statistical analysis

is usually of outcome variables, such as 'time

to death, contributing causes of death, time

to recurrence, occurrence of infection, graft

versus-host disease, and other complications.

These outcome variables need to be carefully

defined in the research protocol and uniformly

coded on the database as they occur. It is,

often not possible to reconstruct an event af

ter the fact based on recorded signs and

symptoms. We therefore created an event record

for these outcomes. The temperature is not

important, but the onset of significant fever

may signal the start of an infection; the

event fever, date of onset and of resolution

is coded. The white blood count is not in

teresting, pe,r se; reaching a certain level

post transplant implies successful engraftment

of the marrow; engraftment is coded with the

date.

Each event is coded using the SNOMED (Syste

matized Nomenclat~re of Medicine) standard

coding system. The label for each event code

was initially stored on the SIR file con

taining variable lables, but each time a new

type of event was encountered and'coded, the

whole database had to be restructured. It

is much more efficient to store these event

labels and codes as separate records of a

label-case. Those retrievals requiring

events'to have English labels can be run' with

a link between the patient's event record

and the correct record from the label-case.

4. ADMINISTRATION OF THE DATABASE ACTIVITY

By "administration" is meant the coordination

of the people and computer activities, not

just the management of the data. The clini

cal management of bone marrow transplant

patients requires a large varied medical

36

staff all contributing tO,the patient's chart.

"The number of researchers is also large. Conse

quently, coordination of effort, provided by the

database committee, is crucial. Some of the pro

cedures instituted by this committee have had

important consequences and are worth mentioning.

Whereas the ability to link event codes and their

labels is a convenience, the reorientation of the

database to an emphasis on events rather than symp

toms has had important scientific implications.

The concept is quite simple and it is easy to

underestimate the improvement in the power of the

database. Much close interaction with the clini

cal staff has been required to specify which

events should be coded, how they are defined, when

a patient had a problem, and when it was resolved.

A standardized code for graft-versus~host disease

and its"severity has been developed with the re

sult that all such events, are uniformly coded

throughout the database. Such standardization

imposes more control over the work of individual

investigators, but the overall effect is a marked

improvement in quality and consistenty and little

restriction on innovation. It has also become

necessary to insist that the description of each

protocol must specify, at the time it is initiated,

which endpoints are to be analyzed and what events

are of interest, and if any non-routine variables

are to be coded onto the database. These are, of

course, basic sound scientific principles which

are not, however, always followed.

Because events are coded by a medical records tech

nician from incomplete charts, the quality control

process involves the attending physicians. Bi

weekly complication conferences are held to review

all records of all patients in hospital or recently

seen in clinic. These conferences, which were in

stituted for the sake of the database, have proven

so valuable in improving patient care that the

original motivation has been forgotten by the clin

ical staff and they are viewed simply as good

clinical practice. Thus, the accumulating records

on a case undergo period review scheduled by the

computer. The primary responsibility for as

suring quality of the data rests on the shoul

ders of the physician most familiar with the

case.

The database committee also reviews each pro

tocol before it is approved for patient enroll

ment. Details of data to be recorded, varia

bles, times and methods of statistical analysis

must be specified. These must be reviewed to

see what impact the new protocol will have on

the workload of the small data center. If

endpoints are specified which are not part of

the ro~tine, the principal investigator of the

protocol may be asked to participate in their

collection and quality assurance. A final re

view of the scientific and ethical merits of

the research and a comparison with other com

peting protocols is also carried out. Only a

limited number of patients can be transplanted

and priorities must be set to optimize their

contribution to research. Again, fortunately,

the investigators view this process as neces

sary for improving the overall quality of the

group's research effort, rather than interfer

ence with individual creativity.

The database is periodically monitored for

signs of serious trouble which might necessi

tate the early closing of a protocol. There

are three main reasons why a study might be

stopped early: 1. low accrual. 2. high

incidence of severe side-effects. 3. the

early occurrence of a statistically signifi

cant difference between treatment groups.

These stopping rules are carefully formulated

and monitored by the database committee to

protect both against panic and undue optimism

by the research group.

5. CONCLUSION

Modern medical research often requires te~

effort, especially in the investigation of com

plex diseases. The integration of a compu

terized database into the research process can

37

be of great help in increasing efficiency and

scientific quality. An example has been given

of the design, management, and analysis of such

a database serving a research group within a

single institution. It has many similarities

with other clinical research databases being

intermediate in complexity in the spectrum of

the types described in the introduction to this

paper. Each situation is unique, but I have

summarized the approaches and procedures which

have been found useful at the University of

Minnesota in order to model the design of such

databases.

REFERENCES

1. Sherwin R: Kaelber CT, Kezdi P, et al.: The

Multiple Risk Factor Intervention Trial II.

The development of the protocol. Prevo Med.

10: 402-425, 1981.

2. HDFP Cooperative Group: The Hypertension

Detection and Follow-up Program. Prev. ~1ed.

5: 207-215, 1975.

3. Kathe BA, Chan Y, Buehler dA, Evans JH,

Fehm P: Protection of patient rights and

welfare in the VA Cooperative Studies Program.

Controlled Clinical Trials 2: 267-274, 198!.

4. Cutler SJ: Cancer registries; opportunities

and responsibilities. J. Nat. Cancer Ins.

57: 741-742, 1976.

5. Laszlo J, Cox E, Angle C: Special article on

tumor registries. Present and future pros

pects. Cancer 38: 395-462, 1976.

6, Surveillance Epidemiology End Results, Inci

dence and Mortality Data: 1973-1977, NCI

Monograph 57, 1981.

7. Perry HM Jr, Schnaper HW, Goldman A, et al:

Evaluation 6f drug treatment in mild hyper

tension, Ann. NY Acad. Sci. 304: 267-293,

1978.

8. Goldman A, Bosl G, Johnson K, Fraley EE,

Kennedy BJ: Prognostic factors in cancer of

the testis: An approach to identificat~?n.

RESEARCH NEEDS AND DATABASE DEVELOPMENT: PUSH AND PULL

Barbara Stone Meierhoefer

Research Associate

The Federal Judicial Center

*The author is a research associate with the Federal Judicial

Center in Washington, D.C.

Abstract

This paper traces the inception of a databas~ reorganization

project that got its stimulus from a research question. When

asked to look into what constitutes an oveiburdened court in

terms of per judge case1oad, researchers at t~e Federal Judicial

Center developed a research design calling for relatively

sophisticated time series and survival analyses involving large

amounts of data over a ten year period.

Though the necessary data were available from the administative

agency which prepares annual statistical reports for the federal

court system, they were not organized in a way to permit the case

tracking analyses called for by the research design.

As a result, the Center is now in the process of developing a

research oriented database which will integrate pertinent federal

court case data from 1970 through 1982 and be updated as new

information becomes available.

39

What follows describes how the statistical methodology devised

for a particular research project can stimulate the

reorganization of an administrative database. The story also

contains a warning to other researchers concerning the data

requirements of currently popular statistical techniques such as

time series and survival analysis. We present this from the

point of view of 'users' who must work with large amounts of data

that were collected for purposes largely unrelated to research

needs.

The Research Question

Tucked away in the judicial branch of the federal government is

the Federal Judicial Center, the small agency for which I work.

The Center's statutory responsibilities include research,

training, and systems development for the federal courts, with an

emphasis on court management.

One type of research question that the Center addresses concerns

the number of cases that a judge can effectively handle.

Judicial cas~loads that ex~eed the judges' capacity can lead to

unreasonable delay and other deteriorations in the quality of

justice. To avoid these deleterious consequences, there needs to

be a good estimate of what this capacity is in order to provide

the system with an adequate number of judges.

The magic number of 400 cases filed per judge per year is

currently used as a standard capacity threshold in the federai

district courts. There has been some dissatisfaction, however,

with using this figure to recommend and allocate new district

judgeships. Additionally, there is no accepted capacity limit

for the appellate courts. Therefore, the Center was asked to

explore further the relationship between workload and court

burden.

40

The Research Design

There are a number of ~roblemsin assessing "how many cases a

judge can judge". First, ther~ ~il1 obviously be variation among

judges. Second, there will be 'variation depending on the type of

case involved because some are inherenily mor~ demanding than

others. Additionally, it is unlikely that a single number can

adequately identify the point at which a district is overburdened

with cases. The impact of 400 filings per judge in one year will

surely depend on the history of case filings in the particular

district. There also seems to be a barn door problem with using

the current state of affairs to recommend new judgeships to be

filled in the future.

We have therefore (in typical researcher fashion) rephrased the

task to be that of investigating how many cases ofa particular

type, and under what circumstances, an average judge can handle

without experiencing overburden (defined initially for our

purposes as delay). The general approach was to examine

the distribution of case-processing times to see if we could

identify historical patterns of filing, termination and pending

caseloads that lead to delay.

Determining the time from the fllirtg to the disp6sition of a case

is a straightforward task. The real question of interest,

however, is how much of that time constitutes 'delay'. The time

required by judges and attorneys for case preparation and

deliberation is not 'delay'. Only that portion of processing

time that exceeds the necessary lifespan of a particular case

should be considered.

Though these lifespans for individual cases are unmeasurable,

"typical" lifespans for p~rticular types of cas~s can' be

estimated by their average disposition time over a range of

courts and years. Using this 'as a base,courtswhich are

41

experiencing delay can be identified and their caseload history

examined for clues to the causes of the current problem. This

information should assist in developing warning signals

indicating that a court could be headed for "backlog" trouble;

cue when and where new judgeships or other court personnel slots

should be created; and allow investigation of the management

techniques of those courts that seem best able to avoid backlog

difficulty.

The Statistical Requirements

The following steps were planned to accomplish the major

objectives of the task outlined above.

1. Our research question includes the phrase "particular types

of cases". Unfortunately, the existing data system identifies

over 200 types of civil cases and approximately 250 different

criminal cases. Our first task is to develop useful case

typologies that reduce this to a manageable number for which

lifespans are to be calculated. Using a construction sample, we

intend to use both (1) comparisons of survival distributions to

tell us whether the survival curves of particular casetypes are

similar or dissimilar and (2) cluster analysis to group casetypes

that are similar as to particular case processing attributes.

The reliability of cluster assignment will be assessed by

discriminant analysis using a number of validation samples.

2. Calculate the 'typical' lifespans for the identified

casetypes, using ten years' worth of national case filing and

termination information.

3. Using comparisons of survival distributions, compare the

individual courts against the national norms to identify courts

that have experienced delay or evidence unusual case processing

patterns.

42

4. Examine the caseload history for these courts using time

series analysis, and display trends with three-dimensional

plotting programs to assist in the explanation of the results.

The Data Problem

You will notice that these are so far only plans, not

accomplishments. There is a good reason for this. The project

has experienced delay of its own because the data we need, though

available, are not structured in a way that fits the statistical

analyses we plan to undertake.

For both the survival and time series analyses, we need followup

information on all (or a sample of) cases filed during particular

time frames. The data we need is spread over more than 30

separate data tapes. We are faced with a classic example of

rearranging data collected for administrative purposes to fit

research needs. The size of the problem is considerable,

involving over one million records.

The Administrative Office of the U.S. Courts is, as its name

implies, the administrative arm of the federal court system. Its

Statistical Analysis and Reports Division maintains all of the

data needed to address our basic project goals including

information on case type, district, and date of filing and

termination for each case filed in the federal courts. The

data are collected for the primary purpose of preparing annual

statistical reports.

The data collection process is based on forms completed by court

personnel. When a case is filed, an 'opening' form is filled out

by a clerk in one of the 95 district courts and 12 courts of

appeals in the federal judiciary. A 'closing' form is submitted

and matched with the 'filing' form upon case termination. The

43

Administrative Office has a tape for each "statistical year"

(running from July 1 to June 30) that includes opening

information for all cases filed during the year. They also have

separate tapes which contai~ both filing and termination

information for all cases terminated during a particular year.

Up to 1980, still another set of tapes were compiled to indicate

which cases were still pending (filed but not yet resolved) at

the end of each statistical year.

This database organization is satisfactory for yearly reports.

It does not, however, allow for tracking of filing cohorts (all

cases filed during a particular period) over time. Suppose we

want to compare survival times for different types of cases filed

in, say, 1973. We need information from ail of the termination

tapes from 1973 onward, and the pending tape for the last year of

the followup period. Only then can we have complete information,

because every case filed in 1973 has either been since terminated

or is still pending as of last count.

To select all of the pertinent data from as many as 10 data tapes

for each of the various analyses we have planned would be a major

undertaking. There are over 100,000 records on each tape. The

available variables, acceptable codes, and tape layouts have

changed over the time period in which we are interested. We need

a database which integrates the pertinent information.

Preparing the Data

The allure of an integrated database containing the detailed time

information from the Administrative Office is irresistible given

the data disaggregatio~ fle~ibility then available for various

time seri~s and survival analyses. We are taking the followihg

steps under contract to this end:

44

1. Document the changes in tape layout, variable definition and

acceptable codes for the years from '70 through '82.

2. Verify the information in the tapes themselves, flagging

consistency check failures (e.g., a case can not be

terminated before it ~as filed) and out-of-range values.

3. Select the variables to be kept and decide on a master format

for the data.

4. Design a system for entry and storage of the d~ta.

5. Update the system annually as new data become available.

Researchers are fairly good at telling databas~ system de~igners

their needs., We want a system that in.teg,rates existing data and

incorporates future data in such a way that it can be e~sily

accessed and·fits th~ requirements of the software packages we

know and love.-

On the other hand, we 'users' are not really sure how much is

possible at what investment of time and resources. For example,

we learned through Step 1 of our data reorganizaticin project that

shaping the data takes· time. Documentation of the changes made

to an administrative ~ata system over a ten year period is in

itself an exacting and time-consuming task. Any ideas from those

of you in the area of database design that can help us as we back

our way into a more sophisticated database would be appreciated.

45

Research Topics in Statistical Database Management

Dorothy Denning
SRI International

Wesley Nicholson
BatteUe-Pacific Northwest Labs

Gordon Sande
Statistics Canada

Arie Sbosbani
Lawrence Berkeley Labs

Abstract

This report identifies research topics in statistical data
base management. These topics are grouped into four
major areas: characteristics of statistical databases,
functionality jusage, metadata, and logical niodels.

1. Statistical Databases Otaracteristics

Computer scientists, especially designers of database sys
tems, commonly ask statisticians and data analysts to
identify the characteristics or features of a database that
identify it as a statistical database. Searching for a pro
found answer to this question has perplexed data
analysts. Many conclude that there are no characteristics
which uniquely identify a statistical database. In princi
ple, any collection of quantitative information residing in
a computer is a candidate statistical database. As soon
as the body of information is interrogated and statisti
cally analyzed, either in total or by sampling or subset
ting, it becomes a statistical database.

There are, however, important characteristics that should
be built into a database if it is going to be useful for sta
tistical analysis. These characteristics involve adequate
description of the quantitative information in the data
base (i.e., the inclusion of appropriate metadata as
defined in Section 3 below.). Such 'description is essen
tial to understanding inferences evolving from data
analysis. Certain kinds of description or definition are
almost always included in the database because it is well
known that the particular description is critical to under
standing the data. On the other hand, certain other
information is almost never included even though a
detailed analysis will uncover subtleties that are corre
lated with such description and often cannot be modeled
without it. A simple example will serve to illustrate the
point. In a database of hospital records, the subject is
always described as male or female. This description is
important for prognosis and treatment. Periodic readings
of blood pressure are also included in the database. On
the other hand, the conditions under which the blood

46

pressure was taken -- patient lying· down, standing up,
sitting; recording made on the left or right arm -- are
almost never included. If the protocol dictates taking the
blood pressure on the left arm with the patient lying
down, then that information should be included in the
database. If there is a variety of conditions, then each
blood-pressure reading should be accompanied with a
descriptor. When does such detailed information become
important? When blood pressure is correlated with treat
ment protocol, we wish to minimize the random error in
the measurements. Clearly if systematic changes in read
ings can be associated with the position of the patient or
the arm on which the reading was made, then that ran
dom variability is reduced and a more precise statement
can be made about the effect of a specified treatment.

There are distinct types of quantitative data that may be
recorded in the database. For each type, there are gen
eral conditions which should be met if the information is
to be described adequately for detailed statistical
analysis.

1.1. Missing Data

Almost every statistical database has incomplete records.
Proper statistical treatment of missing data usually
depends on the reason for the missing data. For exam
ple, in a seismology file listing individual station
seismometer magnitudes associated with particular earth
quakes, values missing because a station was not opera
tional should be ignored in an estimate of earthquake
magnitude. On the other hand, values missing because
the signal was either below the seismometer threshold or
beyond the seismometer range and off scale, bound the
magnitude of the earthquake and should be utilized in an
estimate of earthquake magnitude.

As in the seismometer example, there are several possible
reasons for a missing value. A set of tags to identify the
particular type of missing value should be included in
the file. In the seismology example, the tags would at
least include "non-operational," "below threshold," and
"offscale. "

In some situations, such as with questionnaires, the logi
cal structure may influence the interpretation of a miss
ing value; e.g., whereas for males it is not important

whether a question on the number of pregnancies is
answered, for females, it is critical to distinguish
between a nonresponse and zero.

Most database management systems identify missing
values but lack proper tagging capability. Research is
needed to improve missing value treatment, and, in par
ticular, to include sufficient information in retrievals so
that missing values (either included or excluded) can be
properly handled during data analysis.

1.2. Data Quality

Knowing the quality of data is important for statistical
analysis. For example, if data are keyed into a file from
a remote terminal, how frequently are typographical
errors made? Are the data cross checked before being
accepted? If data come from a measurement instrument,
what is the resolution of that instrument? What is the
reproducibility of independent measurements on that
instrument? Has that instrument undergone modification
during the time that the total set of data was collected?
Or further, is that instrument recalibrated every day
prior to data collection? These are all important ques
tions; their answers may well influence the way the data
are handled in any statistical evaluation. The file should
include such data quality information. If the quality is
uniform over the entire file, this information can be
included in the file descriptor; if it varies in a haphazard
fashion, it may be necessary to attach it to each datum.

Further considerations with respect to data quality
involve the frequency of spurious measurements through
either a breakdown in the data-generating system or the
introduction of a rare physical phenomenon which grossly
changes the measurement process. For example, in a
chemical analysis for trace constituents a contaminant in"
the apparatus could cause major variation in the meas
urement. Here explanatory flags should accompany the
data corroborating the presence of a contaminant or sug
gesting the possibility of a contaminant.

Finally, when data are collected over a period of time,
there may be changes in the data-collection process; e.g.,
in the method of reporting, measuring, validating, or
summarizing. To sort out such effects, a time stamp
should be associated with each datum giving the time
when the data were generated, and the time of the partic
ular file update when the data were included.

In many situations it is useful to have a "degree of
believability" associated with data. For example,
economic data on developing countries may be obtained
by estimates. Using such data for economic forecasts or
evaluation should take into account the believability of
the data. Another source of imprecise data is introduced
by imputation. Imputed data values should be marked as
such and not interpreted as reliable data.

Current database management systems do not havefacili
ties for keeping track of data" quality. Research is
needed to find economical ways of storing information
about data quality, and to find ways of passing this infor-

47

mation to the data analyst.

1.3. Data Sparseness

In many data sets, there are structured patterns of miss
ing data. This is particularly the case for ~esigned
experiments where the "design" is an optimum sparse
coverage of the independent variable levels. Here the
structure allows encoding which could materially reduce
database storage requirements.

To reduce storage requirements, designers of databases
often change the logical structure of the data. For exam
ple, a file may be partitioned into multiple segments, or
data values (e.g., year) included with a data element
name. This practice can obscure the meaning of the data
and complicate retrieval.

Research is needed on the handling of sparse data to find
ways to economize storage, to describe metadata, and to
optimize retrieval while keeping the logical description
independent of storage considerations.

1.4. File Freezing

Many databases are dynamic in the sense that they are
continually being updated. If a statistical analysis is to
be performed, there will be a natural time cutoff. All
data resident in the file as of the cutoff point must be
identifiable. Thus there must be a capability to segment
on time so that information that comes in after the cutoff
will not erroneously get into the statistical analysis and
possibly bias the results. As a consequence of file freez
ing, there may be several versions of the same file in
existence.

Research is needed to find techniques that impose proper
time constraints on retrievals. Research is also needed to
find techniques for efficiently storing multiple versions of
large files.

1.5. Imprecise Keys

In statistical analysis, information may be needed from
various parts of a single file or from several files. Often,
this must be done by making a cross reference linkage
using imprecise keys. For example, in a hospital data
base system, all the information on a patient might be
retrieved using the patient's name as an imprecise key to
search portions of the same file or several files (name is
usually an imprecise key because there may be several
people in a database with the same name). A file struc
ture that allows cross referencing with such imprecise
keys is very useful for statistical analysis. In statistical
databases, subsetting and retrieval using imprecise keys
is a difficult question that needs research.

1.6. Security

When a statistical evaluation is to be done on a file that
contains sensitive information, the question of privacy
protection arises. The confidentiality dilemma is to pro
vide useful summary information while protecting the
privacy of the individuals. Suitable mechanisms for pro
tecting information may depend on the logical data
model. Research is needed to determine what is obtain
able within the constraint of summary information

criteria, and how to provide security mechanisms in a
multiuser environment.

2. Functionality jUsage

Several issues were raised regarding the desired func
tionality or usage of statistical databases.

2.1. Subsetting

The key to successful data analysis lies in finding
interesting subsets of the data. This requires the capabil
ity for multiple key retrievals or, more generally, for
retrieval of any identifiable subset of data (e.g., all
PhD's in the age bracket 25-40 living in California and
earning more than $50,000 annually). Once a subset of
data has been formed and analyzed, it is often desirable
to retain the subset for further analysis, for aggregation,
or for decomposition into smaller subsets. For example,
the salaries for the preceding subset of PhD's may be
aggregated by profession or by sex, or the subset of
PhD's in the computer industry may be extracted for a
more detailed analysis. Because subsets are obtained or
retained for the purpose of aggregating or summarizing
over certain attributes, they are often called summary
sets.

Many commercial database systems have facilities for
specifying and retrieving arbitrary subsets. The storage
and retrieval mechanisms of these systems are not always
efficient, however, for statistical database structures,
e.g., sparse data. Research is needed to find efficient
techniques for statistical databases; transposed files are a
good beginning.

Some commercial database systems support view
definitions, which permit subset definitions to be saved
and managed by the database system. The data in a view
is derived from the current state of the database'when
the view is retrieved, rather than being stored as a
separate data set. With large statistical databases, views
may not allow efficient enough access to certain subsets;
hence, it may be preferable to store these subsets
separately. Additional metadata is then needed for
describing the subsets and their relationship to the main
database. Research is needed to develop techniques for
managing these retained subsets.

2.2. Sampling

In addition to forming identifiable subsets of data, it is
often desirable to extract samples of the data. This is
particularly true for large databases, where it may be
infeasible or impractical to analyze the entire database.
Sampling can also provide a means of protecting the
confidentiality of sensitive data.

Most existing database systems do not support data sam
pling. Research is needed to develop efficient techniques
for defining, retrieving, and retaining samples, and for
combining sampling with other subsetting operators.

2.3. Data Analysis

Many existing database systems have operators for com
puting counts, sums, maxima, minima, and means.
Although full data analysis capability should not be the

48

goal of statistical database management systems (see Sec
tion 2.6), research is needed to determine which data
analysis operators can and should be included in such
systems. For example, it is quite efficient to perform the
sampling operations in the data management system. In
addition, new methods are needed for accessing complex
data structures, e.g., hierarchies, by data analysis pro
grams.

The results of data analysis should be self-documenting;
that is, they should contain metadata describing the
resulting structure. Existing systems do not provide this
capability, and research is needed to develop analysis
tools that produce self-documenting structures.

2.4. Adaptive Data Analysis

Data analysis is an adaptive process, where intermediate
results determine subsequent steps in the analysis. It is
often desirable to go back to an earlier step and try a
different path. With appropriate computer graphics,
much of the analysis could be done on-line without
recourse to hard copy.

Existing database systems do not support this form of
adaptive analysis. Research is needed to develop tech
niques for recording analysis paths, and to develop
graphical aids for moving along these paths.

2.S. Historical Data

Traditionally, historical data has been difficult to assem
ble for analysis. If it is saved at all, it is usually
archived on tapes. With on-line database systems, histori
cal data can be retained and retrieved by the database
system. Research is needed to determine how historical
data is ~est managed.

2.6. Data Management and Statistical Analysis Inter
face

The data management software and statistical analysis
software should not form a single monolithic system that
attempts to provide all capabilities for all users. Even if
we could predict what capabilities would be required, it
would be difficult to develop and maintain such a monol
ith. On the other hand, the user interface should provide
the image of a single system. The data management and
statistical analysis capabilities should be constructed
from building blocks that allow their easy interface.
Research is needed to determine what building blocks are
needed, and to develop a methodology for constructing
and interfacing them. Several interfacing styles are pos
sible; for example, the database system may drive the
statistical analysis system or vice-versa, or both systems
may operate as coroutines.

2. 7. Distributed Systen

Local and nonlocal computer networks can provide access
to distributed databases and to computing resources not
available at the user's personal work station. Several
scenarios are possible; for example, data from one or
more sites .may be assembled at a user's personal work
station for analysis; data collected at different sites may
be analyzed at the sites (e.g., to reduce the volume), and
then transmitted to a central database system for further

analysis; data managed at a personal work station may be
sent to a more powerful machine for analysis, and the
results returned to the work station, possibly for addi
tional analysis. Before any of these scenarios can be
fully realized, research is needed to develop mechanisms
for managing distributed statistical data and distributed
analysis.

3. Metadata

Metadata is information about data. The panel has
repeatedly emphasized the importance of metadata for
statistical data. Often data becomes obsolete because the
information about its content and meaning is nonexistent
or lost. The following is a collection of metadata issues
that could benefit from further research.

3.1. Meaning of Data

Most data management systems, as well as statistical
packages, have a data definition capability for the
specification of a data field descriptors such as type, size
and acronym. This type of information is necessary for
computer manipulation of the data. However, this infor
mation is not sufficient to characterize the meaning of
the data to people. A description of the origin of the
data, how it was collected, when it was generated and
modified, and who is the responsible person for its collec
tion is also needed. The description should include the
full names of data entities and an explanation of what
they represent. Data types of statistical databases are
often complex, such as time series, vectors, or categorical
variables. In addition, special types of data values may
be required, such as codes for missing, unavailable, or
suppressed values.

The lack of metadata is even more acute when data is
collected through automatic data systems. Here it is
necessary to be able to collect some of the metadata
automatically as well.

3.2. Metadata of Subsets

As was mentioned in section 2, a large number of subsets
can be generated in the data analysis process. In addi
tion, new data values can be generated by computations
over previous data values. The metadata for these newly
created data sets include the origin from which the data
sets were obtained, the operations (selection, sampling,
computations) involved, descriptions of the data ele
ments, who created the data sets, and time of generation.

Most of this information can (and should) be automati
cally obtained by the system at the time of subset crea
tion. Some additional semantic information must be
obtained from the user if he wants to keep these data sets
for future use. The open research issues are how to cap
ture and store this information efficiently. In particular,
if data sets are generated from each other, they would
have much descriptive information in common that
should not be stored repeatedly.

3.3. Metadata Management

It is necessary tei organize and manage metadata, just as
it is the case with data. However, metadata typically
contains much text, and its structure can be more

49

complex than just text strings. It is therefore necessary
to manage metadata with tools that can handle text.
Most data management systems and statistical packages
have very limited capabilities in this area.

One should be able to retrieve and search metadata, just
as one does with data. For example, it should be possi
ble to ask the system for the data sets generated by John
Smith after February of this year, or to search for all
data sets that have information about a certain topic in a
hierarchical fashion. Research is needed to determine
how to organize the (mostly) textual information so that
it can be searched, retrieved, updated, and automatically
maintained.

3.4. Consistency

Unfortunately, the meaning of terms change over time,
and they may be inconsistent across data sets. . This
occurs often when similar data is collected over long
periods of time. For example, the boundaries of a county
may be redefined in a certain election year, but the
change is not reflected in the name of the county.
Clearly, it is invalid to compare data collected for that
county over several years which include the change, yet
it is commonly done because the corresponding metadata
does not reflect the change.

Another reason for confusion is the use of the same terms
for different data elements. This occurs often when new
data sets are generated from existing ones. For example,
one data set may contain information about income gen
erated by an average over the entire set, while another
may be generated by averaging over a sample. If both
data elements are labeled the same (e.g. income), it is
easy to make mistakes in comparing them. These
changes should be captured in the metadata, and be
readily available when the data sets are used. At the
same time there should be a way to indicate that the data
elements are related.

The reverse problem is one of using different terms for
the same data element. It is particularly important if the
same data element, such as "state", is used by more than
a single file, since this information is necessary to deter
mine if the files are comparable (joinable) over this data
element. Using different terms in the same file requires
the support of a synonym capability.

Another related need is the use of metadata for compar
ing or merging data from data sets whose parameters are
similar but not identical. For example, suppose that the
partitioning of ages into age groups in two data sets is
not the same. In order to compare or merge these data
sets on the basis of age groups, one needs the metadata
describing the age groups.

3.5. Reformatting

It is not realistic to assume that at some point there will
be a standard for data formats over all systems. There
fore, the need for reformatting data is inevitable. Meta
data should be used to facilitate the automatic reformat
ting of databases. Research is needed to determine how
to organize the metadata and how to use it for the pur
pose of reformatting. Perhaps a standard for metadata

specifications can be developed.

3.6. Distributed Data

There is additional metadata that is necessary when data
bases are distributed over several nodes of a computer
network. For example, suppose that data is collected and
analyzed at several hospital nodes on patients response to
a certain drug. If one was to combine such information,
it is necessary to synchronize the state of these databases
as well as the correspondence between the items involved.
Research is necessary to determine what status informa
tion should be kept, and how to coordinate such informa
tion for queries that involve several nodes.

There is very little development of distributed systems
that can handle statistical data, mainly because the
difficulties in implementing such systems seem too great.
But, as was discussed by many members of the panel, the
trend is indeed towards distributed systems of work sta
tions. As powerful personal work stations come down in
price, so it is more likely that future data analysis will
be performed on a work station that is connected to other
work stations and central machines through a cOmputer
network. The central machines are likely to contain data
that are of interest and are shared by many users, while
the work stations will contain temporary or private data
sets that analysts currently work on. Thus, we believe
that it is not too early to conduct research in the area of
metadata in distributed systems.

4. Logical Models

Logical modeling is that part of database management
concerned with the meaning of data collected about the
real world. The typical logical model encountered in a
statistical textbook is the rectangular array or observa
tion on a case by attribute basis. The current status is
that the real world is more complex than the logical
models of database systems, but that logical database
models are more complex and diverse than the logical
models handled by standard statistical algorithms.

4.1. Complexity of Data

The data organizations encountered in statistical text
books are data matrices or contingency tables. The
mathematical machinery used is the matrix and vector
algebras or calculus. The traditional interface with com
puter science has been the numerical analysis of the com
putational processes needed to implement the arithmetical
processes.

When the data becomes more complex, of which the
hierarchical relationship of individuals to a family is an
example, differing information is relevant in different
subsets of the data, and the classical notations quickly
loose their elegance and power. In complex situations,
the identification of an appropriate unit of analysis, and
the collection of data for that unit, may become substan
tive problems. All of this may have the additional com
plication of missing and erroneous values. The notation
needed to deal with other types of relationships, such as
networks, is often weak and has weak associated theory.
With complex data structures, the interface with com
puter science grows to include algorithms and data

50

structures, computational complexity, and database
management.

4.2. Missing Data

A common characterization of complex situations is the
need to use and identify insightful subsets. In the pres
ence of missing and erroneous data, this may be difficult.
The missing data may arise for many reasons - not
observed and not defined or relevant are the standard
cases. The ability of database systems to approximately
deal with the various types of missing data is weak in
current practice. The initial machinery typified by the
not-a-number symbols (NaNs) of the IEEE floating point
standard have not been expanded or integrated into con
trol mechanisms (query languages) of database systems.

4.3. Data Aggregation

The various attributes of data may be more complex than
is realized. Hierarchical relationships may be mul
tifaceted in practice. For example, in geographic aggre
gations, the notion of county and metropolitan area are
intermediate between municipality and state and of equal
standing; either may be embedded in a strict hierarchy.
The form of the aggregation may change over time so
that both analysis and representation are further compli
cated. Simple responses may be either multiple or
repeated in practice. The representation of complex data
which has been fully and correctly observed is now possi
ble, but the methods to deal with partially or incorrectly
observed data have not been developed.

4.4. Documentation

The logical data model is part of the description of the
data and should be included in the documentation of the
data. The metadata has the role of communicating both
the internal technical facts about the data, including the
data models used in its representation, and the external
information available about the data. The meaning of
the data may be derived both from the data models and
the external knowledge about the data.

Logical data models should be associated with good
analysis methods. The models that are available await
analysis techniques, some of which may arise in the
interaction of statistics and algorithm design. Some of
the known problems with existing models are the
identification of appropriate analysis units, and the
bringing of data to those units. The current algorithms
often are weak in the presence of the various forms of
missingness and errors present in data.

Acknowledgements

Mervin Muller joined some of our discussions, and we
are grateful to him for sharing with us his experience and
insight.

References

There is an extensive literature covering the different
aspects of statistical databases and statistical software.
Instead of giving a long list of references, we mention a
few surveys and collections of papers, all of which con-

tain many references.

Reference 1 below is an introductory paper to the area of
statistical databases. It discusses several problem areas
and surveys some existing solutions and work in progress.
Reference 2 discusses extensively metadata structures and
needs. Reference 3 discusses the security aspects of sta
tistical databases, and surveys existing and proposed con
trols. Reference 4 contains numerous papers and
abstracts presented at a specialized workshop on statisti
cal database management. Reference 5 is a large volume
that describes an<:i compares statistical packages and
other noncommercial statistical software. Reference 6 is
the proceedings of an annual conference that has been
held over the last 15 years, and that contains (especially
in the more recent issues) several papers on statistical
databases.

1. Shoshani, A, Statistical Databases: Characteris
tics, Problems, and Some Solutions, Proc. Eighth
International Conference on Very Large Data
Bases, Sept. 1982, pp. 208-222. (Copies available
from: VLDB Endowment, P.O.Box 2245, Saratoga,
CA 95070.)

2. McCarthy, J.L., Metadata Management for Large
Statistical Databases, Proc. Eighth International
Conference on Very Large Data Bases, Sept. 1982,
pp. 234-243. (Copies available from: VLDB
Endowment, P.O.Box 2245, Saratoga, Ca. 95070.)

3. Denning, D.E. and Schlorer, J., "Inference Con
trols for Statistical Databases," IEEE Computer,
(to appear July 1983).

4. Proceedings of the First ,LBL Workshop on Sta
tistical Database Management, Dec. 1981. (Copies
available from: Computer Science and Mathemat
ics Dept., Lawrence Berkeley Laboratory, Berke
ley, Cal. 94720.)

5. Francis, Ivor (Editor), A Comparative Review of
Statistical Software, 1977. (Copies available from:
The International Association for Statistical Com
puting, 428 Princes Beatrixlaan, 2270 AZ Voor
burg, Netherlands.)

6 Proceedings of the Computer Science and Statis
tics: Annual Symposium on the Interface. (Copies
available from different places, depending on the
year of the symposium.)

51

• • Ii

2. Workstations and Special Purpose Hardware

A Multi-Tree Automation for Efficient Data Transmission 54
K.A. H azboun, J.L Raymond

A Relational Database Machine for Efficient Processing of Statistical Queries. 64
Hamid Farsi. John Tarter

SIBYL: An Economist's Workbench 73
Sandra Heiler. Rita F. Bergman

See Also ••••

An Integrated Research Support System for Inter-Package Communication and
Handling Large Volume Output From Statistical Database Analysis Operations 104

Statistical Data Management Research at Lawrence Berkeley Laboratory. 273

53

A MULTI-TREE AUTOMATON FOR EFFICIENT DATA TRANSMISSION

K.A. HAZBOUN

Pennsylvania State University
University Park, PA 16802

1.L. RA YMONDI

Ohio Bell Telephone
Breckville, Ohio 44141

ABSTRACT: A two-stage finite state imple
mentation of an efficient compression algorithm is
outlined. This design is proposed for the ec~n~mic
transmission of large volume of data wIthm a
distributed network of statistical databases. The
encoder/decoder stage of the design is based on a
reversible semantic-independent variable-length
character technique that makes use of the group
locality of character reference behavior a~d .the
variable frequency of character occurrence wIthm a
well-defined subgroupings of the character set. The
two-stage automata, while specifically ~esi~ned f~r
a modified version of the Hazboun-BasSIOUnl MUltI
Group algorithm, is extended to support any single
character look-ahead procedure.

Key Words and Phrases: Autom~to.n, finite state
machine data compressIon, statIstIcal databases,
microcode memory, regular language, failure node,
failure bit string, accepting state, local tree re
entry, address, look-ahead logic.

1. Authors' current addresses: K.A. Hazboun,
lASC, 302 Rackley Bldg., Penn State University,
University Park, PA 16802; J.L. Raymond, OhIO
Bell Telephone, Corporate Data Center, Room 445,
6889 Snowville Road, Breckville, Ohio 44141.

54

I. INTRODUCTION

The increasing use of computer-based systems,
to support our modern, technological, administrative
and office environment needs, mandates the availa
bility of highly integrated distribution systems. The
driving force of converting raw data into informa
tion is a highly efficient communication network
among the various databases and the user. We
believe that the increasing demand for information
at the various nodes of distributed network does not
have to be matched with an increasing economic
burden of acquiring large storage devices and high
speed transmission media; rather, the problem may
be alleviated through the software and hardware
implementation of efficient data compression
techniques.

The functional scheme presented in this paper,
is a two-stage finite state machine implementation
of a highly efficient compression algorithm. The
algorithm is a reversible semantic..;independent vari
able-length character encoding method that makes
use of two observed characteristics of the distri
bution of characters within most statistical data
bases. First, the group locality of character
reference behavior. Second, the variable frequency
of character occurrence.

A horizontal finite state machine in its purest
form will assign only one function to each bit, thus
eliminating any vertical logic for decoding
instructions. A typical microcomputer uses the
maximum binary representation for an operand
field, e.g., 2 bits to produce 4 functions or 3 bits to
produce 8 functions; either would require external
logic. On the other hand, a horizontal finite state
machine uses as many bits in the micro-word as the
number of functions desired, thus no combinatorial
logic is needed. A microcomputer requires many
clock cycles in order to fetch, decode, and execute
an instruction. Whereas, a finite state machine
executes all these functions in one clock cycle,
typically, running at the serial data rate.

Another difficult area to deal with is the
synchronous to asynchronous interface. A sub
system must deal with two timing systems. The
state machine portion runs synchronously with the
bitstream clock but the control logic needed for
host control must operate with system timing. On
the other hand, a typical microcomputer requires

extra timing interface for the network medium and
the host interface. The choice of a state machine
versus a microcomputer chip used as a controller is
governed by two factors, speed and complexity. A
complex logic tree would certainly require a micro
computer chip. A binary tree is ideal for a state
machine which runs at memory speed (or can be
operated at one bit per second to observe all
processes if desired). A microchip would be
adequate for most common data rates but multiplies
the system interface complexity at both ends for a
simple procedure such as outlined in this paper.

In the following sections, we first define the data
compression algorithm, the subgroupings of the
character set, the corresponding tables and local
binary trees. The various stages of the finite state
machine are then outlined. The model contains the
elements required to describe the mode behavior in
terms of its inputs, outputs and timing. The paper
also provides a separate section on possible
extensions and limitations of the proposed design.

2. ALGORITHM

Two observed properties of data structures within
a statistical database are the group locality of
character reference behavior, and the variable
frequency of occurrence of different characters
within a well-defined subgrouping of a character
set. The first property refers to the tendency for a
string of characters (e.g., a data field within a
record) to consist of a specific subset of the char
acter set, such as, alphabets, digits, successive
blanks or zeroes. This locality of character
reference behavior may extend over two or more
adjoining fields. The second property implies that
the skewness in the frequency of characters [1] may
be extended to a well-defined subgrouping of the
same character set [2]. The division of the
character set into different subgroups and the
variable frequency of character occurrence within
each subgroup are the determining factors in
lowering the length of bit representation per
character.

Using a Multi-Group (MG) encoding scheme,
Hazboun and Bassiouni [2] have demonstrated an
average character compression as low as 2.8 bits per
character, and reported an overall compression
efficiency of 17%-40% over the Huffman algorithm.
The Multi-Group algorithm is constructed as a two
level hierarchy of Huffman-type binary trees. The
first level represents the local trees for the sub
groups of the character set and the second level
represents a set of binary trees which act as the
switching mechanism between any two subgroups in
the event that the next character of the string being
encoded belongs to a different subgroup.

In this section we present a modified version of the
Multi-Group algorithm, denoted as MMG, which is
more adaptable to a hardware implementation. In
this modified version, the authors have eliminated

55

the two-level hierarchy of the local trees and the
associated failure trees with no loss of meaningful
expression. Additionally, the Multi-Group string
attribute (the consecutive occurrence of a single
character within a character stream, e.g., zeroes,
blanks, etc.) which had been limited to the 'blank'
character in the original algorithm was extended to
any character in use. A subset of the ASCII
character set and its subgroupings is presented in
table 1. While the newly constructed local trees are
described in figure 1 as a state transition diagram
using the subset of characters given in this
example, they may be extended to the full comple
ment of any character set.

Sub
Group

II

III

IV

Character

A
I
N
o
S
T
Y
~

o
1
2
3
4
5

&
$

Relative
Frequency

6
5
5
6
4
6
1
4

16
6
7
6
5
9

14

Multi-Group
Local Code

001
111
100
000
110
101

0111
0110

11
010
100
011
001
101

11
10
01

TABLE 1: The restricted character set, their
relative frequencies, and the Multi-Group local

. binary codes.

Let, N, represents the number of characters
within a specified character set; s, the number of
subgroups; nit the number of characters within
subgroup i. By definition,

For each subgroup, Sit a local binary tree is
constructed. Appended to each local tree are the
extension states which implement the switch pointer
mechanism to each remaining subgroup. The leg of

o

00

12 28

&

Start State

own
LOCAL TREE.

Z2

SPECIAL CHARA~TER
LOCAL TREE.

o

ALPHABET
LOCAL TREE.

lE HcJr.ru<!lVLe a.ddlr.eM

13 14 _ Loc.a1 btee Itee.wr.y
5 a.ddlr.u¢.

~ ChcJr.a.ae-t pltodu.c.ed btj
.t:iUA a.c.c.ep.ti.llg ,~.ta.:te.

12 20

STRING CHARACTER
LOCAL TREE.

FIGURE 1: TRANSITION STATE DIAGRAM: The above diagram represents the
construction of the transition state diagram corresponding to the four subgroups
as defined in the restricted character set of Table 1. The finite automaton
accepts a bit string if the sequence of transitions corresponding to the symboJs of
that particular bit string leads from the start state to any accepting state and
then back to the reentry address of the local tree. Each accepting state (double
circled) represents a single and unique character within the restricted character
set. If a failure occurs, the entry address points to the vertex of one of the
remaining local trees.

56

•

the tree to which the state switch indicators are
appended is the failure indication leg of that local
tree. If subgroup; Sh has, ni characters then the
local tree for that subgroup has, ni + s - 1,
external states. The additional, s -1, external
states represents the entry states of the remaining
local trees. Note that these local trees are
constructed by applying the Huffman's algorithm on
the appropriate frequencies of the, ni + s - 1,
external states, where the, s - 1, nodes are assigned
a joint relative weight equal to the failure
frequency within Si mUltiplied by the sum of the
weights of the ni characters of Si.

The Encode/Decode Function

Either of two approaches may be adopted for
building the coding tables and control decode local
trees for a particular system environment or an
individual database. First, the generalized
approach where statistical information is collected
from a representative sample of databases within a
system environment. Second, individualized
statistical information is collected from
each database to reflect any variation among the
different databases. The latter approach undoub
tedly produces a more efficient compression. In
that case, each file will have its individualized
coding tables and, consequently, its own level of
security. If greater security is desired, it is possible
to implement a dynamic start code to be used by
the decoder to start processing the bit
stream. This code could be implemented as a run
time option known only to the user of the file and
not available in any database file.

When this implementation is used for transmission,
the switching of translate tables must be
coordinated by the sending host; i.e., if data has
been sent using one local tree structure and is
desirable to change to another tree structure better
suited for the next file to be sent, the sending host
will transmit a file containing the new table using
the current tables. The receiving host acknowledges
receipt of the new tables and instructs the sending
host to load its new tables and wait for the next
transmission which will be returned by the receiving
host using the new table. If the load has been
successful, the sending host will acknowledge
receipt of the transmission using the new tables.
Both ends are now in sync for block count, check
sum, etc. Any failure of this process should
cause both ends to adopt the last successful
pattern.

In the compression process, if the current
character belongs to the same subgroup as that of
the last encoded character, the bit representation of
the current character, as obtained from the coding
table corresponding to the local tree of its
subgroup, is used directly. However, if the current
character belongs to a different subgroup, a 'failure
bit string' (FBS) is transmitted, see table 2. The
FBS string, which is used to indicate a subgroup
failure and to specify the next local tree, consists

57

of two parts: 1) a failure indicator (FI), which is
the bit representation of the failure path through
the local tree, and 2) a switch pointer (SP)
indicating the next local tree to be used.
Table 2 represents the failure bit string matrix
among the various subgroupings of the character
set.

Alpha

Digits

String
Group

Alpha

00011

00

Special 000
Characters

Digits

01011

010

0010

String Special
Group Characters

0100 01010

00010 0000

011

0011

TABLE 2: FAILURE BIT STRING MATRIX: The
above matrix represents the overhead of a failure
from any subgroup to all the other subgroups.

3. PROCESSOR IMPLEMENT A TION

The Multi-Group encoder/decoder is conceived
as an I/O board in a host machine. Parallel data is
exchanged over the bus and the host downloads the
table memories and controls all functions via status
flags and I/O commands. The host is also responsible
for data check sum, data blocking and any
sequential block verification hidden in the first part
of the data. This model .is presented in an
unbundled design which is amenable to hardware or
firmware application in bit-oriented data
transmission disciplines or mass storage systems.

Transforming the MMG algorithm into a finite
state model which is amenable to a hardware
implementation requires attention to the following
concerns:

1. Characters will produce bit strings of
. variable length.

2. Anyone string may represent different
character depending on the local tree where
that character reside.

3. The one character look-ahead capability by
definition requires at least one extra register
to store a character while the following
character is being analyzed.

4. The model must function independently of
any external assistance (i.e. the burden of
look-ahead must reside in the model and not
in the host.)

The design was divided into two parts, a decode
state machine and an encode state machine, see

U1
CD

-

~
u
-< u..
P:::
~
Eo-< z
H

Eo-<
(j)

0
::x::

-

Start Code
Detect

REC
~ XMT REGISTERS

f- ,

FIFO & RCV microcode Address
CONTROL Memory Register

Look Ahead I]:;1 "CT<:

Logic
,

I
1 I I
'ENCODE/DECODE I XMT

~- - -:- -MEMoor- -- -: --- REGISTER
CONTROL

I , I

l ,

ReV PRIMARY r
FIFO SEND

REGISTER
ALTERNATE
SEND
REGISTER

Figure 2: Functional Block Diagram of the Finite State Machine

Ser
1 vat
I Inp

I
I
I
I
I

I
I
r
r
I

Ser
Dat
Out

1al
a
ut

1al
a
put

figure 2. The decode state machine consists of an
input register and control logic, a receive FIFO to
hold decoded characters, the microcode memory and
address register, and one half of the encode/decode
memory. A serial bit stream and clock stream are
sent into the decoder. Upon recognition of a start
pattern the receive transition diagram will advance
according to the 'zeroes' or 'ones' received. A.s ea<;h
accepting state is reached, the pattern contamed m
the receive register at that moment in time is usec'
as an address within the map of the receive-half C'"

the encode/decode memory. The resulting data
word, at the output of the memory, is loaded in tho,
receive FIFO for transfer to the host.

The encode state .machine consists of th:
transmit FIFO, the transmit-half of tht!
encode/decode memory, the primary and . alternatE'
send registers, transmit control logic, look-aheac
logic, and three flags from the receive state
machine which are used to monitor the transmitted
bit stream. As parallel data is processed, the look
ahead logic operates on characters with string
attributes. The characters are applied to the
transmit-half of the encode/decode memory as
addresses. The output data of the encode/decode
memory is loaded into the primary and alternate
send registers. Serial data is transmitted from one
of these two registers at every state of the transmit
machine based on flags obtained from the transmit
data word and three flags coming from the receive
microcode memory which identify significant
patterns and strings.

In addition to its own logic the encode machine
uses the decode pattern detection firmware. The
decode machine will always execute a jump
instruction based on its current state and the next
bit being received. It simply selects one of two
jump addresses provided by a microcode data word.
The choice is made by the next "zero" or "one" being
received as shown in the Receive 'Code tables
outlined in Appendix A. In addition to carrying two
jump addresses, the data word carries map select
bits; these bits select the block of memory required
by the current tree to properly decode a pattern.
The three bit flags identify the current state as
either an accepting state or a failure bit string
state.

The encode machine actually consists of two
distinct sections, the register control section and
the look-ahead section. The register control section
uses the three single bit flags from the decode
machine (which monitors the output bit stream) to
identify the last bit of the three types of strings
being sent -- valid strings, failure indicator (FI)
strings, and switch pointer (SP) strings. The look
ahead logic section examines each character and
determines the bit string to be sent by using a pair
of flags obtained from the transmit-half of the
encode/decode memory. Each memory word in the
transmit-half carries two string fields, map select
bits and two single flags, see appendix A.

59

/

Parallel data is exchanged via FIFO registers
used as the synchronous/asynchronous interface.
Use of a FIFO simplifies the host interface to the
model.

The heart of the state machine is the single
instruction processor which has all the power needed
to climb through a logic tree of binary decisions.
The microcode memory carries two jump addresses:
I) decode map select bits, and 2) register control
bits. The microcode address register simply selects
one of two jump addresses based on the current data
bit being received within a subgroup. In this case,
the map select bits are the same at every location
and the valid pattern bit indicates that an accepting
state has been reached, the current pattern must be
decoded, and the receive register zeroed out except
for the next arriving data bit.

In transmit mode, all receive activity occurs for
one purpose -- to identify an accepting state or
failure within a subgroup. Additionally, in this
mode, the encode/decode memory functions as an
extension of the microcode memory but running at
character instead of bit rate. The requirement. for
one character look-ahead imposed on the transmit
logic requires two extra hardware registers over
what would be required for a one-to-one character
mapping such as the Huffman code [3]. Any further
enhancements such as parsing for string content
(e.g., 2-character look-ahead) would take the model
out of the class of the machine being used here.

Internal Logic

The receive state machine is a series of binary
decisions based solely on the current bit being
processed. The transmit mode uses all the receive
logic with additional look-ahead feature. The
transmit state machine requires a hardware register
both prior to and after the encoding process since a
valid character which has 'string attribute' cannot
be processed until the following character is
examined. Consequently, the character must be
stored in a register until the following character's
attributes are determined.

The encode/decode memory is subdivided two
ways. First, into two parts by function of send or
receive. Second, by the humber of local trees
within each half. In the . decode state, the
encode/decode memory map select bits are obtained
from the receive microcode memory. In the encode
state, the map seleGt bits are obtained from the
encode/decode memory acting as an extension of
the receive microcode memory. In the transmit
map word shown in appendix A, five fields are
defined -- a primary data field, and alternate data
field, map select bits, and two single-bit flags. The
primary data field carries either the string
representation of a valid character or the switch
pointer for an invalid character. The alternate data

. field carries a failure indicator or failure bit string.
The map select bits point to the valid map for a
character regardless of the tree in which it is

located. The two bit flags indicate 'string attribute'
and 'valid/invalid' characteristics within the current
subgroup -- all characters have flags and data
entries in all subgroups.

Decoder

Let M = (K, L, d, qo, F) represent the decode
automaton where K, represents the set of states; L,
the input alphabet; F, the set of final states; qo, the
start state; and 'd', the transition function such that

K (00, 01, 02, ••••••••• 34)
L = (0, 1)
F = (07, 08, OB, OC, 00, OE, 10, 11, 18, lA,

IB, lC, 10, IE, 24, 25, 26, 2A)
qo = (00)-

and, d (qx,O) and d(qx,1) which represent the two
transition states or jump addresses to which the
current state may advance based on the nect input
data bit, are given in appendix B. The closure
property may simply be interpreted from the tables
since the decode automaton must jump to anyone of
two states for every bit received.

Encoder

Let M' = (K', L', d', qb, F') represent the encode
automaton where,

K' = (1024 address locations of the encode
map)

L' = (Full 'character set, Invalid flag, String
flag, and Binary map select bits)

F' = (Set of valid characters within their own
local trees)

qb (111111111111) = Address of start code
pattern

and, where the valid transition functions for the
alpha, digits special characters and string

Binary Flag Alpha Digits
Conditions

iNV G STR d'(q~, 0, 0, 11) d'(q~, 0, 0, 01)

INV G STR d'(q~, 1, 0, 11) d'(qx, 1, 0, 01)

iNVG STR d'(qk, 0, 1, 11)

INV G STR d'(qk, 1, 1, 01)

characters are represented in Table 3. Naturally,
d'(q~, 0, 1, yy) = 0 for yy = 01, 10, 00 since a
character cannot be both 'valid' and 'string' in any
subgroup except the alpha local tree, and d' (q~, 1,
1, yy) = 0 for yy = 11, 00 since a character can be
invalid and 'string' only in yy = 01 (digit local tree)
and yy = 10 (special character local tree). The
representation '0' denotes an empty set.

Every character in the valid character set does
produce data in every tree and thus constitutes the
full set of states. The subset of accepting states
are the address locations represented by each
character within a valid tree. Additionally, in the
primary data field, every address location in every
tree carries either a valid string to represent a
character or a switch pointer to the tree where that
character is valid. The alternate data field in every
address location in every tree carries either a
failure bit string, a failure indicator or is left
unused in the case of invalid non-string characters.
Any bit combination (if applied to any address
location of any tree) will produce a defined result.

The encoder stage has a more difficult task since
look-ahead logic requires extra registers to accomo
date a character stream with string attributes. If
the current character is valid, the primary data
field carries the encoded string and the alternate
field carries the failure indicator (FI) for that local
tree. If the current character is simply invalid (non
string), the primary data field carries only the
switch pointer portion of the failure bit string and
the alternate data field is meaningless. A simple
failure (see fig. 3) is handled by sending the failure
indicator left in the alternate data register (by the
previous valid character) and appending the switch
pointer (SP) from the primary data field of the
current invalid character.

Any occurrence of a 'string attribute' character
is handled as follows: if it occurs in a tree where it
is valid, it must be saved in a holding register and

Special String

d'(q~, 0, 0, 10) d'(q~, 0, 0, 00)

d'(q~, 1, 0, 10) d'(q~, 1, 0, 00)

d'(qk, 1, 1, 10)

TABLE 3: VALID TRANSITION FUNCTION MATRIX: The above table represents
the valid transition functions for alpha, digits, special characters and string
characters respectively. IN V, STR denote the invalid and string flag conditions.

60

the FIFO dumped to gain access to it. If is is also a
'string' type character, the FI and SP are both sent
from the alternate data field. If it is. non-string
then the saved character is regated to the encode
memory and sent normally. These processes are
outlined on the right half of fig. 3.

A complex failure occurs when a 'string
attribute' character appears in a tree where it is
invalid. Since it is multiply-defined, the next char
acter must be analyzed as before and correct FI G
SP sent. In figure 3, the upper left quadrant
outlines the hardware processes which take place
when a space is encountered after a digit or special
character. (Note that a space 'failure' in the string
or alpha tree still goes only to one other tree).

The encode automaton changes major states at
character or pattern rate instead of bit· rate with
the exception of the look-ahead logic. The serial
bitstream produced by the encode automaton is fed
immediately to the decode automaton for the sole
purpose of identifying accepting states which mark
the end of a variable length pattern transmission.

The encode transition state diagram is presented
in figure 3. The encode memory maps for the alpha
and digits are defined in appendix A. The memory
maps for d'(qk, M, N, 10) for M, N = 0,0 1,0 1,1
and d'(qk, M, N, 00) for M, N = 0,0 1,0 which
represent the special characters local tree and
string local tree respectively, can be similarly con
structed from the data in table 1.

Extensions &: Limitations

Several possible variations may be implemented.
First, the chosen groups do not have to be mutually
exclusive, i.e., some characters can belong to more
than one group. It is sometimes more efficient, for
example, to put the blank character separating two
alpha words in the local tree of the alphabets and a
decimal point '.' in the local trees of both the digits
and the alphabets. Furthermore, the 'string sub
group' can be extended to more than the· blank
character (e.g., zeroes) if desired. However the
hardware logic of the outlined model assumes that
there is only one special subgroup of characters with
'string' attributes; i.e., if a character is in the
'string' subgroup, it can only be a member of one
other major subgroup or class.

A more sophisticated scheme is to let the
Statistics-Gathering phase define the subgrouping of
characters based on the distributional and the
corrolational characteristics of the file being
processed. If the statistics gathering program dis
covered that, in a particular database or trans
mission function , many numeric fields contained a
'$' and a '.', those two characters could be placed in
both the digit and special character groups. The
objective is to eliminate numerous microcode sub
routine calls of the special character group while
encoding the numeric fields of a statistical file.

61

The design presented in this paper is half-duplex.
To implement a full duplex system require duplic
ation of the receive portion of the design.
Additionally, two practical assumptions were made.
First, a start pattern must be agreed upon. Second,
a start group must be agreed upon. The start code
must be loaded in the primary data field at address
"all ones", and the alternate pattern field will carry
the failure indicator for the alpha group, assumed to
be first. Any preamble needed for system synch
ronization can be sent and it will be ignored until
the specific start pattern is detected •. If this start
code were obtained from an I/o register, a password
type security is possible. The design assumes a hard
wired start code.

5. CONCLUSION

A simple two-stage finite state machine for the
efficient transmission of data within a distributed
network was presented. The design is based on a
modified version of the Multi-Group algorithm for
data compression. The discussion throughout. this
paper is intended to stimulate interest and research
in this field of data management by persons possess
ing modest resources without access to a laboratory
with advanced instrumentation.

Acknowledgement
We would like to thank John Dorband (HRB

Singer, Inc, State College) who was kind enough to
review the processor implementation 'of this design
and provide us with his constructive comments.

References

1. Hazboun, K.A. and Bassiouni, M.A. "A Multi
Group technique for data compression". Proceed
ings International Conference on Management of
Data (SIGMOD), Assoc. of Computing Machinery,
Orlando, FL, pp. 284-292, Jun 1982. K.A.Hazboun is
one of the current authors.

2. Huffman, D.A. "A method for the construction of
minimum redundancy codes". Proc. IRE, Vol. 40,
No.9, Sept 1952, pp. 1098-1101. This is the original
paper describing the fact that characters do not
occur with equal frequency along with an explana
tion of how the Huffman coding scheme leads to a
minimum variable length codes.

3. Wells, M. "File compression using variable length
encodings". The comptr. J. 15, 4 (1972), 308-313.
The use of both hardware and software techniques
for coding and decoding data using variable coding
lengths are presented. A graffic representation of a
method of assigning Huffman variable length codes
is also offered. In the current MMG implement
ation, if the map select bits are loaded as all zeroes
in both the encode and decode state machines, then
a one-to-one mapping of characters to Huffman
variable length strings is possible. However, the
MMG algorithm is more efficient that the Huffman
scheme.

* * * * * * * * *

0'1
I\)

Complex Failure of a String Character
(Bit Rate Functions)

1. Regate first character
2. Send correct FI @ SP
3. Inhibit Field Dump
4. Load map selects
5. Gate Patterns to register

Transition occurs on
last bit of start
code sent.

Start State
The start code is loaded into the valid pattern
register and the alpha failure indicator (FI) is
loaded into the alternate pattern register.

Normal Encoding
(Pattern rate function)

1. Send previous pattern at bit rate
(Bit Rate Functions) INVALID & ~TRING 2. Gate data pattern to primary register

1. Store current character
2. Dump current character from FIFO
3. Analyze following character for

string flag and save for 112 above.

Simple Failure
(Pattern Rate)

1; Send previous char F .1.
2. Inhibit FIFO dump
3. Gate new map selects
4. Gate S.P. to Send Register

Normal Encoding
(Isolated string char)

(Pattern Rate)
1. Regate first character
2. Gate data patterns
3. Inhibit FIFO dump

String Exit
(Pattern Rate)

1. Send F.I.
2. Inhibit FIFO
3. Gate new map selects
4. Gate S.P. to send register

3. Gate alt data pattern to alt register
4. Dump current character from FIFO

String Character Encounter
(Bit Rate Function Following Accepting

State of previous character) •..
1. Gate data patterns normally
2. Capture current character
3. Dump current character from FIFO

Simple Failure upon Jump to String Mode
(Pattern Rate Function)

1. Regate first stored character
2. Sent FI ~ SP
3. Inhibit FIFO dump .
4. Load new map selects

Normal String Encoding
(Pattern Rate Function)

1. Send prior pattern
2. Gate data patterns
3 •. Dump FIFO

FIGURE 3: ENCODE TRANSITION STATE DIAGRAM: The encode transition state diagram defines the behaviour of
the transmit state machine within any local treee for any path defined for that local tree. The defined and undefined
paths for each local tree are given in table 3.

'" W

ENCODE MEMORY MAPS
d'(qx, M, N, Il) for M, N = 0,0 1,0

'Ilc
Validl
Invalid
Flag (M)

Encode Memory Map for Alpha

A ~ 41 HEX
I ~ 49
N ~ 4E
o ~ 4F
S ~ 53
T ~ 54
U ~ 55
iil 20
o 30
I 30

32
3 33
4 34
5 35

20
& ~ 26
S ~ 24
UN OF ~ 20

o
o
o
o
o
o
o
o
I
I
I
1
I
I
I
1
1
o

Encode Memory Map for Digits

A ~ 41 HEX
I ~ 49
N ~ 4E
Q ~ 4F
5 ~ 53
T ~ 54
U ~ 55
~ 20
o 30
I 31
2 J2
3 33
4 34
5 35

20
& = 26
S = 24
UN OF

1
I
I
I
1
I
I
I
o
o
o
o
o
o
1
I
1
I

String
Attribute
Flag(N)

o
o
o
o
o
o
o
I
o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
I
o
o
o
o
o
o
o
o
o
o

Primary
Pattern
Output

001
III
100
000
110
101

0111
0110

11
II
II
II
II
10
10
10
10

0110

II
II
II
11
II
11
II
11
11

010
1~0
011
001
101

o
o
o

II

APPENDIX A

Alternate
Pattern
Output

010
010
010
010
010
010
010

0100

010

10
000
000
000
000
000
000

Valid
Map

Pointer

11
II
II
II
II
II
II
II
01
01
01
01
01
10
10
10
10
II

II
11
II
II
11
II
11
II
01
01
01
01
01
01
10
10
10
II

ENCODE MEMORY MAPS for the alpha and digit local trees. In all
cases qk defaults to some character. In the alpha local tree, the
alternate pattern for the blank carries the switch pointer as well as
the failure· indicator. For the digit tree, an undefined character will
be directed to the alpha local tree where, the character can then be
encoded. When a blank is encountered in the digits or special
subgroup, it is necessary for two switch pointers to be present and
selected based on the next character. If another 'blank' is encoun
tered then the failure indicator and switch pointer will send the
automaton to the string local tree. If not, it will send it to the alpha
tree. The encode memory maps for the special character and string
subgroups can be similarly constructed.

<Ix
Accepting Map

d(<Ix,O) d(q", J)

Receive Microcode for Alpha

01
02
03
04
05
07
08
09
OA
OB
OC
00
OE
OF
10
11

03
05
07
09
00
01
01
28
OF
01
01
01
01
20
01
01

04
06
08
OA
OE
02
02
OF
10
02
02
02
02
12
02
02

Receive Microcode for Digits

12
lJ
14
15
16
17
18
19
IA
lB
lC
10
IE
IF

lJ
15
17
19
lB
10
lJ
20
lJ
lJ
lJ
13
13
28

14
16
18
IA
IC
IE
14
IF
14
14
14
14
14
01

State Select.
Flag Bits

o
a
o
o
o
1
I
o
o
1
I

o
o
o
o
o
o
1
o
I
1
1
1
1
1

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

01
01
01
01
01
01
01
01
01
01
01
01
01
01

Receive Microcode for Specia! Characters

20
21·
22
23
24
25
26
27

21
23
25
00
21
21
21
12

22
24
26
27
22
22
22
28

Receive Microcode for String

28
29
2A
2B

29
00
29
12

2A
2B
2A
20

o
o
o
o
1
1
1
o

10
10
10
10
10
10
10
10

10
10
10
10

SP

o
o
o
o
o
a
o
o
o
o
o
o
o
o
o
o

1
o
o
o
o
o
o
o
o
o
o
o
o
o

1
o
o
o
o
o
o
o

FI

o
o
o
o
o
o
o
I
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
I
o
o
o
o
o
o

o
o
o
1
o
o
o
o

o
1
o
o

APPENDIX B

DECODE TABLES. The above tables represent the complete state
function for the receive state machine of the four subgroups of the
example given in table 1. d(Qx, 0) and d(Qx, 1) represent the two
jump addresses to which the current state may advance based on
the next input data bit. The actual data output defined by the
accepting states can be found from the transition state
diagram (fig. 2) corresponding to each address (q) and these
tables, e.g., locate the first 'I-Flag' in the Accepting'State column
at address 07 which represents an '0' in the Transition State
Diagram of figure 1.

A Relational Database Machine for Efficient Processing of Statistical
Queries

Hamid Farsi and John Tartar

Department of Computing Science, University of Alberta
Edmonton, Alberta, Canada

Abstract

This paper presents the design of a data base machine for sup
porting statistical data bases. The primary objective of this research
is to introduce an architecture which performs efficiently in executing
relational operations on fully transposed files. This objective is met
by utilization of two functionally specialized subsystems: category and
summary subsystems. The category subsystem exploits the parallel,
content addressed search capabilities of associative memories (AM) while
the summary subsystem employs a set of functionally equivalent proces
sors suitable for evaluating statistical functions. In order to support
processing of category attributes, the design of an extended associative
memory has been considered and its features are presented. The most
important feature of this AM stems from its ability to sort selected
tuples of a relation, with respect to several attributes simultaneously
and at the same time to produce an inverted list f6r each attribute.
Sorting is performed by enumeration. The sorted inverted lists are used
for efficient execution of relational projection and join operations.

1. Introduction

Problems associated with the manage
ment of large data bases have received
the attention of many computer designers
in seeking an efficient solution. As a
result, a number of design proposals have
been appearing, offering solutions from
software optimization techniques to hard
dware implementation of data base manage
ment system functions. The variety of
solution alternatives have appeared to
mark the innovation of a computer archi
tecture for data base applications, known
as a Data Base Machine (DBM). A DBM is
defined as a dedicated backend computer
which manages the data base and performs
the requested operations on data with the
objective of releasing the mainframe from
difficult and time consuming data proces
sing tasks.

Statistical database management
systems have different applications from
traditional DBMS, although they suffer
from the same problems to some extent.
There have been few specific DBM design
proposals for handling statistical data
queries. An example is the design of MAS
by Hawthorn [1] which has a limited
capability and cannot be considered a
true DBM, but rather a multiprocessor
complex that handles decompression and
assembly of tuples in statistical queries.

64

The problems and characteristics of
statistical data base queries,are intro
duced in section 2, upon which the
design objectives will be based. Section
3 discusses the solutions provided by
existing DBM designs and section 4 pre
sents architectural features of the pro
posed DBM in supporting statistical data
operations. A short description of the
system architecture follows in section
5. Section 6 presents an implementation
of relational operations and an algori
thm for a sorting scheme. Finally, sec
tion 7 presents some concluding remarks.

2. Query Processing - Characteristics and
problems

Execution of a query on a data base
mainly consists of three processing
phases: data transfer, data qualification
and data manipulation. During the data
transfer phase, the required raw data are
brought into the processors' memory from
secondary storage devices. The processor
then performs a search operation on the
contents of its memory, selecting those
tuples that satisfy the selection condi
tions, thus the qualification phase. In
the data manipulation phase, the speci
fied operations (such as updating, aggre
gate operations, statistical function
evaluation, etc.)" are executed on the
qualified tuples.

Statistical database systems
generally are concerned with evaluation
of statistical functions on a large set
of selected tuples. Thus, each phase of
statistical query processing makes a
nonnegligible contribution to the overall
execution time. Detailed descriptions of
statistical data base characteristics can
be found in [2] and [3].

Two important characteristics of
statistical queries should be mentioned
here. In statistical queries normally a
small number of attributes are required
to be processed. Moreover, attributes of
relations, based on their usage pattern,
can be classified as category arid summary
attributes. However, the role of category
and summary attributes may change for
different queries. This implies that
every attribute of a relation can be in
either class.

It has become evident that the data
transfer phase causes the most serious
problem in processing queries on large
data bases. This is mainly due to the
movement of a considerable amount ofre
dundant data between the processor memory
and secondary storage devices. This prob
lem becomes more severe for statistical
data bases in which size of relations
(tables) are very large in terms of both
cardinalities and record size.

In a single processor architecture,
the system performance in evaluating
complex statistical functions with a
large set of numeric data can degrade by
becoming CPU-bound, even if I/O overhead
is disregarded. Similarly, the execution
of a complex operation such as a rela
tional join in the qualification phase
requires a considerable amount of CPU re
sources. These imply that in a sequential
processing architecture the data manipu
lation and qualification phases may in
deed degrade the system performance.

3. Some existing solutions to the
problems of statistical queries

The major contribution of DBMs in
processing data base queries is that of
enhancing the system performance through
facilities that reduces the time required
for the data transfer phase. This has
been accomplished by the use of special
processors, referred to as filters.
Examples of DBMs employing these devices
are, DBC[4], SPIRIT-III[5], CAFS[6] and
DIALOG[7]. Since the processing speed of
filters in these machines match the speed
of data transfer, the data transfer and
qualification phases are processed

65

concurrently. However, performance of
these machines for statistical data bases
degrades for two reasons: First, the size
of records in relations of statistical
data are larger than the size of records
in a normalized relation. As a result,
there will be fewer records on a track of
a disk, causing a fewer number of records
to be processed in each disk revolution.
Moreover, regardless of the number of at
tributes required by a query, the entire
record must be transferred to the filters.
Second, because ot the high selectivity
factor in statistical data, many records
will pass the filters to the processor
memory, causing a decline in the filters'
potential use and movement of unwanted
attributes. In the design of SPIRIT-III,
a group of attribute filters is utilized
to remove the unnecessary attributes from
the selected tuples. The same capability
can be provided for in other d~signs.

A better solution to the problem of
data staging is offered by a special
physical storage structure, referred to
in the literature as fully transposed
files, in which attributes of a relation
are stored on separate files. A fully
transposed file structure facilitates the
transfer of only those attributes
required by the query, not the entire
relation. As a result, the data transfer
time as well as processing time will be
reduced considerably. An example of a
statistical data base system utilizing
transposed files is RAPID [2] which is
operational at Statistics Canada.

Taking the nature of statistical
functions into account and considering
the theory of statistics and mathematical
set theory, the applicability of multi
processor parallel architecture for the
efficient evaluation of statistical func
tions is clear. For example, in order to
evaluate a statistical function such as
variance, covariance, or a regression
model in terms of a large set of numeri
cal data, it is possible to partition the
given set into several subsets and assign
the processing of each subset to an indi
vidual processor. The final value of the
function can be computed by combining the
results produced by all the processors.
This property also holds for relational
operations. Therefore, the processing
time of the data manipulation and quali
fication phases can be reduced by use of
an architecture which utilizes parallel
processing elements. Although few data
base machine designs have explicitly dis
cussed their application to statistical
data bases, multiprocessor architecture
has been included in most of the proposed
designs.

4. Architectural features

The storage structure used in this
design is the fully (completely) trans
posed file. It is concluded in [2] and [8]
that the performance of transposed files
declines as the number of attributes
required by a query increases. In order
to remove this dependency, a group of
devices are employed which are capable of
searching on different files in parallel
while preserving the relationships
between the files. In the realization of
parallel processing of files (attributes)
a storage strategy is used to facilitate
the parallel transfer of data from
storage devices to these processors. This
requires the partitioning of attributes
into several equal size files, each
stored on a separate device. e.g. a track
of a cylinder in magnetic disk units. The
detail description of the storage layout
is given in section 5.

The processing time of the qualifi
cation phase depends on the type of rela
tional operations involved. It ranges
from a simple selection operation on a
single relation to a m-attribute join op
eration on (m+1) relations. Join is the
most important and difficult operation
that should be efficiently handled in a
design. It is obvious that the best
possible method of implementing a join
between two or more relations is by means
of a sort-merge which works essentially
on presorted lists of records.

The effectiveness of inverted files
for th~ efficient access of data in a
large data base is well understood. But
because of the large number of tuples in
relations, the versatility of data and
the uncertainty in usage pattern of
attributes, the process of producing,
sorting and maintaining inverted files is
very ~ime consuming. These facts detract
from their general usefullness and can
contribute to an overall degradation in
system performance.

This architectural design introduces
a parallel algorithm which generates
run-time inverted lists for one or more
attributes of selected tuples. With this
feature, it is possible to join two or
more relations in O(C/N) time complexity,
where C is cardinality of the relations
and N is the number of processors. The
benefit of inverted lists then can be
realized in the implementation of complex
relational operations and in the evalua
tion of statistical functions in data
qualification and manipulation phases
respectively. A set of special-purpose

66

parallel processors are utilized in order
to process these two phases of the query
processing efficiently. A description of
this architecture is provided in section
5. For convenience, new names have been
adopted for the components of the system
architecture which are self explanatory
in the context of statistical data base
characteristics.

5. System architecture

The overall architecture of this
system is composed of three functionally
specialized subsystems: the storage sub
system, the category subsystem and the
summary subsystem. Figure 1 shows the
conceptual system architecture of this
design. As the names imply, each subsys
tem is devoted to process a class of at
tributes with different characteristics.

Category Category
subsystem <

attributes

Storage
subsystem

Summary Summary
subsystem <

attributes

To the Host computer

Figure 1 - Block diagram of the system
architecture.

5.1. Storage subsystem

Moving head disks with parallel read
write capabilities are employed as secon
dary storage devices. Relations of the
data base are stored on tracks of the
disks as fully transposed files. The
tracks are partitioned into equal size
pages, each containing an attribute or
part of an attribute. Figure 2 shows the
partitioning of relation EMPLOYEE into
equal size pages and storage layout of
the attributes of this relation on tracks
of a cylinder. With this storage layout

•

the data staging time is minimized since
only those attributes required by the
query are staged into the memory subsys
tems. Maximum parallelism can be achieved
in response to a data staging request by
the device controller's parallel trans
mission of as many pages as can be
handled by the other subsystems.

ENO NAME JOB SAL
(1) (1 , 1) (1 ,2) (1 , 3) (1) (1)

100 Smit h,Jo seph SECIl 10000
101 Jone s,Su sanll MGRIl 30000
102 Brow n,Ka thyll ENGIl 22000
103 Smit h,Jo hnllll MGRIl 30000
104 Smit h,Pe terll TECH 20000
105 Whit e,Ha rold MGRIl 25000

ENO NAME JOB SAL
(2) (2 , 1) (2,2) (2,3) (2) (2)

106 Gray ,Tom Illlllll SECIl 10000
107 Hall ,Ted Illlllll TECH 15000
108 Gree n,Mi ke llll SECIl 10000
109 Brow n,St evell MGRIl 35000
110 Thorn as,L isall MGRIl 32000
111 Grov e, Pa ulllt! SECt! 10000

(a)

Tracks page page 2

ENO(1) ENO(2) •

2 NAME (1,1) NAME(2,1) •

3 NAME(1,2) NAME(2,2) •

4 NAME(1,3) NAME(2,3) •

5 JOB (1) JOB(2) •

6 SAL (1) SAL(2) •
(b)

Figure 2 - Representation of a partitioned
transposed file on tracks ofa magnetic
disk unit.(a) Partitioning of relation
EMPLOYEE into equal size pages. (b) Storage
layout of pages on tracks of a cylinder.

67

5.2. Category subsystem

This is the most central subsystem
of the proposed design. The primary objec
tive of the design of this system is to
extend the parallel search capabilities
of content-addressable (associative)
memories in the efficient processing of
relational operations on transposed
files. The basic function of this subsys
tem is to flag those tuples that have
satisfied the query conditions and to
generate addresses associated with the
flagged tuples. Based on its functional
characteristics, this system can be
veiwed as a three-level hierarchy of
components, shown in Figure 3.

Level
3

Level
2

Level
1

From stora e subsystem

2 • •

Associative Memories

• •

Merger/Projector

<

Address
generator

>

Counter

To IP Processors

N

Figure 3 - Logical view of category
subsystem.

On level 3 of the hierarchy there
are N distributed-logic associative
memories, each with a comparand, a mask
and two response registers x and y. The
structure of the associative memories is
similar to the memories designed in [9]
with the exception that the capabilities
of the memories employed here are limited
to equality and threshold searches only.
The hardware implementation of equality
threshold (=,<,») functions in an assoc
iative memory involves no complex logic
circuitry. Moreover, the resulting sig
nals need to propagate in one direction
only, along the bits in a word, making
the words functionally independent from
one another. Consequently, the length of
memories can be expanded easily to accom
modate larger sets of data.

On Level 2 of the hierarchy there is
the PROJECTOR/MERGER that processes the
responses generated by the associative
memories of the level below. This
component is an associative memory with
equality search capability. Each bit
column of this memory corresponds to an
associative memory on Level 3. Its
function is to project the results of
search on associative memories and to
maintain these results for future
decisions so that previously selected
tuples do not participate in subsequent
searches. Its major function however, is
to merge (combine) the responses genera
ted byAMs to produce the final results
which satisfy the query expression in
its entirety.

On Level 1 of the hierarchy there
are two components: a parallel counter
and an address generator. The parallel
counter is constructed from a set of full
adders, and is capable of counting the
number of responses in an array of size n
in 0(10g2n) gate delay times. Detailed
discussion for this device can be found
in [10]. The task of the address genera
tor is to gener~te quickly addresses of
the tuples satisfying the query condi
tions and to transfer these addresses to
the summary subsystem. This component
resembles the hardware implementation of
a heap tree which is capable of genera
ting addresses of K responses in a mem
ory of size n in O(log n+K) gate delays.

5.3. Summary subsystem

The primary function of this system
is to perform the required statistical
functions on summary attributes of the
qualified tuples. A set of functionally
equivalent parallel processors called
Post-Processors (pp) are used for this

68

purpose. Befor.e PPs apply the specified
functions on selected tuples, the data
produced are collected and partitioned
into equal size, disjoint subsets. Data
can be addresses, attribute values or
both. Figure 4 shows the block diagram

-of this system.

. From one or more
;:::;:;:..::.::..;;z.;:::~

subsystems

• • •
Intermediate Processors (IP)

• •
Post Processors (pp)

2 3 • • M

Memory Banks

From storage subsystem

Figure 4 - Block diagram of summary
subsystem.

The process of collecting and group
ing the data is carried out by a set of
processors called Intermediate Processors
(IP). The purpose of partitioning addres
ses into disjoint subsets is to minimize
the access conflicts to pages of summary
attributes. The purpose of attribute
partitioning is to distribute the work
equally among postprocessors. The PPs
have access to a common memory bank which
contains the summary attributes. A memory
controller is in charge of scheduling

i access requests and resolving any confl
icts, using a predefined priority scheme.

6. Relational Algebra Processing

In most statistical data base
queries apart from statistical functions
and analysis, the process of selecting
qualified tuples involves the use of the
same set of operations as in relational
data bases. In this section we describe
the implementation of relational algebra
operations (i.e. selection, projection
and join). Because parallel sorting has
been used as a basic building block in
the design of algorithms, we describe the
sorting algorithm first. The following
notations are used in illustration of the
algorithms.

Notation

N : Number of Associative Memories and
Intermediate Processors.

M Number of Post Processors.

K Length of associative memories in
number of words, as well as the
length of a page of an attribute.

w Length of a word in array memory of
each associative memory.

C. : Cardinality of relation S.

IS.sl : Average length of a data item in
attribute s of relation s.

nsa, nca : Number of summary and category
attributes specified in a query.

p. Maximum number of pages of category
attributes that can be staged into
the associative memories and
processed in parallel, i.e. p.=N/nca.
This set of attributes will be
referred to as segments. A segment
therefore occupies (Is.s. I/w)*nca
associative memories.

d. : Number of unique tuples in a
projected relation.

L. : Number of loads required to process
the entire set of files containing
the category attributes, i.e.
L.=C./(K*p.) •

A relation is divided into equal
size segments, each segment contains K
tuples, except possibly the last one. A
segment is spread over as many files as
there are attributes in the relation. A
page of a transposed file may be stored
on several tracks of a cylinder as shown
in Figure 2. Without loss of generality,
it is assumed that IS.sl<=w. That is, a
page on a track contains a page of an

69

attribute "in its entirety and moreover, a
page of an attribute occupies exactly one
AM.

Parallel sorting algorithm

The sort algorithm is divided into
three stages which can be processed in a
pipeline manner. In the first stage, the
category subsystem with the help of IP
processors sorts contents of the associa
tive memories by enumeration. This
process is repeated until all the records
have been staged into the associative
memories and sorted. At the end of this
stage, each IP processor will have L.
lists whose elements are unique and
sorted within each list.

In the second stage, each IP proces
sor performs a binary sort-merge on its
sublists. The controller, based on infor
mation provided by IP processors, deter
mines a group of disjoint subintervals
and assigns a postprocessor to"each sub
interval. Each IP in turn divides its
sorted list into M groups, belonging to a
different interval and transfers each
group to the corresponding post
processors.

In the third stage, a post processor
receives N sorted lists, one from each IP
and performs a binary sort-merge on these
lists. As a result, each PP will have in
its possession a sorted inverted list of
length d./M whose elements are greater
than the elements in its left hand side
processors and less than those in its
right hand side processors. Second and
third stages are clear and need no expla
nation. The algorithm for the first stage
is provided below:

To illustrate the algorithm consider
the relation 5 with n attributes
SI,S2, •.• ,So to be sorted with respect to
each of the attributes SI,S2, ••• ,Sm
(m<=n) while their association is to be
represented by inverted lists. The data
items s i , 1, S i ,2' •.• , S 1 ,m are referred to
as the values of attributes SI,S2, ••• ,Sm
in the ith tuple of the segment in the
AMs, as well as the content of the ith
word in the associative memories holding
the attributes SI,S2, •.. ,Sm.

For simplicity, assune that the
attribute sJ is stored on the jth AM.
CI, J is also referred to as the rank of
Sl ,J among all the words in the jth AM.
Each segment of relation 5' (S.SI'
i=1,2, ••• ,m) in the AMs is associated
with an IP processor which receives the
data and acts accordingly. Since each
segment in an AM is processed indepen-

dently, for simplicity throughout the
algorithm we consider one segment and its
associated IP processor.

Algorithm - Sorting a relation on m
attributes:

Step 1 - Load associative memories with
one page of the attributes Sl'SZ,'"
and Sm.
Let i = 1

Step 2 - Move the contents of word i into
the comparand registers, i.e.
Si,l,SI,Z, ••• ,SI,m forms the content
of comparand registers associated
with AM 1 ,AM z , ••• ,AMm, respectively.

Step 3 - Perform a search on these AMs.
As a result, response bits XjYj
(j=1,2, ••• ,k) will be in one of 00,
01 or 10 states, indicating that the
content of word j is greater than,
equal to, or less than the argument
in the comparand register.

Step 4 - Employ the parallel counter to
enumerate number of "10" responses
(less than comparand value) in each
AM. For this case, m numbers
CI,l,CI,Z, ... ,Ci,m are generated.

Step 5 - Transfer these data t~ the
corresponding IP. The record which is
transmitted has the following format:
(SI", ••• ,SI,m:CI", ••• ,CI , m).

Step 6 - Let i = i + 1, if i < K then
proceed to Step 2, else proceed to
Step 7.

Step 7 - If there are more pages to be
processed, proceed to Step 1, else
STOP.

While the category system executes
this algorithm, the corresponding IP
processor rearranges the attributes and
produces the inverted lists as follows:
For each segment of attributes in AMS, it
uses m data arrays AI, Az, ••• ,Am with the
same length K as the AMs, and m mark-bit
arrays MAl, MA z , ••• , MAm also the same
length K. Each element i of these data
arrays has a field pointing to a bucket.
This bucket is used for storing the
addresses of tuples associated with the
key i. The mark-bit arrays are used to
mark and later locate the elements of the
data array which contain a key value.

Step 1 - Allocate a new set of arrays AI,
A2 , •• • , Am.

Step 2 - Receive from category system
(.51, " ••• ,5j ,m:CI, 11 ••• 'C, ,m).

70

Step 3 - Store the key values in their
corresponding data arrays at proper
locations and the tuple IDs in the
associated bucket.

For j = 1 to m do
begin
MAj(Ci,J) = 1
Aj(cl,j} = Sl,j
bucket(c I, j) = bucket(c I, j) u i
end

Step 4 - If there are more tuples to be
processed, proceed to 5tep 2, else
proceed to Step 5.

Step 5 - Arrange the inverted lists - To
do this, the mark-bit arrays MA are
used to locate the keys in the data
arrays and to eliminate any existing
empty locations.

Step 6 - If there are more pages to be
processed, proceed to Step 1, else
STOP.

Figure 5 shows the implementation of this
algorithm on a single column of data.

AMi

o S3

S1

2 S4

3 53

4 S4

5 S3

6 S2

Figure 5 -

(rank,da
I
ta, addres.s)

t
1 , S2
5 , S4
0 , S 1
2 , S3

~ ~
0 S1

1 52

2 S3

3 0

4 0

5 54

6 0

Data array

Implementation
algori thm.

, (6)
, (2,4)
, (1)

,(~

e_> (1)

e-> (6)

·e __ > (0, 3 , 5)

e __ > (2,4)

in IP I

of the sorting

In order to derive the order of time
complexity of the sort algorithm relation
S is considered to be sorted on its prime
key attribute, i.e. m=1 and all the
values in the attribute are distinct. Let
SI be the time complexity of the ith
stage. The time of the first stage is
equal to L. times the time of data
staging plus the time of sorting N pages
L. times. Thus, S,=O(C./N+C./N). Stage 2
is a binary merge on L. lists, each K
words long. Therefore,
Sz=O((C./N) *logzL.). Similarly, stage 3 .
is a binary merge on N lists, each
C./(N*M) words long. Thus,
S3=O«C./M)*10g zN). Therefore, the
overall time complexity of the sorting
algori thm is :
O(C./N + (C./N)*logzL. + (C./M)*logzN).

Selection operation

Selection is the simplest but very
important relational algebra operation.
Selection conditions are normally presen
ted in a disjunction or conjunction nor
mal form (ONF,CNF). An expression in ONF
can be evaluated for all the K*p. tuples
residing in AMs simultaneously. The
processing cost of the selection opera
tion in terms of the number of compari
sons, is O(L.). For the best case where
nca=1, the required number of compari
sons is C./(N*K) and for the worst case
where nca=N, the number of comparisons
would be C,/K. In either case, data can
be searched faster than the storage sys
tem can provide them. However, due to the
distinct storage organization, the effect
ive data transfer rate of the storage sys
tem is higher than those OBMs employing
tuple oriented schemes. Thus, this system
provides a considerably better response
time which is an advantage over other
data base machine designs.

Projection operation

Since fully transposed files are the
basic storage units in this design, pro
jection of a relation on specified attri
butes already exists. However, in order
to eliminate duplicate tuples among these
attributes, the sorting algorithm is
employed. Therefore, the time complexity
of this operation is the same as the
sorting algorithm except that, the term
C. is to be replaced by d., number of
unique tuples in the projected relation.
The cost of data staging will remain the
same.

Join operation

As in projection, the sorting algo
rithm is used to perform a join between

71

two or more relations. To join relations
R(a~b) and S(b,c) on attribute b, the
sorting algorithm generates an inverted
list for each attributes R.b and S.b.
These lists are then distributed over the
PPs. Postprocessors merge the lists and
with the occurrence of a hit (e.g. equal
ity), addresses in associated buckets
give the logical addresses of the tuples
in Rand S relations. These addresses
then are translated to the physical loca
tion addresses in the memory bank where
the summary attributes are residing.

If any statistical function is to be
evaluated on summary data, the PPs will
carry it out and transfer the result to
the user. The time complexity of executing
a join operation in this system is equal
to the time of sorting both relations,
one at a time, plus the time of parallel
merging of two inverted lists. This time
is proportional to the cardinalities of
the relations involved, divided by M.

7. Summary and conclusions

The processing steps involved in
executing statistical queries have been
specified. Based on these specifications
and the characteristics 6f SOBs, the
design of a OBMarchitecture is proposed
which provides solutions to some of the
problems of statistical query processing.
Since the data staging phase of a query
execution is the main factor in degrada
tion of system performance, the objective
of this design is to provide for effi
cient performance in executing relational
operations on transposed files. This ob
jective is met by distributing the work
over two functionally specialized subsys
tems, each of which is responsible for
executing the required operations on a
different class of attributes, i.e. cate
gory and summary attributes. A partitioned
AM is used as the main component of the
category system. Conceptually, the assoc
iative memory can be viewed as a hierarch
ically structured associative memory with
equallty-threshold search capabilities.
Motives behind the design of this AM can
be seen in the following statements of
merits :

1. In processing fully transposed files,
the relationship between attributes of
tuples must be kept properly. Because of
the tabular structure of AMs, they are
suitable devices for serving this
purpose.

2. Parallel content-addressed search
capabilities of AMs will be enhanced, By
partitioning AMs into equal, smaller, .and

independent AMs, it is possible to carry
out search operations on different
category attributes specified in one or
more queries. Thus, a faster search can
be achieved.

3. In executing a selection operation on
a single relation, regardless of the
number and types of clauses in the query
expression, responses can be produced
with one comparison.

4. The most important feature of this
component is its ability to sort the
selected tuples with respect to several
attributes simultaneously and at the same
time produce an inverted list for each
attribute. Sorting is performed by
enumer- ation, i.e. the number of keys
less than a particular key in an array
specifies the location of that key in the
array, had it been sorted. The sorted
inverted lists are used for
implementation of com- plex relational
operations, projection and join.

A considerable improvement in proc
essing statistical queries can be achie
ved by means of functionally specialized
subsytems. Distribution of statistical
query phases over these subsystems en
hances the system performance both in
terms of response time and throughput.
This improvement is due to the following:
First, because of functionally special
ized subsystems, parallel pipeline pro
cessing is achieved.
Second, the problem of data movement bet
ween system components is alleviated to
the extent that only required category
attributes will be staged into the cate
gory subsystem and only qualified sum
mary attributes are brought into the sum
mary subsystem.
Third, because of implicit representation
of qualified tuples by means of inverted
lists and addresses, data exchange be
tween processors causes no communication
di ff iculty.

72

References:

[1] Hawthorn, P. "Microprocessor Assisted
Tuple Access, Decompression and
Assembly for Statistical Database
Systems," Proceedings, Eighth Int.
Conf. on VLDB, Sept. 1982, pp.
223-233.

[2] Turner, M. J., R. Hammond and P.
Cotton, "A DBMS for Large Statistical
Databases," Fifth Int. Conf. on VLDB,
Oct. 1979, pp. 319-327.

[3] Shoshani, A. "Statistical Databases:
characteristics, problems and some
solutions," Proceedings, Eighth Int.
Conf. on VLDB, Sept. 1982, pp.
208-222.

[4] Banerjee, J., D.K. Hsiao, and K.
Kannan. "DBC - A Data Base Computer
for Very Large Databases," IEEE
Trans. on Computers, vol. C-28, NO.
6, June 1979, pp. 414-429.

[5] Kamibayashi, N. and K. Seo, "SPIRIT
III: an advanced relational data base
machine introducing a novel
data-staging architecture with Tuple
Stream Filters to preprocess
relational algebra," AFIPS Conf.
Proc., 1982, pp. 605-616.

[6] Babb, E. "Implementing a Relational
Data Base by Means of a Specialized
Hardware," ACM Trans. on Data Base
Systems 4, NO.1, March 1979, pp.
1-29.

[7] Wah, B. W., and S. Bing Yao. "DIALOG
a Distributed Processor Organization
for Database Machine," AFIPS Conf.
Proc., vol. 49, 1980, pp. 243-253.

[8] Batory,'D. S. "On Searching
Transposed Files," ACM Trans. on
Database Systems, Vol. 4, No.4, Dec.
1979, pp. 531-544.

[9] Ramamoorthy, C. V., J. L. Turner and
B. W. Wah, "A Design of a Fast
Cellular Associative Memory for
Ordered Retrieval," IEEE Trans. on
Computers, Vol. c-27, pp. 800-815,
Sep~. 1978.

[10] Foster C. C. and F. D. Stockton,
"Counting Responders in an
Associative Memory," IEEE Trans. on
Computers, Vol. c-20, pp. 1580-1583,
Dec. 1971.

SIBYL: An Economist's Workbench

Sandra I. Heiler(+)and Rita F. Bergman(-)

(+) The World Bank, 1818 "H" Street, NW, Washington, DC 20433.
(-) Computer Corporation of America, 1600 Wilson Boulevard,

Arlington, VA 22209

ABSTRACT

This paper presents a report on work in progress on the development of the SIBYL
system, an economist's workbench at the World Bank. The principle objectives are to provide
capabilities for sharing data among a large and diverse user community, handling a growing
number of databases, and providing access to a collection of analytical and modeling packages.

The implementation is oriented towards using off-the-shelf software, a large mainframe
with Model 204 DBMS to handle the databases, and a group of microcomputers running UNIX. The
key components integrating this architecture are a database template, a set of generalized
procedures for browsing, updating and extracting data, and translators between the databases
and the analytical and reportwriting packages.

The project has been in progress
for three user groups. It will continue
ment focused on providing a batch update
user interface, and establishing a local

INTRODUCTION

SIBYL is a specialized computing
system dedicated to satisfying the needs
of economists for managing economic and
social data - specifically timeseries -
and for analyzing, projecting and
presenting them. The system is currently
under develoment by the World Bank,
supported by consultants from Computer
Corporation of America, System House
International, and several other com
panies.

The concept of a workbench
derives from the idea of providing a
suitable environment for access to
materials, and carefully selected tools
for economists similar to those available
to other professionals, e.g., the car
penter's workbench or the chemist's
laboratory. The successful implementa
tion[~f the programmer's workbench (UNIX
PWB) demonstrated the feasibility of
providing the needed facilities to sup
port programming professionals through an
integrated computing system. The purpose
of the SIBYL development is to provide a
similarly friendly and complete set of
facilities for economists.

since May 1982 and a prototype system is installed
to evolve over the next year with additional develop
facility, writing validation procedures-, refining the
network. .

73

The World Bank environment places
several specific requirements on any
system to support economic work. First,
it must"be capable of supporting several
hundred economists and researchers 'who
have varying levels of motivation and
expertise in using computing systems, and
whose problems present varying levels of
complexity. Second, the Bank's databases
are large, numerous, and diverse; their
structure will changT2~ver time and their
number will increase •

The functions of the SIBYL system
are to support maintenance and analysis
of timeseries data, primarily social and
economic indicators, and trade, com
modities, and international debt statis
tics. The system provides a central
facility for sharing official Bank data
and distributed facilities for analysis
and presentation of the data. It sup
ports creation and management of
timeseries databases, statistical

analysis, econometric modeling,
reportwriting and graphic presentation.

This report describes work in
progress on the system. We believe that
it embodies an uncommon but effective
approach to storing and processing

timeseries data and an innovative use of
microcomputer technology.

SYSTEM FEATURES

The implementation of the system
in providing for management and analysis
of timeseries data differs from most
other approaches in three important ways:
First, it uses a genf511-purpose commer
cial DBMS, Model 204 ,for management
of its databases. Second, it provides a
loosely integrated collection of
indi vidual packages, a .. too1-box" of
facilities for statistical analysis,
modeling, reportwriting and graphic
presentation, rather than a single
monolithic system to support all of these
functions. Not every user' necessarily
will have or use the same tools. Third,
it uses microcomputer workstations run
ning UNIX to perform statistical
analysis, modeling and reportwriting
functions. The microcomputers are linked
to a mainframe where centralized
databases reside.

This approach has both good and
bad points. The main benefit of using a
general purpose DBMS is that it allows us
to provide a full set of data management
functions (including joins) with no time
investment in data management software
development. Also, because the function
of data administration was new in the
Bank when the project started, there was
little knowledge of the available data
and the relationships among them and no
broad, long-range view of the functions
that needed to be performed. Using a
DBMS allows us to put up databases
quickly, to modify their structure where
necessary, to add new databases easily,
and to combine data from disparate
databases in an ad hoc fashion.

There is an obvious disadvantage
to using a DBMS for timeseries. While
its storage and access mechanisms are
reasonably efficient for large and
numerous databases, they cannot be
expected to be as efficient as those
storage and retrieval mechanisms thaY41re
specifically designed for timeseries •
However, the inherent flexibility of the
DBMS in responding to changes in the
number and structure of the databases as

74

well as the variety of the functions to
be performed on them, offsets the higher
cost of processing and storage.

The primary benefits of the
tool-box approach using off-the-shelf
software are that it minimizes software
development time by using existing
software, except for the interfaces
between packages, and it encourages
incremental system releases instead of a
single release at a much later date. It
also provides flexibility for con
tinuously adding new too1s'as new func
tions are required or as new products
become·avai1ab1e. In addition, the tools
are often more powerful, more task
specific, or more appropriate to a par
ticular user's expertise than could be
provided for by a comprehensive system.
In this way, users can be selective in
the portions of the system that they
learn' and use.

The disadvantages of such an
approach are that many of the packages
use different languages and some complex
functions may require the use of multiple
tools, requiring the user to pass from
one language environment to another. To
minimize this we have tried to select
tools with overlapping functions so that
simple tools are available for simple
jobs with more sophisticated tools for
complex jobs, but we have not completely
eliminated the problem.

COMPONENTS OF THE SYSTEM

Each of the major components of
the system is described briefly below.
Some are included in further detail in
the hardware and software architecture
descriptions given later.

The Databases

The databases include various
types of timeseries data, along with
definitions, supporting information (such
as code conversion tables and source and
units information), and explanatory
footnotes that may apply to any level of
data in the database. The system sup
ports official databases (which are only

updated on a fixed schedule after caretu1
validation of the updates), working
versions of the official databases,
(which are continually updated), personal
databases, and extracts from the official
databases (whose contents are frozen for
analysis or for the generation of Bank
publications). The security mechanisms
of Model 204 are used to control the
status of each database. Many of the
databases are relatively large, e.g. 60
million characters. The final number of
databases to be supported is expected to
be several hundred.

A Pro Forma Template

The pro forma template is a guide
for mapping the logical structures of a
timeseries database into suitable Model
204 structures. It is needed for two
reasons: 1) to establish efficient
structures within Model 204 to be used
for handling each of the peculiarities of
the data, specifically timeseries and
footnotes; and 2) to provide some
measure of consistency among disparate
databases so that a standard set of
access procedures can be prepared.

The template accommodates data
that are peculiar in several respects.
Each database contains not only
timeseries data but definitions, support
ing information, and footnotes that may
apply to any data in the database. The
data may contain timeseries of any peri
odicity, including usual ones (such as
fiscal year, annual) and uneven ones.
Multiple periodicites may occur within a
single database or file. (For example,
weekly, monthly, and annual versions of
currency conversion rates are main
tained). If the data are thought of as
multi-dimensional arrays, they are sparse
with respect to all dimensions except
time. (For example, many economic
indicators that are available for the

75

developed countries are not available for
developing countries).

Access Procedures

A set of screen-based procedures
for browsing, updating, and extracting is
provided for each database. Users fill
in the screens with their parameters for
the particular functions they require and
the procedures generate Model 204
requests to perform the functions.

While the overall functions and
basic screen layouts are common to all
databases, the screens and procedures
must be database-specific because each
has its own unique fields and structural
details. These procedures are generated
for each database, because the number of
databases makes it infeasible to
hard-code procedures for each one. The
data needed for generating the procedures
are established by the template and
stored in the database it describes.

Ana1ytica1/Reportwriting Tools

The system includes packages for
statistical exploration, econometric
modeling, spreadsheet analysis,
reportwriting and graphics. Most of the
packages are commerica11y available,
off-the-shelf products but some are
Bank-produced systems that solve problems
specific to the Bank. Many of these
packages have overlapping functions, to
allow users to choose packages based on
their specificity to a particular problem
or the user's familiarity with them.
This also means that a user can apply
very simple tools to simple problems,
reserving the need to upgrade to more
sophisticated tools for complex problems.
The system also includes standard utility
software.

Translators

Because SIBYL uses off-the-shelf

packages that process data in formats
that are different for each package and
different from the databases, translators
must be present for each package to
convert data from the database format to
the package format. Packages that
produce data that need to be stored in
the database (e.g. modeling packages,
which produce projections, but not
reportwriters) also require reverse
translators. To support translation for
packages on the microcomputers, a stand
ard database format is provided on the
microcomputers under UNIX. The extract
procedures place data in this format when
the intent is to process the extracted
data with a package that runs on the
micros.

HARDWARE ARCHITECTURE

SIBYL is implemented on the
central IBM computing facility at the
World Bank which was upgraded from an IBM
3031 to a 3083 in April, 1983. The
operating system is VM, under which CMS
and OS/VS1 run. .Because the IBM center
is run on a cost-recovery basis, users
are obligated to pay for their processing
and storage costs.

In addition to the IBM mainframe,
SIBYL uses Codata M6800Q-based worksta
tions that reside within the environment
of each of the user groups. Each Codata
includes 1 million bytes of memory, a
5.25 inch floppy disk, an 84 million byte
hard disk, and access to a cartridge or
9-track tape drive. Experience to date
indicates that each configuration can
support about five or six simultaneous
users, depending on which packages are
running. Printers may be shared or
dedicated to a terminal. The worksta
tions are purchased outright by each user
group, and continuing costs are for
maintenance only.

The workstation/mainframe
approach was chosen because each type of
hardware provides benefits that cannot be
attained from the other.

The workstations provide
low-cost means of processing
some types of requests,
without incurring the operat
ing and storage costs of
using the mainframe. The

76

recurring costs associated
with running the workstation
are limited almost entirely
to maintenance. They can
provide the needed speed,
power, memory and disk space
for many analytical, report
generation and graphics
tasks. In addition, the
workstations provide users
with a level of control over
their computing environments
that is not available to
users of the mainframe; with
a workstation, users control
the available hardware con
figuration, the load level on
the machine, and the
prioritization of jobs.

The mainframe, on the other
hand, is capable of providing
the high speed, power,
amounts of memory and disk
space that are required for
very long or complex jobs or
for storing and managing
large databases. In addi
tion, many software packages
were designed solely to be
run 'on mainframe computers
and cannot cost-effectively
be ported to workstation
hardware. Finally, the
mainframe is the most logical
place to store shared
databases because it is
accessible by all users.

The workstations are linked to
the mainframe through dedicated phone
lines (9600 baud) and dial-up lines (1200
or 4800 baud). Direct hardwiring is
difficult because the Bank is situated in
several buildings in several different
city blocks. Since the workstation does
not resemble a standard peripheral device
for the IBM software (3270 terminal), the
workstations are connected through a 3270
emulator.

SOFTWARE ARCHITECTURE

The main components of the
software are Model 204, the DBMS that
runs on the mainframe; UNIX, the operat
ing system on the microcomputers; the
analytical packages; the translators; and

the template.

Model 204 was selected to manage
the centralized databases following a
benchmark of several DBMS's for mainframe
computers. The main reasons for its
selection were that it provides the
needed flexibility for continuously
adding new databases or changing the
structure of existing ones; it supports
ad hoc combining of dat'a from different
files; and it is efficient for large and
numerous databases and large numbers of
concurrent users. Model 204 is also used
for other major database applications in
the Bank.

UNIX was selected as the operat
ing system for the microcomputers because
of its increasing use on a wide-range of
machines, the availability of a number of
analytical packages which already run
under it, and the breadth and ease-of-use
of its utilities. It is flexible enough
to support many different kinds of
end-user functions, ranging from, editing
and basic wordprocessing to sophisticated
statistical applications. In addition,
it is a powerful system that supports
system development well. It provides a
large number of commands, and the command
language itself is expandable. Simple
commands may be readily combined to
perform more complex functions. Finally,
because UNIX is a somewhat standardized
system, software that runs under UNIX is
usually portable from one hardware system
to another. As other suitable
microcomputers enter the market, the
software can be easily transferred to a
new environment. This frees SIBYL from
being tied to a particular vendor, or
even a particular processor or architec
ture.

Several analytical and modeling
packages comprise the SIBYL tool box.
These packages run on either the IBM or
the Codata depending on which is the more
appropriate ~nvironment. The packages
include: '

HANDE - A Bank syst'em that
assists in repetitive cal
culations and is particularly
useful for production of
Bank-standard tables.

SAS - A statistica~ package
developed by the SAS Institute.

77

SIM2 - A Bank system for
simple models.

TROLL - An econometric modeling
package developed by the MIT
Center for Computation Research
in Economics and Management
Science.

MULTIPLAN - An electronic spread
sheet from Microsoft.

AMP - A Bank-developed system
that includes a modeling pack
age and a reportwriter that is
especially suited to timeseries.

S - A system for exploratory
statistical analysis'
developed by Bell Labs.,

Translators have been built to
convert from the database structure to
each of the packages formats, and vice
versa as appropriate.

Initially, no translators were to
be provided between packages. This meant
that to pass data from one package to
another, it had to be re-stored in the
database format and then translated to
the second package. We did this to limit
the number of translators that had to be
written. However, since most packages do
not handle supporting information or
footnotes, the process of translation to
the packages involves removing informa
tion as well as reformatting. We have
therefore established a second standard
format for translating to the packages
which does not include supporting infor
mation or footnotes. The most obvious
choice for the second standard format was
the spreadsheet, and translators between
the spreadsheet and several other pack
ages ere under development.

The pro forma template provides a
general format for all timeseries
databases within Model 204. The template
consists of a common set of characteris
tics for data content and structure with
an associated set of metadata. The
metadata facilitates the automatic gener
ation of database-specific procedures so
that new procedures can be produced
whenever a new database is designed and
loaded.

I

All data for a particular
database - timeseries, footnotes, conver
sion tables, ,.other' support information
and the database ,description (field
names, datatypes, ,etc.) -are stored in a
single Model 204 file, using different
record types. Within this file, a common
set of index fields (or keys) is used.
Each record type is associated with a
particular combination of index fields.
For examp1e,in a database where
timeseriesare identified by country,
indicator, and source "record-types are
provided for country data, indicator
data, country/indicator data,
country/source data, etc. The template
~pecifica11y identifies index fields,
informational fields, footnotes, peri
odicity, user-defined period names, and
period indices.

Index and data fields are named
and described by the database desigf!.er.
Other fields have standard names and
descriptions. The system distinguishes
footnotes from user-defined data fields
(which may contain textual information)
because footnotes must be recognized and
treated specially ,by computational, .
programs (which inform the user of their
presence) and report generators (which
automatically print,them).

STATUS/PLANS

The project has been under
development since May 1982, and the
prototype system was released to an
initial group of users in early October.
There are ~urrent1y three distinct user
groups in different divisions in the
Bank. Since the.re1ease of the
prototype, new information.has,been
learned about the databases and user
behavior that was not evident at the
outset of the project. Our experience
thUS' far ind'i~ates that:

The template is flexible
. enough to handle specifica

tions of virtually all
timeseries ~atabases of the'
types found in the ,worid
Bank. In addition, storage
and processing of databases
designed under the template
are reasonably efficient.

78

The programs needed to gener
ate database-specific proce
dures are sophisticated and
complex. Although it is
feasible and effective to
generate these procedures, it
requires more effort than was
previously assumed.

Interactive data entry and
updating on the mainframe are
considered to be expensive by
the users for large amounts
of data. The generated
procedures must also provide
for delayed batch updating
and must be prefaced by an
inexpensive facility for data
entry. Transaction valida
tion and modification prior
to initiating the batch job
must also be present to
protect the integrity of the

. database.

Extracts from the Model 204
databases and working files
on the Codata for batch
updates present a data'
management problem that is
separate from the management
of the databases themselves.
The operating' environments on
the IBM and UNIX on the
Codata do not provide suffi
cient tools to handle this
.easily.

The next phase of theCSEW
project will focus on three areas of
development. The first is providing a
reliable facility for manipulating
extracts on the workstation, and sending
batch updates to the mainframe. Our
initial evaluation Y~1 resulted in the
selection of Ingres to run on the
Codatas. The facilities will minimize
connect time on the IBM, provide a 10ca1-'
ized capability for data manipulation"
including arithmetic and Boo1eantechni
ques, and provide an audit trail which
can be used to generate transactions for
batch updates. Several concerns are
raised with using a DBMS on the worksta
tion, such as performance, particularly
with respect to the multiple users, file
sizes, etc;'hand1ing duplicate data on
the IBM and Codata; and the impact on
package translators. These issues, as
well as others, are currently under
investigation.

A second area of development will
be on the implementation of a local
network to improve the speed and
reliability of communications. In addi
tion to improving data transfer and
back-up, the network would offer the
option for load balancing among user
sites.

Lastly, we plan to devote some
effort to improving the user interface.
The current menu-based system is adequate
for new or infrequent users, but it
becomes inconvenient and tedious for
experienced users. It is important to
provide a mechanism for moving quickly
through the functions, either through
some global command language, or a more
natural query formulation process.
Access to a data dictionary should
provide a facility for identifying the
database contents. The level of detail
to be included in the data dictionary is
still under discussion because the
relevant user requirements are not com
pletely defined.

1. Dolotta, T. A. and Mashey, J. R., An

Introduction to the Programmer's

Workbench, Bell Laboratories Technical

Report. UNIX is a trademark of Bell
Labs.

2. Johansson, J. H. and Shilling, J. D.,
"Toward the Development of an
Integrated Economic Database at the
World Bank." Proceedings of th First
LBL Workshop on Statistical Database
Management, Decemb'er 2-4, 1981.

3. Model 204 is a database management
system for IBM mainframe computers.
It is a product of Computer Corpora
tion of America.

4. Eggers, S. J. Olken, F., and Shoshani,
A., A Compression Technique for Large

Statistical Databases; and Eggers, S.

J. and Shoshani, A., Efficient Access

of Compressed Data, Proceedings of the

Sixth Conference on Very Large
Databases, 1981.

5. Ingres isla relational DBMS which
is available for M68000-based
microcomputers through Relational
Technology, Inc.

79

3. Connecting Hetrogeneous Systems and Data Sources

ALDS Project: Motivation, Statistical Database Management Issues,
Perspectives, and Directions 82

James J. Thomas, David L Holl

Data Management without a Database Manager 89
Michael A. Fox

Development Implications of an Interactive, Portable, User Friendly,
Statistical Database Management System 95

Gordon L Schiff

Distributed Data Management in a Minicomputer Network:
The SEEDIS Experience. 99

Deane Merrill, John McCarthy, Fred Gey, Harvard Holmes

An Integrated Research Support System for Inter-Package Communication and
Handling Large Volume Output From Statistical Database Analysis Operations .. 104

Gary D. Anderson, Tim Snider, Barry Robinson, Jerry Toporek

Integrating Data and Documentation in a Multi-National Research Project:
the lEA Second International Mathematics Study . 111

Richard G. Wolfe

PASTE - A Tool to Put Application Systems Together Easily. 119
Stephen E. Weiss, Pamela L Weeks

PIGAS - An Interactive Statistical Database Management System 124
M. Wartelle, Andrew Kramar, P. Jan, D. Kruger

Simulators, Statistical Analysis, and Databases. l33
D.H. Scuse, A.N. Amason

See Also .•••

Management and Display of Data Analysis Environments for
Large Data Sets. 22

SIBYL: An Economist's Workbench 73

The GENISYS Data Definition Facilities. 245

Statistical Database Research Project in Japan and the CAS SDB Project 325

81

AIDS l'IDJEC1': foDrIVATION, srATlSTICAL DATABASE MANl\GD1ENl'
ISSOFS, PERSPECTIVES, AN) D~ONS*

James J. Thomas and David L. Hall
Pacific Northwest Laboratories

Richland, Washington 99352

The Analysis of Large Data Sets (ALeS) project was initiated at the Pacific Northwest
Laboratories in 1978 through funding from OOE/BES Applied Mathematical Sciences. At that
time, it was evident that the technical community's ability to collect scientific data was
far outstripping existing capabilites to manipulate, display, and analyze such large data
sets. Therefore, a new research direction in the analysis of large data sets was
established. The ALDS project is composed of a team of statisticians and computer
scientists. Their close interaction has been a key factor in contributing to our
discoveries and future directions for analyzing large data sets. To help guide this
program, an interdiSCiplinary team of consultants and reviewers were gathered together on
an periodic basis to review progress and suggest research directions.

This paper will discuss the motivation and initial goals of the ALDS project, the impact
of large data sets, the data management issues addressed by ALeS, current research tasks
and their impact on statistical data base management, and perspectives.

1.0 KJrIVATION & INITIAL OOMS

The Analysis of Large Data Sets (ALDS) project
was conceived jointly by Pacific Northwest
Laboratory (PNL) and the OOE/BES Applied
Mathematical Sciences Research Program in 1978.
At that time it was evident that the technical
community's ability to collect scientific data
was far outstripping existing capabilities to
manipulate, display, and analyze such large
data sets. It was also recognized that a major
component in solving tommorrow's energy
problems was the development of this analysis
capability. Therefore, a new research
direction in the analysis of large data sets
was established within the OOE/BES Applied
Mathematical Sciences Research Program with PNL
as the lead contributor. This section
discusses the overall problem of analyzing and
managing large quanti ties of data and discusses
same of the ALeS research.

Large data sets have existed as long as
researchers have been collecting data. At times
data has been successfully analyzed with
dramatic results. A familiar case is the
nationwide retrospective study using
experimental data and vital statistics records
on the effects of smoking. The study concluded
that those who smoke excessively have an
increased chance of developing lung cancer
[Brown 1972). An example from the private

sector is the analysis by Bell Telephone
Laboratory statisticians [Gabbe 1967) of proton
data from the Telstar I satellite. This
analysis significantly increased understanding
of the earth's radiation belts. Although these
and other examples of successful analyses
exist, historically there was no general
methodology, applicable across many fields, for
analyzing large data sets. Furthermore, there
had been no research efforts directed
specifically at the problem. Most researchers
who had large data sets were necessarily
interested in the analysis of only their
particular data. Thus, almost all existing
large data set analysis techniques were special
purpose with little consideration given to the
problems and opportunities common to all large
data sets.

This lack of a general methodology and the
importance of such was recognized by the
Institute of Mathematical Statistics (IMS), the
theoretical statistics professional society.
In February of 1978 IMS held its first special
topics conference in 44 years. The topic of
the conference was the analYSis of large data
sets. Examples of large data sets were given,
same specific analyses were presented, and
general analysis philosophy was discussed. At
the end of the conference, it was evident that
an important problem, spanning many
disciplines, had been addressed, but that there
was no general solution.

*Work supported by the u.S. Department of Energy, Contract DE-AC-06-RLO 1830.

82

Since 1978 the recognition of the analysis of
large data sets as an important research· area
has grown steadily. In addition to the AIDS
project at PNL, several other institutions have
begun research programs that address certain
aspects of large, complex data sets.
Researchers at oak Ridge National Laboratory
(ORNL) are studying classification and patiern
recognition strategies as a way of reducing
dimensionality in large, complex data sets.
Friedman and Breiman have recently begun a
project in the analysis of large data sets
researching 1) nethods of subsampling that
weight sparse areas of the population, 2)
software for selecting several subsamples and
performing contrasts on each sample and 3)
techniques for identifying outliers and
imputing missing values. The American
Statistical Association (ABA) held an invited
paper session on the analysis of large data
sets at its 1982 annual neetings. Within the
computer science conmmity there is an annual
international conference on Very Large Data
Bases that addresses the data nanagement
problems of large data bases. Large data sets
have been a major reason for the recent
increase in. interest by the computer science
conmmity in the data nanagement problems of
statistical data bases. Lawrence Berkeley
Laboratory (IBL) organizes an annual Workshop
on Statistical Database Management. Researchers
at IBL, PNL, the University of Florida and the
University of Wisconsin are supported byAMS to
study data nanagement issues specific to the
data analysis applications of statistical and
scientific data bases. Thus from 1978 to the
present the analysis of large data sets, with
impetus from AMS, has grown from a recognized
but unaddressed problem to an active research
area with several groups of researchers
studying various aspects of the field.

When the AIDS project was begun in 1978, the
overall objectives were to develop a large data
set analysis capability and to apply this
capability in the interests of DOE goals. To
realize these objectives, an interdisciplinary
team of statisticians and computer scientists
was formed. The goals for the first three
years were:

1) to survey current' large data set
analysis activities and software

2) to research new large data set analysis
methodologies

3) to develop large data set ana1ysis
tools

4) to integrate appropriate existing and
new methodologies into a viable large
data set analysis software system

83

5) to establish a statistical laboratory
dedicated to large data set analYSis,
based on a widely available
minicomIUter

6) to analyze certain large data sets

7) to disseminate information on the
analysis of large data ,sets to the
research conmmity and to encourage
research in the area.

To guide and advise the AIDS project in
reaching these goals, the AIDS Review Panel,
composed of leading statisticians, computer
scientists, and data analysts, was organized to
meet periodically to review the project. These
goals have been attained for the most part. A
later section of this paper will trace AIDS
accomplishments in pur sit of these goals in the
area of data base nanagement.

To gain some perspective on the methodologies
for large data set analysis and management, it
is instructive to consider how the amount of
data 'can impact the analysis process.
Operations that are only minor annoyances with
small data sets can become major roadblocks
with large data sets. It is time consuming to
enter the data or move it around. Multiple,
nearly identical copies of a data set can
require much more storage space than is
available, and keeping track of what has been
created is very tedious. Data handling and
management in general are large problems.

The analyses that are performed are also
limited by the size of the data set. with a
great many variables, the possible combinations
of variables that must be considered can be
overwhelming. The effectiveness of same
analysis tools can be seriously reduced. For
example, plots may be so saturated that no
interesting features can be discerned, and
searching or ordering the data set may require
so much time that these operatiOns are avoided.
sane analysis· procedures may be too time
consuming to perform unless a useful outcome is
a certainty; consequently, the analysis may be
constrained and important features left
undiscovered. Though it may not be an adverse
effect, the whole course of analysis may'
proceed differently with a large data set.
Rather than analyz ing the complete data set at
once, the analysis may have to proceed
iteratively through the steps of subsetting,
analyzing and verifying. Thus, part of large
data set research must focus on expanding
current computer science and statistical
methodolgy to minimize the adverse effects of
size.

2.0 DATA MANAGEJo1ENl' :rsaJ&9 FOR
'!HE ANALYSIS OF lARGE DATA SETS

During the initial conceptual stages of the
AIDS project, both'the computer scientists and
statisticians worked closely together to
identify the most critical problems.
Questionaires were constructed and data
analysts were interviewed. Statisticians were
observed during analysis and a users manual for
a desired system was written. It became clear
that a critical limiting factor in the analysis
of large data sets was data maniIXilation during
the exploratory data analysis processes.
Because of their size, large data sets require
much data massaging before analysis can be
started. Furthermore, an analyst needs to be
able to quickly understand and access the
several related components"of a data structure.
But since great size usually entails great
complexity, this can be a formidable task.

To address the data management problems, the
AIDS project decided to build a prototype
system. Initially, adapting existing data
management tools to satisfy some of the needs
was considered, but many limitations were found
in existing data management tools. Sameof
these limitations were:

1) It was difficult to transfer data from
the data management tools to other
tools such as statistical or graphical
routines for analysis.

2) The typical data management system was
overburdened with overhead. This
.overhead is typically required to allow
for complex data structures and
operations such as concurrent
updating.

3) Most data management systems require a
preconceived data structure. However,
none usually exists for the large data
sets being analyzed.

4) The data analysis process was dominated
by colUllU1-oriented access rather than
row-oriented access. This
characteristic had a major performance
:impact on the analysis in large data
sets. Therefore, systems that
contained "transposed file" format were
seriously considered.

5) Existing data management software would
be difficult to modify at PNL.

Because of these limitations, the AIDS Review
Panel recorrmended that the AIDS team develop
their own prototype analysis and management
system particularily suited for large data

84

sets.

OUr first major development was to define a set
of "kernel" data management functions required
for data maniIXilation on large data sets
[Burnett, 1982]. These data management
functions were designed around a Self
Describing Binary (SOB) tranposed file format
[Burnett, 1981a]. The three dominant
characteristics of that proposed file format
were 1) that it was relational in structure, 2)
that the file contain descriptive information
about the data for user access, and 3) that the
data be stored in transposed file format. The
transposed file format provided fast access to
the data and offered new avenues for data
compression. This self describing data file
format has now been utilized in several other
systems.

The low-level BOO and kernel data management
functions provided the base for the development
of a tool that allowed the data analyst to have
the same flexibility with data that computer
scientists have in editing source programs and
that data management experts have through the
use of query languages in data management
packages. This tool was called the AIDS Data
Editor [Thomas, 1981]. The primary function of
this tool was to enhance the data-handling
process prior to the exploratory data
analysis. Included in this tool were
capabilities to create subsets based upon
relational expresSions, to transform data, to
select data based on missing values, and to
restructure data into new files. A special
facility called a "virtual subset" allowed the
analyst to select a subset based upon a
relational expression and then perform
subsequent operations on that subset. The
subset was formed internally by storing a
definition of the subset rather than by
replicating all the values in the subset. This
reduced the required storage and improved the
operational characteristics of manipulating
large data sets, which typically involves
analyses on numerous subsets. The virtual
subset provided a technique for analysis
(temporarily) with limited storage. If needed,
actual subsets containing all selected data
values could then be generated. The AIDS Data
Editor also contains a limited nwnber of
statistical tools including random selection,
ordering, and histograms.

It was imperative that the analytical and
graphical tools be tightly coupled to the data
maniIXilation tools. This was accomplished to a
limited degree by providing access through the
same data format to all tools within the AIDS
system. For example, MINITAB was used as the
primary analysis tool. An interface was
provided between MINITAB and the SDB file

format. This provided the functional
capability of going from one tool to the next.
Also this allowed the AIDS project to bring up
a prototype system quickly. Ideally, the data
management tools, the graphics tools, and the
statistical tools would be under one single
conceptual system.

It was equally i.JnIx>rtant to the data analyst to
have a workstation environment. TO accomplish
this a DEC VAX 11/780 with a high resolution
color Ramtek was acquired. other facilities
included black and white printer/plotter, color
film recorder providing 35mn, l6mn, and 8XlO
hardcopy, desktop color. plotter, a letter
quality printer, and user-mountable 300MB
disks. It should also be noted that an
important part of the analysis of large data
sets research project was the preparation of
material for presentations as well as
publication. Therefore, tools in the form of a
viewgraph generator and text processing tools
are also part of the data analysis
workstation.

In conclusion, the prototype system did enhance
the exploratory data analysis process. With
the system, data analysts are now interactively
manipulating millions of data points and
exploring new techniques for visualizing high
dimensions on large data sets.

Many enhancements could be provided to the
prototype system that would achieve improvement
in efficiency and functional capabilities.
These enhancements, however, would not provide
"the next generation data analysis system."
For purposes of this paper, we will define the
next generation system as one that provides an
order of magnitude more capabilities as
measured by the analyst I s time to analyze large
data sets and new capabilities not previously
available. For the next generation system, the
AIDS team first attempted to define the impact
of large data sets on the interaction style for
interactive data manipulation on large data
sets [Thomas, 1982a]. This experiment lead us
to believe that the next generation analysis
systems will be designed around the conceptual
model of the data analysis process. An initial
attempt at such a conceptual model of only the
data manipulation processes was called an
Interaction Model [Thomas, 1982b]. The feedback
from presentations of this model confirmed that
others believed in this approach and a
generalization to the data analysis process was
conceived. This generalization is formulated
around a concept called ndata analysis
environments." A brief description is
contained in the next section and a more
thorough discussion is presented elsewhere in
these proceedings [Burnett, 1983].

85

3.0 AIDS RESEl\RCB AND DATA
BASE MANAGIHm'

Current AIDS research has resulted from PNL
experiences in attempting to overcome analysis
or data handling difficulties and trying to
overcome the problems inherent in large data
sets. Each also represents an area where
current statistical or computer science
methodology is not sufficient to permit the
effective analysis of large data sets. All AIDS
research areas are either directly concerned
with or are significantly impacted by data
management issues. The following subsections
explain how the current research areas relate
to data base management for large data sets.

3.1 EXPUmAroRY DATA ANALYSIS GRAPHICS

Most interesting large data sets are
characterized not only by a large number of
cases but also by a great many variables
reported for each case. Both the number of
cases and the dimensionality of the data
present a challenge to the effective use of
statistical graphics. Because of the high
dimensionality, the number and complexity of
multivariate relationships that can be explored
is very large. However, there is usually a
tradeoff between the number of points and the
number of dimensions that can be displayed.
With standard display techniques, this tradeoff
is not really a problem since most provide only
a two- or three-dimensional view, although with
enough points even simple displays can become
saturated. Thus, there is a need not only to
expand graphical techniques to allow the
display of four, five, or more dimensions, but
also to make the displays useful in the context
of large data sets. In order to effectively
display high dimensional data, the variables
will mst likely have to be scaled, binned, or
otherwise transformed to control the high
dimensional viewing. This process requires
extensive data manipulation before graphical
viewing.

Because the visualization of graphics displays
is a natural environment for interactive data
analysis, computer science tools must be
developed for direct analyst interaction with
the data displayed in its full dimensionality.
With many dimensions, the number of
lower-dimensional views of the data that can be
created is astronomical. It is physically
i.JnIx>ssible for an analyst to study each one.
Thus automatic techniques are needed to
generate low-dimensional representations, to
manage the large amounts of data generated by
such a process, and to evaluate each
representation as to its usefulness to
analysis.

3.2 MA!WB!E:Nr AND DISPLAY OF
IlM'A ANALYSIS EN\7IRC&1EN1'S

When the analysis of a large data set is
attempted, the first problems to be encountered
are usually data management problems resulting
from the amount or complexity of the data. The
iterative nature of data analysis tends to
proliferate data sets and results. Thus, if
multiple subsets of the data or analysis
results are allowed to accumulate, the storage
capacity of any system can be saturated
quickly. Such proliferation also severely
taxes the organizational ability of most
analysts. At any stage of an analYSiS, there
are usually many different analysis paths that
should be followed, depending upon which models
are assumed or which hypotheses are
entertained. sane of these analysis paths will
most likely result in dead ends, while others
will suggest new aspects of the data to
examine. A simple model of the analysis
process is a tree-like structure with the nodes
representing different versions or subsets of
the data or results and with the branches
representing different analysis paths. The
analyst moves between nodes using analysis or
data management software. As long as the
analyst is moving down a branch, most existing
analysis systems will suffice, although keeping
track of the many subsets and results generated
along the way can be a problem. The serious
deficiencies in existing systems become
apparent when it is desired to return to a
previous node and start a new branch or to
combine the results of several branches. With a
large data set it is not possible to save
everything because of time and storage
limitations. Restoring saved nodes can also be
very time consuming. If the desired nodes have
not been saved, it can be a difficult task to
repeat the steps that produced the nodes.
These difficulties are a hinderance to analysis
that may result in leaving useful paths
unexplored.

A more complete view of the analysis process
replaces the nodes in the tree with ndata
analysis environments. n Each environment
represents not only the version of the data set
at that time but also the sequence of
operatiOns that produced it, the statistical
model under which it was produced, the status
of system parameters, and descriptive text.
The realization in a data analysis system of
this ndata analysis environment n model of the
analysis process would permit more efficient
and thus more complete analyses of large data
sets. Research is required to evaluate the
application of several computer science
concepts to this ndata analysis environmentn
model. These concepts include data
modification descriptions (differential files),

86

data dictionaries/directories, and graphical
network representation and interaction
techniques.

3.3 UNIFIED LINEAR SPACE INFERER::E

Much of classical small sample statistics
consists of confirmatory analysis procedures;
that is, methods for examining the degree to
which suspected patterns in or characteristics
of an experiment are confirmed by the observed
data. Methods for estimating the parameters in
a model and testing hypotheses about the
parameters are commonly used. Within the
conte'xt of confirmatory analysis, large data
sets conceptually 'require a similar analysis -
parameters will be estimated, hypotheses tested
and patterns examined. However, within the
context of large data sets, confirmatory
analysis can profit from some new approaches.
With large data sets, very general models and
hypotheses may be formulated with complex
constraints. Linear space methodology needs to
be developed in the framework of large data
sets to provide the flexibility to accommodate
the very general models and hypotheses that
assume only that the data are vectors in some
linear space. To take full advantage of large
data sets, aspects of inference in
infinite-dimensional spaces must be
considered. The efficient use of these
techniques will require especially effective
means of handling the very large sparse
matrices generated by the linear space methods.

Examples of large data sets where this
methodology would have iImnediate application
tend to have time series as their data
npoints.n Though difficulties can occur in the
areas of editing or processing time, a single
time series of any length requires no new
methodology for an effective analysis. However,
when multiple time series, structured as some,
form of analysis of variance (AmVA) design,
are collected, current methodology lacks a
coherent approach to the analysis. Moreover,
the intelligent storage and management of this
type of data is vital for a coherent analysiS.
An area where this is especially obvious is
multisource data. Often data relating to some
question are available from a wide variety of
sources spanning many different collection
eras. Moreover, the data are usually collected
for different purposes; thus, the AmVA
structure of this data is after-the-fact. As
a result, the ndesignn is incomplete in that
the intervals between points in the series may
vary between series or in that only partial
information on the levels of the factors for
some series may be known. Classical analyses
can proceed only by the imposition of

- restrictive assumptions or by discarding some
of the information in the data. The

unification of linear space methodology and
infinite space inference will peIl1lit this type
of problem to be addressed directly and more
effectively.

3.4 STATISTICAL SOMMARIZATIOO
smATmIES FOR DATA cx:J4PRESSIOO

Since large data sets pose considerable
problems in the areas of data storage and
retrieval, an iIrmediate solution is to use data
nsturanaries n to reduce the volume of data. This
solution, however, raises the question of what
are adequate sturanaries. The answ~r depends both
on what will be required of the data set and on
the structure of the data. In special cases,
all of the information in the data can be
reduced to a few statistics. For instance, if
the data are independent and from the same
Gaussian dist'ribution, the sample mean, sample
variance and sample size are all that is
required to answer any distributional question.
It should be noted that even in this simplest
of all cases, there are still many questions
that cannot be answered by the sample mean and
variance; for example, what is the maximum of
the data? Another problem with a data reduction
of the type illustrated ab9ve is its lack of
nrobustness; n that is, once the data have been
reduced there is no way to check if the
Gaussian asSl.lIl\Ption is acceptable or to see if
the order of the data furnishes information
concerning the independence asSl.lIl\Ption. There
is thus a tradeoff between preserving the data
to answer unanticipated questions and reducing
its volume.

A sturanarization strategy that retains much of
the information for a wide variety of
distributions is to use an empirically
determined density estimate as the sturanary.
For univariate data, several such estimates are
available, although research is needed to
determine which would be useful in the contexts
of data compression, retrieval, and
computation.

For multivariate data, considerably fewer
density estimates are computationally
attractive and many questions remain
unanswered. For example there exist no
strategies for determining which of the many
possible low-dimensional sturanaries should be
saved. Even for bivariate data, research is
needed on how to construct useful bivariate
bins and how to approximate densities from
nested regular grids.

4.0 PERSPECTIVES

Reflecting on what has been achieved and
learned by the AIDS project, several points are
worth noting. It is hoped that these will be

87

of benefit to others considering research in
statistical data base management on large data
sets.

1) A characteristic of data management
tools from the analyst's standpoint is
that they must be hidden tools in the
analysis of the large data sets
process. One cannot afford the luxury
of going between separate tools and
requiring the user . to understand
different command interfaces.

2) The next· generation of systems will be
driven by conceptual levels of the data
analysis process. There is an obvious
lack of understanding and tools to help
characterize this process. The ALDS
team as well as others in the technical
community have attempted a questionaire
and interviewing approach. This offers
some insight, but ususally results in a
list of desired functions out of
existing data analysis systems.

3) The graphics component is an intergral
part to effective data manipulation.
It is necessary to understanding
initial data structures and cannot be
considered a secondary tool.

4) .. An interdisciplinary approach of
statisticians and computer scientists
continually working together is
required to address the above research
issues.

5) Flexibility is of the utmost
importance. Under certain
circumstances, any data base can be a
nstatistical n data base.
Characteristics of statistical data
management systems that cause
flexibility to be limited are of
marginal use.

5.0 REFE:REIa:S

Brown, B. W. Jr. 1972. nStatistics,
Scientific Method and smoking. n In
statistics: A ~ .t.Q..the. Unknown. pp.
40-51. Holden-Day, San Francisco, CA.

BUrnett, R. A. 1981a. "A Self-Describing
Data File Structure for Large Data Sets."
In Conputer Science,gog statistics;
Proceedings .Qf .the. Utb ~si\llll .QIl .tbg
Interface. pp. 359-362. springer-Verlag,
New York, NY.

Burnett, R. A., and J. J. Thomas. 1982.
"Data Management SUpport for Statistical
Data Editing and Subset Selection. n In
proceedings .Qf .tM .F.iW; 1m. WOrkshop .m
statistical Database Management· t:{>.
88-102. Lawrence Berkeley Laboratory,
Berkeley, CA.

Burnett, R. A. 1983. nManagement and Display
of Data Analysis Environment for Large
Data Sets. n In Proceedings.Qf .tM second
International WorkshQP .QJl statistical
DataM & Management. Lawrence Berkeley
Laboratory, Berkeley, CA.

Gabbe, J. D., M. B. Wilk, and W. L. Brown.
1967. nStatistical Analysis and Modeling
of the High-Energy Proton Data from the
Telestar I satellite. n ~ System
Technical Journal. Vol. 46 No.7, t:{>.
1301-1450.

Thomas, J. J. 1982a. nThe Impact of Large
Data Sets on Interaction Style for Data
Manipulation Languages. n In Proceedings
.Qf .tM .fimt 1m. workshQP .QJl statistical
Database Management. t:{>. 157-159.
Lawrence Berkeley Laboratory, Berkeley,
CA.

Thomas, J. J. 1982b. nA User Interaction
Model for Manipulation of Large Data
Sets. n In Computer Science .snd
Statistics: Proceedings.Qf.tM lith
S,ynposilUll .QJl.tM Interface. Troy, NY.

Thomas, J. J. , R. A. Burnett, and J. R.
Lewis. 1981. nData Editing on Large Data
Sets. n In Computer Science .sod
Statistics: Proceedings . .Qf .tM .lJ1;b
S,ynposiurn .Qll .the. Interface. t:{>. 252-258.
Springer-Verlag, New York, NY.

88

DATA MANAGEMENT WITHOUT A DATABASE MANAGER

Michael A. Fox

UCLA Hospital Computing Facility Los Angeles Ca. 90024

Abstract

A file-handling full screen data entry, verification, updating, and display sys
tem, with overtones of a data base management system without the overhead is
described. Using a high level specification language, created automatically by
describing a form on the screen, a PL/I program is generated which will display
empty forms allowing data entry, verification and retrieval (by example). Files
or transactions to data base systems may be constructed, and existing files for
matted for display, post hoc field validation and restructuring. The system is
complete but may be interraced with other systems and, because it is a program
generator, used to provide building blocks (reusable code) for other full screen
applications.

Key words and phrases: full screen, data entry, edit, display, reusable code,
design specification, code generator, form design, IBM 3270, reliable code, data
management, file management.

Introduc tion
The design of reliable programs is
expensive and time consuming. In
recent years we have seen an emphasis
on methodologies aimed at providing
robust, comprehensible, and maintaina
ble systems. This thrust manifests
itself in such areas as design specifi
cations, reusable code, and program
generators. A practical working exam
ple of these software practices is pre
sented.

Much of the jtatistical worker's job is
concerned with data management. This
system was designed to do the screen
handling tasks of data management and
perform the storing and retrieval when
the expense, overhead, and commitment
to a DBMS is unjustified. To perform
analysis one collects data, which must
be validity-checked and arranged in
suitable order. Occasions arise when
complex editing rules have to be
applied to data and there is always the
desire to view, in a legible format,
individual cases for possible update.

These tasks are essentially the same
for all data sets. Passing from one
study to the next should not therefore
require repetition of mundane program
ming tasks. Finesse at the specifica
tion level is needed. The current sys
tem-- Design ~ Form addresses the need
for creating a system with many of the
features of a data base management sys
tem but which preserves the physical
form of the data and does not require
the overhead of a DBMS. For a very
large quantity of highly structured

89

data a DBMS is mandatry. By using
transactions to such a system
Design ~ Form can be used as a powerful
front end.

The system is a program generator- a
specification directing a compiler to
produce PL/I source code. This source
is complete and will on compilation and
linking to the nucleus of the system
enable data to be entered retrieved and
updated. A code generator removes any
constraint implied by the specification
language and further permits the gener
ated code to be used as building blocks
in systems that require screen manage
ment.

System Requirements
The initial requirements for the system
are a full screen data entry method
which to the user looks like a form.
This "form" should allow single-f ield
and across-field validation to be per
formed, to any degree of complexity.
Facsimiles of the filled-in forms
should be available. Files created by
the system should be simple data files.
Other systems could immediately use
these files and conversely files
created by other systems should be rea
dable by this system. A mechanism
should be available to pass the data
entered or derived in other ways, such
as transactions. Thus more complex
data structures may be accommodated.
Retrieval, updating, restructuring, and
post hoc data validation should be sup
portea:-

Presentation of data either for entry

or retrieval is via a form displayed on
the video terminal. There are two
aspects to forms: the geometric or
graphical design which is captured by
drawing directly on the screen; the
attributes of the fields which specify
the color, highlighting, and the valid
ity checks, edit rules and other
aspects of the input data. The speci
fication language cap,tures both these
aspects. . The "drawn I form is read and
the first stage of specification is
automatically obtained. Each field is
then displayed, together with a set of
attributes that may be chosen, and the
ability to enter and alter editing
rules is provided. The second stage in
specifying the form is thereby accom
plished.

In any system, as the number of options
increases so does the richness of the
specification language. To create a
system which will not suffer from arti
ficial constraints imposed by the spe
cification language it would appear
that the latter would have to evolve
into a programming language. Extreme
simplicity and a high degree of flexi
bility are not, however, mutually
exclusive. The reconciliation of these
requirements has been realized ·in a
program generator. The target language
chosen was PL/l and the display device
the IBM 3270 series of both monochrome
and color terminals. Communication
between this full screen device and a
program is via a data or message stream
and a controller. As only fields that
change need be transmitted, the minimum
amount of data need be sent. The onus
is, however, on the program to deter
mine which areas of the screen have
changed. There is no higer language
level support for this device in full
screen mode. This need is addressed by
providing support through generated
PL/l code.

It must be emphasised that although the
system generates PL/l source code, in
the vast majority of cases, the speci
fication language captures all that is
required and· going from form design to
data entry, updating, and retrieval
requires no programming knowledge. It
is a task easily accomplished by non
technical people. Complex situations
involving multiple farms with cantext
dependent decisions, will require some
intervention. Experience has shown
that this open-ended feature is wel
comed by those who use packaged pro
grams but have needs that transcend
them.

90

System Design Considerations
In program writing the most serious
errors are those involving control
structures (dynamic conditions for fol
lowing a particular path are incor
rectly computed) and data structures
(bounds of arrays are erroneous). Syn
tax errors are, for the most part,
found by the compiler. Generating
source code, via a specification lan
guage, offers a number of advantages.
The most important is that the produc
tion of error-free programs is an
achievable goal. Simple applications
can be "brought up" in a few minutes.

Customizing starts off with complete,
correct code and is therefore at mini
mal risk with respect to the introduc
tion of errors. This is because all
the "hard" error-prone program facets
such as management of data structures
and, in this system, screen-handling
code is produced automatically. Adapt
ing the code to perform such operations
as complicated table-look ups and
embedded computations can of course
introduce errors. These, however, will
be confined to small domains and are
easily detectable.

This system is an example of "reusable
code", each new application can be
thought of as a progeny varying from
its parent in its specific function,
yet sharing a common, reusable, core.
Others my view this system as a tool
for generating screen management code
which can be incorporated into other
systems.

The concept of abstract data types and
encapsuled modules is used in code that
is "hidden" from the user thereby
retaining its viability. The generated
code is, however, open to the user.
Hidden code ensures that it can only be
approached and used in a controlled
way. Open code provides for easy and
swift customization. The capsule
"screen" which consists of the abstract
data type used to hold and manage data
going to and from the display device is
available as hidden code. This means
that the user can control what is dis
played, and receives back the analyzed
replies to the screen. The mechanism
for doing this is hidden from the user
and therefore cannot be compromised.
Each screen is represented by an open
code PL/l procedure which contains
three distinct parts: a PL/l structure
whose elements contain all'the replies;
the actual stream of characters sent to
the terminal controller; and a "case"

block (called Select in PL/1). In this
case block each field which has a reply
is represented and is available to the
user. In-line code can easily be
incorporated - a marked advantage over
having to provide a subroutine. A
developer who wishes to use the system
beyond that which is generated, via the
specification language, has only to
know the specifics of his data and not
how screen management is accomplished.
In the same vein a user may want to use
only part of the generated code in con
junction wi th a·nother program. For
this situation the PL/1 structure is a
compact way of holding the variable
information presented on the screen.
Automatic production of the "message"
to be sent to the controller relieves
the user of the task of constructing
the correct sequence of control infor
mation. The "case" block facilitates
operations on individual replies.

Since logic between screens is indepen
dent of the hidden code, versatile
applications can be designed with ease.
For example, in a financial planning
example three screens were used for
each case: the first to collect data
and the others to display computed
results. A procedure was written to do
the required computations. The only
system housekeeping required was dec
laring the PL/1 structures defining the
three screens to this procedure and
steering, via calls, the display of
each individual screen. Indeed skele
tal steering procedures are part of the
system and are generated when mUltiple
screen applications are defined. A
user then had available a system that
dynamically displayed the consequences
of, for example, a fluctuating dollar
value on the cash flow situation of a
company that deals .wi th purchasing and
leasing goods.

Form or Screen Design
A program "BLANK" presents a screen to
the user, on to which the form or
tableau is typed. This will consist of
legends or narrative material, field
names, and re~ly fields (denoted by
asterisks). Lateral movement of
objects on the screen is accomplished
via the terminal's positioning
keys(insert and delete). Vertical
movement and copying of a line to
another line is done by typing the tar
get row number on the source row and
using a function key. When the
desired result is achieved a function
key is pressed resulting in the trans
lation of the screen into an instance

91

of the specification language. For
example if Income ****** were typed on
line 10 column 5 on the screen it would
be translated into

Income (10,5,6) This is of the form

Legend or field name
(row,co1umn,length)

After form design, attributes and edit
rules may be applied to each fie 1d
interactively.
The specification Income (10,5,6,NB),
contains the attributes "NB", this
means accept up to six numeric charac
ters (N) insisting that this field be
entered i.e. non blank (B). Figure 1
shows this field with the editing
criteria chosen together with the rules
generated by placing bounds on the
entered value. For the field "Sex" to
take on only the values "M" or "F" with
a user-defined message the customised
rule is written as

:,='M' &' ='F' Sex can only be M or F

Other field attributes include date,
right justification, full replies,
default values compute fields, and
value carryover (from one form to the
next) are shown in figure 1. The most
general specification for a single
field is

Legend (row,co1umn,length,attributes)
failure condition message ;
failure condition message; .••

On data entry and update, erroneous
entries will be signaled by writing a
message, sounding a bell, positioning
the cursor and, highlighting the
offending field. The operator can
either correct the field or, by press
ing a function key, force the reply to
be accepted.

Retrieval and Updating
The screen displayed when retrieving
and updating is shown in figure 2.
Some of the options need explanation:
"y" implies a pattern match is to be
performed over non contiguous fields or
field fragments; "=" is restricted to
pattern matching over contiguous fields
or field fragments and is therefore
cheaper than ''Y''; "@" is a range over
the supplied value, the default value
is 10%; "(" is a substring taken over a
contiguous set of fields the last of
which may be partial; "s" evokes the
display of an information panne1 which
gives, among other things, the current

default values, which can be reset. A
mask character is used as a 'wild'
value and to define the scope of the
search as in option "(".
Retrieval is by example. An empty form
is presented on to which search crite
ria is typed. This in conjunction with
a condition (equality, greater than,
less than, substring, or range, men
tioned above) is used to find cases.
In addition, all cases can be sequen
tially displayed or, for post hoc edit
ing, a search for cases that fail an
edit rule selected. In the update
mode, cases can be altered with dynamic
recalculation of compute fields.
Pressing a function key will redisplay
the changed case. Editing criteria and
reformatting data can be respecified.

It is unfortunate that designers of
data-gathering forms still continue the
archaic practice of encoding items at
source rather than leaving this to the
computer (males=l etc required by some
packages for grouping variables).
Design ~ form takes the position that
source data should be readable and
therefore provides a translation
mechanism to go from a source of one
size to a target of another. The
default value in the printed facsimile
of the form is the source while the
target value is written to the file.
On retrieval both the stored value and
the inverse translation can be dis
played.

Interface Considerations
In the normal situation the files
created by the system are standard sys
tems files, with the data appearing as
characters without any embedded control
information. Such files can immedi
ately be read by any other program as
raw data. Since "ghost" fields (usu
ally filled with blanks) can be speci
fied variable values can be se~arated
from each other to facilitate 'free
form" entry in other packages.

This detachment of the files from the
system provides for complete data inde
pendence. This makes feasible the use
of the system as a "front end" to a
data base system for situations where
the data are too voluminous for simple
files. In this situation transactions
would be sent between the two systems.
One variant of this system exists that
acesses save files created by the BMDP
statistical package. Queries written
in "Sequel" like languages can readily
be serviced.

92

System Limitations
Functional separation and modularity
are part of the design philosophy of
this product. Features that rightly
belong in other systems are excluded.
As the system has overtones of a data
base management systems (DBMS), the
important differences must be stressed.

Here data is looked at in a case-by
case manner, a DBMS is more global in
approach. In a good DBMS, searches do
not usually require passing the whole
file. In inverted systems much logic
can be performed on the reference files
or directories before looking at the
actual data. Retrieval using logical
expressions is limited in this system.
Although hierarchical cases are sup
ported, no connectivity is internally
maintained between the various record
types (relations). Cross-case computa
tion (means, minima, etc.) is a simple
customization task: however, anything
more complex is the province of a sta
tistical package. A DBMS excels in
handling relationships between volatile
data. This system is geared towards
changes to data items rather than rela
tions. File, rather than data base
functions, are performed, although new
cases may be inserted anywhere and
deletions performed.

For a very large file the overhead in
computer cost, storage, and more com
plex operator training required by a
DBMS is warranted. There are, however,
many situations when data management
should be restricted to files. In such
situations a DBMS would be too complex.
Many studies fall into this category.
Instances exist where data remains
static and essentially lost because no
suitable means is available to read and
comprehend it. A large series of files
containing encoded information concern
ing land utilization lay unused because
of the difficulty in using it. A
translator to these files was incorpo
rated into this system which was used
to display the data in English in a
pleasant format that encouraged use. A
DBMS would have been too costly and too
difficult for the casual user, and
since the nature of the searches neces
sitated either passing the whole file
or searching until the first record
satisfying the conditions was found, no
advantage would have been gained in
using the more powerful search strate
gies of a DBMS.

This system, because of its ease of
use, its file handling features, its

simple interface to other packages, its
flexibility, and its parsimony can play

an important part in data management.

Figure 1.

Selection of attributes and specification of rules

Current field is: Income
Attributes NB
Edit rules : ~ 15000 Too small ; ~ 60000 Too large:

Select the attributes to be appl ied with CURSOR SELECT
After you press ENTER the new attr i butes wi 11 be shown.

Integer (N) r
Floating point ('F) 7

Right justify (R) 7

Non blank (B) r
Compute or defined fields (C) 7

Date field (D) 7

Full width reply (w) 7

Set carry forward (S) 7

Ghost field (set length) (G)
Before/After B

Defaul t va 1 ue (set va lue)

Translate field (set target size)

Al ign (set position from right)

Minimum value

Maximum value

93

or "Y"

\.

FIGURE 2

Modes of retrieval

Choose your retrieval mode with: CURSOR SELECT, "V" or Option

Remember PFKEV 3 will get you out.

CONDITION ?

START AT TOP ?

UPDATE ?

RETRIEVE ALL ?

SKIP TILL ERROR?

TRANSACTION ?

94

Options: V = > < @ (S

Options: D-delete
A, B-insert, after, before
P-point C-copy M-move
T-merge transaction
E, X-extract set, current
L-list from this record

Development Implications of an Interactive,
Portable, User-Friendly,

Statistical Database Management System
or

The Separation of Church and State

Gordon k Schiff
Hoffmann-La Roche Inc.
Nutley, New Jersey 07110

This is a definition of terms and discussion of the design and development of an
interactive, portable, user-friendly statistical database management system from
the perspective of a computer scientist. The definitions are fairly clear and
can be found in most textbooks but their interactions, particularly when a sys
tem is being designed and developed which attempts to include all of them, have
been given relatively little attention. This paper will focus on how the major
structural elements of an "ideal" statistical database management system impinge
on each other during the design and development phases of that system. There
will also be a discussion of how these elements and their interactions affect
the people designing, writing and using the system.

This is a definition of terms and discussion of
the design and development of an interactive,
portable, user-friendly statistical database
management system. The definitions are fairly
clear and can be found in most textbooks but their
interactions, particularly when a system is being
designed and developed which attempts to embody
all of them, have been given relatively little
attention. This paper will focus on how the major
structural elements of an "ideal" statistical
database management system impinge on each other
during the design and development phases of that
system.

The paper consists of two parts. The first part
is a brief discussion of the definitions of the
terms portable, user-friendly, and statistical
database management system and their interactions
while designing a system which attempts to embody
all of them.

What will follow is a discussion of the imple
mentation of these three primary attributes in a
system with a focus. on their impact on the com
puter scientists - programmers and statisticians
developing the system, the same professionals'
bringing the system up on a different computer,
and the end users; primarily statisticians, but a
few computer scientists as well.

It is important to emphasize that this paper is
not a description of a system which has already
been built, and is not an explicit design docu
ment. It is hopefully a complete review, from the
perspective of a computer scientist who works with
statisticians, of the factors which must be given
careful consideration when designing and building
such a system.

DEFINITIONS

A portable system is one which can be brought up
and run on any machine, no matter what the word
size and manner of representation of numbers, with
an absolute minimum of effort on the part of the
person/people installing it on the new machine.
Numerical precision differences between machines
should be easily correctable by the installer(s)
or, if not correctable, clearly and completely
documented by the developers in the installation
guide. In addition, the user's manual should be
written so that it does not depend on the machine
that the system is running on. This latter point

95

is one which seems to have been neglected by the
developers of a number of the more popular,
"portable", statistical ·packages in existence
today.

A user-friendly system should be just that:
friendly to the user. The designers and devel
opers of the system need not be psychologists or
group therapy leaders, but they should make the
users comfortable when running the system.

The system should guide the user clearly through
every phase of its use. Questions presented to
the user during an interactive session should be
clear and unequivocal with a detailed explanation
of each question, examples of answers to the
questions and consequences of each of those

·answers readily available.

An extensive, thorough, multi-level help facility
or subsystem should also be available at every
point in the operation of the system if the user
wants or needs to use it. This help facility
should be written to supplement, not replace, the
users' manual.

A user-friendly system should recover gracefully
from and offer possible solutions to I/O errors
and computational errors resulting from processes
such as those which may attempt to divide a number
by zero, determine the square root of a real nega
tive number, or require a datum that is missing.

The system should also be unaffected by hard sys
tem crashes insofar as the database being worked
with when a crash occurs will not be affected. In
addition, the system should allow the users to
easily get back to where they were in an interac
tive session at the time that the system crashed.

A good deal of time has already been spent and
more will be spent, especially at this workshop,
discussing what a statistical database management
system is. A basic definition of one might be as
follows: a database management system which
allows for the rapid storage and extraction of
data in a format suitable for statistical analy
sis.·· A method for satisfying this definition
might be that the statistical analysis procedures
should themselves. be part of the system and it
should be easy to add, remove or replace these
procedures.

RELATIONSHIP BETWEEN
PORTABLE, USER-FRIENDLY AND

STATISTICAL DATABASE MANAGEMENT SYSTEM

Most of the relationships between these three
attributes have, as one of their nodes, porta
bility. This is not surprising, since it is
probably the most difficult one to implement in a
large system.

Making the users comfortable while using the
system but allowing it to run on any machine means
that in most instances, good programming will have
to be substituted for innovative hardware. Along
the same line, it will have to be good writing
with a statistician, not a computer scientist or
ichthyologist in mind.

The methods of trapping computational and I/O er
rors vary from machine to machine, and memory and
storage management differences between machines
will affect the preservation of data upon occur
rence of a system crash. Differences in the load
ing and/or binding of programs from one machine to
another will affect the easy addition, removal and
replacement of statistical procedures.

Finally, the size of the system is an important
consideration when writing a portable software
package •.

DESIGN AND IMPLEMENTATION

For quite some time now computer scientists and
statisticians have been meeting in an attempt to
recognize and solve common problems. The Inter
face Symposium and this meeting are typical
examples of the effort. This paper explores an
area .in which those two professions are going to
be obliged to work in close harmony. No attempt
is being made to determine which is church and
which is state or the benefits of being affiliated
with one or the other. It is simply important to
note that when this effort is undertaken the two
professions will have to be extremely cooperative
with, and understanding of, each other.

The first major decision which must be made during
the development stage of a system such as this is
in which language to write the system. With
portability in mind, it will first be necessary to
study the compilers/interpreters available on all
possible, existing target machines paying partic-.
ular attention to word size, precision, and I/O
and memory management facilities available. At
the present the language of choice, primarily
because of its popularity, would probably be
FORTRAN, although by the time this effort is
undertaken, PL/I or PASCAL (or ADA?) might be
universal enough to be considered. It will be
important that everyone involved with this initial
phase of the design effort have facility and be
comfortable with a number of major computer lan
guages. It is also important not to pick FORTRAN
just because "everybody knows it" and "every
machine has a FORTRAN compil~r".

96

A second part of this initial design phase will be
the development of standards for everyone who will
be writing the code. The standards should include
the types of statements allowed and a thorough
list of the types of statements not allowed. They
should also include internal documentation stan
dards for the programs. The standards will have
to be well written, easily used, and on the desks
of everyone who is writing code for the system.

One standard which can be stated immediately is
that absolutely no machine or assembly code at all
is allowed. With the definition of portability in
mind, it is obvious that machine or assembly code
cannot be used in the system if it is to be
brought up easily on many different machines.

The next major decision in the design phase of
this project would be what the overall structure
of the system should look like. The terms "top
down" and "modular design" have become popular
buzzwords, but they are very powerful design tools
when dealing with large systems. A top-down,
modular, or inverted tree approach to the design
of this system would seem to be perfect for a
number of reasons.

Any machine-dependent routines performing such
tasks as I/O and memory management and those rou
tines with machine-dependent constants, which
would affect the precision of results, could be
placed at the very highest levels of the overall
structure. This would allow for easy access/
creation/alteration of logical unit numbers for
I/O and modification of constants by those
installing the system on a different machine. As
an aid to implementation on different machines,
standard sets of constants for machines with dif
ferent word lengths could be made a part of the
appropriate high-level routines.

The actual statistical·and data base manipulation
routines would exist at the very bottom of the
tree. These leaves would have their constants
already set at a considerably higher level of the
tree and would not have to be altered in order to
be brought up on another machine. The "proven"
algorithms would remain intact. It would be the
responsibility of the statisticians participating
in the development phase to insure that these
algorithms ~ere indeed proven. Incidentally,
internal documentation is extremely and equally
important at all levels of the tree. These
routines would produce results or manipulate data
items and return them to a higher level routine
for appropriate disposition. This disposition
would include output to the user, input to another
algorithm and input to the data base. It is
important to emphasize that there would be no I/O
operations from within these routines. This
absence of machine-specific code would allow for
relatively easy addition, removal and replacement
of leaves by the developers and the end users.

The impact of computer systems hardware on porta
bility would be of considerable importance during

the design phase. One of the first items which
would have to be resolved would be the structure
of the database. Anyone familiar with the theory
of database management systems has heard or read
the terms network, hierarchical and relational
when reference is made to the structure of such
systems. There are advantages and disadvantages
to each of them, and there are very few commer
cially available database management systems which
are pure examples of anyone of these structures.
No attempt will be made in this paper to describe
these structures and their differences. It is
simply important to note that they have different
requirements in the areas of data storage and
retrieval. Differences in machine word size would
affect pointers, sorting and searching algorithms
and actual data storage, and this is where careful
thought would have to be given to the portability
of the system.

A relational database management system seems to
be the best from the point of view of speed of
data retrieval and ease of use, but the memory
requirements of such a system might be too large
to allow it to be portable. If the number of
overlays or amount of paging required for a simple
data retrieval operation were too large, the delay
would be intolerable for the end user. At the
same time, the installer(s) should not have to
redesign the database management system to make it
fit on their machine.

The modular design considerations would have to be
taken into account when designing the overlay
structure, if such a structure were necessary.
For true virtual memory machines this would not be
a problem, but there are few of them around. If
an overlay structure is necessary, the design
should allow for different ones for machines of
different word lengths and memory sizes. The
installation documentation and/or files should
allow the installers to select the appropriately
sized set of overlays. As an addendum to this
point, it is to be noted that the system should
function at approximately the same speed no matter
what the overlay structure, but it would probably
be slower on the smaller machines.

One aspect of portability which must be taken into
account when writing the system is that obviously,
the same statistical procedures processing the
same data but running on two different machines
should produce the same, with allowances for pre
cision differences, results. This.will require
careful programming to eliminate problems result
ing from round-off error, truncation and internal
accumulation of round-off error.

I/O routines would have to use standard methods,
with nothing tricky or unique to the machine the
system was developed on. Since everyone does not
have light pens, mice or touch sensitive displays,
the I/O routines should not be predicated on these
hardware innovations.

Building a user-friendly system means that overall

97

design considerations will be strongly influenced
by the requirements for a help facility, graceful
recovery from I/O and computational errors and
easy recovery from hard system crashes.

Help in using the system should be available to
the user from any level of the system. If all
I/O, including interaction with the user, is
occurring at a high level of the system, the help
facility could be built in at, or immediately
below this level. This would require that the
system maintain, possibly through the use of a set
of flags or global variables, a knowledge of what
the user is doing during an interactive session.
When the user requests help, the system needs to
be able to provide the appropriate explanations.
This self-informing portion of the system would
have to be readily and easily expandable as new
leaves are added to the overall system.

A selection of the method for interacting with the
user would affect the design of the help facility.
Two possible options are the use of menus with
help available for each item on each menu if the
user wants it, or a simple question-and-answer
approach with clear explanations of each question
readily available.

Setting up appropriate, universal methods of error
recovery may be the most difficult aspect of this
entire design effort but again, a top-down, modu
lar approach may facilitate the process. One
might devise a system of flags or error returns
which could be set at the lower levels and tested
and acted upon appropriately at the higher levels.
Depending on the language used, there might also
be a machine-specific, high-level process which
would disable system trapping of I/O and computa
tion errors, allowing for a "normal error
return".

Insulation of the system from hard, computer
crashes will also be a difficult part of the
design effort. Requiring that a recent backup
copy of each database is maintained at every site
will help. In addition, no database should be
left open when it is not directly involved with
some data storage/retrieval operation. In order
to minimize the affects of a crash on the users, a
log or audit of each user session could be kept.
This would be fairly easy to do within the frame
work of a top-down system. All input from the
user could be written to a log file by one of the
high-level I/O routines. This would be done
before the command or request was processed. When
a system crash occurred, the user could, when the
system came back up, either obtain a printed copy
of the audit file and re-enter the commands during
a new interactive session, or use the audit file
as a command file which would be executed up to
the point of the crash. This would leave the user
at, or just before, the point she or he was at
when the system crashed.

The other aspects of creating a user-friendly sys
tem depend on a good working knowledge of the

native language where the system is being created
(usually English), and a good working knowledge of
statistics. Whatever mode of interaction with the
user is selected, the questions, explanations,
examples, help facilities and manner of presen
tation of results will have to be clear and
unambiguous. While we are not about to create a
good version of ELIZA, the user should feel com
fortable interacting with the system. It would
not be a place for short, cryptic questions or
explanations. Highly technical questions and
comments, with appropriate explanations available,
would be acceptable, but not the three-word gems
of statisticianese or computerese.

The impact of user-friendliness on the person or
people installing the system on a new machine
would revolve primarily around the methods used
for error recovery and insulation from computer
system crashes. If a high-level process to dis
able system trapping was selected, the installers
would have to create a new process for each
machine. With appropriate complete documentation
of that process, including all that it does, where
and when it does it and expected input and output,
the task would not be terribly difficult. Again,
as with the machine-dependent constants, a stan
dard set of processes might be made available, and
the appropriate one could be used for each
machine.

If frequent backups of the databases were
required, the installer(s) at a new site would
have to be most strongly reminded of this, and the
standard operating procedures for system backup at
that site might have to be modified. The use of
log or audit files as command files would present
a problem at some sites. The installer(s) might
have to provide the users at that site with a pre
processor program which would make the log file
acceptable to the machine's command processor.

The impact of a user-friendly system such as the
one being described in this paper on the user com
munity would probably be an increase in the use of
computing facilities by statisticians and an
increase in cooperative efforts to solve statis
tical problems. A truly user-friendly system
would "bring into the fold" a number of statisti
cians who presently see the computer as a large,
expensive calculator. It would be so easy for
them to perform complex calculations in a matter
of minutes, study the results and perform them in
a different way, that their productivity would
increase immensely. .

Implementation of the two primary characteristics
of a statistical database management system, rapid
extraction of data in a format suitable for sta
tistical analysis and ease of addition, removal
and replacement of statistical procedures, have
already been discussed but their impact on the
design of the system will now be considered.
Rapid extraction of the desired data will require
that the structure of the database management sys
tem be such that storage/retrieval algorithms are

98

fast and efficient. It is important to note that
the system should only retrieve the data that is
needed to satisfy a request. The format of the
retrieved data might simply be vectors, but the
system should be able to reformat the data where
necessary for input to a statistical procedure or
other output process. A relational database
management system might do the job very nicely,
but on a machine with limited memory this could
prove costly. A standard for the format of data
extracted from a database would have to be imposed
on the extraction process. The statistical proce
dures or the twigs above them could alter this
format where necessary, but with these standards
it would be relatively easy to add, remove and
replace statistical procedures if they existed at
the very outermost points of the system.

With a top-down structure, alteration of the array
of statistical processes should be nothing more
than a straightforward recreation of the execu
table system. This could be done at any site with
a command file which had been modified to reflect
the alterations. The most important point, from
the developers' perspective, is that new processes
should be documented, tested, and proven or appro
priate caveat emptor warnings about the processes
given.

CONCLUSIONS

The most important conclusion that can be reached
from this paper is that the design, building and
implementation of an interactive, portable, user
friendly, statistical database management system
will require the joint efforts of computer scien
tists and statisticians. The members of these two
disciplines participating in the effort will have
to work in a close, cooperative fashion in order
to create such a system. The resulting system
will prove to be immensely rewarding, although for
different reasons, to both groups. The computer
scientists will have solved some interesting prob
lems unique to their profession and the statisti
cians will have a system which will enable close
collaboration in the solution of statistical
problems. If groups of statisticians in different
cities, states or countries are able to use the
same computer system as an aid in solving prob
lems, they will be able to communicate with and
help their colleagues much more easily than is
presently the case.

L8L-15075

DISTRIBUTED DATA MANAGEMENT IN A
MINICOMPUTER NElWORK: TIIE SEEDIS EXPERIENCE

Deane Merrill, John McCarthy, Fred Gey, Harvard Holmes

Computer Science and Mathematics Department
Lawrence Berkeley Laboratory

Berkeley, California 94720

Abstract

This paper describes distributed data management aspects
of SEEDIS (Socio-Economic Environmental Demographic
Inf_tion System). SEEDIS is an experimental system
for the retrieval, analysis, and display of geographically
linked data. SEEDIS operates on nine computers in a
nationwide network. Users at any location select and
retrieve all data in the same way, regardless of whether
they are stored locally or at a remote location.

The network implementation has been substantially
modified during 1983. New enhancements include: local
caching of data files to improve efficiency; linking to an
automatic tape library (ATI...) to make larger volumes of
data accessible; node independence to facilitate automatic
sharing of data among autonomous SEEDIS installations
without the need for central control; improvements provid
ing robust operation despite unreliable network connec
tions; and automatic recording of all cache transactions
for subsequent statistical analysis.

1. History and Background

SEEDIS (Socio-Economic Environmental Demographic
Information System) is an experimental integrated com
puter system for the retrieval, analysis and display of
geographically linked data [1]. SEEDIS embodies 60
person-years of cumulative integrated development, sup
ported since the early 1970's by the Department of
Energy, Department of Labor, Environmental Protection
Agency, and other government agencies. SEEDIS is used
both as a development testbed for computer science
research, and in selected applications.

A major task of SEEDIS is the integration and organiza
tion of data from diverse sources. Used primarily by
universities and government agencies, SEEDIS fills a
need not met by two other kinds of systems available in
the private sector: time series financial systems used for
modeling and predicting economic trends, and small-area
demographic systems used to access census data for mar
ket site analysis [2].

On the average, SEEDIS is used about 500 times per
month. Usage is equally divided between development

This work was supported by the Office of Health and En
vironmental Research and the Office of Basic Energy Sciences of
the U.S. Department of Energy under Contract DE-AC03-
763FOOO98; and the Department of Labor, Employment and
Training Administration under Interagency Agreement No. 06-
2063-36.

99

and applications. The Populations at Risk to Environ
mental Pollution (PAREP) project, which is concerned
with relationships between human health and environ
mental pollution, provides and uses data on mortality,
cancer incidence, socio-economic characteristics, and air
quality [3]. 1980 Census reports being produced for the
Department of Labor will require incorporation of most
of the 1980 Census of Population and Housing, bringing
the size of the SEEDIS database to about 50 gigabytes
(500 tapes at 6250 bpi) [4].

SEEDIS data currently available to the interactive user
include 350 million individual data values on disk and
over 5 billion data values on a tape-based mass storage
system. Data are available for about a million distinct
geographic areas. These include eighty different types of
geographic entities (e.g., states, counties, census tracts,
enumeration district/block groups, etc.).

The size of SEEDIS databases, financial constraints, and
the need for local control over data stored at dispersed
geographic locations prompted development of techniques
for data retrieval and display in a distributed computing
environment. SEEDIS meets the needs and resources of
small groups in the research community who can afford a
small computer but not the resources required for on-line
storage of large databases, nor the costs of timesharing
on a large mainframe computer. SEEDIS software is in
the public domain; it runs in the standard DEC (Digital
Equipment Corporation) VMS operating system on a
VAX 11/780 computer. To access SEEDIS databases at
LBL (Lawrence Berkeley Laboratory), DECNET
hardware and software are required.

2. Initial Network Implementation

SEEDIS operates in a homogeneous network of DEC
VAX computers and uses standard DECNET facilities.
The network presently comprises some 50 minicomputers.
There are currently nine V AX-ll/780's running SEEDIS.
These are located in the San Francisco Bay area, the
state of Washington, Washington DC, and North Caro
lina. Program modules, area and data definition files
and geographic base map files (about 75 megabytes) ar;
stored at each SEEDIS site, or "node." Selecting (i.e.,
specifying for retrieval) or displaying data (e.g., map
ping) does not involve network access, so response time
depends only on the local system load and the speed of
the user's terminal connection.

2.1. Distributed Data Operations

After the user has specified data selections, SEEDIS
automatically extracts the requested data values from
local and remote files, copying them into a self
describing file in the user's working space. Standard
DECNET facilities automatically provide shared access
to archived data files (about 1 gigabyte) on disk packs
mounted on two of the nodes in Berkeley. Except for
response time, the difference between retrieval of
locally-stored and remotely-stored data is not apparent to
users.

DECNET naming conventions automatically permit tran
sparent access to remote files without additional program
ming effort. For example, Iblg::dbaO:[mydirlxyz.dat is a
file in directory "mydir" on disk drive dbaO on node
LBLG. Since data are stored on a particular disk pack
and not a particular drive, SEEDIS maintains tables
specifying the name of the disk pack on which database
is instaJled, (e.g., SEEDIS005). The VMS operating sys
tem automatically assigns logical names to locally
mounted disk packs, so data can be directly accessed by
disk pack location, (e.g., disk$seedisOO5: [mydirlxyz.dat).

Special software was written to extend the standard DEC
capabilities to remotely mounted SEEDIS packs. For
example, whenever SEEDIS is invoked at any node, a
background process searches the network for disk pack
SEEDISOO5; if it is found on drive dbaO at remote node
lblg, a local system logical mime assignment is esta
blished to translate disk$seedis005 to Iblg::dbaO:. If the
pack is not found, any previous assignment for
disk$seedis005 is canceled.

Disk packs SEEDISOOI through SEEDISOO5, containing
on-line SEEDIS databases, are located at LBL and can
be mounted by an operator on either of the nodes LBLG
or LBLH. A program DSCHED, which can be invoked
from any node, allows remote users to easily determine
when a disk pack will be mounted, or to request future
mounting.

2.2. Initial Implementation limitations

The initial 1979 SEEDIS network implementation had
several limitations. First, even for small requests, data
extraction took 20 to 30 minutes for remotely stored data,
as compared to 2 or 3 minutes when data were stored
locally. The difference was due to overhead in underly
ing DECNET remote file access protocols, which were not
well understood at the time the SEEDIS data extraction
module was written. Second, only a small fraction
(about seven percent) of all SEEDIS databases could be
stored on disk packs and an even smaJler fraction could
be on line at any given time. Data which had originally
been stored on an IBM photodigital mass storage device
now reside only on tape. In the absence of another low
cost mass storage device, new mechanisms were necessary
to access the large amount of archival data. Finally, the
original implementation did not provide for automatic
updating of SEEDIS system tables on data locations
across the network, so changes required intervention by a
central database administrator. While this was tolerable

100

initially, it was clearly preferable to give each node
independent responsibility to alter physical storage loca
tions of its own individual data sets in a way that could
be automatically communicated to other SEEDI~ nodes.

3. Distributed DBMS Enhancements

During the past year, a number of improvements have
been made to overcome limitations of the initial network
implementation. They iriclude mechanisms for: local
caching of data files to improve efficiency; linking to an
automatic tape library (ATL) to make larger volumes of
data accessible; node independence to facilitate
automatic sharing of data among autonomous SEEDIS
installations without the need for central control;
improvements providing robust operation despite unreli
able network connections; and automatic recording of all
cache transactions for subsequent statistical analysis.

3.1. Caching

In order to speed up access to frequently-used data and to
provide an automatic mechanism for allocating scarce
on-line storage space to the most frequently-used data, a
simple system of caching was introduced. Archived files
containing data required by the user are temporarily
copied in their entirety to a disk cache at the user's local
node. Archived data are partitioned so that no single file
occupies more than a small fraction of the total cache.
Files remain in the local cache for shared use until the
space is needed for a more recent request. Every file is
marked with the date and time of last access; least
recently used files are removed first. Each file's lifetime
depends on its utilization and the size of the cache,
which is set by the local system manager.

Precautions are taken to prevent deadlock or thrashing:
(1) a user request is immediately rejected with a message
if the data request will exceed the total available space in
the cache; (2) user requests are completely processed one
at a time; (3) recently requested or used data have a
guaranteed minimum lifetime of several hours in the
cache, regardless of the number of pending cache
requests; (4) a safety margin of about 2000 blocks (one
megabyte) is maintained for necessary housekeeping
functions.

All cached files copied from archive locations reside in a
"temporary" cache subdirectory. All cache updates are
accomplished in batch mode by a pseudo-user CACHE.
The date of last access of each file (plus a constant incre
ment) is automatically maintained by the VMS operating
system. Another portion of the cache consists of small
"permanent" files which are periodically updated but
never deleted. These files contain pointers to information
at other nodes.

This caching scheme is largely transparent to SEEDIS
users, but it has involved an important enhancement to
the user interface. Following standard SEEDIS pro
cedures for data. selection, the user defines a geographic
scope and level (for example California by county) and
then selects desired data elements from one or more on
line data dictionaries. After data selection is complete,
the user types "extract" to append the data values to

his/her working data set.

In the new caching implementation, the "extract" com
mand first automatically copies entire archived files to
the cache if they are not there already, and then extracts
selected data from the cached files to the user's working
directory. If the required data are not already in the
cache, the user is warned to expect a delay. The user may
choose either to wait or to put the process into the back
ground by typing an interrupt character (control-Y). The
user then can type "show" to check the status of the
cache request, "cancel" to cancel the request and begin
another unrelated SEEDIS task, "continue" to complete
the requested extraction as soon as caching is completed,
or "quit" to leave SEEDIS. In all cases the background
caching process proceeds to completion. Re-entering
SEEDIS an hour or two later, the user can extract the
requested data without delay.

If the requested data reside on the automatic tape library
(ATL) at LBL (see below), the cache request requires
access to BKY, the Lawrence Berkeley Laboratory com
puter center operating system. The user is prompted for
a BKY account number and password, if not already
specified in the user's login command procedure.
Interactive help is available for the new user who needs
to open a new BKY computer account.

3.2. Automatic Tape Library Mass Storage

The initial implementation of SEEDIS on CDC comput
ers in the mid-1970's made use of an IBM photodigital
storage device, the "chipstore." When IBM discontinued
support for that product in 1979, SEEDIS databases were
moved to a tape-based mass storage "gettape-stotape" sys
tem (GSS). This system, developed at LBL, implemented
a self-describing UNIX-like directory structure for tapes
and optionally makes use of an Automatic Tape library
(ATL) connected to the CDC machines.

When SEEDIS was initially reimplemented on the Distri
buted Computer Network VAX's, there was no link to the
ATL. Selected databases were installed on disk for the
initial implementation. At present, installed data occupy
1 gigabyte on five disk packs. The 1979 network imple
mentation accessed only files on disk packs mounted at
nodes in the network. In order to access data on tape,
the tape had to be manually mounted, copied to disk, and
installed in SEEDIS, a time-consuming and labor
intensive process. Although SEEDIS tapes contained
much useful data (including most of the 1970 U.S.
Census), they were virtually inaccessible. SEEDIS use
did not justify the number of disk packs, let alone disk
drives, required to keep the data on line.

With anticipated arrival of 1980 census data, there. was a
need for low-cost, moderately quick access to mass
storage. Although optical disks had seemed a likely
answer in the late 1970's, that technology was still too
costly and unreliable. In order to fill this need, the
SEEDIS project proposed a network link from the V AX
machines to the Computer Center's CDC computers, in
order to access and make use of the Automatic Tape

101

library and its GSS mass storage tape file system.

Two-way communication with the ATL is accomplished
by programs BKYSUBMIT and BKYCLAIM, which are
installed on every SEEDIS node. BKYSUBMIT and
BKYCLAIM use DECNET to talk to a special network
node DGATE, which in turn communicates with the ATL
over a high-speed hyperchannel link. The 1983 SEEDIS
network implementation includes an interface to
BKYSUBMIT and BKYCLAIM, including proper han
dling of the various errors that can occur. As a result,
low-priority SEEDIS data are now gradually being moved
to tapes on the ATL, freeing valuable disk space for more
important files and caching.

3.3. Node Independence

One of the most serious drawbacks of the 1979 implemen
tation was the difficulty of modifying archived data files.
Every node had an identical copy of program modules,
database lists and data dictionary files. Files at every
node had to be modified if any changes were made to
publicly installed data files. Obsolete data files could not
be removed until new software and data dictionaries were
installed on every SEEDIS node, a time-consuming pro
cess even with only nine nodes. With additional SEEDIS
nodes planned for 1983 and beyond, a better solution was
required.

One of the guiding principles of the 1983 SEEDIS net
work implementation has been node independence. Every
node should have the ability to install its own data
locally, which it may optionally share with other nodes
on the network. When a data· file is installed, modified,
or removed at any node, new information must automati
cally propagate to every node that has access to that file.
The procedures for installing data must be simple and
robust enough that only minimal consultation will be
required from LBL staff.

The 1983 implementation allows data to be installed at
any node, whether or not that node is connected to other
SEEDIS nodes on the network. Optionally, the installed
data may be flagged for public access, in which case the
data become available to remote users as soon a network
connection is established. The existence of data is made
known to other users through a summary data base direc
tory, which may be printed off line or browsed on line.
A copy of the on-line directory is maintained at every
node as described in the following example.

Suppose a user at the ETADC node (in Washington, DC)
installs or modifies a public-access data file. With the
permission of the local system manager, s/he uses docu
mented installation procedures to automatically modify
certain files in the local subdirectory seedis/etadc. This
portion of the file system contains all ETADC node
specific SEEDIS information. In particular, it contains
pointers to permanent archive locations of data and docu
mentation installed by ETADC users. (The data may
actually reside elsewhere, for example on the ATL in

Berkeley, California).

The installation procedure invokes a batch process at
ETADC, which in turn causes batch processes to be ini
tiated at every other presently connected SEEDIS node.
The subordinate processes modify files in the "per
manent" portion of their local cache. For example, node
RX in Seattle has a subdirectory cache/perm/etadc
where it maintains current copies of small files describing
ETADC-installed data (Le., a copy of seedis/etadc from
node ETADC). Conversely, node ETADC has a sub
directory cache/perm/rx .. where it maintains current
copies of small files describing RX-installed data (Le.,
seedis/rx at node RX).

When the network is down, there is no guarantee that the
directory cache/perm/etadc at RX is a correct copy of
seedis/etadc at ETADC. If the RX network connection is
down at the time ETADC data are installed, that infor
mation is kept in a small file at ETADC, and SEEDIS
periodically resubmits the same batch update request
(once a day until successful). In addition to the broad
cast of updates, each node regularly (once a day) checks
all other connected SEEDIS nodes to bring information
from other nodes in its own "permanent" cache up to
date.

Periodically (once a day) at each node, the information
in all the subdirectories cache/perm/(anything) is
merged and reformatted, to form a global database direc
tory (also in cache/perm). This global database direc
tory is the primary source of inforrruition at each node
for SEEDIS users and data retrieval software.

The list of known SEEDIS nodes is itself a file which is
automatically maintained at every node. For example, a
file in seedis/etadc at ETADC identifies ETAOC as being
a pUblic-acceSs SEEDIS node. When SEEDIS is installed
at ETADC, it attempts to broadcast that fact to every
node on the network; those which have installed SEEDIS
automatically receive and record the information in their
directories cache/perm/etadc. Even if ETADC is tem
porarily disconnected, it is remembered as a SEEDIS
node in future broadcast attempts from other nodes. If
SEEDIS is deinstalled at ETADC, the information is
properly recorded at each node the next time it achieves
a network connection with ETADC.

3.4. Robustness Considerations

The caching software needs to be unusually robust to
cope with a still unreliable hyperchannel link and DEC
NET phone connections that may operate only a few
hours a month. On several occasions when the hyper
channel was inoperative for an extended period, the
requested data were automatically and correctly put in
the cache when the link was restored three weeks later.
Even such a delayed response is valuable to certain
classes of remote users, provided the data are certain to
arrive sooner or later without further attention. Users do
not have to remain on line waiting for the data to arrive.
Once in the local cache, data used with some regularity

102

are likely to remain available for months or longer.

Another aspect of robustness concerns the ability of the
system to correctly recover from power failures, system
crashes, scheduled and unscheduled shutdowns, VMS
system updates, and well-intended but incorrect actions
by system managers. In general, the contents of disk
files are the only reliable records left by an interrupted
job -- batch queues may not survive system updates or
system crashes. Each SEEDIS node maintains a record of
a pending job it expects to find in the batch queue of
every other SEEDIS node, together with the password
required to resubmit that job if necessary. This job
(which runs once a day at each SEEDIS node) performs
routine maintenance operations and keeps alive its
"clones" at all other connected nodes. As the job runs
only a few minutes a day, the likelihood of its being
removed from the batch queue (due to a crash while it is
running) is small. The likelihood of such a disaster
affecting every node simultaneously is negligible. In
other words, the system becomes more robust as more
nodes are added (like the brooms of the "Sorcerer's
Apprentice!"). Once started at a node, it can be per
manently turned off only by a deliberate action of the
system manager, for example by deleting critical files or
removing the login privilege of the. pseudo-user CACHE.

4. Recording of Cache Transactions

Since January, 1983, transaction records of every cache
request have been continuously recorded in a compact
machine-readable form. Usage patterns are being statist
ically analyzed to isolate bugs and improve efficiency.

Between January and June, 1983, the caching mechanism
was continuously tested via daily automatic submission of
randomly generated requests. Two nodes connected via
DECNET shared a common cache on a single disk. Files
were routinely and correctly cached from the ATL; delays
varied from 20 minutes to 20 days depending on the state
of the hyperchannel link. Fewer than 1 percent of the
requests failed, in all cases due to hardware error. On
only three occasions did the system fail irrecoverably and
require intervention -- twice when hyperchannel hardware
malfunctions caused the cache to overflow, and once
when disk hardware errors caused the batch queues of
both nodes to be simultaneously destroyed.

Under normal day time load conditions, a typical small
request involving the ATL takes about an hour -- 5
minutes to formulate and submit the request, 20 minutes
in batch queues, 10 minutes to read the tape, 20 minutes
to put the data in the cache, and 5 minutes to copy the
requested data from the cache. Subsequent requests for
the same data would require only 10 minutes -- 5 minutes
to formulate the request and 5 minutes to extract the
data. Some of these times will be reduced in the future
by improving the efficiency of the software.

S. Conclusions

Major enhancements have recently been implemented to
permit efficient and robust access to distributed data in
SEEDIS. Specifically (1) an automatic caching mechan
ism provides local shared access to user-selected subsets

of SEEDIS databases; (2) automatic access to 50 giga
bytes of archived data is achieved through a hyperchan
nel link to an automatic tape library; (3) data can be
independently installed, modified, or removed at any
node, with all changes automatically recorded in copies
of a global database dictionary at every other node; (4)
every node is responsible for initiating periodic house
keeping functions at every other node, so that the whole
network is much more robust than any individual node; .
(5) a continuous log of every cache transaction is being
recorded for statistical analysis. So far, caching has
been implemented for only one SEEDIS database -- a
portion of the 1980 Census that was too large to reside on
disk. During late 1983 and early 1984, the mechanism
will be implemented for most other major SEEDIS data
bases including most of the 1980 Census. Distribution of
a new version of SEEDIS in 1984 will give remote users
automatic access to a vastly increased database, with no
increase in local disk storage requirements. At the same
time, remote users will be able to install their own
SEEDIS databases and make them mutually accessible to
other SEEDIS nodes.

References

1. McCarthy, J. L., Merrill, D.W., Marcus, A, Ben
son, W. H., (]ey, F.C., Holmes, H., and Quong,
C., "The SEEDIS Project: A Summary Overview
of the Socio-Economic, Environmental, Demo
graphic Information System," Lawrence Berkeley
Laboratory Report, PUB-424, Rev. May, 1982.

2. Merrill, D. "Overview of Integrated Data Sys
tems: Context, Capabilities and Status," Lawrence
Berkeley Laboratory Report, LBL-15074, October,
1982. In Proceedings of the 1982 Integrated Data
Users Workshop, Reston, VA, October, 1982.

3. Merrill, D. and Selvin S. "Populations at Risk to
Environmental Pollution (PAREP): Project Over
view," 1976-1982, Lawrence Berkeley Laboratory
Report, LBL-15321, December, 1982. Included in
"An LBL Perspective on Statistical Database
Management," H. Wong, editor, Lawrence Berke
ley Laboratory Report, December, 1982.

4. Department of Labor, Employment and Training
Administration and Lawrence Berkeley Laboratory.
Report 1: "Population Characteristics: 1980
Census of Population," Lawrence Berkeley labora
tory Report, LBL-14636, April, 1982. Report 2:
"Employment and Training Indicators: 1980
Census of Population," Lawrence Berkeley labora
tory Report, LBL-14637, April, 1982. Report 3:
"Social Indicators for Planning and Evaluation."
Report 5: "Equal Employment Indicators." Three
additional reports are in preparation.

103

An Integrated Research Support System for Inter-Package Communication
and Handling Large Volume Output from Statistical Database

Analysis Operations

G. D. Anderson and Tim Snider
McMaster University

Barry Robinson, SIR INC
Jerry Toporek, BMDP Statistical Software

Abstract:
This paper describes work underway to develop an integrated research support system designed

to link together into a unified system a generalized DBMS, a relational database query system,
statistical packages, a graphics system, text editors and a generalized screen oriented output
handler.

The work is being carried out on the He~ett Packard HPgOOO 32 bit micro computer system
under HP-UX; HP's implementation of the UNIX operating system. The intent of the project is to
provide a unified environment designed specifically for the researcher.

1. Introduction:
Most longitudinal studies require

that complex hierarchically related data
be collected, maintained and updated as
the study progresses over time.
Statistical analysis, reporting and
graphical display on the other hand,
require only simple rectangular (or flat)
files. A package that is suitable for
managing a complex database will not
likely provide all of the statistical and
graphical tools needed for analysis. To
manage databases, perform statistical and
graphical. analysis and to conduct
necessary updating and reporting tasks,
the researcher needs convenient access to
more than one single program package.
This paper deals with the following
aspects of the use of multiple systems in
statistical database analysis:

A description of the set of
computer facilities needed by a
researcher working with
Statistical databases.

- A discussion on how most of these
needs can be met using a
combination of existing packaged

, systems available through software
vendors.
A description of additional
facilities needed and a proposed
approach to providing those
facilities.
A description of a menu driven
user interface system designed to
integrate access to and use of
these various systems.

2. User ReqUirements for Statistical
Database Analysis
In this section, we will attempt to

justify why we feel the following set of
facilities are required for effectively
working with statistical databases:

Access to a comprehensive DBMS for
database creation, maintenance and
administrative functions.

- An easy to use relational query
language retrieval system with
which to produce simple flat file
units of analysis from the
potentially complex structured
data being managed by the database

104

management system.
Access to at least one
comprehensive batch statistical
package for large scale model
building and hypothesis testing.

- Access to an interactive
statistical analysis and display
system for immediate investigation
of smaller data sets.

- Linkage to a flexible interactive
graphics package system through
which data can be displayed
graphically.

- An output management system by
which the large volumes of
listings generated in the process
of statistical database analysis
can be viewed, annotated and
modified in preparation for
listing or archiving.

2.1 DBMS Characteristics:
Three types of database model are

discussed When referring to database
management systems; the relational model,
the hierarchical model and the network
model.

The relational model is the simplest
conceptually. Each type of record
collected in a study is viewed, in the
relational model, as a simple table
(relation). The record variables make up
the columns of a relation and the
obsevations form the rows. As many
relations are formed as are necessary for
the different types of records collected
in the study. For example, a clinical
study might have demographic records,
initial assessment records, follow-up
records and final assessment records. Any
interrelationships which may exist between
individual relations are retained in the
values of variables included in the
relations. For example, each relation in
the clinic example would have a variable
containing the patients unique study id.
Variables in one relation possesing a
relationship with one or more variables in
other relations are called candidate keys.
Any desired relationship is 'realized'
only at the time that a particular
retrieval is requested. The relational
model, through a well defined relational

algebra, provides very powerful rules by
which relations may be joined on candidate
keys during a retrieval to create new
relations or desired units of analysis.

The hierarchical and network models
differ from'the relational model in the
sense that they generally impose a very
rigid structure on the data records.
Whereas the relational model allows the
user to choose the relationship desired at
the time a retrieval is requested, the
hierarchical and network models require
the user to choose a specific set of
relationships to be operationalized as
part of the original design. Systems
based on these models then physically
implement the chosen design in the form of
index keys, inverted lists or even chains
of pointers actually embedded in the
individual records. Databases implemented
using a hierechical or network system have
the advantage of highly efficient access
to records and sets of records in the
order defined in the design. These
databases generally suffer the
disadvantage, however, that they do not
retain the flexibility of the relational
model for easily accessing records in
other ways not anticipated in the original
design.

Database management needs for
statistical databases require aspects of
all three models as we will discuss in the
next two sections.

2.2 DBMS Requirements for Building and
Maintaining a Statistical Database:

The fixed structure of a specific
hierarchical or network model is extremely
important for maintaining an ongoing
database. The database administrator
needs access to a dictionary driven DBMS
which supports a defined structure, which
then enforces database integrity, provides
for efficient interactive input and
updating of records and maintains the
database as an integrated whole.

Building and maintaining a
statistical database requires a DBMS which
provides:

The ability to implement
potentially complex hierarchical
and network data structures which
are capable of modeling the real
nature of the data being
collected.
A centralized schema (data
dictionary) facility within which
data characteristics (meta data)'
as well as integrity constraints
can be defined.

- Both interactive data entry access
and volume batch data entry and
modification facilities.

- Security provisions, database
integrity checking and database
recovery facilities.

- Report generation, descriptive
statistics and tabulation
proced ure s.

105

- A comprehensive set of maintenance
utilities for unloading,
reloading, subseting, merging,
recovering, restructuring and
.transporting the database.

2.3 DBMS Requirements for Statistical
Analysis and Graphical Display:
With the availability of a

comprehensive database management system
to handle the capture, editing, updating,
reporting and general maintenance of a
complex set of data, the researcher's
primary concern is the production of flat
files for analysis. Although some file
management capabilities are being added to
statistical analysis systems, they do not
provide a full range of capabilities
provided by a DBMS.

If the DBMS has a 'simple to use'
query retrieval system linked into the
database, the researcher can accomplish
analysis most easily by creating flat
files containing necessary units of
analysis directly from the database as
required. The resulting flat files can
then be passed to the statistical or
graphical analysis system where the
desired analysis can be done. This
approach has the added advantage that the
centralized schema maintained within the
database contains extensive meta data
which can be passed to the analYSis system
with the retrieved units of analysis.
This elimin,ates, for example, the data
description and manipulation step required
by statistical systems and allows the user
to go right into statistical analysis.

The primary difficulty with retrieving
analysis files directly from a database
has been the inability to view a database
relationally which was initially
structured hierarchically or as a network.
Clearly, the database administrator needs
the structured model while the researcher
needs the flexibility of the relational
model.

In sectioon 3, we will review the SIR
database management software package. The
SIR system allows the user to logically
impose multiple hierarchical structures
with any necessary interconnecting network
access paths on a set of relations. This
structured model is maintained through
independent index files which provide
direct keyed access to any record in the
database. This logical structure provides
the rigid model needed by the database
administrator for building, updating and
maintaining the ongoing database. To meet
the needs of the researcher, the SIR
software provides a relational query
system which allows the user to completely
ignore the structured model and to treat
the database purely as a set of relations.

A second difficulty with retrieving
analysis sets from a database has been the
fact that the user must interact
independently with several separate
program packages. In addition to moving
manually between various systems, the user

'must define the various command files

separately for each system. This process
often means moving repeatedly in and out
of a system text editor and much
interaction with the computer operating
system. A major emphasis in this project
will be the provision of a smooth,
automated, menu driven user interface
between separate systems.

2.4 Output Handling:
The use of a statistical analysis

package often results in large volumes of
output. Such large output can not easily
be viewed and comprehended as it is being
produced. The output from batch oriented·
packages is also often wider than the
standard 80 column width of most computer
terminals. Yet it is not always cost (or
time) effective to print the output to'
hard copy. Very often the analysis may
only be preliminary. A quick look at
several results is sufficient to allow
discarding an initial output and
proceeding on to the next analysis.

The researcher needs a flexible
system for terminal screen handling of
large files of output. This is
particularly import11t when computing at a
distributed microcoJ. "\uter workstation
which may not includl.: a local high speed
printer. A comprehensive output handling
system should be considered as·a necessary
part of the integrated .research system.
The following is a list of the
characteristics we feel are required in an
output handler program:

- The ability to browse sequentially
forward and backward through a
file and to window sideways when
the length of lines exceed the
screen width.

- A facility for marking locations
in the file so that they can be
recalled at will.

- A comprehensive pattern searching
capability.

- The ability to 'window' together
side by side on the screen parts
of the file from different
locations for comparison purposes.

- A facility for annotating the
output and adding notes which
become part of the resulting hard
copy.

- A flexible capability for cutting
and pasting a listing in order to
eliminate unwanted output.

3. Available Packaged Systems which Can
be Used as Components of an
Integrated System:
This section describes existing

packages available to include as
components in an integrated statistical

106

database analysis system. These include
the SIR research database management
software(1), the Minitab interactive
statistical system.(2), the BMDP (3) and
SPSSX(4) large volume batch statistical
systems, Hewlett Packard DSG graphics
package(5) and the vi full 'screen
editor(6) •

3.1 Database Management:
The SIR software system is probably

the most comprehensive set of database
management facilities currently available
that is especially designed for the
research environment. The system
presently.runs on 12 seperate computer
systems and is highly portable to other
systems with 32 bit processors and virtual
memory.

The following is a description of the
main features of the four seperate
packages which currently make up the SIR
softWare: SIR/DBMS, the SIR database
management system; SIR/FORMS, a full
screen data input, modification and
viewing system; SIR/SQL+, a relational
query language retrieval system and
SIR/HOST, a host language interface
system: .

3.1.1 SIR/DBMS - A Research Database
Management System:

The following is a list of the main
features of the SIR/DBMS:

A relational data structure on
which one can superimpose any
hiererchical, network and
relational data model with
multiple record types.

- An integrated data dictionary for
establishing the database
structure and for naming, labeling
and documenting the database
variables and record types.
Extensive facilities for data
quality control including checks
for invalid and out-of-range data,
tests for consistency between data
items and special handling of
missing and undefined data.
Security levels for reading and
writing variables or entire
records.
Interactive access to the data
dictionary.
A structured procedural retrieval
language, consistent with the
other SIR/DBMS facilities (data
dictionary, data input and built
in procedures), that enables the
user to navigate the database with
a minimum of programming. The
retrieval language also provides
facilities for direct database
modification, report generation

•

and interactive terminal input to
an executing retrieval program.

- A set of simple statistical
procedures that operate directly
on the summary records created by
a retrieval. These include
frequency distributions and
histograms, descriptive
statistics, scattergrams, line
printer plots and simple linear
regressions.

- A sophisticated tabulation
procedure patterned after the TPL
program produced by the Bureau of
Labor Statistics. This procedure
produces device-independent,
camera-ready tables. Individual
table cells can contain frequency
counts, means, minimums, maximums,
standard deviations, medians,
quartiles and percentages. The
user also has complete control
over all output format options.

- A report generator which allows
the user to produce simple reports
with Column headings, breakpoints,
sorting, totals, subtotals and
formatting automatically produced.
With more extensive user
specifications, complex
hierarchical and branched reports
can also be produced.

- Direct system file creation for
BMDP, SPSS and SASe The system
files created by SIR/DBMS can be
used directly by these statistical
packages.

- A complete set of database
maintenance utilities including
subseting, merging, restructuring,
unloading, reloading and
transporting facilities.

3.1.2. SIR/FORMS - Interactive Data Entry
and Retrieval s:

The SIR/FORMS subsystem is an
integrated system for interactive,
screen-oriented data entry, modification
and retrieval. It permits the user to
enter, retrieve, delete or modify data in
a SIR/DBMS database.

The SIR/FORMS subsystem provides the
screen designer with a comprehensive set
of design capabilities to handle a variety
of application requirements. Among these
are:

- Security and activity control for
individual or groups of users.

- Conditional execution of screens.
- Linkage of screens along

hierarchical or network paths.
- Validation of input based on

existing data in the database.
- Customized help and error message

texts.

107

- A wide range of data verification
capabilities.

- Automatic creation of Log and
Journal files.

SIR/FORMS makes direct use of the
SIR/DBMS centralized data dictionary to:

Create default screens.
- Provide automatic data quality

control.
- Provide automatic help screens for

each data item.

In addition to data entry and
modifiction, SIR/FORMS allows simple data
retrieval and query functions without any
programing by the user. These retrievals
can be done by record key values, a range
of key values, inverted list lookup or by
a data value in a field. In the latter
case, the operator simply types the search
criteria values in the appropriate fields
and SIR/FORMS retrieves the matching
records and displays them one at a time.
This can be considered as a type of query
by example capability.

3.1.3 SIR/SOL+ - A Relational Query
System:

SIR/SOL+ is an interactive relational
query system that allows users to
interrogate a SIR database using an
English like relational language.
SIR/SOL+ is an extended Implementation of
SOL (IBM's Structured Query Language). In
addItion to providing the full SOL,
SIR/SOL+ can take advantage of the
existing structure of the database to
perform retrievals with maximum
efficiently. Frequently used queries can
also be saved as part of the database.

The following examples illustrate the
use of SIR/SQL+ to perform retrievals.
The structured SIR/DBMS retrieval language
code necesary to generate the same output
!.S also shown for comparison:

List the employee ID, name and
salary of all managerial level
employees (position level greater
than 10):

SQL+:
SELECT EMPLID NAME SALARY
FROM DEMOGRAF
WHERE PLEVEL GT 10

SIR/DBMS:
RETRIEVAL
PROCESS CASES

PROCESS REC DEMOGRAF
IFTHEN (PLEVEL GT 10)

WRITE NAME SALARY
END IF

END PROCESS REC

END PROCESS CASES
END RETRIEVAL

List the results of a 10% raise
given to all the employees in
departments 3,8 and 10. Sort the
output by salary in descending
order. If there are two people
with the same salary, sort them by
employee ID.

SQL+:
SELECT EMPLID NAME 1.1*SALARY
FROM DEMOGRAF
WHERE DEPT EQ ANY (3,8,10)
ORDER BY SALARY DESC EMPLID

SIR/DBMS:
RETRIEVAL
PROCESS CASES

PROCESS REC DEMOGRAF
IFTHEN (DEPT EQ 3 OR 8 OR ID)

MOVE VARS EMPLID NAME
COMPUTE NEWSAL=1.1*SALARY
PERFORM PROCS
AUTOSET

END IF
END PROCESS REC

END PROCESS CASES
REPORT FILENAME=SALRPT/

SORT=NEWSAL(D),EMPLID/
PRINT=EMPLID,NAME,NEWSAL/
NOTOTALS/

END REPORT
END RETRIEVAL

- For the whole company, find the
average salary for each
educational category (eg. 1=High
School, 2=Some College, 3=BA or
BS, etc.).

SQL+:
SELECT VALLAB(EDUC) MEAN(SALARY)
FROM DEMOGRAF
GROUP BY EDUC

SIR/DBMS:
RETRIEVAL
PROCESS CASES

PROCESS REC DEMOGRAF
MOVE VARS EDUC,SALARY
PERFORM PROCS
AUTOSET

END PROCESS REC
END PROCESS CASES
REPORT FILENAME=EDUCRPT/SORT=EDUC/

NOTOTALS/PRINT=VALLAB(EDUC)
MEAN (SALARY)/BREAK=EDUC/

END REPORT
END RETRIEVAL

The VALLAB function displays the
meaning (value label) of the
education categories rather than
their codes.

108

In addition to these simple examples,
SIR/SQL+ will handle full relational JOIN
queries in which data from two or more
relations (SIR/DBMS record types) is
joined.

3.1.4 SIR/HOST - A General Host Language
Interface:

SIR/HOST provides access directly
into a SIR database from any standard high
level language able to call a FORTRAN
subroutine library. Through SIR/HOST, the
user can take advantage of the storage,
maintenance and retrieval capabilities of
the SIR/DBMS database directly from within
his own programs.

3.2 Statistical Systems:
The most popular and widely used

statistical packages in North America
today are BMDP, Minitab, P-STAT, SAS and
SPSS. All of these except SAS have been
converted to a large number of computer
systems and will readily transport to any
32 bit computer with virtual memory. The
recent work at SAS Institute on portable
SAS promises to make that system much more
broadly available in the future as well.

BMDP, PSTAT, SAS and SPSS are all
similar with respect to their provision of
a reasonably broad and comprehensive array
of statistical procedures and the batch
nature of their execution. All work on
flat files of records on disc and can,
therfore, handle indefinitely large data
sets.

Minitab is decidedly different than
all of the others in that it works with an
in memory worksheet array and is
completely interactive. This approach
gives it great flexibility and makes the
system very simple and easy to use.
Minitab is, however, limited in its
ability to handle really large research
problems. Minitab is thus complementary
to the other four systems mentioned above
and should probably be included with
whichever one of the batch systems is
chosen in order to provide a complete
spectrum of statistical capability to the
researcher.

The P-STAT, SAS and SPSSX systems
provide file management facilities in
addition to statistical_procedures. SAS
and SPSSX also provide report generators
and tabulation procedures. If the
researcher is able to extract analysis
files easily from the statistical database
and is able to accomplish reporting and
tabulation needs within the DBMS, these
facilities in the statistical system
become less important.

3.3 Graphical Systems:
As a result of great interest in the

area of graphics in recent years, much
work has been done to provide graphics
software and the hardware to support it.
Most computer vendors now provide
comprehensive graphical software packages
which support the graphics devices that
they produce.

General packages (eg. the ISSCO and
Precision Visuals Inc. products) run on a
large number of computers and support
multiple vendors graphics devices. In
addition, both SAS and SPSS have graphics
options available for their systems on
some computers.

Whichever approach is adopted to
provide graphical support to the research,
a mechanism is needed for getting flat
files from the database to the graphical
system in much the same way this
mechanisim is required for statistical
systems.

3.4 Editors:
As mentioned earlier, access to

flexible text-editing facilities is
important to the researcher. Most
computer systems have several text editors
available and different users prefer
different editors. In addition, many
systems also provide some type of editor
capability as an integral part of the
system. SIR and P-STAT are examples. The
SIR system provides a comprehensive and
quite general line oriented editor. Often
users wish to use the editor provided with
a system like SIR because they become very
comfortable with it and because it is
identical on every computer on which they
use the system. In this way, moving
between computers doesn't require them to
learn a new set of· editor commands.

System specific editors, on the other
hand, are often tailored to the computer
and offer advantages such as full screen
capability. Thus the user needs
flexibility in using the editor of choice
without paying a high overhead in terms of
moving between systems and re-assigning
files.

4. Development Considerations for the
Output Handler

The output handler will allow a
researcher to examine large output files
in as natural and flexible a manner as he
examines printouts. This is currently
done in a somewhat ad hoc manner. For
example, we manipulate large files using a
number of tools supported by the UNIX
operating system. These include the vi
full screen editor as well as several
programs that compare files, merge files,
separate files, etc. The most obvious

109

problem with handling output files in this
manner is that these are all separate
programs, each of which requi res a
different set of parameters and cryptic
commands to perform its function. A less
obvious problem is that all of these
programs treat files in a very general
manner, as a sequence of characters, or at
most as a sequence of lines: Output from
statistical packages always has some
higher level structure such as tables,
graphs, text, etc. and there is a great
loss in efficiency if this is ignored.

To solve these problems, the output
handler will be an integrated package
which supports most of the functions of a
full screen editor plus additional
capabilities to allow multiple windows
into multiple files, automatic comparison
of windows, etc. In addition it will
recognize the high level structure of an
output file and use that to facilitate
searching, comparing, and cutting and
pasting of files.

In operation it will accept output as
it is produced by a statistical package.
It will build an index into the file based
on the syntax, or structure of the output.
The researcher can then direct his
searches, comparisons etc. in terms of the
structure of the output. For example, let
us consider the steps necessary to compare
two tables. First of all the tables are
located by repeatedly executing the "next
table" command. This is very rapid
because the output handler has built an
index of the tables in the file. Once the
desired tables have been located, the
display screen may be divided in two and
one table put into each window for visual
comparison. If the tables are too big to
be completely displayed they may be
scrolled side to side and up and down.
Another situation might require the
assembly of several columns from different
tables. Again, the tables may be found
and the columns selected quickly and
easily because the output handler
recognizes the structure of a table. The
columns may then be assembled in a
separate window and then saved as a file
for later printing or review.

5. The Proposed Comprehensive
Research Support System:

The Statistical Software Group (SSG)
at McMaster University has, for five
years, been converting and distributing
statistical software (BMDP, Minitab, SCSS
and SPSS) on the HP3000 16 bit
minicomputer. The SSG has presently
entered into an agreement with Hewlett
Packard to convert and distribute
statistical packages, database management
software and research support tools on the

new HP9000 32 bit microcomputer running
under the HP-UX operating system (HP's
implementation of Bell Laboratories
UNIX(7) operating system).

In addition to making the individual
packages available, it has been decided
that an overall user interface system is
needed to help the user make effective use
of these individual packages' in concert.

The proposed system will provide the
user with a menu driven user interface
subsystem which will integrate the
following component systems:

1. SIR/DBMS research database
management system for statistical
database definition,
administratt'on and maintenance.

2. SIR/FORMS for full screen forms
data entry, modification and
viewing.

3. SIR/SQL+ for relational database
retrievals of units of analysis.

4. A choice of BMDP or SPSSX batch
statistical systems for large
scale statistical analysis.

5. The Minitab interactive
statistical analysis and display
system.

6. Hewlett Packard's DSG Decision
Support Graphics package.

7. The vi full screen editor and the
SIR/DBMS line oriented editor.

8. An output handling subsystem as
described in section 4.

The user interface will allow the
researcher to move smoothly between these
component systems as well as provide the
mechanism for handling the communication
of data between systems via temporary
files, pipelines and buffers. This
removes one of the last machine specific
burdens that the statistical researcher
has traditionally had to face.

All of this will be made available on
the HP9000 32 bit microcomputer system.
The HP9000 computer ranges in size and
power from a desk top workstation version
with a single 32 bit CPU, an I/O processor
and one megabyte of memory to a multi-user
system with three 32 bit CPU's, an I/O
processor and eight megabytes of memory.

Plans call for incorporating support
for distributed 16 bit processor
workstations into this research support
system as well. In the distribution
workstation environment, the SIR/DBMS
database would likely reside on the
central HP9000 where the SIR/SQL+
retrievals would be done. The resulting
flat file would then move to the
workstation where the researcher would do
required statistical processing, graphical
displays, output processing, etc. on the
local personal workstation. The resulting

llO

output might then be sent back to the
HP9000 for printing if a large output was
required. Alternatively, one or more of
the workstations on the network might have
a printer or graphics plotting device for
public use where required output could be
produced.

. References

1. SIR software is a product of SIR
Inc., 820 Davis St., Evanston, IL
60204.

2. Minitab is a product of the Minitab
Project, 215 Pond Laboratory,
University Park, PA 16802.

3. BMDP is a product of BMDP Statistical
Software, Inc., P.O. Box 24A26, Los
Angeles, CA 90024.

4. SPSS X is a product of SPSS, Inc.,
Suite 3300, 444 N. Michigan Ave.,
Chicago, IL 60611

5. Dicision Support Graphics is a
product of the Hewlett Packard
Company, 3495 Deer Creek Road, Palo
Alto, CA 94304.

6. The vi f~lscreen editor is part of
the UNIX system.

7. UNIX is a trademark of Bell
Laboratories. For literature
contact:
North America:
Western Electric Company Inc.,
Software Sales and Marketing,
Guilford Center, P.O. Box 25000,
Greensboro, NC 27420.
International:
AT&T International, Mount Kemble
Ave., Route 202, P.O. Box 7000,
Basking Ridge, NJ 07420.

INTEGRATING DATA AND DOCUMENTATION IN A
MULTI-NATIONAL RESEARCH PROJECT: THE lEA

SECOND INTERNATIONAL MATHEMATICS STUDY

Richard G. Wolfe
The Ontario Institute for Studies in Education, Toronto, Canada

With recent advances in the design of statistical software systems,
data files with a hierarchy of observations can be stored with appropriate
linkage of data and documentation and analytically aggregated and
disaggregated. However, additional layers of organizational complexity
need to be incorporated into the design of statistical databases when it
is desired to integrate research studies that are parallel in sampling and
instrumentation, but not identical. This occurs when a research survey is
is repeated over several years or in several countries. Integration may
be facilitated with a central documentation file of tables and text that
capture inter-study variation and can drive analysis programs. This is
illustrated in an application to a 20-country set of school mathematics
surveys.

O. Introduction

Over the last several years, the
designers of statistical software systems
have begun to recognize that many data
files, especially in the social sciences,
have a structural complexity that exceeds
a simple observation by variable matrix.
An important example concerns a hierarchy
of observations (e.g., students, teachers,
schools) where each level may introduce
new variables. In such a case, the
organization of the statistical database
must include linkage of data and data
documentation between levels and should
facilitate the analytiC processes of
aggregation and disaggregation.

It is suggested in this paper that
sometimes additional layers of
organizational complexity will need to be
incorporated into the design of
statistical databases. The complexities
arise from the integration of research
studies that are parallel in sampling and
instrumentation, but not identical. For
example, this would occur when a research
survey is repeated over several years. The
main example in this paper is of a set of
very large-scale surveys in school
mathematics that are being carried out in
a coordinated but not centrally controlled
fashion across 20 countries.

First, the nature of the data
organization and documentation problem in
the mathematics project is described. Some
of the complications include hierarchical
sampling and instrumentation, intended and
accidental national variation,
simultaneous item and respondent sampling,
and multi-language translation. Second,
the design objectives and constraints for
database integration are discussed. It is

111

especially important to capture the
national variation in the surveys and to
facilitate repeated but differentiated
analysis. CompreSSion and portability are
also important. Third, the approach being
taken to integration is described. This
involves a central documentation file
containing tables and structured text that
define the internationally standard
instrumentation and data coding as well as
national deviations from the standards.
Fourth, it is explained how the central
documentation file is used as basic
reference documentation and also as a
source data file for programs that produce
codebooks and statistical package setups,
adjusting automatically to the specifics
of each country's data. Fifth,
consideration is given to what aspects of
the system might be considered for
incorporation in general-purpose software.

1. The lEA Second International
Mathematics Study

The lEA (International Association
for the Evaluation of Educational
Achievement) is a consortium of
governmental and private research
institutes around the world that carries
out a program of coordinated educational
research studies in a variety of content
areas. The lEA Second International
MathematiCS Study involves 20 of the lEA
countries (some are jurisdictions within a
country) in an analysis of mathematics
teaching and learning at two levels in
secondary education: one is called
population ~ and corresponds to students
in the school grade where most students
are age 13, and the other is called
population ~ and corresponds to students
who are studying mathematics in the final
year of secondary education. Some of the

countries are carrying out the study only
for population a, so across the 20
countries there are a total of 35 surveys.

It is important to note that while
the general design of the study is set in
international meetings and defined in
international instruments and operating
manuals to be followed by the national
centres, each centre is responsible for
the detailed design and implementation,
includiug translat.ion, sampling,
administration, and initial data coding
and processing. Control mechanisms for
assuring consistency and quality of the
surveys include having international
sampling referees, obtaining back
translations of the national instruments,
and carrying out an elaborate audit
of the data and reports submitted by
each country.

These surveys are of large scale and
national scope. For a given country and
study population, there might be 150
schools, 300 teachers, and 7000 students
participating. In most cases, stratified
random cluster sampling is used, although
the particular nature of the sampling
stratification and hierarchy depends on
the school system of the country. For
example, some countries have distinct
subsystems of schools (e.g., academic and
vocational training); others have tracking
within a single system (e.g., algebra and
basic mathematics classes in comprehensive
schools). Essential first aspects of the
data documentation and storage concern the
identification of the sampling structure,
linkage of records from student to
classroom to teacher to school to stratum,
and recording of appropriate replication
categories and sampling weights at each
stage. Of course, thes"e aspects vary from
country to country.

Response information is collected at
each level of the school hierarchy.
Students take knowledge tests in
mathematics and answer background and
attitude inventories. Teachers fill out
questionnaires covering their educational
backgrounds, their attitudes toward
mathematics, and their topic coverage and
teaching practices. Teachers also provide
reaction to the student test, indicating
for each item whether the content needed
to answer the item was included in
classroom instruction; this is called the
opportunity to learn (OTL), and becomes a
variable in analyzing student achievement.
School principals fill out a questionnaire
concerning facilities, length of the
school year, organization of the
mathematics instruction, etc.

112

The core of the surveys is the
mathematics test, and it is administered
through a process of item sampling. The
pool of test items is too large (180 at
population a, 136 at population ~) to
administer to each student, without using
an impractical amount of classroom time.
So the pool is divided into stratified
random forms, of which each student takes
2. (The details of constructing the forms
differed between the two populations and,
to some degree, between countries.) The
assignment of forms to students is
randomized in each sampled classroom. So
for purposes of analysis, each test item
is responded to by an inner-penetrating
subsample of the total student sample, and
each stUdent takes a stratified random
subsample of the items. Special
statistical procedures are needed, of
course, in descriptive analysis of item
and subtest response and in explanatory
analysis of student achievement.

The intricacies of the multi-stage
sampling design, of multi-level data
instrumentation and collection, and of the
item sampling process mean that the
organization and documentation of each
national survey is complex and extensive.
From the perspective of international data
processing, archiving, and analysis, the
complexity is compounded by national
variation, both accidental and
intentional.

Accidental variation is bound to
occur in a study of this magnitude.
Mistranslations, misprintings, and
misunderstandings of the operating manuals
will contribute to variation. The
international standards have improved and
shifted over the several years of the
study, and national studies have begun and
ended at different times.

The more fundamental, intentional
variation derives from the fact that each
national survey is intended to be a good
and practical research study for the
purposes of national analysis and
interpretation. One obvious national
interest and point of variation is in the
nature of the sampling stratifications,
since a country will usually want to
differentiate teaching practices and
student performance between educational
groupings of local definition and
importance. For practical reasons, a
country may need to reduce the sizes of
the item samples--e.g., students might
take 1 rather than 2 forms--or ensure that
some kinds of items are given to larqer
samples of stUdents. For political or
pedagogical reasons, a country may need to
delete some of the content of the

instruments. Or a country may need to add
questions and test items to the
instruments in order to capture essential
local context. A major and internationally
coordinated variation occured in
population ~ in that for 8 of the
participating countries, the students took
the mathematics tests at the beginning as
well as the end of the school year, and
during the year, the teachers answered
extensive questionnaires on specific
content areas.

2. DeSign Objectives for Database
Integration

There are two international data
processing centres for the study: the
Department of Education in Wellington, New
Zealand, is responsible for the population
~ surveys and for the cross-sectional
population ~ surveys, and the University
of IllinoiS, U.S.A., is responsible for
the longitudinal population ~
surveys--that is, the 8 with the extra
topic-specific questionnaires and
beginning-of-year testing. The data
processing load is extraordinary. There
are 35 surveys, each with at least 13 and
as many as 25 different data collection
instruments, with extensive information
collected from 3 levels (student, teacher,
and school) plus linkage and sampling
information from 2 other levels (classroom
and stratum). Each country submitted
copies of the original instruments, with
back-translations where pOSSible, and
detailed audits of national options,
modifications, deletions, and omissions.
In the course of the data processing steps
of checking, cleaning, and merging,
hundreds of data files and thousands of
working versions are involved.

The management of this data
processing operation is obviously
difficult and worthy of careful attention
as a problem in database management. But
that is another story. We are concerned
here with defining and implementing the
output of the data processing. The final
goal of the data centres is to produce a
data bank containing all the response data
and the corresponding documentation for
the 35 surveys. This is immediately used
to produce analyses for the international
reports on the study, for which the
international processing centres have
major responsibility. The data bank also
needs to be immediately distributed to
author-analysts for other international
analyses and back to the national centres
for national reporting and regional
comparisons. Finally, the data bank needs
to be archived and made available for
future secondary analysts. Since a study

113

like this is only done once every decade
or two, and since the data array is so
extensive and rich, it is likely that the
most significant findings will arise in
reanalysis over the coming years.

The database design problem is to
store the data and data documentation from
the study in a manner that captures the
details of each national survey and, at
the same time, integrates the data and
documentation in terms of the
international plans and standards. The
complexities of anyone of the surveys tax
or exceed the capabilities of current
statistical database software. The
integration across surveys requires a new
kind of organization. Several design
objectives should be met.

Integration. There must be a true
integration of the documentation, in which
the common, international
information--variable names, codes, texts,
etc.--are stated once, and national
variations are presented-as exceptions.
This is necessary simply because of the
size of the problem: the international
coding documentation for each population
takes about 100 pages. If this were
repeated and modified for each country,
there would be 3500 pages of
documentation, and that would be
impractical to generate and maintain.

Utility. The integrated documentation
should be usable both manually and through
computerized interpretation. Some analysts
will want to read about the
characteristics of the data and then
devise their own procedures for acceSSing
and proceSSing them. Other analysts will
want to obtain access to data files
through their favourite statistical
systems, and so the documentation and data
must be made accessible to those systems.
As will be explained later, an important
capability is automatic generation and
execution of analy.ses adjusted to the
characteristics of each national survey.

Compression. The data files
themselves should be kept reasonably
small, without too much redundant linkage
and filling. An earlier lEA study has a
databank that requires 10 computer tapes,
and this leads to unfortunate costs and
administrative hassles (e.g., in customs)
for copying and transporting. All the data
from the current mathematics project will
fit, in theory, on one standard computer
tape.

Portability. The entire data and data
documentation system should be reasonably
portable across computing environments.

The international data processing centres
must be responsible to 20 different
national centres, with a wide variety of
hardware and software facilities. Current
and secondary analysts will also have
particular computer constraints. The goal
must be to deliver the data and
documentation in a universally readable
form, together with as portable as
possible an arrangement for extracting
informati"on and feeding it into local
systems.

3. Central Data Documentation File

Since no existing statistical
database package can meet those design
goals adequately, it has been necessary to
improvise a system. This system is based
on a central, integrated data
documentation file, as illustrated in
Figure 1. (Actually, one central file was
established for each of the two
populations, with equivalent codings in
areas of overlap. The following discussion
applies to either.) The central file was
initially set up to contain the
internationally standard information, and
as the data development work has
proceeded, it has had notations concerning
national variations added to it.

In the interests of portability, the
physical format of the documentation file
has been kept very simple. It is an
ordinary text file, with BO-character
lines. There are about 6500 lines of
international information, and now about
4000 additional lines of national
notations. The content is a mixture of
unformatted explanatory material,
including the essential auto-documentation
of the file itself, and formatted tables
and structured text, Which contain the
documentation of the survey data and the
national variations. These different kinds
of information are set off with lines of
asterisks, slashes, and minuses, partly to
facilitate a human reader's scanning of
the file, but also so that a computer
program can easily locate the tables.

The central file begins with an
introduction, containing a table of
contents and an explanation of the general
formatting conventions for the rest of the
file. The main body of the file is divided
into 6 sections, each beginning with a
unformatted text explaining the purpose of
the section and defining the specific
format of its table or structured text.

Basic parameters and sizes. The table
in this section is organized by country.
For each country, there is one line for
each data collection instrument (test,

114

questionnaire, etc.). For example, one can
determine here.which parts of the
mathematics test a country administered at
the beginning and the end of the school
year.

Definition of the response data
layout. The actual response data for each
country are stored separately, and the
details of the storage scheme are not
necessarily linked to the specification of
this documentation file. For example,
there may be independent distribution of
the data files in the form of some popular
package, such as SPSS. However, for
purposes of the ultimate compression and
long-term storage of the data, a storage
scheme is described in the documentation
file. The main emphasis of the present
paper is on the documentation file, but
some features of the data storage scheme
are worthy of note. The most portable
record format is used: BO character
records. All logical record organization
and linkage is coded within the physical,
eO-character records. Logical records have
a special starting symbol (asterisk), and
a record length indication. The data part
of the record begins with a code
indicating the level of the data (student,
teacher, classroom, school, stratum,
population) and special linkage keys that
vary depending on the level. The linkage
keys show which instruments are included
and which units at one level are
associated with which at another.

Cognitive item table. For each of the
mathematics test items, there are two
lines with international information
followed by one line of national
information for each country. For example,
one can determine whether the use of an
item in a given country followed the
international standard and where the item
appeared in the national test instruments.
This information is generated from audits
of the instruments and back-translations
at the national and the international
centres.

Questionnaire item table. For each of
the items on the stUdent, teacher, and
principal questionnaires, there is one
line of international information. This is
followed by a line with coded and textual
comments whenever a country deviates from
the international standard, as determined
through the national and international
audits.

Sampling notes and stratum
definitions. In this section information
is included for each country on the sample
design, stratification and cluster codes,
stratum weights, etc. What information

•

Fiqure 1

Outline of the Central Documentation File
for the lEA Second International Mathematics Study

INTRODUCTION to the Central
Documentation File

- table of contents

- formatting conventions

SECTION 1. Basic Parameters
and Sizes

By data collection instrument

>
l.

1: - was it uti I ized?
:;)

3 - how many international items?

&I - how many nationol items?

- given to sample or subsample?

- which OTL questions?

SECTION 2. Definition of the
Response Data Layout

- physical records - linkage keys

- logical records - ordering
- level code - response layout

SECTION 3. Cognitive
Item Table

By mothematics test item
~

o c: r--j
~ i - item number and label i
g i-correct response key :
!u: - content and subtast codas :
1: i-standard form and position i
...... , ' , --_ --- -_ -_ -_ --_ -_ ---'

"'---, '
t' i-was it utilizad? i
1:: - was it modi fiad? :
6! - national form and position? :
u: _ which OTl questions? :

rf;;' i ___ 1

115

SECTION 4. Questionnaire
Item Table

By questionnaire itam
~

.~ f---~-::;;:~~:-~:::-:~~-;:~:-;-----------l
1::: - standard instrument position :
~ i-response code width :
1:: - subscala codas i - ~----------- .. --- ---------------- .. ----- ----:

r----------------------------------_ .. _------- j

>-: - was it utilizad? i l. ,
1:: - was it modified? :
~ i-national instrumant position? i
u: - notional option question? :
>. : : CIl , ____ .. __ __ __ ... ________________________ .. 1

SECTION 5. Sampling Notes
and Stratum Definitions

By stratum, clustar,' atc •

.. ---------------------------_ .. _------_ .. _-_ _-, , , , >- , ,
l. ' ,
+> ' , § i ~ tQxtual description of sample i

3! - stratum identification and siZQS i
>- : : CD: - clustering and subsompling : , ,

i-weighting requiremllnts :
! - repl ication and balancing ! , , , , , ,
L ___ .. _ _ __ _ __ _ _ _ __ J

SECTION 6. Detailed Coding
and Textual Explanations

: ;
: Oata levels

· - population
- stratum

school
· - classroom BOY
- classroom EOY

· - tgachgr
· - topiC spgcific
· - classroom procgss
· - student BOY
· - studgnt EOY

: : I ntgrnat i ona 1
: : standards
: : - saction hgadings
. - instructions

: : - variable namgs
: : - question tgxt
. - response tgxt

. . - response codes
: : - rasponse labals
'. - commgnts

·
: ·~Qti6nQr \,ior·{ciHi:iris··············:

needs to be stored for a country is
determined by the international sampling
referees.

Detailed coding and textual
explanations. The final section of the
documentation file contains the
questionnaire texts from the international
instrumentation together with substitute
or supplementary texts to describe
national variations. An extract (partly
artificial) from the population ~
documentation file is given in Figure 2.

As can be seen in the extract, the
international and national information are
collated into a single structured text.
The important structural conventions are
exemplified in the extract:

- The text is keyed to the
questionnaire item table through
the variable names that appear
here at the left margin. The
extract contains material for
variables SAREA, SENROLB,
SENROLG, SAPOPA, SAPOPG, SHEET,
SPOLFF, and SPOLPP. For each
variable, the name and the exact
text are given. For
multiple-choice response
variables, the response codes
and texts are also given,
together with short labels where
appropriate.

- A hierarchy of text to surround
variables is given by lines
beginning with numbers. This
includes the instrument names,
section names, and other
material that applies to sets of
items. A numbered text applies
until superseded by a text with
an equal or higher number.

- Comments about national
variation are enclosed in
special brackets formed with the
country's code number. In the
extract, notations are made
concerning a country number
97, called "Zembla". All
material in the (+97 ••• +)
brackets applies .only to Zembla.
New or replacement variables and
surrounding text for Zembla are
defined in lines begining with
(+97+). Lines that apply except
in Zembla are marked with
(-97-). The last four lines in
the extract indicate that in
Zembla a different
categorization of calculators
was made than in the other
countries.

116

- The last part of the extract
also illustrates a system for
simplifying the description of
partly parallel questions. A
special name beginning with ",It"

is associated with a text
string. The string will be
inserted whenever that special
name is encountered.

4. Use of the Central Documentation File

Even if no further computerized use
is made of the central documentation file,
it is providing a systematic framework for
recording and preserving the information
about the international standards and the
national variations that is vital for
on-going and future analysis. It replaces
what in other studies have been haphazard,
unintegrated collections of separate
documentation files or integrated files
with inadequate notation of true
inter-survey variation. Several
computerized applications make the central
documentation file even more useful.

A program has been prepared to read
the central documentation file together
with a selection of one country and the
specification of a set of questionnaire
variables. The program produces a
annotated codebook by carrying out these
steps:

- The basic parameter and size
table is examined to find out
which instruments are included
for the country.

- The questionnaire item table is
examined to determine the
labels, widths, and standard
locations of the variables,
together with any special
notations entered for the
specified country.

- From the last section, the
detailed texts and codings are
extracted, together with all
indicated surrounding
information. Specially bracketed
material is included only when
appropriate.

Another progr~ goes a step further,
producing not just the codebook, but also
a data file containing the extracted
variables together with a setup, including
the labels, to read the data into a
statistical software package. So far, the
setup is restricted to SPSS, which is the
package available in most of the national
centres.

•

Figure 2

Extract from the Documentation File's Section of
Detailed Coding and Textual Explanations

9 School questionnaire
7 Section A - to be campleted by the school principal
SAREA Which of the following best describes the community served

by your school? (+97 In Zembla. the national capital is
counted in the 5th category+)
/1 rural /2 suburban /3 urban /4 urban-suburban
/5 inner-city metropolis (i.e .• for cities with a total populatian
greater than half a million) = inner city metra

(+97+)3 In Zembla. the enrolments are not differentiated between
boys and girls. The totals are given under the international
variables for boys.

2 What is the total enrolment of full-time (or full-time equivalent)
secondary students in your school?

SENROLB boys (+97 and girls+)
SENROLG girls
2 What is the number of population A students in your school?
SAPOPB boys (+97 and girls+)
SAPOPG girls

7 Section B - to be completed by the head of the mathematics department
(+97 In Zembla. the information came from central records.+)

SHEET How frequently are meetings of the mathematics teachers held
in the school? /1 never /2 less frequently than once a semest~r or
term = infrequent /3 once a term or semester = once a term
/4 once every month /5 once every two weeks = fortnightly /6 once a
week or more frequently = weekly or more

*DEPTPOL Which of the following best describes your department's
policy on the use by population A students of

*CALPOL calculators in the mathematics classroom?
/1 no policy formulated. Teachers allow use as they see fit =
no policy /2 students are forbidden to use calculators in the classroom
= forbidden /3 students may use calculators. but they are not provided
by the school = permitted /4 calculators ore provided by the school.
but used only rarely in the classroom a provided low use /5 calculators
are provided by the school and are used frequently in the classroom
aprovided used /6 question does not arise (e'9 .• calculators are not
available to students) = no calculators

(-97-)SPOLFF *DEPTPOL 'four-function' *CALPOL
(+97+)SPOLFF *DEPTPOL non-pro9rammoble *CALPOL
(-97-)SPOLPP *DEPTPOL preprogrammed multifunction and programmable *CALPOL
(+97+)SPOLPP *DEPTPOL programmable *CALPOL

117

A potentially more significant kind
of application involves running programs
against the central documentation file to
produce a series of processings, one for
each national data file, adjusted to the
characteristics of the file. For example,
there is interest in the content area of
achievement in algebra. In the cognitive
item table for population "A", about 30
items are flagged as being part of the
algebra subtest. The assignments of these
items to test form and the positions in
test form are given for each country. In
addition, country-specific ratings are
given of the adherence of the item to
international standards. A program can:

- read that information from the
central documentation file;

- determine according to rules
which items to include for each
country;

- determine the location of the
items in the response data
files; and

- go get the data, country by
country, or prepare setups for
some other program to do that.

The final output might be an item by
country table containing the mean levels
of performance, with indications of gaps
where data were missing.

When it is noted that there are about
40 subtest areas to be examined for each
of the 35 surveys, the need for this kind
of automation is apparent.

5. Conclusions

The details of the method used to
integrate the statistical database for the
lEA Second International Mathematics Study
are, admittedly, ad hoc and particularized
to this project. But for multi-national
studies of this sort, the approach
represents an effort to reach a new
standard for integration of surveys and
for recognizing and recording the
variations that exist between surveys.
Such variation has always been present in
earlier studies, but conventional data
banks hide rather than reveal.

It would be convenient if this kind
of integration and annotation could take
place within a general-purpose
environment. The experience in designing
and using the current system suggests the
importance of several features. First,
since integrated studies, at least
multi-national ones, will have to operate

118

in a variety of computing arrangements, it
is important that the basic central files
be accessible in as neutral as possible a
form. Some user~ of an integration simply
want to read the documentation. Second, it
has proved very useful to make a formal
coding of the variable by study matrix of
information concerning quality and
application. This is effectively a
database on variables. Initially, it
forces a complete audit and evaluation of
the data files; later, it makes
automatically adjusted analysis possible.
Third, until this kind of system is
incorporated into high-level processing
and analysis packages, attention must be
given to the interface, and the current
approach of producing setups has proved
useful to analysts.

Paste -- A Tool to Put Application Systems Together Easily

Stephen E. Weiss, Pamela L. Weeks

U.S. Department of Labor, Bureau of Labor Statistics
Washington, D.C., USA

ABSTRACT

The collections of statistical packages, tabulation systems, and database systems that
have grown up in the past 10 years constitute a significant advance in the tools
available to the statistician. Unfortunately, each of these tools is limited. The
developer of an application system using these tools is often faced with the
difficult problem of stringing these systems together to get a complete application
system. Two approaches have been applied to alleviating this problem. Arguments are
advanced against each of these approaches. A new solution to the problem is
proposed. The solution is a system called PASTE whose purpose is to Put Application
Systems Together Easily. A preliminary design of this highly flexible and extensible
data description and file transformation system is described.

1. THE PROBLEM

In the ideal world, an application
designer at the Bureau of Labor
Statistics (BLS) or some other
statistical organization should spend
nearly all of his time determining what
he wants his computer system to do. He
should then drop his specification,
along with the data and a description of
the data, into a super statistical
system which will produce the specified
outputs.

In the real world things aren't quite so
simple. In the past 10 years, there
have grown up a number of excellent
statistical systems which are steps
toward producing our ideal world.
Systems such as PSTAT, SAS, TPL, SPSS,
RAPID, SIR, ORACLE and INGRES are each
steps toward the ideal super system.
The.systems vary in what they do, how
easy they are to use and how portable
they are. They do have two important
things in common. They are all tools
which are designed to make the life of
the statistician easier. They are all
limited in what they can do.

The statistician wishing to do a
regression analysis or produce a nicely
formatted table on an IBM mainframe
would in general be ill advised to write
his own PL/l, FORTRAN, oi COBOL
program. The statistical packages that
exist will certainly produce the desired
results faster and often at less cost.
Even more importantly, the output
produced by the statistical system is
more likely to be correct that the
output of the application program.

The problems come because of the limited
capabilities of the existing systems.
The Table Producing Languag~ (TPL) will
produce tables of almost any format if
the input data is in an appropriate
format, but it will not do a regression
analysis. SAS will do the regression
analysis, but if your data is
hierarchical, you may have a lot of
programming to do either to prepare your

119

data for loading into SAS or within SAS
itself. A system designer may find that
one general system does nearly
everything he wants for a particular
job. He then must find a way to trick
the system into doing those last few
things. There are, for example, many
very ugly and cryptic TPL jobs around
BLS which were written to get results
from TPL that the system was not
designed to produce. In some cases the
application designer cannot get a single
general system to produce the results he
wants regardless of his machinations.
Then he must get his data out of one
general sys~em and into another. This
often involves a fair amount of COBOL,
FORTRAN, or PL/l programming.

2. CURRENT SOLUTIONS

There have been two approaches which
have been advanced to solve this problem
of limited systems. One has been to
create system interfaces. At the last
meeting of the Workshop of Statistical
Database Systems, we described the
interfaces which allow TPL to directly
access data stored using the RAPID or
TOTAL database systems. We have also
built an interface to move data from TPL
into SASe Others have created
interfaces to move data from SAS into
TPL and from ADABAS into TPL. There are
probably several other TPL interfaces
that we are unaware of.

The biggest problem with the individual
interface approach is that it is an
unending task. In general, interfaces,
especially good ones, require a lot of
work. There are just too many potential
interfaces to devote the needed time to
each of them. Further, there are
certain important interfaces which will
~robably never be built. For example,
there is a seasonal adjustment program
which is used by some TPL users in BLS
and Statistics Canada. It is very
important to the work of these people.
An interface between it and TPL is
unlikely because the use of the seasonal
adjustment system is not extensive

enough to justify the development of
such an interface.

The second solution to the problem of
not being able to do everything in one
system is for one system to copy another
system. For example, the developers of
the SIR database system wanted an
interface from SIR into TPL. It was
technically very difficult for the SIR
people to develop the interface
themselves. SIR is not currently used
in BLS, so we did not have a reason to
build the interface ourselves. The SIR
solution was to use the TPL manuals as a
system specification and build their own
tabling system to duplicate TPL. We
haven't had the opportunity to try the
SIR tabulation system but their manuals
certainly do look familiar. The SAS
Institute's PROC TABULATE was also
strongly influenced by TPL.

This copy approach makes good sense,
especially to a commercial software
vendor. He has a more powerful and
hence more marketable system. He also
has total control over the entire system
and so does not have the problems of
maintaining an interface with a foreign
system. Finally, by copying another
system, the developer is relieved of the
difficult tasks of requirements analysis
and language design.

The user of statistical systems views
this copy approach ambivalently. On the
plus side, the copy approach may result
in a more efficient system than the
interface approach. Also, the copy
approach can sometimes result in an
easier to use system. Finally, the
copier can modify the language being
copied so that it looks more like the
copier's language. The rewulting
similarity in user language should make
request writing easier for the user.

The copy approach however does have its
drawbacks. One is that it is very
difficult to reproduce all of the
functionality of another system. This
is especially true if the copier copies
only user language and not internal
design. Invariably important features
will be difficult to implement in the
new system. So the user will end up
with a subset. And, as luck will have
it, he will eventually need to use
features that the subset does not
contain. Some BLS users of the SAS PROC
TABULATE have found this to be the case.
Thus the user may be forced back into
the original system. Further, if the
original system adds new features, the
copier will have to duplicate the work

120

in his copy rather than get the new
features for free.

Of course the biggest problem with
copying another system is that it
requires even more work than building an
interface. Thus again, important but
not widely used systems like the
seasonal adjustment system will not be
copied. The community of developers of
generalized statistical software systems
is really quite small. If we spend too
much of our time copying the
capabilities of each other's systems, we
will not be able to provide the
statistical processing community with
the new functionality and ease of use
they need.

3. THE PASTE SOLUTION

We at BLS are currently pursuing a new
approach to the problem of incomplete
systems. The system which we have
tentatively called PASTE will be a
generalized interface system. The
purpose of PASTE is to enable the
application developer to Put Application
Systems Together Easily. The
application developer writes the various
parts of his system in the languages of
the higher level statistical packages
and databases. He then uses PASTE
rather than writing programs to paste
together these parts into a complete
application system.

To show what the goal of PASTE is, we
will examine an application system.
Suppose an application programmer wishes
to take a sequential hierarchical file,
load it into a RAPID database, extract
some of the data, use SPSS to calculate
some additional information from the
extracted data, feed his data into TPL
to table it and photocompose it and
finally feed the result into a page
makeup system s~ch as ATL to insert it
within the text of a book.

The application programmer first writes
a program to split the hierarchical file
into flat files for loading into RAPID.
To do this he must write a programming
language description of his data and
programming logic to split the file into
flat sequential files. Also the program
must add key fields to the files to
facilitate the eventual reconstruction
of the hierarchical file. The
programmer then must write a RAPID data
description of the input flat sequential
files plus a description of the data as
it will exist in RAPID. Now he can use
the higher level RAPID utilities to load
his data into RAPID. There happens to

be a RAPID to SPSS interface but for the
purposes of this example we will pretend
it does not exist. Thus the user must
instruct RAPID to dump out the desired
subsets of his files. He must then
write an SPSS description of the dumped
data and use the high level SPSS
language to calculate the additional
information he needs. Notice that RAPID
output and SPSS input facilities are
flexible enough so that there is
probably no need for a program between
the two systems in our application. The
system developer probably will need to
write a program with its data
description to recombine the flat files
back into a hierarchy for his TPL
request. Then he must write one more
data description for TPL. Now the
system developer is finally finished
with data descriptions and programming
languages since the TPL,
photocomposition, and page makeup
systems are nicely interfaced.

To do this straightforward application
system, the application developer has
had to describe his data six different
times and has written two programming
language programs. The multiple data
descriptions are not only a waste of
time, but also a significant source of
errors. This is especially the case
when the translation of data description
from one system to another is
complicated. For example, a field
described to RAPID as FIXED DEC(p) where
p = decimal digits, must be described to
TPL as PACKED n where n is the largest
integer <= p/2 + 1.

Using PASTE the application builder's
job will be somewhat easier. He will
begin by describing his sequential
hierarchical file using the PASTE data
description facility. This facility
will allow him, if he chooses, to
specify nearly all the data description
he will need for his entire system. For
example, he can specify the data type to
be used when the data is in RAPID and
the print labels to be used when the
data is in a TPL table. The developer
may add to or change his descriptions at
a later time if he chooses.

In the high level PASTE language, the
application developer will request that
his data be split into a collection of
flat files and that RAPID input and
storage data descriptions be generated.
He will then use the high level RAPID
utilities to load his data into RAPID.
At this point, if we again ignore the
existence of the RAPID to SPSS
interface, the application developer has

121

a choice. He can either use PASTE to
extract the subset of data from RAPID
and prepare an SPSS data description or
he can use the RAPID utilities to dump
out his data. If he uses the RAPID
utilities, he must provide PASTE with
information about changes in the format
of the data coming out of RAPID. Notice
that the programmer does not need to
provide an entirely new data description
since most of the descriptive
information in PASTE is still correct.
The application developer now uses SPSS
instructions to specify the additional
processing he needs for his application.
Since the resulting data is not created
by PASTE, the application developer must
supplement his PASTE data description
with information about the new data. He
then uses PASTE to specify the
reconstruction of his sequential
hierarchy and requests that a TPL data
description be created to describe it.

What we have described is an ideal
application of the PASTE system. In
this application, a complete data
description is provided only once. The
only additional data description
required is information about data
transformations done outside of PASTE.
Further, in this example, all of the
required data transformations could be
provided by the available statistical
systems or by PASTE itself. In some
real applications none of the
statistical systems nor PASTE will be
able to provide certain file
transformation functions. In such cases
programs in PLll or other programming
languages will still have to be written.

4. OTHER USES OF PASTE

In the above example we saw how PASTE
could aid in creating an application
system by stringing together several
different systems. Will PASTE help us
when all of our processing will be done
by a single system? The answer is often
"Yes." PASTE will allow its users to put
data into the ideal format for the high
level system rather than make the system
strain to process awkwardly organized
data. Consider a TPL request for
percent changes. Such requests are very
awkward to write if the data is arranged
as a collection of time series in which
each record contains a year's worth of
data as a 12 month repeating group. The
problem is most acute when we wish to
find the change between January of one
year and December of the previous year.

We can use PASTE to transform each 12
month record into 12 separate records.

Each record will contain 2 months of
data, the "current" month and the
"previous" month. Note that each
month's data appears twice in the new
file, once as a current month, and once
as a previous month. This redundancy is
not dangerous since the transformed file
is a temporary file to be used by TPL
and then discarded. The resulting file
with a format of 2 month repeating
groups is ideal for a TPL percent change
request. The required TPL request is now
straightforward, as is the PASTE request
which restructured the data. The system
resulting from using PASTE and TPL
should be much easier to understand and
maintain that the system which uses TPL
directly.

Actually PASTE can be of value even to
the builder of an application who does
not use any higher level systems except
PASTE. Data files tend to be created in
a form which is designed to be
convenient for the data collection
process. Often this structuring of the
data is not ideal for the application
which uses the data. The application
developer can restructure his data by
writing a special program. This is
often unacceptable because another
application may need the data in a
differen~ configuration. The usual
solution is that the application
developer just lives with the data in
its awkward structure and writes a
convoluted program to process it. This
is frequently done without the
application programmer even realizing
that restructuring will make his proiram
simpler. With PASTE the application
programmer will have an easy-to-use tool
for configuring his data in a convenient
form for his application. We hope that
the existence of this tool will not only
make restructuring of data easier, but
also will make the application
programmer more conscious of the need to
structure his data to facilitate his
application.

5. PASTE MAKEUP

The PASTE system will consist of two
main parts. The first is a very
flexible data description module or
DESCRIBER. The second is a data
transformation module or TRANSFORMER.
The two modules interact in several
ways. When a transformation of the data
is specified in the high level PASTE
language, the TRANSFORMER must extract
information about field locations and
data types from the DESCRIBER, since
this information is not explicitly
present in the user's transformation

122

request. This interaction between data
transformation and data description is
common to many high level language
systems. The PASTE system also has a
somewhat less common interaction between
data transformation and data
description. When a data transformation
is specified, the PASTE system not only
generates code to transform the data but
also generates code to transform the
data description so that it will match
the transformed data. In general, the
PASTE language will blur the distinction
between data and its description. The
exceptions to this will be the initial
data descriptions plus the PASTE
statements which explicitly request that
data description be generated for use by
an external system, e.g., a request to
generate a PL/1 description of a file.

The user interface to the DESCRIBER will
be primarily via an interactive menu and
fill-in-the-blanks system. The user
begins by specifying statistical systems
and databases which will be used in his
application system. PASTE returns a
list of the different types of data
description that may be used with these
systems. The application developer
chooses those that he plans to use.
This information is used to construct a
set of fill-in-the-blank forms. If the
user already has a description of his
data, he may be able to request that the
DESCRIBER use this description to fill
in some of the blanks for his new
description. If he later decides to add
more description, he may do so.

The data description will have a
hierarchical structure. At the lowest
level will be the data element or field.
The descriptio~ of the data element will
include such things as field size, data
type, values the element can take, and
the print labels that will be associated
with them. The next level up is
variously called record, case, or
observation. At this level, the user
will specify the fields that occur in a
record and their order. He will also
specify structures such as repeating
groups. Above this is information about
files. This includes clustering and
other ordering information which can
potentially be used in estimating the
cost of various transformations. At the
highest level is information about the
interconnections between files. At this
level is the information about the pairs
of fields which may be used for joins
when the data is in a relational system.
It is also the level for the information
that TPL uses to produce heirarchical
paths through a database. (See our

paper, "Must We Navigate Through
Databases?" in the Proceedings of the
First LBL Workshop on Statistical
Database Management.)

The most important characteristic of the
data description facility will be its
flexibility. The system should make it
unnecessary to keep information about
data on scraps of paper or in our heads.
To assure the flexibility the users will
need, we will have to make the system
easily extensible. The developers of
PASTE and perhaps even sophisticated
users of the system should be able to
add new types of data description. To
do this they assign a name to the new
data description element. If the new
element is a complex item such as a TPL
print label, they will also specify a
grammar for the element. Finally they
may specify semantic checks for the
individual productions of their grammar.
This will enable the system to check for
such things as the size and alphabet
conventions for names used in a
particular system. PASTE should also be
able to detect and flag such errors as
duplicate names. The goal of these
checks is to attempt to assure that when
a PASTE request is ~ade to produce a
data description for a system, the
description will be error free.

The second major component of PASTE is
the TRANSFORMER. Unlike the DESCRIBER
which stores descriptive information,
the TRANSFORMER does not store anything.
The TRANSFORMER operates in one of two
modes. In one mode the system operates
as a record processor. It reads a
record or group of records, does some
calculations, and writes out zero or
more records. As an optimization the
system may read and write a block of
records at a time, but this is not
essential. This mode of operation can
be used for simple tasks such as
changing the data format of a field or
splitting a hierarchical file into a set
of sequential files.

In some cases, the desired
transformation requires more complex
processing. The system recognizes these
situations and automatically switches to
the information extraction mode. In
this mode of operation, which is used by
TPL, information is extracted from the
incoming records and is temporarily
stored. The information is stored in a
condensed form which does not preserve
the identity of the record from which it
came. When all of the input records
have been processed, the system
constructs a new set of records from the

123

stored information. The information
extraction mode is more expensive than
the record mode, but is also much more
powerful.

The user interface to the TRANSFORMER
will probably be a command oriented
language. This might be implemented by
selecting the appropriate words from a
menu. Typical commands are: CHANGE
COST TO PACKED DECIMAL; WRITE PL/l
DESCRIPTION OF PERSONS; SORT PERSONS BY
FAMILY# THEN AGE.

6. PROBLEMS AND CONCLUSIONS

The biggest problem with the PASTE
system from the user's point of view
will be the description of data after it
has been manipulated by systems other
than PASTE itself. If the external
system is what we earlier called a
record processor, the specification of
the changes in the record format will be
relatively easy. Records may be split
or joined, fields may be added, deleted,
or rearranged, extra summary records may
be created or data types changed, but
the basic identity of most of the fields
will be unaltered.

If the external system which changes the
data operates as an information
extraction system, the user may find it
difficult to describe the changed data
file by a specification of changes of
the old data. In such cases the user
should probably redescribe his data to
PASTE as a new file. Using PASTE he
will still find his job easier than
without it since he should be able to
use parts of his old data description in
describing his new data. In particular,
many of the large sets of codes and
associated print labels will be
reusable.

As we have seen, the PASTE system has
the potential to greatly simplify the
work of the application system builder.
For this potential to be realized we
must design and implement a system which
satisfies two conditions. It must be
significantly easier to transform files
using PASTE than using a standard
programming language. Further, PASTE
must be usable with a large share of the
database and statistical processing
systems used by statisticians.

PIGAS

AN INTERACTIVE STATISTICAL DATABASE MANAGEMENT SYSTEM

WARTELLE M., KRAMAR A., JAN P., KRUGER D ...

Departemeot de Statistique Medicale
Institut GUSTAVE-ROUSSY

Villejuif (France)

ABSTRACT

PIGAS is an interactive statistical database management system whose main assets include
logical data checking, data entry for meaningful variables only, three different types of mis
sing value codes, non-rectangular data structure and user interfaces with BMDP, GLIM or specifi
cally written FORTRAN programs.

The structure of the PIGAS language is the same as one passes from one phase of a re
search study to another, whether it be data updating, checking or analysis, thus requiring only
a minimum amount of initiation in its use. It is particularly appealing since data verification
is completely specified through variable names as they appear on the questionnaire. Instructions
given in how to fill in a questionnaire can thus be directly incorporated in the data checking
process, thus ensuring a good quality data base.

1. INTRODUCTION

PIGAS is an interactive statistical da
tabase management system designed especially
for persons with little or no formal computer
training. This general purpose package can be
used by all personnel engaged in the study of
a particular research project. For example
by data managers responsable for data col
lection, data management, data editing and
physicians or statisticians for data analy
sis.

PIGAS was developped for computer ana
lysis of medically oriented research studies
at the INSTITUT GUSTAVE-ROUSSY but may be
used for other types of research projects.

Different functions of the system will
be presented :

1 coding of missing values
2 describing variables whether unique

or occuring several times in any data record
3 controlling the data by logical com-

mands
4 updating the data
5 creating new variables as part of the

file or temporarily during the analysis
phase

6 analyzing the data by :
- statistical functions incorporated
into PIGAS
- interfaces with BMDP, GLIM or a
specifically written FORTRAN program.

The PIGAS user is guided by a menu
which is displayed on the terminal screen.

2. PIGAS AND MISSING VALUES

The results of a particular research
project depend on the quality of the ques-

124

tionnaire used for data collection.

It is essential to formulate clearly the
questions and to provide a code for each answer
to ensure that data will be collected in the same
manner for every case of the study.

One should always use the same code for
answers yes or no (for example, the answer yes is
coded 1 and the answer no is coded 0) and a stan
dard code for missing values whatever their type
(date, value of a dose, ...).

During the phase of data collection, certain
variables may be considered as missing for three
reasons :

- UNKNOWN
The lnformation is unknown : the person in

terrogated refused to answer, a certain measure
ment was not made, ..•

The information is lost and cannot be obtai
ned. It is coded "UNKNOWN".

- HOLD
The lnformation is not yet available but

shall be communicated later. This information is
coded "HOLD". This particular feature enables the
data manager to introduce in the file all the va
riables of the questionnaire without having to wait
until all the information is collected.

- NOT APPLICABLE
Some varlables are meaningless for certain

cases of the study. For instance, the questions
- "Age at which you started smoking"
- "Last type of tobacco smoked"

are meaningless for non-smokers.
If these two questions are preceeded on the

form by another question with answers yes or no,
for instance :

"Have you ever smoked (yes, no) ?"
they will be considered as meaningless for non-

smokers.
PIGAS automatically codes these two

variables "NOT APPLICABLE". This notion is
an option offered when describing varia~
bles and shall be described in the next
section.

3. DEFINITION OF TERMS

In PIGAS language, each questionnaire
constitutes one CASE which is distinguished
from all other cases by the value of a CASE
IDENTIFIER.

A questionnaire consists of several re
cords which regroup all the information rela
tive to the same theme.

Each case may have a variable number of
such records which are called CHAPTERS.

For example : an identification chapter,
a prel iminary examination chapter, a treat- .
ment chapter, and a follow-up chapter in a
medical research study.

Each question is called a VARIABLE.
Questions relative to a part of the popula
tion are gathered in a PARAGRAPH preceeded
by a LEADING VARIABLE, a question with a
"yes" or "no" answer only. In the example of
the preceeding section, the question :

"Have you ever smoked (yes, no) ?"
is the LEADING VARIABLE of the paragraph cal
led "TOBACCO". The questions:

- "Age at which you started smoking"
- "Last type of tobacco smoked", mea-

ningless for non-smokers, are the variables
of the paragraph "TOBACCO".

4. DESCRIBING THE QUESTIONNAIRE TO PIGAS
SYSTEM

PIGAS displays questions on the termi
nal screen to help persons who wants to des
cribe a questionnaire.

To describe a chapter, the following
information needs to be provided (an example
is given in appendix 1).

- NAME - the name of the chapter used
to identify it in the file (ex : "CHILD")

- "LIBELLE" - label used for the purpo
ses of edition.

- OBLIGATORY (Y,N) - indicates if the
chapter is necessary for every subject or not
at the moment the case is created.

- REPETITIVE (Y,N) - whether the chap
ter may occur several times for the same case.

For example, in a study on Mothers and
their Children, the chapter "CHILD" is filled
in for each birth. The number of children may
vary from one mother to another.

For the PIGAS system, the chapter
"CHILD" is considered as REPETITIVE.

- NAME OF THE REPETITIVE CHAPTER IDEN
TIFIER - used for repetitive chapters only.
These variables (up to 3) permit to distin
guish one chapter occurence from another.

In order to distinguish each child from
the next, the REPETITIVE CHAPTER IDENTIFIERS
are the date of birth and the rank of birth
(in case of gemellary births). Each child
constitutes a unique occurence of the chapter
"CHILD".

Double occurences are not allowed.

125

Occurences are stored according to the in
creasing values of the repetitive chapteridenti
fiers.

- MINIMAL AND MAXIMAL NUMBER OF OCCURENCES
(limits of which are 0 to 40).

Once the chapter is declared, the following
information needs to be provided for each variable
concerning this particular chapter:

- its NAME (up to 8 characters)
- its "LIBELLE" (up to 30 characters)
- the TYPE : E = "numeric" (maximum of 8 digit~

F = "floating point" (up to F15.6)
fa. = "alphanumeric" .
D = "date" (expressed in day, month,

year or month, year or year only; one can also
indicate the century)

L = "logical" (coded 0 or 1).
- LG : the number of spaces to be filled in for
its coding
- MIN, MAX : its range of variation (minimale
and maximale value)
- CRX : whether or not the missing value code
"UNKNOWN" is allowed or not.
- NATURE: whether or not the variable belongs
to a pa ragraph.

An example is given in appendix 2.
Variables in a repetitive chapter are declared

only once no matter how many occurences for each case
and are referred to by an index number. The descrip
tion of variables or the structure of chapters can
always be modified if necessary (especially useful
when certain incompatibilities became evident during
a trial run on the first few cases).

The information describing the questionnaire is
useful for data checking. A minimum amount of errors,
such as the value of a variable outside the range of
variation, a missing chapter declared obligatory, ••.
can thus be detected and reported. More complete
checks taking into account logical relations between
variables will be discussed in the next section.

5. ENSURING LOGICAL CHECKING OF THE DATA

Logical relations may exist between several va
riables in the questionnaire and can be very easily veri
fied through the use of logical controls written in
PIGAS language.

The logical relations can apply to variables
from the same chapter or from different chapters.

There are two types of logical relations :
- UNCONDITIONAL : true for every case. For

example, the relation "birth date is earlier than
all other dates" must be true for every case.

-CONDITIONAL : concern only cases for which
the first condition is true. They are expressed as
follows :

IF CONDITION
THEN EXPRESSION

When a logical relation is false, an error mes
sage appears On the terminal screen at the end a re
cord update for a case and errors are reported on pa
per at the end of the interactive session.

Logical controls may be modified and new ones
may be added at any time. PIGAS checks all the cases
of the file each time logical controls are modified.

6. CREATING NEW VARIABLES

New variables may be created using the
declared variables of the questio~naire.

In PIGAS language, these new variabl.es
are called "GENERATED VARIABLES".

For example : on a questionnaire are
noted the date of birth, the date of first
treatment and the date of last folloW-up of
a case. Using these dates, the following va~
riables may be created :

- age at first treatment
- age at last follow-up
- delay between the first treatment

and the last follow-up date.
The GENERATED VARIABLES must be des

cribed in the same way as the original va
riables of the questionnaire indicating :

- its NAME
- its "LIBELLE"
- the TYPE (numeric or date)

The value of a GENERATED VARIABLE is
computed with logical or arithmetical equa~
tions. .

There are two types of GENERATED VA
RIABLES :

- UNCONDITIONAL GENERATED VARIABLES :
GV = ARITHMETICAL OR LOGICAL EXPRES
SION
CONDITIONAL GENERATED VARIABLES

IF CONDITION 1
THEN GV = EXPRESSION 1
ELSE IF CONDITION 2

THEN GV= EXPRESSION 2

ELSE IF CONDITION N
THEN GV = EXPRESSION N
ELSE GV = EXPRESSION N+1

When the condition or the expression
cannot be evaluated (i.e. because Of a mis
sing value code in a variable), the genera
ted variable is coded "UNKNOWN".

Generated variables may be interacti
vely modified, deleted, or new ones may be
added at any time. When created or modified,
they are recalculated for each case in the
file. During an updating session, generated
variables are recalculated only for those
cases modified.

Temporary variables may also be created
during the analysis phase using the same syn
tax but are lost after each new call to the
generating function.

7. PIGAS LANGUAGE

A logical relation consists of several
logical expressions linked together by logi
cal operators. A logical relation is expres
sed as follows:

EXPRESSION 1 "LINK" EXPRESSION 2 "LINK"
EXPRESSION N Logical controls are writ~

126

ten using the variable names, relational operators
("EQ", "NE", "LE", "LT", "GE", "GT"j, linking ope.,.
rators ("ET", "OU" for "AND", "OR"), mathematical
functions and particular functions.

Up to three levels of nested parenthesis are
authorized,

For a unique variable, its name completely
identifies the variable.

For repetitive variables, .the index number
of the occurence corresponding to their respective
repetitive chapter identifiers need ot. need not to
be indicated.

When indicated, the variable is considered
as a unique variable, otherwise each occurence of
the variable is considered.

Some operators are specific to the treatment
of occurences :

- The operator I
The operator I 1S used to compare two neigh.,.

bouring occurences of variables.
For example, the date of entry (natne DATEN)

are noted for each hospitalisation. To control that
dates of entry are increasing, the following
expression is used :

DATEN(1) L T DATEN(I+1)

I is also useful to compare a repetitive va
riable to a unique variable,

For example, the date (name DATDOSjand the
resu,t (name DOSE) of doses of a certain substance
are regularly noted in a repetitive chapter. When
the dose reaches the value p, the subject presents
a certain condition, The date of the condition
(name DATHEP) is a unique variable noted il:\ a sum
mary chapter describing the condition. To control
that the date of the condition in question is the
date for which the result of the dose is p, the
following expression is used.

IF DOSE(I) GE p
THEN DATHEP EQ DATDOS(I)

- The index number of an occurence

It can be 1, 2, •.. , N : N being the index
number of the last occurence. In the hospitalisa
tion example :

DATEN(1) is the date of the first entry
DATEN(N) is the date of the last entry
Cot;lstants l)1ay be used in the comparison of

variables. They can be numeric constants (up to 8
characters), date constants expressed in day, month,
year or alphanumeric constants (up to 8 characters)
expressed between quotes (" ").

Wild characters may be used in alphanumeric
constants. Suppose an alphanumeric variable (name
DRUG) is coded with 6 characters. Every drug which
n.ame begins by "ASP" can be selected using:

DRUG EQ "ASP***"
Mathematical operators (add, substract, mul

tiply, divide, power) and Mathematical functions
(exponential, natural logarithm, decimal logarithm,
~quare root, absolute value, minimale and maximale

value of several variables) are provided.

Other functions are also particular to
PIGAS language :

- 2 functions (DEL and ANI) used for
the calculation of a aeTay between two dates.
The unit used for the calculation may be day.
month or year. The result of function "DEL"
is rounded to the nearest unit whereas the
result of function "ANI" is the number of
completed units.

- Function CLAS which transforms a con
tinuous variable into a discrete variable.

Particular functions for treatment of
repetitive variables are provided. These
functions are expressed under the form :

FUNCTION(VAR)
where VAR is a repetitive variable name. The
result is a unique variable.

- The functions MIN and MAX give the
minimale/maximale value taken OY-a repeti
tive variable which can be either numeric or
date. For example. the value of doses are
regularly noted and one is interested in the
minimale (maximale) value observed. The syn
tax is :

MINDOS=MIN(DOSE)
MAXDOS=MAX(DOSE)
The results of functions MIN and MAX

are coded "unknown" only when all the occu
rences of the variable are codea-missing.

The computation of the functions MIN
and MAX only involves non-missing values.

- Function SOM is used to compute the
sum of the values-oT a repetitive numeric
variable.

For example. at each session of radio
therapy. a chapter is filled in with the
date and the dose delivered. The total dose
delivered may be obtained as follows:

DOSTOT=SOM(DOSE)
The result of function DOSE is coded

"unknown" if at least one occurence the va
lue of the variable DOsr-is coded as missing.

- Function SOMX ignores those variables
with a missing varue-code. For example. the
total dose del ivered is obtained as follows:

DOSTOT=SOMX(DOSE)

- The functions IMIN and IMAX give the·
index number of the firsr-occurence for
which the value of the repetitive variable
is minimale/maximale.

For example. date and results of doses
are regularly noted. The following may be
used to find the date at which the value of
dose was minimale(maximale) :

A=IMIN(DOSE) or A=IMAX(DOSE)
DATMIN=DATDOSE(A) DATMAX=DATDOSE(A)
The treatment of missing values in the

variables used is the same as for functions
MIN and MAX.

127

- Function IND gives the number of occurences
of a variable in a repetitive chapter.

For instance. the number of occurences of the
fo 11 ow-up chapter for each casei s obtained as fo 1-
lows :

NBFU=IND(FU)
FU being the name of the follow-up chapter:

- Function INDX gives the number of occu-
rences for which a repetitive variable is not coded
missing.

For instance. to compute the mean dose. one
cal) use :

MEANDOS=SOMX(DOSE)/INDX(DOSE)
MEANDOS can thus be computed even if one

dose is missing at anyone occurence.

8. UPDATING THE DATA

Data may be recorded either in batch proces
, sing mode or in interactive mode.

If a great amount of cases need to be intro
duced in the file at one particular moment. a data
entry operator may assure this part of the updating
process. Data are then introduced in the file in
batch processing mode.

To record or to update a case in the file.
the following information needs to be provided:

- the value of the case identifier
- the type of 'update to be performed on the

case
- the name of the chapter or the variable

name to be modified.

corded

Several types of updates are possible :
- introducing a new case in the file
- deleting a case
- adding a new chapter to a case already re-

- deleting a chapter for a case
- updating the value of a variable
- updating several variables of the same

chapter.

To update a chapter. the uP. down. left.
right arrow keys may be used to move the pointer
on the terminal screen until it reaches the charac
ter to be modified.

Each time a variable is updated. PIGAS checks
and reports any coding errors. The code of a va
riable must match its description (cf. Section 4.m.

Erroneous values mayor need not be immedia
tely corrected. If not immediately corrected. the
variable is recorded in the file with the "hold"
code.

Once a case is updated. logical checks are
performed on the case and errors are reported be
fore any new updates can be made. When logical
controls report errors and the case is not imme
diately corrected. the case is recorded in the
file but temporarily excluded from statistical
analysis. Only edition of variabJes of the case
may be obtained.

9. ANALYZING THE DATA

The analysis stage is interactive ~nd
m"lY concern the whole population or just a
part of it.

9.1 SELECTION OF CASES

PIGAS offers four functions in order
to select cases for treatment. The mnemonic
of the function and the condition must be
indicated.

The selected cases constitute a wor-
king subfile.

· Function SD
For example-;-the condition is :
AGE IT 50
If AGE is a unique variable, all cases

with AGE less than 50 are retained for ana~
lysis.

If AGE is a repetitive variable, in
matched case-control studies for example,
the case and his controls are retained on~y
if the condition is true for each QCCurence.

• Function SIF
Only the first occurence of the repe

titive chapter for which the condition is
true is retained in the working subfile,

For example, the condition :
DOSE GE P

will select the first occurence of the repe
titive chapter for which DOSE is greater
than or equal to p.

• Function SIG
Same as sIF except that all occurences

are retained. -

• Function ECLAT
Function ECLAT breaks down the notion

of a case and considers all occurences as
unique and independant variables.

The number of cases indicated equals
the total number of occurences for which the
condition is true.

For example, the condition :
DOSE GT 0

selects all records with DOSE greater than O.

· Function POP
Functlon POP'Ts used to obtain calcula

tions for each value (except missing values)
of the variable name cited.

For example, by typing in the variable
name SEXE after the function POP, all the
following calculations will be done separate
ly for each sexe.

· HIERARCHY OF SELECTIONS
There are three levels of selections
level 1 - SD
level 2 - SIF, SIG, ECLAT
level 3 - POP
For example, consider the following

128

successive selection~ : SD, SIf, POP, SIG, SD.
Working subfiles are created as described on the
fOllowing figure;

PIGAS FILE

Subfile 4

9.2 EDITION FUNCTIONS

Three functions exist in order to obtain
sorted edition of variables. By default, the list
is sorted according to the ascending value of the
case-identifier.

The list may be sorted in ascending order
according to other sort keys (up to 10 by numbe
ring from 1 to 10 the variables to be so~ted.

* function ED lists one or more unlque or
repetitive variables with one line per case. The
number of variables is limited by the size of the
terminal screen (80 characters).

* function EDPAP same as ED but only printed
on the output file (up to 132 characters).

* function EDCOl used for repetitive varia
bles with numerous occurences. The repetitive va
riables are printed with one line per occurence.

9.3 CROSS-TABULATIONS

These functions give tables, one line of
which corresponds to a unique combination of va:
lues of all variables mentionned as well as thelr
frequency of occurence. ..

* function HIST1 - used for unlque varlables
or repetitive variables for which the index number
of occurence is indicated. Tables cannot exceed the
size of the terminal screen.

* function HSTlRG same as HSTCOL but tables
are only printed on the output file.

9.4 STATISTICAL FUNCTIONS

Cases for which logical controls failed do
not take part in the analysis as well as those va
riables with missing value codes.

Variables may be :

- variables of the questionnaire
- generated variables
- temporarY variables
Variables may be unique or repetitive

with the index number of the occurence indi
cated either :

- as the result of a selection of the
occurence (SIF orSIG) . .

- by the index number of the occurence,

The syntax is very simple: the (I!nemo ..
nic of the chosen function then the variable
names must be indicated.

* function HIST2 and function HISTV -
block histograms (cf. appendix 3)

* function C - histogra~ of a discrete
variable.

* function MOY - mean and variance of
a continuous variable

* function M ~ histogram of a conti~
nuous variable

* function ANDAR - Anderson-Darling
Statistic for testing the normality
assumption.

* functionMED - median value of a va
riable

* function MGEO - geometric l11ean of a
variable

* function TABC ,.. RxC contingency ta~e
without any test

* funtion CC - RxC contingency table
analysis, Chi-square and G (maximum
likelihood) tests and Chi-square wi~
continuity correction in the case of
a 2x2 table.

* function CM - Analysis of variance
* function MM - Simple linear regres

sion (1 independant variable)
* function CCC - RxCxK contingency ta

ble analysis
* function CMM - Analysis of covariance
* function MMM - Multiple linear re

gression (2 independant variables]
* function REG - StepWise mUltiple li

near regression (forward then back ..
ward)

* function KPL - estimated survival
rates according to the KAPLAN-MEIER
method.

* function SUAC - estimated survival
rates according to the actuarial me
thod

* function LGR - comparison of 2 or
more survival curves USing the LOG
RANK test(cf. appendix 4)

* function LGRA - comparison of 2 or
more survival curves using the stra
tified LOG-RANK test.

* specific functions for the analysis
of matched case-control studies with
a variable number of cases and con

. trols in each strata.
* function call to BMDP - which allows

direct access to BMDP (cf. appendix 5)

129

* function call to GLIM - which allows di
rect access to GLIM.

* function USER - used to call FORTRAN pro
gram written to analyse data stored in
PIGAS file (cf. appendix 6)

* function VAR - used to extract variables
of a PIGAS file in order to create a sub
file readable by FORTRAN programs. The su~
file is created in the user's directory.
PIGAS indicates the FORTRAN format to be
used for reading extracted variables. Cases
with missing values are transcribed in the
subfile and it is up to the user to treat
them accordingly.

9.5 EDITOR FUNCTION (EDT)

All the PIGAS commands (described in sections
9.1 to 9.4) are recorded in a "command file". The
results are recorded in another file named "results
file".

At any time during the interactive session,
PIGAS allows the use of the computer text editor
in order to :

- display or modify the command file
- display the results file.

When the command file is modified, all the
commands included are recomputed.

PIGAS offers the possibility of saving the
command file for future use. For example, routine
calculations done every six months can be saved
in this way without having to retype all the func
tions.

10. FILE PROTECTION

Each study is recorded in a specific PIGAS
file identified by a name and a password. This
name and this password are known by a person in
charge of the study and by the computer manager.
The names of persons authorised to access the
PIGAS file as well as their code are checked at
every login.

11. DATA RECOVERY

PIGAS files are saved daily.
The last two versions of all PIGAS files are

kept so that in case of a user error or any other
related incident, one can always go back to the
N-lst version.

In case of power failure during an interac
tive session, only the results of the last inter
active active is lost.

In case of program failure, all access to
the PIGAS file of the study by the user are not
possible until the computer manager corrects the
problem.

12. TECHNICAL CONSIDERATIONS

PIGAS runs on a DIGITAL VAX 11/780 computer
at the INSTITUT GUSTAVE-ROUSSY (Medical Statistics
Department), in Villejuif. PIGAS may run on other
computers similar to VAX. PIGAS is written in FOR-

TRAN (according to the standard 77, X: 39-
1978. For the terminals the standard is ANSI
X3. 64 - 1977).

13. CONCLUSIONS

The most essential point to any statis
tical exploitation still depends on the way
the questionnaires are filled in.

The ideal questionnaire should be set
up in such a way as to take advantage of all
the possibilities PIGAS has to offer: nota
bly incorporating leading var.iables so as to
diminlJlish data entry time, and logical checks
through variable names so as to correct data
during the updating process.

From our experience, most question
naires with errors are detected during the
updating process and corrected almost imme
diately, which is much more desirable than
having to correct data during the analysis
phase because of inconsistencies encountered
during a cross-tabulated examination of the
data.

The statistician thus spends less time
on data checking and more time in the data
analysis phase.

PIGAS has been operational since ja
nuary 1982 and so far handles approximately
150 research projects. The number of cases
vary from 50 to 4 000, the number of varia
bles from 50 to 500, most of them being re
petitive.

PIGAS in its actual form is very well
adapted to the internal structure of our
department and is also used by other depart
ments who need to analyse studies with a non
rectangular data structure. The flexibility
of the system has been demonstrated and espe
cially appreciated by physicians working in
direct collaboration with our department.

14. BIBLIOGRAPHY

Dixo(l, W.J. "BMDP" Statistical Software Manual
1982 Edition.
Department of Biomathematics
University of California Press.
Los Angeles, California

Poynard T., Wartelle M., Poitrine A., Kruger 0"
Naveau S.,Jan P., Trebuchet L" Flamant R.,
Chaput J.C.
"Archivage informatique d'un service d'hepato
gastroenterologie. Comparaison avec ,'archi
vage manuel."
To appear in "Nouvelle Presse Medicale".

Baker R.J., Nelder J.A. "GUM 3 General ised Linear
Interactive Modeling". (1978) Rothamsted
Experimental Station, Harpenden, Herts,
England. .

APPENDIX 1 DESCRIPTION OF THE TABLE OF THE CHAPTERS

*********************** * TABLE DES CHAPITRES *

**
* * * * * * * *
* NOM * LIBELLE * OBLIG * REPET * MIN * MAX * CUES DE TRI DU CHAPITRE *
* * * * * * * *
**
* * * * * * * *
* I DENT * IDENTIFICATION CHAPTER * OUI * NON * * * *
* * * * * * * *
* FOLLOW * FOLLOW-UP * NON * NON * * * *
* * * * * * * *
* META * METASTASES * NON * OUI * o * :; * DATMETA *
* * * * * * * *
**

130

APPENDIX 2 DESCRIPTION OF THE FOL.LOW-UP CHAPTER

•••••••••••••••••••••
• CHAPITRE FOLLOW •

..
•• • ••••••
• NOH • LIBELLE' • TYPE. LQ • "INII'IUIt • MXJ"U" • CRX • NATURE •
•• • •• • •• • ..
• • • • • • • • • .~ • ~ OF THE CASE • A • 3 • • • NON • ISOLEE • • • • • • • • • • • DATFU • DATE OF FOLLOW-UP • D • 6 • • • NON • ISOLEE • • • • • • • • • • • AeRD • ALIVE OR DEAD • L • • O. • NON • DIRECT • • • • • • • • • • • CAUSE • CAUSE OF DEATH • E • • 1 • 3 • OUI • PMAQ • • • • • • '. • • • • STATE • STATE OF HEALTH • E • • 0 • a • QUI • PMAQ • • • • • • • • • • ..

DESCRIPTION DE LA FICHE FOLLOW

ID COL 1 - 2 22

NBCENTER 3 - 4

NBCASE 5 - B

NNE 9 - 11

DATFU 15 - 20

PARAGRAPHE ACRD
AeRD 21 - 21
SI OUI :

CAUSE 22- 22
SI NON :

STATE 23 - 23

APPENDIX 3 : HISTOGRAM EXAMPLE APPENDIX 4 ; LOG-RANK TEST EXAMPLE

Number of cases as a function of the stage
of a particular disease.

TRAIT is the treatment variable coded 1 or 2
DATTAS is the date of randomisation
DADERNO is the date of last follo~-up •

Function syntaxe :

FONCTION SOUHAITEE HIST
VARIABLE STAGE

Result:

e

STAGE

-- 0-
W IU
co -GO)

<.II

e e
? 1 3

@ 2 4

'A' is the symbol used
for the "UNKNOWN" code

'@' is the symbol used
for the "NOT A~PLICABLE" code

'?' is the symbol used
for the "HOLD" code)

131

ETAT is the patient status at last follo~-up-

FONCTION : LOGR
LA VARIABLE: TRAIT CONTIENT LES CODES A.@.? 0 FOIS
LA VARIABLE: DATTAS CONTIENT LES CODES A.e.? 0 FOIS
LA VARIABLE: ETAT CONTIENT LES CODES A.@.? 0 FOIS
LA FONCTION DELAI N'A PAS ETE CALCULE 0 FOIS

PAR MANOUE DE PRECISION
LA VARIABLE: DATDERNO CONTIENT LES CODES A •• ,? 0 FOIS

•• ********.* •• ******
• TEST DU LOG-RANK *
*.******************

CLASSE NBSU.J DC OBS DC EST DC OBS/EST
--------------------~-----------------------------------

2

CHI2
1. 3357

12

13

DOL
1

6.

11.

PROBABILITE
0.24780

8.3823 0.7158

8.6177 1.2764

APPENDIX 5

FONCTION SOUHAITEE BMDP
NOM DES VARIABLES
WEIGHT
AGE

NOM DU PROGRAMME : 6D

BMDP

DMDP6D - BIVARIATE (SCATTER) PLOTS
DEPARTMENT OF BIOMATHEMATICS
UNIVERSITY OF CALIFORNIA. LOS ANGELES. CA·90024
(213) 925-5940 TWX UCLA L9A
PROGRAM REVISED JUNE 1991 MANUAL REVISED.-- 1991
COPVRIGHT (C) 1991 REGENTS OF UNIVERSITV OF CALIFORNIA

17-DEC-92 AT 16: 55: 19

NUMBER OF CASES READ.

.. + + + + + + .. X. + +
100.0 +

1
97.50 + 1

P
0
I 75.00 + 1 11
D 1 1 1
S 1 21

1 1 1 1
131 2221

62. 50 + 121 1431
4142 232

1 3 1 11 1
Y 123 4213 134

11 12 4232 3222
50.00 + 2 2 11 11 4 511

1 1 12 1 32
11 111 1 1

1

1 1
1 1

1 2 21
111 2 11
2 53 12
4122 42
2413 2324
43 1 33
51 1 1441
26 53 3

23 2 4421
121 11

112 133
12 1

1

+

+

+

+
V

+

~.~ + +
.. + + + + + ... X+ •... + +

·20 29 36 44
16 24 32 40

N= 335
CORm .0769 AGE

MEAN ST. DEV. REGRESSION LINE RES. MS.
X 36. 491 5. 9377 X- .04979*Y+ 33.667 35. 154
V 57. 669 9.3425 V. .·12079*X+ 53.262 97.029

VARIABLE 2 AGE VERSUS VARIABLE WEIGHT

CPU TIME USED 6.990 SECONDS

335

132

FONCTION
VARIABLE
VARIABLE
VARIABLE,
VARIABLE ..
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE'

APPENDIX 6 : USER

SOUHAITEE USER
1 CENTER
2 CASE
3 DATRANDM
4 GROUP
:5 CHEMO
6 SURGERY
7 HISTOLOQ
8 RADIO
9 FOLLOW

NOM DU PROGRAMME : PROG

****-•• ****.**.*.**.*********.*** •• ****.***
* CENTER .: VILLEJUIF *

Case number

5 31 5/1981

6 221 511981

8 161 611981

11 221 811981

12 181 811981

16 25/10/1981

24 811011980

28 5/1111981

32 41 1/1980

45 61 5/1981

46 221 511981

Missing records

RADIOTHERAPY

FOLLOW-UP

RADIOTHERAPY

SURGERY

RADIOTHERAPY

SURGERY
HISTOLOGY
RADIOTHERAPY

SURGERY
HISTOLOGY
RADIOTHERAPY

SURGERY

RADIOTHERAPY

FOLLOW-UP

SURGERY
HISTOLOGY
RADIOTHERAPY

SIMULATORS, STATISTICAL ANALYSIS, AND DATABASES

D.H. Scuse
Associate Professor

A.N. Arnason
Professor

Department of Computer Science
University of Manitoba

Winnipeg, Manitoba

Abstract

This paper describes the advantages of integrating simulators, statistical
analysis programs, and databases in a common statistical information system. We
have found that the integration of the components in a statistical information
system greatly enhances the value of the individual components, makes the
resulting system easier to use by end-users, and reduces the amount of work
required to implement new applications and modify existing applications.

1. INTRODUCTION

For a statistical information system to be
useful in the current research environment, it
must contain routines that manipulate data
organised in complex data structures
(databases, as opposed to simple flat files)
and routines, statistical analysis programs or
SAPs, that analyze these data. The
integration of the statistical analysis
programs and databases makes the system more
powerful than the equivalent separate systems,
one to manipulate databases and the other to
perform statistical analyses. As we shall
show, the value of the statistical information
system is also enhanced by the addition of
simulators that permit end-users to develop
and refine management sampling or data
collection strategies.

There are many systems that provide excellent
facilities for the manipulation of complex
statistical databases (SIR, RAPID), for the
analysis for statistical information (SAS), or
for simulation (SIMSCRIPT). However, few of
these systems provide acceptable facilities
for even two of these functions (manipulation,
analysis, and simulation) and no
general-purpose system that we are aware of
provides all three functions. As applications
become increasingly complex, it will not be
acceptable to have to copy information

* This research was supported by grants from
the Natural Sciences and Engineering Research
Council of Canada, the Canada Department of
Fisheries and Oceans, and Algas Resources
Ltd., Canada.

133

manually from one system to another as
different functions are required when
processing the information; instead,
integrated systems that provide all three of
these functions and make them available
directly to end-users in a friendly manner
must be developed.

Our interest in simulation, databases, and the
analysis of information has led to the
development of several information systems
that provide some but not all of the
facilities that we feel are necessary in a
statistical information system. These systems
include the POPAN system [1] for the
maintenance and analysis of mark-recapture
databases for wildlife sampling experiments,
the MANHIS system [2] for the maintenance and
analysis of both social services and medical
data in community .health centres, and the
Fisheries Information System [3] for the
simulation and storage and reporting of
fish-hatchery management data. Of these
systems, the Fisheries system is the most
recent and most advanced, integrating
stat~-of-the-art database technology with a
powerful second-order Markovian simulator
system.

In the remainder of this paper, we indicate
the advantages of integrating simulators,
statistical analysis programs, and databases
into a common statistical information system.
The problems involved in implementing such a
system and the techniques that we have found
to be useful in eliminating some of the
problems are also examined.

2. INTEGRATION

In this section we examine the advantages
obtained when the various components are
integrated into a common statistical
information system. The database component is
assumed to include an interactive query/update
facility that permits the user to insert
information into the database and to examine
selected portions of the database, preferably
wi thout having to know the structure of the
information in the database.

2.1 SIMULATORS AND DATABASES

The importance of databases as support for
developing, fitting, testing, and running
simulations has recently been discussed by
Markowi tz [4]. As co-developer of both the
SIMSCRIPT II language [5] and of the EAS-E
database system [6], he has given some thought
to the facilities that a database system must
have to provide this support. EAS-E is a
Query/Update database system that permits the
structuring and manipulation of data using the
same time-ordered, entity-attribute-set view
of a system as is taken by SIMSCRIPT in
modelling that system. Such a view is
important for simulation involving scheduling,
queuing, and contention by transactions
(temporary entities) for limited physical
resources (permanent entities); for example,
in a job-shop scheduling model, machines
(permanent entities) may own a set of tasks
(temporary entities) which in turn may own
other sets (e.g. job stages) and attributes
(type classifications, service time durations,
etc.). While EAS-E is not (yet) fully
integrated wi th SIMSCRIPT, the advantages of
adopting a parallel data structuring in the
database and the simulation are already
apparent: browsing through the database or
extracting reports from it orients the
end-user to the structural and set
membership/ownership relationships that he
will have to use in simulating the system; the
same code for generating reports from the
database can be used to generate equivalent
reports on the simulated model; the database
is structured in a way to accept data from the
simulated model, preserving its structural
relationships; real data in the database can
be extracted (usually as time-ordered sets)
for driving various mechanisms of the
simulations (arrival times of temporary
entities, with their attributes, and other
demand or service-time mechanisms). Markowitz
has pointed out [4], however, that this is not
sufficient support for many simulation
applications. Often real data is of limited
value in production runs of the simulator (it
is of most value in validation runs).
Instead, one wishes to extract data on such

134

exogenous mechanisms as inter-arrival times or
service times, fit theoretical or empirical
models to the data, and then use these
mechanisms, or hypothesized modifications of
them (e.g. the same form of distribution but
with an increased mean and/or variance) in the
simulation. This gives the user the freedom
to explore hypothesized strategies or
non-existent but plausible environments to
judge how the system responds. Such
experiments with simulation models are often
the main purpose for their construction.
Clearly this facility requires the further
integration of the system with statistical
analysis features for exploratory data
analysis, model fitting, and testing. Once
such models are fitted, most simulation
systems already incorporate methods of
parametric or empirical random variable
generation, given the fitted parameters.

In the analysis of real data, statistical
analysis methods are useful for summarizing
and revealing relationships in the data.
Since simulations can frequently produce
voluminous data on system performance, access
to standard statistical analysis procedures
can greatly assist in the process of
summarization. As we explain later, we feel
that this facility is best provided by having
the simulator write out its results, in as
detailed and unprocessed a form as possible,
to the database. It is then the role of the
database query system to provide flexible,
on-line end-user control over the data
summaries and reports.

The entity-attribute-set representations of
SIMSCRIPT/EAS-E are not always the most
appropriate or natural system representations.
Our Fisheries system involves a more
restrictive system representation, but as a
result, we have been able to make much greater
progress in integrating the simulator with the
database, and have a much clearer idea of how
statistical processing features can be
implemented. As with the SIMSCRIPT/EAS-E
system however, the crucial correspondence
between the structuring of the database and
the structural relationships in the simulation
is preserved. In our case the basic
structural relationship is one more suitable
to Markovian systems: data on the actual
hatchery consists of two types of variables:
exogenous events (which we call \ management
interventions, consisting of setting stocking
leveis in tanks, feeding rates, water
temperature and flow rates) and endogenous
results of these interventions (called
observations, consisting of censuses of fish
numbers and weight distribution, water quality
variables, etc.). In addition there are
static system descriptors which may be real or
hypothetical (called physical conditions, such

as numbers and size of tanks, wa ter
availability, filter capacities and
charac teristics, fish species and food type
characteristics as they affect growth rate).
The database must, and does, permit the user
to follow groups of fish forward and back in
time, within tanks or relocating to other
tanks as groups of fish are split among tanks
or transferred to other tanks. The user can
specify the variables to be displayed as he
navigates through the data. . The important
relationships that must be .preserve!! are the
time orderings of events and observations
within tanks (e.g. it is vital to· know if a
census, at the same time as a transfer, was
before or after the transfer). The simulator
allows the end-user to specify initial
conditions (physical conditions) and a
sequence of interventions interactively. A
multilevel growth model then generates the
observed results of the management strategy to
a degree of detail depending on the level
chosen (e.g. the basic model only simulates
growth and imposes no constraints on density
or water quality; higher level models also
simulate effects on water quality). The
results of such a simulation can be saved to
the database and are, in every respect,
comparable to real data (except for an
additional variable to indicate that they
arise· by simulation and hence may be deleted
from the database, unlike real data).

The preservation of an exact correspondence
between real and simulated data enables a
number of desireable capabilities. First,
real physical conditions and interventions can
be extracted from the database and used to
drive the simulator. The simulated results
are saved in the database and are associated
with the interventions that gave rise to them.
Thus the. same code (in the database query
system) used to compare two real growth
strategies can be used for comparing real and
simulated outcomes for validation purposes.
Secondly, the results of a successful
management strategy, obtained by simulation
against a real or hypothetical physical
configuration can be saved and extracted later
as the strategy is actually implemented.

The statistical analysis requirements of this
system fall into two main categories:
statistical summaries and calibration. The
first has already been mentioned as it
involves the ability to compare two growth
runs (real/real; real/simulated; or
simulated/simulated). The problem is that
aquaculturists want analyses based on derived
statistics (e.g. instantaneous growth rate,
food conversion ratios, etc.) which require
data from the same or different database
segments at two different times. This
involves extensive checks to ensure that the

135

derived statistics are meaningful (e.g. that
no deaths or transfers intervene between two
censuses) and is best provided ·through the
data .. dictionary and database interface
facilities described later in this paper.

Calibration involves the extraction of data
from the database in forms (case by variable
data) suitable for non-linear growth model
fitting and the fitting of various ancillary
models (variance in growth, oxygen
consumption, fish metabolite production rates,
etc.). This involves the same problems as for
generating derived variables. Full
integration of calibration with the system
would require some means of designating groups
of segments in the database as belonging to
calibration sets suitable for a particular
model fitting routine and/or programming
extensive checks that sets of data chosen by
the end-user are complete and consistent for
use by a particular fitting routine.

2.2 STATISTICAL ANALYSIS AND SIMULATORS

Statistical analysis procedures may be roughly
categorized into survey analyses and model
fitting analyses. The former often involve
massive amounts of data, sometimes
incorporating complex relationships among
records, where the main objective of the
analysis is to summarize properties of the
variables (means, variances, histograms) or of
relationships among variables
(crosstabulations, breakdowns, scattergrams).
Model fitting analyses attempt to elucidate
structure and relationships by positing,
fitting, and testing for goodness of fit, some
theoretical model for the expected values of
the observations (data) and the variation of
the data about expectation (residual error
distribution) • The model parameters, or
rather their estimates formed in the fitting
stage, may be of interest in providing insight
into the mechanisms that gave rise to the
data, or the fitted model itself may be of
primary interest for use in prediction,
interpolation, optimisation, or simply as a
data summary.

Most general-purpose statistical packages
(SPSS, GLIM, BMDP, SAS, etc.) have
capabilities spanning both of these
categories.. None, however, incorporates
simulation capabilities, and so are rather
poor in supporting the major planning and
interpretation concerns of statistical users
in both these categories.

We do not propose that these concerns can be
fully met by simulators, particularly for
survey analyses. However, methods for random

sampling from sequential files are well known
[7], and it would be quite straightforward and
useful to have a general simulation capability
for generating random samples according to
various standard designs (stratified, ratio,
multi-stage, etc.). Experimentation with such
a system would be of great help to the
end-user in planning efficient surveys. What
limi ts the usefulness of this method is the
necessi ty to provide a file to be sampled.
This might be an actual census or sample
survey from some comparable experience, but
more likely the file itself would have to be
simulated, using the distributional and
relational characteristics from some previous
survey analysis, plus some hypothesized model
assumptions (e.g. multivariate normal or
multinomial distributions for variables) to
generate simulated populations.

For the end-user concerned with model fitting,
the much greater usefulness of simulation for
planning and insight is illustrated by the
POPAN system. This large batch system, while
specific to marking and banding data from
animal sampling experiments, edits and
structures the end-user's data, gives him
access to a comprehensive set of models for
parameter estimation (of survival, birth
rates, abundance), and includes a very general
but easy-to-use simulation capability. All
these functions are directed by a BMDP-like
paragraph-structured command language. The
simulator permits the user to simulate a
theoretical population's stochastic dynamics
(recruitment, death, emigration) and impose
stochastic sampling at user chosen intensities
and frequencies. The simulator is general
enough to permit him to specify models that
incorporate mechanisms that violate
assumptions of the analysis methods (e.g.
distributions for heterogeneous survival or
capture rate among animals). The data are
generated in a form that is (almost)
indistinguishable from real data, and so can
then be analysed using the model fitting
procedures, presenting results exactly as for
real data. The only difference is that the
system reports the "true" population
properties, against which the estimates can be
compared. Simulations without assumption
violations are useful in planning allocation
of sampling effort so that experiments will
yield adequate precision in the estimates.
Simulations with assumption violations are
useful in determining the bias or robustness
of an estimate to various types and degrees of
assumption violations and the power of tests
to detect such violations. Conclusions from
such runs lack the generality of an analytic
investigation by a mathematical statistician,
but they reveal the same sort of insights, can
be carried out easily by a non-statistician

136

end-user (e.g. a biologist or wildlife
manager), and can be tailored to the specific
population parameters and dynamics which the
end-user has to hand.

Such capabilities would also be enormously
useful, for the same sorts of purposes, in
more general statistical analysis systems.
Capabilities to generate stochastic data from
wide classes of models (including various
independent or correlated error or residual
distributions) would be useful for planning,
robustness, and power studies in many classes
of analysis: linear, log-linear, general
linear, failure time, even multi-variate
models.

Note however that it would be a mistake to
"tack-on" such simulation features to a
statistical analysis program. In fact, the
statistical analysis program must be
incorporated within a general statistical
model simulator. This way, the simulator can
invoke the analysis procedure on the
(stochastically) generated data file
automatically. This is, to our mind, the only
realistic approach if replicated simulations
are to be allowed. Replicated realisations of
a given model and/or the sampling imposed on
it are essential for investigating bias and
power, though are less essential for
experiment planning. Thus the simulator, and
not the statistical analysis program, is
responsible for generating the data file,
carrying out the analysis, extracting and
accumulating statistics to be reported over
replicated simulations, conversion (e.g. to
means, standard deviations, proportions over
replications), and report generation. The
simulator must also report on the simulation
mechanisms and the "true" properties of the
model. Analysis of real data is then a
special case of a single replication where
file generation consists merely of extraction
of cases and variables from a file or database
of real data. This system structure would
confer advantages in analyzing real data which
was (exactly) repiicated. The sorts of
summaries across replications suggested here
could then be applied to real data as well;
this is a rather rare requirement, but one
which is difficult to meet with most
statistical analysis programs at present.

We defer until later a discussion of the role
played by a database incorporated into such a
system, though it is clear that some database
support has been implied in the discussion in
this section.

2.3 STATISTICAL ANALYSIS AND DATABASES

Since the use of databases in statistical
information systems is becoming the accepted
practice (one has only to examine the number
of papers involving databases at conferences
such as the First LBL Workshop on Statistical
Database Management and the Symposia of
Computer Science and Statistics: the
Interface), in this section we discuss only
briefly the advantages to the integration of
databases and statistical analysis programs,
as they apply to our experience.

The use of a database instead of the more
common flat file makes the conceptualization
and manipulation of data by end-users during
the analysis of the data significantly easier.
For example, as shown in the papers
[8,9,10,11] on volume testing presented at the
13th Symposium of Computer Science and
Statistics and the First LBL Workshop on
Statistical Database Management, the analysis
programs were easier to design and understand
when the underlying system supported databases
than the equivalent analysis programs when the
underlying system supported only flat files.
When a database is used, it is normally not
necessary to perform complex file
manipulations (merges, sorts, etc.) in order
to place the data in the correct format for
the analysis. The use of the database
facilities also makes the management of
information being prepared for analysis easier
than in the flat file analysis system since
most database systems support some type of
interactive method for entering data into the
database and automatically perform integrity
checking of the information as it is entered
to ensure that it is valid.

The integration of the statistical analysis
program with a database permits the end-user
to examine portions of the database
interactively using the query component of the
database system before defining the analysis
program. Such interactive access to the data
often gives the end-user a better "feel" for
the data, enabling him to develop appropriate
analyses more quickly.

The integration of statistical analysis
programs and databases does not have to be a
one-way transfer of information (from the
database to the statistical analysis program);
it is frequently desireable to be able to
store the results of an analysis back in the
database to avoid having to recalculate them
the next time thilt the information is
required. For ex~mple, summary information
that contains means and variances may be a
useful addition to a database. Such summary
information is then available to the user
through the database query component. Of

137

course, such information may be invalidated
should the underlying data be modified but
statistical databases tend to be modified
infrequently compared with entity-oriented
databases (personnel, inventory, etc.).

2.4 SIMULATORS, ANALYSIS, AND DATABASES

The advantage of integrating all three
components has already become evident in the
Fisheries system which contains a simulator
and database system but does not contain
statistical analysis programs. Both the data
generated by the simulator and the data
generated by the hatchery are stored in the
fisheries database. In order to compare the
simulated results of an experiment with the
real results for the same experiment, it was
necessary to export the real and simulated
data outside of the Fisheries system in order
to perform the analysis. If the Fisheries
system contained the appropriate analysis
routines, it would have been much easier to
perform the comparison. The same process must
also be followed for model calibration, with
the additfonal re-importing of the fitted
model parameters into the species
characteristics file of the database before
the end-user can make use of the system's
powerful model validation capabilities.

An interesting use of the integration of all
three components is to use the simulator to
generate test data for a new application
before data are actually collected. These
simulated data can be stored in the database
and then queried and analyzed by the user to
ensure that the data are complete. Such a
technique would be useful in experiments
involving surveying or sampling in order to
reduce the possibility that part of an
experiment is performed before it is realized
that insufficient or incorrect data are being
collected.

3. IMPLEMENTATION TECHNIQUES

The major problems involved in integrating the
components of a statistical information system
can be reduced to more manageable problems
through the use of current database and
software engineering technology. The
techniques that are described in this section
have already been implemented (in whole or in
part) in the Fisheries, POPAN, and/or MANHIS
systems and have been found to work well. The
organisation of components used in the
Fisheries system (extended to suit the current
di~cussion by the addition of statistical
analysis) is shown in Figure 1. Access to the
system is through a common user interface.
The major components then interact with a data
dictionary/database system (but not directly

with each other); this makes the components
more modular, more independent of each other
(so that changes in one component do not
affect the other components), conferring great
advantages on ease of development while
preserving the maximum power and flexi bili ty
of the system. As was illustrated in
Section 2, the pairwise or vertical
interaction of the components with the DD/DB
system reduces application coding.

USER INTERFACE

SIMULATOR ANALYSIS QUERY

DDMS - INTERFACE

DBMS

DATA DATA FLAT
DICT BASE FILES

FIGURE 1 STATISTICAL INFORMATION SYSTEM

138

One of the major problems encountered in the
design of an interactive system is the
technique used to parse the users' commands
and then to pass the necessary information to
action routines to process the commands. In
order to provide a common method 6f access to
all programs in the Fisheries system, a
generalized user interface, called EASYPARSE,
was developed. With EASY PARSE , users need
learn only one set of conventions in order to
use the Fisheries system. EASY PARSE contains
a powerful Backus-Naur Form (BNF) parser that
was designed for users who are technically
competent in their own areas but are not
familiar with the intricasies of interactive
systems. The parser is keyword oriented
although it can also parse commands with
positional parameters. The syntax of the
commands that the parser is to process is
defined in an external table which is read by
the parser during system initialisation.
After the parser has recognised a command and
its parameters, the parser isolates the
command parameters by creating a list of
pointers that point to the individual
parameters and subparameters. This list of
pointers creates a level of indirection
between the parser system and the action
routines that process the commands, making it
possible to make minor syntax changes to a
command without having to modify the action
routine. The parser system automatically
abbreviates all commands, keywords, and
aliases as much as possible (as long as ·no
ambiguities are created); however, for
particularly critical commands, keywords, or
aliases, a minimum number of characters that
must be entered for the command to be
recognized can be specified when the command
syntax is defined. To simplify the entering
of commands and parameters, the parser permits
the definition of substitution variables,
variables that are assigned character strings
by the user. Whenever a substitution variable
is entered by the user, the parser system
replaces it with the character string
associated with that variable. Thus,
frequently-used phrases can be replaced by a
substitution variable. The parser system also
supports a sophisticated command-editing
facility which permits the user to modify
portions of the current command or a previous
command without having to retype the entire
command. EASYPARSE has recently been prepared
as a stand-alone system for use with any
interactive program and is described in [12].

In order to make the statistical information
system as general as possible, the description
of the processing to be performed on each
database should be stored in a data dictionary
instead of being "hard coded" into the system
components. The Fisheries system is
dictionary-driven and contains little logic

that is specific to the manipulation of
hatchery information; as a result, it has been
possible to make major revisions to the system
without having to modify the application
programs. This technique has also been used
very successfully in the RAPID system [13 i .
The meta data stored in the data dictionary
describe the organisation of the database, the
input/output formats of data, security
information, integrity information (horizontal
and longitudinal edit and consistency checks),
data transformations (for example, the value
of the variable SEX might be input and output
as M or F but stored internally as 0 or 1),
command syntax information for the user
interface, and descriptive information. The
data dictionary should be stored in a database
that is manipulated by the database system so
it is not necessary to write low-level
database manipulation routines as part of the
data dictionary management system (DDMS), and,
even more importantly, so that it is possible
to display the contents of the data dictionary
using the query system. This last feature is
important for end-users since it provides a
convenient means of obtaining the descriptive
information about the databases maintained by
the system, such as the use of a particular
field and its input and output formats.

The Fisheries system does not permit programs
that require data from a database to issue
requests directly to the database management
system (DBMS); instead, an interface was
placed between the DBMS and the processing
programs, and all programs issued requests for
data to the interface instead of to the DBMS.
This interface was originally developed
because the only DBMS available (IBM's IMS) at
the university at the time was not suitable
for the type of manipulations being performed
(and we did not want to develop a complete
DBMS by ourselves), but the interface was
gradually improved until it became a
high-level database management system in its
own right.. The interface supports the
relational model of a database and a
sophisticated database manipulation language
by translating the requests passed to it into
the equivalent requests to the low-level DBMS
being used. The interface also provides many
additional facilities such as the ability to
dynamically display program debugging
information. The interface has proven to be
valuable because it can be extended quite
easily and because it has permitted the other
components of the statistical information
system to be made independent of the actual
DBMS being used to store the database.
Further details of the interface can be found
in [14].

139

In statistical information systems it is
important that the user be permitted to define
fields whose values are derived from the
values of other fields. The use of the data
dictionary system and the database interface
in the Fisheries system has made the
manipulation of such derived fields reasonably
easy. Derived fields are first defined to the
data dictionary; then, when the derived field
is accessed, the database interface invokes a
special routine to obtain the value of the
derived field. The value may already be
stored in the database (for example, as the
result of adding summary data to the database,
as was mentioned earlier), in which case, the
value is read from the appropriate database
segment; otherwise, if the value has not
already been calculated, its value is
calculated dynamically by processing the
values of the fields from which the value is
derived. We feel that the manipulation of
derived fields is an important consideration
in the design of a statistical information
system:

To facilitate access to a database by the
end-user, the query component of the sys tem
must require as little knowledge of the
structure of the database as possible. As was
mentioned earlier, the database interface in
the Fisheries system supports the relational
model of databases so that users need not be
aware of the links between segments/tuples in
the stored version of the database. However,
even the relational model is more complex than
was desired for end-users since they would
have to be aware of the grouping of fields
into tuples. Consequently, an abstract model
of the database was defined for the users.
This abstract model permits the user to access
the database by field name without having to
know the name of the tuple in which the field
is defined. The query component performs the
mapping from the abstract model to the
relational model before it issues a request to
.the database interface for information. The
support for multiple models of the database
has been facilitated by the use of the data
dictionary: the data dictionary contains a
description of each of the three models of
data, including the name of each field, the
tuple in which it is defined, and how the
tuple must be accessed using a particular
model. As a result, the mapping processes in
the query component and the database interface
have been made completely general, using the
data dictionary description of how a
particular field or tuple is to be processed
during the mapping from one model to another.

While much of the discussion in this section
has been specific to the Fisheries system, the
techniques used in that system are generally
applicable to the problems encountered when
creating a generalized statistical information
system. In fact, the Fisheries system'is such
a generalized system, capable of manipulating
any database; the only component that it lacks
is the analysis component.

4. CONCLUSIONS

The statistical information system described
in this paper has two main functions: to
provide the user with sophisticated facilities
for manipulating statistical information, and
to reduce the amount of programming required
to implement a new application.' The
interactive nature of the system encourages
users to experiment with the system and the
user interface eliminates much of the
frustration that end-users typically feel when
dealing with a complex system.

Since the system is dictionary-driven, few
application programs should be required in
order to implement a new application.
Instead,-the system administrator defines the
data requirements of each application to the
data ,dictionary. This approach to the
development of applications has recently been
emphasized by Martin [15]. The use of
software interfaces to control access to
critcal portions of the system permits
debugging and trace information to be
generated during program testing by toggling
various switches in the interfaces instead of
having to recompile programs during testing in
order to insert and then remove debugging
statements.

We are currently in the process of extending
modules written for the Fisheries system in
order to construct a prototype of this
statistical information system on the
University of Manitoba's Amdahl 470/V8
computer system. Unfortunately, the scope of
the information system precludes our being
able to implement it on a small computer
system.

140

REFERENCES

[1] Arnason, A.N. and Baniuk, L., (1978),
"POPAN2: A Data Maintenance and Analysis
System For Mark-Recapture Data", Charles
Babbage Research Centre, St. Pierre,
Manitoba.

[2] Scuse, D.H. and Trute, B., (1981), "The
Manitoba Health-Centres Information
System", Proceedings of the Fourteenth
Hawaii International Conference on System
Sciences, Medical Information Processing
Track, 60-70, January, 1981.

[3] Arnason, A.N., Schwarz, C.J., and Scuse,
D.H., (1981), "An On-Line Simulator and
Database System for the Management of a
Commercial Fish Farm", Proceedings of the
Winter Simulation Conference, Atlanta,
Georgia, Volume I, 141-152, IEEE, New
York.

[4] Markowitz, H.M., (1981), "Barriers to the
Practical Use of Simulation Analysis",
Proceedings of the 1981 Winter Simulation
Conference, Atlanta, Georgia, Volume 1,
3-9, IEEE, New York. -

[5] Kiviat, P.J., Villanueva, R., and
Markowitz, H.M., (1973), "SIMSCRIPT 11.5
Programming Language", C.A.C.l. Inc., Los
Angeles, California.

[6] Malhotra, A., Markowitz, H.M., and Pazel,
D.P., (1980), "EAS-E: An Integrated
Approach to Application Development" ,
RC8457, IBM, T.J. Watson Research Center,
Yorktown Heights, New York.

[7] Fan, C.T., Muller, M.E., and Rezucha, I.,
(1962), "Development of Sampling Plans by
Using Sequential (Item by Item) Selection
Techniques and Digital Computers", Journal
of the American Statistical Association,
Volume 57, 387-402.

[8] Teitel, R., (1981), "Volume Testing of
Statistical/Database Software", Computer
Science and Statistics: Proceedings of
the 13th Symposium on the Interface,
Springer-Verlag, New York.

[9] Robinson, B., (1981) , "Scientific
Information Retrieval (SIR/DBMS)",
Computer Science and Statistics:
Proceedings of the 13th Symposium on the
Interface, Springer-Verlag, New York.

[10] Bragg, A., (1981), "Volume Testing of
Statistical Software, The Statistical
Analysis Sys tem (SAS)", Computer Science
and Statistics: Proceedings of the 13th
Symposium on the Interface,
Springer-Verlag, New York.

[11] Schmi tz , P., (1982) , "Using the INGRES
Relational Database System in Statistical
Applications", First LBL Workshop on
Statistical Database Management, 363-367.

[12] Arnason, A.N., Cameron, H., Karasick, M.

141

Paulley, G. , and Scuse, D.H. , (1983) ,
"EASYPARSE: A Generalized Easy-To-Use
Parser Interface for User-Oriented
Systems", Congressus Numerantium 37,
January, 1983.

[13] Hammond, R., (1981), "Metadata in the
RAPID DBMS", Proceedings of the First LBL
Workshop on Statistical Database
Management, 123-131.

[14] Scuse, D.H., (1982), "Database
Interfaces", Australian Computer Journal,
Special Issue on Software Engineering,
Volume 14, Number 2, 71-74, May, 1982.

[15] Martin, J., (1982),
Development Without
Prentice-Hall, New Jersey.

"Application
Programmers",

4. Time Series and Econometric Database Management

CANSIM. the Canadian Socio-Economic Management Information System. 144
Martin Podehl

Diversification in Statistical Data Bases and its Consequences. 148
Helen C. Poot

Econometric Time Series on DIALOG . 152
Robert T. Lundy

Evolution in Storage and Retrieval:
the LABSTAT Data Base and Software System . 154

Gwendolyn L Harllee

Interactive Information Management with BPS 157
Stephen R Childs

Meta Data: an Experience of its Uses and Management 167
Roger E. Cubitt

Problems. Plans and Activities Concerning the Economic Databases
at Statistics Sweden. 170

Lars Nordback

Proposal for a Workshop on' Large Economic Data Bases 172
Phyliss Levioff

SAS Applied to Statistical Databanks Via a Command Language. 173
I nger Nilsson

A Statistical Data Manipulation Language . 178
G. Barsottini. J.C. Farget

See Also ••••

A Statistical Database Component of a Data Analysis and Modelling System:
Lessons from eight years of user experience 280

143

CANS 1M, THE CANADIAN SOCIO-ECONOMIC MANAGEMENT INFORMATION SYSTEM

Martin Podehl, Statistics Canada

Abstract

CANSIM, the Canadian Socio-Economic Information Management system is Statistics
Canada's computerized data bank and information retrieval service. This paper
gives an overview of the current status and development activities of
electronic information services provided by Statistics Canada.

INTRODUCTION

Econometric and statistical
analysis requires two ingredients:
data and analytical software tools
(in addition to a computing
environment of course).
Statistical data are either
available in the public domaine or
are the result of a researcher's
own statistical collection
program. They are either micro
data, for example the result of a
survey, or they are macro data, of
aggregated nature, for example
economic statistics. Analytical
software tools are available in a
wide variety of packages which
have been developed over the years
and are being refined constantly
to take advantage of newly
developed algorithms as well as
new hardware/software
environments.

In the beginning of statistical
computing the main concern was
with the development of efficient
and sound algorithms. Statistical
analysis packages were developed
usually by universities and
Research Institutes. As these
packages matured, data and file
handling facilities were added in
order to ease the burden for the
researcher in that respect. In
the commercial environment, on the
other hand, data base management
packages were developed in order
to ease the burden in organizing,
storing, documenting and accessing
data in a flexible manner. As
these systems matured, flexible
retrieval and analytical software
of statistical nature were added
in order to explore the
full information potential
contained in those data bases.

Today these distinctions are of no
significance anymore as both, the
data base management system
developer and the statistical

144

package developer have realized the
importance of a smooth interface
between both environments.

CANSIM, the Canadian Socio-economic
Information Management system of
Statistics Canada fulfills both needs:
an organized data base of statistical
information, and analytical tools for
statistical and economical modelling
and interpretation.

CONCEPT AND PURPOSE

The concept of CANSIM was born in the
late '60's as a mechanism to store and
make available to the public key
statistics to economists and
statisticians in Canada. CANSIM brings
together under one umbrella data from
Statistics Canada as well as other
organizations such as Federal
Departments, Provincial Governments and
the Bank of Canada. Today, in a
publicly accessible data base,
socio-economic data of time series as
well as cross-classified nature are
stored, documented and disseminated to
the statistical community in Canada.
From a modest start CANSIM has grown in
volume and in importance and is now an
integral part of socio-economic
analysis in Canada.

The original concept placed primarily
emphasis on a simple data organization
such that data from different sources
could be related to each other. Simple
access routine allowed the retrieval of
selected time series which then were
taken by the user into his own
environment for further computation.
Over the years much software was
developed or interfaced with CANSIM for
increasing complex analysis.

EVOLUTION AND OPERATION

Initially CANSIM was synonymous with
time series. In 1968 the foundation

was laid with 2,500 series, today
the time series module carries
over 350,000 time series. In
order to handle cross-classified
data efficiently, a cross
classified module was added to
CANS 1M which since 1976 has been
used to store data of multi
dimensional nature, referred to as
tables, where a table can be
either retrieved in whole or only
parts of it. CANSIM Cross
Classified now carries data from a
variety of predominantly social
statistical areas, such as health,
justice, education, and
demography.

Recently a third module was added,
referred to as CANSIM Summary Data
which allows access and selective
retrieval of data which are also
available in the form of User
Summary Tapes. At present our
Census data aggregated to small
areas are available in this
module. That we now have three
distinct information systems is
not the result of design but
rather historical evolution. At
some future point unification has
to be attempted such that one data
model can be used to describe all
data regardless of whether they
are predominantly of time series
or predominantly of cross
classified' nature.

The CANSIM systems are maintained
and operated by Statistics
Canada. They are maintained under
contract at a commercial computing
service organization and they are
updated daily. The public has
access to these data bases under
separate, individual contracts
with the supplier. However CANSIM
daia are also available under the
trade name CANSIM Mini Base,
through other computing services
companies which we call Secondary
Distributors. Secondary
Distributors obtain daily updates
to a standard sub-set of the main
base. In addition they can obtain
supplementary time series as
requested by their clientele.

This delivery mechanism of Host
Service Bureau and Secondary
Distributors offers our users a
choice in access and ,analytical
software. Some of the Second~ry
Distributors are in the
information base business and

145

make CANSIM data part of a larger set
of economic and statistical
information, while others are general
purpose computing services companies
who had been asked by specific
customers to make CANSIM data available
at their computing centres.

In Statistics Canada the CANSIM
Division is responsible for all
development and operational aspects
concerning this information
dissemination approach. The CANSIM
Division adds new data and maintains
existing data in all data bases at the
Host Service Bureau, and it produces
and distributes printed data
directories which describe the data and
provide the access identifications.
CANSIM Division undertakes a marketing
and training program and as well
provides a marketing and training
program and as well provides
consultation to all users of CANSIM
data who are searching for particular
data or have difficulties in
interpreting them. Last but not least
CANSIM Division maintains and develops
new software to explore further the
CANSIM data bases for analytical
purposes.

ANALYTICAL SOFTWARE

Originally Statistics Canada had to
develop software for retrieval,
manipulation, statistical analysis, and
representation of results. However
over the years many packages have been
interfaced to CANSIM either by
Statistics Canada as part of the Main
Base~ or by Secondary Distributors who
took the CANSIM Mini Base and
integrated it into their own software
facilities. This was only possible
because the data model for the time
series data is very simple and follows
common conventions within the economic
and statistical community. In the
beginning of the CANSIM development the
linking of data to software tools
needed a lot of attention for reasons
of limitations in speed and size of
hardware, as well as lack of adequate
packages. Today, computing resources
are much cheaper and the concern has
shifted to developing an environment in
which packages can be used at ease by
providing smooth and transparent
interfaces between data storage and
access systems and analytical tools.

Software tools for the exploitation of
statistical data bases can be
categorized broadly as follows:

a) Basic retrieval and selection

This function is usually
provided by the access soft
ware to a particular data base
environment.

b) Normalization and
Transformation

Having retrieved selecte~ data,
they often need to be
normalized and transformed to
make them compatible. An
example would be two time
series which both contain price
indexes, but based on different
base years. Before they can be
compared they need to be
adjusted to a common base year.

c) Statistical/Econometric
Analysis

Here we have a variety of
packages. For example CANSIM
data have been interfaced to
TROLL for econometric analysis
and SAS for statistical
analysis. In addition APL has
become the defacto standard as
the fall-back software package
for manipulation which other
packages cannot provide.

d) Reports

A convenient and powerful tool
to present data, particularly
larger amounts of data is
essential. We have used two
particular approaches.

On one hand we have interfaced
the package TPL as a convenient
way to provide cleanly labelled
tables, on the other hand we
have developed what we call a
chinese menu which provides 20
standard options under which
time series data can be
presented together with
calculations such as percentage
change over periods of time.

e) Graphs

There are many plotting and
charting packages available.
As well, several APL macros
have been developed for that
purpose. Our newest addition
is a service called TELICHART
which will be described later
on.

146

In analytical software the saying holds
true: "Different strokes for different
folks". CANSIM data are not only used
by experts in econometric analysis and
statistical analysis, they are used
increasingly by less trained users.
Thus there must be a range of software
tools which strike a balance between
power and flexibility on one side and
complexity of use on the other. We
found it convenient, for purposes of
discussions, to plot these analytical
software tools on ~ chart with axis
corresponding to the above two terms.
Thus we can discuss in which area
further work needs to be done.

CURRENT DEVELOPMENTS

CANSIM has become a vital part in the
tool kits of statisticians and
economists in the public and private
sector. This is the result of 14 years
of development which started out with a
simple basic idea and a modest
beginning. Enhancements and further
developments were undertaken as the
result of users requests and market
pressure. We see no reason to change
the basic thrust of our approach with
CANSIM, however, adjustments in terms
of data contents and analytical
software may need to be made in order
to lay the foundation for future
growth. The following following are
our current activities in that respect.

TELH~HART

During recent months we have introduced
a new graphic on-line display service
which we call TELICHART. TELICHART
utilizes low cost videotex (TELIDON)
display terminals and is linked to a
subset of our CANSIM Data Base. The
user enters simple commands, such as
"CPI" and sees immediately on the
screen the Consumer Price Index time
series displayed as a curve over time.
Other commands are available to adjust
the automatically provided scaling, to
window in on specific time periods, to
extend the time period, or to add other
time series as curves or bar charts on
the same screen. Also, the screen can
be divided into a bottom chart and top
chart in which different time series
can be displayed.

The attractive feature of this new
service is the depths of the CANSIM
data base, as well as the low cost
graphic access and display facilities

provided through the TELIDON
technology. The service was
introduced in May 1983 and has met
very favourable acceptance. While
similar plotting and charting
~acilities have existed before,
for the first time ease of use and
much lower costs are offered for
such a service. We anticipate
growing demand for this particular
service which we offer currently
in market test mode.

Micro Computer Interface

The raison d'etre for CANSIM is to
provide key statistical
information to users on their
screens on the1r desks. Thus we
are servicing the market needs of
those users who are familiar with
computer equipment and have the
necessary training to operate
them. Rapid changes are taking
place in this market through the
installation of an increasing
number of micro computers. We·
anticipate that users of these
micro computers wish to receive
CANSIM type information via public
communication lines and we are
currently developing a streamlined
interface between CANSIM and micro
computers. The market for such
services seems to be developing
very rapidly. We receive an
increasing number of inquiries
about such a service. Already, we
have created an interface between
our CANSIM data base and micro
computers in allowing to download
selected time series such that
they can be manipulated using
standard micro computer software
such as spread sheet calculation,
statistical packages, plotting
software and other manipulation
facilities.

Another interesting development is
that micro computers become
videotex compatible. Through
additional hardware or software a
micro computer can be made to
behave like a videotex terminal.
The whole area of micro computers
is a most exciting development and

'we feel that it will increase
significantly the market for
electronic information in the near
future.

147

Electronic Mail Services

Public electronic mail services have
been introduced in Canada. Again, our
orientation here is to support screens
on our users desks with relevant
information. The information could be
of textual nature, such as the
announcements of the most recent
results of our statistical collections,
but could also be of more specific
nature, such as selected statistical
tables. Through public electronic mail
services we will enhance our electronic
information services from pure
statistical numbers to general type
information.

Meta Data

The concept for documenting time series
data in CANSIM was established in the
late 60's.CANSIM documents each time
series as an individual data item. As
a result, our documentation of
currently 350,000 time series has
become rather bulky. While we have
introduced keyword searching facilities
on the existing documentation, we are
in the process of re-evaluating our
whole approach towards documenting
statistical data. This we do with the
view of simplyfing the concept and
making the documentation tight and
precise. In particular, the matrix or
table approach has to be considered
where an individual time series would
be referenced as a particular data cell
within a larger cross-classified table.

CONCLUSION

Statistics Canada as a central
statistical agency is in a key position
to develop the infra-structure in which
national statistical information and
analytical tools are combined to
address the needs of the right spectrum
of users, from a presentation of
statistics in chart form, to fact
sheets containing data from ~ variety
of sources in easy to view form, to
powerful econometric modules. With the
move of our society to supplement paper
based communication with electronic
communiction means we will continue
paying attention to this part of our
communication obligations.

Abstract

Diversification in Statistical Data Bases

and its Consequences

Helen C. Poot

In this brief report the author discusses the consequences of the growth and diversification in statistical data bases as
evidenced at Data Resources, Inc. (DRI). In general, one sees time-series being used in closer conjunction with cross
sectional and textual information. This has a great impact on the types of software used. The variety of data available
requires more diverse methods of quality control. The amount and scope of information now online requires that
descriptive and reference materials be made available online, particularly in the area of current awareness.

I. Introduction

The rapid growth and diversification
which has taken place in statistical
databases over the last decade has put
greater demands upon data base producers
and vendors. Originally the information
contained within these data bases
consisted primarily of macroeconomic
time series. The software applied was
almost exclusively analytical, and the end
users, working with a limited number of
variables with which they were usually
already familiar, did not require the
assistance of information or data
specialists. Much has changed since that
time, as is evidenced by the current
situation at Data Resources, Inc. (DRI).
Macroeconomic information is now only a
part of the data base system; data
coverage extends into a variety of areas.
Time-series are now used in conjunction
with cross-sectional data and textual
information. This has required the
development of new software, facilitating
the retrieval of these new data and their
integration with or conversion to time
series. The expansion of data offerings in
terms of the subject areas covered and
the actual form which the data may take
has led to more active interaction
between the data or information specialist .
and the user and has required the
development of more descriptive
information online.

II. Growth in Data Base Coverage

In 1969 DRI offered one data base
containing one to two thousand time
series on the U.S. economy. This was
supplemented in 1971 by a regional data
base, providing information at the Census
Region, State and SMSA level. Between
1973-1978 these data bases had
themselves grown dramatically, and were
supplemented by 36 additional data bases
in the international, financial, microecono
mic/interindustry and energy areas. In
1983, DRI's data bases exceed 80 and
contain over 10 million time series.

148

Although this growth in the amount and range
of statistical information is important, of perhaps
more significance is the fact that included in the
current roster of DRI's data bases are those which
do not, strictly speaking, consist of time series.
Cross-sectional data and textual information
represent a growing part of the data base system.
Cross-sectional data would range from the results
of the 1980 Census to fundamental, descriptive
information on securities. Textual data bases
available online include DATAPRO, which
provides information on computer software and
hardware, and DMS/ONLlNE, which describes the
defense and aerospace industries. The situation is
compounded by the fact that statistical
information may be embedded in a textual data
base and that, on the other hand, some data,
maintained in time-series mode, also lend
themselves to cross-sectional analysis.

m. Software Diversification: Data Requirements

The growth in the number and types of
information available has necessitated a
diversification in the software used in accessing
them. Statistical data bases were in the past
associated almost exclusively with a powerful,
analytical language permitting efficient access,
display and analysis of data. This remains the
case for the most part; clients use EPS Plus,
DRI's proprietary language, to conduct 80 percent
of their work. Because they were originally
designed for time series analysis, however, the
analytical languages have had to be expanded or

- supplemented to include search capabilities and to
handle better cross-sectional information.

The addition of textual data bases to· the
system required that DRI develop a new language,
TEXT, which permits full text searching using
Boolean operators. In this area statistical data

- base producers have had much to learn from the
original bibliographic and textual data base
vendors, such as BRS and Lockhead.

The development of a language with extensive
search capabilities for text data bases, then, does
not represent a dramatic innovation; such
languages have existed before. The ability to

search through a group of statistical data
bases in order to determine what data are
available on a certain topic is, however, a
much needed development. The amount of
statistical information currently available
is too great for most users to fully fathom,
much less to be able to access readily.

In order to meet the consequences of
the explosion in the number of statistical
data bases, DRI developed another search
language, ABSTRACT. In one instance, key
word searching is performed on major
groups of data bases, rather than on a
single bank; search strategies need not be
saved and input repeatedly as one goes
from one bank to another. Searching is
possible on retrieval code, prefixes, the
online documentation associated with the
time series (on the DRI system each time
series may have up to 5 lines of
documentation), or a particular data base.
Currently it is possible to search through
DRI's 22 international data bases at once;
it will be expanded to include most other
data bases in the near future.

Ultimately, however, the data
retrieved become the subject for analysis,
as the 80 percent figure noted above
indicates. There has to be, therefore, some
integration between the searching language
and the analytical one.

The ABSTRACT program, then, was
adapted to include the ability to route
search results to namelists in EPS format
which may then be used to retrieve and
display data. Although this is a two-step
process, involving ABSTRACT and EPS
Plus, the user can readily search a vast
number of data bases at one time,
determine those series pertinent for his or
her purposes and then display them and
analyze them with very little effort.

To better deal with cross-sectional
data, DRI developed RETRIEVE. Unlike
ABSTRACT, RETRIEVE is an EPS-based
system; it is not necessary to exit one
program and go to another. RETRIEVE
allows the user to screen the data base so
that only data meeting specified criteria
will be brought into the workspace. Once
there, the data can be analyzed or
displayed using EPS Plus.

One of the interesting consequences
of dealing with cross-sectional data is that
users now have the ability to screen
through data bases consisting of time series
more efficiently using the same software.

149

Another consequence is that statistical data
may be extracted from quasi-textual data bases
using the ABSTRACT and RETRIEVE programs
and then manipulated using more analytical
languages.

IV. Software Diversification: Applications Requirements

The previous section dealt with the various
software required to access the information
efficiently. Once this had been done, one finds
that the applications made of the data have also
grown dramatically.

Initially, the major historical data bases were
closely associated with econometric forecasting
models, the former being viewed primarily as
vehicles for supporting and generating the latter.
DRI today has 36 models available for its users.
On the other hand, there are over 80 historical
data bases on the system, clearly the majority.
The number of specialized software packages,
however, has proliferated. For the high-frequency
Financial and Credit Statistics data base (DRI
F ACS), the number of software routines is over
20. The direction is away from providing general,
probable scenarios of the future to providing very
specific tools and applications which are flexible
enough to allow the user to perform almost any
function necessary and to pursue very individual
interests or queries. , ,

V. Software Diversification: Quality Control

One of the major concerns of statistical data
bases has always been quality control. How
accurate are the data being provided by sources?
If the data are entered manually, how accurately
is the task accomplished?

Testing has always been an important part of
maintaining a statistical data base. Data sets are
checked automatically to verify that" within
certain tolerances, the total really does equal the
sum of the parts. Indices may be evaluated by
displaying percent changes and comparing them to
those published by the source. If a source agency
typically publishes the change between the
current observation and the previous one, this
difference is calculated on the system and also
compared with the published.

In the latter two instances, sight proofing
remains a major ingredient of quality control. As
the amount of statistical information available in
a data base system increases, the need for
automatic checking routines will become more
essential; it will become humanly impossible to
keep up.

Not all statistics lend themselves to
these types of testing. Financial data, such
as interest rates, futures prices or bond
yields, are among the most significant
members of the "difficult-to-test" group.
The financial area, however, has exhibited
the greatest growth among statistical data
bases. New quality control techniques have
had to be developed and still need
refinement. Currently, testing may include
verifying that highs are always higher than
any other price quotation for that period,
and that the lows are lower; other checks
involve running standard deviations and
setting certain range limits. This kind of
testing will determine outlyers, but it will
not catch all errors. An important question
for statistical data base producers in the
future will be the degree to which data
accuracy and data base integrity can be
guaranteed.

VI. Diversification in On-line Aids:
Current-Awareness

The proliferation of statistical data
bases has necessitated development of
online tools which permit the optimal use
of the information. This need is
underscored by the fact that much of the
data are subject to frequent and extensive
revision due ta changes in seasonal factors,
benchmarking, definitional or
methodological changes.

Stored with each time series on the
DRI system are potentially five lines of
documentation containing a full name
(GROSS NATIONAL PRODUCT instead of
GNP), units, seasonality, source and source
document. Also stored as part of the
series' intrinsics are the conversion method
and, if applicable, if the data have any
embedded gaps (due to disclosure, or
weekends and holidays for daily data). Due
to the fact that data are not constant and
are being revised so frequently, another
feature has been added to the series'
intrinsics, the revision status. It is now
possible to "flag" a series as being in the
process of being revised; if accessed, a
notation to that effect is sent to the user.

The number of current-awareness
files has increased greatly. In 1970 DRI
had a text service providing online access
to major statistical news releases from
major government sources on such subjects
as consumer prices, industrial production,
and so on. Another text service provided
information on any additions, deletions or
revisions which may have occurred with the
data base system. Neither text service had
full-text searching, and searches could only

150

be limited by specified time parameters (before or
after a certain date).

In order to meet the needs of a massive data
base system, these first, inflexible current
awareness services are in the process of being
enhanced. Full text searching is now possible for
the services monitoring changes within the data
base system (additions, deletions, name changes).
A user may screen on a series mnemonic, bank
name, or subject area using the TEXT program
discussed above. The new service will be
similarily enhanced in the near future.

Current awareness needs vary from data base
to data base, depending on the kind of information
stored within them. There has been in recent
years the addition of several current awareness
files to the system which are very specific and
unique to certain data bases. For high frequency
or high priority data bases these files would
include those listing everything tha t had been
updated during that day. For data bases where
the statistics are extremely volatile, files listing
data sets under revision would be maintained
online. Calendars are accessible online so that
users may know when to expect certain data to
become available.

VII. Diversification in On-line Aids: Reference

Because of the growth in size and diversity of
the statistical data bases available, the need for
more descriptive information online about the
data is becoming more important. One has seen
for many years the online dictionaries for
programming languages, where by entering 'HELP'
or 'EXPLAIN' the use and proper syntax of certain
commands would be described; this is now
becoming more important for the data
themselves. Within the U.S. macroeconomic data
bases, for example, one may have three different
definitions of inventories and five different trade
balance variables. The user needs ready access to
these definitions so as to make the best and most
appropriate choice. Financial analysts need ready
access to more descriptive information about
financial instruments: dates of issue, amount
issued, yield to maturity, etc.

Not all these tools are currently available. In
the short term, what is seen with statistical data
bases is the increased participation of data
specialists. Data consulting is now an integral
part of DRl's service, where the user may address
his or her questions to someone who works closely
with that information.

VIII. Conclusion

The scope and size of statistical data
bases has grown dramatically in recent
years. This has increased the
responsibilities of the data specialists both
directly and indirectly. More online tools,

"in terms of new software and current
awareness or reference materials, are
needed. The data specialist must take a
more active role in working with the end
user.

151

Econometric Time Series on DIALOG

Robert T. Lundy
DIALOG Information Services, Inc.

3ij60 Hillview Avenue
Palo Alto, CA 9ij30ij

Abstract

DIALOG Information Services, Inc., the leading commercial provider of
online non-numeric database services, has also been involved in the
development of numeric databases, particularly time series. This report
describes the, efforts being made to adapt an essentially text-oriented
retrieval system to the needs of users of econometric time series.

The DIALOG Information Service has for some
time been interested in the problems inherent
in the handling of econometric time series.,
This report describes the service currently
being developed to deal with this interesting
and valuable class of databases.

The DIALOG service originated as a bibliograph
ically-oriented system. All search and display
functions have been oriented towards picking up
text strings based on identity and proximity to
other defined strings and displaying them in a
manner appropriate to text handling. Numeric
items have been treated as just another text
field. They can be searched for and displayed,
but no computations or other analysis can be
performed.

This approach works well as long as the number
of numeric items remains small and algebraic
comparisons are not often required. DIALOG has
for years had a number of databases in Which
numeric items have been available for display
only. These have usually been Simple scalar
items, and no computational or other analytic
capabilities have been available for them.
However, with the advent of major time series
such as the Bureau of Labor Statistics time
series, DIALOG has had to revise its approach
to numeric data in general and time series in
particular.

There are several issues to be considered when'
planning a database for online search and anal
ysis:

1. Finding the desired data.

In the context of the BLS database, for
example, this might be one of the hundreds
of price index series available.
It is in this area--that DIALOG's original
query scheme has its greatest value.
Instead of having to memorize an obscurely
named keyword, derived from the painstaking
study of a thick codebook, the DIALOG user
can select the desired (group of) series by ,
means of a set of meaningful keywords or a
context search through a descriptive para
graph. This feature is especially useful
when searching for series that do not have
well-known acronyms such as GNP.

152

2. Displaying the data once found.

Formatting the data in a meaningful way is
not a severe problem conceptually. Howev
er, two problems can arise w~en dealing
with time series: _

a. How much of the series should be dis
played.

Users mayor may not be interested in
seeing the whole file. Generally,
DIALOG's dIsplay scheme calls for the
user to select one of a limIted number
of formats in which the data could be
displayed, and none of the formats per
mitted modIfication. This is being
modified to permit the user to display
only the time range of interest.

b. How much ancillary information should
be displayed ?

There may be footnotes and qualifica
tions that are vital to the understand
ing and interpretation of the data.
Methods need to be developed to mini
mize the chance that this information
will escape the-user's notice without
cluttering up the display to the degree
that the user will abandon it and go
off to a competitor.

3. Generating Reports

It often happens that the data in the form
of a single seriee is far more meaningful
if displayed in conjunction with one or
more other series or other forms of data.
For this purpose a report generating pro
gram is being developed. However, for a
general service such as DIALOG, most report
generators are 9'1ther too restrictive or
too complicated to be useful. We are
attempting to solve this problem with a
system that _will operate in three different
modes depending on the sophistication of
the user. These modes range from a very
terse and arcane command with very few
prompts or other attempts at 'us
er-friendliness' to a verbose prompted
menu-oriented interactive mode in which the
user is led very carefully through the spe
cification of a report with detailed
explanations at every step.

4. Predefined Reports In many cases, users may
want the same kind of report. For example,
a listing for selected products of the pre
vious 3 year's exports arranged by country
of destination. As such .commonly desired
reports are identified, we will try to set
them up as 'canned' report formats that can
be generated simply by giving their names
as part of a terse command.

5. Interfacing with a computational analysis
system.

DIALOG is strictly a search-and-retrieval
system with no intrinsic computational
facilities of its own. Consequently, a
mechanism must be found to enable users to
integrate and use the various data items in
meaningful ways. A group of price series,
may be useful as a set of independent
tables, but it is more useful still when
combined into a single table or processed
through an econometric model.

At DIALOG we are addressing. this problem by
setting up an interface between the DIALOG
time series files and the SAS system.

6. Interfacing with MIcrocomputers

An increasing number of users are inter
ested in downloading data from services
such as DIALOG and processing it on their
own machines. To answer this need, we are
developing an interface that prints out the
selected series in the Visicalc DIF format.
When captured on the user's micro, it is
then ready to use with any program (and
there are several "visiclones" around now)
that can read it.

7. Support of User Equipment

The customer base at DIALOG is character
ized by extreme heterogeneity in the kinds
of hardware that is available. DIALOG has
traditionally dealt with this problem by
aiming for the lowest common hardward
denominator - no assumptions whatever are
made about the hardware configuration, nor
are any attempts made to support any
devices with even slightly non-standard
features. Only the page size (for CRTs)
and line length may be reset to take advan
tages of differences between terminals.

For the econometric time' series service,
however, graphics and complex reports will
inevitably be required, and this will
require that the extended DIALOG system be
able to support a variety of graphics ter
minals.

153

Biographical Note

Robert T. Lundy has a B.A. in Human Ecology
from the University of California at Santa Bar
bara and an M.A. and Ph.D. in Demography from
the University of California at Berkeley. His
research interests, in addition to the develop
ment of online databases in demographic and
related areas, include microdemographic comput
er Simulation, the health impacts of energy
systems and the demography of Japan during the
Tokugawa period.

Evolution in Storage and Retrieval: The LABSTAT Data Base and Software System

Gwendolyn L. Harllee

Bureau of Labor Statistics

June 1983

ABSTRACT

The use of an integrated data bank for time series data was initially introduced at the Bureau
of Labor Statistics two decades ago. The data bank has been available on line since LABSTAT
was introduced in 1977. This paper summarizes some of the major developments in the data
bank and access software and discusses some enhancements currently being considered.

The Bureau of Labor Statistics is
responsible for the production of a
number of economic statistics, including
national and local area estimates of
employment and unemployment, the
Consumer Price Index, Producer Price
Index, Employment Cost Index, measures
of productivity, and others.

The surveys that produce these statistics
are processed by Bureau staff who do much
of their work from specific data bases
designed to handle the screening,
estimation, and other processing in the
particular survey. Each survey, or
program, has a data base and processing
system designed to perform efficiently in
that survey. Once the estimates are
calculated and become part of a time
series, there is more similarity than
difference in processing requirements for
analysis and publication.

Since 1963, the BLS has used an integrated
data bank for time series analysis and
tabulation. The initial system, the BLS
Information System, was a tape system with
tabulation capabilities and interfaces to
statistical processors. Over the next
decade and a half, the Bureau's systems
moved to on-line data bases.

In 1977, a small group of systems analysts
at the Bureau developed a time series data
base system which allows on-line storage,
manipulation, and display of the Bureau's
summary data. This system, called LABSTAT,
rapidly became established as a useful tool
for economic data analysis.

From its beginning, the LABSTAT design
provided a standard time series record
format, a common central data entry
facility and a variety of retrieval
options. The data entry procedure was
designed with a central main program
handling common functions and a group of
separate subroutines for processing the
various input formats produced by the
Bureau's survey systems. Each survey
subroutine processed the appropriate

154

survey estimates and produced the
standard LABSTAT update format. The
retrieval options available included the
Macro Data Language (MDL), which was
developed at the Federal Reserve Board and
adopted for use in LABSTAT. MDL provided
processing capabilities ranging from simple
percent changes to limited regression or
seasonal adjustment. Most of these
operations could be done interactively as
well as in batch operations. In addition to
MDL, other retrieval options were available
through TRIM, a BLS-developed facility which
provided generalized data manipulation
capabilities for data bases such as LABSTAT
which use the TOTAL Data Base Management
System. Because of the flexibility of TRIM,
data could be extracted from the data base
for generalized statistical processors
including SAS and SPSS. The user could also
develop tailored formats for use with other
programs.

One of the earliest enhancements provided
security. The security mechanism in LABSTAT
restricts access to protected data. All
non-zero data are encrypted as they enter the
system. The data reside on disk in
permanently encrypted form. LABSTAT's
security mechanism decrypts data only after
determining that the requesting user is
authorized to access the requested data.

Security protection of two types is provided,
observation protection and date protection.
Observation protection applies to statistics
which are permanently withheld from public
release for such reasons as confidentiality.
These data are made available only to
analysts authorized by the survey manager.
Observation protection may be defined at
different levels, with access to the most
secure data limited to a few individuals,
while other data may be made available to a
still restricted, but larger group of
analysts. Date protection provides security
for data which are stored in the data base
prior to public release. This facility
allows survey managers to store estimates as
soon as calculations are complete and use

the LABSTAT facilities to produce
pUblication tables and charts for
release. The security mechanism
protects. the data up to the specified
release date and time, allowing access
only to those individuals authorized by
the program manager. Unlike observation
protection, date protection is not
permanently encoded with the data
estimates. For each survey using date.
protection, the system stores the date
of the earliest observations to be
protected, the release date and time,
and the code identifiers of users who
are authorized early access.

For example, estimates for a survey may
be updated into LABS TAT several hours
before public release. The date
protection mechanism will prevent
release to the general user community,
while allowing the authorized analysts
to use LABSTAT facilities to produce
publication tables and charts. At the
specified release time, the data are
released to all users without
intervention of any kind.

The observation and date protection
facilities have enhanced the utility of
LABSTAT by making it feasible to store
data which are available only to an
appropriately authorized user community.
Other users, attempting to access
protected data, may have their listings
footnoted to show the reason for
withholding the data.

Perhaps the most significant enhancement
of the system's analytical power is the
development of an integral data access
mechanism in LABSTAT. The TRIM step,
which extracted data for many
applications, has been replaced by a
data retrieval module which can access a
user's private working file as well as
the LABSTAT data base. With the
extension of LABSTAT's data retrieval
module to interface directly with SAS
and other processors it became

155

unnecessary to execute a separate data
extraction step for most LABS TAT applications.
The expansion of the data access module also
makes it possible to calculate new series,
store them in an MDL working file, and use
the calculated series together with LABSTAT
series in charting or other applications.
This working file facility also allows users
to enter data from outside sources and use
LABSTAT's analytical and display tools on the
full set of data from the data base and the
user's own working file. The pre-release
protection and working file extensions work
together to facilitate the production of
publication tables and charts. .

The introduction of the LABSTATPress Release
Service increased system utilization
significantly by making available on-line the
text and tables of Bureau Press Releases.
The Press Releases are stored in a separate
TOTAL "data base with its own access software
and security system. The BLS Regional
Offices, in particular, find this service to
be of value in getting information on a
timely basis. Partly because of the LABSTAT
Press Release Service, the Bureau is now able
to offer on-line public access to its Press
Releases. This service was introduced last
year, and while it is not a part of the
LABSTAT system, the existence of LABSTAT made
it relatively simple to establish
machine-readable versions of Press Releases.

Data coverage has more than doubled from
approximately 60,000 series in the beginning
to approximately 140,000 series containing
1.5 million yearly records. Data from more
than twenty different BLS surveys and some
statistics from the Commerce Department's
Business Conditions Digest are now available
in LABSTAT. This expanded data coverage
facilitates analysis of data from different
surveys and also increases the number of BLS
surveys which are available to the public on
the standard LABSTAT export tapes. All BLS
survey data in LABSTAT may be extracted for
public dissemination at relatively low cost.
Many of these data tapes are prepared on a
regular basis for researchers in other

government agencies, universities,
information services, and a variety of
other organizations.

LABSTAT system usage has sometimes
doubled in a single year. Overall usage
has increased ten-fold since the first
year of operation. A large portion of
this access is for information retrieval
or special research projects. There is
an increasing usage of LABSTAT to
produce publication products, including
tables and charts. The charting
facility in LABSTAT is provided by a
Bureau-developed system known as SCS, or
the Statistical Charting System. This
system produces publication quality line
charts of time series data with simple
user input instructions. Using the
Bureau's Table Producing Language, TPL,
users have available a direct interface
to the LABSTAT data base for TPL's wide
range of calculation and cross-tabulation
capabilities as well as photo-composition.

Many further enhancements are desirable.
Users of LABSTAT must still request
series using 16 character identifiers
which sometimes seem clumsy or arbi
trary. This means, in most cases, that
thick series directories must be avail
able for reference. This inconvenience
to the users limits the utility of the
system. Further, the cost of producing
and printing the series directories is
increasing significantly. For these
reasons, we are beginning to develop a
data access option which will allow
users to query the system for data using
English-like descriptors or by
responding to system prompts. When this
facility is in operation, users will be
able to enter requests for classes of
data such as "employment in New York's
apparel industry." the processing of
queries will be possible because the
system will include directory or
dictionary information and users can get
an up-to-date description of data base
content on-line.

156

Another requested enhancement is incorporation
of more detailed footnote information.
Statistical publications typically include a
variety of footnotes giving significant
explanatory information. The most frequently
occurring footnotes, such as "Rounded to
zero", "Continuity break", or "Preliminary
estimate" are coded in the LABSTAT data base
and may be displayed automatically with the
data. Other notes are combined in a single
category and the LABSTAT footnote will simply
read "Footnoted in Publication." The user
must go to the printed material to obtain the
text of the applicable footnote. The
inclusion of the full footnote text is an
enhancement which would be of significant
value to analysts using the data base.

The use of an integrated data bank is firmly
implanted in BLS operations. The data bank
has, in many cases, reduced costs and
increased timeliness of delivery. With
improved facilities for accessing,
manipulating, and displaying data, the system
becomes useful to a broader audience and
meets an expanding set of data requirements.

•

INTERACTIVE INFORMATION MANAGEMENT WITH EPS

Stephen R. Chi Ids
Data Resources, Inc.

This paper provides an illustration of interactive statistical
data base management. Its focus is on the use of the EPS
(Econometric ProgranlTling System) software language as a manager of
infonnation. EPS is usually employed to analyze time series
information using econometric techniques. The paper will illustrate
some EPS capabilities using several data bases developed by Gnostic
Concepts, Inc., a subsidiary of DRl (Data Resources, Inc.)
speCializing in market analysis of the Electronics Industry.

INTRODUCTION TO EPS EPS is a proprietary software developed and
maintained by DRI for a real time analysiS of economic and financial
infonnation. It is an interpretive, cOnlTland driven language which
mimics English sentence structure. Its syntax rule is simple and
consistent:

eg.,

COnITIand
Verb

< Option block
Adverb

PRINT (DOWN)%CHANGE{GNP)

» Command Body
Object Expression

There are 130 cOnlTlands and 250 options which combine to give the
user a vast menu of possible requests. The cOnlTland body expressions
may utilize infonnation objects (items) as well as some 60 operators
or 275 functions to tailor user-specific infonnation transfer,
manipulation or presentation.

EPS has been focused for use by quantitative business analysts
in econometric model building. Clients access ORI's projections of
aggregate time series as exogenous inputs to their own satellite
business models. There is an historical bias in EPS documentation
toward time series structures which can be easily accessed,
powerfully manipulated, and beautifully presented with either high
resolution graphics or tabular report generation •

Time series might be thought of as particular slices from
multidimensioned arrays. EPS is less well-known for its complete
array manipulation capabilities. Arrays in EPS are multidimensional
infonnation objects having homogeneously classed elements. When an
array is defined, the structure requires each dimension to be
indexed, or mapped, by labels or numbers so that selection of
partitioned subarrays is simple and display is meaningful. The cell
values of arrays most often are scalar (numeric) valued but may
alternatively be string (alphanumeric) valued, or boolean
(true/false) valued, etc. For a list of EPS classes see Appendix I.

157 1

COMPOSITELY-CLASSED EPS ARRAYS Recently, DRI released some
significantly improved capabilities for data base management with
EPS. Formerly, users were required to house alphanumeric
information in one array and numeric information in another •. This
necessitated careful software development to ensure that the
different arrays were consistently maintained and manipulated. It
is now possible to construct an element-class which is composed of
scalars, strings, dates, booleans, time stamps, etc. This enables
the analyst to produce one structure for all cross-sectional
attributes related to each sample observation.

REGIONAL MARKET PATTERNS (RMP) DATA BASE We will illustrate
composite classsed arrays with RMP, an annual survey of electronic
equipment production facilities. This snapshot records the
geographic distribution of production by equipment type for
currently 2474 sites. These data have been housed in a
one-dimensional EPS array with 2474 records. The composite class
contains the following eight fields:

COMPANY : STRING
DIVISION : STRING
CITY : STRING
STATE : STRING
ZIP : STRING
PHONE : STRING
GCICODE : SCALAR
PRODUCTIONal : SCALAR

PRODUCTIONal represents the 19a1 value of equipment production
in millions of dollars. It is paired with GCICOCE, a product
classification scheme developed by Gnostic Concepts., Inc., which is
far more detailed than government product classifications. There
are over 250 unique products classified within RMP's 2474 sites.
The GCICODE is a six-digit hierarchical coding system summarized to
the second level below:

100 FAMILYTREE<DEPTH=2>(500000)

500000
510000
520000
530000
540000
550000
560000
570000

ELECTRONIC EQUIPMENT
BUS/RETAIL/EDUC
COMMUNICATION
CONSUMER ELEX
COMPUTER EQUIPMENT
GOVERNMENT/MIL.
INDUSTRIAL ELEC
INSTRUMENT

158 2

FAMILYTREE is an EPS application program or routine which
discloses the codes associated with equipment descriptors. Another
routine, HIERARCHY, is used to detail an exact code's product
description.

1DO HIERARCHY(545221)

(545221)

5 ELECTRONIC EQUIPMENT
4 COMPUTER EQUIPMENT

5 TERMINAL/WORKSTATION
2 CRT TERMINALS

2 GRAPHIC TERMINALS
1 STORAGE lUBE DISPLAY

REPORT WRITING Arrays provide natural structures for report .
writing within EPS. The user simply prints the array, or a specific
partition of the array. The syntax for selecting a partition of the
RMP array by records and by fields is straightforward:

PRINT RMP [recordnumbe~ «fieldname»

1P RMP[1927J

COMPANY DIVISION CITY

RMP[1921J ROBERTSHAW CONTROLS NEW STANTON YOUNGWOOD

PHONE

RMP[1927J q12-925-721l

GCICODE PRODUCTION8l

561200

1PRINT HMP[1781]«GCICODE»

RMP[1781J«GCICODE» = 511500

38.400

STATE

PA

The first example illustrates the reporting of one record for
all attributes, while the second selects one record and one field.
Finally, a selection of fieldnames can be requested as illustrated
below:

ZIP

15697

1PRINT<DOWN>RMP[12]«NAMELIST(COMPANY,GCICODE,PRODUCTION81»>

RMP[12]«NAMELIST(COMPANY,GCICODE,PRODUCTION81»>

COMPANY
GCICODE
PRODUCTION81

159

ACE RADIO CONTROL
531900

1.800

3

RECORD SELECTION AND SORTING Partitions of the data base follow
selection rules established by the user. EPS offers some functions
which are easy to use. The COMPRESSMAP function produces a list of
records satisfying the user's selection criterion.

?CALIF=COMPRESSMAP(RMP[*]«STATE» EeL "CA")

The argument passed to COMPRESSMAP asks that all of RMP's sites
(*J be compared in the state field, to the stringl"CA"). For each
site's result that is true, its record number is placed into a
vector of record numbers called CALIF. We can discover how many
California sites there are in RMP by typing:

?WHATS CALIf

CALIF ARRAY(FROM 1 TO 713)
DECS: 0 .
713 SCALAR ELEMENTS

We can further partition RMP into California producers of
computer equipment, where GCICOOE begins with 54 in its first two
digits. The DIV operator allows us to truncate the six digit
GCICODE to its first two digits. We compare this two digit product
scheme to the value 54 to produce a new vector of record numbers .
restricting California producers to those who produce electronic
data processing (EDP) equipment.

?EDPeCA=COMPRESSMAP(RMP(CALIF]«GCICODE» DIV lUOOO EOL 54)

?\,JHATS EDPeCA

EDPeCA ARRAY(FROM 1 TO 264)
DECS: 0
264 SCALAR ELEMENTS

Let us further restrict our subset of 264 California EDP sites
to those whose 1981 value of production exceeds $150 million. We
can also sort this final subset by the field "CITY" using the
KEYSORT function.

?LARGE=COMPRESSMAP(RMP[EDP@CA]«PRODUCTION81» GTR 150)

?WHATS LARGE

LARGE ARRAY(FROM 1 TO 9)
DECS: 0
9 SCALAR ELEMENTS

?SORTED=KEYSORT(RMP[LARGE]«CITY»)

160
4

Finally, we wish to display some fields for our nine large
California EDP producers, sorted alphabetically by city. The
leftmost column of the display indicates the record number within
the RMP data base. Note that a variety of equipment types is
indicated in the column labeled GCICODE. These are particular
computer equipment classifications.

?P RMP[SORTED]«NL(COMPANY,CITY,GCICODE»>

RMP[SORTED1«NL(COMPANY,CITY,GCICODE»>

1148
1150
1580
2445
2084
1243
1244
1521
1614

Cm~PANY

HEWLETT-PACKARD
HEWLETT-PACKARD
;"iOTOROLA
XEROX
SPERRY
IBM
I Sf-!
MEMOREX
NATIONAL SEMICONDUCTOR

CITY

CUPERTINO
CUPERTINO
CUPERTINO
HAn-lARD
IRVINE
SAN JOSE
SAN JOSE
SANTA CLARA
SANTA CLARA

GCICODE

542300
541000
541200
545210
541200
542400
544130
542300
540000

LINKING TIME SERIES FORECASTS TO RMP Gnostic Concepts also
provides forecasts which can link to and augment the RMP data base.
Econometric models are run each quarter to update projections of
electronic equipment production. These forecasts are also indexed
by the product category codes found in RMP's GCI~ODE. As a base
scenario, each site's 1981 value of production is grown by the
national growth factor for its specific equipment type. '

Following the procedures outlined for using the routine
PROD@SITE, we rebase the equipment forecasts in the array E832@VAL.
These results are stored in the growth factor array EQUIP%GR, whose
rows identify equipment types and whose columns indicate forecast
years.

?DESCRIBE PROD@SITE

--- PROD@SITE --
CLASS: ROUTINE
LONG: PROD@SITE ••••••••••••••••• This routine forecasts the

production by RMP sites. It requires a vector of growth factors
(use routine PCTBASE on retrieved ECON equipment fest) by equipment
type. 'PRODUCTION84= DO PROD@SITE(EQUIP833GRFACTORS)'

4 LINES, 1 THRU 4

161 5

I

?DESCRIBE PCTBASE,E832@VAL

--- PCTBASE --
CLASS: ROUTINE
LONG: PCT8ASE •.••••••.•••••••••• This routine indexes an N

dimensional array to one of its column vectors. ARGUMENTS: an array
and a string containing a 'select'or' from the column map. e.g.
:1SALES=DO PCTBASE(COMPDATA,"SALES")*100

21 LINES, 1 THRU 21

--- E832eVAL ---
CLASS: ARRAY(LIST£D(SCALARS,V(200000,210000,211000,211100,211110,211120,

211130,211140,211141,211142,211143,211150,211160,211200,211210,
211220,211250,211300,2;1310,211320,212000,212100,212110,212120,
212130,212140,212150,212160,212180,212200,212210, ••• , •••)), •••)

DECS: 0
6140 SCALAR ELEMENTS

?EQUIPSGR=DO PCTBASE(E832@VAL,"A(81)")

. We again use t~e routine HIERARCHY to describe the military
, s1mulators and tra1rlerS product codes. We then display the rebased

growth factor array selected for those categories over the specified
subinterval.

1DO HIERARCHY(555000)

(555000)

5 ELECTRONIC EQUIPMENT
5 GOVERNMENT/MIL.

5 SI~UL & TRAIN

?PRINT EQUIP~GR[V(500000r550000,555000),81 TO 85]

EQUIP~GR[V(500000r550000r5550qO),81 TO 85]

500000
550000
555000

1981 1982 1983 1984 1985

1.000
1.000
1.000

1.111
1.199
1.328

1.261
1.361
1.565

162

1.459
1.511
2.001

1.684
1.812
2.655

6

Finally, we invoke the PROD@SITE routine to construct the
forecasted production value, by site, for 1985.

, ?PROC85€SITE=DO PROD@SITE(EQUIP~GR[*,85])

?~HATS PROD85eSlTE

PROL85€SITE ARRAY(FROM 1 TO 2474)
DECS: UNSPECIFIED
2474 SCALAR ELEMENTS

LINKING TECHNOLOGICAL CONSUMPTION FACTORS TO RMP Gnostic
Concepts also provides forecasts of technological consumption
factors for over 500 electronic components which are used in the
p~oduction of particular equipment. These are value-based
input/output (I/O) ratios relating the derived demand for a
particular component per dollar of production for a particular
equipment.

Again, following the instructions described for the routine
VAL@SITE, we access the I/O array 10736100. This array contains the
consumption factors by 31 types of equipment for a particular type
of fiber optic connector over a ten year forecast horizon.

?DESCRIBE VAL@SITE

--- VAL€SITE --
CLASS: ROUTINE
LONG: VAL@SITE •••••••••••••••••• This routine produces the nominal

dollar demand for a particular component at each'site. It requires
a vector of production by site and an I/O vector by equipment type.
'VALS4=DO VAL€SITE(PRODUCTIONS4,IOa42216[*,a4])'

4 LINES, 1 TBRU q

?DO HIERARCHY(73b100)

(736100)

7 PASS/ELECTROMECH COMP
3 CONNECTOR & SOCKET

6 FIBER OPTIC
1 CABLE TERMINATION

7
163

?WHATS 10736100

10736100 ARRAY(LISTED(SCALARS,V(500000,510000,5'1000,520000,
521000,523000,526000,529000,530000,535000,540000,
541000,543000,544000,545000,550000,551000,552000,
553000,554000,555000,556000,557000,558000,559000,
560000,561000,562000,564000,570000,571000»,CATED •••)

DECS: 5
310 SCALAR ELEMENTS

Imbedded in these ratios are patterns of technological change
over time for particular markets. We note below both the small
level of demand as well as the high rate of growth. Finally, we
invoke the routine VAl@SITE to produce F085@SITE, a forecast of
demand for fiber optic cable termination connectors, by site, in
1985.

?P<ROWMARGIN "'GR">10736100[V(500000,550000,555000),81 TO 85]

I0736100[V(500000,550000,555000),81 TO 85]

1981 1982 1983 1984 1985

500000 0.00003 0.00004 0.00006 0.00008 0.00013
550000 0.00006 0.00008 0.00010 0.00013 0.00016
555000 0.00003 0.00004 0.00006 0.00008 0.00011

?F085€SITE=DO VAL€SITE{PROD85@SITE,I0736100[*,85])

?WHATS F085@SITE

FoB5@SITE ARRAY(FROM 1 TO 2474)
DECS: UNSPECIFIED
2474 SCALAR ELEMENTS

~GR

45.47
25.51
41. 31

REGIONAL AGGREGATION OF RMP SITES Each market analyst working
with the RMP data base and forecasting extensions of it will be
interested in particularizing its regionality to his/her own
marketing regions. These regions may be developed by utilizing
groups of zip codes, states, or phone area.codes. In our final
exhibit, we illustrate the u~e of a ~outine called AGGRMP. This
routine requires, as its se~nd argument, some allocation rule for
grouping 2474 sites into predefined r'egions. As an illustration, we
build a rule, ZIP1, containing the first digit of a site's zip
code. We then execute AGGRMP fo~ both equipment and component
demand forecasts for 1985. !'

" ,

8
164

,

?DESCRIBE AGGRMP

--- AGGRMP --
CLASS: ROUTINE
LONG: AGGRMP •.••.•.•..•..•.••... This routine summarizes RMPsites

into aggregate groupings. It requires two conformable arguments:
the data to be aggregated and the aggregation rule. 'V,YREG=DO
AGGRMP(PRODUCTION85,STATERULE)'

9 LINES, 1 THRU 9

?ZIP1=RMP[ll«ZIP» DIV 10000

?PROD85€ZIP1=DO AGGRMP(PRODB5@SITE,ZIP1)

?F085@ZIP1=DO AGGRMP(F085@SITE,ZIP1)

?P<DOWN zCOMMAS>PROD85gZIPl zF085@ZIP1

PROD85@ZIP1 F085@ZIP1

0 29,400.341 5.751
1 20,277.052 2.576
2 11,608.108 3.050
3 11,557.422 1 .719
4 14,104.646 4.199
5 11,512.881 0.827
6 15,972.038 7.403
7 18,047.690 4.476
8 14,445.429 1.683
9 '52,809.158 'i·5.99J·· .' ::.}. .,. II ::' . '.

" 1', ,.".

165
9

• AKSYNOPSIS (AMSYNOPSlS)
ARHAY (ARRAYS)

• ATOMIC (ATOMICS)
BOOLEAN (BCOL~ANS)

• BUNDL~ (BUNDLES)
CLASS (CLASSES)

• CO~VERSION (CO~VERSIONS)
• COVERING (COVERINGS)

DATE (DATES)
• DISTRIBUTION (DI~TRIBUTIONS)
• DRAWING (DRA~INGS)
• ENDMARK£R (ENDMARKERS)
• EQSYNOPSIS (EQSYNOPSES)

EQUATION (EQUATIO~S)
• EXECKEY~CRU (EXECKEY~ORCS)
• EXTRACTION (EXTRACTiONS)
• FIELDFORHAT (FIELDFORMATS)
• FIELDTtPE (FIELDTYPES)
* FILE TITLE (FILETITlES)

FRECUENCY (fREQUE~CIES)
• GROUP (GROUPS)
• INTERPOlATIO~ (INTERPOLATIONS)

INTERVAL (INTERVALS)
KNO~NWORD(KNO~NWORtS)
LSSYNOPSIS (LSSYNOPSES)

• MAP (MAPS)
• ~ATHTERM (MATHTERMS)
• MATRIX (MATRICES)

MEMO (~EMOS)
NAMELIST (NAMELISTS)

• NULLMARKER (NULLMARKERS)
• NUMERIC (NUMERICS)
• fADTRIMTYPE (PADTRI~TYPES)

PICTURE (PICTURES)
• PLOTSPEC (PLOTSPECS)
• POLYNOMIALDISTRIBUTEDLAG (POLYNOMIALDISTRIBUTEDLAGS)

PORT (PORTS)
• PORTATTRIBUTE (PORTATTRIBUTES)
• PORT~I~D (PORTKIUDS)
• PORTUSE (PORTUSES)
• RANGE (RANGES)
• kECORD (RECORDS)
• REFERENCE (REFERENCES)

ROUTINE (ROUTINES)
§ ROWLIST (ROWLISTS)
• SASYNOPSlS (SASYNOPSES)

SCALAR (SCALARS)
SERIES (SERIES)

• SLASHING (SLASHINGS)
STRING (STRINGS)
STUBLIST (STUBLISTS)
SYNOPSIS (SYNOPSES)

• SYSTEMFILEKIND (SYSTEMFILEKINDS)
• TABLEAU (TABL~AUX)

TEMPLATE (TEMPLATES)
• TICKER (TICKERS)
• TIMESTAMP (TIMESTAMPS)

TOOL (roo~)
• UNSPECIFIED (UNSPECIFIEDS)
• VALUE LIST (VALUELISTS)

VECTOR (VECTORS)
VERSION (VERSIONS) 166

, ,

Meta data an experience of its uses and management

Roger E. CUBITI'

Data Processing Management Unit, Statistical Office of the European Communities, Luxemboure. Grand Duche

Abstract

This short paper presents some of the problems surrounding the management and use of the meta data

which is associated with most types of statistical data. Current approaches to the problems which

are being taken within the Statistical Office of the ~C are described.

1. CONTEXT

The Statistical Office of the EC (SOEC) is p

service Directorate General with respon

sibilities for the collection, supply and

analysis of data for the Institutions of the

EEC and in particular the Commission of the

European Communities. It is a very large user

ot computer processing power (20 to 25 Terra

instructions/year) and is responsible for one

of the largest Socio-Economic Time Series

Databases in Europe called CRONOS. This data

base, which was constructed in-house,contains

of the order of 1.3 million time series

covering a large range of statistical domains

for all EEC countries and in some cases other

developed and developing countries. This data

base represents only a small part of the total

data processed by the SOEC but is at the

present time the most visible part in that it

is distributed both via data service companies

to the public and via X25 networks to the

contributory member country statistical offices

and governments.

2. TIlE PROBLEM

Since the implementation of the network based

SOEC distribution policy some two years ago it

has become increasingly obvious that the major

restriction on the use of our data has been

the problem of description. In other words

"How do I (the user) find out what data is

available in the Database, select the data I

require and ensure that when I find it, it

167

represents what I want?". The SOEC has, like all

statistical environment~ a classification scheme

which is partly defined internally and partly

dictated by external constrainta(e.g. International

Common Agreements). This classification is

inevitably hierarchical which in practice means

that a search procedure using the classification

structure is only of any real use to people with

an a priori knowledge of the classification

scheme ~ procedure. It is in this light that

the SOEC began some investigation work into the

possibilities of using meta-data to provide both

alternative non-hierarchical access paths to data

and descriptions of what had been found.

3. INITIAL ORIENTATIONS

Two parallel investigations were initiated at

about the same time which eventually cross

fertilized to provide a hybrid approach to our

immediate problems. One investigation centred on

a theoretical data modelling/data dictionary

approach, the other was based on a pragmatic

examination of the particular instance represented

by the CRONOS system. The former led to proposals

for a classification orientated hierarchical data

model with an assooiated data desoription

language ;the latter resulted in proposals to use

keyword based documentation with associated

interrogation facilities. As it was obvious that

a keyword facility would become very cumbersome

if applied to all the time series in CRONOS, the

data model provided a means to describe a level

in conceptual terms which was logically higher

than that of a single series, but which did not

exist in the CRONOS system as implemented.

CRONO$ also provided a specific case of data

identification which enabled the attribute

description and classification facilities

in the theoretical model to be refined and

developed.

4. THE CURRENT STATE

Once the keyword approach had been accepted,

a pilot application was developed to demon

strate how such a facility would ~/ork for

both interrogation and documentation purposes.

To do this the structure and content of a

specific sector of the CRONOS data base was

analysed by a profeSSional documentalist,

particularly to clarify the problems resulting

from the use of this approach to statistical

data (e.g. the use of classification codes

and abbreviations as keywords). There were

also particular local problems which

resulted from the multi-lingual environment

in which thes~rstem had to operate. This

had particular effects on the provision of

s;ynonyms and descr-iptors. The problem of

description was tackled by comments

facilities which could be associated with

each of the elements in the logical model

and which were themselves classified by

type. The result of this work was a proto

t;ype facility which enabled a user with no

prior knowledge of the data to discover the

contents of the base either via a specifi-
,

cation of ke;ywords or hierarchical inter-

rogation or both. Both access paths lead

to the definition of a logical group of

data items from which specific identifiers

can be constructed. Meta-data relating to

individual time-series can be presented in

tabular form at the logical group level and

descriptions are accumulated through the

hierarchy as required. Classification plans

can be produced automatically both in printed

form and on magnetic media for external

168

clients. A spin-off benefit has been the

ability to carry out audit activities on the

content of the data base.

5. PRODUCTION IMPLEMENTATION

The pilot facility appears to provide a

potentially useful service for a number of types

of user. The major outstanding problems are the

following.

Meta-Data I~nagement

In practice the management of the meta-data

as it has been extended presents a task which is

of non-trivial size and complexity. Experience

to date has led us into the consideration of a

DBMS solely for meta-data. This management task

can be alleviated to some conSiderable extent if

the modifications to data content in the

CRONOS database are submitted via or in

parallel to modifications to the meta data. This

contradicts an original objective from the data

model investigations whioh was to provide a

more loosely coupled facility which could be

applied to more than one tJ~e of data base. In

fact the documentation investment made from the

keywork point of view would appear to demand

application to more than just one single data

base.

Data acoess

At present the pilot facility indicates the

location of data described by the user. Access

to that data is then obtained via the particular

application facilities. Closer direct integra~

tion again presents problems of coupling parti

cularly in the multi-machine environment which

prevails in the Commission. Advances in

distributed data-base facilities may provid.e

answers here.

1

Confidentiality/Security

Application of a meta-data management system

to a number of different data bases is

leading us towards a centralised control.

of access rights for all SOEC system users.

This again presents particular problems in

a multi-machine environment. Not all of

our data is fully public and at the present

time we avoid disclosure by only documenting

via the meta-data those sectors whioh are

truly publio. This has disadvantages for

both internal users and also for the

completeness of the audit procedures

mentioned earlier. At present no

convenient solution presents itself to

ensure that accidental disclosure of data

existence does not oocur via the meta-data

for numerical data which is oonfidential.

169

PROBLEMS, PLANS AND ACTIVITIES CONCERNING THE ECONOMIC DATABASES AT STATISTICS SWEDEN

Lars Nordback

Head of generalized software development and marketing
at Statistics Sweden

Abstract

In this paper some of the issues concerning the move towards the termina1ized disse
mination of statistics from a central statistical office will be highlighted. The im
plications of the new techniques on the in-house activities. The way to assimilate
this new technique into the different statistics consumers' hardware and software en
vironment. The problems to suite different levels of knowledge of data processing in
the man - machine interface.

INTRODUCTION

Statistics Sweden has statistical databases ma
naged by the in-house developed AXIS-system. Ori
ginally AXIS was developed to serve regional
planning authorities with data from a regional
statistical database. The experiences inspired us
to use this tool for the dissemination of statis
tics to other users as well.

After an introductory period when we had several
different organizations linked to our computer
free of charge, we went smoothly into the busi
ness of commercial database services in the
spring of 1982. Now we have some 70 paying cus
tomers, ranging from manufacturing companies,
banks and labour market organizations to local,
regional and central government authorities.

Below I'll mention some issues of interest in the
management of commercial statistical databases
from the point of view of a central statistical
office.

MOVING TOWARDS COMPUTERIZED DISSEMINATION OF
STATISTICAL DATA - AN INTERNAL MARKETING
PROBLEM

Statistical database services consist of at least
two principal parts, viz. the database management
system and the database(s). Disregarding the DBMS
for the moment, in a statistical office the data
needed to solve the customers' problems are not
only - or even mainly - bought from outside the
office. They are to a great extent produced with
in the office. Of course, this is an advantage,
but not an advantage gained without a lot of
work.

Some factors that inf1 uence the possibi1 ity to
get statistical data into a database are:

a) The organization of the office, in particular
the autonomy of the different statistical "pro_
ducts". Very operative decisions have to be made
to ensure a rapid development of the databases.

b) How well the DBMS fits into the traditional
production process. Does it merely mean extra ef
forts to satisfy new requirements, or does the
software yield some advantages for the tradition
al production of statistical publications as
well? Within Statistics Sweden we are studying

170

the possibil ity to develop general software to
produce pub1 ications from data stored in the sta
tistical databases, i.e. not only to supply the
figures but also the metadata.

c) Information to and training of the people re
sponsible for the different products to make them
aware of the advantages of the new way of disse
minating statistics.

d) Training of the database management staff in
how to structure and describe the data.

e) Existence of standard definitions of varia
bles. Harmonization of definitions which for a
long time has been a problem to discuss is in
this environment a problem to solve.

All the above issues need to be penetrated. The
amount of work required depend on the internal
marketing of the statistical databases.

STATISTICAL DATABASES VS THE USER'S HARDWARE
ENVIRONMENT

This issue should not be neglected. In the work
of establishing the statistical database servi
ces, we have confronted many different users, all
with their own specific EDP-background. There are
differences both in knowledge and in the equip
ment they use or intend to use to 1 ink up wi th
our databases. Some examp1 es of user hardware are
3270 compatible terminals closely connected to a
service bureau, word-processing machines, micro
computers and, which suits our computing centre
best, normal TTY-compatible terminals. Our ser
vice now is 8 TTY-lines 300 baud, 6 TTY lines
1200 baud, one 2741 line 134 baud, and one manual
3270 line 2400 baud. When customers use equipment
with facilities for storing data retrieved from
our computer, the uncertainty in the normal TTY
protocol with its lack of a data transmission
check becomes clearly inconvenient. We have to
fi nd a safer way of data transmi ss i on for thi s
kind of customers.

Those of our customers who are closely tied to a
service bureau could, if they are 'cluster cus
tomers' to the same service bureau, get linked up
to our computer through the service bureau. We
have not yet any arrangements of this kind, but
users connected to the same bureau exist among
organisations on both local and regional level

•

•

• ,.,i
)

and among governmental authorities.

Another connection to our databases tried on a
test level, is through the Swedish teledata net
called the Datavision. This is a way to get in
contact wi th our customers in a gateway wi th
very small equipment requirements. I do no think
the gateway effect shoul d be underestimated.

STATISTICAL DATABASES VS THE USER'S SOFTWARE
ENVIRONMENT

The problems in this area are of at least the
same magnitude as in the hardware side. Of
course, the different users use different soft
ware for their various projection and econometric
work. The reasons are different hardware and dif
ferent ideas of how to handle the data from the
point of both the econometric work and the com
puting technique. On one hand there is no con
formity in different users' software, on the
other hand there is no conformity in different
statistical databases as regards user interface
and technical format of data (both figures and
meta data). The number of problems equals the
product of the number of users and the number of
statistical database vendors.

I think this meeting has the responsibility to
initiate efforts to minimize the negative effects
that the users of several databases experience.

Some of the users do not have any former experi
ence of EDP in their econometric work, having
previously tried a manual approach. This catego
ry of clients are interested in software develop
ment work at our office and want to use our com
puter as a service bureau. For that reason, as
well as for internal use, we intend to develop
more functions within our DBMS, as well as inter
faces to some external software packages, e.g.
SAS/ETS, X-II-Arima and APL.

THE MAN - MACHINE INTERFACE AND THE CURVE OF
LEARNING

We have 1 earnt a lot from our experi ences wi th
the statistical databases handled by the AXIS
system. One thing is that AXIS is very easy to
1 earn for the unexperienced user, but somewhat
heavy to use fo r the famil i ar user. Consequentl y,
we are now developing an alternate way to access
the data, viz. by means of a command language.
This command language will be integrated with the
system for the additional functions mentioned
above. The best composition of a generally used
system like AXIS would probably be a menu-driven
system where every use of the menu should be some
kind of training an underlying command language.
When the user has achieved a certain level of
proficiency he will be abl e to abandon the me
nues and continue in the command language. Then
answers in terms of the number in front of an al
ternative in the menu should be forbidden. When
using the touch method it is less convenient to

171

enter a figure from the key-board than a short
word.

STATISTICAL DATABASE SERVICES AND THE STATISTICAL
OFFICES

Most of the statistical database services are
supplied by commercial service bureaus. The data
in these databases are bought from international
organizations and in some cases directly from the
federal or national statistical offices. Some of
the statistical offices have decided to use com
mercial bureaus for the statistical database ser
vices. This implies that the user will have ac
cess to some data and perhaps some publ ications
from the institutions responsible for the data.
When access is made to a certain set of data, it
is up to the user to try to find some information
on these very data to get an idea of the qual ity
of the retrieved figures. In the AXIS system at
Statistics Sweden much work is done in the meta
data area. Just to mention one function, a com
pulsory comment is displ~ed just before the re
sult of a retrieval is displ~ed. This comment
can sometimes include references to the respon
sible department including telephone numbers.

What I want to stress is the fact that statistic
al databases in commercial bureaus in general are
not supported in the sense of knowledge of the
data. Since it is easy for a statistical office
to make their statistical data accessible by a
commerci al bureau, it is al so easy to run the
risk of misuse of data.

PROPOSAL FOR WORKSHOP ON LARGE ECONOMIC DATA BASES
By Phyllis Levioff

Outline for discussion purposes concerning problems confronting data base
managers in their role as conduits between data sources and end users

1. PROBLEMS ASSOCIATED WITH CHANGES
IN CONCEPTUAL TREATMENT OF DATA

A. How to integrate conceptual
changes into a macroeconomic
data base

B: How to communicate these
changes to users

1. in the short-term, i.e.,
online

2. in the long-term, i.e.,
in hard copy documentation

II. PROBLEMS ASSOCIATED WITH CHANGES
IN DATA COLLECTION

A. How to deal with a definitive
break in a time series

B. How to deal with discontinued
series

1. when there are substitutions

2. when there are no substi
tutions

C. How to deal with series in
terms of documentation which
are no longer published but
are still available in unpublished
form or on tape

III. PROBLEMS ASSOCIATED WITH TIME
AS A CONCEPT

A. How to present data series that
are really not a true time
series because of the
inconsistency of the data over
time, but that are presented
as time series online

172

B. How to communicate to the end
user the nature of the. above
problem without destroying
credibility in the data

IV. PROBLEMS ASSOCIATED WITH
DEFINITIONS OF DATA TYPE

A. How to field technical questions
from end users

B. How to utilize source materials
most effectively

1. What sources are available, e.g.,

Dictionary of Economic and
Statistical Terms, Bureau of
Economic Analysis (out of print)

BLS Handbook of Methods,
Bureau of Labor Statistics

Handbook of Cyclical Indicators,
Supplement to Business Conditions
Digest, Bureau of Economic
Analysis

Statfacts, New York Federal
Reserve

Other

2. What reference materials should
be included in a comprehensive
bibliography for data base
managers

SAS APPLIED TO STATISTICAL DATABANKS VIA A COMMAND LANGUAGE.

Inger Nilsson, System Engineer

I/S Datacentralen af 1959, Copenhagen, Denmark

Abstract

This paper describes how a command language, DC-TIME Series Management System, is used
as an interface between the user, a databank and SAS, Statistical Analysis System.
The aim is to give easy access to time series in a large databank to a great variety
of users ranging from those just in need for the data to the ones requiring an analysis
tool like SAS.
The paper gives an account of the structure of DC-TIME, which is actually a combinati
on of a command language and a dialogue. To illustrate the application and the useful
ness of the system some examples are given using the databank CRONOS-Eurostat, which
contains macro-economic time series concerning national accounts, production, trade etc.
for a large number of countries. Various ways of presenting the data, using the facili
ties in SAS, are also given.

1. INTRODUCTION

Statistical data are conveniently
stored in large databanks in the form
of time series. To make efficient use
of such data there is a need for a
simple method which allows various
types of users - specifically those
without previous programming experi
ence - to carry out advanced statisti
cal analysis on data and having the
results presented in an easy and clear
way, for example as tables, graphs or
histograms.

The command language, DC-TIME, links
the databank, CRONOS-Eurostat, to all
the facilities in SAS. It has been
developed so as to enable the user,
who is interested in the data but not
in the programming problems, to make
use of all the possibilities in SAS.

DC-TIME is used to select time series
from the databank and build up a data
set, so the various SAS procedures can
be applied by. simply writing the pro
per SAS statements.

2. THE CONTENTS OF THE DATABANK,
CRONOS-EUROSTAT

CRONOS-Eurostat is a macro-economic
databank, containing more than 700,000
time series. The databank is sub
divided by subject into six main
topics, as briefly described below.

General Statistics.

This main topic covers statistical da
ta regarding short-term economic fi
gures for the European Community with
in the following subject areas:
population and employment, industry,
agriculture, prices, services, trans
port; finance and national accounts.
Also available are macro-economic in
dicators of the developing countries,
concerning demography, social and eco
nomic indicators, transport and
services, industrial and agricultural
production, external trade, national

173

accounts and balance of payment.

National Accounts, Finance and
Balance of Payments.

Within this main topic the European
System of integrated economic Accounts
(ESA) is used. ESA consists of a
coherent and detailed set of accounts
and input-output tables, which are in
tended to provide a systematic, com
parable and - as far as possible -
complete picture of the economic acti
vity within each of the member coun
tries.

Information on transactions in goods
and services directly related to the
formation of the Gross Domestic Pro
duct are available and further the
balance of payments of the European
countries, USA and Japan.

Industry and Services.

This heading covers: annual surveys
of a number of economic variables -
f.ex. turnover, production, value,
value added, number of employees - for
companies with more than 20 employees.
Also included are figures for produc
tion, import and export of textiles,
footwear, paper, computers and elec
tric appliances to name some examples.
Data on energy production, export and
import are available as well as in
formation on production, trade and em
ployment within the iron- and steel
industry.

Agriculture, Forestry and Fisheries.

Here, agricultural prices and price
indices are available on crop pro
ducts, animal products and the means
of agricultural production. Also pro
vided are fisheries statistics on an
nual catches 'by fishing region for
300 species, monthly data on landings,
and annual data on forei9n trade.

Foreign Trade.

For foreign trade more than 300.000
time series are available. It provides
information on import and export, in
values and quantities, either by pro
duct (300 SITC headings) or by trading
partner (200 countries).

Mischellaneous.

This group provides information on
government expenditure on research and
development concerning: earth and at
mosphere, human health, energy, agri
culture, industrial technology etc.

3. EUROSTAT

CRONOS-Eurostat is produced by the
Statistical Office of the European
Communities, EUROSTAT. The aim of the
office is to measure and analyse the
inter-European economic and social ac
tivities, and the Common Market's re
lations with the rest of the World.

Data are collected from - amongst
other sources - the national statisti
cal offices of the member states of
EC and stored as monthly, quarterly
and yearly time series.

Geographically is covered EC, other
industrial countries such as USA and
Japan plus about 160 developing coun
tries.

4. CONSIDERATIONS FOR A COMMAND LANGUAGE

In November 1981 Datacentralen imple
mented CRONOS-Eurostat, with the aim
of offering the content to any user,
interested in such macro-economic data.
It was foreseen that many of the po
tential users, f.ex. on a management
level, might be without previous ex
perience in the use of computer sy
stems and therefore reluctant to accept
this type of service. On the other
hand, some would be familiar with pro
gramming and therefore inclined to
carry out further processing of the
data - like regression analysis, for
casting etc. The system to be develop~
ed should therefore be flexible enough
to satisfy a wide range of users. As
regards the statistical analysis it
was obvious to make use of SAS, which,
in addition to a number of statistical
procedures, offers a number of data
presentation facilities.

Consequently a suitable solution for
satisfying all types of users was to
develop a command language, which acts
as an interface to the databank and to

174

SAS. This enables the user to apply
all the facilities in SAS on the da
ta, without having to engage in a
study of the SAS language. This ap
proach would further have the advan
tage of enabling the experienced SAS
user to apply all the SAS procedures
on the data. The command language de
veloped, named DC-TIME, is described
below.

5. FACILITIES IN DC-TIME

The command language DC~TIME is a time
series management system, offering the
following facilities:

display of the time series, as
tables, graphs and histograms

- creation of 'derived time series

- storage and maintenance of own
time series

statistical processing of time
series

6. THE USE OF SAS

The diagram, figure 1, shows how DC
TIME acts as an interface between the
user, the databank and SAS. In a dia
logue with DC-Tn-lE the user specifies
a command and the time series to be
analysed, as described in detail in
the following section. The command and
the time series numbers are trans
ferred to the SAS program via SAS ma
cro's which are built up by DC-TIME
and linked to the SAS program.

The time series specified are select
ed from the databank by DC-Tn-IE,
stored in a file and transferred to a
SAS data set by the DATA step in the
SAS program. The SAS procedures, cor
responding to the command, are now
executed without any further action
from the user. The output is presented
directly on the terminal or, should
the user want so, printed off line at
Datacentralen.

7. COMMAND AND DIALOGUE STRUCTURE IN
DC-TIME

The principle of the dialogue with
DC-TIME is shown in figure 2. The
user types in one of the available
commands - Lex. TABle, GRAph or
HIStogram - and the codes for the time
series to be analysed. The system re
plies by writing the name of the com
mand and a list of parameters
attached to this command. The parame
ters have initially been assigned
some default values, for which reason

~
)

the user only has to specify desired
changes. Also, the code numbers of
selected time series are listed, al
lowing the user to add or delete time
series before execution. When the com
mand, the parameters and the time
series list are acceptable, the command
is executed by entering (CR).

Terminal Databank

Fig. 1

r----- COMMAND TSLI ST

1
command
list of parameters
list of time series

J
OK?

~s
'- mod If \j command Is

executed
'-- cancel

~-------------------------
8. DISPLAY OF TIME SERIES

Fig. 2

The following examples show different
",ays of displaying the registration of
new passenger cars in Germany, France
and U.K.

The table, figure 3, can be obtained
by typing:

TAB TS=ICG:124251006,14,26

to which the system replies:

TABLE:
DEC Ir."..AL=
INTERVAL=
LINESIZE=
PAGESIZE=
TITLE=
OUT=

TIME SERIES:

o
6801,8101
72
24
ENGLISH
LIST

ICG 124251006 144251006 264251006

MODIFY/EXECUTE/CANCEL ?

TSOOl=ICG :124251006,REGISTRATION OF NEW PASSENGER CARS 1
TS002=ICG :144251006,REGISTRATION OF NEW PASSENGER CARS
TS003=ICG :264251006,REGISTRATION OF NEW PASSENGER CARS

DATE_ TSOOI TS002 TS003

6801 1425 1240
6901 1841 1365
7001 2107 1342
7101 2152 1469 1335
7201 2143 1638 1702
7301 2027 1696 1688
7401 1693 1525 1274
7501 2106 1482 1198
7601 2312 1858 1288
7701 ,2561 1907 1335
7801 2664 1927 1618
7901 2623 1976 1732
8001 2426 1873 1536
8101 2330 1879 1514

Fig. 3

175

A graph showing the same time series
can now be obtained by just typing:

As an illustration of the links
between DC-TIME and SAS, figure 6
shows the principles underlying the
generation of the table.

GRA GO

where GO is used to avoid repeating
all the parameters and the time series
list. (Figure 4).

The user only has to be concerned
with the DC-TIME part, while the SAS
steps are automatically activated by
DC-TIME.

The histogram in figure 5 can be
obtained by using the command HIS.

TS001=IeG :124251006.REGISTRATION
TSOO2=IeG :144251006.REGISTRATION
TSOO3=IeG :264251006.REGISTRATIDN

PLOT OF TSOO1*YEAR_
PLOT OF TS002*YEAR_
PLOT OF TS003*YEAR_

TS001
2500 +

I
I
I * * * 2000 * *

+
1500 +

I * + +
I +
I

1000 +

OF NEW PASSENGER CARS 1
OF NEW PASSENGER CARS
OF NEW PASSENGER eARS

SYMBOL USED IS *
SYMBOL USED IS +
SYMBOL USED IS

* * *
* *

*
* +

+ + + +

*
+ +

----+----+----+----+----+----+----+----+----+----+----+----+----+----+----
Fig. 4

Fig. 5

Fig. 6

68 69 70 71 72 73 74 75 76 77 78 79 80 81

YEAR

REGISTRATION OF NEW PASSENGER eARS
GERMAtlY (A).

TERM SUM

6000 +
I

5000 + eeee eeee eeee
I ecce ecce ecce

4000 + ecce ecce ecce
I BBBB BBBB BBBB

3000 BBBB BBBB BBBB
BBBB BBBB BBBB

2000 + AAAA AAAA AAAA
I AAAA AAAA AAAA

1000 AAAA AAAA AAAA
AAAA AAAA AAAA

71 72 73

DC-TIME:

TABLE TS1,TS2, TS3

FRANeE (B) • UNITED KINGDOM

BAR eHART OF SUMS

ecce ecce
eeee ecce
ecce BBBB
BBBB BBBB
BBBB BBBB
BBBB AAAA
AAAA AAAA
AAAA AAAA
AAAA AAAA

74 75

SAS:

ecce
ecce
ecce
BBBB
BBBB
BBBB
BBBB
AAAA
AAAA
AAAA
AAAA
AAAA

76

YEAR_

SAS macro's

ecce ecce
eeee eeee
ecce ecce
BBBB BBBB
BBBB BBBB
BBBB BBBB
BBBB BBBB
AAAA AAAA
AAAA AAAA
AAAA AAAA
AAAA AAAA
AAAA AAAA

77 78

MACRO TS TS1 TS2 TS3 1-

(e)

ecce ecce
ecce ecce
ecce ecce
BBBB BBBB
BBBB BBBB
BBBB BBBB
BBBB BBBB
AAAA AAAA
AAAA AAAA
AAAA AAAA
AAAA AAAA
AAAA AAAA

79 80

__ r MACRO INT IF 6801<=DATE<=8101 1-
DECIMALS= 0
INTERVAL= 6801.8101
LINESIZE= 72
PAGESIZE= 24 DATA step SAS data set
TITLE= ENGLISH DATA A ; DATE TS1 TS2
OUT= LIST MERGE TS ; 6801 - -

BY DATE ; i- 6901 - -
INT ; 7001 - - -

I
PROC step output
PROC PRINT ; table I
FORMAT ... ; 1-- - - ? TITLE ... ; - - - -

, - -

176

ecce
ecce
ecce
BBBB
BBBB
BBBB
BBBB
AAAA
AAAA
AAAA
AAAA
AAAA

81

TS3
--

1

/,,--

DC-TIME: SAS:

SAS-macro's
CREATE TS4, TS5 ~ MACRO TS TS4 TS5 "

MACRO INT 7101<=date<=8206 "
INTERVAL= 71 01,8206 -- MACRO FORM (TS4+TS5)12; Yo

Fig. 7

NAME= NE
KEEP= YE

t~pe In formu

CTS4+TS5)/2;

W
S

la:

9. CREATION OF DERIVED TIME SERIES

DATA step
DATA A ;
MERGE TS ;
BY DATE;
INT ;
NEW=FORM

Some users might wish to create de
rived time series on the basis of
existing data. The command CREate is
used for this purpose. For creating a
derived time series, the user has to
type CRE, the codes of the time se
ries from which the new series is to
be calculated and the formula defining
the derived time series. The new time
series may now be used together with
any other time series in the databank.
The formula and the derived data may
even be kept for later usage.

SAS data set
DATE TS4 TS5 NEW
7101 - - -

1-+ 7102 - - -
7103 - V~ 7104 -

The most obvious procedures to be
applied to these data are regression
analysis, forecast and seasonal ad
justment, but any SAS procedure may
be used.

The DC-TIME command for this facili
ty is PROcedure, the principles of
which are illustrated in figure 8.
The only action of the user is to
type PRO and the codes of the time
series to be analysed. The system
replies: 'Type in procedure', to
which the user has to respond with
the actual SAS procedures.

The principles in this command is
illustrated in figure 7. 11. GRAPHICS

10. STATISTICAL ANALYSIS

The powerful facility of DC-TIME is
that it enables the user to apply SAS
for carrying out advanced statistical
analysis on the data in the databank.

DC-TIME: SAS:

SAS macro's
PRO TS4,TS5 MACRO
INTERVAL= 6801,8201
LINESIZE= 72.
PAGESIZE= 24 DATA step
TITLE= ENGLISH DATA
OUT= LIST

... .
t~pe In procedure:

PROC step
PROC GPLOT; PROC GPLOT;
...
...

Fig. 8

177

SAS contains a graphical part named
SAS/GRAPH enabling a user with a
graphical terminal to obtain the
output in a graphical form by just
typing the proper SAS statements.

12. CONCLUSION

The system has now been operational
since April 1982 and used by various
types of users. The original aim of
developing a flexible system has
been fulfilled by the application of
a command language acting as an in
terface to SAS. Users without pre
ceding experience in programming can
take advantage of many of the faci
lities in SAS, and the experienced
user can make full benefit of the
advanced statistical procedures
available in SAS .

A STATISTICAL DATA MANIPULATION LANGUAGE

G.Barsottini, Systems and Management, Torino
presently working in Luxemburg under contract with EEC

JC.Farget, EEC, Informatics Engineering, Brussels

Abstract

A new Data Model based on a set theoretic approach is proposed here; it is intended to fit
the statisticians requirements by giving them the ability to describe data in terms of classes of
objects which are ordered according to users needs. Classes are identified by the handle which is a
set of attributes; they are gathered in collections.

Based on that Model a Statistical Data Manipulation Language (SDML) is presented to provide
tool s for Statistical Manipulations on Collections. Basic classes of operations are Retrieve,
partition, internal or inter-object arithmetical operations and join of collections. The SDML has
been designed to be concise, user-friendly and extensible.

1. INTRODUCTION

In many cases, the work of the data processing
statistician consists in extracting data either
from raw files or more or less classical data
bases and entering them into a processing system
which can be either APL, a statistical package or
ad hoc programs; the results of the processing
may in turn be reentered in the storage pool.

This implies,
greatest part of
data formatting
insisting on data

as stated in (R5), that the
the work is dedicated to the

and transfers instead of
processing itself.

We therefore propose a new Data Base Management
System where Data Storage and Data Manipulations
as needed by statisticians are integrated into
one unique system. This system called CROSIBASE
is based on two main components, as far as the
user interface is concerned: the first one is the
catalogue which holds all data and processing
descriptions; this catalogue is described in
another paper (R6). The second one is the
Statistical Data Manipulation Language (SDML)
that we present here. We shall insist in this
paper on the problems of derivation. In (Rl)
Adiba gives a good framework for the introduction
of derived data; however the operations that he
proposes are still too closely related to the
Relational Model and are not powerful enough to
tak,e statistical operations into account. In
statistics derived data are not only selected or
projected or joined they are also aggregated by
some statistical functions, or computed in
different ways. We assume that it is important to
the statistician to have these tools at the same
level of availability as other data management
tools.

We do not discuss here the problem of updating
deri ved data, as it has been done in (R2) and
(R7); but it is obvious that the problem is even
more complex in the case of statistical
derivation.In CROSIBASE we handle that problem by
giving strong limits to the automatic updating
process and by storing in the catalogue all
information concerning both data and derivation
descriptions.

Section 2 gives the Data Model we use in
system and a conceptual specification
operations.

our
of

178

Section 3 presents a detailed description of the
proposed SDML.

2.DATA MODEL

Before describing any Data Manipulation Language
it is fundamental to give the description of the
basic features of the data model.

Recent works on the subject deal with the
analysis of data Models by considering three
fundamental and disjoint components

1) Model data Structure
2) Type of executable operations on such Data

(Data Manipulations)
3) Constraints on Data Structure and type of

operations

On the basis of these cri teria of analysis we
describe the CROSIBASE Data Model presenting the
Data structure, then the constraints imposed on
them, then the categories of operations and
finally the constraints which link operations and
Data structures.

2.1 Data Structure

Definition: The CROSIBASE Data Structure can be
described by a six-tuple

A , DOM , LINK , C , ColI , I)

where

A : is a non empty set of names called attributes

DOM is a function A~T which associates for
each attribute Ai a set of elementary values
Ti; Ti is said to be the type of Ai;
different attributes may have the same type.

LINK is a function which associates a
particular attribute and a particulal' value
giving couples called atoms :

(Ai , Vj)~ E A, Vj t: Ti

C : is the name of a collection

ColI is a function which associates to a
collection name C a non empty ordered set of
attributes Y={A .. , ... An3, AiE.A, in which
each attribute occurs only once.

According to that definition, we can associate to
C the following collection structure :

I is a set of points; each point is a set of
atoms, each set having the same structure
defined by Coll.

An instance I of the collection C as previously
defined can be the following set of points

(A '2.. ' a .. ,111.)··'
(A2.' a) •••

'2., ",1.

(A~, a "'''"),
(AI\. ' a~. A"),

(AI\.' a ""Ar\.)}

2.2 Constraints on Dats Structure

Following our schema of structure description, we
give now the constraints on the previously
described structures, i.e., identify the possible
types of points and collections, through the
semantics which can be attached to attributes or
collections by the users. This is intended to
provide a unified view of the concepts of sets of
points and sets of classes of points.

Definitions

point :
set of atoms i.e couples (attribute, value) in
which there exists only one occurence of each
attribute.

elementary object
a point divided into two classes of atoms: one
is called the handle and is supposed to contain
all identifying atoms of the point; the other
is called the content and is supposed to hold
the quantifying or qualifying atoms of the
point.

simple object
set of elementary objects with the same handle
value; a simple object can be viewed as a class
of elementary objects, all having the same
value for the handle attributes.

simple collection :
set of simple objects having the same set of
attributes, handle attributes and content
attributes.

elementary collection
set of elementary objects, having the same set
of attributes, handle attributes and content
attri butes. In this case the handle is a ~
for the collection.

One important feature in CROSIBASE is the concept
of order because statisticians usually produce
ordered data sets : the order is defined:

a)
b)
c)

on the set of values defined for each type
on the handle attributes within an object
on the objects using the order defined by
the handle

179

Type of collections :
What we will usually call collection in
CROSIBASE is in fact an ordered
elementarycollection or 'OE-collection'
(figure a). To simplify the following of the
paper we will continue to write 'collection'
instead of 'ordered elementary collection'.

But we will also have to use ordered simple
collections which we will call 'OS-collections'
(figure b), unordered simple collections that
we will call 'US-collections' (figure c), and
unordered elementary collection that we will
call 'UE-collections' (figure d).

It is important to note that an ordered
elementary collection can be also viewed as a
n-dimensional matrix, n being the number of
handle attributes, each cell holding a record
composed of the contents values.

This view will help the user understanding
vertical operations (see 3.3.3) and also in the
table lay-out process (see 3.5).

Notations: For each collection C we have the
handle set of attributes or handle

H and the Content Set of attributes or content
Q; we call form of the collection C the couple
(H,Q) and we note it

In terms of attributes the form of a collection
can be described as

A~ • A~ •..• M I Av ,A' , ••.• At.
'1 ~ \'L n.. .. ., \\.+2. + ~

If H is composed of 2 subsets, namely HI for
the f.irst attributes (from left to right) and
H2 for the last ones, the form of C can be
written as

I'\.J C = Hl • H2 I Q

In the same way it can be written

~ C = H I Ql , Q2 if Q = Ql , Q2

The difference of notation between handle and
content comes from the fact that the sequence
of handle attributes is used to identify
objects in an n-dimensional space, which is not
the case for Content attributes.

The form is defined in the same way for OS
collections and US-collections and UE
collections.

Example

Let us consider the following handle attributes

A
B
C

Tl
T2
T3

and the following content attributes

D T4 (d" , d'2.. ' d~ , d~)
E Integer

Let us consider one of the possible forms induced
by these attributes

A • B • c I D , E

We may have the following types of collections :

figure - a:

A B C I D E

a~ b c I d e..,

1 41 ...

a bl. C2. 1 d e2. -1
I ...

a bl. cl dl. e~ .. :1.1
a b c I d e

2- "I 'I 'i

figure - b:

A B C I D E

a ..,

a ...,

a ..
a2.

A

a ..,

a
2

a
~

a ...,

b c2. 1 d ...
I

·1

b cl. I d .. I
..

b c 3 1 d ..
I 2.

b c I d 4 ..,
.... 1

figure - c:

B

b
·1

b
-1

b
1

b ..

c I D

'Cl.1 d ..

c I d L I 1

C I d
~I 2.

c I d
2.1

e
1

e2.

e
3

e~

E

e

e
'1

ordered elementary collection

Handle values are different
for each point; the order of
the points is defined by the
order of values in the types
and the order of attributes
in the handle

ordered simple collection

The first two objects have
the same handle values; the
objects are ordered

unordered simple collection

The first and the fourth
objects have the same handle

. value

figure - d: unordered elementary collection

A B c I D E

a
-'I

b No two objects with the same
handle value

a
...

a

"

b
1

b
2.

b2.

e..,

2.3 categories of basic operations

We assume there exists five fundamental
categories of basic operations needed by
statisticians to operate on these data:

1) retrieval operations

they are monadic operations for retrieval of
information contained in the collections
through the use of the 2 modes known in the
Relational Model: Restriction and Projection.

180

Restriction is the retrieval of the points of a
collection which satisfy a given
condi tion .Projection is the retrieval of sub
points of a collection (i. e. subsets of the
points determined by a subset of attributes).

2) classification operations

3)

these monadic operations are used for the
constitution of classes on the collections,
based on the use of generalized equivalence
relations. There are 2 types of
classifications: parti tions when disjoint
classes are needed and distributions for non
disjoint ones. The result is always a simple
collection composed of the defined classes.

arithmetical computation operations

these monadic operations are of two possible
types

3.1 computation on each object of the input
collection g1vlng a new value of an
existing content attribute or creating a
new content atom; this is called
horizontal computation; it never changes
the type of a collection but eventually
extends its form by creating new content
attributes;

3.2 computation implying several objects of
the input collection : the computation is
performed on one or several content
attributes giving either a new content
value of an existing object or a new
object created by the operation; this is
called vertical computation; these
operations are called vertical operations
because, in the case of creation of new
objects, they extend vertically the
tabular representation of collections.
The process of aggregation is one
particular type of vertical computation.
Vertical computation implies no change
nei ther on the type nor on the form of
the operand collection.

4) collection join operations

these operations are dyadic and allow 3 types
of join between collections according to
relational properties defined on subsets of
type compatible attributes. These operations
can be viewed as an extension of the relational
J01n. These operations are authorized only on
ordered elementary collections and the resul t
is also an ordered elementary collection.

5) sort operations

monadic operation to redefine the order of a
collection or to put into order an unordered
one.

3.Statistical Data Manipulation Language (SDML)

3.1 Objectives and Concepts for SDML

SDML is a set of highlevel commands having
collections as operands.

They map the functionalities previously described
into a user's language.We tried to describe a
Relational-like language because the relational
approach is widely known and understood, and also
because collections are in someway equivalent to
relations in first normal form.

In order to be more concise, we have grouped the
executable operations into 3 main categories:

a) Retrieval operations operator RETRIEVE,
monadic

, b) Computation operations operators H-
COMPUTE ,V-COMPUTE ,AGGREGATE , monadic

c) Connection operations: operators LOWER-JOIN,
UPPER-JOIN, REDUCED-JOIN dyadic

As said earlier in the paper the main objectives
of SDML will be to provide the user with a
unified view of sets of objects and sets of
classes of objects. Any collection in the system
will be able to be considered as a set of objects
(ordered or not) or as a set of classes of
objects, the classes being determined by the
user, according to properties of the objects.

To achieve these objectives the language has the
following structure:
each operation is described by a command; each
comm~nd is functionally divided into 3 parts:

1) data input definition
2) command body or processing body: operator,

parameters •..
3) output data format definition

The general form is the following

1){lFROM <. collection-name)]'" [WHERE (condition)]
[pre-structuring claus~s J

2) I < operator) ,
[< operational description)1

3) [GIVING (collection-name)1 [<.post structuring clause)]

For each command we introduce, we shall give all
the functionalities it allows;we can see already
that the WHERE clause is present in all commands
which involves that ,all functions will allo~
restriction on input data.

We must say a few words now of the processing
environment of our SDML: all named collections
are referenced in the CROSIBASE catalogue. The set
of SDML commands which creates collection Co1l2
from collection CollI is called a DERIVATION and
Co1l2 is said to be a derived collection. The
deri vation description is itself stored in the
catalogue. However, for more flexibility one
derivation can create several collections. '
Each command is executed sequentially and can be
either complete i.e. with input and output
operands or uncomplete in which case the output
operand of command i is the input operand of
command i+1; such commands are' linked by a meta
operator "I".

Example

DERIVATION D1

FROM CollI OP1)OP2/ ••• IOPi GIVING Col12'
FROM Co1l2 OPr GIVING Co1l3; ,
FROM Co1l2, Co1l3 OP ~ lOP A.. • •• GIVING Co1l4

END

This deri vation11 has CollI as input collection
and creates Col12, Col13 and Col14.

We limit the use of this facility in' the sense
that any referenced collection in the catalogue
must be ordered and elementary; this implies that
once the na:me of the output collection is gi ven
in the GIVING clause, the type and order of the
output collection' are fixed; in absence of the
GIVING clause the ORDERED and UNIQUE clauses will
always give the possibility to produce an ordered
elementary collection.

In all the following examples we will consider
Comments colI-input as

FROM gi ves the name (s) of the input
collection(s)

WHERE: gives the restriction to be applied on
that input

(pre structuring clause):
partitioning of the points
collection into classes.

< operator) : name of the operator

for instance
of the input

< operational description) for instance list
of attributes of a join or list of
elementary statements in a computation.

GIVING : name of the output collection

< post structuring clause) instructions for
output data structuring;
for example order of the objects or
deletion of some objects.

181

A
B
C
D
E
F
G

T1
T2
T3
T4
T5
T6
T7

A . B C.D.E.IF,G

(aA ,a 2)

(b" ,b2.,b~)
(c" ,C"1'c3,)
(d ... ,d2.,d~)
(e",e ...)
(1 to 1000)
(1 to 50)

A

a~

a

a
'"

a
'1

a ...

a~

B

b

"
b ...

C

c ..,

c ..,

c",

cl.

c~

D

d~

d,

d ..,

d"

E I F

e..,1 1
I

e~ I 16
I

e I 3
"I

e1. 1 27
I

e" I 1
I

e I 32
'I

e I 100
"'I

e I 15
... I

3.2 retrieve operations

General form

G

1

4

7

8

9

8

2

6

I [FROM < collection-name>] [WHERE <: predicate)]
II RETRIEVE I(attribute-list~J
III [GIVING < collection-name) [. O~DEREDJ [UNIQUE]

This statement represents the formalization of
the functionality of the 2 previously introduced
operations: RESTRICT and PROJECT.

Restriction is done through the optional WHERE
clause, followed by a predicate which the
selected input objects must satisfy.

The Projection is done through the attribute list
which gives the attributes necessary for the
output collection. The "UNIQUE" clause implies
that resulting objects having the same handle
will be reduced automatically to one object,
which will produce an elementary collection.

In the case where no output collection is
specified, the "ORDERED" clause will produce an
intermediate sorted collection.

a) The following derivation

FROM coIl-input WHERE C = cl. AND DE (d..."d?,)
RETRIEVE A, B , D , F
GIVING colI-output

will give the following result

A B D F

d 3 1 27
d I 32

-11

b) Projection giving an output collection without
contents

FROM col-input WHERE E = e...,
RETRIEVE A , B
GIVING colI-output UNIQUE

result :

182

3.3

We

a)

b)

c)

A B

a b1
" a
A b ...

a.., b 3
a bl. 2-

Comeute oeerations

have three types of computations:

horizontal computation on the basis of object
by object processing
aggregation which computes statistical
aggregates based on classes of objects
vertical computation which derives new
objects on the basis of a class by class
processing

Remark

Aggregation is a special case of
vertical computation but it is so commonly used by
statisticians that it was important to make it a
district operation.

3.3.1 horizontal computaion

General form

I [FROM < collection-name::d I WHERE
II H-COMPUTE < block '>
III[GIVING(collection-name~[ORDERED

<" predicate '>J

by(attribute
list)J

The block in the processing body, introduced
by the keyword "H-COMPUTE", is composed of
statements; each statement is either a simple
statement or a conditional statement;
conditional statements have the general form

IF < predicate> THEN t. statement '>
ELSE < statement '>

A simple statement is an assignement of the
form

t. attribute-name) ::= (Arithmetical expression '>

The authorized operators of the arithmetical
expression are +,-,*,/; operands are content
attribute names. If the attribute name on the
left part of the assignment is a new
attribute and the GIVING clause is omitted,
the type of this new attribute will result of
the types of the operands.

The structure of the output collection is
determined either by the GIVING clause or by
the computed content attributes in the
processing body where new attributes may be
introduced; the handle of the result is the
same as that of the input.

Examples

a) FROM coIl-input WHERE DE: (d", ,d~
H-COMPUTE

begin
F1 := F * G

end
GIVING colI-output

resul t of the restriction 'clause "WHERE":

ABC DE' F G

a b
A A

a b
'1 A

c..,

C .-1

d
"

e' 1 ",
e I 16
"I

e I 3
"I
ell
-11

e I 32
2.1

e I 100
"I

1

4

7

9

8

2

result of' the computation

ABC D E F G F1

a
"

a -1

a .,

a
2.

b c -1 .,

b c
" '1

d

"
d ..,

d
"

d ...

e-1 1 1
I

e I 16
-1,

e I 3
~ I
e' 1 AI
e2. 1 32

I
e I 100
"'I

1 1

4 64

7 21

9 9

8 256

2 200

b) FROM coll-input WHERE Dc< (d", ,d.J
H-COMPUTE

IF C = c,
THEN

F1 .- F * G
ELSE

F1 .- F * 5
GIVING colI-output

result

ABC D E,'

a .., b ... c .., d ., e .,
a.., b.., c.., d2. e"

a.., b2. c2. d2. e..,

a ..,
a ..,

a b
2. 2.

c
"

c~

d e
.2. "

d ..,

e
2.

e"

F G F1

1 1 5

16 4 80

3 7 21

1 9 5

32 8 256

100 2 500

3.3.2 aggregation

I

II
III

General form :

{

[FROM collection-name 1 tWHERE ~ predicate;>]
(GROUPING BY <class-attribute-list:> 1
(HAVING <predicate>]

AGGREGATE .: aggregate block>
l GIVING <collection-name'> 1

In this
completed

case
by a

the input defini tion is
"GROUPING BY" clause which

183

helps the user to define the classes that
will be reduced to a single object by the
aggregation process.
The class-attribute-list is a list of
items which are' either attributes of the
input 'collection, or new handle attributes
derived from the ones of the input collection
by the Distribution operation. This clause
can be omitted if there has had a previous
phase which has produced a simple collection.

In this case the handle of the input
collection defines by itself the classes
necessary for the aggregation. The predicate
of the HAVING-clause concerns the classes
defined by the GROUPING BY clause, and not
the points themselves.

The processing body of this command contains
the definitions of the statistical functions
to be applied to the contents of the objects
of each class defined by the GROUPING BY in
the input collection; for instance these
functions will be COUNT, SUM,
MEAN, ..• etc ... : for each class determined by
the GROUPING BY, the contents . will be
aggregated on the basis of the specified
functions.

The resulting collection is always an
elementary collection ordered according to
the order of attributes given either by the
GIVING clause or by the GROUPING BY clause,
if the GIVING clause is omitted.

Example

FROM coll-input WHERE B€" (b ,b)
GROUPING BY C, A, ~ 2.

H DISTRIBUTE D/ /(d~ ,d), (d ,d), (d ,d)/ /
HAVING F ~1 OR F~161. 1. 3 -1 ~

AGGREGATE
G1 SUM G

GIVING colI-output

evaluation of the "GROUPING BY" clause

C A H' F G B D E

1 1 b
1

d1 e1.

16 4 b i dot e"
16

1 1 b<! d-i e'i

c,2. a~ 1 3 ,7h.t,· d~ e1.

cz. a.f 1

ci a~ 2 .27 8 b.t d ~ e.<-

c.l. a 1 3 27

c3 a.(, 1 100

c 3 a.l. 2 I.. 15
I

c3 a~ 3 I 100
I

c'3 a ~ 3 I 15
"'I

6 b Z d 3 e 1.

2 b.t d1. e1

6bt d 3 e'1

evaluation of the HAVING clause

C A H I F G B D E

1

1

16

c1. 16

3 7 b.t, d.2, e i

3

~ a1. 2 15

c?, a:t 3 15

C

c./,

final result

A

a~

a-l,

H 1 G1

115
1

214
1

3 1 1
1

113
1

2 1 15
1

318
1

21 6
1

316

6 b,l d~ e 1

6 bZ d:; e:i

3.3.3 vertical operations

General form :

t· l FROM .::collection-name >1 (WHERE ':::predicate;> J
I GROUPING BY <,attribute-list>

HAVING (object identification list>

{

V-COMPUTE [ON .::content-attribute-list > J .
II .::vertical block>

EXCEPTION < val ue-l ist >
III [GIVING <,collection-name»

In the case of vertical operations, the
GROUPING BY clause is mandatory because
vertical operations are allowed only on
elementary collections; the GROUPING BY
clause is based on handle attributes of the
input collection; distribution operations are
not allowed here for simplification purpose.

The HAVING clause is also mandatory because
its aim is to identify objects wi thin each
class; this identification is done by a
predicate of the simplified following form

Ai = vi A Aj = vj A •••

where Ai,Aj are handle attributes not used in
the definition of the classes. The implicit
constraint linked to that formulation is that
the union of the set of attributes used
inthe GROUPING clause and of the set of
attributes used in the HAVING clause, is
equal to the set of handle attributes.

184

This constraints
operations have
operands.

garantees
elementary

that vertical
objects as

Each object identified by this predicate is
assigned a name which is the name of the
object within each processed class. The final
syntax for this part of the language is the
following:

<object identification> ::= _
< simple predicate";> AS <object-name>lTARGET 1

So, when we enter the processing body we have
identified classes and within each class
objects on which the computation takes
place. The computation is made on the content
attributes of these objects; the contents are
those specified in the ON clause or all of
them if the clause is omitted.

The vertical block is a list of statements of
the same kind as in the horizontal
operations; however, in this case, the
variables or operands are the object names
instead of the attributes names for the
horizontal operations.

The EXCEPTION clause gives default values for
contents in the case some of the objects are
missing· in the class and the computation
cannot be performed; default values can be
replaced by a call to a predefined procedure.

Example

FROM coll-input
GROUPING BY

HAVING C

V-COMPUTE
ON G

C

C

Xl := X2+X3

A,B
c1 AND

E
ci AND

c.t AND

D = dl, AND
= e:i AS Xl TARGET
D ~ (dz ,d3) AND

E = e4. AS X2
D E (d 1 ,d3) AND

E = e z AS X3

EXCEPTION (X2,3),(X3,6)
GIVING colI-output

result

A B C D E 1 F G

1

10 (4+6)

11 (3+8)

7

8

d,t 17 (9+8)

d1.. 8

d", 9 (3+6)

2

6

3.4 JOIN Operations

In this case we have two operand collections

collI : HI I Q1 and co1l2 : H2 I Q2

We assume that HI X U H'l
H2 = Y U H'2

where we assume that X and Yare 2 sets of type
compatible attributes element by element. First
CollI is projected on X as PROJ1 and Col12 on Y
as PROJ2; Set-op is a set operator i.e. union,
intersection, difference.

We call coprojection the set PR12 defined as
PR12 = PROJ1 set-op PROJ2.
For each object X of PR12 we build a new object
of the form

X • H'l . H'2 I Q1 , Q2

where X.H'1IQ1 € CollI, and X.H'2IQ2 € Col12

If one of the objects is missing in one of the
two collections, empty values will be provided
for the relevant attributes.

General form

I j FROM <collection-name> [WHERE < predicate~)
LAND <,collection-name> [WHERE, <predicate"> 1

III <operator> .
ON <attribute list:> AND <attribute list>

III [GIVING <collection-name>]

The two input, collections may be filtered by a
WHERE clause.
There are 3 operations corresponding to the 3
typ~s of operator used in the coprojection:

LOWER-JOIN for the intersection of the
projections
UPPER-JOIN for the union of these projections
REDUCED-JOIN for the difference

The two optional attribute lists in the ON clause
will indicate, if necessary, the attributes which
have to be matched in the join; the default
option is that the join is based on attributes
with the same name. These attributes define the
projection for each collection.

Examples

- co11-input1 - A . B . C I F

A T1 (a-1' a~)
B T2 (bi,bL,b~)
C T3 (c .. ,c,d
F T4 (1 ~ I ~1000)

- coll-input2 - B . C • DIG

B
C
D
G

T2
T3
T5 (d1 ,d~)
T6 (1~ I~ 50)

185

a)

coll-input1: .

ABC I F

c:d 1
I

c,t.1 3
I

c:/..1 10
I

c1.1 20
I

Cot I 31
I

c ... 1 4

FROM coll-input1
LOWER-JOIN
GIVING colI-output

coll-input2:

BCD I G

AND coll-input2

B CAD I F G

b"

b
2.

b2.

b
1.

c~

C
'1

c

"
c2..

b2.. c2.,

a~ d-11
I

d ... 1
I

d I
~I

1

a
"

a"

3

3

a d I 20
2. "I

a ...

d I 20
2..1

dl.l 10
I

d2..' 31

4

7

9

14

6

1

1

The join is implicitly
based on attributes
having the same name
i.e. Band Chere

b) FROM coll-input1 AND Coll-input2
,LOWER-JOIN

B

b ..
b

of

b ..
b ..
b .,
b ..

b
'2..

b
2.

b
2..

ON BAND B
GIVING coll~output

A

a .,
a ..
a ..

a ..

a .,
a
"

a
"

a"

a
'2.

Coli
C

c
""

c
of

c""

c'l.

c1.

C
2..

c ..

c
"

Co12.
C D I F G

c"

c
2.

c2..

c ...

c2.

c .,
c ...

c'l..

c .,
c
"

c .,
c
"

C
'2..

d' 1 4 ",
d 1.1 7
"",

d I 1 9
1.1

d' 3 4 ",
d '3 7
"",

d2..' 3 9
I

d , 10 14
"I

d'l..' 10 6
I

d '10 1·
'LI

dl2014
"I

d I 20 6
2.1

d I 20 1·
'2..1

d I 31 14 ",
d 131 6

2..,

dz.1 31 1

in this case
the base of
the join is
limited to
attribute B

c) FROM coll-inputl AND
UPPER-JOIN
GIVING colI-output

B

b ..,
b

"1

b
2..

b
1.

b 2.

C

c
~

c
2..

c,,-

c ..,

c ..,

C
2.

A

a

a

a

a
2.

a
1..

a ...
a

1..

al.

D I F

d I 1
"I

d I 3
"'1

dtl 3
I

d..,1 20
I

d,1 20
I

d I 10
1..1

d2. 1 31
I

~ I 4

I

G

4

7

9

14

6

1

1

d) FROM coll-input1
REDUCED'-JOIN
GIVING colI-output

A B C D I F G

AND

coll-input2

coll-input2

It is important to say a few words on the
presentation facilities available in CROSIBASE
there are 2 possibilities: DISPLAY and TABLE.

Any collection referenced in the catalogue may be
displayed at screen (eventually copied on paper);
in the case data are stored in a public domain,
the wordings associated to data description items
(collection, attributes, values) will be
automatically displayed. It is possible also to
store in the catalogue and link to the collection
a Table lay-out which will be used for any
display required on that particular collection.

Moreover as any ordered elementary collection can
be viewed as an n-dimensional table, n being the
number of handle attributes, the user may use the
TABLE command to give a specific table lay-out;
there exists also the possibility of merging
several collections to produce a table with
complex structure, as was the case with the
previous OSIRIS (*) table generator.

Note however that the data issued from the
presentation process is no longer homogenous to
the concept of collection and thus cannot be re
used for subsequent processing (except through
the interface with a photocomposer).

4. CONCLUSION

We have introduced in this paper
Manipulation Language to be
statisticians.

a new
used

Data
by

(*) OSIRIS was developped wi thin EEC and made
operational since 1976

186

It is based on a Data Model where objects and
classes of objects have the same representation;
homogenous sets of objects/classes are grouped
into collections. The Statistical Data
Manipulation Language (SDML) has been designed to
integrate basic statistical Data Manipulation
tools; the result of each operation can be used
in turn by a new operation; such a set of
operations is called a derivation and is stored
in the catalogue as are data descriptions.

The basic functional components are restriction,
projection, classification, sort, aggregation,
arithmetical computation within objects or within
classes, and connection. These functions are
grouped together into three main classes of
operations : retrieval, computation and join.

The proposed language is assumed to be user
friendly and concise.

References

(Rl) - M.Adiba "Derived relations : a unified
mechanism for views, snapshots and
distributed data"
Proc. of Very Large Data Bases, Cannes
sept.1981 p.293

(R2) - Astrahan ·et al: "System R: Relational
approach to Data Base Management"
ACM Transaction on Database Systems Vol
1, n 0 2, June 1976

(R3) - A.W.Bragg: "Data Manipulation Languages
. for Statistical Databases: the
Statistical Analysis System (SAS)"
Proc. of the first LBL Workshop on
Statistical Database Management
Menlo Park, Ca, dec 1981

(R4) - E.F.Codd "Extending the Relational
Model to capture more Meaning"
ACM Transaction on Database Vol 4, n 0 4
dec.1979

(R5) - A.M.Parkhurst : "A Statistician's View of
the Requirements of a Host Database to
support a Central Query Language"
Proc. of the first LBL Workshop on
Statistical Database Management"
Menlo Park, Ca, dec.1981

(R6) - U.Rugani "The Catalogue of the
Crosibase Statistical Data Base"
abstract, april 1983

(R7) - M.R.Stonebrakes, E.Wong, P.Kreps, G.Held
"The design and implementation of INGRES"
ACM Transaction on Database Systems Vol
1, n 0 3, sept.1976

5., Special Data Types and Operators for Statistical Data and Metadata

Complex Data Types and a Data Manipulation Language for
Scientific and Statistical Databases . 188

Virginia A. Brown, Shamkant B. Navathe, Stanley Y.W. Su

Data Structures for Scientific Simulation Programs. 196 '
Jean Bell

An Extension of Relational Algebra for Summary Tables 202
Z. M eroi Ozsoyoglu, Gultekin Ozsoyoglu '

How Baroque Should a Statistical Database Management System Be? , . 212
Frank Olken

How Far Should a Database System Go? (to Support a Statistical One) 220
Don Swartwout

An Integrated Macro-Economic Data Management System
Based on Multi-Dimensional Arrays . 223

M. Gibbons, M. David

See Also ••••

Statistical Data Management Research at Lawrence Berkeley Laboratory 273

A Statistical Database Component of a Data Analysis and Modelling System:
Lessons from eight years of user experience . 280

An Overview of CANTOR - A New System for Data Analysis 315

187

COMPLEX DATA TYPES AND A DATA MANIPULATION LANGUAGE
FOR SCIENTIFIC AND STATISTICAL DATABASES+

v. A. Brown++, S. B. Navathe, and S. Y. W. Su
Database Systems Research and Development Center
University of Florida, Gainesville, FL 32611

Abstract

A Scientific and Statistical DBMS needs to recognize a greater varie~y of data
types than those currently supported by conventional DBMSs. Using the concept of
abstract data types, we propose a set of extended data types (Complex Data
Types) to be supported directly by the DBMS. The Complex Data Types presently
recognized include: set, vector, ordered set, matrix, time, time series, text,
and generalized relation. A data manipulation language designed specifically for
scientific and statistical data processing is presented using these types as a
basis.

1. INTRODUCTION

Scientific and Statistical Databases (SSDs)
define a class of databases which are intended
for statistical analyses. Demographic and
geographic databases are two common examples of
SSDs. This class of databases has several
characteristics with which conventional DBMSs
and statistical packages cannot cope
effectively. Facilities for managing data to
generate statistics as well as for appropriate
user interfaces for statistical analyses are
lacking in these DBMSs:

A. Conventional DBMSs do not provide either
the necessary tools for complex
statistical analysis, or provide the
environment for the analysis process
[BOR82].

B. SSDs consist of sparse data, making the.
physical design and processing
requirements quite different from
conventional DBMSs [TUR79, BAT82].

C. The distinction between parameter and
measured data becomes quite important in
SSDs [JOH81, SH082 , SU82]; conventional
DBMSs do not make a distinction between
these types.

D. Conventional DBMSs model business or
corporate databases. However, the data
found in SSDs do not fit well into this
"Supplier-Parts paradigm". Data exists not
as integers and alphanumeric strings but
in more complex forms such as matrices,
time series, and sets.

E. Statistical packages have historically
been flat file systems geared towards
number crunching. Such systems have
little data management capabilities and
are not oriented towards providing
processing environments.

+ This work was supported by the Department of
Energy under contract DE-ASOS-81ER10977'

++ Now at American Bell Inc., Lincroft, NJ
07738

188

The number of data-specific management systems'
that have resulted from these differences
demonstrates the need for new techniques. A
research project was initiated at the University
of Florida in 1981 to address the areas of
logical and physical data modeling for SSDs.
This paper reports the results of some of that
research. It specifically addresses the need for
incorporating an extended set of data types into
a general semantic data model for SSDs. Such
incorporation offers several advantages:

1. High-level Interface. The user can
manipulate data at his' natural level of
abstraction, rather than decomposing his
view to accommodate the system.

2. Representation Independence. By using the
abstract data typing concepts to represent
these objects, the user is separated from
the details of implementation.

3. System-enforced Integrity. The explicit
;odeling of CDTs transfers the
responsibility of ensuring the correct
implementation of abstract objects and
operators from the application programmer
to the DBMS.

We have developed an extended set of data types
which we call Complex Data Types (CDTs) for use
in a generalized DBMS for scientific and
statistical database management. A CDT is a
structured generic data type which corresponds
to an abstract object commonly found in the
user's view of data. To enable users to
manipulate the CDTs, one must provide a language
vehicle. A possible language interface called
SSDL, which falls somewhere between a query
language and a procedural language, is
introduced in this paper. In addi Hon to
illustrating the usefulness of CDTs, SSDL
represents the beginning of our work on a
"statistician-friendly" data manipUlation
language.

1. Such as SEEDIS--the Social, Economic,
Environmental, and Demographic Information
System--which was developed at the Lawrence
Berkeley Laboratory to provide SSD ~s7rs
with an integrated access to a speclflc set
of databases (MCC81).

2. For brevity the masculine gender is used as
a generic pronoun reference. No bias is
intended.

2. BACKGROUND

In programming languages, data abstraction is
done through data typing. The user views a data
type simply as a set of values and the
operations permissible on those values. Details
of implementation--how the data is stored and
how operations are performed--are considered
noise and remain hidden. Abstract data typing,
which allows users to define their own data
types, extends this data abstraction capability
even further. In languages that support
abstract data typing, such as CLU [LIS74] and
ADA [WEG80], users have the ability to model the
language interface, customizing it to fit a
specific application.

Previous work on applying abstraction techniques
to database management has focused on module
abstraction [ROW78, SMI78, BAR8l]. In the
module approach, each relationship is modeled as
a unique "type" bound to its application
processes. An employee, for example, is of type
EMPLOYEE, and is bound to its associated
operators of HIRE and FIRE. Complex data typing
uses abstraction at a lower level. Using the
CDT approach, an employee may be modeled as a
relation with attributes which may be of type
date, name, money. Our Complex Data Typing is
not used to define the processes on employee,
but to create an environment that makes those
processes easier to specify.

The CDTs defined in this paper interface both
with the user and a semantic association model
for SSDs called SAM* [SU82]. The SAM* model
defines a database in terms of a set of
interrelated associations: membership,
aggregation, generalization, interaction,
composition, cross-product, and summarization.
These associations are represented by one or
more generalized relation (G-Relations).

,
A G-Relation provides the distinction between
the identifying and summary attributes.
Identifying attributes are attributes that
qualify what the corresponding data is about.
Summary attributes are attributes that
constitute the measurements and needed values.
For example,

[~~~~~][~~~~~~~][[~~~~~~~~~~J
State and County are identifiers while
population is the summary attribute. A G-
relation can be defined over a set of complex
domains; a complex domain may h", of the type G
relation itself.

3. COMPLEX DATA TYPES FOR SSDS

Operations on a data type may be separated into
primitive and high-level operators. Primitive
operators define the meaning of the data type
and would be included in any implementation of
the data language. A list of 'primitive operators
for corresponding CDTs are given in the

189

appendix. High-level operators are derivable
from primitives. They are defined as those
operations that would be convenient for the user
to have, and will differ according to the user
population. In this section, each of the
identified CDTs is defined, and examples of
high-level operators are given.

G-RELATION: A Generalized or G-Relation is a
relation defined over a set of simple or
complex domains. Domains are further
classified as being either identifying or
summary domains, as described in [SU82].

Operations on a G-Relation are performed at two
levels. At the lower level, the operators
correspond to the data type of the domain. At a
higher level, the G-Relation is simply a set of
uniform tuples. As such, all set operators
previously described are applicable.
Traditional relational operators, such as join,
select, project, can also be used with some
modification. For example, the following
statement selects all experimental data on a
subject in which the average water retention for
the first measured parameter is greater than
five percent.

IN pilot:
IF «subject=5547) and

(water ret(l;ave) .GT •• 05)
THEN SELEcT *

SET: A set is a collection of elements, all of
the same type, in which no duplicates are
allowed.

The CDT set corresponds directly to the
mathematical notion of set. Operators should
include finding the union, intersection,
difference between two sets. E.g.,

Given a: «Chicago, Denver, Lincroft»
b: «Denver, Detroit»

a CONTAINS 'Chicago'
a INTERSECT b

returns <T>
returns «DENVER»

ORDERED SET: An ordered set is a set in which
the elements are ordered and may be
indexed.

Elements of a set are related to each other by
membership only. Members of any ordered set are
additionally related by order. As such
precedence operators are added to both set and
vector operations.

example:
fcl: {Davis, Chen, Sandburg, Mondale}

IN fcl: 'Chen' BEFORE 'Mondale'
returns <T>

IN fcl: PREDECESSOR(Sandburg)
returns {Davis, Chen}

VECTOR: A vector, V, is a collection of
homogeneous elements. There is an ordered
set of indices, I; and a one-to-one
mapping between I and V associated with a
vector. Subscripting is defined as the
mapping of I into V.

Operations on vector may be either position or
content dependent. content dependent operators
include:

• Information retrieval operations such as
checking for inclusion or exclusion of a
single element, or multiple occurrences of
either; E.g., given:

a : <-1,2,-3,5,8,9>
b : <-3,5>

a INCLUDES b returns the index
(3) denoting the position from which b is
included in a. To search for the location
of a value, the "I" operator is used.
s:= INDEX(a(?) > 0) returns the

indexset «2),(4),(5),(6».
To return the actual values greater than
zero, this indexset may be used

a(s) returns the vector <2,5,8,9>.

• Cleaning a data vector for further analysis
through replacement or deletion of
specified components. For example, to
replace all values less than zero by zero:

IN a:
REPLACE aCt) < 0 BY 0

Position dependent operators utilize
subscripting to provide flexible access of an
entire vector, p subvector, or a single
component.

a(I,3,4) returns <-1,2,5>

MATRIX: A matrix is a multidimensional
collection of elements of the same type.

The use of a matrix in a traditional DBMS system
is typically made possible via an application
program in which all processing is done one cell
at a time. When a matrix is recognized as a data
type, operations can be performed on it taking
multidimensionality into account. The system
SAS, for example, now has a matrix language
which provides for non-procedural aggregation
and linear algebra functions.

In the following example each null (unknown)
data element in a matrix is replaced by the
average of existing values. First, an indexset
containing the position of each missing element
is defined as t; next, an indexset of all
existing elements is defined as u; finally, the
missing elements in z are redefined as the
average of all existing values.

t:=INDEX(z(?;?)=NULL)
u:=INDEX(z(?;?)=EXISTS)
z(t):=AVE(z(u)

TIME: Time is a value representing a point of
reference.

Operations on time include:

1. Accessing by interval:
DURING Jan
BETWEEN 10:10 AND 10:15

2. Accessing by temporal order:
BEFORE 12/20/82

190

TIME SERIES: A time series is a two-dimensional
matrix in which rows represent cases
(measurements), and columns represent
observations (identifiers), indexed by an
ordered set of times.

The CDT time series is modeled as a special case
of the two-dimensional matrix, so that
multiseries operations can be included. A'time
series differs from a matrix in that the
semantics of the rows and columns are explicitly
defined. Consider a time series of rainfall for
1982 by county.

rainfall(Alachua) returns a single
series on Alachua county;

r~:nfall(BETWEEN 3/15/82 AND 9/15/82)
subsets the series by time.

Data in a time series is not necessarily
periodic; however, for statistical analysis,
periodicity is required. The BY operator is used
for implicit aggregation or disaggregation.

monthly_rainfall :=rainfall BY MONTH

TEXT: A text is a vector of characters.

Text allows for a free-formatted field in the
data. Traditional DBMSs require the user to
implement text through application programming
using characters and substrings. Realistically,
this means that unformated fields are not
included. Comments or descriptions are either
encoded (e.g., medication:=44 means
"Arithromycin, 10mg, 5 days") or are recorded
off-line.

Common text processing operations to be
performed include:

1. The use of variable or fixed length don't
cares:

'pollut*' matches
pollute, pollution, pollutants

2. Threshold matches: for example, to select
data in which a' descriptive field contains
at least 60% (threshold) of the keywords
described: .

BY WORD(desc CONTAINS AT LEAST
.6 OF keywords)

3. 1 RELATED WORK: STATISTICAL ANALYSIS SYSTEMS

We surveyed nine statistical analysis packages:
CONSISTENT (DAW80), GENISYS (DIN80), MINITAB
(MIN81), P-STAT (BUH79), S (S80), SAS (SAS79),
SIR (SIR80), TPL (TPL80). and TROLL (TROL79).
Specifically we were interested in finding out
how well our notion of complex data types is
supported in statistical analysis packages.
Although the packages do not necessary support
the notion of type, the usefulness of defining
these complex types and the facility to
manipulate them directly is recognized.

Ua Type

SET
VECTOR
ORDERED SET
MATRIX
TIME
'!'IME SERIES
TEXT
G-RELATION

Concept Supported By

S, MINITAB, TROLL

SAS, MINITAB, TROLL
SAS,SIR,TPL,CONSISTENT

SAS ,MINITAB, TPL
CONSISTENT

Figure 1. CDT Concepts Support by Statistical
Packages

4. AN SSD LANGUAGE

In designing an SSD Language (SSDL), we made the
following design decisions:

1. The language should operate in an
environment which allows a user to create
and save temporary files. A SSD is
generally static in nature; the average
user will not be allowed to make
alterations to the main database. At the
same time, a user may often want to alter
the data experimentally, or need to
massage it into a specific form for future
analysis. We assume that it is possible to
define the view (subschema) of the
database for each user and that users can
only perform retrievals against local
views. Updates are authorized to DBA
only.

2. SSDL should include tools for descriptive
analysis and data manipulation, but should
not duplicate the efforts of complex
analysis (e.g., mathematical modeling) and
display packages. It should, instead,
provide the user with a common interface
to those packages. This decision may
cause integration problems for the

- implementor, but will give the user the
most advanced tools available without
reinvention.

3. "Friendliness" must not get in the way of
power. A language which does not allow
the user to perform a large range of
semantically valid data operations does
not provide sufficient support for
exploratory analysis. In SSDL we include
a complete set of primitives for such
exploration in addition to the commonly
used high-level operators for a more
casual user.

4. For statisticians, a structured,
procedural language may be more natural
than a non-procedural language. We first

191

patterned SSDL after SQL [CHA76]. A
reaction from statisticians was that
things were done out of order--that output
should be specified last, not first as in
the SELECT statement; that nested commands
force the user to get all the way into the
middle of the procedure before he
understands what is going on. If the user
is going to proceduralize a language to
understand it, one might just as well
begin with a procedural language.

Preliminary studies by Welty and Stemple
[WEL81] suggest that performance on
complex queries is better in a procedural
language and no worse on simple queries.

Consider a simple aggregation using the relation
emp(empno, dno, sal):

Query: List the departments in which the
average salary is less than $10,000.

Figure 2 gives the SQL solution; to the right of
the query is its architectural structure.

SELECT dno operation
FROM emp environment
GROUP BY dno level

HAVING AVE(sal) < 10,000 condition
Figure 2. SQL Version of Query

What we suggest as a more natural ordering
is based on CASDAL [SU78J and is shown in Figure
3. The user specifies first what he is working
on; second, how he is going to work with it;
third, any restrictions; and fourth, the
operation to be performed.

IN emp:
FOREACH dno

IF (AVE(sal) .LT. 10,000)
THEN OUTPUT (dno)

ENDEACH
Figure 3. SSDL Version of Query

4.1 THE STRUCTURE OF SSDL

environment
level
condition
operation

A SSDL program consists of one or more program
statements. A program statement is composed of
the following structures.

1. Environment. Environment specifies the
context under which operations are going
to be performed. Conceptually, the
specification of a G";Relation in the
environment statement retrieves that table
of data into the user-'s workspace.

2. Level. The level specifies the range over
which the data operations are to be
performed. Since aggregation over subsets
6f data is a prevalent operation in SSD
processing, this structure must be
straightforward and easy to use. If no
level is specified, it is assumed to be
tuple at a time.

3. Condition. The condition structure
specifies under what conditions data
retrieval and manipulations are made. The
constructs that make up this structure are
similar to those found in PASCAL.
Condition statements, the FOR construct,
and statement blocks are all supported.
Additionally, a set of boolean system
operators which apply to all CDTs are
specified in the language: ANY, ALL, NO,
EXISTS, NULL.

4. Operation. The operation structure
specifies the retrievals and manipulations
necessary for output or preparation for
further processing. Operations available
to the user include:

• Output a variable, expression, or
special function. SSDL borrows non
procedural output statements from
existing statistical packages for
aggregation (the BY operator); cross
tabulation, e.g.,
occupation BY education USING

(MIN(sal), MAX(sal));
and aggregation of quantitative
variable, e.g., sal BY CUT(age,5).
• Create temporary variables or new
views. The user can define variables or
G-Relations by example. Using the emp
G-Relation, the user could write:

IN emp:
CREATE asal(dept AS dno, ave sal

AS sal) -

Synonyms are available to simplify a
given program. Thus,

LET adp==auto.date purchased
allows the user to type the shorter
version for the duration of the
environment (similar to [DINT80]).
• Perform a subprogram. A complex query
often involves the manipulation of a G
relation at different levels of
processing. The BEGIN-END structure is
used to specify environment within an
environment processing. An example of
this is given in Figure 5.
• Perform a macro. Upers are given the
power of procedural abstraction.
• Call a statistical package for
performing complex analysis.

5. EXAMPLES

Two examples of SSDL programs are given below to
demonstrate the use of CDTs and the flavor of
SSDL as a high-level procedural language.
Numbers to the right of program lines correspond
to comments following the program.

The first example involves the G-Relation:
energy _use(state, countyll pop ,oil_consumption)

where state and country are identifying
attributes; pop and oil consumption are summary
attributes; state, and county are simple string
variables, pop is an integer, and
oil_consumption is a single time series.

192

query: List the average monthly per capita oil
consumption for each state during last
winter (11/82 - 3/83).

IN energy use:
LET oc~=oil_consump

ADD month woc AS oc(1) [1]

DO [2]

oc:=oc(BETWEEN 11/81 AND 3/82) BY MONTH [3]

month_woc:=AVE(oc)

END

OUTPUT(SUM(month_woc)/SUM(pop) BY state)

Figure 4. Time Series Example

The bracketed notes [1], [2], [3] are explained
below.

1. For the duration of the program, the G
Relation energy use is appended with a
summary field to hold average monthly oil
consumption for each county. Note the use
of "definition-by-example" with the AS
eonstruct.

2. The DO-END structure indicates the
statements to be performed on each tuple
of the G-Relation.

3. This statement combines vertical
sUbsetting. and aggregation. The time
series 0 c is now periodic by month and
contains-only data for November through
March.

The second example is ta~en from Teitel's volume
testing paper' [TEI81]. Consider the following
G-Relation:

persons(id, birthyr, educ, sex, mo_id, fa_id)
Each tuple contains information on an
individual; data on that individual's parents
(e.g.; birthyr, educ) mayor may not be included
in the data as a separate entry.

query: Give a frequency distribution of
offspring by the educational level of
each parent.

IN persons(X): [1]

CREATE parents(child AS id,
mo_ed AS educ, f ed AS educ)

3. Volume is defined as width: number of
variables; length: number of cases; and
depth: query complexity.

DO

parents:= parents UNION
<id,NULL,NULL>

BEGIN:

IN persons(Y):

IF (X.id =Y.mo id)

THEN parents.mo_ed :=Y.educ

ELSE

IF (X.id = y.fa_id)

THEN parents.fa_ed .= Y.educ

END

END

IN parents:

OUTPUT(mo ed BY fa ed

[2]

[3]

[4]

USING COUNT(child_id) [5]

Figure 5. Embedded program example

1. The X and Y prefixes distinguishes between
two scans of the same G-relation.

2. The G-relation PARENTS is created then
filled tuple at a time. NULL is a SSDL
keyword.

3. For eath tuple the entire G-Relation is
searched again to find and record parental
data. The BEGIN-END block indicate a SSDL
sub-program.

4. The notion of a currency pointer is
retained within a subprogram.

5. The BY ... USING construct fills in cells of
a table using the specified function COUNT
[TPL80] .

6. CONCLUSIONS AND FUTURE WORK

A user language for SSDs must optimize user
friendliness while providing power. and
flexibility. In SSDL this is done by providing
two levels of processing. For common task's such
as aggregation or frequency distr{butions, non
procedural operators and built-in functions are
available. We have integrated the work of
existing statistical s~stems to provide high
level procedures for descriptive analysis. To
ensure that users can perform any semantically
valid operation on CDTs, primitive operators are
also available. User aids, such as synonyms,
macros, and definition-by-example, are included
to make low-level operators easier. to use.

193

Work continues at the University of Florida in
the area of statistical database languages. Shen
[SHE83] uses the notion of CDTs and the basic
SSDL structures in a formal design of a database
language for statistical and scientific users.

SSDL is being developed as a data language for
retrieval and manipulation of SSDs. A data
definition language (DDL) must also be developed
to be used in conjunction with SSDL. A DDL to
support SSDL should include:

1. Domain Definition: A domain is a CDT in
which the value set may be further '
constrained, either through enumeration or

'range specification. E.g.,
inches rain: REAL <00 .. 60>
counties: SET OF «list of counties»

2. CDT Definition: A parametric approach to
data definition might be most useful.

rainfall: TSERIES OF inches rain
CASE: counties -
SDATE: 1/82
PERIOD: daily

3. Function Specification: To perform
implicit aggregation in SSDL, aggregation
procedures must be defined in the DDL.
This includes standard summarization
(e.g., population BY county) as well as
specially defined aggregates (e.g.,
profit BY corporate_quarter.)

4. Units of Measure: A SSD must be able to
handle units of measure cleanly. In our
opinion data typing is not a good
solution, since the problem cente~s around
conversion between units rather than
operations on them. Some work has been
done in this area (e.g., KAR78 , GEH82),
but the problem is not yet solved. We
look upon this as an area for future
study.

Complex data typing has been presented as a
means of supporting .the manipulations necessary
for SSD processing at the user's level of
abstraction. We feel that incorporating CDTs
directly into the DBMS will result in more
efficient and effective management of SSDs.

7. REFERENCES

BAR81 Baroody, A., and DeWitt, D. An Object
Oriented Approach to Database System
Implementation. ACM Transactions on
Database Systems, Vol. 6, No.4, 1981.

BAT82 Index Encoding: A Compression Technique
for Large Statistical Databases, CIS
Technical Report 8182-9, 1982. To appear
in Proceedings of the Second International
Workshop on Statistical Database
Management, Los Altos, CA, September 1983.

BUH79 Buhler, S., and Buhler, R. P-STAT 78
User's Manual, P STAT, Inc., Princeton, NJ
, 1979. -

CHA76 Chamberlin, D., Astrahan, M., Eswaran, K.,
Griffiths, P., Lorie, R., Mehl, J.,
Resiner, P., and Wade, B. SEQUEL 2: A
Unified Approach to Data Definition,
Manipulation, anciControl. IBM Journal of
Research and Development, Vol. 20, No.6,
1976.

DAW80 Dawson, R., Klensin, J., and Yntema, D.
The Consistent System. The American
Statistician, Vol. 34, No.3, 1980.

DIN80 Dintelman, S., Mannes, A., Skolnick, M.,
and Dean, L. GENISYS: A Genealogical
Information System. Genealogical
Demography, Academic Press, New York, NY,
1980.

JOH81 Johnson, R. Modelling Summary Data.
Proceeding of ACM/SIGMOD InternatioIlU
Conference on the Management of Data, Ann
Arbor, MI, April 1981.

L1S74 Liskov, B., and Zilles, S. Programming
with Abstract Data Types. SIGPLAN
Notices, Vol. 9, No.4, 1974.

MCC81 McCarthy, J., Merrille, D., Marcus, A.,
Benson, W., Gey, F., Holmes, H., and
Quong, C. The SEEDIS Project: A "SUDUlJary
Overview, Technical Paper PUB-424,
September 1981.

MIN81 MINITAB Reference Manual, Version 81.1,
Duxbury Press, Boston, MA 1981.

ROW78 Rowe, L. Data Abstraction from a
Programming Language Point of View.
Proceedings of the Workshop on Data
Abstraction, Databases and Conceptual
Models, Pingree Park, CO, June 1980.

S80 S User's Guide, Bell Labs, Murray Hill, NJ,
1980.

SAS79 SAS User's Guide, 1979 Edition, SAS
Institute, Inc., Cary, NC, 1979.

194

SHE83 Shen, K., Navathe, S. B., and Su, S. Y. W.
Toward a Programming Language for
Statistical and Scientific Databases,
working paper, CIS Technical Report,
Database Systems Research & Development
Center, University of Florida, 1983.

SH082 Shoshani, A. A Research and Development
Plan in Data Management and Distributed
Systems, Technical Report, Lawrence
Berkeley Laboratory, Berkeley, CA, 1978.

SIR80 SIR User's Manual, Version 2, SIR, Inc.,
Evanston, IL, 1980.

SMI78 Smith, J., and Smith, D. Conceptual
Database Design. Proceedings of the NYU
Symposium on Database Design, New York,
NY, May 1978.

SU78 Su, S., and Eman, A.' CASDAL: CASSM's DAta
Language. ACM Transactions on Database.
Systems, Vol. 3, No.1, 1978.

SU82 Su, S. SAH*: A Semantic Association Model
for Corporate and Scientific/Statistical

Databases, CIS Technical Report 8182-6,
Database Systems Research & ~evelopment
Center, Un.iversity of Florida, 1982.

TEI81 Teitel, R: Volume Testing of
Statistical/Database Software. Computer
Science & Statistics: Proceedings of the
Thirteenth Symposium on the Interface,
Pittsburg, PA, March, 1981.

TPL80 Table Producing Language System, Language
Guide, Versin 5, U.S. Bureau of Labor
Statistics, Washington, DC, 1980.

TROL79 TROLL User's Manual, MIT, Cambridge, MA,
1979.

TUR79 Turner, M., Hammond, R., and Cotton, P.' A
DBMS for Large Statistical Databases.
Proceedings of the 5th International'
Conference on VLDB, Rio De Janeiro,,'
Brazil, 1979. '

'WEG80 Wegner, P. Programming with ADA: An
Introduction by Means of Graduated
Examples, Prentice-Hall, Englewood Cliffs ,
NJ, 1980.

WEL81 Welty, C., and Stemple, W. Human Factors
Comparisons of a Procedural and a
Nonprocedural Query Language. ACM
Transactions on Database Systems, Vol. 6,
No.4, 1981.

S. APPENDIX

Primitive Operations for Complex Data Types:

SET: sl, s2: set

ELEMENT(sl) : single element
INTERSECT(sl,s2): elements common to both

sl and s2
UNION(sl,s2): elements in either'set,

remove duplicates ' '
DIFFERENCE(sl,s2): elements in sl that

are not in s2
CARDINALITY(sl): number of elements in sl

VECTOR: vI, v2: vector; p_ex: predicate
expression;
i: vector index

ELEMENT(vl,i): element located at
position i

INDEX(vl,p ex): indexset of positiori
matchIng p ex

INSERT(vl"e,i):-veetor with element e
inserted after position i

DELETE(vl ,i): vector with element located
at position i deleted

ORDERED SET: os: ordered set; e: element of os;
i: index of os

SET primitives: CARDINALITY; INTERSECT
VECTOR primi ti ves: ELEMENT; DELETE
INSERT(os,e,i): ordered set with

element e
inserted after position i IF e was
not a member, of os, ELSE no effect.

MATRIX: ml,m2: matrix; e: matrix element;
i: matrix
index; d: dimension

ELEMENT(ml,i): element at position i
INDEX(ml,e): set of indices specifying

the positions of the element in the
matrix

SHAPE(ml): vector containing dimensions
of ml

JOIN(ml,m2,d): matrix which is the
concatenation of ml and m2 over
dimension d

DELETE(ml,i): matrix in which the
element at position i is logically
deleted.

REPLACE(ml,i,e): matrix in which element
at position i is replaced by e

TIME: tl,t2: time
TIME: date and time of day
Component extractor (t1): e.g., YEAR,

DAY, HOUR
BEFORE(tl,t2)/AFTER(tl,t2): boolean

variable
DIFFERENCE(tl,t2): duration value

TIME SERIES: sl,s2: time series; agg_fnct:
built-in

or user defined function for
specifying periodicity

All MATRIX primitives.
MERGE(sl,s2): time series representing

the merge of sl and s2 along both
case and observation indices

195

TEXT

TIME_COLLAPSE(sl,agg_fnct): time series

which has been either aggregated or
disaggregated to a form specified by
the agLfnct

t:text; i: text index; s: string
All VECTOR primitives apply to text
CHARACTER(t, i): ith character in t
WORD(t,i): ith word in t

G RELATION: All SET primitives
RELATIONAL ALGEBRA primitives (e.g., DATS1)

modified to include the semantics of
summary and identifying domains.
These operators, and their
modifications, are described fully
in [SU82].

DATA STRUCTURES FOR SCIENTIFIC SIMULATION PROGRAMS

Jean Bell

Computer Science Department, University of Colorado, Boulder

Abstract

This research investigates data management, data structures, and constraints on data
s~ructure design in a cross section of programs known as "scientific models". Scien
t~fic mOdels are large programs that use numerical approximation techniques to_ simulate
physical phenomena for which exact solution is impossible, e.g. weather forecasting
mo~els. Scientific models, as a class, use remarkably similar data structures. The gen
er~c structures and access patterns in scientific models are the basis for functional
specification of a data management system tailored to this application class.

This article is an extended abstract of disserta
tion research about data management in scientific
simulation .programs. Scientific simulation pro
grams, also called "scientific models", are pro
grams used for prediction of physical phenomena;
weather prediction, nuclear reaction, and clima
tology simulations are examples of programs in
this class. Of particular interest are the data
structures and data structuring principles in such
programs, especially the content, organization,
and access patterns for data retrieval.

The main research activities are a survey of data
management characteristics and a codification of
the survey findings. We investigate what struc
tures are used in individual scientific models,
and whether generic structures are applicable to a
wide class of models. Generic data structures are
identified. These structures provide the neces
sary basis for building efficient, general purpose
data management tools for scientific models. A
data management tool tailored for scientific
models is specified in the dissertation.

The scientific models in the. survey were carefully
selected to be representative of the entire class.
Twenty-seven models were investigated in the sur
vey, and eleven of those were the subject of
extremely detailed analysis. Many previously unk
nown similarities in data management across a wide
range of scientific disciplines and numerical
methods were found.

Factors that influence data structure design
include characteristics of the physical phenomena,
the mathematical equations, the numerical approxi
mation and solution methods, and the computer
environment. Many of these characteristics con
strain choice of data structure, and hence are
called "constraints". The analysis of constraints
focuses on application characteristics, rather
than on computer characteristics. The understand-

196

ing of constraints on access patterns and data
arrangements can therefore be used within dif
ferent computer environments or in the design of
future computer environments for scientific
models.

In summary, the research reported here addresses
the following questions:

(1) What data structures are implemented in
scientific simulation programs?

(2) What constraints influence the data structure
design in such programs?

(3) Can the access patterns in such programs be
categorized such that a small set of data
structures integrates the access patterns in
many such models?

1. NEED FOR RESEARCH INTO SCIENTIFIC DATA MANAGE-
MENT

Scientific applications often stress the computer
environment to its limits, so that in order to do
the calculation at all, the scientist must make
optimum use of his resources. Sequential file
processing predominates, because it minimizes the
expense and the difficulties of data management
across memories. Standard database management sys
tems are not used for two reasons: they are highly
inefficient, and hence too expensive, for scien
tific applications; and, a scientist often views
his own computing problems as unique, so that no
general purpose tool would be applicable.

Because scientists do not use data management sys
tems, there is a natural tendency for data manage
ment researchers to ignore scientific applica
tions. However, it has never been determined
whether. scientists avoid general purpose tools
because they are not needed, or because tools that
fit scientists' needs are not available. Standard
database management systems are optimized for com-

mercial applications that need interactive
retrieval of random requests •. Scientific applica
tions, on the other hand, are often batch jobs
with predefined retrieval patterns. Virtual
memory is inefficient for the data access patterns
in large arrays that are typical in scientific
applications (Mura80J. A few specialized data
management packages for scientific applications
have been constructed, but none is widely used.
Data management in scientific applications must
thoroughly investigated, in order to understand
what tools are suitable.

2. SCIENTIFIC MODELS

Scientific models are programs used for approxi
mate prediction of physical phenomena, such as
weather, ocean currents, and nuclear reactor
dynamics. A large system of partial differential
equations describe the physical relationships in
the model. The systems of equations cannot usu
ally be solved exactly, so numerical analysis
techniques are used to approximate their solution.
Efficient data management is critical in scien
tific models because they are computationally very
intensive AND they have a high volume of data.

The physical domain in a scientific model is
discretized into a large number of small areas by
superimposing a grid on the domain (see Figure I
I). The phenomena of interest are predicted for

,each grid cell, e.g. temperature at some future
time in each cell is predicted as a function of
the temperature and humidity in the cell and sur
rounding cells at a previous time. The value of a
physical quantity for one grid cell may be the
average value for the entire space in the cell, or
it, may be the value at a particular point in the
cell. The values of physical variables across all
cells in the grid forms the composite prediction
(e.g. a weather map).

Figure !-!. Superposition of a three dimensional
rectangular grid on a spatial area.

197

Some models also track particles (e.g. electrons)
that _represent a discrete unit of matter across
the spatial domain. By tracking a large number of
particles, the model obtains a very accurate pic
ture of ,material movement. In particle models,
physical properties of both the grid- cells and the
particles are predicted.

Time is also discretized, into many small
.. time steps·' • The state of the physical system is
recorded for all grid cells and particles at the
end of each timestep. The predicted values at the
current and/ or the previous time steps are the
input to the next prediction (see Figure 1-2).
The timestep is a basic unit of computation, in
that the same sequence of calculations is per
formed in each timestep. Within timestep, data
about grid cells are updated in a fixed sequence.

The access pattern to individual grid cells, and
within grid cell to individual variables, is
almost always totally defined before the program
,is compiled.

Figure ~-~. Timesteps in the predictive process:
example shows the "leapfrog" explicit time
integration method, in which predictions of new
grid values are a function of the current and the
previous predictions.

In a typical scientific model, data about the grid
cells comprises the bulk of the stored data. The
amount of grid data is a function of the grid
resolution, the number of physical phenomena being
predicted, and the domain size. In the FTELT
model, for example, the grid typically contains
20,000 cells, and 150 variables are stored about
each cell, for a total of about three million
numbers of grid data. Those three million
numbers will ALL be updated in each timestep.
Dozens of timesteps are made in one model execu
tion, so over one hundred million updates will be
performed in one simulation.

The amount_of data precludes its storage in cen
tral memory, but the d'ata is accessed repeatedly
by the calculations. Under these circumstances,
efficient data management is a primary performance
criterion. The structures for data on· the exter
nal storage device mu'st be designed to avoid

unnecessary block transfers. Partitioning into
blocks must take into account the calculational
dependencies; that is, all variables needed to
update each cell in a block should be in central
memory at the same time. On the other hand, the
amount of storage in central memory for buffer
space, the transfer rates, and other characteris
tics of the computer hardware, must be taken into
account to determine block size for efficient
transfer. Storage structure design is constrained
by the complex interrelationships among these and
other decision variables.

3. MAJOR SURVEY FINDINGS

The dissertation research cuts across subject
areas and numerical methods to illuminate the
larger issues in data structure design in a way
previously obscured by the details of computer
implementations. Many similarities in data
structures among scientific models were found.
For eX&Qple, a major research task was the clas
sification of data structures in scientific
models. The classification shows that a small set
of data structures are sufficient for supporting
the access patterns in a wide range of scientific
models. This finding is of great significance
because it permits the building of tools which are
both generally useful and specifically efficient.

Many of the results in the dissertation analyze
constraints on data structure design. For exam
ple, the desirability of using a rectangular grid
for modeling a variety of physical domains is
ana1y~ed. The effects of computer environment on
the details of storage structure design, such as
block size, stratification into files, etc., are
presented. The constraints placed by numerical
method are also presented, particularly order of
calculations and dependencies in the calculations.
Understanding the factors that influence the data
structure design adds to the ability to manage
data in scientific simulation programs AS A CLASS.
Such an understanding also contributes to the gen
eralizability of the results to other application
programs and computer environments.

The three most significant findings about imple"':"
mented data structures in scientific models are
summarized in the following subsections.

3.1. CLASSIFICATION OF STORAGE STRUCTURES FOR
DISK FILES

All programs in the survey used only three types
of storage structures for organizing disk files
into blocks: planes, pencils, and sequential
lists. The majority of scientific models have a

rectangular three dimensional grid, i.e. a paral
lelepiped whose individual cells are paral-

198

lelepipeds. For models with rectangular grids,
the grid is partitioned into geometric portions,
either "planes" and "pencils", and each partition
ing defines a class of storage structures. For
non-rectangular grids and for particle data,
sequential list storage structures are,used.

The choice of storage structure is constrained by
the update dependencies in a scientific model.
Spatial dependencies predominate in scientific
models. That is, the calculations to update one
cell require data simultaneously from some set of
other cells. The set of cells usually has a
characteristic geometric shape, and hence is
called a "stencil". The associations between
categories of stencils and categories of storage
structures is explained below.

3.1.1. Planes

A plane contains all of the grid cells on a plane
perpendicular to one of the grid axes (see Figure
1-3). In the plane storage structure, each block
holds exactly one plane of the grid. The file
consists of an ordered list of consecutive planes.
The blocks are accessed in sequential order in a
"moving window" sweep across the file, always
retaini~g a certain number of consecutive planes
(e.g. 5 planes) in central memory at a given time.
In a typical sweep through a file, the first
several higher level I/O operations build up the
number of planes in central memory, i.e. "Get next
block AND retain all previous blocks". After the
requisite number of planes are in memory, the
higher level I/O operation is "Get next block AND

replace oldest block".

There are some variations on these higher level
operations. For instance, a backwards sweep moves
through planes from last plane to first. Also,
there may be minor perturbations in the order of
access to the first and last planes because of
special calculations at the edges of the domain.
However, the variants are classified together

Figure !-~. Rectangular three dimensional grid
subdivided into planes: hatched area is one plane.

because of the characteristic moving window sweep
through the majority of planes, and the geometric
partition of cells into disk blocks by planar
location.

The plane data structure is used in all computa
tions in which the stencil for updating a particu
lar cell includes a local set of adjacent cells in
all three dimensions within the grid (e.g., see
Figure 1-4). In calculations with a local, three
dimensional stencil, the plane data structure
minimizes the coupling between blocks because of
the simple fact that all other geometric subdivi
sions have more sides. That is, all cells on a
plane are adjacent to cells in only its two adja
cent planes; for any other geometric subdivision,
cells in one subdivision are adjacent to cells in
more than two other
any other partition
at least some blocks
cells in the grid.

subdivisions. Furthermore,
would require re- reading of
during the update of all

Figure 1-4. Stencil for a three dimensional second
order finite difference calculation: hatched area
·is the cell to be updated, as a function of data
about the other cells in the stencil.

3.1.2. Pencils

A pencil is a bundle of adjacent lines, where each
line spans the grid in the dimension of its
length. The pencil data structure is particularly
suited to algorithms that have a one dimensional
stencil. That is, in order to update a particular
cell, other cells on a line (perhaps the whole
line) are needed simultaneously, but there is no
coupling to cells on any other line.

Scientific models that use the pencil storage
structure often use a stencil that has been "fac
tored". That is, the stencil may contain cells in
all three dimensions, but the stencil has been
broken up into a set of stencils, each. of which
contains cells in only one dimension. The algo
rithm, then, uses several access patterns within a
timestep, each of which sweep through the lines in
the grid in a different dimension. Therefore,
pencils are further subdivided into "cubes" (not

199

Figure 1-5. Kectangular three dimensional grid
subdivided into cubes: stack of cubes is one pen
ciL

necessarily perfectly cubic in shape), where a
cube is the intersection of pencils in three
orthogonal dimensions (see Figure 1-5). All of

'the cubes in a pencil in a particular dimension
must be in memory when the cells in lines in that
pencil are being updated, but no other cubes are
required.

The pencil storage structure partitions the grid
into cubes and each cube is stored in one block.
The file is a three dimensional array of blocks,
where each block has a linearized index. There is
one secondary index to cubes within each pencil in
each dimension. For example, for pencils in the
"x" dimension, there is a list of the indices of
cubes in the first pencil in that dimension, a
list of indices of cubes in the second pencil in
that dimension, etc. The higher level I/O opera
tion, similar to an indexed sequential access
primitive, is "Get all the blocks whose indices
are on this list".

3.1.3. Sequential lists

The third storage structure, called an "sequential
list", is used for particles, for irregularly
shaped grids, and for other files where there are
few update dependencies among instances of a sin
gle entity type. For example, no data about any
other particle is needed when data about a partic
ular particle is updated. Also, the particles can
be updated iu any order. Thus, no coupling among
particles must be preserved in the partitioning of
particle data into blocks. Only one block is
needed in central memory at one time, since there
is no coupling between blocks. There is sometimes
an order to the block~. For example, particles
may be partially ordered by location to facilitate
access to cell data. However, the blocks are
always accessed in sequential order, so the
appropriate access operation is a simple sequen
tial fetch, Le. "Get next block".

3.2. SIMPLE USER LEVEL DATA STRUCTURES

Scientific models store data about only a few
types of entities: grid cells, other subregions of
space, particles, and materials. Grid cells are

the subdivisions of space defined by superimposing
a grid on the spatial domain. Other subregions
are aggregations of grid cells based on common
properties, e.g. all cells in the subregion

defined by the vessel part of a nuclear reactor.
Particles are units of material, e.g. neutrons.
Materials (e.g. steel) and material-particle
interactions (e.g. neutrons hitting steel) are
together classified as "handbook" data because
orily static facts are recorded about these enti
ties; thus, this type of data resembles a compu
terized chemistry handbook.

The user database is simple in other ways: few
facts ("attributes") about most entities, few
types of relationships, and few types of allowable
operations in the user data structures. The sim
plicity of user data structures implies that full
generality of data management is not needed. Data
management tools for scientific simulation pro
grams can be tailored to handle .the specific user
data structures without loss of applicability.
For example, each entity type has a characteristic
form of identifier. Particles have no unique
identifier, since their individual properties are
not of interest. Grid cells and other subregions
have a implied location identifier, usually an
array index. By knowing the full range of iden
tifier types, the user interface can be greatly
simplified.

3.3. PREDEFINED ORDER OF ACCESS

Order of access to disk files is predefined in
scientific models; the order in which files are
read, and the order in which blocks are read
within file, is totally predetermined before
compile time. Truly random access, i.e. where the
decision on what entity to access next depends on
a updatable value in the data itself, is not used
in any model in the survey. The dissertation shows
that random access would introduce inefficiencies
because of the interaction between the stencil,
the volume of stored data, and the fact that all
values of all records are updated in every
timestep. Other inefficiencies, such as redundant
data storage, introduced in order to avoid random
access are also analyzed. The analysis shows that
random access is the source of greater ineffi
ciency.

The significance of this discovery
transfers can be highly optimized
A data management tool would need

is that data
by prefetching.

some dynamic

200

information
of transfer

about timing of transfers, but order
can be entirely prespecified. In

sharp contrast, standard database management sys
tems assume that truly random access will be u'sed
heavily, so they require a much different approach
to the problem of data transfer.

4. A DATA MANAGEMENT TOOL FOR SCIENTIFIC MODELS

The dissertation includes a specification of the
functional requirements for a "scientific model
data management system" (SMDMS) from the user per
spective, and also from the perspective of storage
management. In the proposed tool, the user speci
fies certain parameters of his application, e.g.
the size and 'shape of his grid, the use of parti

'cle data, etc. In the main part of his program,
the user specifies one or more sets of calcula
tions, called datapasses, to be performed on each
instance of an entity type. A datapass retrieves
all instances, performing the set of calculations
in the datapass on each instance in its turn. The
user specifies parameters of the datapass, e.g.
the order of update and the stencil to be used.
Based on these user parameters, the appropriate
storage management and data transfer cOillmands are
automatically activated by the SMDMS.
The heart of the data management system specifica
tion is the user interface. The interface is
tailored for the scientist user by taking into
account access patterns in scientific models as a
class. The datapass concept, which specifies a
set of calculations to be applied to every
instance of a relation, is equivalent to a series
of queries and updates in a standard database
management system. Since the same calculations
are performed on each instance, the datapass pro
vides a convenient and succinct specification of
the entire set of queries. Furthermore, it allows
the data management Syst.e.ill to optimize storage

organization and disk transfers for the entire
series of updates.

5. CONCLUSION

The most general statement of the original goal of
this research was to assist physical scientists
and hardware manufacturers in providing data
management facilities for large scientific models.
The first step in the process of tool building is
to achieve the understanding of functional
requirements for the tools. To this end, the
investigation focused on the data structures, both
user visible and underlying storage structures,
that support the access and data patterns in
scientific models.

Investigation of data structures used in current
implementations of scientific models, and of con-

straints on their design, formed the main part of
this dissertation research. The data collected in
the investigation provided a rich and detailed
description of all phases of data management in
scientific models.

Of special interest in the analysis is data struc
ture at the level of file storage: the partition
and organization of data into records, blocks, and
files so that access across memories is efficient
for individual models. Storage structures for file
organization into blocks fall into only a few
categories: planes, pencils, and sequential
lists. The three categories are well defined by
both their storage arrangements and higher level
I/O primitives.

The dissertation presents a data management tool
(SMDMS) tailored to the access patterns and data
content in scientific models. The functional
requirements for the SMDMS data management system
are similar to a standard data management system,
but the characteristic kinds of retrievals and
updates for scientific models are quite different.
Efficiency requirements are critical because of
the very large number of updates in a scientific
model execution. Efficient implementation is based
on the categories of storage structures discovered
in the research.

c,
A full database management system can now be
designed, using the functional specification in
the dissertation. Implementation of a SMDMS system
is necessary to test the usability and the practi
cal efficiency of the data structures and data
management system developed in this dissertation
research. The final product, i.e. the data manage
ment system system itsel;, will directly benefit
the computer user communfty,' of scientific
modelers. In addition, it will, provide data
management researchers with an interesting tool
for studying the usefulness and efficiency of spe
cialized data management systems.

201

Acknowledgement

Special gratitude goes to my three main advisors
in this research: H. Paul Zeiger, G. Stuart
Patterson, Jr., and Richard Hackathorn. The
research was sponsored by Cray Laboratories, Inc.,
Boulder, and the National Center for Atmospheric

,Research, Boulder.

References

[MuraBO]
Muramatsu H. and Negishi, H. "Page Replace
ment Algo;ithm for Large-array Manipulation,"
Software -- Practice and Experience 10, 7
(July 1980), 575-587.

Abstract

AN EXTENSION OF RELATIONAL ALGEBRA FOR SUMMARY TABLES*

z. Meral Ozsoyoglu and Gultekin Ozsoyoglu

Department of Computer Engineering and Science
Case western Reserve University

Cleveland, OH 44106

A summary table is one of the useful data structures used in statistical
databases. For an algebraic summary table manipulation language, we first
extend relational algebra for nested relations and aggregate functions,
then propose a summary table manipulation language based on the extended
algebra. A new operator, called aggregation-by-template is introduced, and
other operators of the relational algebra are modified to apply nested
relations. A special case of summary tables, called primitive summary
table, is distinquished since it can be directly represented by a nested
relation. Primitive summary tables are viewed as building blocks of sum
mary tables. Operators for constructing and manipulating summary tables,
and their properties are also discussed.

1. INTRODUCTION

Tabular representations of summary data; hereafter called summary tables, are
widely used in various application areas such as management decision making, health
care, economic planning and census data evaluation. Figure 1 contains an example for a
summary table.

DIV:
SUM-SALARY-OF divl div2

EMPLOYEES
DIV: DEPT: I DEPT:

divl div2 man personnel acct
AGE: SUM-SAL: SUM-SAL:

[18,30] 2S0K 290K lOOK lSOK 290K
[31,40] SOOK 400K 200K 300K 400K
[41,60] 600K 2S0K 2S0K 3S0K 2S0K

Figure 1: An example summary table: SUM-SALARY-OF-EMPLOYEES

The use of summary tables is not restricted to output formatting: they are maintained
for bookkeeping, compared and evaluated perhaps over a time span. Thus, starting from
the premise that summary tables are proper logical modeling tools, we need a data
manipulation language for summary tables.

Current statistical software packages have only summary table creation capabili
ties, and usually have a list of commands to manipulate only a single flat file. A
notable exception is the Table Producing Language system (TPL) of the U.S. Bureau of
Labor Statistics [Uslb 80] that has powerful facilities to produce summary tables.
However TPL does not manipulate or store summary tables, and is executed as a stand
alone system in batch mode. Therefore, it is not part of an integrated data manipula
tion language.

This paper extends relational algebra [Codd 72] to handle summary tables. More
specifically, we allow set-valued columns in relations, and add or modify relational
algebra operators for manipulating summary data maintained in relations.

* This research is supported in part by the National Science Foundation under Grant
MCS-8306616.

202

Recently Klug [Klug 82] extended relational algebra by incorporating aggregate
functions, and proposed a new operator, called aggregate formation. This operator uses
the concept of partitioning a relation and ~pplie~ an aggregate f~nction to each par
tition. For summary table manipulatiOn; we define another operator, called
aggregation-by-template, based on the concept of grouping (not partitioning). Jaesche
and Schek [Jaes 82] define an extension of relational.algebra-for nonfirst normal form
relations (i.e. a tuple component may be a set or a set of sets, etc.).

We use nested relations to represent a special case of summary tables which are
called primitive summary tables. Informally, a nested relation is a relation where
tuple components for zero or more of its attributes are sets of simple values. Primi
tive summary tables are used as building blocks of summary -tables. That is, a summary
table can be decomposed into primitive summary tables, and two or more primitive sum
mary tables can,b~ combined into a larger summary table. The relational algebra is
extended for aggregate functions and nested relations so that it forms a basis for a
summary table manipulation language.

In Section 2, we introduce the terminology and definitions. Operators that
define the algebra of nested relations are given in Section 3. The operations for
arithmetic on nested relations are discussed in Section 4 as an additional feature of
the extended algebra. Section 5 discusses operators to construct and to manipulate
arbitrarily general summary tables. Section 6 is the conclusion.

2. TERMINOLOGY AND DEFINITIONS

2.1 Relational Model and Nested Relations

A relation is a set of n-tuples, for some fixed n>O. Each component of a tuple
in relation R has a name, which is called an attribute of R. A relation scheme is a
set of attributes. As a notation we deal with column-ordered relations and refer to
attributes by column numbers as in [Codd 72, Klug 82, Ullm 82] instead of attribute
names unless explicitly stated. The attributes of a relation R of degree n (i.e. R
withn attributes) are identified by integers 1,2, ••• ,n. The set of attributes of R is
denoted Atr(R). Each attribute of a relation has an associated domain of values. Let U
be the set of all values regarded as atomic (such as integers, reals, character
strings, etc.) and a value null denoted .~-~. Let D , ••• ,D be subsets of U. A first
normal form relation R is a subset of DIx ••. XD wh~re x iQ the cartesian product [Codd
72] • n

An attribute is called atomic if its domain is a subset of U. If the domain of an
attribute is a subset of P(U) (i.e. power set of U) then it is called a nested attri
bute. A nested relation R is a relation whose attributes are either atomic or nested.

In this paper, we use functional dependencies and embedded join dependencies of
relational model [Codd 72, Ullman 82]. Functional dependencies are defined for nested
relations without any change. The projection operator is directly applicable to
nested relations. For the natural join on nested relations, the join attributes in
the relations joined are either both nested or both atomic attributes. Thus, the join
dependency and the embedded join dependency generalize to nested relations straight
forwardly.

2.2 Summary Tables

Informally, a summary table scheme isa two dimensional table of cells. Each cell
can be considered as an element in a two dimensional array. The rows and columns of a
summary table have some attributes called category attributes which correspond to
array subscripts in a sense. Category attributes in a row or in a column may be struc
tured as forests of trees whose nodes are attributes. In a summary table, attributes
which appear in a root-to-leaf path in a row or column category attribute tree are
called row category attributes or column category attributes, respectively, of a cell.
In addition to category attributes, a cell also has an attribute called cell attri
bute. The following example illustrates a summary table scheme.

Example ~.l: There are two cells in the summary table below. The row categorY,attri
bute is AGE for both cells and column category attribute DIV belongs to the f1rst

. cell, and DIV and DEPT belong to the second cell. The cell attribute, SUM-SAL, is the
, same for both cells.

203

DIV
SUM-SALARY-OF-EMPLOYEES DIV DEPT

AGE SUM-SAL SUM-SAL

More formally, a summary table scheme is a 4-tuple S(F ,F ,A ,M} where F and F
are row and column category attribute forests, A is an ord~reS s~t of cell a€tribut~s
and M is a mapping function. F and F are order~d forests of ordered trees (F or F
may be empty but not both). Arnonemp~y category attribute forest F is denotedras c
F=<Tl,.~.,Tk> where each T.=(V. ,E.} is an ordered tree whose vertex set is V. and
edge set is E .• If m and fi ar~ tne total number of leaves in F and Fc' resp~ctivelY,
then there ar~ m*n cells in S for m;>10 and n;>10. If m or n is zerO then the number of
cells is n or m respectively. Each cell in S has a pair of ordered sets of attributes
as row and column category attributes. The row and column category attributes of a
cell appear in a root-to-leaf path of a tree in F and F respectively. The function M
maps a pair of category attribute sets for a cellrinto aH attribute in A , which is
the cell attribute of the cell. The function M is one-to-one and onto. C~ll attributes
in Ac are not necessarily distinct, i.e., Ac is an ordered multiset.

For notational convenience, we omit the function M and assume that the mapping
from pairs of category attribute sets to cell attributes is done as follows. Let
leaves in F and F be numbered from 1 to m and from 1 to n respectively. (Top leaf
of F and l~ftmostCleaf 0thF are both numbered as l.) Then category attributes in the
pathrfro~ha root to the i leaf in F and category attributes in the path from a root
to the j leaf in F map to the (i*(ft-l}+j) th cell attribute in A , where l<i<m,
l<j<n. Having fixedCthe mapping function M, we use S(F ,F ,A } to Senote a summary
table scheme. r c c

A category attribute may be nested or atomic, i.e. its domain is a subset of P(U}
or U. ~ cell attribute is an atomic attribute. A Summary table instance for
S(F ,F ,A } is a two dimensional table of cell instances corresponding to cells in S.
A c~llcin~tance has row and column category attribute values and a cell attribute
value. Let T=(V,E} be a tree in F or F of S. An instance t of ~ is an ordered tree,
defined recursively as follows: r c

If T is null (i.e. V=¢, E=¢) then t is nUll. Otherwise,
(a) the root of t is a value for the attribute Vo which is the root of T.
(b) let vl, ... ,Vk be the children of Vo in T and T1, .•• ,Tk be the subtrees of

T such that V. is Ehe root of T., l<i<k. Then, subtrees of tare instances of
T., leick, sueh that instances Of T-:-+l follow instances of T., l<i<k. (i.e.
ofderedT. 1 1 --

Example ~.~: Consider the column category attribute tree T=(V,E) where V={DIV,DEPT},

E={(DIV,DEPT}} in the summary table scheme given in Example 2.1. There are two
instances, say t l , t 2 , of T in the summary table instance shown in Figure 1, where

tl=(Vl,EI}=({divl,man,personnel}, {(divl,man), (divl,personnel}}), and

t 2=(V2 ,E 2}=({div2,acct},{(div2,acct}}}.

An instance of a category attribute forest F is an ordered set of instances of
the trees in F. An instance for a summary table S(F ,F ,A } has instances of F and F
as row and column forests respectively. A pair of rOotStoSleaf paths in an instance of
F and in an instance of F defines a cell instance. Each such cell instance has a
c~ll attribute value. We wIll use term "cell" (and also the term "summary table") ·to
denote a scheme or 'an instance interchangeably whenever there is no ambiguity.

Semantically, each cell in a summary table corresponds to a group of individuals
in a given population such that category attribute values of the cell define a group
of individuals and the cell attribute value is the result of an aggregation applied
over this group.

2.3 Primitive Summary Tables

A summary table S(Fr,Fc,Ac } where Fr and Fc each consists of a single chain of

204

attributes (i.e. a tree with one leaf) is called a primitive summary table. In other
words, a primitive summary table has exact~y one cell. Primitive summary tables are
basic building blocks of summary tables SInce each cell in a summary table S
corresponds to a primitive summary table. Figure 2 shows the schema and the instance
of one of the two primitive summary tables for the summary table given in Figure 1.

DIV:
ST2 DIV

DEPT ST2 divl div2
DEPT: DEPT:

AGE SUM-SAL
man personnel acct

AGE: SUM-SAL: SUM-SAL:
[18-30] lOOK l50K 290K
[31-40] 200K 300K 400K
[41-60] 250K 350K 250K

Figure 2: One of the primitive summary tables for SUM-SALARY-OF-EMPLOYEES.

Our approach for defining operations for summary tables is first to define operations
to construct and manipulate primitive summary tables, then to extend the language to
deal with arbitrary summary tables in terms of these operations.

A nested relation can be used to represent a primitive summary table excluding
the ordering and the type (row or column) of category attributes. Let S(F ,F ,A) be a
summary table where X and Yare sets of attributes in F and F respectiv~ly; ~Y=¢,
and A ={C}. Then a nested relation R where Atr(R)=XUYUC can b~ used to represent S
such £hat each tuple t in R corresponds to a cell occurrence in S whose row and column

• category attribute values are tuple components in t[X] and try] respectively and whose
: cell attribute value is t[C]. Let R be such a relation representing a,primitive sum-
: mary table S. Then the Ld. XY->C holds in R since each cell occurrence in S is
! uniquely identified by category attribute values. Moreover, the e.j.d. *(X,Y) 'holds
i in R since there is a cell occurrence in S for every pair of X,Y values. If R is such
: a nested relation representing a primitive summary table S we say that Rand S are
, information equivalent. Similarly, given a relation R and a primitive summary table
: scheme S(F ,F ,A) where X and Yare sets of attributes in F and F , A ={C} and
: Atr(R)=X~OC,cancinstance for S can be directly constructed from R !f f:d. XY->C and
'e.j.d. *(X,Y) hold in R.

, Consider a nested relation R representing a primitive summary table S. Attributes
'of R corresponding to cell and category attributes of S should be semantically dis-

.. : tinguished. For example, a relation R~ obtained from R by projecting out some category
: attributes may not represent a meaningful summary table. That is because changing
: category attributes effects the underlying populations over which the aggregation is
!done. For R~ to represent a summary table, its column representing the cell attribute
: should be changed appropriately whenever columns for category attributes are changed.

, 2.4 Aggregate Functions

An aggregate function, given a set of tuples and a column number (attribute) i,
returns a simple value obtained from the ith components of tuples in the given set.
The attribute i should be an atomic attribute. In general, the domain of attribute i
should be compatible with the aggregate function, i.e. the result of the aggregate
function when applied to column i should not be undefined. When an aggregate function
is applied over an empty set of tuples, the result is null, denoted by ~-~. The null
value is an atomic value and is included in the set U of all atomic values. The mean
ing of the null value is ~nonexistent~. When an aggregate function is applied to
attribute i of a nonempty set of tuples, tuples t with t[i]~null contribute to the
result, and tuples with t[i]=null are simply ignored. If all tuples, over which the
aggregate function is applied have t[i]=null then the result is also null, i.e., the
same as the case when the aggregate function is applied over an empty set of tuples.
The result of an aggregate function over a nonempty set. of tuples with one or more
tuples t having t[i]~null is not null. In this paper, we consider only aggregate func
tions MAX,MIN,SUM and COUNT. However, results can be extended with minor modifications
to include any aggregate function.

3. AN ALGEBRA OF NESTED RELATIONS

In this section we first give operators for an extension of relational algebra to

205

nested relations; and then identify the basic set of operators of the extended alge
bra. The operands of the extended algebra are either constant relations or variables
denoting relations with fixed number of columns. We use the term relation for nested
relations as well as INF relations. The following notation is used throughout the
paper.

Notation: Let t l , t2 be two tuples having components for a set of attributes X. Then
t l [X]-t

2
[X] denotes t

l
[X.]=t 2 [X.] for each attribute X. in X where ~=~ is simple

equality if X. is an atomic att~ibute and it is a set ~quality if X. is a nested
attribute. 1 1

3.1 Aggregation Operators

Aggregate Formation: Let R be a relation with attributes Atr(R) and X_Atr(R), Ixl=k.
Let f be an aggregate function and A be an atomic attribute of R. Then R<X,fA> is a
~elation with degree k+l and is defined as

R<X,fA>={t[x]oylttR" y=fA dt' 1t'E.R" t~ [X]=t[X]})}

where "0" denotes concatenation.

The aggregate formation operator first partitions tuples of relation R such that
tuples having the same X component are in the same partition. Then, the function f is
applied to component A of tuples in each partition, and the X-value and the associated
value produced by the aggregate function are output for each partition. The aggregate
formation operator for INF relations is defined by Klug [Klug 82]. The definition
given above is a straightforward extension of this operator to nested relations.

Aggregation-~-Template: Let R] and R'2 be two relations with attributes Atr (R,) and
Atr(R~)=Y£Atr(R), Z=Atr(R2) wnere IYI=lzl~l and each attribute in Z is a nesEed
attriBute. Let *~tr(Rl) such that if X is nonempty then X and Yare disjoint, and A
be an atomic attribute of Rl • For notational convenience let Y denote the set (pos
sibly empty) of column numbers (attributes) in Y that are atomi8 in R" and Y =Y-Y •
Let Z and Z denote those attributes in Z that correspond to Y and Y. TheR a
RI <X,t,fA>R2

n is a relation with degree Ixl+lyl+l and is definedaas fol~ows.

Rl <X,Y,fA>R 2 = {toyl (:lt l) (3t 2) (tlE:Rl " t 2E.R 2 "

t[X]=tl[X] " t[Z]=t 2 [Z] A

y=fA ({ t~ I t~E.Rl " t' [X] =t [X]"

t~[Ya]~t[Za] "t~[Yn]£t[Zn]}»}·

The aggregation-by-template operator Rl <X,y,fA>R2 groups tuples of Rl as follows:
Let t be a tuple over the attributes XU Z, where

t[X]=tl[X] for some tuple tl in Rl , and t[Z]=t2 [Z] for some tuple t2 in R2 •

Each such tuple t defines a group Gt of tuples of Rl such that a tuple v of Rl is in
G

t
if

v [X] = t [X] , v [Y] E. t [z], and v [Y] c. t [z]. a a n - n

Then the aggregation function f is applied on attribute A of tuples of Rl in each
group. Finally, the X-value, the Z-value, and the associated aggregate value is out
put for each group. Thus the number of tuples in Rl <X,y,fA>R2 is the product of the
number of tuples in R [X] and the number of tuples in R. In aggregation-by-template,
tuples of R2 direct t~e grouping (i.e., R, is the "temp~ate"). Consequently, there may
be some empEy groups. The value returned oy the aggregate function f applied over an
empty group is null, which is denoted by "_no The treatment of null values is dis
cussed in section 2.3.

The aggregation-by-template is more convenient than the aggregate formation when
there are prespecified groupings attached to category attributes. For example, sum
salary of employees by a specified set of age' groups can be tabulated by a single
aggregation-by-template. When dealing with summary data it is common to have aggrega
tions over populations defined by prespecified groupings of category attribute values.

206

. __ ._.-_._._-------_. ----.... ..."".-~",..-,, ..• ,-.-""-~ -
Furthermore, th~-aggregation-by-template is based on grouping tuples of a relation
while the aggregate formation is based on partitioning the tuples.

Example 3.1: As a running example, consider the following relation

SKIER: NAME RACE- NO-OF- MISSED- NO-OF-RACES
TYPES INJURIES SEASONS WON

I.Stenmark tS,GSt 2 _~ 1976)_ 7
E.Dodge t~l 2 {1973,1976} 6

E.Halsnes - 4 {1976} 6

where S,GS and D denote Slalom, Giant-Slalom and Downhill respectively. We may want to
find the total number of races won by each group of skiers who compete in the same set
of race types and either

(a) had 1 or 2 injuries, and missed 1975 or 1976 seasons, or
(b) had 2 or 3 injuries, and missed 1976 or 1977 seasons.

The template relation is

TEMP: NO-OF-INJURIES MISSED-SEASONS
1975,1976
1976,1977

The query is SKIER<{2},{3,4},SUM5 >TEMP, resulting

RACE-TYPES NO-OF-INJURIES MISSED-SEASONS

!S,G~} 1,2 1975,1976
S,GS 2,3 1976,1977

i~l 1,2 1975,1976
2,3 1976,1977

TOTAL
7
7

null
null

Note that the tuple for skier I.Stenmark belongs to two partitions whereas the tuples
for E.Dodge and E.~alsnes do not belong to any partition.

3.2 Pack, Unpack and Set Formation Operators

In this section we give operators that change the nesting depth of attributes in
a relation.

Pack: Let R be a relation with IAtr(R) I=n, A~Atr(R) and CA=Atr(R)-{A}. For each (n-
I)-tuple g in IIc (R), an n-tuple Wg is defined as follows. .

A

{t[A] It~R "t[CA]=g} if A is an atomic attribute

{x I (3t) (t(R " t rCA] =g 1\ x6t [A]) }

Then PA(R) = {Wglg IIc (R)}.
A

otherwise.

The pack operator PA(R) maps (packs) sets of tuples in R, whose n-l components
for attributes in CA are the same, into single tuples. The CA-component of the packed
tuple is the same as the C -component of those tuples that are packed. The A-value of
the packed tuple is the se~ of A-values of the corresponding tuples if A is an atomic
attribute in R. If A is a nested attribute in R then the A-value of the packed tuple
is the union of A-values of the corresponding tuples. The pack operator is similar to
one-attribute nest operator described in [Jaes 82].

Unpack: Let R be a relation with attributes Atr(R), A Atr(R), and CA=Atr(R)-{A}. For
each tuple t R, a set of tuples UA({t}) is defined as follows:

207

Then UA(R) =!JRUA({t}).

If A is a nested attribute, UA(R) maps each tuple t in R into a set of tuples
such that each element in t[A] becomes the A-value of one of the resulting tuples and
the tuple components for the attributes C are the same as t[CA]. If A is an atomic
attribute then UA(R)=R. The unpack operat~r is the same as the unnest operator in
[Jaes 82].

Set Formation: Let R be a relation with attributes Atr(R), A~Atr(R), and CA=Atr(R)
TAT. Then

[R if A is a nested attribute

l{ t'" I (?it) (t£R " t'" [A] ={ t [A]}" t'" [CAl =t [CA]) } otherwise.

This is a trivial operator. If the attribute A is an atomic attribute, for each
tuple of R, ~ (R) replaces the tuple component for A by its singleton set. If the
attribute A i~ nested, ~A(R)=R. The set formation is required for other extended alge
bra operations.

3.3 The Standard Relational Algebra Operators

The relational algebra operators [Codd 72] include cartesian product, project,
select, join, set union, set intersection, set difference and quotient. The cartesian
product (xl and project (n) apply directly to nested relations. For the union (U), the
intersection (n), the set difference (-), and the quotient (~) the corresponding
attributes in both relations must have the same nesting depth (i.e. both of the ith
attributes in the two relations are atomic or both are nested). The selection opera
tor, the natural join and a-join [Codd 70, Ullm 82] of two relations can be extended
to nested relations with minor modifications [OzsO 83]. Recently a new operator
called natural join by intersection has been introduced for nonfirst normal form rela
tions [Jaes 82]. This operator also applies to nested relations without any modifica
tion.

3.4 Basic Set of Extended Algebra Operators

Basic set of operations of the extended algebra include the five basic operations
of the relational algebra (union, set difference, cartesian product, selection and
projection) extended for nested relations, and the operators aggregation-by-template,
pack and unpack. All other operators can be expressed by the above eight operators
and the aggregation-by-template in this basic set of operations can be replaced by the
aggregate formation to obtain another basic set of operations [Ozso 83]. The algebraic
laws involving the aggregation-by-template and other operators of the extended alge
bra, which are useful in query optimization, along with their proofs can be found in
[OzsO 83].

4. ARITHMETIC CAPABILITIES

When dealing with summary data, arithmetic operations are frequently used. For
example, we may want to tabulate the difference in sum salaries of employees by divi
sions and departments with respect to years 1981 and 1982, given the 1981 sum salaries
and the 1982 sum salaries of those employees. As another example, we may want to tabu
late sum salaries of employees multiplied by a constant for security reasons. For such
operations, we add arithmetic capabilities to the algebra extended for nested rela
tions. These arithmetic capabilities are limited since we use as operands of arith
metic expressions only components of the same tuple in a given nested relation. Note
that the query language, SQL [Cham 1976] of System R [Cham 1981] allows arithmetic
operations in much the same way (i.e. in SELECT clause of SQL) •

Let R be a relation with Atr(R)~X={Xl' ••• 'X } and Y=Atr(R)-X.
arithmetic expression involving +, -~ I, * as op~rators and Xi X as

208

Let g be a valid
operands. Then

R<g(X» = {t[Y]oylt~R A y=g(t[X])}

where g(t[X]) denotes g(t[XI], t[X 2] , ••• ,t[X]). Note that if R is degree n, lyl=k<n
then the result of R<g (X) > 1S of degree k+l. nA,lso, if t [Xi] is null for some i, I<I<r
then g(t[X]) is also nUll.

s. OPERATIONS ON SUMMARY TABLES

In this section we describe operations involving nested relations, primitive and
complex summary tables. Basically, these operations facilitate utilization of the
algebra of nested relations for summary table manipulation. Due to space limitations,
only brief descriptions are included in this paper. Formal definitions of the opera
tors and examples can be found in [OzsO 83].

Primitive Summary Table Formation: This operation produces a primitive summary table
from a nested relation. Let R be a nested relation, Atr(R)=XUYU{C} where X and Yare
disjoint sets of attributes, C is an atomic attribute and the f.d. ~Y->C holds in R.
Then

ST(T T C)(R)
r' c'

produces a primitive summary table whose row and column category attribute trees are
T =(X,E) and T =(Y,E) respectively and whose cell attribute is C. E and E are sets
of ordered edge~ suchCthat each of T and T is an ordered chain of a£tribut~s in X , r c
and Y respectively. The primitive summary table formation maps each tuple in R into a
cell instance in the summary table produced. This mapping is one-to-one.

Let S=ST (T ,T ,C) (R) where Atr (R) =X Y {C}, 'and vertex sets of Tr and Tc are X and

Y respectively.r Le€ x and y be ordered sets of values (vertices) in some instances of
Tr and T in R respectively. If there is a tuple u in R such that u[X]=x and u[Y]=y
then u[cY is the cell attribute value of the cell instance in S whose category attri
bute values are x and y respectively. If there is no such tuple in R then the cell
attribute value is null ('-') which stands for "nonexistent". The f.d. XY->C in R
guarantees that there is at most one cell attribute value in S for each cell. In addi
tion, if the e.j.d. *(X,Y) holds in R then the mapping between tuples of R and cell
instances of S is one-to-one and onto. That is, there is no cell instance, with' ,

• cell value, in S unless there are tuples in R whose C components are '-'

· Relation Formation: Let S be a primitive summary table where X and Yare row and
column category attributes and C is the cell attribute, Xny=¢. Then REL(S) produces a

• relation R where Atr(R)=XUYU{C} and for each cell in S, there is a tuple t in R such
,that t[X] and t[Y] are the same as the row and the column category attribute values of
the cell and t[C] in the cell attribute value of the cell. The mapping between cell
instances in S and tuples in R is one-to-one and onto. That is, if R=REL(S) then the
f.d. XY->C and the e.j.d. *(X,Y) hold in R.

Concatenation of Primitive Summary Tables: Let Sl(FrI,F 1,Al) and S2(Fr2,Fc2!A2) be
two summary tables, where F 1 and F 2 are not nUIl. If r l=F 2 and all tree 1nstances
of F are the same as all €ree ins€ances of F 2 (denotea F rTF) then a larger sum
maryrtable can be obtained by concatenating Slrand S2 such £~atrthe resulting summary

,table has F iF ITF 2 as row category attribute forest~ and has column category attri
bute forestrF rwhibn is obtained by concatenating F 1 and F 2. We call this operation
column-concat~nate summary tables Sl and S2' denoteS as c

CC (Sl' S2) •

The column-concatenate CC(Sl,S2) produces a summary table S(F ,F ,A) where F ~F lTF 1
and F TF 10 F 2 (0 denotes concatenation of ordered sets). InStaHces of Fe ift Srarec

the s~mecas i5stances of F 1 in Sl and instances of F in S are obtained oy con
catenating instances of F ~ in S1 and instances of F ~ in S2. A is an ordered (multi)
set of cell attributes ob€ained rrom Al and A2 such €nat for each cell X in S, if X is
in Sl the cell attribute of X is the same as that in Al , otherwise it is the same as
that in A2 •. If F 1=Fr2=¢ then Fr =¢. The column concatenate CC(Sl,S2) is undefined if
Fcl or Fc2 1S nuiI.

Similarly, if F land F 2 are not null and Fcl~Fc2 then row concatenate summary
tables Sl and S2' defioted r

209

RC(SI,S2)

produces a summary table S(F ,F ,A) where F ~F 10F 2' F ~F I~F 2 and A is obtained as
described above. r c r r r c c c

Extract Summary
column category
be a tree in Fr

Tables: Let S(F ,F ,A) be a summary table where F
attribute forests gndcA is the ordered set of cell
and T be a tree in F .c Then

c c

EX (T T) (S)
r' c

and F are row and
attriButes. Let Tr

produces a summary table whose row and column category attribute forests are T and T
respectively, and whose cell attributes and those attributes in A correspondiftg to TC

and T • Instances of T and T in S are also the instances of theCrow and the column r
categ8ry trees of in t~e resulting summary table. Every cell in S whose row and column
category attributes are root-to-Ieaf paths in an instance of T and in an instance of
T in S is also in the resulting summary table and the cell attribute value is the
s~me as that of the corresponding cell in S.

The extract summary table operation is in a sense the inverse of concatenate sum
mary table operation.

Attribute Splitting: Extended relational algebra operates on nested relations. Given a
primitive summary table the corresponding nested relation can be obtained by operation
REL as discussed before. Given a summary table whose row and column category attribute
forests are ordered sets of chains, its primitive summary tables can be extracted by a
sequence of extract operations. However, in order to decompose an arbitrary summary
table into a number of primitive summary tables, operations which will transform row
and column category forests into sets of chains are required. The following opera
tions,row-split and column split, are defined for this purpose. These operators take
the.attribute to be splitted and the summary table as arguments, and produce a summary
table whose row (or column) category attribute tree has the specified attribute split
ted.

Attribute Merging: Given a nested relation, summary table formation operator produces
the corresponding primitive summary table. Using concatenate operators, two or more
primitive summary tables can be combined to obtain larger summary tables. However,
category attribute forests of such summary ·tables always are some ordered sets of
chains. In a category attribute forest of a summary table, suppose root attributes in
two trees have the same instances. It may be desirable to merge these attributes into
a single attribute. Similarly, when two attributei having the same parent in a tree
also have the same instances it may be meaningful to merge them into a single attri
bute. ~he two operations, row-merge and column-merge are defined for this purpose.
These operators take the attributes to be merged and the summary table as arguments,
and produce a new summary table whose row (or column) attribute tree has the specified
attributes merged.

6. CONCLUSION

In this paper, the relational algebra is extended for nested relations and for
aggregate functions so that it can be used for summary table manipulation. Nested
relations are used to represent a special case of summary tables, called primitive
summary tables. Primitive summary tables are in turn used as building blocks of sum
mary tables in general. A summary table manipulation language, based on the extended
algebra of nested relations, is discussed. Basically, a query on summary tables is
expressed in terms of (i)operations to transform summary tables into corresponding
primitive summary tables, (ii)operations to transform these primitive summary tables
into nested relations, and (iii)the extended algebra operations on these nested rela
tions. The summary table manipulation language discussed in this paper will be imple
mented underneath another screen oriented, relational calculus-based language, called
Summary-Table-By-Example [OzsO 82al. Further investigations will be done in the direc
tion of extending the relational calculus for aggregate functions [Klug 82] and nested
relations, and showing that the extended algebra and the extended calculus of nested
relations are equivalent in expressive power.

210

REFERENCES:

[Cham 76] Chamberlin, D.D. et. al., "SEQUEL 2: A Unified Approach to Data Definition,
Manipulation,and Control," IBM J. Research and Development, Vol 20, No.6,
1976.

[Cham 81] Chamberlin, D.D. et.al., "A History and Evaluation of System R," Comm. ACM
Vol. 24, No. 10, 1981.

[Codd 72] Codd, E.F., "Relational Completeness of Database Sublanguages," in Database
Systems, Courant Computer Science Symposia Series, Vol. 6, Englewood
Cliffs, Prentice Hall, 1972.

[Jaes 82] Jaeschke, G. and Schek, H.J., "Remarks on the Algebra of NonFirst Normal
Form Relations," Proc., ACM Symposium on Principles of Database Systems,
1982.

[Klug 82] Klug, A., "Equivalence of Relational Algebra and Relational Calculus Query
Languages Having Aggregate Functions," JACM, Vol. 29, No.3, July 1982.

[OzsO 82a] Ozsoyoglu, Z.M., Ozsoyoglu, G., "STBE--A Database Query Language for Mani
pulating Summary Data," Technical Report CES-82-2, Computer Engineering and
Science Dept., Case western Reserve University, July 1982.

[OzsO 82b] Ozsoyoglu, G., Ozsoyoglu, Z.M., "SSDB--An Architecture for Statistical
Databases," Technical Report, CES-82-11, Computer Engineering and Science
Dept., Case western Reserve University, October 1982.

[OzsO 83] Ozsoyoglu, Z.M., Ozsoyoglu, G., "An Extended Algebra of Nested Relations.
for Summary Tables," Technical Report, CES-83-3, Computer Engineering and
Science Dept., Case Western Reserve University, March 1983.

[Ullm 82] Ullman, J.D., principles of Database Systems, Second Edition, Computer Sci
ence Press, Potomac, MA 1982.

[Uslb 80] Bureau of Labor Statistics, "Table Producing Language System," Version 5,
Washington, D.C., July 1980.

211

How Baroque Should a Statistical
Database Management System Be?

Frank Olken

Computer Science and Mathematics Dept.
lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

ABSTRACT

How elaborate should the functionality, data types,
and data models of a statistical database management sys
tem be? In this paper we consider several criteria to be
used in deciding the matter: efficiency, data semantics,
standardization, integrity , security, and useability. On
the basis of these criteria we construct a taxonomy of
proposals for enhanced functionality of statistical data
base management systeDli.

1. Criteria for ExtensiolL'l

The first generation of DBMS research was built
around the relational data model paradigm Recent years
have seen a growing interest in more elaborate data
models in many areas, e.g. entity-relationship models,
aggregation operators, and new data types to support
CAD/CAM systems. In this paper we are concerned with
the question of how far designers of statistical database
management systems (SDBMSs) should proceed in the
direction of more elaborate (baroque) functions and data
types in SDBMSs. Six basic types of criteria for judging
the desirability of such enhancements will be considered:

(1) efficiency

(2) data semantics

(3) standardization

(4) integrity preservation.

(5) security

(6) useability

On each of these grounds it appears that substan
tially more elaborate database management systems are
warranted than presently exist. In a few areas
simplifications appear possible.

In certain respects this paper parallels that of
Shoshani [ShosSl]. However, the papers have different
purposes. Shoshani's paper was intended as a tutorial,
this paper is intended primarily as a taxonomy. Whereas

Issued as LBL report LBL-15765(rev.)

This work was supported by the Director, Office of Energy
Research, Office of Basic Research Sciences, Division of En
gineering, Mathematical and Geosciences of the U.S. Department
of Energy under Contract DE-AC03-76SF00098.

212

Shoshani was heavily concerned with describing the
characteristics of statistical databases and their prob
lems, we are primarily concerned with constructing a tax
onomy of the many possible enhancements which could
be included in statistical database management systems
according to the criteria by which they are justified. We
have attempted to truncate the discussion of topics
treated extensively by Shoshani, such as physical organi
zation and security.

Throughout the paper we generally compare
SDBMSs to commercial DBMSs (CDBMSs) rather than
statistical analysis systems.

2. Efficiency

One obvious consideration is efficiency of the com
putation. Operations should be .integrated into the
SDBMS if they can thereby be more efficiently per
formed. There is a cost associated with moving data into
and out of the SDBMS. Hence it is typically worthwhile
to move computationally simple operations into the
SDBMS.

In general operators which are data intensive,
rather than computationally intensive, are plausible can
didates for incorporation into the SDBMSs. Thus opera
tors such as sorting or ranking may be appropriate to
include in a SDBMS, while a computationally intensive
iterative maximum likelihood procedure such as Cox
regression would gain little in efficiency by inclusion
within a SDBMS. Similarly, there seems little to be
gained in terms of efficiency by including graphics capa
bilities within the SDBMS.

2.1. Sampling, Subsets and Versions

Various types of sampling operations (simple ran
dom sampling with and without replacement, stratified
sampling, etc.) are clear candidates for inclusion into the
SDBMS. It makes no sense to extract an entire set of
data from a SDBMS in order to take a 1% sample.

It has been observed that statistical data analysis
tends to generate numerous subsets or versions of the
data as the analyst discards outliers, or focuses attention
on "interesting" subsets. Decisions must be made as to
how to store the various versions and subsets of the data.
Redundant storage offers fast access to subsets at the
potential cost of increased total storage requirements.

•

Some systems (e.g. [Burn83]) have opted for "virtual
subsets". Finding the useful subsets which might
accelerate query response has been addressed in
[Fink82].

2.2. Ordering and Aggregation

Traditionally, arithmetic operators and sorting
have been provided in conventional database management
systems (DBMS). The aggregation operators (MIN,
MAX, SUM, COUNT, AVG) which have been included
in conventional DBMSs exhibit simple computation struc
tures. These aggregation operators distribute easily over
set union operations. Thus, for example, the minimum of
A union B is min(min(A),min(B». Hence these "incr~
mental" aggregation operators can be easily moved within
the query computation strategy and lend themselves to
parallel evaluation. If the number of groups for which
aggregations are being computed is small (Le., fits within
memory) then all of the statistics can be computed in a
single pass over the unordered raw data set. Other statis
tics (such as median) effectively require that we first sort
the raw data by group and then process one group at a
time. Klug [Klug82] has argued, that integrating aggr~
gation and output ordering during query evaluation can
reduce costs.

Some authors [SwarS3] have suggested that users
be supplied with a simple programming language rather
than a set of aggregation operators, citing better flexibil
ity. While such a proposal has merits, we tend to favor
the provision of at least a library of commonly used
aggregation operators. One problem with user-written ad
hoc aggregation operators, is that they may require non
trivial code analyses by the query optimizer to determine:

(1) opportuni ties to exploit parallelism or al ternati ve
orderings of the data.

(2) opportunities to infer some aggregate statistics
from other previously computed statistics as in
[Rowe81].

(3) procedures for maintaining integrity of aggregated
data when underlying data is altered.

Certainly, some of the these problems can be eased by
careful design of the user aggregation language.

2.3. lag and Binning

Other related candidate operators for inclusion in
SDBMSs on efficiency grounds include lAG operators
which return the preceding element of sequences or time
series, and BIN operators which convert continuous
domains into discrete domains for histogramming and
contingency table analyses [Iked81].

2.4. Abstract Data Types

Efficiency considerations may limit the utility of
abstract data type mechanisms for extending SDBMSs
[Ston82]. Too much hiding of the internal structure of
abstract data types may preclude effective query optimi
zation. It may be more useful to think of new data types

213

as views, Le., as constructions which are translated dur
ing query parsing into elementary data management
operations.

2.5. Pbysical Organization

As discussed in [Shos81] and the references cited
therein, SDBMSs lend themselves to data compression,
array linearization access methods, and vertical partition
ing of relations. The static nature of many statistical
databases suggests that it may be practical to keep redun
dant, differently transposed copies of the data to improve
the efficiency of retrievals.

2.6. Storage Hierarchy Management

Typical CDBMSs manage a two level storage
hierarchy: disk and main memory. DBMS designers
[Sacc82] have argued that the DBMS should control the
buffering and caching of disk pages rather the operating
system. Similarly, in distributed DBMS designs one typ
ically wants the DBMS to have explicit knowledge of the
locations of various relations (or copies) to facilitate
query optimization.

In contrast to CDBMSs which typically manage
two-level storage hierarchies, SDBMSs will often have
thr~level storage hierarchies. The tertiary store may be
comprised of an automatic tape library, a magnetic mass
store, or an optical disk juke box. We think it likely that
the SDBMS will want to explicitly manage the movement
of data between secondary (disk) and tertiary (e.g. tape)
storage, rather than treating all secondary and tertiary
storage as a giant black box to be managed by the operat
ing system. We expect that information on the location
of data within the storage hierarchy may be incorporated
into the query optimization process in a manner akin to
that used in distributed DBMS query optimization .

3. Data Semantics

Unannotated data is useless. Inadequately anno
tated data may be worse than useless, it may be mislead
ing. Hence the ability of a database management system
to adequately capture the semantics of the data it con
tains is a fundamental criterion for judging the accepta
bility of database management systems. Thus the
specification and management of metadata has been a
major research area in SDBMSs. We contend that such
metadata should include statistically important semantic
information.

3.1. Data Models

The classical relational data model is concerned
with sets of records, which are in turn composed of
fields. Other common data models (hierarchical and net
work) are also concerned with sets of records. These
models are sometimes inadequate for statisticians, who
are often concerned with sequences, time series (uni
formly spaced sequences), and bags (i.e., samples which
may contain multiple instances of the same value). The
objects which comprise these sequences, time series and

bags are often vectors or matrices. Sets of records are
not enough. Some statistical analysis systems (SAS
[Helw79], EPS [WanS2], S [BeckSI]) have begun to
provide more elaborate data structures and data types.
Typically they have weak data management facilities,
e.g., requirements that the data structures fit into
memory, weak query languages, and little or no query
optimization.

3.2. Summary Data

Summary (or aggregated) data is commonplace in
statistical databases [ShosSl] , [GeySI]. A considerable
amount of work has been done in modelling this kind of
data [JohnSlb], [KrepS2], etc. Such work has been
motivated by three reasons. One is simply to adequately
convey the meaning and inter-relationships of various
datasets. Modelling summary data can also aid
efficiency of query answering (as noted above), facilitate
the framing of queries, and permit automatic mainte
nance of consistent derived data in the presence of
updates (as discussed below). This has been one of the
most intensively studied areas of statistical database
management.

3.3. Statistical Models

For some statistical databases much of the data
will be estimates of the values of parameters of statistical
models, e.g. regression coefficients, distributional param
eters, etc. For such data to be meaningful it is important
that the corresponding statistical model be recorded in
the SDBMS. In contrast to the recent attention given
summary data (very simple nonparametric statistics),
much less attention has be given to representing, index
ing, retrieving or manipulating statistical models. An
exception is EPS [WanS2]. Examples of statistical
models range from simple fitted probability distributions
to general nonlinear regression models. The estimated
parameters of these models are useless without the distri
bution or terms of the regression model to which they
refer.

3.4. Samples and Subsets

Earlier we discussed efficiency considerations of
sampling and subsetting operations, here we are con
cerned with semantic aspects of specifying samples and
subsets.

3.4.1. ~Ie Design

For some types of statistical analyses it is impor
tant to know whether the data constitutes the entire popu
lation, a simple random sample, or a more complex sam
ple. Administrative records usually include the entire
population of interest, scientific data are often simple
random samples, while social science data are frequently
the product of complex sample designs used to minimize
the cost and sampling errors of the study. See [Coch77].

Some of the sample designs used are:

214

(I) stratified sampling

(2) inulti-stage clustered sampling

(3) attribute based sampling

The sample design affects how certain summary
statistics are calculated and the estimation of sampling
errors. Hence the sample design needs to be recorded in
the metadata in a manner accessible to both humans and
programs. The PSALMS procedure in the OSIRIS IV
statistical analysis package [Van79] has provisions for
describing and analysing complex samples. However,
OSIRIS does not provide any means of storing the sam
ple design with the data. Few other statistical analysis
or database management systems have any provisions for
dealing with sample designs. The HODM system pro
posed in [OzsoS2b] provides for specification that one
dataset is a sample of another, but it is unclear how one
goes about specifying the structure of a complex sample.

3.4.2. Subsets

Often the analyst will extract subsets of data from
larger datasets for analysis [ThomSI]. One would like to
record the fact that one data set is a subset of another,
and perhaps record the predicate (query) used to select
the subset.

3.5. Graphics

We believe that it will be desirable to be able to
store the specifications of graphs i!1 the database. One
reason for doing this is to provide standardized graphics
to permit comparability. Examples include [OzsoS2b]
and [RTIS3]. However, we do not believe it is necessary
to integrate entire graphics packages into the SDBMS.
They could instead be applications programs which call
the SDBMS.

3.6. Level of Measurement

It is not enough to know that a data i tern is an
integer. We also need to know the level of measurement
of the data item, i.e., whether the integer represents a
nominal (unordered categorical) variable, an ordinal
(ordered categorical) variable, or an interval (metric)
variable. The types of statistical operations which make
sense depend on the level of measurement as well as the
data type. It makes no more sense to compute the average
religion of a population, than to compute the average
name. Yet most data management systems will compute
the average religion if religion has been coded as an
integer. This HODM system proposed in [OzsoS2b]
includes mechanisms for specifying the level of measure
ment.

3.7. Units of Measurement

Similarly, it has been recognized that SDBMSs
should record the units of measurement of the data and
provide automatic conversion where necessary
[SparS2], [McCaS2b]. Clearly, if we want to compare
two measures of length we need to take note whether they

are recorded in feet or meters. Pure unit conversions
(e.g. inches to centimeters) convert between different
measures of the same property. These conversions are
invariant with respect to context.

However, the choice of preferred units may vary
from application to application. In some (nonlinear) sta
tistical models, the choice of units (Le., scaling factors)
may affect the conclusions, as in the case of multi
dimensional scaling or clustering. Hence it may be
necessary to specify the units (scaling) for variables in
statistical models, as well as data in the database.

Some unit conversions, such as force to mas~ (e.g.
pounds to kilograms), or volume to density (e.g. bushels
of wheat to tons of wheat or barrels of oil to tons of oil),
vary with the context in which they occur. They are
actually inferences of one property from another. Such
inferences depend upon other properties of the entity, or
assumptions about the context in which the conversion
occurs. Thus converting the volume of oil to mass of oil
depends on the type of oil, and the temperature of the
oil. Currency conversions may depend on the time and
place at which the conversion is presumed to occur.

Default procedures for such inferential conversions
might plausibly be specified in the metadata description
of an entity or perhaps inherited from a more general
class of which the entity is an instance. Such default
procedures could be explicitly overridden in the query
specification if necessary. Conversion procedures might
include parameters which could be bound during query
evaluation, such as temperature.

3.8. Coordinate Systems

Another common type of data conversion is
between different coordinate systems (e.g. from polar to
Cartesian or between different frames of reference). In
contrast to unit conversions, which are typically scalar
operations, coordinate transformations are usually opera
tions on vectors. Frames of reference may vary with the
object referenced or with time. Coordinate conversions
arise in physics, astronomy, and geodesy.

3.9. HulD8llly-Interpretable Metadata

Thus far we have argued for the necessity of
including machine interpretable metadata to assure that
only statistically meaningful operations are applied to the
SOB MS. In addition one will often want to include
information intended for human interpretation concern
ing the meaning of the data. Such annotations may
include bibliographic citations concerning experimental
techniques, the quality of the data, etc. While the
SOBMS need only know that it should not add apples
and oranges together, the user may want to know how to
tell the difference.

In practical terms, this suggests that although the
SOBMS will be primarily concerned with numeric data,
provisions for managing text will be necessary. For
example, if it is discovered that a particular experimental
procedure or instrument produces unreliable results, one

215

might wish to determine all of the datasets which use
that procedure or instrument. Automatic propagation (or
inheritance) of footnotes will be desirable, so that impor
tant caveats do not get lost during data analysis or aggre
gation.

4. Standardization

Statistical databases are often composed of data
from diverse sources. The diversity of sources often
results in a diversity of terms, codes, and formats for
similar or even identical items. Inconsistent codes or
formats may preclude comparability of data domains.
Examples include inconsistent formats for specifying
dates, and different sets of abbreviations for states.
Hence it is important to provide mechanisms to facilitate
the standardization of the data and the metadata which
describes it.

Code and format conversions, like unit conver
sions, should be provided automatically by the SOBMS.
Provisions need to be made in the metadata specification
to specify the base (canonical) type (e.g. states) and
mappings ("views") between variant and canonical sets
of codes or formats. Type generalization and inheritance

, mechanisms [Smit77], [Sat081],[KrepS2] and libraries of
standard type definitions can be used to facilitate stan
dardization.

S. Integrity

Assuring the integrity (Le., correctness or at least
consistency) of a database is important for both commer
cial and statistical OBMSs. Below we discuss some
salient SOBMS integrity issues: derived data, con
currency control, and statistical input validation.

S.l. Derind Data

Much of the data in a SOBMS may be derived
data - aggregations, descriptive statistics, model parame
ter estimates, etc. If one wants to maintain the con
sistency of the derived data with the underlying raw data
across updates, then one will have to tell the SOBMS
about the relationship of derived data to raw data
[KoenS I]. Such consistency is a kind of integrity con
str8.int on the database. It seems clear that the responsi
bility of maintaining such consistency should be
entrusted to the SOBMS, not to some external analysis
package or to the user. Alternatively one can think of
derived data as a type of view of the database. Preserv
ing the consistency of the derived data is thus akin to
updating views, Le., one needs to store both some sort of
definition of the view and updating procedures.

A variety of strategies have been proposed, some
involving complete recomputation of the derived data
(possibly on demand), and some involving incremental
updating of derived data [KoenSl]. Whereas integrity
constraints are customarily specified individually for each
data domain, it would be very useful if the "view
specifications" of the derived data written in terms of
generic statistical operators could be used to infer the

consistency maintenance procedures. As noted above,
there has been considerable work on incorporating certain
simple types of summary statistics into the data models
(e.g. total sums and counts, averages, min, max). This
work needs to be extended to encompass more complex
parametric statistics. Thus, for example, one would want
the SDBMS to know about covariance operators, and the
appropriate procedures to update the covariance matrix
when the underlying dataset was modified
[KoenS!], [RoweS2].

The point is that maintaining the consistency of
derived data will require that. the SDBMS know about
statistical operators it would otherwise not need to under
stand. This is a strong argument for inclusion of a fairly
elaborate statistical analysis capability within the
SDBMS. Such a library of statistical analysis routines
has been proposed for the HODM system in [OzsoS2b] to
permit security analyses of queries.

5.1. Concurrency Control

Many statistical databases are fairly static, e.g.
updates may occur only monthly or more infrequently.
Most such updates append rather than modify data.
Furthermore, many statistical queries process a large por
tion of the records for a particular domain. This sug
gests that simpler concurrency control mechanisms which
lock domains may be more appropriate than the fine
grained record level locking found in some commercial
database management systems.

5.3. Statistical Input Validation

It is commonplace in CDBMSs to enforce integrity
constraints on the database by means of input validation
procedures, which are invoked before updates to the data
base are permitted. Typically such validation procedures
check that the input data are in allowable ranges, or
from allowable code sets. Users of SDBMSs may also
want to specify additional statistical input validation pro
cedures (e.g., outlier detection) to be used on the input
data. Thus if the data item is more than 2 standard devi
ations from the average for a domain, the data entry
clerk might be warned. More elaborate statistical con
sistency checks using regression equations might be used
on entire records to detect improbable combinations of
height and weight, job and salary, etc. This would
require some means of specifying such statistical con
straints and maintaining the distributional and regression
parameters.

6. Security

Often one wishes to permit statistical analyses of
datasets while precluding access to individual records so
as to protect the privacy of individuals. Common exam
ples include medical and census records. This has been
an area of intensive investigation. For overviews and
bibliographies see [DennS3] and [ShosSl]. Security con
cerns may have profound effects on the architecture of
the data management system. As Ozsoyoglu [OzsoS2b]

216

and others have noted, the data management systems
require considerable knowledge of the statistical pro
cedures being used in order to prevent insecure infer
ences.

7. Useability

Ease of use is the last criterion we will consider
for assessing SDBMS features. We examine both the

'user interface and the external interface to other software
systems.

7.1. User Interfaces

Useability requirements for SDBMSs are in some
ways more severe than for commercial DBMSs. Commer
cial DBMSs are typically used to process a few types of
transactions by personnel who perform many of the same
type of transactions daily. Such users tend to be familiar
with the data and often the transactions can be compiled
so that the user need only fill out an electronic form.

In contrast, the user of a SDBMS is often con
fronted by an enormous collection of data items (e.g. the
U.S. Census) of which he wishes to extract a small por
tion. Just finding the name of the data he wants may be
a major undertaking. Systems such as SUBJECT
[ChanSl] and SEEDIS [McCaS2a] have been created to
facilitate browsing.

Queries are often ad hoc and frequently involve
aggregation. A great deal of work
[KlugSla], [JohnS 1 a], [JohnSlb], [OzsoS2a] has been
done in providing query languages which support aggre
gation. It has been observed that richer semantic models
may permit simpler, terser queries. The CABLE language
[Shos7S] represents an attempt to exploit an entity
relationship model to permit implicit specification of
some joins.

The user may be a social scientist who is not
interested in becoming a computer expert. Systems such
as GUIDE [WongSl] have been created to provide simple
ad hoc graphical query interfaces. Forms-based query
languages for aggregative and summary tables queries
have been proposed in [KlugSl] and [OzsoS2b].

7.1. External Interfaces

CDBMSs tend to provide a query language, a pro
gramming language interface, and perhaps a report
writer. Loading and unloading databases and the atten
dant database conversion problems tend to be infrequent
occurrences performed by professionals. In contrast the
users of a SDBMS are often loading new databases into
the SDBMS from a wide variety of sources. They may
also need to move large amounts of data and the atten
dant metadata to and from statistical analysis, graphics
or data management systems. SDBMSs need to provide
tools which easily and efficiently permit users to do this.
Designers of statistical analysis and graphics packages
need to design reasonable interfaces. At present it is
often necessary to convert numeric data to ASCII charac
ter representation to exchange with other systems, a

fairly expensive operation. Metadata conversion is even
more clumsy.

8. Conclusions

We have proposed several criteria for evaluating
proposed enhancements of SDBMSs: efficiency, capturing
data semantics, standardization, integrity preservation,
security, and useability. We believe that these con
siderations justify substantial expansion in the data
types, data models, access methods, operators, metadata,
metadata browsing mechanisms provided by SDMSs over
those provided by typical present day commercial
DBMSs. Existing and proposed SDBMSs include some
of these features, none includes all.

We are not convinced that SDBMSs need to do
everything imaginable. We believe that specialized func
tions, such as graphics, may be built as application
modules which invoke the SDBMS. Furthermore,
SDBMSs may not require as sophisticated concurrency
control mechanisms as CDBMSs.

Much of what seems to distinguish the desired
SDBMS from present day commercial DBMSs is the
inclusion of much more intensionsal information (i.e.,
information specified by formula rather than enumera
tion). Examples include unit conversion procedures,
input validation procedures, statistical models, predicates
which define subsets, and definitions of derived data as
aggregations or samples.

9. Acknowledgements

The author is indebted to his colleagues Arie
Shoshani, Peter Kreps, John McCarthy, Harry K. T.
Wong, Fred Gey, and Paula Hawthorn for their com
ments and encouragement. Special thanks are due John
McCarthy for his extensive editorial assistance.

Beck81

Burn81

Bibliography

Becker, Richard A, and Chambers, John M.,
S. A Language and System for Data Analysis
, Bell Labs, Murray Hill, N.J. , 1981

Burnett, Robert A and Thomas, James J.,
"Data Management Support for Statistical
Data Editing and Subset Selection'" in
Proceedings of the First LBL Workshop on
Statistical Database Management, Lawrence
Berkeley Lab , Berkeley, 1981 ,pp. 88-102

217

Chan80

Coch77

Denn83

Fink82

Gey81

Helw79

Iked81

Chan, P., and Shoshani, A, "Subject: A
Directory driven System for Organizing and
Accessing Large Statistical Databases" in
Proceedings of the International Conference
on Very Large Data Bases (VLDB) , VIDB
Endowment , Saratoga, Calif. , 1980 , pp.
553-563.

Cochran, W.G., Survey Sampling. lrd ed. ,
Wiley, 1977

Denning, Dorothy E., "'A Security Model for
the Statistical Database Problem" in Proceed
ings of the Second International Workshop
on Statistical Database Management
Lawrence Berkeley Lab , Berkeley , 1983

Finkelstein, Sheldon, "Common Subexpres
sion Analysis in Database Applications'" in
Proceedings of the 1982 International Confer
ence on the Management of Data
ACM/SIGMOD, 1982, pp; 235-245

Gey, Fred, "Data Definition for Statistical
Summary Data or Appearances Can Be
Deceiving" in Proceedings of the First LBL
Workshop on Statistical Database Manage
ment , Lawrence Berkeley Lab , Berkeley ,
1981 ,pp. 3-18

Helwig, Jane T. and Council, Kathryn A,
(ed.) SAS User's Guide. 1979 Edition, SAS
Institute Inc. ,Raleigh, N.C. ,1979

Ikeda, Hideto, and Kobayashi, Yasuyuki,
... Additonal Facilities of a Conventional
DBMS to Support Interactive Statistical
Analysis'" in Proceedings of the First LBL
Workshop on Statistical Database Manage
ment , Lawrence Berkeley Lab , Berkeley ,
1981 ,pp. 25-38

John81a Johnson, Rowland, "Modelling Summary
Data" in Proceedings of the 1981 Interna
tional Conference on the Management of Data
, , 1981

John81 b Johnson, Rowland, ... A Data Model for
Integrating Statistical Interpretations" in
Proceedings of the First LBL Workshop on
Statistical Database Management, Lawrence
Berkeley Lab , Berkeley, 1981 ,pp. 17~189

Klug81 Klug, A, "Abe - A Query Language for Con
structing Aggregates-by-example" in Proceed
ings of the First LBL Workshop on Statisti
cal Database Management , Lawrence Berke
ley Lab , Berkeley, Dec. 1981 ,pp. 190-205

Klug82 Klug, Anthony, "Access Paths in the "Abe"
Statistical Query Facility" in Proceedings of
the 1982 International Omference on the
Management of Data, ACM/SIGMOD, 1982
,pp. 161-173

Koen81 Koenig, Shaye and Paige, Robert, "A
Transformational Framework for the
Automatic Control of Derived Data" in
Proceedings 1981 International Ccnference on
Very Large Databases , VLDB Endowment ,
Saratoga, Calif. , 1981 ,pp. 306-318

Krep82 Kreps, Peter, "A Semantic Core Model for
Statistical and Scientific Databases" in A
LBL Perspective on Statistical Database
Management, LBL-15393 , Lawrence Berke
ley Lab, Berkeley, 1982, pp. 129-157

McCa82a McCarthy, John, The SEEDIS Project: A
Summary Overview of the Social. Economic.
Environmental. Demographic Information
System , LBL-PUB-424 (rev.) , Lawrence
Berkeley Lab , Berkeley

McCa82b McCarthy, John, "Metadata Management for
Large Statistical Databases" in Proceedings
1982 International Ccnference on Very Large
Databases, VLDB Endowment, Saratoga,
Calif. , 1982, pp. 234-243

Merr83 Merrill, Deane, et aI., "Distributed Data
Management in a Mini-computer Network:
The SEEDIS Experience" in Proceedings of
the Second International Workshop on Sta
tistical Database Management , Lawrence
Berkeley Lab , 1983

Ozs082a Ozsoyoglu, Z.M., and Ozsoyoglu, G., "STBE
- A Database Query Language for Manipulat
ing Summary Data" , Technical Report CES-
82-2 , Computer Engineering and Science
Dept., Case Western Reserve Univ. ,July
1982

218

Ozso82a Ozsoyoglu, Z.M., and Ozsoyoglu, G., "SSDB
-- An Architecture for Statistical Databases" ,
Technical Report CES-82-11 , Computer
Engineering and Science Dept., Case Western
Reserve Univ. ,Oct. 1982

Rowe82 Rowe, Neil c., "Rule.-base Statistical Calcu
lations on a " Database Abstract"" in
Proceedings of the First LBL Workshop on
Statistical Database Management , Lawrence
Berkeley Lab, 1982, pp. 163-175

RTI83 RTI, INGRES GBF (Graph by Forms) User's
Guide , Relational Technology Inc. ,Berke
ley, 1983

Sacc82 Sacco, G. M., and Schkolnick, M., " A
Mechanism for Managing the Buffer Pool in a
Relational Database System Using the Hot
Set Model" in Proceedings of the Interna
tional Ccnference on Very Large Data Bases
(VWB) , VIDB Endowment , Saratoga,
Calif. , 1982

Sat081 Sato, Hideto and Hotaka, Ryosuke, "For
Large Meta Information of National
Integrated Statistics" in Proceedings of the
First LBL Workshop on Statistical Database
Management, Lawrence Berkeley Lab , 1982
,pp. 206-223

Shos78

Smit77

Spar82

Ston82

Shoshani, Arie, "CABLE: A Language Based
on the Entity-Relationship Model" in
Proceedings of the International Ccnference
on Databases. Improving Usability and
Responsiveness , Jerusalem , also as VCID-
8004 , Lawrence Berkeley Lab , August 1978

Smith, J.M., ,and D.C.P. Smith, "Database
Abstractions: Aggregations and Generaliza
tion" , ACM Transactions on Database Sys
tems. vol. 2, no. 2, pp. 105-133

Sparr, Ted M., "Units and Accuracy in Sta
tistical Databases" in Proceedings of the
First LBL Workshop on Statistical Database
Management , Lawrence Berkeley Lab, 1982
,pp. 59-60

Stonebraker, Michael, " Application of
Artificial Intelligence Techniques to Database
Systems" , UCB/ERL M82/31 , Electronics
Research Lab, U.C. Berkeley , Berkeley ,
May 1982

"

•

Swar83 Swartout, Don, "How Far Should· a Database
System Go? (to Support a Statistical One)"
in Proceedings of the Second International
Workshop on Statistical Database Manage
ment, Lawrence Berkeley Lab, 1983

Thom81 Thomas, James, et ai., "Data Editing on
Large Data Sets" in Proceedings of the 13th
Symposium on the Interface: Computers and
Statistics William F. Eddy (cd.) , Springer
Verlag, 1981

Van79 Van Eck, Neal A, et aI., OSIRIS IV User's
Manual. 4th edition , Institute for Social
Research, Univ. of Michigan, Ann Arbor,
Michigan, May 1979

Wank82 Wanka, Jane, et aI., EPS Plus Resources,
Data Resources Inc. ,1982

Wong82 Wong, H.K. T., and Kuo, I., "A Graphical
User Interface for Database Exploration" in
Proceedings of the International Conference

'on Very Large Data Bases (VWB) , VIDB
Endowment, Saratoga, Calif. , 1982

219

How Far Should a Database System Go?
<to Support a Statistical One)

Don Swartwout

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This note discusses some issues that were addressed in adapting a prototype
database management system to enable it to supply data to a statistical system.
The issues include the choice of statistically-oriented features for the database
system, the "right" way to do aggregate computations, and some side effects of
decisions that were made in this case.

In mid-1981 I was working on an experimental
database management system intended to support
distributed query processing in the UNIX· operating
system. The database system, known as Datastream, was
about six months old and working in rough prototype form,
but the high-speed network and distributed database
applications that would have been required to give it a
serious test had not materialized as expected. However,
several non-distributed, predominantly statistical
applications were available, and I decided to try
Datastream on their data. About the same time I met
John Chambers, an originator of the S system for data
analysis [I I. Discussions with him quickly made it clear
that both systems would benefit from an interface that
would permit Datastream to extract interesting data sets
from a large database and pass them to S in a convenient
way. Details of the physical transfer of data and control
between the two systems were easily arranged; several
more-or-Iess equivalent schemes have been implemented
since then. Datastream's repertoire of functions was not
adequate to support its new users, though, so a variety of
enhancements were made. This note outlines the issues
that had to be addressed as Datastream was modified to
support statistically-oriented queries. The discussion covers
two facilities, both present in S, that were added to
Datastream, and several others that were not. Some
impressions of what makes·a feature appropriate for use in
the database system are given.

A few words of background information on data
analysis in a UNIX environment are in order. Large scale
statistical databases seldom exist in such an environment.
I take "large scale" to mean something like a hundred
megabytes or more. Data analysts working in UNIX
systems typically negotiate for data from other sources. A
common arrangement involves a member of a data
processing staff, who writes and runs an ad-hoc program to
extract and re-format a subset of some database. The
output is put on a magnetic tape, which is read and re
formated again on the UNIX system. If enough data is

• UNIX is a trademark of Bell Laboratories

220

involved, or if the data is sufficiently complex, it may be
stored in a UNIX database constructed from scratch to
support the analysis. The analyst usually has complete
control of the data after it arrives from the remote source;
if he or she is not satisfied with the way it is structured, a
new structure can be tried. The volumes of data involved
are seldom large enough to seriously impede the analyst's
ability to restructure it. For example, S normally supports
data sets of up to a megabyte effectively; Datastream has
been used to store databases of up to fifteen megabytes.

Datastream supports a variant of the entity-relationship
data model [21. The query language is a blend of ideas
from UNIX programming and relational database
languages. By comparison with most relational query
languages, it has a procedural flavor. For example, the
following Datastream queryt selects certain rows from a
table of data on telephone customers and prints the values
of certain attributes.

get each Customer
such that num_calls > 17

print num_calls, mostJecent_bill ;

The keyword print introduces a list of expressions whose
values are computed, forma ted appropriately and "printed"
as a stream of bytes that can be saved in a file, displayed
on a terminal or line printer, or passed as input to another
program (S, for example).

The first change made to support analytical data was
the introduction of conditional expressions. A conditional
expression consists of a condition and two e~pressions. If
the condition is true, then the first expression is evaluated
and its value becomes the value of the conditional
expression. If the condition is false, the value of the other
expression is used. Such expressions have many
applications in statistical queries. For example, the
following example converts arbitrarily-designated numbers
into intelligible strings:

For simplicity in this note, Datastream syntax will be modified slightly,
and examples will de&J only with single entities (i.e. flat files).

•

get each Customer
print if (sex - 0) then "MALE" else "FEMALE" ;

Datastream is written in C [3], and it uses native
arithmetic and comparisons. This makes arithmetic fast
and easy to program, but it exposes the query writer to
problems such as division by zero. Conditional expressions
allow the query writer to guard against such operations,
since only the selected expression is actually evaluated.
For example, to compute customers' average length of
telephone calls, in the presence of customers who made no
calls, one can write:

get each Customer
print

if (num_calls > 0)
then total_time Inurn_calls
else 0;

The second enhancement was on a larger scale: the
addition of support for aggregate computations. When it
was conceived as a system for distributed query processing,
Datastream did not appear to need more than the ability to
do simple arithmetic on the values in a single record (e.g.
conversion from English to metric units). However,
aggregate operations such as sums, counts, and so on
proved to be necessary to support . statistical applications.
The principal design decision involved was that Datastream
would not support specific aggregate functions. Instead, it
would have a general facility for iterative computations
that would support the usual aggregate functions and a
wide variety of others as well. For example, the following
counts customers and finds the average, maximum, and
minimum number of calls.

initialize count = 0, total_calls ~ 0,
max_calls - 0, min_calls - 0;

Collect each Customer
count = count + I,
total_calls - total_calls + Customer.num_calls,
max_calls -

if (Customer.num_calls > max_calls or count - 1)
then Customer.num_calls
else max_calls,

min_calls =

then

if (Customer.num_calls < min_calls or count = 1)
then Customer.num_calls
else min_calls,

print count, total_calls / count, max_calls, min_calls;

The first line of the query consists of initializations. It
is execute<! once. Then the list of assignments between
collect and tben is executed for each row in the Customer
table. Finally, the print operation is performed.

A common impression of this example is that the query
writer has considerably more to say than he or she would if
the language supported such expressions as

count (Customer), mean (Customer .calls), ...

Furthermore, the query has a strong programming flavor.
The user must understand the initialization and the
programming-language-style assignments, and so on.

Both of those impressions are true, but it is also true
that a large percentage of the data analysts Datastream

221

supports are experienced (if not always sophisticated)
programmers. They seldom have trouble with the
computational portions of the programs they write;
input/output causes most of the problems for data analysts
who write programs. That is, the programming aspects of
writing Datastream queries are mostly limited to a set of
constructs that analytical users find easy enough to handle.
Users have not objected to the size of their queries, either;
I object to voluminous queries more than they do.
Furthermore, an analysis often involves running a
succession of queries that differ only in small respects such
as the values of certain constants or the structure of certain
conditions. Query sequences like this are usually created
by writing the first from scratch and then editing a little to
produce the others.

The most important advantage of a general facility as
opposed to built-in functions is that it provides a
considerable increase in computational power without a
major increase in the basic constructs of the language.
Datastream's aggregate computation facility required two
new types of control flow: initialization statements and the
collect _ .• tben style of iteration. No new operators,
expressions, or other notations were required. As it turned
out, it was necessary to overhaul the system's internal
mechanism for handling variables, but this was invisible to
query writers. In the following query, initialization and
collect ..• tben are used to compute a stratified sum.

initialize morning_calls = 0,
afternoon_calls = 0, night_calls = 0;

collect each Call
morning_calls = morning_calls

+ if (Call.start_time < 1200) then I e.1se 0,
afternoon _ cails = afternoon _calls

+ if (Call.start_time >- 1200 and
Call.start_time < 1800) then I else 0,

night_calls - night_calls
+ if (Call.start_time >= 1800) then I else 0

then
print morning_calls, afternoon_calls, night_calls;

Strictly speaking, both the conditional expressions and
the collect ... tben feature duplicate facilities available in S.
The architecture of S at the time made it impossible to use
the existing software, however. Before S can operate on
some data, it must first be set up as an S data set (i.e. a
disk file in a certain format). But this makes it impossible
to use the computation facilities of S on anything that is
too big to be reasonably representable as a data set, and
Datastream databases exist precisely because they are too
big to be stored as S data sets.

How far should such duplication of function go before
it is stopped in the name of cleanliness and modularity?
Perversely, the duplication I have discussed exists because
the systems interact across a fairly clean interface. S
regards Datastream as one of many ways to build a data
set; Datastream sees S as one of many things that can be
done with the output of a query. Neither system meddles
in the other's business. This requires the database system
to replicate enough of the functions of the statistical system
to permit users to describe interesting subsets of databases.
Unless the database and statistical functions are so tightly
coupled that it is difficult to describe them as separate

systems, one should expect to find most of the statistical
system's standard selection facilities duplicated one way or
another in the database system. From this 'point of view,
one would not expect to find regression functions in the
database system; data analysts seldom use regression to
select a small subset of a larger data set.

Another S facility not duplicated in Datastream was
general looping. Datastream's collect construct sets up
loops based on structures in the database. One can sum
the val ues of some field in all the records of a certain type,
but one cannot write a loop of the form

for i in 1 .. n
do

something involving i and
the fields of a Customer record

end

Several types of general loops are available in S, but they
have not been implemented in Datastream for two primary
reasons.

1. Most users do not seem to need them.

2. If general loops were available, serious users would
probably need a debugger.

Data and control flow in Datastream queries are fairly
transparent. No one has written a query whose behavior
could not be understood by reasonable "desk checking". A
general loop facility would probably lead to complex
queries whose behavior could not be deciphered without a
debugger.

Syntax is an area in which little was done but much
might have been. The first user to explore a database must
deal with at least two distinct and largely incompatible
languages: the Datastream query language and the S
command language. In addition, the program which
constructs databases has to be given instructions, in yet
another language. The only thing that makes this
arrangement palatable is the following hierarchy.

1. The typical data analyst spends much more time
working in S than in Datastream.

2. The typical Datastream user spends much more time
working with queries than with build instructions.

Of course, queries written and saved in an appropriate
place make it possible for exploratory users to protect some
of those who come later .from dealing directly with the
database system.

The modifications I have described were intended to
make Datastream more useful as a tool for constructing S
data sets. As it turned out, some users were able to
accomplish their analysis without using S at all. These
were not elaborate analyses; rather, they were excursions
intended to discover what kinds of information could be
extracted from certain databases. For this type of
analytical work the principal advantages of Datastream
were its ability to process queries against large files
efficiently and its ability to traverse hierarchically
structured data while doing straightforward computations.

In summary, the following is a (non-exhaustive) list of
my conclusions from experience adjusting a database

system to serve statistical users.

1. Conditional expressions are well worth having.

2. Aggregate computations including but not limited to
sums, counts, and extrema are indispensable, but
they do not have to be offered as "canned" sum,
count, and extrema functions. A general aggregate
computation facility is more powerful than a typical
set of specific functions. It may also be less trouble
to implement and not much more trouble to use.

3. A database system's query facilities should not grow
so powerful that they require a debugger. Database
queries can be regarded as programs in special
purpose languages; query languages that need
debuggers have. probably ceased to be special-purpose
languages.

4. A uniform interface to both the statistical and
database facilities sounds wonderful. Unfortunately,
it may prove too good to be true if one is dealing
with existing systems.

5. A database system that can feed useful data to a
statistical system and stand by itself as well must
inevitably duplicate some of the basic arithmetic and
selection functions of the statistical system. When
this happens, some users may be able to work
entirely within the database system.

References.

[1] Chambers, J. and Becker, R., "S: A Language and
System for Data Analysis", Computing Information
Service, Bell Laboratories, Murray Hill, NJ.

[2] Chen, P.,
Toward a
Transactions
36.

"The Entity-Relationship Model
Unified View of Data," ACM
on Database Systems I,](1976), 9-

[3] Kernighan, B. and Ritchie, D., The C Programming
Language, Prentice-Hall, Englewood Cliffs, New
Jersey, 1978.

222

AN INTEGRATED MACRO-ECONOMIC DATA MANAGEMENT SYSTEM
BASED ON MULTI-DI~ffiNSIONAL ARRAYS

M. GIBBONS and M.DAVID
OECD, France

Abstract: The paper describes the system currently being developed
at the OECD for the management of macro-economic data. The system
provides a general framework for economists and statisticians to
structure and manipulate large volumes of data in the form of
multi-dimensional arrays. The dimensions of the arrays are
hierarchical lists of elements corresponding to criteria of
claSSification, TIME typically being one of them. Derivation of
data can occur either automatically during extraction or explicitly
through a flexible Data Manipulation Language. The system fully
incorporates the management of qualitative information associated
with the data at several levels. A number of interfaces are
provided including an extension to the Research and Analysis
Language (RAL).

1. INTRODUCTION.

The Organisation for Economic Cooperation and Development (OECD)
objective to promote policies for sustained economic growth and
expansion of the world trade entails the collection, on a regular
basis, of data from its 24 member countries, for analysis by
statisticians and economists. As a contribution to this on-going
effort, the Systems Development Division of this Organisation is
implementing a generalised database management system, designed for the
computerised storage and manipulation of macro-economic statistical
data.(I)

The system has been conceived to meet three equally important
requirements:

to provide the producer of statistical information with all the
tools necessary to process the data from receipt to publication;
to provide analysts with the means to explore relationships between
the statistics which surpasses that possible with a purely
time-series oriented approach to the classification and storage of
data;
to incorporate the
users can be fully
data.

management of qualitative information, so that
aware of the important characteristics of the

This paper describes the structural concepts, the main features of the
Data Manipulation Language and the functional implementation of the
system. Particular emphasis is placed on the facilities for treating
qualitative information.

(1) Basic ideas for the system are borrowed from ISIS, developed by the
Austrian Statistical Office.

223

2. STRUCTURAL CONCEPTS.

Statistical data are organised as sets of arrays within SECTORS which
correspond to broad categories of economic interest, such as foreign
trade or national accounts.

A set of structurally homogeneous arrays is known as a SEGMENT. Each
dimension of an array is defined by a CRITERION OF CLASSIFICATION,
which is a list of ELEMENTS. An element of a criterion may itself be a
list of elements known as a SUB-CRITERION, providing the possibility of
tree-structured or COMPLEX criterion. TIME is a special criterion whose
elements depend upon the frequency of observations.

Each segment consists of one or more base arrays, depending on the
existence of complex criteria within the segment definition, and of all
the arrays implicitly derived from the base arrays by reduction over
one or more dimensions. For a segment defined with N simple criteria,
there exists one base array and

L N! / it, (N-i)!
i=l •• N

derived arrays, counting the scalar generated by total reduction.

In the segment definition, criteria may be PARALLEL where an
alternative classification of the same statistical item is available,
or OBLIGATORY when no reduction over the criterion is possible. To
promote the use of standardised nomenclatures, criteria can be declared
as GLOBAL and are then available to all sectors for segment definition.
Global criteria are maintained by the database administrator.

To clarify these concepts, the following example for foreign trade data
is given:

SEGMENT definition:

FOREIGN-TRADE 1

Frequency: Annual
Criteria: OECD,

PARTNERS,
UNITS obligatory,
SITC,
ISIC parallel to SITC,
DIRECTION.

CRITERION definition:

OECD: Member Countries (GLOBAL). Elements: USA, CANADA, ••• (Size=24)
PARTNERS: Trade partners. Elements: ••• (Size=200)
UNITS: Elements: SUS, TONS. (Size=2)
SITC: Classification of products. Complex with 5 levels. (Size=2665)
ISIC: Alternative classification of products. (Size=192)
DIRECTION: Elements: IMPORTS (factor=-l), EXPORTS. (Size=2)

224

3. DATA RETRIEVAL.

The retrieval of data for display, manipulation or reporting, is based
on the data-specification construct which, in a concise way, permits
the selection of the level of data-aggregation desired, the order of
the dimensions and elements within dimensions.

Derivation by reduction can occur automatically at extraction time,
depending on the data-specification entered by the user. If one or more
criteria are omitted from the data-specification, reduction is
performed on the corresponding dimensions. During this process,
pre-specified factors are applied to the elements of the dimension
being reduced.

Example: FOREIGN-TRADE UNITS 1 OECD [USA CANADA] PARTNERS 1 TO 100
ISIC 1 2(1. TO 5 *) TIME 78 TO 83

where ISIC 1 2(1 TO 5 *) stands for the first product of the ISIC
classification and then the five first sub-products of the second
product, followed by their sum.

This specification corresponds to a 2 X 100 X 7 X 6 array (i.e. a
logical group of 1400 time-series of 6 observations each). It is
obtained by reduction over the criterion DIRECTION. With a factor
of (-1) for IMPORTS and a default factor of (+1) for EXPORTS, the
reduction yields the trade balance.

Automatic frequency conversion (e.g. from monthly to yearly data by
averaging) may also occur during the extraction process, depending on
the frequency of the data stored and the frequency requested.

Once extracted, data are available for 'manipulation in what is called
the current-array. Data from other parts of the database can be further
extracted and combined with, or appended to, the current data. The
current-array is itself a component of a broader concept, called the
current environment. Among the other components of this environment are
the trees of, identifiers and titles associated with each dimension;
structural information and documentation; and a set of arrays of
note-attachments.

4. QUALITATIVE INFORMATION.

Two kinds of qualitative information are considered: the structural
documentation, describing the features of the structures (SECTOR,
SEGMENT, CRITERION or ELEMENT) and the notes, providing background
information about the quality of the data.

Notes are pieces of textual information. They are given an identifier
and can be attached to, or detached from, data-cells in the database
(permanent attachments) or in the current-array (temporary
attachments), at all possible levels (individual. cell, group of cells,
array or segment).

225

In the case of database cells, an extended form of the
data-specification construct is used to describe the scope of the
attachment, where an infinite TIME dimension is allowed. In the case of
current-array cells, a region-specification
region can be physical, i.e. expressed in
positions of the cells, or logical, i.e.
logical condition to be met by the cells.

is used. A current-array
terms of the physical

expressed in terms of a

Example of physical region: ROWS 1 TO 5 COLS 3 7 9 TO 16
Example of logical region: (VALUE> 0) AND (ESTIMATED)

Estimated values, ruptures within time-series and computed totals
involving missing values are but a few examples of the data
characteristics which can be highlighted by using the notes facilities.
At data extraction time, note-attachments are optionally extracted and
transferred to the current environment where they can be displayed or
updated with the data-values.

During computation or derivation of data, new note-attachments can be
generated according to a default or user-specified logic. Possible
options are: OR, AND or no-logic. For example, with the OR logic, an
estimated value combined with a non-estimated value yields an estimated
value; with the AND logic the result is a non-estimated value; with the
no-logic option, the note-attachments associated with the operands are
ignored.

A few notes are global. Their texts are pre-defined by the Database
Administrator and can be used by all users of the database.

s. THE DATA MANIPULATION LANGUAGE (DML).

Typically, the first task performed by an interactive database user is
to establish a current environment by extracting both quantitative and
qualitative information from the database. This can be done by using
the DML statement GET. The data-specification for the GET always refer
to a group of data within a single segment of the database. The
environment can be completed with data from other segments by using the
EXTEND statement. Extension occurs along one specified dimension of the
current-array, all the other dimensions being compatible in size with
the matching dimensions of the extension array.

The other array-manipulation statements do not involve the database,
but instead process the current environment directly. DELETE is used to
remove parts of the array; TRANSPOSE is used to modify the order of the
dimensions; PERMUTE is used to change the order of elements within the
dimensions; MAP is used to modify the shape of the current-array by
combining dimensions, e.g. to transform a 6 X 2 X 4 array into a 6 X 8
array. During the MAP function, the title trees of two combined
dimensions are merged by inserting the tree corresponding to the second
combined dimension at each leaf of the tree for the first combined
dimension.

226

The DISPLAY and UPDATE statements are used to produce a display on the
terminal of a portion of the current environment, according to default
or user-specified format parameters. The data-array is partitionned by
the system into two-dimensional pages. The user can control at any
point in time which page will be displayed next by indicating the
starting element for each dimension. In update mode, the data-values or
note-attachments can be modified in the current environment. The
changes become permanent (i.e. they are reflected in the database) if a
STORE statement is issued subsequently .•

Computational
and 'include

facilities are available through the COMPUTE statement
simple arithmetic operations and functions such as growth

rates, moving ave~ages, etc •••

Sample D~~ session:

GET <data-specification)
EXTEND ROWS <data-specification 2)
COMPUTE ROW 10 = SUM (ROWS 1 TO 9)
DELETE ROWS 2 TO 5
DISPLAY
ATTACH ANOTE TO (VALUE=MISSING) AND (ROWS 10 TO 15)
PRINT USING <format)
(...)

6. FUNCTIONAL I~~LEMENTATION.

The system is built on top of a CODASYL-type DBMS (Burroughs DMS-II)
providing efficient storage/retrieval techniques and a first level of
data compaction and access-right control. Logical views are created via
the Structure Definition Language (SDL) processor. A unified DML
interface, in the form of a library of procedures which can be
dynamically called, handles all requests for data manipulation. It
establishes a clear boundary between the DBMS structures and the
logical structures as perceived by the users.

The interactive Data Manipulation Language processor itself consists of
a driver and a set of modules. It acts as an interpreter. Commands can
be issued one at a time or programs can be written in DML and executed
either directly or from within other DML programs. The modules are
shown in Table 1. Typically, they process the current environment so
that they can be chained, each function building up on the previous
ones. In addition to the facilities discussed above, they include:

A Report Generator allowing for very flexible table layouts.
Variable data-value formats are specified by using the region
specification construct.
An interface with photo-composition utilities, making the
production of publications from the database a highly automatic
process.
A graphics interface.

227

A facility to produce magnetic tapes for outside clients. The tape
may include qualitative information, with automatically generated
note references.
A link to micro-computer ~oftwsre, in particular a facility to
generate files compatible with MULTIPLAN (from Microsoft'Corp.).
A catalogue enabling the user to browse through the database
logical structures using keywords.

Table 1. FUNCTIONAL IMPLEMENTATION DIAGRAM.

The DML processor can be accessed from the Research and Analysis
Language (RAL) developed by the Federal Reserve BSnk of New-York.
Control can be switched back and forth from RAL to DML and the transfer
of data is possible in both directions. As a result, the RAL
statistical routines are readily available to database users and all
the DML facilities can be used to process RAL data.

Apart from the
user-application
special-purpose
input utility,
point for large

DML modules, the miL Interface can be called from
programs, written in ALGOL, FORTRAN or COBOL (e.g.

simulation or model-solving programs) and from the bulk
the purpose of which is to provide a generalised entry

volumes of data originating from other systems.

228

6. Logical models, Metadata, and Data Transformation

Classification of Metadata . 230
Yvonne M. Bishop. Stanley R. Freedman

Some Experiments in Evaluation of and Expert system for
Statistical Estimation on Databases . • 235

Neil C. Rowe

The GENISYS Data Definition Facilities. 245
. A. Timothy Maness, Sue M. Dimelman

Logical. and Physical Modeling of Statistical/Scientific Databases 251
·Stanley Y.W. Suo Sham B. Navathe, Don S. Batory

Proposal· of a Logical Model for Statistical Data Base 264
Maurizio Rafanelli, Fabrizio L Ricci

Statistical Data Management Research at Lawrence Berkeley Laboratory 273
P. Chan. S. Eggers, F. Gey, H. Holmes, P. Kreps,

. J. MGCarthy, D. Merrill, F. Olleen. A. Shoshani, H. Wong

A Statistical Database Component of a Data Analysis and Modelling System:
Lessons from eight years of user experience . 280

J OM C. Klensin

SYSTEM/K: A Knowledge Base Management System. 287
Mauro Maier,Claudio Cirilli

See Also

Databases for Clinical Histories. 2

Data Management without a Database Manager. 89

Distributed Data Management in a Minicomputer Network:
The SEEDIS Experience. 99

Data Structures for Scientific Simulation Programs. 196

An Extension of Relational Algebra for Summary Tables 202

An Integrated Macro-Economic Data Management System
Based on Multi-Dimensional Arrays " 223

Computer-Independent Data Compression for Large Statistical Databases 296

Statistical Database Research Project in Japan and the CAS SDB Project 325

Statistical Databases: Their Model, Query Language and Security 391

229

CLASSIFICATION OF METADATA

Dr. Yvonne M. Bishop and Dr. Stanley R. Freedman

Office of Statistical Standards, Energy Information Administration

Department of Energy, washington, D.C.

Abstract

The Energy Information Administration (EIA) has developed a search tool, the Data Resources

Directory, _that tracks the ener·gy info;rmation obtained on source data collection forms. to i·ts

final publication. The metadata is indexed according to a specially developed hierarchical

classification scheme. Experience so far has indicated good features of this approach but

problems still remain to be solved, particularly in determining optimum classification strategies

for metadata.

The Department of Energy collects information

about energy by means of over 200 surveys of

industry participants. This information is

disseminated by means of weekly, monthly,

quarterly and annual periodicals and forms

the basis for analytic reports which project

the likely future trend under differing

scenarios. A Data Resources Directory has

been developed to keep track of the available

information. The original plan was to imple-

ment the DRD system by system and eventually

have a mechanism whereby each data element

on a form could be traced through all inter

mediate steps to the final publication, and

its numerical value identified. Some sub

systems of the DRD are in place and experience

so far has raised a number of issues:

o

o

o

Hierarchical classification of data

elements is time consuming and costly.

The Federal Energy Data Index (FEDEX),

the publications subsystem currently

in place, uses an Energy Data Base (EDB)

thesaurus for indexing, which is

different from the classification

scheme used in the DRD.

An unambiguous vocabulary, such as used

in the DRD, requires many synonym link

ages if it is to be a useful search tool

for a specialist in a specific industry.

230

DRD Subsystems in Place

The subsystems currently in place are derived

mainly from data collection forms with the notable

exception of the Public Use Energy Statistics Data

Base (PUESDB). Others are in the process of being

implemented. ThQse in place are as follows.

Forms/Frames Subsystem

The forms/frames subsystem contains metadata on

DOE data collection forms and the lists and sur

vey frames that are used to identify respondents

and draw samples. Seventy-five metadata attri

butes about each form are maintained. They can be

divided into four categories: identification

attributes, management attributes, linkage attri

butes, and frame attributes. Identification

attributes include form number, title, prior

form numbers, indexing terms used to describe

the form and an abstract. Management attributes

include metadata used in EIA's forms clearance

activities such as average burden per response,

expiration data, voluntary mandatory reporting

requirements and similar types of information.

Sponsoring agency of the data collection, forms

manager's name and phone number, computer system

processing the data and publications in which the

data appear are considered linkage attributes.

Finally, type of respondent and their SIC code,

source, size and name of frame, sample methodology

type and frame update frequency are included

under the category of frames metadata.

User oriented products of the form/frames

subsystem are:

o

o

o

o

on line file of data collection forms

searchable by metadata attribute;

on line and hardcopy display of forms

and their attributes;

Photocomposed EIA Directory of Energy

Data Collection Forms; and

Periodic reports for forms clearance

activities.

Glossary Subsystem

The glossary is an inventory of energy terms

in use by EIA. The major source of input are

active data collection forms; selected major

publications such as the Monthly Energy

Review and existing standard definitions.

For each technical term' (such as jet fuel,

lignite coal or average dealer margin) the

definition, 'and source of the definition are

identified. The glossary is used in EIA as

a tool to achieve standardization of energy

terminology, to eliminate duplicate and

overlapping terms and to respond to inquiries

from the public, Outside EIA, the glossary

is particularly helpful to users for locating

the precise def inition of an energy statistic.

Products available through the glossary of

energy terms include:

o On line searching and retrieval of

terms by energy subjects and source;

o

o

On line display of definitions and

source by subject and source; and

Hardcopy glossary reports.

231

Data Element Subsystem

The largest component of the DRD is the data ele

ment subsystem. This subsystem is a description,

inventory and index to statistical energy data

elements on active data collection forms. A data

element is a block or blank on a form. Each data

element is assigned a unique serial number and

contains five additional attributes.' These are:

(1) the form number on which the data element is

found; (2) the physical location of the data ele

ment on the form; (3) the index terms used to

catalog the data element; (4) the descript:l.on of

the data element using actual wording from the

form; and (5) notes which contain elaboration or

clarification information about that data element.

Products from the data element subsystem include:

o

o

o

o

On line searching of data elements by sub

ject categories, source and source des

criptions;

On line display of data elements and their

descriptions;

Hardcopy classified catalog of data elements;

Linkage of data elements to their source.

As with other DRD components, the data element

descriptions are linked to the other subsystems

in an integrated data base.

Public Use Energy Statistics DataBase (PUESDB)

Over 450 time series takeb from major publications

such as the Annual Report to Congress and the

Monthly Energy Review are contained in the PUESDB.

These series are accessible through retrieval and

display screens using the DRD, software. The

source publication and form number for each

series is stored as well as its detailed documen

tation. This provides linkages between the time

series and the metadata subsystems. The PUESDB

is also available for sale to the public through

the National Technical InfOrmation Service.

DRD Software

The DRD is made up of three software systems:

online information retrieval and display;

hardcopy reports; and file maintenance. Each

of these systems operates on the metadata

base which is stored in the ADABAS data base

management system. The online information

retrieval and display system allows the user

to search the data base to locate informa

tion, display information retri'eved, and

scan alphabetically and hierarchically the

indexing terms in the vocabulary. When

searching the data base, two subsystems can

be linked or coupled together. This allows

the user to first search one subsystem for

information and then locate related informa

tion in a second sl.lbsystem without formulating

a new. search query. The metadata base can

be searched using not only the indexing

terms, but also the other metadata attributes.

No special programming knowledge is required

to use the software. Each of the subsystems

has associated with it predefined display

formats that present subsets of metadata in

logically related groups. One format dis

plays all metadata attributes for each

subsystem. The online information retrieval

and display was designed for IBM 3270-type

intelligent terminals, and operates in a

full-screen form fill-in mode. Each func

tion -- search, display and scan of the

indexing term file.-- are presented on one

screen. The user then provides search or

display criteria, edits the screen if

necessary and finally sends that function

to the computer for processing. Hardcopy

reports are requested from the DRD online

and are then processed in batch. There are

30 reports available to users, most of which

are used as part of EIA's forms clearance

activities. These reports provide the user

some flexibility i~·terms of search criteria

and satisfy the bulk of user needs. More

232

specialized reports can be generated using the

NATURAL programming language which was developed

for use with ADABAS.

Finally, specialized maintenance software for the

DRD metadata base has been developed. As with

the retrieval and display system, the maintenance

system also operates online with full screen dis

play and text editing.

Issues Needing Resolution

All of the data elements, forms and glossary

terms in the DRD are indexed and described using

a highly structured, hierarchical vocabulary

which is organized into eight broad categories

or facets. These are:

o

o

o

o

o

o

o

Energy Source--the subject matter or product

being measured such as coal, unleaded motor

gasoline or electricity;

Source Qualif ier s--terms used to further de

fine energy sources such as sulphur content

range, imported or finished;

Energy Function--the stage of the energy

production life cycle and the management of

energy firms such as mining, refin~ry pro

cessing, purchases or consumption;

Assets--~quipment or resources such as drills,

fields, coke ovens or tankers;

Participants/Facilities--both the physical

and corporate facilities and agents such as

subsidiaries, refineries, suppliers or

shippers;

Location--the geographic, administrative,

political, geological or topological place

terms used to describe energy data such as

United States, DOE Region 1, OPEC, basin or

offshore;

Frequency--periodicity of the data such as

monthly, quarterly or daily; and

o Measu~ement--the physical and accounting

units that describe the data such as

barrels, BTUs, short tons, feet or

dollars.

This form of indexing using a highly structured

hierarchical scheme ensures that each data

element ls uniquely defined. The searcher

can be assured that all pertinent references

are obtained from a search. It also has dis

advantages, namely:

1.

2.

It is costly to index all the data

elements on a form using thisscheme--a

form of 100 elements takes about

40 hours at a cost of approximately

$2000. The current process is for

the indexer to fill out a form with the

appropriate facets for indexing each

item. Metadata from this form are

entered into the terminal and then a

batch editing procedure picks up

illegal terms and other errors which are

subsequently corrected. Varying degrees

of interactive indexing have been con

sidered. It seems highly desirable to

speed up the ,indexing process, but we

hesitate to invest in the extra pro

gramming necessary without knowing other

people's experience with such an approach.

Currently, EIA uses the Energy Data

Base (~DB) thesaurus ~or indexing our

publications, in common with other

agencies, As there is a strong move

afoot to coordinate all such efforts

nationally, it seems unreasonable to

change our mode of indexing publications,

but there are sufficient differences

from the DRD classification scheme that

integrating the two indexing systems

presents problems. The FEDEX hierarchy

has multiple routes to the same entry.

For example, if references to "coal"

are sought in the EDB thesaurus, there

233

are three routes: (1) materials-~ carbonaceous

materials-~ coal; (2) fuels-~ fossil fue1s-->coa1;

or (3) energy sources-~ fossil fuels-~ coal.

When we get to one lower level of coal in the

DRD, we have separate entries for anthracite,

bituminous lignite and peat, whereas in the EDB

thesaurus the entries for anthracite and bitum

inous coal are subsidiary to the entry "black

coal" and peat is parallel to coal under fossil

fuels. In other instances, the DRD is more

specific than the EDB. It would be feasible to

relate these structural differences for words

currently in the DRD, but it would complicate

the process of adding additional words.

3. The vocabulary for the DRD was chosen so

that each word was unambiguous. Current

efforts are underway to add synonyms and

cross references t~ assist a specialist in

a particular meaning in the context of this

industry. The following are examples in

the petroleum industry. The term "stocks"

is cross-referenced to the DRD term "inven

tories (energy sources)," and "shipments"

is cross-referenced to the DRD term

"deliveries" as there is a one-to-one corre

spondence in meaning under current usage at

EIA. We refer to these types of cross-

ref erences as translations.'

In other instances words used by petroleum

specialists can have different meanings according

to their context. An example is "inputs." This

item can refer to (1) refinery processing in

general, (2) distillaUon (refining), (3) dis

tillation (natural gas processing), and (4) the

crude oil and other products that are input into

a refinery. There are several approaches possible

for handling this problem, of which the most

feasible seems to be a translation to the term

"processing functions." This approach would

enable the searcher to go to the vocabulary

BROWSE feature and select the most appropriate

of the precisely-defined terms available.

Other translations that have been installed

are more obviously synonymous or could even be

thought of as alternate spellings. For

example, "mix," "mixture," and "mixtures" are

equivalent when used in such strings as

"ethene-propane mix."

CONCLUSION

Keeping abreast of what information is avail

able is an important function of an agency

whose purpose is to provide the public with

energy information. The DRD systems provide

effective means of searching for information

to satisfy a variety of needs such as veri

fying that the information requested on a new

survey form is not already available, or

234

determining where a particular item of inform

ation is published and from whom it is obtained.

EIA is proceeding to link together many disparate

subsystems and so increase the search capabilities.

We are constantly looking for improved strategies

and would much appreciate learning about other

experiences in this area. In particular, we

would like to consider the advantages and

disadvantages of a highly structured hierarchical

thesaurus compared with less rigid constructions;

we would like to know whether tools exist that

would speed up the lengthy indexing process

and we would value any insights that can be.

shed on the problems of indexing terms that

are used with different meanings in different

contexts.

Some experiments in evaluation
of an expert system for

statistical estimation on databases

Neil C. Rowel
Department of Computer Science

Stanford University
Stanford, CA 94305

~Abstract

In our paper for the first of these Workshops [1] we claimed

advantages of a new approach to estimation of statistics on a

databases. We now back up these claims with quantitative

experimental evidence of the comparative performance of our

approach versus several simpler alternatives.

1. Introduction

We have been constructing a rule-based system for top-down

estimation of the values of statistics on the contents of databases

[2,3,1]. Our approach has two parts, a "database abstract"

consisting of precomputed statistics on a particular database, and a

set of inference rules for estimating the values of other statistics not

stored in the abstract. This approach has quite different advantages

and disadvantages than the main competing technique of random

sampling. To help understand these advantages and disadvantages a

quantitative evaluation is helpful. We validate performance here on

a quite different database than that on which the system was

This work is part of the Knowledge Base Management Systems originally developed, demonstrating a degree of portability of our

Project, under contract # N00039-82-G-02S0 from the Defense ideas.

Advanced Research Projects Agency of the United States

Department of Defense. The views and conclusions contained in this After an overview in section 2, we explain our method for

document arc those of the author and should not be interpreted as comparing answers and estimates in section 3. Section 4 introduces

representative of the official policies of DARPA or the US the four basic control experiments needed to validate performance.

Government. Section 5 introduces results tables for the medical database. Section

6 discusses these results in regard to space and accuracy performance,

and section 7 in regard to time performance. Further experiments

with this and another (the original) database arc covered in [3].

[Current address: l)epartmclll or Computer Science. Code 52. Naval Postgraduate
School. Monterey, CA 93940

235

2. The evaluation problem

Our work is in the tradition of many nde-based "expert systems"

de,Yeloped in the field of artificial intelligence [4], But unlike, say, a

medical expert system designed to choose the most appropriate

medical treatment for a patient, there is a quite rigorous way in

which our statistical estimation expert can be evaluated: comparison

of estimated numeric values with the actual values of the same

statistic found by going back to the original data. We can thus

quantify the disparity, and study the relative effectiveness of the

estimation for different kinds of statistics, database sets, and

attributes of those sets.

Evaluation of a statistical estimation system is tricky because there

is a tllree-way tradeoff between space required, time required, and

accuracy obtained. Plotted as a tl1fee-dimensional surface (see

below), it is rollghly a hyperboloid. (We expect this from the

information-tlleoretic assumption that tlle total information quantity

transmitted across a channel is constant, that is, SAT = K where

S=space, A=accuracy,T;"time, and K is some constant.) For a

fixed level of accuracy, the curve is a hyperbola relating time

vs. space. For less accuracy, tlle hyperbola moves closer to the

. vertical axis; moving this way "up" the surface is essentially what our

system is trying LO do. We would like to parameterize this surface to

some degree.

3. Comparing answers and estimates
To quantify "how close" an estimate is to an actual answer we use

the number of consecutive high-order bits in common between the

estimate and the answer, -log2I(est-ans)/ansl. We wish to compare

space and accuracy, and representing both in bits allows this. We

could have used other metrics, as for instance an extremum of

estimation rather than a normative summary of estimation, but we

felt (1) extrema are harder to compare to space measurements, and

(2) a good normative measure seems to correspond better to an

intuitive performance assessment of an estimation system.

There are three problems with this bit-accuracy formula, however:

First, tlle actlJaI answer may be zero or negative; we ignored this,

since much statistical data represents positive sums and counts

anyway. (To handle this we would need to measure absolute

236

accuracy or something else other than bits in common.) Second, the

estimate may be exactly equal to the answer, giving an infinite

number of bits in common; we handle this by putting a maximum on

all such measures equal to the bit accuracy of the attribute whose

statistics are being estimated. Third, the estimate may be greater

than twice the answer, or \ess than half the answer, in which case the

formula becomes negative; we handle this by arbitrarily rounding all

negative results to zero.

We thus tabulate this performance metric on a series of random

queries to our system. These abrupt changes for very close and very

far apart values, however, arc somewhat arbitrary, and so we also

tabulate the breakdown of items in each of three categories (very

close, reasonable, and very far) for a set of random queries.

Estimation performance depends on the database abstract as well

as the inference rules, and so is database-dependent. In particular, it

, wiII not work well for data with complicated correlations between

attributes. A nd since statistics on very small sets are not usually very

meaningful, and subject to large variances, we impose the restriction

that we only check our system performance on queries ten items or

more in size. In addition, performance depends on the particular

statistic queried, the fmm of the query se~ and the query attribute.

To avoid averaging these factors out over many queries we tabulate

performance separately for major categories.

4. Control experiments

In order to demonstrate that our estimation approach is

advantageous we must have a standard of comparison, a "control"

experiment. Matters are complex because there arc at least four such

controls. We present them in approximate order of increasing

challenge to our methods.

1. answering the query from a database abstract without
using any inference rules (the "null rules" control)

2. answering the query with a minimal abstract Oust
statistics on each relation as a whole), but a full set of
inference rules (the "null abstract" control)

3. nmning tlle query on tlle full original database,
calculating tlle exact answer (the "full database" control)

4. "upwards" inference from a random sample the same
size as a particular database abstract (the "sampling"
control)

Our system must perform at least as wel1 as al1 four of these in order

for it to be judged a "success". By "at least as well" we mean that if

any two of the three factors of space, time, and accuracy are held

constant, performance will be better in regard to the third factor. To

put it in terms of the hyperboloid. the hyperboloid' representing

behavior for the experimental scheme must be, "below" the

hyperboloid representing behavior for the control scheme for a

reasonable range of parameters. In some cases, only one factor needs

to be held constant. For instance, for the first and fourth controls

above, we shal1 show that both time and accuracy are better when

space is held constant.

Restrictions that the database, abstract, or sample be of a certain

size or type, are fair when stated explicitly. Significance can be

checked by the standard deviation of the bit accuracy and usual

hypothesis-testing methods.

5. Some results

We developed an implementation of our ideas original1y for four

attributes or a srrial1 subset of the merc~ant shipping database o;/the

KBMS project at Stanford, doing debugging and preliminary

evaluation with this data. To demonstrate the generality of our ideas

more convincingly we needed a different database, and we chose a

random subset of the database of the RX project at Stanford [5], itself

a subset of the ARAMIS (American Rheumatology Association

Medical Information System) database of infomlation about

rheumatology patients. We chose six attributes to analyze for 28

patients with a total of 1000 visit records: patient number, sex,

disease activity level, temperature, measured cholesterol, and

administered prednisone. (Occasional missing values for the last four

attributes were fil1ed with values on previous visits.) We created a

vocabulary of 18 named (or "first-order" sets) whose statistics would

be stored in the abstract, representing partitions into two parts on

sex, four parts on disease activity, and three parts for the other four

attributes.

(maximum), sigma (standard deviation). median, and modefreq

(mode frequency). Results for each statistic are tabulated separately,

and are spaced horizontal1y across the page in six columns, in that

order.

Re~ults for each statistic in an experiment are summarized in

seven numbers presented on three lines, in this format:

<bit~ of accuracy >(<standard deviation of accuracy»
<# of exact answers>-< # reasonable estimates>-< # poor estimates>

<average range narrowing>«standard deviation of narrowing»

where:

• <bits of accuracy) is the average number of bits in
common between the estimate (EST) and the actual
statistic value, in ten random queries, computed
according to the formula in section 3. 10 bits is assumed
the maximum accuracy for al1 these experiments, since it
is the accuracy of the numeric data.

• <standard deviation of accuracy) is the standard
deviation of those numbers for the ten queries

• <# of exact answers> is tlle number of queries, in the ten,
that can be answered to at least 10 bits of accuracy, the
accuracy of the data

• <# of reasonable estimates> is the number of estimates,
in the ten, that were not near-exact, but no worse than
twice the actual answer or half tlle actual answer

• <# of poor estimates> is the number of estimates, in the
ten, that were more than twice the actual answer of half
the actual answer

• <average range narrowing> is the average ratio, in ten
random queries, of the range between the bounds on the
estimate to the possible range of that statistic

• <standard deviation of the narrowing> is the standard
deviation of the preceding in ten random queries

Experiments 1 through 6 show results for statistics on the

temperature attribute, experiments 7 through 12 prednisone dosage,

experiments 13 through 16 results for two arithmetic operations

between attributes, and experiments 17 tllrough 20 result~ for set

We summarize' our results in tables at the end of this paper. unions. Experiments tested particular query set forms, attributes Of

Results of thirty different experiments are displayed. Each "fields", and abstracts. The same query sets were tested for each of

experiment is numbered, and contains three lines of result data. the six statistics. "Exact" means tllat exact rules give a certain value

Each experiment involved testing of estimation performance for ten for the answer, not an estimate; tllis is implies in our table a 10.0 bits

random queries on six statistics: count (set size), mean, max ,of accuracy, a 10-0-0 answer breakdown, and .00 range narrowing.

For set intersections, only those larger than 10 items were used for

237

tests, since statistics on smaller sets fluctuate widely, and the statistics

are not particularly significant anyway. For set unions, because of

time constraints, we disenabled the "backwards" reasoning or

relaxation-style analysis used in all the oth~r tests here; hence results

are not as good.

6. Discussion: space and accu racy

Section 4 gave four separate control experiments we must compare

performance against. Our experiments do not provide a complete

comparison to each, in part because of time and space limitations,

but they do cover most of the issues. (We used about 50 hours of

CPU time on a DEC-20 at SRI International to perform this

evaluation, coming close to the space· limitations of single-user

Interlisp in the process. 90% of the time expended was calculation of

the database abstract values when needed from the actual data.) The

basic philosophy of this evaluation is determination of "the value of

rules" in the style of [6J.

6.1. Control 1 : Abstract, no rules

Clearly we can answer many more queries with rules on an

abstract than without. An abstract can only contain contain a finite

number of query answers, whereas rules can give statistics on

arbitrarily large intersections and unions of sets in the abstract. The

space for the rules is negligible compared to the size of the abstract

because (a) rules can be coded efficiently since they contain few

different symbols, and (b) we are interested primarily in large data

sets where the abstract (as well as the database itself) is likely to be

considerably larger than the rule storage.

6.2. Control 2: Rules, no abstract

We study this by experiment. For "no abstract" we still mean to

include statistics on entire relations, information which it seems

reasonable to assume is accessible to a user without the computer

.- technically, a "null abstratt". These conditions apply to the even'

numbered rows in our first four tables. As one can see by comparing

the figures with those for corresponding queries with a first-order

abstract (experiment 2 with experiment 1, 4 with 3, 6 with 5, etc.),

performance is usually significantly better. We can quantify the level

of significance by the standard deviations given in parentheses on the

first lines of the entries.

238

6.3. Control 3: calculation on full database

The third control experiment is getting the eXilct answer by

flmning the query on the full database. The data is 1000 tuples with

6 attributes, a total of 1000 * 6 * 16 = 96,000 bits. The first-order

abstract used in the experiments consists of J 9 first'order sets plus

the universe, with 14 statistics tabulated for numeric attributes and 5

for nonnumeric, for a total of5*14 + 5 = 75 attributes, each with 10

bits of accuracy, for a total of 19 * 75 * 10 = 14,250 bits, or about

14.8% of tile size of the database. (We ignore here the size of the

program to manipulate the database abstract, as it is fixed in size

independent of the database and database abstract, and its rules can

be coded highly efficiently in few bits if desired.)

The main difference, however, is between the exact answers given

by full-database querying and the limited accuracy of estimates. The

tests we have run give average bits of accuracy for particular query

forms. If multiply this by the number of possible queries of a given

type, and sum up over all query types, we can get .an estimate of a

"virtual database size" due to the inclusion of inference rules along

with the abstract.· Of course there are an infinite number of queries

since intersections and unions can be embedded arbitrarily deep, but

one can set reasonable limits on query size (or better yet, weight

query types as per their frequency of occurrence). As an example.

consider just our estimates of the intersections of two sets. There are

about 18 * 15 = 270 such sets, and the six statistics computed on

thef,c sets in experiments 1 cover 8.24 + 9.09 + 7.23 + 3.41 + 3.22

+ 8.17 = 39.36 bit~ on the average per set, so there is virtual storage

for about 270 * 39.36 = 10,600 bits, representing ncar to a doubling

of the database abstract size. Similar figures can be summed over all

experiments for all the common query forms. The total sum

represents how well the rules are extending a given database abstract,

and may be roughly compared to the size of the original database.·

6.4. Control 4: Random sampling

The fourth and last control experiment is to extrapolate from a

random sample the same size as the database abstract. We studied

this experimentally by constructing a random sample thi:! same size as

our first-order (18-set) database abstract, 148 sample items out of

1000 in this case, and inferring upwards from statistics 011 the sample

to statistics of the population. Results are contained in experiments

21 through 30 listed at the end of this paper. Experiments should be

compared as follows:

o experiment 21 with experiment 1

o experiment 22 with experiment 7

o experiment 23 with experiment 17

• experiment 24 with experiment 19

• experiment 25 with experiment 3

• experiment 26 with experiment 9 ..

• experiment 27 with experiment 5

• experiment 28 with experiment 11

• experiment 29 with experiment 13

• experiment 30 with experiment 15

Our rule-based method is about the same or better in most

comparisons, while at the same time being likely to have much better

access time in terms of page retrievals for all but very small

databases, as discussed in [21, and while avoiding the "brittleness"

mentioned there in regard to sets of related queries.

7. Discussion: time

These limited experiments do not well address the tradeoff

between time and the other factors of space and accuracy, because

significant advantages do not accrue unless the database is several

orders of magnitude larger. A primary motivation for the database

abstract architecture is the improvements in paging performance

over random sampling and full-database-access methods, and 1000

sextuples 3hould be easy to fit into most any computer's primary

memory. But if we pretend that we have very limited primary

memory and that all large datasets (database abstract and random

sample as well as full-database tuples) are kept in pages (say 1000

16-bit words) in secondary storage, we can make the following ,

comparisons for each of the four control experiments. (We assume,

as with most large databases, that page accesses are the only

significant time cost.)

7.1. Control 1: abstract, no rules

We assume rules can be coded efficiently and kept in core, hence

they add no paging cost. Hence there is no difference in time.

239

7.2. Control 2: rules, no abstract

Ti1is alternative docs obviate paging of the abstract, but that is

only one page (14,250 bits = 890 16-bit words) for these

experiments. For larger abstracts we assume all statistics on the same

set are placed on the same page, and so an upper bound on the

number of page accesses is the number of different sets queried.

This number is constant for all queries of a given form. For

intersections of two sets it is three: the first set; the second set, and

their intersection. For unions it is four: all the preceding plus the

union of the two sets. For unary and binary operations on simple

attributes it is one since only the set actually queried need be

accessed. So the number of page accesses needed to estimate a

statIstic with the database abstract is a small constant independent of

the size of the abstract, rule set, or database.

7.3. Control 3: calculation of answer on full database

The database is stored on 1000 * 6 /1000 = 6 pages. Even if there

is an index pointing to every tuple of a given set, unless the sets are

very small (say, 10 items or less) it is likely that at least one item of

the set is on every page, except for the rare case where the database is

clustered with respect to the partitioning that defines the set Hence

all six pages will need to be fetched nearly all the time, whereas only

one page in these experiments, or a small constant number of pages

in general, will need to be fetched to use the database abstract, a clear

cost savings during query answering.

The database abstract does require setting up, however, which in

turn requires accessing these very same six pages. But we only wish

to usc the database abstract architecture when setup work is small

compared to query answering, and setup cost can be amortized to

insignificance over a large number of queries. Setup can be made

page-efficient, too, by implementation as a single-pass algorithm

through the database.

7.4. Control 4: random sampling

For setup, this has essentially the same paging costs as the use of

the abstract, since for reasonably-sized samples and more than just a

few tuples per page, nearly every page must be retrieved for at least

one tuple. In this particular case, the random sample is 148 items,

and the odds are very high that each of the six pages will be

represented. For a larger database with p items per page, and a

random sample of size m of the database, the number of pages

looked at will be p(l-e-m/p) from a Poisson model, assuming

independence of page placement. Since our approach must always

look at every page during setup, the net.paging advantage of random

sampling during setup is (l-e-m/p). For m = p, i.e. the number of

sample points being equal to the number of database pages, this is

only a savings of e-1=36.8% over our approach, and for most

databases this represents a very small random sample, too small to be

useful.

Once the random sample and the database abstract are created,

they both fit into the same amount of space, and the same number of

pages. But answering queries with the sample will likely require

accessing most pages of it, because even if there is an index (which

may require additional paging to obtain), one has similar paging

inefficiencies with random placement of records as with random

sampling of the full database. Thus as the size of the sample

increases, the necessary paging to answer queries will increase nearly

proportionately. At the same time, answering queries with the

abstract will require a fixed number of page accesses (bounded by

the total number of pages) depending on the form of the query, as

discussed in section 7.2. In addition, new random samples usually

need to be fetched from the database if a user is interested in another

data sct, whereas the database abstract is general-purpose. In a

distributed architecture where the database abstract and/or random

sample are separated from tlle database by a low-bandwidth

connection, these additional fetches may be intolerable.

8. Conclusions
We have shown that our approach, applied to a particular

database, does as well as random sampling, and in some cases

Significantly better, for the same amount of storage space. Our

approach also docs bctter tllal1 tllfCC other control methodologies.

240

1.

2.

3.

4.

5.

6.

References

Ncil C. Rowc, "Rule-Based Statistical C;!lculations on a
Database Abstract," Proceedings, First LBL Workshop on
Statistical Database Management, Menlo Park CA, December
1981, pp.16H76.

Neil C. Rowe, "Top-down Statistical Estimation on a
Database," Proceedings of the International Conference on
Management of Data, ACM-SIGMOD, May 1983, pp.
135-145.

Neil C. Rowe, Rule-based Statistical CalclIlations Oil a
Database Abstract. PhD dissertation, Stanford University,
June 1983.

Bruce G. Buchanan and Richard O. Duda, "Principles of
Rule-Rased Expert Systems," in Advances in Compi/Iers, M.
Yovits, cd., Academic Press, New York, 1982.

Robert L. Blum, "Discovery, Confirmation, and
Incorporation of Causal Relationships from a Large Timc
Oriented Clincial Data Base: The RX Project," ComplIters and
Biomedical Research, Vol. 15, 1982, pp. 164-187.

Donald Michie, "A Theory of Advice," in Machine
Intelligence 8. E. W. Elcock and D. Michie, cds., Wiley, New
York, 1976, pp.15H68.

count mean max sigma modefreq median

Experiment/: statistics on the intersection of two first-order sets, with

respect to the temperature allribute. for afirst-order abstract

8.24(3.6) 9.09(1.2) 7.23(2.0) 3.41(1.9) 3.22(2.9) 8.17(1.3)

8-H 1-9-0 0-10-0 0-10-0 1-9-0 0-10-0

.01(.01) .32(.19) .28(.16) .10(.07) .07(.10) .29(.16)

Experiment 2: same as experiment # / but for null abstract

.34(.70) 7.00(1.6) 3.95(1.1) 1.87(2.0) .02(.04) 6.59(1.0)

0-2-8 0-10-0 0-10-0 0-7-3 0-1-9 0-10-0

1.0 1.0 1.0 1.0 1.0 1.0

Experiment 3: statistics on afirst-order set, for the square root of temperature, first-order abstract

exact 10.0(0) exact 2.59(2.0) exact exact

10-0-0 0-8-2

.002(.01) .12(.09)
Estimation of statistics on patient temperatures

Experiment 4: same as # 3 but for null abstract

.50(.90) 8.97(.9) 5.82(1.4) 0(0) .52(1.4) 8.17(1.2)

0-3-7 1-9-0 0-10-0 0-0-10 0-2-8 0-10-0

1.0 1.0 1.0 1.0 1.0 1.0

Experiment 5: statistics on a first-order set, for the square of temperature, first-order abstract

exact exact exact 7.38(1.7) exact exact

0-10-0

.24(.14)

Experiment 6: same as #5 but for null abstract

1.21(1.7) 7.26(1.3) 3.93(1.3) 2.33(1.5) .09(.18) 6.33(1.1)

0-4-6 1-9-0 0-10-0 0-8-2 . 0-3-7 0-10-0

1.0 1.0 1.0 1.0 1.0 1.0

241

count mean max sigma modefreq median

Experiment 7: statistics on the intersection of two first-order sets. with

respect to the prednisone dosage attribute. for afirst-order abstract.

6.27(3.9) 3.51{1.9) 3.56(3.1) 1.49{1.6) 2.57{3.2) 4.99(3.4)

5-5-0 0·10-0 0-8-2 0-7-3 1-7-2 3-7-0

.03{.04) .34{.31) .34{.31) .14{.08) .08(.05) .34{.31)

Experiment 8: the same as # 7 but for a null abstract

.73{1.0) 2.20{2.1) 1.90{3.3) 1.40(1.6) .40(.92) 6.25{4.6)

0-4-6 0-7-3 0-6-4 0-7-3 0-2-8 0-8-2

1.0 1.0 1.0 1.0 1.0 1.0

Experiment 9: statistics Oil the square root of prednisone. first-order abstract

exact 7.77(1.4)

0-10-0

.05{.04)

exact 2.51(3.0)

0-6-4

. 13{.05)

Experiment 10: same as #9 but for a null abstract

.76{.73) 4.11(2.6) 2.72(3.7) 0(0)

0-6-4 0·10-0 0-6-4 0-0-10

1.0 1.0 1.0 1.0

exact

.79(1.6)

0-2-8

1.0

Experiment II: statistics on the square of prednisone. first-order abstract

exact exact exact 1.90(1.1)

0-10-0

.07(.06)

Experiment 12: same as # II butfor a null abstract

.86(1.4) 1.22(1.5) 2.99(4.6) .16(.5)

0-3-7 0-7-3 0-3-7 0-1-9

1.0 1.0 1.0 1.0

exact

.54(1.2)

0-2-8

1.0

242

exact

6.59{4.2)

6-4-0

1.0

exact

6.14(4.7)

6-3-1

1.0

Estimation of statistics on prednisone dosages

count mean max sigma modcfreq median

Experiment 13: statistics on afirst-order set. with respect to the sum

of corresponding values for prednisone alld cholesterol. with first-order abstract

exact exact 5.59(1.8) 5.52(2.2) .65(.8) 5.97(3.0)

1-9-0 1-9-0 0-6-4 3-7-0

.ll(.08) .04(.03) .61(.89) .08(.07)

Experiment /4: same as # 13 but with null abstract

.38(1.1) 4.45(1.7) 1.50(2.2) .62(1.2) .39(1.2) 6.46(3.1)

0-1-9 0-10-0 0-7-3 0-3-7 0-1-9 4-6-0

1.0 1.0 1.0 1.0 1.0 1.0

Experiment 15: statistics on afirst-order set. with respect to the product
Some vinual-attributc statistics

of corresponding values for prednisone and cholesterol. with first-order abstract

exact 6.76(2.1) 3.42(3.4) 1.25(1.8) .15(.3) 3.63(3.3)

2-8-0 2-8-0 0-5-5 0-3-7 2-8-0

.57(.36) .34(.31) .27(.18) .30(.49) .07(.05)

Experiment 16: same as # 15 butfor null abstract

1.11(1.1) 1.99(1.6) .20(.40) .29(.77) .40(.76) 0(0)

0-6-4 0-8-2 0-2-8 0-2-8 0-2-8 0-0-10

1.0 1.0 1.0 1.0 1.0 1.0

Experiment 17: statistics Of! the union of two first-order sets. fOr/he

temperature attribute. with first-order abstract

6.84(2.4) 6.56(2.4) exact 3.54(4.3) 7.12(2.5) 6.26(2.1)

3-7-0 3-7-0 3-3-4 4-6-0 1-9-0 ,
.11(.14) .37(.36) .28(.25) .07(.11) .42(.35)

;

Experiment 18: same as # 17 but for null abstract

.39(.9) 7.29(1.4) 4.45(1.1) .87(1.6) .23(.50) 7.00(1.3)

0-3-7 0-10-0 0-10-0 0-4-6 0-2-8 0-10-0

1.0 1.0 1.0 1.0 1.0 1.0
Results for set unions. without relaxation

Experiment 19: statistics on the union of two first-order sets. for the

prednisone allribute, with first-order abstract

7.91(1.9) 6.59(2.6) exact 6.63(2.5) 6.49(2.8) 2.19(3.3)

3-7-0 3-7-0 3-7-0 3-7-0 1-6-3

.05(.09) .01(.02) .. 04(.04) .03(.04) .22(.25)

Experiment 20: same as # 19 but with null abstract

1.12(1.4) 3.58(1.9) 5.25(4.8) 3.02(3.2) .92(.95) 0(0)

0-8-2 0-10-0 0-10-0 0-9-1 0-6-4 0-0-10

1.0 1.0 1.0 1.0 1.0 1.0

243

count mcan max sigma modcfrcq median

Experiment 21: statistics on the intersection of two sets and the temperature attribute

2.00(1.8)

0-8-2

8.14(2.9)

1-8-1

7.38(3.3)

5-4-1

3.07(2.8)

0-7-3

2.51(3.8)

0-7-3

8.55(3.2)

8-1-1

Experiment 22: statistics on the intersection of two sets and the prednisone altribute

2.30(1.4)

0-9-1

4.15(2.6)

0-9-1

3.35(4.4)

3-3-4

1.80(1.4)

0-7-3

2.36(2.1)

0-7-3

4.74(4.3)

4-5-1

Experiment 23: statistics on the union of two sets and the temperature attribute

2.60(1.3)

0-10-0

9.51(.6)

0-10-0

4.73(1.1)

0-10-0

2.94(1.5)

0-10-0

2.62(2.3)

0-9-1

8.96(.7)

3-7-0

Experiment 24: statistics on the union of two sets and the prednisone attribute

3.29(1.8)

0-10-0

3.84(2.2)

0-10-0

2.50(3.8)

2-6-2

3.52(1.5)

0-10-0

2.74(1.2)

0-10-0

Experiment 25: statistics on ajirst-order set, of the square root of

the temperature attribute

2.57(1.5)

0-9-1

9.09(1.2)

0-10-0

6.78(2.2)

3-7-0

1.45(1.4)

0-7-3

3.08(1.9)

0-10·0

hxperiment 26: statistics on ajirst-order set, of the square root of

the prednisone attribute

2.75(1.7)

0-9·1

4.59(2.2)

0-10-0

3.29(3.4)

2-7-1

2.65(1.9)

0-8-2

2.38(1.5)

0-10-0

Experiment 27:'statistics on ajirst·order set, of the square of the

temperature attribute

2.82(1.6)

0-10-0

7.95(1.5)

0-10-0

6.48(3.0)

4-6-0

3.44(2.4)

0-9-1

2.59(2.9)

0-8-2

Experiment 28: statistics on ajirst-order set, of the square of the

prednisone attribute

2.86(1.1)

0-10-0

3.28(1.8)

0-10-0

6.0(4.9)

6-0-4

2.00(1.5)

0-10-0

2.71(.6)

0-10-0

Experiment 29: statistics on ajirst-order set, of the sum of

corresponding values for prednisone and cholesterol

1.75(1.6)

0-6-4

4.66(2.8)

0-8-2

4.34(3.9)

3-5-2

1.33(1.8)

0-4-6

1.64(1.8)

0-7-3

Experiment 30: statistics on ajirst-order set, of the product of

corresponding values for prednisone and cholesterol

2.34(1.6)

0-9-1

3.50(2.0)

0-9-1

2.69(3.8)

2-4-4

2.22(1.6)

0-8-2

244

1.98(1.5)

0-7-3

8.45(3.1)

8-2-0

8.80(1.3)

3-7-0

8.27(3.5)

8-2-0

8.07(1.8)

4-6-0

8.28(3.4)

8-2-0

5.99(3.8)

4-4-2

5.07(3.6)

3-6-1

Rcsult~ for cxtrapolation

from a random samplc.

Abstract

The GENISYS Data Definition Facilities

A. Timothy Maness and Sue M. Dintelman
University of Utah

This paper briefly describes the data definition facilities of the Genealogical Information
System. GENISYS. which include the ability to define and to modify the definitions
of the various database elements such as files. fields. logical links between files
and forms to input. display and modify data. The use of a source definition and a
target definition for data translation is presented. Also included is a list of proposed
improvements and extensions to the current facilities.

Keywords - Data definition. data description. data dictionaries. meta-data.

I. Introduction

GENISYS. the GENealogical ~nformation
SYStem was 'developed to meet the needs
of a mUltidisciplinary research project
involved in historical demography
studies and genetic studies of cancer
and heart disease. The project database
consists of demographic inf6rmation
for individuals associated in pedigrees
and several riles of medical and vital
statistics data. A detailed discussion
of the design goals for GENISYS, may
be found in Maness and Dintelman (1982).

Because the first goal was to
improve access to our existing data
the initial focus of GENISYS development
was the query language. One of the
key features of GOL (the GENISYS Ouery
Language) is the use of defined links
between files to make complex. multi
file queries easy to formulate (Dintelman
and Maness. 1982). For example. for
a database consisting of an Individual
file and a Household file. where the
Individual file contains demographic
information for a set of individuals
and the Household file contains information
such as location. type of dwelling.
etc .• for each household. possible
links that could be defined are HEAD_
OF HOUSEHOLD. a 1 to1 link from the
Household file to the Individual file;
HOUSEHOLD_MEMBERS. a 1 to N link from
the Household file to the Individual
file; and 1880_HOUSEHOLD •. a 1 to 1
link from the Individual file to the
Household file. In a query these
links may be used to access information
in one file based on criteria in another.
for example:

SELECT individual_id. birthyear
WHERE 1880_HOUSEHOLD
dwelling_type = single

This query would list the identifiers
and birth years (both fields from
the Individual file) for each member
of a single family type dwelling (a
characteristic of a household).

245

GOL has provided us a convenient
mechanism for fo~mulating data access
requests. Currently we are shifting
our emphasis to providing more convenient
ways for users to populate a database
from both digitized and non-digitized
sources. to access and modify the
data dictionary to define new files
and links and to allow users to inter
actively browse through their data
and through the data dictionary.
The next section describes the current
data definition capab~lities and
the final section lists some of the
extensions that are currently being
added.

II. Current Data De~inition
Facilities

The following example illustrates
the use of the data definition language
and GENISYS commands to (1) create
the definition of a newly acquired
data set. (2) translate the data
set into a more compact form. (3)
generate a form to use to view. modify
or add to the data and (4) place
the definition of the file into the
GENISYS data dictionary where it
may be accessed by the query language
and other system utilities.

Following is a simulation of
an actual GENISYS session. with explan
atory comments enclosed in braces.

{The GENISYS user creates a definition
file and uses a standard system editor
to input the definition of the newly
acquired data file. which is a text
file consisting of a subject identifier.
the sex of the subject. a single
data value followed by 4 readings
with the dates of each reading.}

CREATE/DEFINITION NEW_RESULTS
·append
1 SUBJECT_ID string length 5
2 SEX string length 1 recode

("M" "0". "F" "1")
3 XVALUE string length 5
4 MONTH1 string length 2
5 DAY1 string length 2
6 YEAR1 string length 4
7 READING1 string length 5
8 MONTH2 string length 2
9 DAY2 string length 2
10 YEAR2 string length 4
11 READING2 string length 5
12 MONTH3 string length 2
13 DAY3 string length 2
14 YEAR3 string length 4
15 READING3 string length 5
16 MONTH4 string length 2
17 DAY4 string length 2
18 YEAR4 string length 4
19 READING4 string length 5
20

·bye

{It is often desirable to translate
data into a different format for analysis.
One reason may be to compact the data
to save space and access time. another
may be to alter a coding scheme.
For the purpose of our example the
user now creates a second definition.}

.CREATE/DEFINITION LAB4 RESULTS
*append
1 INDEX r'IELD
2 ID label "Subject Number:" integer

length 5
3 SECTION
4 SEX label "Sex:" byte length

1 recode ("M" 1. "F" 2)
5 XVALUE real length 5
6 ENDSECTION
7 SECTION repeats 4 times
8 MONTH label "Reading date:"

byte length 2 range (0 ... 12)
9 DAY byte length 2 range

(0 •• 31)
10 YEAR integer length 4 range

(0.(>1975 and <1980»
11 READING real length 5 range

<>0.0. (100.0)
12 ENDSECTION
13
·bye

{A detailed explanation of the features
illustrated in these definitions is
below. To continue the example. the
user may now translate the original
data file into the new format using
the TRANSLATE command where the arguments

246

are the source definition and the
target definition.}

.TRANSLATE NEW_RESULTS LAB4_RESULTS

{Another command allows a GENISYS
user to generate a form which can
be used to display the converted
data file. add or delete records
or modify existing records.}

.GENERATE LAB4 RESULTS

{When the user is satisfied with
the definition. the GENISYS DEFINE
command is used to add the definition
of the LAB4 RESULTS data set to the
data dictionary.}

.DEFINE LAB4~RESULTS

.BYE

The two definitions above illustrate
some of the features of the GENISYS
data definition language. These
are discussed below.

Index Fields. The first section
of a description is used to designate
the field or fields to be used as
a primary key for the file. Indexes
for other fields may be indicated
using the INDEX keyword.

Data Types. GENISYS currently
allows the following data types:
bit. byte. integer. integer4. real.
double precision. string. soundex
(this is a special coded string used
in our application). There are trans
lation routines for all the reasonable
mappings so that the TRANSLATION
command may be used to translate
from one type of data to another
conveniently. Note that the length
specified using the LENGTH keyword
applies to the length of the field
for display purposes. If the data
type is anything but string the length
of the stored data is based on the
da ta ty pe. There are defaul t display
lengths for all data types.

Undefined Values. The default
undefined value is a zero (null)
value. but the user may specify another
value using the UNDEFINED VALUE keyword.
This is useful in instances when
zero is a valid reponse.

f)

Range Checking. Following the
RANGE keyword a specification of valid
responses is listed. The example
above illustrates the type of range
specifications that are allowed.
The ranges are checked during the
initial input of a record whether
during a oatch operation using TRANSLATE
or using an input form. Ranges are
also checked whenever a record is •
modified. To apply a new consistency
constraint to an existing file the
GENISYS command CHECK CONSISTENCY
will find all records which do not
meet the range requirements.

Recoding. The above example
illustrates two uses of recoding.
One use is to allow a change from
one coding scheme to another. In
the example above male was originally
coded as 0 and female as 1. In the
new file male is 1 and female is 2.
The use of recoding also allows users
to use an uncoded description of all
types of descriptive data items such
as race. religion. household type.
etc .• when doing data entry and data
access. Using an uncoded description
is much more intuitive and results
in fewer errors due to misuse of coding
schemes.

Record Layout. The physical
layout of the two riles described
above was determined by the system
from the relative position and data
type of each rield description. Specific
byte (or bit) locations may be given
using the LOCATION keyword to override
the default position value.

Logical Data Structure. The
SECTION breaks may be used to separate
logical groups of data items. although
currently the only use of non-repeating
sections is to allow the use of the
NEXT SECTION function key in a form
generated from the definition. Repeating
sections (such as the reading information
in the second definition) and repeating
fields are common in many of our appli
cations. The internal structure of
a logical file containing repeating
information may include multiple physical
files in order to save storage space.
For example. a questionnaire may allow
up to 10 treatment descriptions and
the average used in the data collected
to date may be only 2. Considerable
space savings may be realized by using
a separate file for the treatment
descriptions. The translation command
allows the physical structure to be
changed as well as the logical structure.

247

i.e. in the example above the readings
were initially considered to be a
flat list of 16 data items and in
the translated file are considered
to be four repeats of four data items.
The physical structure of a new file
may be specified by the user or determined
by the system. as in the example.
based on the trade off between the
length of the repeating information.
the maximum number of repeats. and
the length of the system information
required to implement a separate
file.

III. Extensions

This section describ.s some
of the features we are currently
designing and implementing to expand
the data description and data handling
capabilities of GENISYS.

Consistency Constraints

The definition of consistency
constraints is important for finding
inconsistencies in existing data.
for preventing errors in newly input
data and preventing modifications
that would introduce inconsistencies.
Consistency constraints are parti
cularly important for global files.
i.e .• data files that are utilized
by the entire project. It is important
that updates to global files meet
the consistency constraints required
by ~he entire group of users. We
currently support the range checking
of a single field and intra-record
constraints. but are working on adding
the ability to enforce inter-record
constraints. As part of the work
with our large genealogy file we
have a list of 85 rules which must
be met before a pedigree is considered
consistent. We are very interested
in making the specification of these
complex constraints more convenient
by allowing the use of the same link
names and types of expressions as
in GQL.

The consistency constraints
will be implemented as a rules system
(Stonebraker 1982). Rules take the
general form of:

if <condi tion>
then <action>

where <condition> is a list of things
to watch for and <action> is a list

of things to do. This same paradigm
has been used extensively by the AI
community in the development of expert
s y s t ems (M Y C I N (D\a vis, 1 97 7 » and
rules systems have been called "production
systems, rule based systems, pattern
directed inference systems" (Nilsson,
1980) .

An example of a simple rule that
may be associated with a record for
an individual is:

IF (BIRTHYEAR > DEATHYEAR AND
DEATHYEAR A = 0)
THEN WARNING ("Birthyear is greater
than Deathyear")

If a request to change a record results
in the condition that an individual's
birth year becomes greater than his
death year then a warning is returned
to the process requesting the change.
The actions associated with conditions
may range t"rom warnings, to refusal
to perform the requested update, notifi
cation of systems personnel, or logging
the fact that the condition of the
rule was met for reporting purposes.
The parsed form of the rules will
be stored in the data dictionary as
a hierarchical structure.

Abstract Date Types

Use of abstract data types provides
a convenient way to deal with complex
data attributes, that is, attributes
which consist of elementary attributes.
"Date" is an example of a data type
which consists of "month", "day" and
"year" pieces. Users should be able
to use any of the following equivalent
representations for a date value:

01/04/1983, 01-04-83, or January
4, 1983

It would also be convenient to specify
in a query an expression such as

DEATHDATE > BIRTHDATE + "8 YEARS"

or

DATEOFDIAGNOSIS BETWEEN "1/1968"
AND "12/1974"

An abstract data type includes
the definition of the internal repre
sentation of the data type and conversion
routines to convert from the abstract
data type to other types, such as
strings for input or output. Also

(

248

associated with the data type may
be definitions of comparison routines,
arithmetic operators, aggregate functions
and special functions for the data
type.

An additional example of the
use of an abstract data type is the
definition of a pedigree data type
for general use in our project.
The ability to define abstract data
types will also make dealing with
different coding schemes much more
convenient. For example, death certif
icate records which contain ICD-O
coding for cause of death use many
different revisions of the coding
scheme. In order to ask about a
specific cause of death it is currently
necessary to know the cause of death
(COD) code for each ICD revision
and ask for:

lCD_REVISION = 6 AND COD = V1
OR lCD_REVISION = 7 AND COD = V2
OR lCD_REVISION = 8 AND COD = V3

It would be much more convenient
to define an abstract data type
"CAUSE_OF DEATH" which includes both
the revision number and the code
and conversion routines for causes
of death that will be used such as
"CANCER" or "BREAST CANCER".

Implementing abstract data types
will require extensions to the data
dictionary and type checking during
the parsing phase becomes more complex
and potentially time consuming.
Preliminary implementations of abstract
data types (Overmyer, 1982) indicate
these are not insurmountable problems.
Because our queries are currently
compiled, inclusion of any of the
functions associated with abstract
data types present no difficulty.
These types of functions will be
included in our plans for a more
interactive system by implementing
them as separate processes using
available interprocess communication
facilities.

Ose of Links and Forms.

The current implementation of
GENISYS allows us to define forms
which can be used to display, add
and modify data in a single logical
file. We would like to take advantage
of the features of the currently
supported system and include the
ability to display, add and modify

links between different logical files.

In order to support these capabilities
in a general way we will extend the
data dictionary to contain the definition
of forms which use path expressions
to select data to be displayed on
a form and to allow the definition
of commands to move between forms.
These commands will allow a user to
define several forms and to specify
the mechanism (usually some key value)·
to retrieve a new record (or records)
and the form used to display it (them).
Our current design of the use of forms
in GENISYS has been influenced by
the frames discussed by Catell in
(Ca tell. 1980) and the forms discussed
by Rowe in (Rowe. 1982).

The ability to quickly specify
a form and use it to display records
will be a useful companion to the
use of GQL for preliminary analysis.
In other words the use of forms will
not be restricted to input operators.
but will be useful for researchers
who. we hope. will be creating their
own customized rorms.

Unitied treatment ot data dictionary
and data

The importance of integrating
meta-data facilities with database
management facilities is discussed
by several people. for example. see
(Codd. 1982 and McCarthy. 1982).
It is our goal to move closer to the
ideal situation where the data base
management system manages the data
dictionary as a database. no different
than any other. The feature we are

. missing is th~ ability to have self
describing files and fields. that
is. using the value of one field to
interpret the contents of another
and the use of a field to determine
the type of record. Once implementation
of this feature is complete. we will
be able to define the data dictionary
to itself and use GQL to query the
data dictionary and define forms and
associated commands to browse through
the database. This will be useful
for new researchers or researchers
investigating new areas as they will
be able to see what data is available.
who has run queries or modified the
data they are interested in. etc.

249

IV. Conclusion

This has been a very brief des
cription of the type of data definition
capabilities we currently have as
part of GENISYS and the type of capability
we are planning. Our main goal in
all GENISYS development has been
to implement tools which will be
useful to and used directly by the
researchers who are analyzing the
data.

Reterences

[1] R. G. G. Catell. "An Entity
based Database User Interface."
Proc. ACM-SIGMOD 1980 Inter
national Conference on Management
of Data. pp. 144-150. May 1980.

[2] E. F. Codd. "Relational Database:
A Practical Foundation for Produc
tivity." Communications of the
ACM. pp. 109-117. February 1982.

[3] R. Davis. B. Buchanan. E. Short
liffe. "Production Rules as
a Representation for a Knowledge
Based Consultation Program."
Artificial Intelligence. vol. 8.
pp. 15-45. 1977.

[4] S. M. Dintelman. A. T. Maness.
"An Implementation of a Query
Language Supporting Path Expres
sions." Proc. ACM-SIGMOD 1982
International Conference on
Management of Data. pp. 87-94.
June 1982.

[5] A. T. Maness. S. M. Dintelman •
"Design of the Genealogical
Information System." Proc. First
International Workshop on Statistical
Database Management. pp. 44-
59. March 1982.

[6] J. L. McCarthy. "Metadata Management
For Large Statistical Database."
Proc. Eighth International Conference
on Very Large Databases. 1982.

[7] N. J. Nilsson. Principles of
Artificial Intelligence. Tioga
Publishing Co •• 1980.

[8] R. Overmyer, M. Stonebraker,
"Implementation of a Time Expert
in a Database System," SIGMOD
RECORD, vol. 12, no 3, pp. 51-
60, April 1982.

[9] L. A. Rowe, K. A. Shoens, "A
Form Application Development
System," Proc. ACM-SIGMOD 1982
International Conference on Management
of Data, pp. 18-39, June 1982.

[10] M. Stonebraker, R. Johnson, S.
Rosenberg, "A Rules System for
a Relational Database Management
System," Improving Database Usability
and Responsiveness, pp. 323-335,
1982.

Acknowledgments

This research was supported by NIH
grants HL-24855-04, CA-28854-02, HL-
21088-06, and HD-15455-02, Public
Health Services, DHEW.

250

* LOGICAL AND PHYSICAL MODELING OF STATISTICAL/SCIENTIFIC DATABASES

Stanley Y. W. Su, Sham B. Navathe, and Don S. Batory

Database Systems Research and Development Center
University of Florida, Gainesville, Florida 32611 U.S.A.

Abstract

This paper describes the major research tasks currently being undertaken at the Database
Systems Research and Development Center of the University of Florida in the area of manage
ment of statistical databases. It presents the progress made to date and accomplishments
related to the following: 1) the development of a semantic association model and its data
language for use in statistical/scientific applications, 2} the, study of (a) data mapping
between a semantic model and the model used by a particular DBMS and between a logical
model and its physical implementation, and (b) view integration problems in database de
sign, 3) the investigation of data compression techniques and the development of a general
model of database implementation, and 4) the study of parallel algorithms and database
machine techniques for the efficient processing of statistical/scientific databases. The
research project has been supported by the Applied Mathematical Science Program of the
Department of Energy under contract HDE-ASOS-BlERl0977.

1. INTRODUCTION

In our complex, technologically-oriented society,
the success of many human endeavors relies very
much on the availability of data relevant to de
cision making. Examples of these endeavors a
bound in energy-related research, operations and
management. In organizations involved in energy
production/distribution/management, technical
staffs and management personnel often need to ac
cess diverse and interdisciplinary statistical
and scientific databases (SSDs) containing energy,
census, geographical, environmental, and socio
economic data. These databases have been gathered
by different governmental agencies and DOE labor
atories and offices. There are several factors
that make the access to these databases very
difficult, if not impossible:

(1) In general, different databases are imple
mented on different hardware using different data
processing systems. Consequently, there are no
common conventions for naming, describing, for
matting, representing, and structuring data. Also,
the languages used for accessing and manipulating
different databases are also different. Access
to data in multiple databases is, thus, rendered
very difficult.

It is, therefore, necessary to investigate the
techniques and rules for mapping and interpreting
data stored under different representations and
translating queries issued for one system into
queries suitable for another system. The data
mapping and query translation problems also exist
in relating the users' views (external models) to
the community users' view (conceptual model) and
to the internal structures (internal model) of a
database. Furthermore, better language inter
faces should be designed and developed to make it
easy for the users who lack computer training to
access the diverse databases.

(2) It is advantageous to have a generalized
database management system (DBMS) to facilitate
the accessing and sharing of valuable data among

*This project is funded under Department of Energy
contract HDE-ASOS-BlERl0977.

251

energy-related organizations. Unfortunately,
the existing relational, hierarchical and net
work models used in business-oriented DBMSs are
not adequate for defining and processing SSDs.
Several recently proposed "semantic models"
[CHE76, SMI77 , HAM7B, NAV7B, COD79, SU79, HAMBl,
SHIBl, KREB2], though richer in semantics, are
not designed for SSD applications. SSDs have
characteristics which are quite different from
those of business-oriented databases [BIR7B,
RAP7B, SZC7B, CRAB 1 , SHOB2, BORB2]. They con-
tain a large variety of data types: numeric
data, such as fixed point, floating point and
double-precision numbers, bit strings, vectors,
matrices and arrays, as well as non-numeric data,
including text, formatted and unformatted char
acter strings. The operators useful for the
manipulation of these data types are quite differ-'
ent from those used in the processing of formatted
business data. For example, the operators for
matrix manipulation and text processing needed
for SSDs are generally not available in business
oriented DBMSs. The processing of SSDs often in
volves the use of aggregate functions and statis
tical routines to obtain summary data which pro
vides a proper context for interpretation, extrapo
lation, and prediction. The operations required
to aggregate and extract data from SSDs are dif
ferent from those available in business DBMSs.
They are a part of the semantics of SSDs and need
to be explicitly modeled. Due to these and sever
al other differences, there is a definite need for
a data model that is tailored for SSD applications.
The model should not only provide for modeling of
a variety of high-level data types, aggregate func
tions and statistical summary data, but also allow
an explicit definition of the semantic properties
of SSDs so that meaningful operations associated
with the data may be predefined and carried out by
a DBMS. The latter property 1) eliminates the
need for a redundant specification of these oper
ations via users' queries, 2) allows a high-level
data language to be designed and, thus, 3) simpli
fies the users' tasks in accessing and manipulat
ing the databases.

(3) Inefficiency of data access and manipulation
is always a problem in statistical/scientific ap
plications. This is because of the sheer size of

databases involved and the time-consuming opera
tions required in these applications. There is
a strong need for the development of implementa
tion techniques which allow (a) an efficient
processing of SSDs in terms of retrievals, up
dates, aggregations, etc., and (b) facilities
for handling compressed data, variable-length
data, data types, which characterize SSDs, etc.
The implementation techniques should take advan
tage of the special characteristics of physical
data as well as operations of SSDs to achieve
the needed efficiency. They should also take
into consideration the ease of mapping the logi
cal data representation and operations into its
physical counterparts. It is expected that im
plementation techniques for SSDs will be quite
different from those for the business-oriented
databases.

Software techniques work well but often at the
expense of generating additional system over
head and other software problems. The indexing
technique for speeding up data search at the
expense of ease of updating is an example. It
is, therefore, important to seek alternative
hardware solutions to the efficiency problem.
Hardware architectures or special purpose hard
ware for supporting statistical/scientific
processing can be expected to be quite differ
ent from the existing database machines de
signed for managing business-oriented databases.

Under the support of the Division of Engineer
ing, Mathematical and Geosciences, Office of
Basic Energy Sciences, Department of Energy,
we have for the past two years (since July
1981) concentrated on the following research
tasks in logical and physical modeling and de
sign of SSDs:

1. The design of a semantic association model
for the conceptual design of SSDs.

2. The identification of complex data types
and their associated operations which are use
ful to the SSD users and are to be used as a
basis for the design of a high-level, non
procedural data manipulation language.

3. The development and analysis of two data
compression techniques: dynamic index en
coding and the vertical elimination of re
peating characters (VERC).

4. The design of a general model of physical
databases to describe and define the physical
structures of existing scientific and statis
tical database management systems.

5. A preliminary investigation into the map
ping of semantic models into the logical and
physical structures in a DBHS.

6. A framework for integrating the user views
during the "view integration" phase of logical
database design of SSDs.

7. Algorithms for sorting and statistical
aggregations and their implementation in a
microcomputer network.

2. OVERVIEW OF CURRENT EFFORTS AND ACCOHPLISH
HENTS

In this section, we shall give an overview of
our research effort and accomplishments during

252

the past two years of study under the support of
the DOE. The results of our research are detailed
in [BAT82, BR082 , CHE82 , FEI82, NAV82a, SU82a,
SU82b, SU82c, BAT83a, BAT83b, NAV83 , SU83a, SU83b].
The following three areas will be covered:
a) Semantic Hodeling and Language Design
b) Database Happing and Integration
c) Physical Design.

2.1 SEMANTIC HODELING AND LANGUAGE DESIGN

The design of a powerful data model is perhaps
the most important and essential step in statis
tical and scientific database management. This
is because a model is necessary to define and
describe the logical views of users (external
models) as well as the integrated view (concep
tual model) of the user community. It is also
essential for the development of a generalized
DBHS for SSDs since the design of a data model
would determine the data definition language and
the data manipulation language which are the key
facilities in a DBMS. The data model used for
logical database modeling would also affect the
physical database modeling and design because
the physical database structure depends on the
logical database structure and the mapping be
tween logical and physical databases is one of
the key considerations in efficient design.

The data models used in the existing commercial
DBMSs and the current research works on semantic
models are designed for modeling corporate data
bases rather than scientific/statistical data
bases (SSDs). SSDs have many characteristics
that are very different from business databases.
Host notably, SSD applications regularly deal
with complex data types, such as matrices, time
series, set, vector, variable length text strings,
date, etc. These are generally not recognized in
existing DBMSs but are handled by application pro
grams written in high-level programming languages.
They involve operations such as 1) statistical
aggregations and disaggregations (e.g., aggregate
petroleum production by country, by state/province,
by petroleum type), 2) conversion of data to suit
statistical packages, 3) modification of data to
produce the needed periodicity for statistical
analysis of time series, etc., and 4) the regular
database management functions, such as retrieval,
update, insert, and delete. Because of the above
and many other differences, a different data model
is needed to adequately define a database. Also,
new language constructs must augment the associ
ated data language to make it easy for the user
to manipulate the database. By expanding upon
the different types of associations in the orig
inal semantic association model - SAM [SU79], we
have developed a semantic association model SAM*
which is tailored for SSD applications [SU82a,
SU83a].

In SAM*, an SSD is modeled by a network of atomic
and non-atomic concepts represented as nodes.
The interconnections of these nodes (i.e., the
arcs) specify how concepts are semantically re
lated and are grouped to describe other concepts.
Seven general grouping strategies called "asso
ciations" are recognized in the model in terms of
which complex semantic information of a database
can be explicitly defined. They are 1) member
ship, 2) aggregation, 3) generalization, 4) in
teraction, 5) composition, 6) cross-product, and

7) summarization associations. The distinctions
among these seven association types are made
based on the differences in structural proper
ties, semantic constraints, and operations. The
conceptual model of a database is graphically
represented by the recursive use and nested
structuring of these constructs. A simple exam
ple is given below. Figure 1 models an air pol
lution database which is a part of the air qual
ity data of the South Coast Air Quality Manage
ment District of Los Angeles. As defined, AIR
POLLUTION_DATA is an entity type formed by an -
Aggregation Association and is explicitly labeled
as an A node in the graph. It is characterized
by a pollutant identification code, the locations
where pollutant measurements are taken, and the
measurement by hours and by days. POLLUTANT D
is the unique identifying attribute type (prIma
ry key) and is thus underlined. Attribute types
are concepts formed by a Membership Association
and are explicitly specified as M nodes. LOCA
TION is an entity type formed by aggregating
attribute types LATITUDE, LONGITUDE, STATION ID,
and CITY. It has an existence dependency rela
tionship with AIR POLLUTION DATA in that the exis
tence of location-data in the database depends on
the existence of the pollutant entity which the
location data characterize. Each pollutant type
is measured in many locations at a given time.
The times that pollutant measurements are taken
are defined by the Cross Product of a set of
hours (the M node HOUR) and a set of dates (the
M node DATE). Thus, TIME is explicitly labeled
as an X node (cross-product association). Each
hour_and-date pair defines a time at which all
measurements of a pollutant are taken at various
locations. The attribute MEASURE is a summary
of these measurements and is connected to TIME
by HOURLY_MEASURE which represents a Summariza
tion association, thus labeled as an S node in
the graph.

In retrieving and updating the database, the
access paths through the network and operations
on the data represented by the network nodes are
guided by the association types at the nodes.
Thus, the enforcement of semantic constraints
and the manipulation operations can be made im
plicit and need not appearl as explicit commands
in the users' application programs or queries.
This g.reatly increases the power of a DBMS and
its data language and simplifies the users' task
in interacting with the database.

A tabular form for representing the data modeled
by the association types is introduced in SAM*.
It is called a Generalized Relation (G-relation)
which is the mathematical notion of a relation
defined over a set of attributes belonging to
different data types, such as integer, real,
matrix, set, ordered set, vector, time-series,
text, etc., as well as the type G-relation. Thus,
a G-relation is recursively defined allowing G
relations to be nested in other G-relations to
an arbitrary level. Furthermore, two general
types of attributes are distinguished: identifi
cation attributes and summary attributes. The
former type identifies or characterizes entities
or categories of entities .and the latter type
specifies the summary information over categories
of entities. An example G-relation is shown in
Figure 2. It is a tabular representation of the
AIR_POLLUTION_DATA shown in Figure 1. In the
figure, AIR POLLUTION DATA, LOCATION, HOURLY
MEASURE and-TIME are G-relations in a nested
structure. The association types associated with
the G-relations are specified following their
names. The summary attribute MEASURE is separat
ed from the identification attribute TIME in G
relation HOURLY_MEASURE by two vertical lines.

A set of algebraic operators has been defined for
processing G-relations. These operators are dif-

Figure 1. A Model for Air Quality Database.

253

POLLUTANT ID LOCATION (A) HOURLY MEASURE(S+X)

LATITUDE LONGITUDE STATION ID CITY TIME (X) MEASURE -
HOUR DATE

Figure 2. An Example G-Relation.

ferent from the usual relational operators in
that they operate on data with complex data
types and are subject to the semantic restric
tions of complex data types. A number of opera
tors for the statistical aggregation and dis
aggregation are included. They are not availa
ble in the existing relational systems.

2.1.1 COMPLEX DATA TYPES

Existing DBMSs support only a few primitive
data types: simple numerics and character
strings. For SSDs, which require extensive data
manipulation, many more data types need to be
recognized. Currently, an SSD user must perform
the necessary operations through application pro
grams outside of the DBMS. Not only is this a
burden to the user, but the system has no con
trol over whether the operations performed are
semantically valid. A solution to this problem
is to directly support an extended set of data
types within the DBMS.

A complex data type (CDT) is a structured data
type which corresponds to an abstract object
commonly found in the user's view of data. We
propose that a DBMS for SSD processing should
recognize the following CDTs: set, vector,
ordered set, 'matrix, date, time, time series,
and G-relation. They are each defined and
briefly described below.

1. Set. A.set is a collection of elements, all
of the same type, in which no duplicates
are allowed. Some operations which should
be included for set are:
- finding the union, intersection, or dif

ferences of two sets;
- adding, deleting, or replacing elements

of a set.

2. Vector. A vector is a collection of elements,
all of the same type, which are ordered.
Since a vector is ordered, operations may
be either position or content dependent.
Content dependent operators include infor
mation retrieval operations, such as check
ing for inclusion/exclusion of a single ele
ment, a sequence of elements, or mUltiple

254

occurrences of either. Position depen
dent operators utilize subscripting to
provide flexible access of an entire
vector, a subvector, or a single com
ponent.

3. Ordered Set. An ordered set is a set in
which the elements are ordered and may
be indexed. In addition to standard set
operations, position dependent operations,
such as retrieving all elements preceed
ing a specified value, are included.

4. Matrix. A matrix is a multidimensional
---corlection of elements, all of the same

type. The operations on matrix include
those available for vector as well as
higher level operations which take multi
dimensioning into account. For example:

- insertion, deletion, or comparison of
rows or columns of a matrix;

- checking for the inclusion of a sub
matrix.

5. Time. Time is a coded value for duration from
a fixed reference point. Operations avail
able are: accessing by interval or acces
sing by temporal order.

6. Time Series. A time series is a two-dimen
sional matrix in which rows represent cases,
and columns represent observations over time.
Operators include basic matrix manipulations,
as well as special modification operators,
such as merging two time series.

7. Text. A text is a vector of characters. The
----inclusion of the data type text allows for

a free-formatted field in the data. Common
text processing operations include the fol
lowing:recognition of partial matches (e.g.,
text contains at least 5 of the given list
of words; fixed) and variable length Don't
Cares (e.g., "match pollut*" should match
pollutant, pollution, polluting, etc.).

8. G-relation. Collections of related data are
represented as a tabular structure called

a generalized relatien er G-relatien. Un
like the relatienal medel, the G-relatien
allews attribute demains to. be any CDT, in
cluding anether G-relation. Thus, hierarchi
cal medeling is directly supperted. Opera
tiens en a G-relatien are performed at two.
levels ef abstraction. At the lew level,
eperations cerrespend to. the CDT of the at
tribute domain. At a higher level, a collec
tien of attributes forms a uniferm tuple; and
a G-relation is simply a set of tuples. As
such, all set eperatiens previously described
are applicable to a G-relation. Traditienal
relational operators, such as join, selection,
prejection, etc., can be used for G-relatiens
with some medifications.

A language specifically designed fer SSD preces
sing has beendeveleped [BR082) and is currently
being revised. This Statistical and Scientific
~ata ~anguage (SSDL) incorporates the-fellewing
features:

1) Complex data types for direct medeling and
high-level manipulation ef data objects
which cerrespend to the user's view of data.

2) A straightforward language structure for
query specification. This structure,
modeled after CASDAL [SU78b), allows for
a natural way of specifying aggregate
precessing and of decomposing complex
queries into simpler subqueries.

3) The integration of high-level procedures
from existing statistical processing sys
tems fer descriptive analysis.

Complex data typing is a means ef supporting the
manipulations necessary for SSD processing at the
user's level of abstraction. We feel that incor
porating CDTs directly into. the DBMS will result
in more efficient and effective management of
scientific and statistical databases.

2.2 DATABASE MAPPING AND INTEGRATION

The database mapping problem is related to the
use ef different data models for different pur
poses in the context ef any database. In particu
lar, the mappings of specific interest to. us are
the following:

1) from a semantic mede1 to the model used by
a particular DBMS

2) frem a 1egica1 mede1 to its pessib1e physi
cal implementations.

The first type ef mapping stated above arises
during any database design after a community view
of data is formulated in terms ef a high-level
data mode1,and is to be implemented using a speci
fic database management system. The second type
ef mapping belongs to the area of "physical de
sign" and will be discussed in section 2.3.

255

A related problem to the above database mappings
is the problem of "view integration." Navathe,
in his previeus work [NAV78, YA078 , NAV82b) has
defined a framework for database design consist
ing of the following phases:

a) requirements analysis: gathering the gen
eral requirements of users for data and
applications.

b) view modeling: modeling of individual
users/application area's views.

c) view integration: integration of mUltiple
users' views into a single global view.

d) schema analysis and mapping: mapping a
community view into a 1egica1 database
schema in the target database management
system.

e) physical design: mapping the logical data
base schema into a physical database schema.

In the present project, it is apparent that we
are trying to cover phases (b) through (e) ef
database design mentioned abeve. Requirements
analysis, or phase (a), is not being explicitly
addressed in our present scope of work.

To concretely apply the abeve framework to the
design ef SSDs weu1d imply the following scenario..
Each step in this scenario provides us with a
research problem:

A) Individual user's views weu1d be expressed
in a semantic model.

B) These views would be integrated into a sin
gle "community view."

C) The cemmunity view would be mapped into a
specific DBMS's logical schema.

D) The logical schema weuld be implemented in
the form ef a physical (or implementation)
schema.

While A) was dealt with in the previous subsection,
and D) is dealt with in the following subsection,
here we shall focus eur attentien en problem B),
view integration, and problem C), schema mapping.
So far, we have researched these problems in a
fairly general sense without limiting ourselves
to. just statistical and scientific databases.
The general results of our research can be easily
applied to special cases involving SSDs.

View Integratien

Our work on view integratien [NAV82a) takes the
Navathe and Schkelnick (N-S) data model [NAV78)
as its basis and discusses how a View Integrator
weu1d operate if user views in the N-S model were
input to it for integration. Figure 3 shows a
schematic diagram ef the view integrator. The
salient features of the view integration methed-

Enterprise

View

Statement

of Conflicts

Local

Views

Integration Policy

View

Integrator

Global

View(s)

Intra-view

Assertions

Interview

Assertions

Modified

Assertions

Processing
Requirements

Figure 3. A Model for View Integration.

do logy are as follows:

a) We allow for assertions or constraints to
be expressed in an assertion language,
which is an addition to the definition of
a view. Both intra-view and inter-view
constraints are allowed.

b) There is a notion of "eguivalent views"
which are views containing the same infor
mation, but having different structures.

c) In case of equivalent views, we allow for a
quantification of the preference of a view,
so that the integrator can process views in
a decreasing order of preference scores.

c) In [NAV82a], a general procedure for view
integration is defined which consists of
separating views into equivalence classes and
then performing integration on each class by
a process of ''matching.'' During view inte
gration, the assertions are modified as views
change and the designer is supposed to be con
stantly informed or consulted to resolve con
flicts.

e) The matching process has been analysed in
detail by considering how two different
data objects may have a match on the name,
key attributes and non-key attributes under
various combinations.

f) A series of view integration operations have
been defined to deal with the different con~
structs from the N-S model.

Previous work by researchers (e.g., [ELM79,
AR082]) has considered the view integration oper
ations without considering conflicts regarding
naming, identification, etc., which are so common
in any real application. They also have not tried
to specify how the view integration should actually

256

be carried out in an interactive semi-automated
manner as we do. The only other work similar to
ours that we are aware of in this area is that of
Batini [BATI82].

Our general framework can be made to apply to the
SAM* model [SU83a] by. providing an assertion lan
guage to describe the intra- and inter-view asser
tions, defining various types of equivalence, etc.,
with respect to that data model. This activity
will be undertaken during the next phase of our
project.

Schema Mapping

Mapping of database schemas among dissimilar models
has interested several researchers in the past few
years. Just the problem of mappings between the
relational model on one hand, and the network or
hierarchical model on the other, has been addressed
by many (e.g., [KLU77, KLU78, KLU81, NAV80, ZAN79a,
ZAN79b]). In the present context, our interest is
mainly to address the mappings of a global com
munity view of' data into the logical schema of
a ~pecific DBMS. Barring a few exceptions [SAK80],
thlS problem has not been specifically dealt with.
We, therefore, decided to address this problem
in a concrete way by assuming that the community
view is available in a certain well-defined, us
able, and fairly well-accepted semantic data model.
For the community view, we selected the extended
entity relationship model [CHE76, SCH80], and as
the target model we chose the hierarchical data
model. The methodology for schema mapping in
this specific context is reported in ICHE82,
NAV83]. The highlights of this work are summar
ized below. Our effort complements that of the
Lawrence Berkeley Laboratory group, which is
also experimenting with an extended entity-rela
tionship model for better user interfaces through
graphics (e.g., [WON82]).

a) It is assumed that the community (of
users) view is modeled in the extended en
tity relationship (E-E-R) model using the en
tities and relationships as originally defined
by Chen [CHEN76] and incorporating additionally
three semantic constructs: subset hierarchies,
generalization hierarchies and relationship of
relationships [SCH801.

b) We divide the schema translation process
into local translation, evaluation of alternate
structures and global translation. The informa
tion about the E-E-R model input to the schema
translation comprises:

- hierarchical dependencies and subsequent
first order and general hierarchical decom
position as defined by Delobel [DEL78].

- quantitative parameters in the E-E-R model,
such as the number of occurrences of an en
tity, average ratios of members to owners
in different relationships, etc.

- transaction specifications in terms of the
access paths used by each transaction and
the relative frequency of each transaction.

- cost information pertaining to storage cost
factors, relative cost of different types
of accesses, etc.

c) Local translation algorithms are constructed
to map individual constructs from E-E~R into the
hierarchical model. These algorithms produce a
unique schema if the given transaction specifica
tion clearly favors one alternative structure over
all others. Otherwise, several target structures
are produced and subjected to further evaluation
of the total cost of processing the given trans
actions by using estimated cost factors. We real
ize that this method of evaluation does not yield
"the optimal" schema as a result; however, at
this· stage of database design, one cannot conduct
a more realistic analysis/evaluation. The result
ing schema may be considered as a preliminary
design or a guideline.

d) The target structures in the hierarchical
model are then subjected to a merging process
called "global translation." This actually is an
integration of subschemas and is DBMS specific.
For example, a system like IMS [IBM751 would use
"logical' pointers" to model a relationship between
two segments; whereas, another system like S 2000
[MRI74] may use redundancy.

The above work has shown that the schema mapping
between a semantic model and an implemented data
model can be dealt with in a comprehensive way
and optimization of target structures can be
attempted at the logical level. We have also in
dicated in the'above work how the real benefit of
such mapping algorithms can be realized in a prac
tical way for users by developing an automated
schema mapping tool. Similar research may be per
formed on the mapping of semantic models, such as
SAM*, into existing DBMSs.

257

2.3 PHYSICAL DESIGN

Our research on physical design has concerned
investigations of new data compres~ion techniques
and the development of a general model of data
base implementation.

Data Compression Technigues

SSD files are characterized by large quantities
of numeric and alpha-numeric data. Processing
these files normally requires an examination of
every record. Data compression is quite useful
in this connection, for a reductio.n in storage
volume is proportional to the increase in speed
at which a file can be processed. For this
reason, data compression plays an important role
in SSD implementation. We have studied two com
pressidn techniques: dynamic index encoding and
vertical elimination of repeating characters
(VERC) •

Index encoding is used to some extend in almost
all SSDs. The basic idea is to identify the
set of all distinct values that an attribute as
sumes in a data file. The elements of this set
are sorted lexically and the index position at
which an element appears becomes its index code.
The data file is then encoded by replacing at
tribute values with their corresponding index
codes. Since the storage requirements of codes
are less than their data value counterparts, a
sizable compression often results.

An important feature of index encoding is the
identity of the index and lexical order of (code,
value) pairs. Because of this identity, the
costly process of translating index codes to data
values can be eliminated during the data search
ing, sorting, and processing phases of most file
operations [ALS751; this enables operations ,to
be performed directly and efficiently on com
pressed data.

An obvious problem with index encoding is the
addition of a new data value to an attribute's
domain; index codes must be recomputed and the
data file must be recoded. Clearly, if data
values are added frequently, the overhead of file
recoding becomes significant. An obvious way a
round this problem is not to assign consecutive
index codes. For example, if (A,I,O,U) is the
domain of an attribute, one might assign the codes
(0,8,16,24) rather than (0,1,2,3). Because codes
are nondense, new data values can be added to a
domain and unused index codes can be assigned in
a way that preserves the lexical and index order
ing identity. Doing so elimiates (or significant
ly reduces) the need to recode. For example, the
data value 'E' could be added to the above domain
and assigned index code '4' without altering pre
viously assigned index codes or violating the lex
ical and index order identity.

The initial assignment of index codes and the
method by which unused codes are selected and

assigned to new data values influence the over
all performance of generalized (or "dynamic")
index encoding algorithms. Several algorithms
have been analyzed and a practical methodology for
their application has been proposed [BAT82].

Perhaps the most elementary data compression tech
nique is the elimination of repeating characters
(ERC); a string of five A's "AAAAA" is replaced
by the two-byte string "SA", where "5" is the re
peat count and "A" is the repeat character. Ver
sions of this technique have appeared in a number
of significant commercial and specialized DBMSs:
ADABAS [GES76, SOF77 , KR077], IDMS [KR077, CUL81],
and RAPID [TUR79, STA81]. Actually, ERC is only
one of several data compression methods employed
by these systems. However, experimental evidence
shows that ERC accounts for 75% or more of the re
duction in storage volume afforded by these DBMSs,
so ERC is certainly important.

A survey of the compression techniques in use to
day reveals that they are primarily used to com
press individual records; redundancies which
might occur across consecutively stored records
are rarely eliminated. Some exceptions do exist;
e.g., see [EGG80, EGG81]. The Vertical ERC (VERC)
was developed to eliminate such redundancies. The
idea is to place a collection of records in a two
dimensional character array, where each row con
tains a single record. The array is then trans
posed, so that row i contains a single record.
The array is then transposed, so that row i con
tains the ith character of each record. The ERC
is then applied to each row, and the compressed
rows are stored. From empirical studie? at least
40 records should be compressed in this manner if
the technique is to be effective. Consequently,
the VERC may not be well-suited for conventional
database processing where individual records are
examined, but it is well-suited for statistical
and sequential processing where all records are
examined.

Experimental results show that there is a sur
prising amount of coherence in consecutive records.
The VERC was found to have an equivalent or super
ior performance to that of the data compression
algorithms used in ADABAS and IDMS, and to that
of a commercially available compression package
which is based on Huffman encoding [INF78]. More
over, the program that implements the VERC algor
ithm was significantly less complex than those for
ADABAS and IDMS. For these reasons, it is be
lieved that the VERC technique will be useful in
future statistical database implementations
[BAT83a].

A General Model of Database Implementation

In addition to our investigations on data compres
sion, we have also been developing a general model
of statistical database implementation; the model
applies to nonstatistical databases as well. There
is a strong need for such a model. With few ex
ceptions (e.g., [SCH77, SEL79, CAS81]), most of the

258

research on physical design does not describe
how theoretical models have been used to improve
the performance of real database systems. Instead,
generic problems of hypothetical databases utiliz
ing gener,ic structures have been studied. Cer
tainly, such research is important, but the re
sults are still remote from practice. In order
to tie theory to practice, and to address the
problem of improving the performance of real sys
tems, the underlying structures and operations
of real databases must be examined.

Presently, there are no models of physical data
bases that are general enough to account for the
diversity and variety of structures (and their
associated algorithms) found in commercial and
specialized (i.e., statistical) databases. Al
though existing models have been used as starting
points, considerable effort is needed to adapt
and extend these models just to describe a single
DBMS [CAS81]. The difficulty in using existing
models clearly suggests that fundamental princi
ples of physical database design and implementa
tion are not well-understood and have been inade
quately represented.' Moreover, to improve exist
ing models does not simply involve enlarging the
spectrum of structures and operations that they
describe. It requires much more.,

To illustrate the disparity, consider how index
records of inverted files are described in theory
and how they are realized in practice. Database
texts and :research papers define the contents of
an index record as a data value and an inverted
list containing a variable number of pointers
[AND77, KR077]. The implicit structure of an in
dex record is shown in Figure 4 [DAT81].

data value kPointers .•..
_I • ;t J: j
123 n

Figure 4. An Abstract Index Record

Commercial and specialized database systems rare
ly implement index records directly as in Figure
4. The reason is that the underlying file struc
tures of most databases require records to have a
uniform and fixed length; index records of Fig
ure 4 have variable lengths. What Figure 4 real
ly shows is an abstract representation of an in
dex record (henceforth called an abstract index
record). Actual database systems materialize
abstract index records in a variety of different
ways. Here are some examples:

RAPID [TUR79, STA81] and IMS [DAT81] materialize
an abstract index record by pairing the data value
with each pointer in the inverted list. Each
(data value, pointer) pair defines a "concrete"
index record, i.e., a record that is actually
stored (Figure 5).

•

data value \ I ..
I

data value I .1 ..
2

data value\ I »
n

Figure 5. RAPID and IMS Realization of an Abstract Index Record.

I data
value H'-:J~~J-----" .. j,-,H J f· j HYJi--+-)_·· J ~

I 2 n

Figure 6. SYSTEM 2000 Realization of an Abstract Index Record.

data value I H ... H,--,--+-_·· ·-+-,JH 1)' .. Jh::
L--_-J....~, J J J -J ~ 11 , f •

I 2 3 n

Figure 7. MRS Realization of an Abstract Index Record.

SYSTEM 2000 [KR077, CASBI] materializes an
abstract index record by storing the data
value in a separate record and the inverted list
in one or more additional records. A linear
list chains these records together (Figure 6).

MRS [KOR79] materializes an abstract index rec
ord similar to SYSTEM 2000, except that the first
pointer of the inverted list is stored in the
record containing the data value (Figure 7).
This was done so that if the data value was an
identifier, no inverted list records would need
to be accessed.

Each of the above materializations are function
ally equivalent. That is, they all realize the
same concept: an abstract index record. The
idea of functional equivalence has a much broader
application .than this simple example suggests.
In fact, it has been used as the basis of a new
model of physical databases, called the func
tional equivalence model (FM). The modeling
approach is to start with the generic logical
record type that is supported by a statistical
database system (SDBMS), along with a descrip
tion of the types of fields that can be con
tained within it (e.g., single-valued attributes,
repeating groups, matrices, etc.). Each logical
record type is an abstract record whose material
ization is to be determined. The materialization
can be specified by a derivation involving the
application of one or more elementary trans
formations, where at least one transformation
is applied in each step of the derivation.
Every transformation introduces a certain amount
of physical detail to an abstract record. The
product of applying a well defined sequence of
transformations - the result of a derivation -
is a collection of concrete record ~,. Le.,
the physical record types that are actually
stored, and their interconnection~. In this way,

259

for example, each of the materializations in
Figures 5-7 is seen as a result of applying
a different sequence of transformations to an
abstract index record (Figure 4). The deriva
tion is completed with the specification of
the file structures that are used to organize
the ~rds of each concrete type.

This approach can handle not only the material
ization of logical record types, but also the
relationships between types. We start with a
"generic" logical database diagram of the generic
types, fields, and relationships actually sup
ported by a statistical DBMS. Transformations
are then applied to this logical or abstract
description until its materialization has been
defined. Thus, our approach embodies the idea
of logical-to-physical mappings.

Although it may seem that the number of trans
formations is enormous, only nine distinct trans
formation types have been identified so far.
These nine types have been sufficient to accurate
ly describe the complex physical structures of
the RAPID, INQUIRE [INF79], ADABAS, and SYSTEM
2000 DBMSs. (These DBMSs were selected primarily
because of the immediate availability of infor
mation on their internal structures; models of
other SDBMSs, such as ALDS, SYSTEM S, and SEEDIS,
will be completed once sufficient information on
their internals is gathered.) Details of the
model and the physical structures of real SDBMSs
are given in [BATB3b].

2.4 PARALLEL ALGORITHMS AND DATABASE MACHINES

Our effort on parallel algorithms and dataabse
machines has been in the design and evaluation
of sorting algorithms for a microcomputer net
work system called MICRONET [SU7Ba, NICBO, SUB2b,
SUB3] and in the design and evaluation of a dynam-

ically partitionable network using the concept
of shared main ~emory modules (SM3) [FEI83,
BARS3].

The work reported in [SU82b] presents a key
broadcasting algorithm for sorting a distrib
uted file in a local area network, a parallel
algorithm for finding the global maximal or
minimal value of a data field or a distributed
file and parallel algorithms for traditional
data management operations, such as "join",
"selection", and "projection". The key broad
casting algorithm was analyzed and compared
with several other algorithms using the tim-
ing information of the existing MICRONET pro
totype system [NIC82]. Experiments have also
been conducted using other sets of parameter
values in an analytic study. The results are
reported in a forthcoming paper [SU83b]. Our
work shows that algorithms which are suitable
for one architecture may not be suitable to
(or optimal for) another. There is a close
relationship between algorithm design and
hardware implementation. Our effort is to find
the relationship and use the knowledge to design
better algorithms and hardware for supporting
statistical/scientific applications.

Another major thrust is the study of a parti
tionable network system called SM3 which uses
the concept of shared main memory modules
[FEI83]. The main idea is to eliminate the net
work data transfer time (one of the main bottle
necks of a network system when large quantities
of distributed data are to be transferred among
processors) by transferring data through some
shared main memory modules. The shared main
memory modules can be switched electronically to
a processor for data loading and be switched to
another for data access, thus reducing the usual
network transfer time to module switching time.
The partition of processors into clusters is
also achieved by setting or resetting switches.
The clusters can carry out parallel processing
of multiple database transactions. An analysis
of the SM3 system has been carried out and will
be reported in a forthcoming paper [BAR83]. Our
analysis shows that statistical aggregation oper
ations and common database management operations
can take advantage of this shared main memory
feature to gain efficiency.

2.5 CONCLUSION

We have highlighted above the problems that we
have dealt with related to statistical database
management in the last two years. Our main
thrust in the past has been in the modeling,
design, and mapping areas. In the future, we are
likely to concentrate more on the architectural
issues.

260

3. REFERENCES

[ALS7 5] Alsberg, P .A., "Space and Time Savings
Through Large Database Compression and
Dynamic Restructuring," Proc. of IEEE,
Vol. 63, No.8, 1975, pp. 1114-1122.

[AND77] Anderson, H.D. and Berra, P.B., "Mini
mum Cost Selection of Secondary Indices
for Formatted Files," ACM Transactions
on Database Systems, Vol. 2, No.1,
March 1977, pp. 68-90.

[AR082] Arora, A.K. and Carlson, C.R., "On the
Flexibility Provided by Conflict-free
Normalization," Proc. of COMPSAC 82,
Chicago.

[BAR83] Baru, C.K. and Su, S.Y .W., "Performance
Evaluation of Statistical Aggregations
in the SM3 System," Database Systems Re
search and Development Center, Univ. of
Florida, manuscript, 1983.

[BATI82] Batini, C., Lenzerini, M., Santucci, G.,
"A Computer-aided Methodology for Con
ceptual Data-base Design," Information
~stems, Vol. 7, No.3, 1982, pp. 265-
280.

[BAT82] Batory, D.S., "Index Encoding: A Compres
sion Technique for Large Statistical Data
bases," CIS Technical Report 118182-9,
Dept. of Computer and Information Sci-·
ences, Univ. of Florida, 1982.

[BAT83a] Batory, D.S. "A Data Compression Tech
nique for Sequential Files," manuscript
in preparation, 1983.

[BAT83b] Batory, D.S., "The Functional Equiva
lence Model of Physical Databases,"
manuscript in preparation, 1983.

[BIR78] Birss, E., Jones, S., Ries, D., and Yeh,
J., "Scientific Data Base Management at
Lawrence Livermore Laboratory: Needs
and a Prototype System," in a special
report on Generalized Data Management
Systems and Scientific Information,
OECD Nuclear Energy Agency, Paris, 1978,
pp. 132-144.

[BOR82] Boral, H., DeWitt, D., and Bates, D.,
"A Framework for Research in Database
Management for Statistical AnalYSis,"
Proc. of ACM/SIGMOD 1982 Conference,
June 1982.

[BR082] Brown, V.A., Navathe, S.B., and Su,
S.Y.W., "Complex Data Types and a Data
Manipulation Language for Scientific and
Statistical Databases," CIS Technical
Report 118182-7, Database Systems Research
and Development Center, Univ. of Florida,
June 1982; a revised version to appear

•

in the Proc. of the Second Int. Work
shop on Statistical Database Manage
ment, Sept. 27-29, 1983.

[CAS8l] Casas-Raposo, 1., "Ana:tytic Modeling of
Database Systems: The Design of a Sys
tem 2000 Performance Predictor," M. Sc.
Thesis, Department of Computer Science,
University of Toronto, 1981.

[CHA8l] Chan, P., and Shoshani, A., "SUBJECT:
A Directory Driven System for Organiz
ing and Accessing Large Statistical
Databases," Proc. of VLDB, 1981, pp.
553-563.

[CHE76] Chen, P.P.S., "The Entity-relationship
Model: Towards a Unified View of Data,"
ACM Transactions on Database Systems,
Vol. 1, No.1, March 1976.

[CHE82] Cheng, A.C., "Database Mapping from an
Extended-Entity-Relationship into the
Hierarchical Model," Master's Thesis,
University of Florida, Dept. of Computer
and Info. Sci., Dec. 1982.

[COD79] Codd, E.F., "Extending the Database Re
lational Model to Capture More Meaning,"
ACM Transactions on Database Systems,
Vol. 4, No.4, Dec. 1979, pp. 397-434.

[CUL81] Cullinane Database Systems, Inc., "The
Internals of IDMS: Classroom Aids,"
April 1981.

[DAT8l] Date, C.J., An Introduction to Database
Systems, Third Edition, Addison Wesley,
1981.

[DEL78] Delobel, C., "Normalization and Hierarchi
cal Dependencies in the Relational Data
Model," ACM Transactions on Database
Systems, Vol. 3, No.3, Sept. 1978, pp.
201-222.

[EGG80] Eggers, S., and Shoshani, A., "Efficient
Access of Compressed Data," Proc. VLDB,
1980, pp. 205-211.

[EGG8l] Eggers, S., Olken, F., and Shoshani, A.,
"A Compression Technique for Large Statis
tical Databases," Proc. VLDB, 1981, pp.
424-434.

[ELM79] El-Masri, R., and Wiederhold, G., "Data
Model Integration using the Structural
Model," Proc. 1979 ACM/SIGMOD Conference,
Boston, pp. 191-202.

[FEI82] Fei, T.H., Baru, C.K., and Su, S.Y.W., "The
Shared Main Memory Modules (SM3) System,"
Database Systems Research and Development
Center, Univ. of Florida, manuscript, 1982:.

[GES76] Gesellshaft fur Mathematik und Datenver-

261

arbeitung, "ADABAS: Database Systems
Investigat ion Report, Vol. 2, Part 1,"
Institute fur Informationssysteme, Bonn,
W. Germany, 1976.

[HAM78] Hammer, M., and McLeod, D., "The Semantic
Data Model: A Modeling Mechanism for Data
base Application," Proc. ACM SIGMOD Inter
national Conference on Management of Data,
Austin, TX., May 1978, pp. 26-34.

[HAM8l] Hammer, M., and McLeod, D., "Database De
scription with SDM: A Semantic Database
Model," ACM Transactions on Database Sys
tems, Vol. 6, No.3, Sept. 1981, pp. 351-
386.

[HAP78] Hampel, V .E., and Ries, D.R., "Require
ments for the Design of a Scientific Data
Base Management System," in special report
on Generalized Data Management Systems and
Scientific Information, OECD Nuclear Ener
gy Agency, Paris, 1978, pp. 111-131.

[IBM75] IBM Corp., Information Management System
(IMS/VS) Publications: General Informa
tion Manual (GH20-l260-3), System/Appli
cation Design Guide (SH20-9025-2); White
Plains, N.Y.

[INF78] Informatics, Inc., "Shrink/2 Users' Guide,"
Canoga Park, CA., 1978.

[INF79] Infodata Systems, Inc., "INQUIRE Basic
Training Course," Pittsford, New York,
1979.

[KLU77] Klug, A., and Tsichritzis, D.C., "Multi
ple View Support within the ASNI/SPARC
Framework," Proe. 3rdVLDB, Tokyo, Japan,
1977, pp. 477-488.

[KLU78] Klug, A., "Theory of Database Mappings,"
Ph.D. Thesis, Dept. of Computer Science,
Univ. of Toronto, 1978.

[KLU8l] Klug, A., "Multiple View, Multiple Data
Model Support in the CHEOPS Database
Management System," Technical Report 418,
Compo Sci. Dept., Univ. of Wisconsin, 1981.

[KOR79] Kornatowski, J.Z., "The MRS User's Manual,"
Computer Systems Research Group, Univ. of
Toronto, 1979.

[KRE82] Kreps, P. "A Semantic Core Model for Sta
tistical and Scientific Databases," Re
search Proposal to DOE, Lawrence Berkeley
Laboratory, 1982.

[KR077] Kroenke, D., Database Processing, S.R.A.,
Inc., Chicago, 1977.

[MRI74] MRI System Corporation (Intel), System
2000 Reference Manual, Austin, TX., 1974.

[NAV78] Navathe, S., and Schkcilnick, M., ''View
Representation in Logical Database Design,"
Proc. 1978 ACM/SIGMOD Conference, Austin,
TX., May 1978, pp. 144-156.

[NAV80] Navathe, S.B., "An Intuitive Approach to
Normalize Network Structured Data," Proc.
6th VLDB, Montreal, Canada, Oct. 1980, pp.
350-358.

[NAV82a] Navathe, S .B., and Gadgil, S.G., "A Method
ology for View Integration in Logical Data
base Design," Proc. 8th VLDB Conference,
Mexico City, Sept. 1982, pp. 142-164.

[NAV82b] Navathe, S.B., et aI., "Logical Database
Design," in Database Directions: Informa
tion Resource Management - Strategies and
Tools, NBS Special Publication 500-92,
Alan Goldfine (ed.), U.S. Dept. of Com
merce, Sept. 1982, pp. 73-140.

[NAV83] Navathe, S.B., and Cheng, A.C., "A Method
ology for Database Schema Mapping from Ex~
tended Entity Relationship Models into the
Hierarchical Data Model," Proc. 3rd Int.
Conf. on Entity Relationship Approach, Oct.
5-7, 1983

[NIC80] Nickens, D.O., Genduso, LB., and Su, S.Y.W.,
"The Architecture and Hardware Implementa
tion of a Prototype MICRONET," Proc. of 5th
Conference on Local Computer Networks, Oct.
1980, pp. 56-64.

[SAK80] Sakai, H., "A Unified Approach to the Logi
cal Design of a Hierarchical Data Model,"
Entity Relationship Approach to Systems
Analysis and Design, P. Chen (ed.), North
Holland, Amsterdam, 1980, pp. 61-74.

[SCH77] Schkolnick, M., "A Clustering Algorithm
for Hierarchical Structures," ACM Trans
actions on Database Systems, Vol. 2, No.1,
March 1977, pp. 27-44.

[SCH80] Scheuermann, P., Schiffner, G., and Weber,
H., "Abstraction Capabilities and Inver
iant Properties Modeling within the Enti
ty-Relationship Approach," Entity-Rela
tionship Approach to Systems Analysis and
Design, North Holland, Amsterdam, 1980,
pp. 121-140.

[SEL79] Selinger, P., et aI., "Access Path Selec
tion in a Relational Database Management
System," ACM/SIGMOD Conference, 1979, pp.
23-34.

[SHI8l] Shipman, D.W., "The Functional Data Model
and the Data Language DAPLEX, ACM Trans
actions on Database Systems, Vol. 6, No.1,
March 1981, pp. 140-173.

[SH082] Shoshani, A., "Statistical Databases: Char
,acteristics, Problems, and Some Solutions,"

262

Proc. 8th VLDB, Mexico City, Sept. 1982,
pp. ~08-222.

[SMI77] Smith, J .M., and Smith, D.C.P., "Data
base Abstractions: Aggregation and
Generalization, ACM Transactions on Data
base Systems, Vol. 2, No.2, June 1977,
pp. 105-133.

[SOF77] Software AG of North America, Inc.,
"ADABAS: Introduction," Reston, VA.,
1977 •

[STA8l] Statistics Canada, "RAPID Internals
Manual," Ottawa, 1981.

[SU78a] Su, S.Y.W., Lupkiweicz, S., Lee, C., Lo,
D.H., and Doty, K.L., "MICRONET - A Micro
computer Network System for Managing Dis
tributed Relational Databases," Proc. 4th
International Conference on Very Large
Data Bases, Berlin, W. Germany, Sept. 1978,
pp. 288-298.

[SU78b] Su, S.Y.W., and Emam, A., "CASDAL: CASSM's
Data Language," ACM Transactions on Data
base Systems, Vol. 3, No.1, March 1978,
pp. 57-91.

[SU79] Su, S.Y.W., and Lo, D.H., "A Semantic
Association Model for Conceptual Database
Design," Proc. of the International Confer
ence on Entity-Relationship Approach to
Systems Analysis nad Design, Dec. 1979,
pp. 147-171.

[SU82a] Su, S.Y.W., "SAM*: A Semantic Associa
tion Model for Corporate and Scientific
Databases," CIS Technical Report, Univ:er
sity of Florida, 1982.

[SU82b] Su, S.Y.W. and Mikkilineni, K.P., "Par
allel Algorithms and Their Implementation
in MICRONET," Proc. of the 8th VLDB, Mex
ico City, Sept. 1982.

[SU82c] Su, S.Y.W. and Mikkilineni, K.P., "Sort
ing Algorithms for Common-bus Local Net
works," CIS Technical Report, Database
Systems Research and Development Center,
University of Florida, 1982.

[SU83a] Su, S.Y.W., "SAM*: A Semantic Associa
tion Model for Corporate and Scientific/
Statistical Databases," Revised version
to appear in the Journal of Information

. Sciences, 1983.

[SU83b] Su, S.Y.W. and Mikkilineni, K.P., "An
Evaluation of Sorting Algorithms for
Common-bus Local Networks," paper sub
mitted for publication, 1983.

[SU83c] Su, S.Y.W., "A Microcomputer Network
System for Distributed Relational Data
bases: Design, Implementation and Analy-

sis," to appear in Journal of Tele
communication Networks. 1983.

[SZC78] Szczesny, K., and Gersbacher, W., "The
Capabilities Required in a Generalized
Data Base Management System for Hand
ling Scientific and Technical Data,"
in a special report on Generalized Data
Management Systems and Scientific Infor
mation, OECD Nuclear Energy Agency, Paris,
1978, pp. 106-110. '

[TUR79] Turner, M.J., Hammond, R., and Cotton, P.,
"A DBMS for Large Statistical Data Bases,"
Proc. VLDB 1979, pp. 319-327.

[WON82] Wong, H.K.T., and Kuo, I., "GUIDE: Graphi
cal User Interface for Database Explora
tion:' Proc. of 8th VLDB Conference, Mexico
City, Sept. 1982, pp. 22-32.

[YA078] Yao, S.B., Navathe, S.B., Weldon, -J .L., "An
Integrated Approach to Logical Database
Design," Proc •. of 1978 NYU Database Sym
posium on Database Design, published as
Vol. 132, Lecture Notes in Computer Science,
Springer-Verlag, New York, ~982.

, .

[ZAN79a] Z~niol0, C., "Design of Relational Views
over Network Schemas," Proc. 1979 ACM/SIGMOD
Conference, Toronto, pp. 179-190.

[ZAN79b] Zaniolo, C., "Multi-model External Schemas
for CODASYL Database Management Systems,

, in Data Base Architecture, G. Bracchi and
G.M. Nijssen (eds.), North Holland, Amster
dam, 1979.

263

PROPOSAL OF A LOGICAL MODEL FOR STATISTICAL DATA BASE.

Maurizio RAFANELLI(+), Fabrizio L. RICCI(-)

(+) 1st. Analisi dei Sistemi ed Informatica, Viale Manzoni 30
00185 Roma

(-) 1st. Studi e Ricerche Documentazione Scientifica, Via De
Lollis 12, 00185 Roma

National Research Council, Italy

Abstract - In this paper the Authors propose a logical model (called GRASS) for representing both the
properties of a Statisticai Data Base (S.D.B.) and the tables view, which represent the peculiar rea!
ity of statistical user.
The proposed model consists of a marked, labeled, direct, connected, acyclic, partially ordered graph.
For this graph nodes semantics and connection and branching rules are provided. A cognitive and selec
tive approach to how navigate through category attributes and summary data are given too.
Finally, some facilities of the model are discussed and a comment is made.

1. INTRODUCTION

The term "Statistical Data Base" (S.D.B.) refers,
in scientific literature, to Database (D.B.)
that represent statistical or summary informa
tion and are used for statistical analysis. They
can be described in terms of the type of data
they contain and their use.
S.D.B.s contain quantitative information (such
as County business patterns, population census,
economical data as production and consuction of
fuels, etc .•.) and a combination of descriptive
information (such as age, sex, race, average in
come, etc ...) for each quantitative measure [iT.
They tipically contain both parameter data and
measured data for these parameters.
Parameter data consist, for example, of differ
ent values for varying conditions in an experi
ment; measured data are the measurements taken
in an experiment under these varying conditions.
These data bases are usually organized into
"flat files" or "tables" [2]. Besides such
S.D.B.s tend to be static because the stored
data represent consolidated events.

We think that the term "S.D.B." is used to de
scribe various situations [3]: a typical situa
tion is to use conventional D.B.s, on which
mainly transactions of the statistical type are
effected and on which statistical packages there
fore operate. But there are various reasons for
the fact that conventional, commercial data
menagement systems have not been wirely used
for S.D.B.s, in that they are often inadeguate
to manage effiCiently these D.B.s. The main rea
sons are discussed in [4].

In this paper the S.D.B. term will refer to a
particular class of D.B.s which has some charac
teristics enphasized; e.g., data are numbers, -
often they represent already statistical or sum
mary information of elementary (disaggregate) -
data, they contain quantitative informations,
data typology is various (e.g., integer or real
values, averages, rates, etc .••) and they con
tain a variety of data structures (such as ma
trix, vector, set, etc •.•); they are usually
large D.B., in which some values may be missing
and sparse data are very often contained.

Moreover they exhibit also the following chara£
teristics:
a) attributes can be classified as category at
tributes (usually small) and summary attributes

264

(usually large);
b) for each summary attribute a "cross product" of
category attributes is usually required;
c) it is possible, with proper techniques, to store
the range values, related to the involved category
attributes, once and to use known computational techn
iques to find the position of the corresponding sum
mary set values. This obviates the fact that there
is no reason to change it. Indeed such data represent
consolidated (i.e. stabilized) events.

In the Section 2 we describe the type of data so as
can be thought in a S.D.B.; in the Section 3 we re
port the logic rappresentation of data file by means
of a graph, so as it is discussed in [5]; in the Sec
tion 4 we propose a logical model, giving the seman~
tic description of the five types of nodes of such
graph; in the Section 5 we illustre the connection
rules .for the above mentioned nodes, giving some
examples; in the Section 6 we give the branching
rules, discussing some significant cases; finally,
in the Section 7 we discusse the proposed model and
the future developments.

2. CATEGORIES AND SUMMARY ATTRIBUTES

Most S.D.B.s can be thought of as having two types
of data: measured or quantitative data and parameter
or descriptive data [6].
The first quantitative data have referred to numeric
attributes on which statistical analysis is per
formed.
The second qualitative data have referred to as
selection category attributes describe the measured
data.
Therefore attributes for parameter data are referred
to as "category" attributes (into which the numeric
attributes are classified), since they contain cate
gories for the measured data.
The attributes for the measured data are referred to
as "summary" attributes, since they contain on which
statistical summaries and analysis are applied.
In a S.D.B. there is usually a combination of cate
gory .values for each summary value.
The measured data are usually "numbers", while cate
gory attributes (being more descriptive in nature)
tend to be "character".
Often category attributes ranges are grouped together
(such as using "age range;, rather than "age,,) to form
new category values.
Category attributes represent a aross-product of a
n-dimentional space, since each combination corre-

SUMM/,RV TAI:l.E. ,. - - _ ... - .
-~========:==:=========~~---~==~============:==

COUIH RI'= IT ilL Y. U~IITS=MT(JE •

COIISUMPli (1~1

1978 1979 1980 1981 1911:? 1983 1984 1985 1986 1987 1988 1989 1990

SOLID FUELS ~IA 10.5 12.9 14.0 14.9 ' 15. b 16.6 17.4 18.6 20.1 21.0 ~~.7 24.b tIAT. GAS IIA 23.1 23.1 n.6 24.1 24.3 25.5 26.3 27. 2 28.1 29.1 30.0 30.9 OIL IIA 102.2 98.3 94.6 92.7 91 •• 5 98.6 101.0 102.6 '103.2 103.6 105.1 106.7 IIUCLEAR IIA 0.5 0.5 0.5 1.2 1.7 1.7 1.7 1.7 2.6 4.1 4.1 4.1 HYO. GEOTH. 1111 10.0 11.3 10.8 10.4 10.8 10.8 10.8 10.8 10.9 10.9 11.0 11.2

TOTAL NA 146.3 146.0 142.5 143.3 147.0 153.2 157.2 H.0.9 165.0 168.7 172.9 117.5

PERCENT CHANGES

1978 1979 1980 1'181 1'182 1'183 1'184 1'185 1986 1'187 1'188 1989 1'190

SOLID FUELS IIA NA 23.0 8.2 6.3 5.2 6.2 5.0 6.8 8.2 4.2 7.9 8.5 NAT. GAS ~IA NA -0.2 -2.2 6.9 0.9 4.8 3.1 3.4 3.5 3.5 3.1 3.1 OIL IIA IIA -3.8 -3.7 -2.0 2.0 4.3 2.5 1.6 0.5 0.4 1.5 1;4 NUCLEAR NA NA -9.1 3.5 142.9 37.0 -0.6 1.2 1.2 51.8 56.4 -0.3 -0.1 HYO. GEOTH. NA NA 12.5 -4.1 -3.7 4.1 -0.4 -0.1 0.0 0.9 0.6 0.6 2.2

TOTAL IIA NA -0.2 -2.4 0.6 2.6 4.2 2.7 2.3 2.5 2.3 '2.5 2.7

SHARES OF TOTAL CONSUMPTION

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 '1990

SOLID FUELS IIA 7.2 B.8 9.8 10.4 10.6 10.8 11.1 11.6 12.2 12.4 13.1 13.8 NAT. GAS IIA 15.8 15.8 15.8 16.8 16.5 16.6 16.7 16.9 17 .1 17.3 17.4 17.4 OIL NA 69.8 67.3 66.4 64.7 64.3 64.4 64.2 63.8 62.5 61.4 60.8 60.1 NUCLEAR Nfl 0.4 0.3 0.4 0.9 1.2 1.1 LI 1.1 1.6 2.4 2.4 2.3 IWO. GEOTII. IIA 6.8 7.7 7.6 7.3 7.4 7.0 6.8 6.7 6.6 6.5 6.4 6.3

;(DEGREE OF SELF SUFFICIENCY

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

SOLID FUELS tJA 3.5 3.7 3.6 3.4 3.4 3.3 3.1 3.0 3.2 3.2 3.5 4.1 IIAT. GAS NA 48.6 45.3 52.3 51.3 49.9 46.0 43.0 39.6 36.5 33.7 31.2 '28.7 OIL tlA 1.7 1.9 1.5 1.7 1.7 1.6 1.6 1.6 1.6 1.6 1.6 1.6

TOTI\L tlA lb.3 H.8 17.6 18.2 18.2 17.2 16.5 15.8 15.8 16.1 15.6 15.2

==~r==~~~~=~::=======================================c======c===c====a~c=cc=cc=c====occac==cBaaac====

sponds to one summary value [5].
The n-tuple of category attributes that se
lects the numeric attributes can als0 be
seen as primary key of a ~th relation in a
relational data base (with m > n).

We consider, for example, the summary table
of Fig. 1, achieved from the Data Resourches
Inc. Database [7]. This database reportes
economical data on energetical sector, re
garding production and consuction of fuels
and energetic budget (prices, import-export,
etc •••); in particular this table shows data
related to percent changes, shared of total
consuptionand degree of self sufficiency
(in percent) in Italy from 1978 to 1990.
Data supply is OCSE and AlE.

If we consider, for semplicity, that part of
table related to "shared of total consup
tion", such table is represented by the rela

Fig. 1

265

tion (in the relationai model) <shared Of total
consuption>, that has the following attributes:
country, type Of energy, year, percent change.
The classic representation of such relation is the
table of Fig. 2.

<Shared of total consuption>

Countr:L T:Q2e of en. Year Percent change

Italy solid fuel 1978 --...:

Italy solid fuel 1979 7,2

Italy solid fuel 1980 8,8

I I~~~y
.....

nat. gas 1981 15,8
......

I Italy hyd geoth. 1990 6,3

Fig. 2

\~e note that no distinction is made between
parameter data and measured data (both of
them described in terms of the attributes).
The distinction between category attributes
and summary attributes can be made only co~
sidering the category attributes as rela
tion keys.
In this case the keys are country, type of
energy and year. Besides, a very large re
dundance is introduced in those coloumns
which are "parameter data" (country, type of
energy and year). We will see, in following
sections, how such a redundancy is reduced
using the proposed logical model.

3. GRAPH RAPPRESENTATION

One possibility to represent the semantic
concepts mentioned above is described in [5].
SUBJECT is a system that represents such
semantic concepts internally as a graph, so
that they are invisible to user. In addition
the concepts of "cross product nodes" (X
nodes) and "cluster nodes" (C-nodes) are as
sociated to the onesof subject nodes, file
nodes, data nodes and terminal nodes.
Cross-product abstraction refers to the
multi-dimentional nature of the category at
tributes of a S.D.B.1 it corresponds to logi
cally divide the set of attributes into a -
set of n-dimentional spaces of data and can
be used as a tool to represent more concise
ly multiple events of cluster abstractions.
Cluster abstraction is an organization mech~
nism at several levels in order to select
category attributes and to reduce the com
plexity of a large cross-product.
Subject nodes (which belong to the class of
cluster nodes) are used to describe subJect
categories of files in the system. File
nodes (which belong to the class of cross
product nodes) represent the physical or
virtual files present in the D.B ..
Data nodes (which can be either cross-prod
uct or cluster nodes) represent the selec
tion categories for statistical data. Termi
nal nodes (which belong to neither of the
two above mentioned classes) represent the
assumable instances for data nodes.

In order to access the summary values, a
logical rappresentation of data file is
achieved by using cross product and cluster.
nodes to describe the actual structure of a
file.
The above mentioned type of nodes can be
connected by edges to form a direct acyclic
graph.
Both subject nodes and data nodes can be
organized into multiple levels1 all nodes
can be shared, except the root node.

As example we consider a way of organizing
data in a table form as shown in Fig. 3. The
relative SUBJECT-graph is given in Fig. 4.

266

lYear. = 1982

Sex Age Number of N. of pass. N. of pass.
passengers of railw; of ship
of plane

male 1 1,500
2 1,621

35 163,438

100

lFemale 1
2
.

100

Variables

RailwaY~L

....

....

... .

....

....

... .

I

Fig. 3

C?
Statistical
Data on
Transport

. ...

. ...

....

....

. ...

....

. ...

M F 1. .. 100

Fig. 4

As it may be seen, the C-node with label "statisti
cal data on transport" is a subject node1 the X
node with label "number of passengers" is a file
node .. All the nodes, except the leaf nodes under
such file node, are data nodes. The leaf nodes are
"terminal nodes".

In [5] the· semantics of "abstraction nodes" (cross
product and cluster node) and the main functions
available in that system are given.
This system has also made some important first
steps in the problem of navigating through the
"metadata". Metadata and their management is a
non-trivial problem. Since an S.D.B. may consist
of several thousand tables (each one with many
attributes), just understanding the logical struc
ture of such a D.B. is a complex task [8], [9]. -

4. THE GRASS LOGICAL MODEL

Also the GRASS (GRaphical Approach for Stat
istical Summaries) model proposed [3] in this
paper is based on the concepts of category
and summary attributes. The GRASS model en
dowes to the user a tool to know in what man
ner the S.D.B. is logically organized.
In the classic approach to design a D.B. it
passes from the phase of "requirements ana~
ysis" to the logical and phisical project.
The tools for the description of the reality
are data models [10].
But for the analysts and the statisticians
the reality is usually formed by tables.
They are the objects that must be described
by logical model. Such a description bases
itself just on the concepts of category and
summary attributes. It introduces five new
types of nodes that represent their meaning
to the user (from the semantic point of view,
with regard to the above mentioned concepts).
These nodes are marked (to distinguish the
type) and labeled (to identify each node).
The edges are oriented, being the graph a
direct, acyclic, partially ordered, con
nected graph. Such orientation is drawn by
means of an arrow. This one is necessary to
avoid ambiguity in the graph.

We give now the semantic description of the
fi ve types of nodes. '

S-node: it represents the indicator of tables
Selection paths; therefore it defines the

meaning of tables combination of which it is
the root and from which statistical data
(selected by means of selection category at
tributes) will be subsequently obtained.
This means that it does not contribute (like
the selection category attributes) to select
numeric data, neither it does represent data
that are phisically present in the D.B ••
The root node of a graph that represents a
"statistical view,,' of data is always as S
node.

T-node: it represents logically the informa-
tion (i.e. the statistical Tables) physi

cally present in the D.B.; it is the only
node of the graph able to represent the
stored data.

C-node: it represents the single selection
Category attribute for the statistical

tables. A set I of instances, for example
the domain of assumable values, is associ
ated to it.
C-nodes can be organized at various levels
of abstraction (and then they also represent
aggregations of selection categories).
Let C be a generic node representative of a
selection category and let I be the associ
ated set of assumable instances, this node
is equivalent to a C'-node, having as its
branches nodes C1,C2"",Ck (with respective
~ets of assumable instances T1,If,·.· , It.) ,
~f:

267

(1)

(2) Ii nIt. = r6 with ilk

It follows that (see Fig. 5):

card (1) = Ik. card (I')
11.- 1

(3)

1 •.••• n ---II

1 •.••. m ------1.
~

1 ••.•• n+m+ ...

~
I

Fig. 5

A-node: it represents another selection category
attribute for statistical tables, that Aggre

gates other category attributes in a determinate
manner; also this node can be organized at various
levels of abstraction.
Let A be a generic node, representative of a selec
tion category, and let C1;C2,' ..• Ck be the branch
nodes (with respective sets of assumable instanges
I 1.I2 •... ,Ik)' the set I of instances that this
node assumes is given by the cartesian product of
the sets of instances associated to the branch
nodes, i.e.:

(4)

(5)

I = I1 x I2 x ••• x Ik

card (I) = rrk~ card (I.)
1" 1.-

Node A, therefore, differs conceptually from node
C in that this one represents merely a way of ag
gregating among them various selection category
attributes. In fact we note that, although the two
graphs of Fig. 6 are equivalent/the drawing of the
graph without the use of A-nodes would produce an

a)

Fig. 6

1. .. n 1x n2 1. .. n3xn4

b)

excessive number of tn nodes.

In Fig. 6a) we see that the number of termi
nal nodes is nl +n2 +n3 +n4 , while if Fig.
6b) it is seen how the elimination of the
A-nodes leads the number of tn nodes to:

(n1 x n2) + (n 3 xn4).

!n-node: it represents the instance of the
C-node at the more low level of abstrac

tion. The Terminal ~odes (leaves) of a graph
are only ~ nodes. For semplicity of drawing
such instances are given directly in the
graph.

5. CONNECTION RULES

The connection rules for the nodes of the
GRASS model are now described.
Given a graph G, representing an S.D.B., we
have:

Rule]: a minimum graph G' is composed of
the following chain:

S -+ T -+ C -+ tn

Rule 2: an S-node has as its branches S-r.odes
or T-nodes.

Rule 3: a T-node has as its branches C-nodes
and/or A-nodes.

Rule 4: an A-node has as its branches A-nodes
or/and C-nodes.

Rule 5: a C-node has as its branches C-nodes
and/or A-nodes or only ~-nodes.

Resuming the example of the summary table of
Fig. 2, we can represent this situation by
means of the GRASS-graph of Fig. 7.

ECONOMICAL DATA ON ENERGETICAL
SECTOR FROM 1978 to 1990

Italy

~

!?f.~~';f

78 90 Solid Nat.
fuel Gas

Fig. 7

, ,

We now consider another example (shown in
Fig. 8) relative to the situation of the
psychiatric hospitals in the city of Rome
and to the years from 1978 to 1980 [11].

In this figure the available statistical ta
bles, relative to the two T-nodes of the
graph, are shown. These data give the number

268

of hospitalizations by year and by Hospital, and
the number of patients by sex, age-range and dis
trict of residence.

Under
Age

14 18 19

Psychiatric
Hospitals Data.
Years 1978-1980

Data on
Hospitalizations

Personal
Data

BYear

7~ ~\O
Sex

M F PubliRc
C Full

Age ...

NEURO S.MARlA
99 PlETA'

Fig. 8

MARY
ADA CLlN.

CLlN.

These tables can easily be identified by means of
the root S-node, which represents the "name" of
the S.D.B., and of the successive S-nodes, accord
ing to a cognitive approach, that identifies the
table(s) (arid both the related category attri
butes and the terminal nodes used to select the
table (s» object of the search.
In particular, in Fig. 8 the information regard
ing data on patients can be obtained through the
selection category attributes "sex", "age-range"
and "district of residence".
It may be noted that the first two category attri
butes are organized at a higher level of abstrac~
tion by means of the A-node "personal data". At
the same manner, the information related to the
"number of hospitalizations" can be obtained by
means of the "year" and "hospital" selection cate
gory attributes. -
The last category attribute is a generalization
of the other two category attributes "public" and
"private", while the category attribute "personal
data" is the aggregation of "sex" and "age-range"
category attributes [12].

6. BRANCHING RULES

We examine now some rules regarding the braching
of subgraphs from the original graph.
Every time a statistical query is made, it ident
ifies a subgraph branchable from the original
graph (if data are available in the D.B.).

The rules to obtain this subgraph from logi
cal schema are the foLlowing:

Rule 1: to select an S-node means to report
the whole subgraph of which the S
node is the root.

Rule 2: the category attributes directly con
nected with a T-node must be reported
in the subgraph with all their
"terminals", if they are not ex
pressed.

Rule 3: if a category attribute is part of a
"hierarchy of generalization" and
has not been expressed, it is not
reported in the subgraph.

Rule 4: the nodes connected with an A-node
which have not been expressed, must
be reported in the subgraph with all
their terminals.

Rule 5: if a C-node is selected and if only
some branch nodes are mentioned,
only they must be reported in the
subgraph.

For example, we examine the graph of Fig. 9,
in which data relating to railway transport
are shown. '

Wishing to obtain statistical information
.concerning the "number of passengers that
have utilized railway transport", under par
ticular requirements, the chain of S-nodes
which leads to the involved T-node 'from the
root node will be selected.
For example, if the statistical query is the
following:
"I wish to know the nurriber of passengers, of
male sex, belonging to age range = 1E and
that have travellesin 1st class.", the sub
graph (obtained by applying the branching -
rules)is shown in Fig. 10.

The following observations may be made:

a) the "type" category attribute (which is
not mentioned in the statistical query) is
considered in the branched subgraph, with
all its terminal nodes;
b) the category attributes relating to age
range = 2E, ••• ,6E (which are not mentioned
too) are not considered in branched sub- .
graph.

When a statistical query does not mention a
category attribute, two alternative situa
tions can be happen:

1) all the selected data'are showed in out
put;

2) output is the result of summarization of
selected data.

For example, we consider the Fig. 11.
A statistical query of the type: "I wish to
know the nurriber Of passengers that have
travelled by train in the 1st class" selects
the first three rows and all the columns of
the table of Fig. 11.

«50

Fig. 9

Fig. 10

269

Age
Range
6E

SC

2 3
I I

1/sc I I I
- -0- -0--0

I I I

l/NC - -I:> --0- -6

100

I
I
I

Age

I I

I o~~f~~.
2/SBl-_-____ ~ __ -__ -_-__ -__ -__ -__ -_-__ -___ -____ ~ _ ass.

Charact.
of coach

Fig. 11

The significant datum is obtained by "sum
marizing" (Le. adding) the selected data
to one another. It is not always true that
summarization is achieved by means of a su~
but such a function will depend on the par
ticular type of data [13].

When the user expresses a statistical query,
he does not know a priori if it is 'satis
fiable. That can happen because:
a) data are missing in the D. B. ;
b) classes (or groups) of category attri
butes (with regard to respective t n) cannot
be mutually exclusive, for which, if a
"total" are required, it can turn out as
impossible;
c) a query requests a "summarization" of
data that is not possible to perform.
As simple example [14] we consider the case
shown in Fig. 12. Here category attributes
are "race" and "sex" and summary attribute
is "average income". Table is referred to
TEXAS state.
It a user is interested only in population
average income broken down by race but not
by sex, such query has not answer, because
"count data" are not available.

270

Texas

TEXAS

race

b

b

w

w

I
I

Average

\ '"":ilY
,c~o1~ ... radeci'U"'

Race r,ex
b w M F

sex average
income

m 24,000

f 21,000

m 28,000

f 25,000

Fig. 12

7. DISCUSSION AND FUTURE DEVELOPMENT

During the design process (from requirements anal
ysis to phisical implementation) of S.D.B. it is
necessary to keep in mind the particular typology
of users. These users are not "casual", also if
they are not expert in computer science (rather
in economical or epidemiological or other science)
and accustomed "to see" reality described i"l terms
of tables.
It follows that the mapping process is not the
classic process of management D.B. [3], but it
will consider this "reality".

The GRASS model offers a clear and compact view of
the table that form the S.D.B ••
The clarity refers mainly to different type of
nodes (and to their semantic meaning): in fact,
e.g., summary data (i.e. the tables) can be rep
resented by means of a T-node and a T-node can
represent only summary data.
The compactness is evident if we compare the GRASS
graph of Fig. 7 with the relational model of Fig.
2; both of them represent the table of Fig. 1.
We note that to know in the GRASS model all the
values of the definition domains of the k selec
tion category attributes, n terminal nodes are
necessary, with

(6) n=Ikidim(C.)
1 ~

(being dim(Ci) the cardinality of definition
domain of Ci category), while m tuples of rela-

tional model are necessary, with

(7) n = If. dim(C.)
1~ ~

Moreover, with regard to relational model,
the GRASS model put in evidence the category
attributes involved, without applying to the
concept of "key". Another advantage is the
r.laior semplicity to occur when we will carry
out a simple manipulation (with regard to a
value of a category definition set).
For instance, the insertion of a new value
requires the addition of only one ~ node,
while the update requires only to modify a
label. A further advantage of the proposal
model is that it is used to describe meta
data that refer tables of an S.D.B. [15].
Moreover it allows a hierarchic description
of the category attributes, for which user
can see the whished detail level. Besides
the navigation in the GRASS graph allows to
explore data present in the S.D.B •.
It is possible to navigate through the GRASS
graph according to two approaches:
a) cognitive approach, in which user runs
the graph from an S-node (the root or an
S-node of another lower level) to one (or
more) node(s); such an approach allows to
know which attributes define a fixed table
(or a fixed group of tables).
b) seLective approach, in which user runs
the graph from a tn node to a T-node; such
an approach allows to know which tables (and,
than, which users view) are defined by fixed
attributes.

We consider now the graph of Fig. 13, where
the sets of terminal nodes (related to the
ci-nodes, with i = 1,2, ••• ,k, which is con
nected to the A-node) are indicated with
1 1 , ••• ,Ik •

,,{.tL.C"l· .. ·jK
1 i ,n
~ ~k,m

~
T

Fig. 13

Let Z;; be the set of the "real" terminal
nodes of the A-node, it coincides with the
cartesian product of sets Ii (with i = 1,2,
••• ,k), that is:

(8) Z;; = 11 x 12 x ••••• x Ik

271

Therefore, every instance of selection category is
a k-tuple (i 1,i, ••• ,ik ,j); rows or columns of st~
tis tical tables may correspond to each of these
k-tuples. When no numeric attributes correspond
to one or more instances of selection category, no
distinction is made between unavailable values
(not taked off) and inadmissible values. In both
cases we will refer to them as nuLL vaLues.
Let us now suppose that only one subset, Z;;' CZ;;, is
significant for the statistical query.
Then the cardinali ty of the terminal nodes set Z;;'
will be less than card (Z;;), that is:

(9) card(Z;;') < card(z;;) = card(I 1) x card(I
2

) x

••• x ••• x card(Ik)

otherwise some "integrity constraints" would be
violated.
This means that there are k-tuples of T (t1,i' •••
••• ,tk,h) that are not admitted.
For example, we consider again the graf of Fig. 10.
Let us suppose that, with regard to the A-node
"convoys", the pair of instances "2nd" of the
C-node "class" and "Sleeper choach" of the C-node
"type" is not admitted. The cardinality of A-node
"convoys" then changes from 6 to 5.
Hence, such part of the graph will be changed as
Fig. 14.

2

Fig. 14

Normal
Coach

Sleep.
Berth

We note as this solution is not the only one.
In fact, we can choose also the solution of Fig.15.
That does not mean ambiguity but fLexibiLity Of
the modeL, in that is the user that can choose the
more satisfactory solution for him.

The search developed has permitted to identify the
following points (object of work in progress) as
aims of future searches:
a) definition (and implementation) of a Data Defi
nition Language [16] and of the related Data Dict
ionary, for the GRASS model;
b) formal definition of such D.D.L. and D.O.;
c) integration of user views (with the consequent

treatment of problems, as inconsistencies
and conflicts);
d) definition of the primitives of a lan
guages for the handling of the schemes by
statistical users.

2

REFERENCES

M
NUmber of

T Passengers , t per Convoys
, , ,

Fig. 15

lth

[1] H .K. Wong: "Statistical Database Manage
ment" International Conference on Mana
gement of Data. ACM-SIGMOD, 2-4 June
1982, Orlando, Florida.

[2] A.Shoshani: "Statistical Databases: char
aateristics, problems and some solu
tions" Eighth International Conference
on Very Large Data Bases, 8-10 September
1982, Mexico City, Mexico.

[3] A.Balsamini, M.Rafanelli, F.L.Ricci:
"GRASS: a Logical Model for Statistical
Databases" Technical Report LA.S.I. -
National Research Council, n. R-39, Octo
ber 1982. -

[4] E.Cohen, R.A.Hay Jr.:"why are commercial
Database management systems rarely used
for research data?" Proceedings of the
First LBL Workshop on Statistical Data
base Management, 2-4 December 1981,
Menlo Park, California.

[5] P.Chan, A. Shoshani:"SUBJECT: a directo
ry driven system for organizing and ac~

"cessing large statistiaal databases"
Proceedings of VII International Confe~
ence on Very Large Data Bases, 9-11 Se£
tember 1981, Cannes, France.

[6] M.J.Turner, R.Hammond," F.Cotton:"A DBMS
for Large Statistical Data Bases" Pro
ceedings of the V International Confer
ence on Very Large Data Bases, 3-5 Octo
ber 1979; Rio de Janeiro, Brazil.

272

[7] A.Sana: "Basi di Dati Numeriahe e possibilita
di eZaborazione" Tech. Rep. E.N.E.A., Italy,
N. 82, October 1982.

[8] D.Bates, H.Boral, D.J.De Witt:"A framework
for research in database m:xnagement for stat
istical analysis" Proceedings of the Intern~
tional Conference on Management of Data, ACM
SIGMOD, 2-4 June 1982, Orlando, Florida.

[9] R.Hammond: "Metadata in the RAPID DBMS" Pro
ceedings of the First LBL Workshop on Statis
tical Database Management, 2-4 December 1981,
Menlo Park, California.

[10] S.B.Yao, S.B.Navathe, J.L. Weldon: "An Inte
grate Approach to Database Design" Proceed
ings on Data Base Design Techniques, Lecture
Notes in Computer Science, May 1979, New Yor~

[11] V.Mirizio, M.Rafanelli, F.L.Ricci:"A DBMS for
an Epidemiological research about mental dis
eases and relative hospitalization: initial
results and deductions ofa preliminary
study" Third Congress of Medical Informatics
Europe, MIE 81, 9-13 March 1981, Toulouse,
France.

[12] J .M.Smith, C.P.Smith:" Database abstraction:
aggregation and generalization" Transactions
on Database Systems, Vol. 2, N.2, June 1977.

[13] H.K.Wong, I. Kuo: "A Graphical User Interface
for Database Exploration" Proceedings of the
VIII International Conference on Very Large
Data Bases, 8-10 September 1982, Mexico City,
Mexico.

[14] R.R.Johnson:"ModeUing Summ:xry Data" Proceed
ings of the ACM-SIGMOD 1981, Ann. Arbor, -
Michigan.

[15] J.L.Mc Carty: "Metadata management for large
statistical databases" Proceedings of the VII
International Conference on Very Large Data
Bases, 8-10 September 1982, Mexico City,
Mexico.

[16] M.Rafanelli, F.L.Ricci:"A Data Definition Lan
guage for a Statistical Data Base" Technical
Report I;A.S.I. - National Research Council
(to appear).

LBL-16444

STATISTICAL DATA MANAGEMENT RESEARCH
AT lAWRENCE BERKELEY lABORATORY

P. Chan, S. Eggers, F. Gey, H. Holmes, P. Kreps,
J. McCarthy, D. Merrill, F. Olken, A Shoshani, H. Wong

Lawrence Berkeley Laboratory
Berkeley, California 94720

Abstract

'This paper sununarizes current research on statistical
database management issues at the Lawrence Berkeley
Laboratory. 'This research includes development of proto
type systellL'l as well as analytic work on user interfaces,
physical organization, hardware architecture, and data
base modeling.

1. Introduction

Lawrence Berkeley Laboratory's data management
research program deals with the topic of "scientific and
statistical databases" [SSDB's]. Databases created and
collected for scientific, socio-economic, and other types of
statistical analysis, have requirements that cannot be
easily supported by existing commercial data manage
ment systems. Such data are prevalent in government
(e.g., energy, census, pollution) and in scientific environ
ments (e.g., seismic data, experimental data), but they
also exist in industry (e.g., clinical trials, economic time
series) .

SSDB's have characteristics and usage patterns that
require special data managemerit techniques. SSDB's
typically contain descriptive information measured data
values. SSDB's tend to be large, both in volume and in
their number of distinct data elements (entities, attri
butes). The measured data may contain a large number
of nulls (missing data), thus, requiring special tech
niques for sparse data (such as compression). Repetitive
descriptive information and widely varying magnitudes of
data values present further compression possibilities.

For large SDB's, users often extract subsets or summaries
of the data or summaries over the data for their analytic
purposes. Furthermore, data analysis involves many itera
tions of examining samples, refining the data, and com
parison of multiple subsets. This tends to generate a
large number of smaller data sets which need to be
managed. There is need for techniques to associate sub
sets of data with the original data, to keep track of their
history, and to maintain consistent naming conventions.
The large number Of data elements presents problems for
users. There is too much to remember in terms of data
element names, acronyms, codes for data values, permis
sible data formats, and syntax for data retrieval. Thus,
it is necessary to develop user interfaces that can

This work was supported by the Director, Office of Energy
Research, Office of Basic Research Sciences, Division of En
gineering, Mathematical and Geosciences of the U.S. Department
of Energy under Contract DE-AC03-76SF00098.

273

alleviate these problems. Information about the data and
its support is referred to as "meta-data management."

The data management research program has four major
components that address the specialized problems of
SSDB's. In the "user interface" area we are exploring
several approaches suitable to users with different needs.
The "physical organization" area is concerned with
compressing data and accessing them efficiently, as well
as managing files on secondary storage. The "hardware
architecture" area deals with specialized hardware for
SSDB's. The "modeling" area bridges the user interface
for physical organization and hardware architecture
areas, by dealing with models of both logical and physi
cal data structures. These models allow multiple user
interfaces, physical data structures, and access tech
niques to ro-exist in a single system, and they provide
the basis for query optimization and processing. The fol
lowing four sections describe our work in these areas.

2. User Interfaces

Several different projects at LBL concern different
aspects of and approaches to user interfaces. The first
three subsections below describe prototype user interfaces
that eliminate the need for users to remember names,
acronyms, formats, and complex syntax rules. The first
subsection discusses our work on a graphical user inter
face for data exploration (GUIDE). The second subsec
tion describes a system (SUBJECn which is based on
the representation of statistical databases as logical
graphs. The third describes the user interface for
SEEDIS, which uses an "on-line codebook" approach.
The fourth subsection describes research on application
of graphic design principles to user interfaces. The fifth
subsection summarizes a more procedural interface for
expert users and system integrators, which is based on
self-describing data files and "software tools" that mani
pulate such files.

2.1. User Interfaces for Data Exploration

The purpose of this research is the organization of infor
mation associated with large databases for presentation to
users who are not computer experts. It is based on the
premise that guided exploration of this information using
rich and flexible graphics tools will lead to an effective,
easy-to-use user interface for finding and displaying data.

The research focuses on the problem of dealing with
databases that are not necessarily large in size, but
rather have a large number of data elements and complex

semantic relationships. It has been applied to the area of
statistical databases, since they provide good examples of
this complexity.

The research is motivated by technological developments
with respect to networks and work stations. Large data
bases are often centralized resources with non-expert
users attempting to access them via work stations. In
addition, recent developments in the database modeling
area lend themselves to the use of graphics for represen
tation of the semantics of data.

The graphical user interface under development is called
GUIDE (Graphical User Interface for Database Explora
tion). There are three major differences between existing
work in the area and the GUIDE approach: the GUIDE
approach uses a rich underlying model that can be
displayed graphically; it supports partial queries, thus
enabling the user to issue progressively more complex
queries rather than specifying a long complex query in a
single step; and it explicitly represents the description of
the data, called meta-data.

Meta-data is especially important for the management
and exploration of complex databases because these data
bases often contain hundreds of data element types.
Users, even experienced users, cannot remember all the
names and descriptions of these data elements. The
approach taken in GUIDE is to expressly present the
meta-data in graphical form so the user can explore the
database without needing extensive knowledge of the
structure and types of the data.

2.2. The SUBJECf System

SUBJECf is a continuing project whose purpose is to
provide users with simple but effective means of access
ing statistical databases. This is achieved by using a spe
cially designed graph structure to represent the logical
content of statistical databases. A novice user can
browse through the graph for descriptive information
about databases, select a database to explore, and con
tinue on to express queries. The user interface represents
data in a menu format, thus eliminating the need to
remember names, values and formats of data elements.

An alternative to the browsing capability is provided for
experienced users, who can search for a data file by keys.
They may quickly locate a desired data file, and then
proceed to express query conditions in the usual fashion
(i.e., by moving around the directed graph). The system
also provides access to documentation associated with
nodes in the graph.

An important concept of the graph representation is that
of "node sharing," which permits more than one arc to
point to the same node, thus forming directed acyclic
graphs. Node sharing allows for attribute domains to be
shared between different files, providing several advan
tages: eliminating duplicate data values; consistency of
naming (where items that are the same, but reside in
different files, are forced to have the same name); and
allowing the specification of join domains between files,
permitting multiple physical files or fractions of these

files to be viewed jointly as a single logical entity.

The system provides an interactive facility for specifying
the structure of a SUBJECT graph, including the
specification of shared nodes. This facility is integrated
with the browsing facility to let users browse existing
portions of the graph. In addition to supporting the con
struction of multiple levels, it is possible to connect to a
substructure of an existing graph. This provides a con
venient way to join files.

Another facility is the "data editor" which allows
interactive data entry and modification of data values.
The editor prompts the user with the combination of
parameters (category values) for which a data value has
to be entered.

2.3. On-Hne Dictionaries in SEEDIS

Recent research on user interface design suggests that
novice users find it easier to use systems which simulate
or employ analogies to more familiar non-computer
objects (e.g., desk tops, filing cabinets, folders, etc.).
Data item selection in SEEDIS employs a similar
approach, which has proved quite popular and successful
with users.

To select data items, SEEDIS users browse through an
on-line data dictionary which resembles a printed code
book, complete with page numbers, table of contents,
indexes, and footnotes. In addition to data item informa
tion, SEEDIS dictionaries contain documentation on data
sources, how data were collected and installed, persons to
contact for help, etc. Users can browse data dictionaries
in any order, using the carriage return key to move ahead
page by page, a page number to skip back and forth, and
line letters to choose data items during the course of
browsing. Users select data by typing single letter codes
corresponding to line identifiers on the current screen of
information. Software translates these temporary line
identifiers into database and data item codes. Users can
thus select data items from a number of different data
bases, and the retrieval software automatically takes care
of combining them into a single working dataset.

2.4. User Interface Design Principles

Many user interfaces for computer systems contain unin
tended oversights and errors in visual communication,
such as confused composition, poor typographic hierar
chies, and color combinations that inhibit legibility.
Application of graphic design principles to the visible
language of an interface (i.e., typography, symbolism,
spatial organization, sequencing, and color) can improve
communication of information to users. As part of the
SEEDIS project, professional graphic designers with
experience in computer techniques have sought to apply
graphic design principles from print and film media to
computer output on video display terminals and hard
copy devices. This research has identified goals for user
interface design (e.g., to aid learning of complex infor
mation, to facilitate memorization of key procedures, to
encourage accurate decision-making, to build a clear

274

conceptual image of the system), as well as general
guidelines to meet those goals. The set of guidelines
being developed are based on the modern Swiss utili
tarian (programmic) design tradition, a grid-oriented
approach eminently suited to information display in
which many complex relationships must be distinguished
clearly and carefully.

User interface design involves selection of symbols and
formats for the standard functional components of a sys
tem: menus, prompts, help messages, status reviews, etc.
It also involves detailed specification of standards at a
lower level: determination of a layout grid; selection of
typographic styles, sizing, spacing, and means of
emphasis; standard treatment for continuous prose ('e.g.,
help messages), interrupted prose (error messages, system
status reports, etc.), and tables/lists (menus, data dic
tionaries, etc.).

Unlike conventional prose texts, user interfaces have
many components and corresponding layouts. These
include tables, indices, lists, numbered items, diagram
matic presentations, explanatory notes, and pictorial
images. The user interface is not intended for continu
ous reading as for prose text, but rather is a framework
for complex movement with constant shifts in levels of
instruction to the viewer and frequent distractions to the
viewer's attention.

These design considerations are more than just "cosmet
ics." By carefully considering not only what to show, but
also when, how, and why to show it, a better understand
ing of the functionality of the system emerges in the
minds of the builders, the users and the viewers of a sys
tem and its information.

2.5. Codata Tools for Expert Users

Another aspect of the SEEDIS project has been research
on tools for expert users of statistical databases. This
research has explored the application of user interface
ideas from' UNIX and the Software Tools to self
describing data files.

The Codata Tools are a set Of programs which read,
write, and restructure self-describing Codata (common
data format) files. These tools manipulate both data and
data description, so that the the output of any operation
is itself a Codata file. Semantics of results and descrip
tions of derived Codata files are inherited from descrip
tions of input Codata files. Following the Software Tools
philosophy, the Codata tools are modular - each tool per
forms a specific limited task. They follow the UNIX and
Software Tools conventions of standard input and output.
The output of any module can automatically serve as the
input of another, and they can be HpipelinedH or
HchainedH together.

Codata tools can be used to extract specified rows and/or
columns from a file, to sort a file, to perform relational
joins, to perform tabulations by aggregating on common
key values, and to perform other operations. The Codata
tools are written in RATFOR (a transportable FOR
TRAN preprocessor), and can be easily adapted to run on

275

any computer where the Software Tools have been imple
mented. Work is currently under way on substantial
enhancements to the Codata file format and the Codata
tools to provide for more efficient physical storage for
mats, more complex data structures, and more extensive,
open-ended data description.

3. Database Modeling

Three areas of database modeling are discussed below.
The first area described in the section entitled HSemantic
Core ModelH is concerned with the representation of con
ceptual entities and their relationships. The second area
described in the section entitled Hphysical modeling,H is
concerned with the representation of physical database
structures and their characterization. The third area
described in the section entitled Hmeta-data manage
mentH is concerned with representation of data about
data, or meta-data.

3.1. Semantic Core Model

Scientific and statistical database (SSDB) applications
present formidable modeling requirements that tax the
power of conventional record-oriented database models
(such as the relational or CODASYL models). Since
data are viewed in terms of the structures in which they
are defined and the operations performed on them, the
available model exerts a powerful influence on the ability
of applications to deal naturally with the data. At issue
is the size of the gap between a naturalistic model and
the database system-imposed model.

In SSDB's many entities of interest are actually inferred
or derived from data pertaining to other more concrete or
measurable entities in the world. The boundaries of such
abstract entities often cannot be well defined.

Our own experience with statistical applications (mostly
socio-economic, environmental, and demographic data)
and with scientific applications (seismic data) confirms
this observation. For example, information about seismic
events is generally not gathered directly at the source. It
is derived by an elaborate process of analysis from
ground motion signal data measured at numerous sensor
sites remote from the seismic source. Furthermore, this
analysis can be a multi-stage iterative process. First the
sample (time-series) data streaming from the sensors are
analyzed to abstract inferences about the arrival of pro
pagated signals at the sensor stations. These HarrivalsH

are then collectively analyzed together with a model of
waveform propagation through regions of the earth to
determine the existence and approximate parameters of
an hypothesized seismic event. The hypothesized event
parameters can be used to iteratively refine the set of
arrivals, which are then used to further refine event
parameters, and so on. Because steps in this process are
so computationally intensive, there is a need to preserve
computed values and intermediate results whose relation
ship to the raw data must be maintained.

SSDB's are also often the product of heterogeneous data
sources requiring integration and assimilation. It is

often not possible or practical to force all data into a
common format. It may also be a requirement to
preserve (or recover) the original view of the data. Thus,
integration may be best implemented via some virtual
interface mechanism where data is mapped into one or
another view as appropriate.

Based on our observations of SSDB's in practice and as
reported, we have concluded that conventional data
models and database systems provide inadequate
representational tools for these applications. These and
other considerations have led us to develop a new model
for representing SSDB's which we call the Semantic Core
Model (SCM). This model is based largely on the
semantic data abstraction models found in the literature.
However, none of the extant models address all of the
issues raised earlier regarding SSDB's.

A data definition syntax for most of the constructs pro
posed in the SCM has been developed through several
iterations. These constructs have been used to experi
mentally model several applications of SSDB's.

3.2. Physical Database Modeling

This work is intended to support implementation of the
semantic core model. There are four phases to physical
database modeling: descriptive, analytic, queryoptimiza
tion, and database synthesis.

The descriptive phase consists of constructing a
parameterized taxonomy of physical data structures used
to implement the database. The descriptions must specify
both the structure of physical data structures and their
placement, since the placement can affect also the cost of
i/o which needs to be done. While there has been con
siderable work done on the structural specifications of
physical database structures in the literature, placement
specifications have received much less attention.

The analytic phase consists of constructing formulas to .
estimate the cost of processing a specific query, using a
known computational strategy, against a particular set of
data structures.

The query optimization phase is concerned with searching
the space of query computation strategies to find the
cheapest one. In addition to models of query computa
tion and cost, the query optimizer requires a search stra
tegy.

The final phase of physical database modeling is con
cerned with the physical design of databases.

Work in this area is only in initial stages. We will first
concentrate on the descriptive and analytic areas. In par
ticular, the descriptive work will consist of extending the
semantic core model specification language to include
specifications of the structure and placement of physical
data structures. We are particularly concerned with
describing "clustered transposed files" and compressed
array linearization storage structures (these structures
are described in the section below on Physical Organiza
tion).

276

Our analytic work will build on the existing extensive
literature. Different data structures and query operators
for statistical applications will require attention to issues
often neglected in conventional analyses. The analytic
model will include decompression, recompression, and
tuple assembly costs, aggregation operators, and output
reordering.

3.3. Meta-Data Management

Statistical databases frequently contain .hundreds of dis
tinct attributes or variables. Many new variables are
created during the course of data exploration, manipula
tion, and analysis. Users and software need many
different kinds of data description or meta-data (e.g.,
data type specifications, missing data codes, attribute
names, category value labels, etc.) in order to deal
effectively with statistical data. Since this meta-data can
be quite voluminous and since it differs considerably
from statistical data in terms of content and structure,
meta-data management presents a number of important
questions.

LBL research in this area is concerned with content, phy
sical characteristics, operations, and users of meta-data.
It seeks to identify different types of meta-data, particu
larly those used in statistical analysis. It analyzes
different ways that meta-data are used by people and pro
grams -- end users, database administrators, database
management software, and application programs. It
explores the logical and· physical structure of meta-data,
which spans a whole range of data types including
numbers, text, mathematical equations, etc. It also stu
dies types of operations which are especially important
for meta-data in general and statistical meta-data in par
ticular (e.g., keyword indexing, category set mapping,
attribute inheritance).

The SEEDIS Project has provided an opportunity to test
various meta-data management ideas. A prototype exten
sible data definition language has recently been imple
mented in SEEDIS to provide a standardized, unified
source for program information (e.g., data types, physi
cal storage locations, and missing data specifications),
user documentation (on-line and printed data dic
tionaries) and data labeling (e.g., variable names, data
value labels). Programs for data loading, compression,
extraction, manipulation, report generation, and code
book creation all make use of the same basic data
definition language. SEEDIS has also demonstrated the
importance and utility for statistical databases of self
describing data files and software tools to manipulate
such files, as described above under "User Interfaces."

4. Physical Organization

The following sections describe work in compression and
file management. The first section discusses continuing
work on compression for statistical databases. It is con
cerned with achieving high level of compression while
providing fast access to the compressed data. The second
section deals with algorithms to rearrange database attri
butes in order to maximize the compression factor. The

third section discussion file management issues, including
tuple partitioning, data caching, and distributed file
management. The fourth section describes automatic file
migration replacement policies for moving files from
secondary to tertiary storage devices and vica-versa.

4.1. Compression for Statistical Databases

The stotage and transmission of very large databases
often constitutes a significant portion of the cost of
managing. them. Compression of data becomes increas
ingly important as the volume of data grows. Numerous
techniques have been devised which are capable of
compressing a variety of databases to varying extents.

The compression techniques originally developed for
SEEDIS (described elsewhere in this Proceedings) com
bine a form of run-length encoding with a computer
independent, variable-length representation of data
values. These techniques permit SEEDIS to reduce the
amount of disk or tape storage required for statistical
data files, such as those from the U.S. Census Bureau, to
from 20 to 50 percent of their original volume. Parti
tioning and indexing of SEEDIS compressed data files is
based upon geographic areas to which the data pertain, so
retrieval is efficient for geographic selection criteria.

However, if selection criteria pertain to attributes which
are not indexed, most compression techniques, including
those currently used in SEEDIS, require that a database
be serially decoded before being searched, a process
which requires linear time. In order to overcome this lim
itation, techniques have been developed which achieve
compression ratios comparable to linear time algorithms
but in which the access time required for searching non
indexed values is logarithmic.

The new compression scheme, called header compression,
has the capability of both eliminating multiple types of
constants from the database and compressing each stored
value to its minimal byte length. The scheme is a varia
tion of run-length encoding, in which modified run
lengths are extracted from the data stream and stored in
a header. The header is used to form the base level of a
B-tree index into the database. The run-lengths are
cumulative, and therefore a logarithmic search algorithm
can be used to obtain an access time which is logarithmic
in the size of the header. Two versions of the header
compression scheme have been implemented, called the
basic and general versions. The basic version compresses
only a single type of constant (e.g., zero), while the gen
eral version compresses both multiple types of constants
and stored data to their minimum byte length. These
particular versions of header compression were chosen
because they represent the extreme cases in the tradeoff
between functional capability and degree of compression
and access time, and because they have the widest appli
cability.

An integrated design of the two versions of header
compression takes advantage of many overlapping func
tions. As a resul t, about 60% of the code is shared
between both versions. The implementation includes
modules for loading the data and building the

corresponding system catalogues and B-trees, for access
ing the B-trees and partitions of the data, and for refor
matting of the data and storage allocation for the output.

Future plans include benchmarking of the compression
scheme against the current SEEDIS compression scheme
and others.

4.2. Rearranging Data to Enhance Data Compression
Efficiency

In the course of the work on data compression, we
noticed that vertical partitioning of the data (Le., storing
each domain (or column) in a separate file) markedly
increased the effectiveness of run-length type data
compression schemes such as header compression. If one
thinks of the data as an array indexed by tuple-id and
domain-id then one can think of vertical partitioning as a
transposition operation. These observations led us to
consider the impact of other rearrangements of the data
upon the efficiency of data compression. For example, if
we are storing population counts in an array indexed by
race, sex, age, and county then it would be reasonable to
assign adjacent codes to the least populous races and
counties, because it tends to maximize the probability of
consecutive zero counts. The header compression scheme
mentioned above,can then be used to compress the con
secutive zero counts more efficiently. Furthermore, race
or county would be plausible variables for the least
rapidly varying index and sex for the most rapidly vary
ing array index.

There are two subproblems involved. One is the assign
ment of ordering to category values, (i.e., reordering
rows or columns of the matrix). The second is the order
ing of the category attributes within the indexing func
tion (i.e., transposing the matrix). Thus far we have
only made progress on the first problem.

For the sake of tractability we have turned to probabilis
tic models of the data instead of exact deterministic
models. We were able to obtain two analytical results
for the value ordering problem. Both results, which are

. achieved under different assumptions, show that the value
ordering should be according to the familiar "pipe organ"
assignment, or a variation of it.

We were not able to achieve analytical results for the
attribute ordering problem. We plan to use simulation
techniques for this problem.

4.3. File Management

Because statistical databases are frequently large, and
because they sometimes must be partitioned into separate
physical files, at different locations, distributed file
management is another important research area at LBL

Statistical data often are organized in nested hierarchies
of entities (such as geographic areas, or types of
patients). These hierarchies provide a natural way of
partitioning data using simple naming conventions within
a standard hierarchical file system. SEEDIS incorporates
a hierarchical file system as part of its over- all data
model. This hierarchical file organization also extends to

277

files stored on tape; tapes contained tables of contents
which permit retrieval of files or entire directories by log
ical pathname rather than sequential file number.

In order to extend the hierarchical file model to a multi
site system, SEEDIS has been enhanced to provide
automatic access and disk caching of tape files from a
remote automatic tape library as well as distributed data
elsewhere on the network. Each SEEDIS node on the
network is independent. System managers at each site
can decide where to put their own physical files and
which files should be shared with users at other nodes.
Databases dictionaries and file location tables are
automatically distributed to other sites periodically. Sys
tem logs are kept to provide information on data request
file migration, cache purging, etc,; these will help pro
vide empirical evidence to test analytic results regarding
optimal file migration strategies.

4.4. Automatic File Migration

This work is concerned with modeling and managing the
automatic movement of files between secondary (disk)
and tertiary (tape) storage. We assume that files are
brought into the disk cache from tape when they are
referenced, i.e., demand fetch. A replacement policy is
used to choose files to be evicted from the cache so that
there will be sufficient room for incoming files.

This work is based upon a replacement policy STO
CHOPT originally proposed by AJ. Smith. In Smith's
model one assumes a fixed rental charge per unit of disk
space and a charge to fetch a file from tape. Smith also
assumes that the time intervals between successive refer
ences to the same file are characterized by known proba
bility distributions, referred to as inter-reference time
(IRn distributions. The STOCHOPT policy chooses the
time to hold the file in the cache so as to minimize the
expected cost of the next reference (i.e., the storage ren
tal charge for holding the file in the cache until refer
enced or evicted, plus the tape fetch cost if the file is
referenced after it has been evicted). Smith constructed
empirical distributions for various classes of files and
performed the minimization numerically.

In our work we have shown that for a certain classes of
inter-reference distributions one can analytically deter
mine the optimal cache holding time for STOCHOPT for
a particular file. Furthermore we have shown that this
result holds even for improper inter-reference time distri
butions (i.e., those for which there is a nonzero probabil
ity that the file will never be referenced again).

The hazard rate of the IRT distribution at time t is the
conditional access rate, i.e., the probability (rate) that
the file is referenced at time t since last reference given
that it has not been referenced again up to time t. In
reliability theory the hazard rate is often referred to as
the failure rate because it denotes the rate at which com
ponents which survive t time units fail.

Our analysis indicates that if the hazard rate is monoton
ically decreasing, then the optimal holding time can be
characterized in terms of a scaled hazard rate (i.e., the

278

hazard rate divided by the file size). Files should be
held in the disk cache as long as the scaled hazard rate
exceeds the unit storage rental charge. Empirical studies
by Smith suggest that the assumption of monotonically
decreasing hazard rates is reasonable, i.e., the longer the
time since last reference to file the lower the rate at
which it is referenced. This HOPT replacement policy
has fixed space analogue HMIN which simply evicts the
file with the smallest hazard rate whenever it needs some
space. HMIN reduces to LRU if all files have the same
size and IRT distribution.

5. Hardware for Statistical Databases

The Microprocessor Assist System (MAS) is a research
database machine that is especially designed for statisti
cal data management. The MAS consists of (one or
more) trees of microprocessors that are at the bottom
level connected one to each disk (the leaf microproces
sors) and at the highest level (the root microprocessor)
connected to the front-end computer. A single root
microprocessor directs the activities of, and receives data
from, its child processors. The tree can be more than
two levels, and there may be more than one tree con
nected to the same front-end. However, for simplicity, in
its initial implementation, a two level single tree design
is used. The front-end system is assumed to be a mini
computer with equivalent functionality of a DEC V AX'
11/780.

The major functionality of the microprocessors is to
implement compression and attribute partitioning tech
niques for the statistical data management system (SDS)
running in the front-end computer. We are exploring the
use of multiple microprocessors in a database machine to
handle two I/O related functions:
compression/decompression and attribute
assembly/disassembly.

The MAS obtains its performance benefits from the
parallel operation of multiple microprocessors. The leaf
microprocessors schedule the disk reads, read the
required blocks, decompress the data, and send the
required data up to the level above; the higher-level
microprocessor assembles attributes that are spread across
multiple disks (hence multiple microprocessors). Fully
assembled tuples are sent from the root microprocessor to
the main computer. The fundamental function provided
by the MAS is to make compression and partitioned attri
butes invisible to the front-end system.

Software for the MAS has been designed. It is a rela
tional data management system, where the functions per
formed at the disk-level microprocessors are simple res
trictions, attribute assembly and decompression (for
retrieval); disassembly and compression (for storage).
Two possible prototype applications are being explored:
time-series, instrumental physical data from the Time
Projection Chamber (TPC), and mixed textual and
numeric data, from the Particle Data Group. It is
expected that one, or both, applications will be brought
up in prototype form on the MAS.

Hardware for the MAS has been partially defined. The
microprocessors will be M68000's; the decision of which
68000 systems to use depends on results of modeling the
system, and on the potential vendors actually delivering
promised systems to customers. It is our purpose to
develop generally useful methodologies for building and
using multi-microprocessor systems, so we are not
interested in one-of-a-kind systems; hence, we will use
commercial, well functioning hardware.

6. Conclusion

The area of SSDBs offers interesting and challenging
opportunities in data management research. Most of the
traditional issues in data management still apply here,
but because of the nature and characteristics of SSDBs,
different (sometimes drastically) techniques are required
in data modelling, user interfaces, physical structures, as
well as in hardware.

7. References

1. Chan, P., Shoshani, A, Subject: "A Directory
driven System for Organizing and Accessing Large
Statistical Databases," Proceedings of the Interna
tional Ccnference on Very Large Data Base

. (VWBJ. 1980, pp. 553-563.

2. Denning, D., Nicholson, W., Sande, G., Shoshani,
A, "Panel Report on Statistical Database Manage
ment," Second International Workshop on Statisti
cal Database Management. 1983.

3. Eggers, S. J., Shoshani, A "Efficient Access of
Compressed Data," Proceedings of the Interna
tional Ccnference on Very Large Databases. 6,
1980, pp. 205-211.

4. Eggers, S., 01 ken, F., Shoshani, A, "A Compres
sion Technique for Large Statistical Databases,"
Proceedings of the International Ccnference on
Very Large Data Base (VWBJ. 1981, pp. 424-434.

5. Gey, F.G., "Data Definition for Statistical Sum
mary Data or Appearances Can Be Deceiving,"
Proceedings of the First LBL Workshop on Sta
tistical Database Management. Dec. 1981, pp. 3-
18.

6. Gey, F. G., J. L. McCarthy, D. Merrill, H.

7.

8.

Holmes, "Computer-Independent Data Compres
sion: A Space-Efficient, Cost-Effective Storage
Technique for Large Statistical Databases,
Proceedings of the Second International Workshop
on Statistical Database Management September,
1983.

Hawthorn, P., "Microprocessor Assisted tuple
access, decompression and assembly for statistical
database systems," Proceedings of the Interna
tional Ccnference on Very Large Data Base
(VWBJ. 1982.

Johnson, R R., "Modeling Summary Data,"
Proceedings of the ACM SIGMOD International
Ccnference on Management of Data. 1981, pp. 93-

97.

9. Johnson, R R., "A Data Model for Integrating
Statistical Interpretations," Proceedings of the
First LBL Workshop on Statistical Database
Management. December, 1981, pp. 176-189.

10. Kreps, P. "A semantic core model for statistical
and scientific databases," in LBL perspective on
statistical database management. H.K T. Wong,
ed., Lawrence Berkeley Laboratory report LBL-
15393.

11. Marcus, A, "Graphic Design for Computer-Based
Information Management: A Case Study of
SEEDIS," Lawrence Berkeley Laboratory Techni
cal Report #16330.

12. McCarthy, J. L., "Meta-Data Management for
Large Statistical Databases," Proceedings of the
International Ccnference on Very Large Data
Bases. (VWBJ. September. 1982. pp. 234-243.

13. McCarthy, J. L., Merrill, D. w.,Marcus, A, Ben
son, W. H., Gey, F. C., Holmes, H., Quong, C.,
"The SEEDIS Project: A Su~y Overview of
the Social, Economic, Environmental, Demo
graphic Information System," Lawrence Berkeley
Laboratory document PUB-424, April, 1982 .

14. Merrill, D., J. L. McCarthy, F. Gey, H. Holmes,
"Distributed Data Management in a Minicomputer
Network: The SEEDIS Experience," LBL Tech.
Report #15705, Proceedings of the Second Interna
tional Workshop on Statistical Database Manage
ment September, 1983.

15. Merrill, D., and J. L. McCarthy, "Codata Tools:
Poetable Software for Self-Describing Data Files,"
Proceedings of Ccmputer Science and Statistics:
15th Symposium on the Interface, Houston, Texas,
March, 1983.

16. 01 ken, F., "HOPT: A Myopic Version of the STO
CHOPT Automatic File Migration Policy," 1983
SIGMETRlCS Ccnference, (LBL-15554).

17. Shoshani, A, "Statistical Databases: Characteris
tics, Problems, and some Solutions," invited paper
in the Proceedings of the International Ccnference
on Very Large Data Bases, (VWBJ. Sept. 1982.
pp. 208-222.

18. Wong, H.K. T. and Kuo, I., "GUIDE: Graphical
User Interface for Database Exploration,"
Proceedings of the International Ccnference on
Very Large Data Bases, (VWBJ. Sept. 1982. pp.
22-32.

19. Wong, H.KT., "A Graphical Query System for
Complex Statistical Database," Ccmputer Science
and Statistics: Fifteenth Symposium on the Inter
face, March, 1983.

20. Wong, H.K. T., Editor, "A LBL Perspective on Sta
tistical Database Management" LBL-15393,
December 1982 (Contains most of the publications
mentioned here plus few additional papers).

279

A Statistical Database Component of a Data Analysis and Modelling
System: Lessons from eight years of user experience.

John C. Klensin
Laboratory of Architecture and Planning

Massachusetts Institute of Technology

When development of the Consistent System, a large-scale data analysis and modelling system
for the social, policy, and behavioral sciences, began, it was determined that database
management facilities would be necessary to handle the variety of complex data that were
anticipated. The primary data base management component of that system, called Janus, has
been in use, in two prototypes and then in production form, at several sites and by a variety
of users, since about 1975. This paper reviews some of the original design considerations
about Janus (including its relationship to the rest of the Consistent System) and reflects on
them in the light of user experiences and comments in the subsequent years.

In 1969, MIT started a major effort to consider issues in
the design of tools and environment for social and
behavioral scientists. That effort was very active for
about eight years, and also involved researchers from
several other institutions, especially Harvard, and a variety
of disciplines. A summer study held in 1970 produced a
menu of recommendations about the facilities that systems
would require in the future. Among the more important
of those conclusions was that there was a need for
serious facilities to manage the types of data that would
eventually be processed statistically - facilities that, to
different researchers, meant

• Processing of "waves" of surveys

• Management and retrieval of very large bodies
of information

• Making inferences and doing analysis from data
bases containing data at multiple levels of
aggregation, moving back and forth among
aggregation levels (rather than simply looking at
the top or bottom level of a hierarchy).

• Dealing with missing values in ways that remained
consistent across different datasets and sources
of information.

• Handling data of different types - nominal,
multiple-response nominal, integer, real, dates
and times, and text

• . Handling aggregate data types and variable
number of responses per subject in all the
usual modes: statistical summaries, counting,
adding, taking the first (or the last) and so
forth.

• Being able to make arbitrarily structured queries,
retrieving on any attribute, or combination of
attributes, in the database.

• And, being able to take any data, or combination
of data, and subject them to a full range of
transformations and statistical analysis techniques.

The author would like to acknowledge the helpful critical
comments of several colleagues, especially Ree Dawson,
and users of the Consistent System, without which the
paper would have been less complete and less clear. The
inferences drawn remain the author's responsibility.

280

A data management system, known as "Janus" was
developed to meet these goals as a "data management
front end" for a more comprehensive analysis and
modelling environment that is now known as the "Consistent
System" (Dawson, Klensin, and Yntema 1980). Janus went
through two complete prototyping periods with user and
technical review before work on the present system
began. The present version went into active use in about
1976 and has now survived all of its original designers
and developers.

The author of this paper and his current colleagues in
maintaining and developing the Consistent System were
not among the designers or developers. although they were
associated with the project during that period. We were
not and, indeed are not, very happy about several aspects
of the design. We find ourselves today in the somewhat
uncomfortable position of writing the history, not by
being the victors, but by having more staying power for
reasons that are perhaps artificial.

In any event, we· have now accumulated several years of
experience with a variety of users of statistical databases
- students, academic and private researchers, governmental
and commercial analysts, and even some users of commercial
databases - and a variety of databases ranging from
simple surveys to personnel files and from records of
municipal employment and finance to records of medical
incidents to records of radio listening and international
crises. We have learned which facilities are heavily used
and which lightly, which capabilities are important and
which ones are absent or clumsy, and where the major
problems lie.

In this paper, we intend to look through the design of
Janus as it has evolved from the original criteria. We
will focus on those aspects of the design that relate
directly to the manipulation of data, e.g,. operations on
datasets and how the data are made available for
statistical analysis. As we examine a feature in this area,
we will discuss the reasons for it and the degree to

which it appears to us to have succeeded or failed.

We do not intend to spend much time on the internal
organization of Janus or of the Consistent System more

broadly. The former topic was discussed in some length
in a preliminary paper on Janus by the designers, some
time ago (Stamen and Wallace 1974). While the terminology
now in use has evolved from that in the paper, and some
of the features discussed were not implemented initially
(a few never have been), the paper gives a reasonable
overview of the internal operation of the system. Indeed,
we still use a marked up copy of that paper to introduce
newly-hired maintainers to the system.

A few characteristics of the system's style and design may
be . helpful in understandihg our perspective. First of all,
and most important, Janus is command-driven rather than
a host language system. It has the ability to be caJIed
from a host language, but thoSe capabilities were added
very late in the implementation, are less pow~rful than
the command-level capabilities. and have been ltttIe-used.
Not only are queries, reports, and construction o~ . ~ew
data elements done with commands, but database defmltlon
and creation are also. Second, the designers were convinced,
based on prior experience, that use of a statistical
database was characterized primarily by two types of

• operations. both of which were less common in commercial
databases: creating a new variable in an existing dataset
as a transformation or combination of existing variables
and retrieving (for either analysis, computation, or display)
aJI or most of the values of a few variables (compared
to the total number in the database) rather than aJI or
most of the values of a few records (compared to the
total number in the database). (1) Third, while ~e
system utilizes some unusual terminology and operation
forms in deference to its audience and the preferences of
its designers, it is essentiaJIy relational in nature. -
another one of those "relational, but" and "relatIOnal
plus" systems. The "but" here is the absence of either
host language capability or tools for tile DB~,. and some
peculiar terminology. The "plus" is the abtltty to use
some unnormalized forms explicitly and the presence of
some operators and functions from the statis:ical, ~ath~r
than database domain. The first of these bnngs Wtth It
the attendant need to be able to name the mappings
between relations where more than one mapping can exist
between a pair of relations. In addition, for a variety. of
reasons, it is often convenient to treat the mappmgs
themselves as objects. We will come back to the user
appearance of these features later. (2)

The User's View

The user of data with simple structure sees a single
dataset that looks very much like a rectangular data
matrix. When things are displayed, the entities look like
subjects and the attributes look like columns of that
traditional matrix. The underlying relational scheme, when
contrasted with experience with traditional statistical systems,
causes two related surprises that some users have found
disconcerting: there is no assumption of either ordering
in the attributes (a "next to" relationship) nor in the
entities (an "after" relationship). The former leads to the
desire to talk about "variables 10 through 30", for which
Janus has no equivalent concept (3) The latter leads to
two things: Users want to talk about entities 35 through
40, which is only rarely substantively meaningful. (4)
More important, users keep perceiving the need to sort a
dataset prior to making an analysis involving a selection
or subset of cases. This is never actuaJIy necessary in
conventional analysis and, since it requires creating a new
relation (dataset), is fairly costly compared to just
selecting the appropriate entities. But, when people have
learned for years that this sort of operation is necessary,
we have a great deal of trouble with ingrained habits.

The cells of the data matrix or relation may themselves
be drawn from the domains of vectors or matrices of
values. This feature has been important in several
applications, but is not heavily used. It would have been
more heavily used, we believe today, had the vectors been
able to carry enough label and periodicity information to
make effective representations of time series of moderate

281

length. By use of lower bounds on . vectors that ar.e oth~r
than one, that capability has been Simulated effectively m
a few databases, but never satisfactorily.

In addition, the ceJIs may contain variable":'length lists of
values (an unnormalized form with aJI of the associated
.problems). Those lists can be used to represent variable
numbers of responses per subject. They also come into
being as a result of some Janus operations, as discussed
below. They have, as one might reasonably predict from
the relational database literature, caused a great deal of
trouble for both users and implementers. A complete and
satisfactory set of operations is extremely difficult to
define for them. At the same time, they have provided
some capability, such as the ability to use the system
efficiently for information retrieval queries by keywords
and one model for handling multiple-response data, that
is of great value.

The operations and commands

We could have accommodated multiple types of data
representations . -- scalars, vectors, and lists, nominal,
integer, real, text, and date-time values - without the
considerable investment required to build a DBMS. Some
of the variability and heterogeneity of types are a
nuisance in a conventional statistical system, but it is
possible to incorporate provision for. t.hem, as some
statistical systems have started to do wlthm the last .f~w
years. The project specified a stronger databas:e capab~ltty
because its participants saw a need to deal .Wlth ~ultlple
datasets at the same time: datasets at potentially different
levels of aggregation, or drawn from differe~t sources,. or
requiring substantive, rather than mechantcal, mergmg
processes. Codd's work on the relational algeb!a (Codd
1971) was just becoming known, and the designers of
Janus drew on one of the early relational experiments
(Goldstein and Strnad 1971) as weJI as the successes and
problems of three systems with which they had had
extensive experience: Data-Text (Armor 1969), ADM~NS
(McIntosh and Griffel 1970), and DATANAL (MtJIer
1967 Miller 1968). One of the principal difficulties with
thos~ systems was precisely the inability to deal with
multiple datasets simultaneously. This, was .a ,~eed. ~at
kept arising no matter what sorts of 'mergmg facllttles
were designed for these systems.

Janus's real capabilities arise when a second dataset
(relation) is introduced. The second, and subsequent,
datasets, can be introduced in any of three ways:

- As additional externally-produced values to be merged
with those in an existing dataset on (substantially)
an entity-by-entity basis.

As additional externally-produced values collected at
a different level of aggregation from those in
existing datasets.

- As a derivative of existing datasets.

These operations ~nd their implementation in Janus are
discussed in the next few sections.

Adding groups of new values

In the original implementation, new cases. were ad:ded by
the use of basic dataset creation operations (takmg the
union of the two existing relations with respect to one or

more attributes). Users requested that we add specialized
commands for the purpose in order to reduce typing and
cognitive aggreviation. The resulting commands permit
specification of sets of attribute values to be appended
(other values are set to' missing), while the union
operation copies only those attributes involved in the set
operation; other attributes had to be copied fndividually
by separate commands.

More specifically, when values are to be added· to a
Jan~ database that represent some or all of the existing
attnbutes for a new set of subjects, a new· dataset is
created ~from the raw data) representing thqse subjects
and attnbutes and then appended to the existing dataset
for the existing subjects. If the new dataset does not
contain some of the attributes in the existing one, the
values for those attributes are automatically set to missing
in the appending process. . Users have had no difficulties
with this feature, although the fact that the appending
proc~ is not sensitive to the order and column positions
In WhICh raw data appear continues to astonish some of
them for a long time.

Merging and updating information

Janus deviates from the traditional statistical package
model in its approach to merging data. When values
from two sources, but representing the same subjects, are
to be merged or updated, separate datasets are again
created, each on~ representing one of the sources and
each one containing subject identification information.
(5) A mapping is then established between the two
datasets and the attributes of one copied or updated from
the other. This operation is approximately equivalent to a
traditional "join", but has seemed more sensible· to the
casual user-analyst. Since relations are stored transposed
(by attribute), there is no performance penalty. If any
subjects do not appear in the new (update) dataset who
do appear in the source one (the one to which attributes
are being added or updated), the values of the attributes
for those entities are set to missing, It is possible 10
query the database and display entities in either dataset
that do not participate in the mapping (that WOUld,
therefore, lead to either miSSing values or lost information).
It is also possible to form new relations as the intersection
or difference between a pair of existing datasets as a
means of detecting these problems. The query, display,
and inspect capability is used by almost all users involved
in updating and merging operations; the intersection and
differencing operations have, to our surprise, been little
used.

Again, these are relatively recent facilities. Prior to their
addition, users went through a series of steps to locate
and update values. Based on complaints from users before
the aggregate commands were added, designers of future
systems should probably include similar capabilities. This
appears to be true even though only the more primitive
ability to infer individual attributes from one relation is
logically necessary.

None of these facilities should be confused with those
for simply editing individual data values, or sets of values
with common characteristics, by specifying a replacement

value. Simple editing facilities of that sort have existed
in Janus from the first prototype and are important for
many purposes, especially in an interactive system. -They
cannot be used to. substitute for the dataset-merging

282

facilitieS discussed above, nor can the dataset-merging
facilities be reasonably used as substitutes for simple
editing.

Changing the level of aggregation

Statistical data are typically updated less frequently than
data .managed for commercial purposes and the operations
descnbed above are of less importance to traditional
statistical applications than to commercial or mixed
approac~es. M~re crucial to the needs of the analyst
faced WIth multIple sets of data from different sources is
tJ.te ability to r~ncile dif~er~nt levels of aggregation
e~ther between relatIons or WIthIn a single relation. These
dIfferent levels are often the traditional strict hierarchies

people, in buildings, in city blocks, in cities, in states
-- b~t ma~ also represent much more complex (and
non-h~erarchIcaI) relationships. For example, we have
been Involved recently in the creation of a database of
all international crises since approximately the end of the
~ond world war (Farris et. al. 1980). That database
mcludes a relation whose entities are crises and one
who~ entities are phases of the crises (a strict hierarchy).
But It also requires, for analysis, a relation whose entities
are actors -- parties to, or participants in, the crises -
and that relatIOn has many-to-many characteristics with
respect to information about crises and phases of crises.
Janus handles the mappings that reflect relationships
among rel~tions in an ~xplicit fashion, permitting naming
~ese ma~ngs a~d treatm~ them as objects. The map-form
mg. operatIon IS, essentIally, a matching one between
attnbutes or tuples in different relations. The principal
user so far of the database described above found it
surprisingly easy to use, given the intrinsic complexity of
the data, but often has trouble figuring out what to map
o~to what. It is not terribly unusual to have several
dIfferent maps between a pair of relations in the effort
to isolate specific information.

Once a map or maps are formed, the user determines the
leve! of aggregation at which analysis is to be performed.
Askmg questions in a relation whose entities are households
is likely to yield information about households; asking the
same type of questions in a relation whose entities are
communities will probably yield information about
commu.nities. To reduce the user confusion that might
otherWIse result, Janus utilizes the notion of what we
might consider a reference relation -- a "default dataset"
relative to which operations are being performed. While
operations mapping between existing relations, and operations
that create new ones are, of course, exceptions, the user
thinks of himself as operating "in" one relation at a
time. We have noticed that this seems less confusing than
the usual situation iIi systems based more closely on the
relational algebra. (6)

An example may help clarify this level of aggregiltion
situation. Assume that a database contains information on
cities, information on households (including what city each
is included in), and information on persons (including the
income of each and what household each is associated
with). By fairly conventional joining and tallying operations,
we can determine how many people are in each household.
what the aggregate (and average) household income are,
and the same information for each city. The average
per-capita city income (a question we would want to
address in the relation whose entities are cities) is going
to be quite different from the average per-capita household
income (a Question for the relation whose entities are

households). Assuming that the necessary mappings exist
(they can be created or composed easily), it is feasible to
ask either question, but they have different substantive
meanings.

In this example, we are moving information and aggregating
along a many-one mapping. There are two sets of
possible complications here. If we permit an individual to
be listed in more than one household (consider the
answer to the question "where were you yesterday?"), we
mayor may not want him counted twice in averaging
incomes. To avoid double-counting, we must reduce the
relation of individuals (i.e., person-household pairs) to
one that contains only unique people. Assuming that
relation ends up with fewer entities than the
person-household one, we must choose how to treat the
other information on the subject before mapping them
into the new relation of individuals. In the original
design, Janus permitted adding the information up, taking.
the mean of the values being mapped onto each entity,
and taking the maximum and minimum of those values.
We have found it necessary to add two new choice
functions -- one arbitrary and one that selects a value
(such the income for a subject) only if all candidate
incomes are the same. These permit dealing with the
problem that arises when several entities in one relation
map onto an entity of another relation and we wish
neither to aggregate nor to end up with a list of values.

We have spoken about the use of these facilities strictly
in the direction of transferring information "down"
many-one mappings, which we have found to be the
most common case, (or when I discussed merging. and
updating information, transferring information "across"
one-one mappings). The need periodically arises to move
information "up" a many-one mapping, or "across" a
many-many one. The first of these two operations
involves disaggregating or "spreading" information from
one relation onto the subgroups of another relation to
which that information applies. In the election example
that I will discuss later, it was necessary to spread
biographic information on candidates onto the relation of
votes (where most candidates appeared multiple times)
because the information level of the vote values proved
useful in looking at that information.

More important, we sometimes do not wish to aggregate
or disaggregate as we move up or down a many-one
mapping. If we were interested in the number. of
hOuse'lOlds containing at least one person over 65, we
could take the' maximum age of the people who mapped
into each household and then count the number of
households in which the maximum age was greater than
65. If, however, we wanted to know how many households
contained someone named "Fred" we would have two
choices: we could create an attribute in the relation of
people whose value was, say, one if the person's name
was Fred and zero otherwise, add this up (or take its
maximum) through the mapping, and then proceed as if
Fred-ness were age. Or, we could copy into each entity
of the household relation the first name of all of the
people in that household. That would give us a
variable-length list of names for each entity, the pr~blematic
nasty unnormalized form mentioned earlier. Are the two
approaches equivalent? This depends on what you intend
to do next. We have observed that, for the social
scientists and statistical analysts who make up much of
our user community, "tell me about those households that

283

contain a 'Fred'" is immediately followed by "tell me
about those households that contain a 'Tom''', and that is
followed immediately by queries about "Dick" and "Harry".
Creating all of the attributes needed for the first
approach is, at best, tedious. The use of these lists
instead permits the user to ask the questions in a more
direct way without moving back and forth repeatedly
between the two relations.

As mentioned before, there are problems with a scheme
that permits the results of inferring through mappings to
be stored explicitly in· the relation. They are problems to
which, at various times, we have thought we understood
the SQlutions but were lacking in the resources to
implement them, or thought we had the resources but
were lacking in ideas to which we could not immediately
find objections. Often, we have had neither resources nor
reasonable ideas. It seems to us today that problems that
arise when we start with, to continue with the example
above, a list of names and want

- to find out how many distinct names appear in our
population, and how many times each appears;

- to form a mapping, USing the names, between two
relations containing lists of names;

- to form a mapping, using the names, between one
relation containing the list of names and another
containing not more than one name per entity;

- to create a new relation whose entities are unique
names (assuming that such a dataset did not exist
already).

The need for these operations illustrates the difficulties
here and lays out the requirements for an acceptable
solution.

Multiple mappings among relations

The requirement for multiple mappings in a statistical
database does not arise very often but, when it does, it
proves extremely helpful. It could perhaps be replicated
by several joins and subsets, but at greater (logical) cost
and complexity to the user. An example from one of the
first major political science research efforts with the
system may be more helpful than an abstract presentation.

In a voting study, the user (Deber 1977). had a collection
of data containing candidate names, party affiliation,
districts, election years" and votes for a particular set of
congressional districts. The data were not identified with
who had won each election, much less vote percentages
and other information useful for trend analysis. It was
ultimately necessary to aggregate and compare the informa
tion in a variety of ways, and to connect vote information
with candidate biographic and personal electoral and party
history information, but it was first necessary to identify
the elections and winners from these data.

We first formed a new relation, using uniqueness of the
date-district tuple as the creating condition. We inferred
into that relation the maximum value (for each contributing
entity) of the vote, and the sums of the votes. That gave
us, in the new relation, four attributes: the year and
district, the total votes cast, and the vote for the winner.
Completing the winner's percentage of vote (in that
relation also) is trivial. But our goal was to identify the

winners. To do this, we built anomer mappIng oetween
the original and new relations that associated matching
triples of district, year, and vote with district, year, and
(maximum) vote. The entities of the original relation for
which this mapping exists are "winners", other entities
represent non-winners. (7)

This example is, of course, fairly trivial but it does
illustrate the problem.

Other derived relations

Finally, we often see a need to create new relations from
existing ones. To our surprise, the facilities of Janus for
doing operations within a single relation are apparently
powerful enough that this requirement arises much more
often in statistical uses than in commercial ones. The
reasons are similar to the uses of a hierarchical set in
the examples above: a means of aggregating information
in ways that accumulate information for a selected
grouping rule on the entities. The most common of these
is the creation of a new relation whose entities are the
unique values of an attribute or tuple in some other
relation. Janus also supports creation of new relations by
union, intersection, and difference of sets of others, but
these more complex operations have, as mentioned above,
received very little use in the community of analysts of
statistical and quasi-statistical databases.

The statistical interface

Janus does not contain any serious statistical facilities,
although it can be used to perform simple summaries -
means, standard deviations, and the like -- and data
transformations -- logs, sines, cosines, and so forth. The
reasons why it does not are partially philosophical and
tied up with the mechanisms used in the Consistent
System to keep its components from becoming complex to
the point of unmaintainability. (8) The technical reasons
are more important to the statistical database question.
One of our primary motivations with the Consistent
System was to insure that the outputs of operations would
be self -describing files that could be manipulated by the
system: reformatted, passed to further analysis routines,
and the like. That requirement implied that the outputs
of statistical procedures embedded in Janus WOUld, of
necessity, be either values that could be embedded in
existing relations (9) or in new relations. The value plan
works fairly well for the sorts of simple summaries
mentioned earlier -- we can easily. store the mean of a
set of attribute values. (10) However, assume that we
are computing a regression on some of the attributes in a
relation. The results of that regression are represented in
several differently-shaped objects (e.g., regression coeffi
cients, partial correlations, analysis of variance information),
few of which bear any particular relationship to the
number of attributes or entities of the original relation.
Only the residuals lend themselves naturally to being
stored back as additional attributes in that relation. We
could create new relations for each of the outputs but
there would be no obvious way to create mappings to the
existing relations.

A crosstabulation that produces a multidimensional table is
another excellent example. Recall that we are committed
to producing that table as a file, not just printing it, and
that we are committed to actually producing the contingency
table, not just statistics about what is going on inside it

284

For a variety of reasons, the best form for that file
(again, in most cases) is as a multidimensional array with
one dimension per variable, and the extents along each
dimension matching the number of codes. That form
cannot be represented in Janus at all if the number of
dimensions (variables) exceed four and cannot reasonably
be represented if the number exceeds two (Janus cannot
associate labels with the rows and columns of the cells of
matrix-valued attributes).

So, we push the results of regressions and tabulations off
into the numeric array files used by the rest of the
Consistent System, unless the user only wants the results
printed and discarded.

To reduce inconvenience to people doing simple and
obvious things, there is a connection in Janus to the
language form used in the rest of the Consistent System
for numerical and statistical computations. It will convert
values automatically and invisibly as needed, and will, on
request, print results. If the resulting values can reasonably
be represented in Janus and the user wishes, it can
convert the results and add them to the current working
relation. In more complex cases, the user uses Janus
commands to put the desired values into system-standard
fil~, and then invokes the desired commands directly
(USIng, however, the same linguistic constructions). These
commands may be issued by "escaping" from Janus, or by
terminating the Janus session and returning to Consistent
System command level; the choice depends on the
preferences of the user.

Relationship to commercial uses

Janus was designed specifically to manage statistical databases.
Its data storage schemes, ways of presenting information,
and, most important, lack of locking strategies, tools for
frequent updates, detailed audit trails, and transaction
facilities, are consequences of that goal. There have been
several attempts to use it in more conventional commercial
data base applications. Depending oil how one looks at
the world, those attempts have either been extremely
successful, considering the circumstances, or rather unfortu
nate. The commands that have been added to Janus to
support merging and updating of information have never
worked as well or as cleanly as those that perform more
conventional statistical manipulations. We have an ongoing
internal technical discussion about whether it is really
practical to develop record-level locking in a database
system in which most information is stored transposed
and this author, at least, is deeply skeptical. If it is
possible to develop a single system that will serve, and
serve equally well, both the needs of the statistical
database user and those of the conventional/commercial
user, especially on the same databases, we have not
invented it

Notes

1 This argument, which leads to the suggestion that
information in statistical databases be stored in
transposed form, has apparently risen up .as the
conventional wisdom in many places at d1fferent
times. Important examples include PICKLE (Baker
1976) SCSS (Nie 1977), and RAPID (Turner 1980).
Ther~ is some experimental evidence that supports it
See, for example, Tjoa and Wagner (1980) or Batory
(1978).

2 At the risk of confusing any casual Janus user who
encounters this paper, we are going to try to stay
with conventional terminology in this discussion except
in the Janus language examples. The terminology used
in Janus documentation uses "dataset" (the common
term among data analysts) instead of "relation" or
"table" and the term "relation" to describe the
mapping among a pair (or more) of relations ("datasets")
"Entities" and "attributes" have their usual meanings.
There are conceptually several types of functions:
those that create new relations ("datasets"), those that
define new mappings ("relations"), those that are used
in forming new values for each entity in a relation
(e.g., log10, uppeccase), those that aggregate values
within a relation ("dataset") (e.g., mean or sum), and
those that move or infer information from one
relation to another which information was not involved
as arguments to the relation-creating function. The
style of the language and documentation have permitted
the notion of a "tuple", and analogous terms, to be
avoided entirely.

3 It is possible to get around this in some circumstances,
but doing so often leads to more confusion.

4 This is, however, easy and convenient since Janus
maintains a sequential entity number as a key that
can be used in selection expressions.

5 In the rare case in which subjects are identified by
order alone, the entity sequence numbers, mentioned
above, are coerced into subject identifiers.

6 Other commentators have also assumed 'that this sort
of convention is necessary. See, for example, Teitel
(1981).

7 A complication could, in principle, arise if two cases
had exactly the same vote in the same election. It
was easy to test for and did not, empirically, occur
-- these were, after all, election results and someone
was elected in all cases.

8 A non-technical discussion of the modular organization
of the Consistent System and the intellectual motivation
for it appears in another paper (Klensin and Yntema
1981). Time and space do not permit replicating that
discussion here.

9 Janus provides the capability of representing so-called
dataset-level values that logically represent all of the
entities of a relation, rather than being different for
each entity. Such values as the mean or standard
deviation of an attribute fall into this category. The
alternative, dictated by a strict, relational model,
would have been to create a new relation representing
the appropriate aggregation of cases and compute

285

summary values USing that aggregation. While that
facility exists in Janus, and is heavily used when
aggregate summaries are needed for several subsets of
the entities in a ri:Iation, being able to store values
that are conceptually scalars associated with a given
relation with that relation is intellectually easier in
many cases.

10 If the attributes are vector- or matrix-valued, there
is an additional small problem of selecting the
correct value: whether the mean (or whatever) is to
be of all of the values, or is itself is to be a
matrix, or some collapse of that matrix, or whether
the mean is wanted for each entity, for the values
of that entity. Functions such as "mean" take
additional syntax when applied to matrix-valued attri
butes to select among these possibilities. That arrange
ment is not available when values are being projected
or aggregated across relations; something we frequently
regret.

Bibliography

Armor 1969
Armor, David J., et. aI., The Data-Text System,
Preliminary Manual, Department of Social Relations,
Harvard University, 1969.

Baker '1976
Baker, M., "User's Guide to the Berkeley Transposed
File Statistical System: PICKLE", Survey Research
Center, University of California, 1976.

Batory 1978
Batory, D.S., "On Searching Transposed Files", Fourth
I nternational Conference on Very Large Databases,
1978.

Codd 1971
Codd, E. F., "A Data Base Sublanguage founded on
the Relational Calculus", Proceedings of the 1971
ACM-SIGFIDET Workshop on Data Description,
Access, and Control, San Diego, Calif., 1971. .

Dawson, Klensin, and Yntema 1980
Dawson, Ree, John C. Klensin, and Douwe B.
Yntema, "The Consistent System", The American
Statistician, 35, 3 (August 1980), pp. 169-176.

Deber 1977
Deber, Raisa, Who runs: Congress and realignment
sequences, unpublished Ph.D. dissertation, Department
of Political Science, Massachusetts Institute of
Technology, 1977.

Farris et. aI. 1980
Farris, Lee, H. R. Alker, Jr., Kathleen Carley, and
Frank L. Sherman, "Phase/actor disaggregated
ButterWorth-Scranton codebook", Project working paper
13, project on Reflective Logics for Resolving Insecurity
Dilemmas, Center for International Studies, MIT,
1980. "

Goldstein and Strnad 1971
Goldstein, Robert C. and Alois J. Strnad, "The
MacAIMS Data Management System", MIT Project

MAC technical memorandum MAC-TM-24, April
1971.

Klensin and Yntema 1981
Klensin, John C. and Douwe B. Yntema, "Beyond
the package: A new approach to behavioral science
computing", Social Science Information, 20, 4/5
(1981), pp. 787-815.

McIntosh and Griffel 1970
McIntosh, Stuart D. and David M. Griffel, "Admins
Mark III - The user's manual", MIT Center for
International Studies, March 1970.

Miller 1967
Miller, James R. III, "Datanal: An interpretive
language for on-line analysis of empirical data", MIT
Sloan School working paper 275-67, August 1967.

Miller 1%8
Miller, James R. III, "On-line analysis for social
scientists", Social Science Information, April 1968.

Nie 1977
Nie, Norman H. and C. Hadlai Hull, SCSS: SPSS
Conversational Statistical System, Chicago: SPSS,
Inc., 1977.

Stamen and Wallace 1974
Stamen, Jeffery and Robert Wallace, "Social Science
Goes Online", Computer Decisions, April 1974.

Teitel 1981
Teitel, Robert, "User Interface with a Relational
Model of Data", SIGSOC Bulletin, 13, 2-3 (January
1982).

Tjoa and Wagner 1980
Tjoa, A. M. and R. R. Wagner, "A general concept
for the simulation of interaction on statistical databases"
in Barritt, M. M. and D. Wishart, ed.s., COMPST AT
80: Proceedings in Computational Statistics, Vienna:
Physica-Verlag, 1980, pp. 115-121.

Turner 1980
Turner, M. J., R. Hammond, P. Cotton, "RAPID: A
DBMS for Large Statistical Databases," Statistics Canada,
1980.

286

•

•

SYSTEM/K: A KNOWLEDGE BASE MANAGEMENT SYSTEM

Mauro MAIER, Claudio CIRILLI

IBM Scientific Center, Via S.Maria 67, 56100 Pisa

Abstract

System/K is a Knowledge Base Management System designed to offer a set
of facilities for knowledge representation and usage at the conceptual
level by means of three descriptive mechanisms ("Aggregate", "Derive"
and "Collect").
Two specific object-types (Assertions and Sets) are defined to represent
the "part-of", "is-a" and "member-of" relationships.
An "object-oriented" cross-reference logic is defined, that saves users
from having to be constantly aware of "keys".
System/K refers to SQL/DS (a relational DBMS) to maintain information
concerning both the conceptual relationships (meta-database) and the
description of the entities in the real world (database).
A logic is defined to generate the appropriate relation schemes starting
from the conceptual definitions.

1. - Introduction

This paper describes the basic concepts of
System/K, a research prototype for know
ledge representation and usage at the
conceptual level, developed by the IBM
Scientific Center at Pisa, in the frame
work of a research project on Territory
Information Systems (TIS project) [7].
The terms "knowledge representation",
"knowledge base" and "semantics" are
usually referred to with different mean
ings, depending on the topics and the
research communities which use them (arti
ficial intelligence, linguistics, database
systems, programming languages) [6] [4].
Although the exchange between these commu
nities has been growing over the last few
years, it may be worthwhile to define, at
least informally, how these terms are used
here.

In the context of complex information
systems "knowledge representation" means
that designers and users are provided with
adequate and integrated tools, in order to
describe and manage what they know about
the real world concerned, with special
reference to the high level of description
and to the basic requirement that the
knowledge inserted be understandable both
for the whole community of users and for
the system itself (that is, an adequate
and sufficiently precise notation is need
ed) [13].

In addition to this, a high degree of
"semantic capacity" (as a measure of the
correspondence between the representation
and the meanings of the real world) is
required, both for static (data) and
dynamic (process) aspects which must be
representable by taking into account mech-

287

anisms that human beings naturally use to
organize their knowledge (such as classi
fication, aggregation and generalization)
[13] [20] [16] [17].

To fulfil these requirements "semantic
models" (DB corresponding to what is
usually referred to in AI as "represen
tation schemes") [3] [5] [10] can be used
as basic tools of "structured knowledge
representation": the application of a
given model to a slice of reality gives
the relevant "knowledge base".
Thus a knowledge base includes both
"abstract knowledge" (information on
general concepts, types, descriptors etc.)
and "concrete knowledge" (information on
individual facts) [13].
In terms of stored data, the knowledge
base is split up into two subsets: the
database, in its usual meaning, and the
"meta-database", that is the structured
collection of data which materialize the
abstract knowledge, together with control
information (data dictionaries, database
schemes etc.) [11].

In the following we describe a proposal
for a Knowledge Base Management System.
In section 2, an overview of System/K is
presented.
In section 3, the basic concepts of
System/K are presented with special empha
sys on the three description mechanisms
("Aggregate", "Derive" and "Collect"),
that make it possible to compose
descriptions of elementary facts of know
ledge (called "Assertions") to build the
descriptions of complex entities.
In section 4, some implementative aspects
are illustrated such as the categories of
objects the system manages, the logic the

system follows to navigate through the
database, the relation schemes the system
adopts to materialize the meta-database
(the set of descriptive structures) and
the logic the system uses to automatically
build the relation schemes to materialize
and maintain the descriptions of the
specific objects.
In the conclusive section, an attempt is
made to emphasize the advantages offered
by a conceptual interface to the database
in terms of semantic capacity and ease of
use.

2. - System/K General Overview

System/K is a Knowledge Base Management
System designed to offer a set of facili
ties for knowledge representation and
usage at the conceptual level. It is
based on an "object-oriented" approach,
i.e. it deals with objects, addressing
them by means of system identifiers which
are completely transparent to the user.
In this sense, System/K enables the user
to refer to certain properties of an enti
ty (e.g. the personal code of an employee)
to find the required entity (the required
employee); from that moment on, the system
uses the appropriate identifier to present
the concerned entity in its entirety (the
employee with all his/her properties).

System/K is the basic component of a
system for Territory Administration and
planning, developed in the framework of
the TIS project.
The gross architecture of this
macro-system is to be found in Fig.1.

+--+
I +------------------------------------+

I Territory Administration Interface 1
+--------------------------------~---+ +---+ +-----+ +-----+ +-----+
! I

S
Y USL AQL CDA
s
t 1 e +-----+ +-----+ +-----+

. . .
m +--------------------------------+

1 / K Conceptual Interface 1
1------------------------------------1

System / K

1------------------------------------1
System/K Database Interface

+------------------------------------+ +--+
Fig.1 - Architecture of a System

for
Territory Administration

The facilities offered by System/K are
presented to the user by means of the
System/K Conceptual Interface (KCI).

288

Certain specific languages and components
can be located on top of this basic inter
face, such as USL (User Specialty
Language) [14], developed at the IBM
Heidelberg Scientific Center, to offer
System/K facilities through a
quasi-natural language; AQL (APL Query
Language) [2], developed at the IBM Rome
Scientific Center, to offer System/K
facilities in the APL environment; Concep
tual Design Aid, to be developed at the
IBM Pis a Scientific center, to offer a
specific set of administration facilities,
especially for database optimization
purposes.
All these languages and components will be
presented to the final user through a
general purpose interface, based mainly on
menus. A Database Interface (KDI) is used
by System/K to map assertion values into
specific DBMS structures, files and
libraries. At the moment, KDI refers to
SQL/DS [19] and to core-image libraries,
as far as data management and program
management are concerned respectively.

3. - Basic Concepts

System/K is based on the assumption that a
significant' portion of the knowledge,
acquired on the real world, is represent
able in a computer by means of elementary
statements. These elementary facts of
knowledge can be combined, then, by means
of appropriate mechanisms to represent
more complex concepts and entities.

3.1 - Assertions

System/K is based on the assumption that
representable knowledge is made up of
elementary facts, each describing a
specific characteristic of an entity by
means of another associated entity.
Elementary facts are, then, described
according to a protostructure which
consists of three components: the
described entity, the descriptive role (or
property) and the describing entity.
Instances of this protostructure will
hereafter be called "assertions", and will
represent single elementary facts of know
ledge.
The set of all the assertions known by the
system will be called the "Knowledge
Base".

Examples of assertions are:

(1) "a character string is the name of a
person" ;

(2) "an integer is the population of a
city" ;

(3) "Mauro Maier is the name of a specific
person" ;

(4) "92000 is the population of the city
named Fidenza".

•

•

It may be noted that some assertions look
like "variables" (refer to (1), (2) in the
examples above) with a set of possible
values (domain) associated. to them, while
others look like "constants" (refer to
(3), (4) in the examples above).
Moreover, constant assertions are often
obtained selecting precise values from the
domain of the appropriate variable
assertions. Variable assertions capture
the modalities of representing analogous
elementary facts, while, constant
assertions represent specific facts exist
ing in the real world.

3.2 - Descriptive Mechanisms

Three descriptive mechanisms ("Aggregate",
"Derive", and "Collect") are defined, to
capture, represent and use knowledge in
System/K on the basis of certain abstract
concepts and relationships [5].

The "Aggregate" Mechanism

The "Aggregate" mechanism makes it possi
ble to represent an entity in terms of
other entities, each of which describes a
property of the former one. The "Aggre
gate" mechanism makes it possible to
represent an entity of the real world as a
group of assertions, which describe how
other entities concur in this represen
tation with specific descriptime roles.
The "Aggregate" mechanism groups variable
assertions to build the descriptive
formats (structures) of classes of enti
ties, and constant assertions to build the
description of specific entities (as
instances of the appropriate structures,
in general). The "Aggregate" mechanism is
related to the abstraction mechanism
"Aggregation", as defined in [17] [13] [5]
[1], and makes it possible to materialize
"part-of" relationships [5].
The groups of assertions produced by the
"Aggregate" mechanism are called "objects"
in System/K.

An example of the use of the "Aggregate"
mechanism to define a structure is:

DEFINE Person::
name:: surname: Character:

first-name: Character::
birthdate: Date:
age: Age(birthdate):
actimity: Character::

The "Derive" Mechanism

The "Derive" mechanism makes it possible
to define new structures as views or,
together with the "Aggregate" mechanism,
as "specializations" and "extensions" of
others, already defined in the knowledge

289

base. The "Derive" mechanism is related
to the abstraction mechanism "Generaliza
tion", as defined in [17] [13] [5] [1],
and makes it possible to materialize
"is-a" relationships [5].
An example of the use of the "Derive"
mechanism to define a new structure is:

DERIVE Employee FROM Person
WITH activity = 'employee'
AND::code: Integer:

job: Character:
salary: Money::

As far as the concept of "view" is
concerned, the "Derive" mechanism makes it
possible to define structures derived from
others, for the sole purpose of describing
the same object in a different way or
presenting other assertions with
different, but equivalent, describing
components.
In order to make it possible to use the
same name, views must be defined inside a
different user environment from the one
containing the originating structure.
Several views can be grouped into "con
texts" so as to· supply overall
personalized views of the knowledge base
and authorization schemes as far as access
to, and handling of, information is
concerned.

The "Collect" Mechanism

The "Collect" mechanism makes it possible
the definition of objects as sets of other
objects in the knowledge base. A
"set-object" (more simply, a "set") is
defined by a "collection criterion" which
determines whether or not an object
belongs to the set in question. An object
of the knowledge base belongs to a set if
and only if it complies with the relevant
collection criterion. Each object in a
set plays solely the role of being a
member of that set, without any other
specific meaning. In this sense, the
"Collect" mechanism is related to the
abstraction mechanism "Association" (or
"Collection"), as defined in [5] [1], and
makes it possible to materialize
"member-of" relationships [5].

In the part above on the "Aggregate" mech
anism, the concept of class was used to
refer to all the entities described in
terms of the same group of properties (the
same descriptive format). The concept of
class, in System/K, is a special case of
the more general concept of "set" as
produced by the "Collect" mechanism, the
relevant collection criterion being: "all
the Objects produced as instances of the
same structure". The following are exam
ples of sets that are not classes: an
exam~n~ng board, an agricultural
community, a football team, etc.

3.3 - Basic Structures

Two specific structures ("Assertion" and
"Set") are defined in System/K in order to
materialize the conceptual relationships
("part-of", "is-a" and "member-of") on the
basis of which information about the real
world is acquired, represented and main
tained in the "Knowledge Base".

Assertions
System/K.

are the basic elements
They are defined as follows:

DEFINE Assertion::
role: Word~
target: Class~
domain: Object~
type: Character

('owned'
'inherited'
'explicit'
'unique'
'constant'

default: Object

'derived' ,
'restricted',
'implicit',
'multiple' ,
'variable') ~

in domain~ ~

of

Many types of assertions may take place~
the meaning of all these types will be the
subject of a future document, together
with a detailed description of all the
ass ~tions in the above structure. Among
the others, the types "owned", "derived",
"inherited" and "restricted" will be
considered now.
We call "owned" those assertions owned by
the object under definition, while we call
"derived" those assertions acquired by the
object in question from a more general
object. To make an example, consider the
entity "employee" defined as a specializa
tion of "person" (an employee is a person
in any case). If the entity "person" has
the property "name" described by the
assertion "the name of a person is a char;"
acter string", also the entity "employee"
will have the property "name" described by
the assertion "the name of an employee is
a character string". In this example, the
assertion concerning the property "name"
is owned by the object "person", but is
acquired by the object "employee".
The types "inherited" and "restricted"
concern the wayan assertion is derived
from another. The example above concerns
an "inherited" assertion: the rules to
form the name of an employee are exactly
the same as those to form the name of a
person (both of them are represented by a
character string). A "restricted"
assertion is derived from an existing
assertion with an additional restriction
on the domain (the describing component).
An example of restricted assertion can be
the definition of the property "children"
of a person with the distinction between
daughters and sons. In this case three
asse %tions take place: (1) "the children
of a person are persons"~ (2) "the daugh
ters of a person are children of this
person with female sex"~ (3) "the sons of
a person are children of this person with
male sex".

290

Sets are the basic tool of System/K for
organizing knowledge. There are two main
types of sets: "Classes" and "Groups".
With class we refer to a set containing
objects generated on the basis of the same
structure, while groups are all the sets
produced by the "Collect" mechanism on the
basis ofa defined criterion (enumeration
included). Sets represent "member-of"
relationships and are defined by the
following structure:

DEFINE Set::
name: Word~
criterion: Predicate~
type: Character

('homogeneous' 'heterogeneous',
'independent' 'characteristic',
'structured' 'unstructured',
'class' 'collection' ,
'base' 'derived',
'view' 1 'specialization')~

preconditions: (Operator, Predicate)
postconditions: (Operator, Predicate) ~
domain-operators: Operator ~~

As well as for
description of
sets and of all
a set will be
document.

the assertions, a detailed
all the possible types of
the assertions describing

the subject of a future

4. - Implementative Considerations

System/K is a knowledge base management
system realized on top of SQL/DS database
management system [19]. The implementa
tion of System/K is based on:

- a certain number of categories
objects the system is expected
provide~

of
to

- a logic to navigate through the know
ledge base following the paths stated by
the descriptive mechanisms~

- a logic to automatically map the objects
of the knowledge base into relation
schemes and relations~

- a logic to modify the relation schemes
and the relevant relations (for opti
mization purposes), preserving the
congruence of the database with the
conceptual scheme.

4.1 - Categories of Objects

The objects of the knowledge base are
classified in two main categories:
"Unstructured" and "Structured".
The unstructured objects are then subdi
vided into "Elementary" and "Special",
while the structured objects are divided
into "Independent'" and "Characteristic".
For the construction of an object of any
category, the starting point is the

concept of "symbol", that is something
with no meaning in itself, except for its
"mnemonic" value for the human beings.
Symbols are represented by means of
bit-strings and are used as the target of
the knowledge mapping functions. Opera
tors are provided to compare bit-strings
and to transform bit-strings into other
bit-strings. In this sense, "symbols",
together with their operators, constitute
the "primitive objects" for knowledge
representation and usage.
The first step towards capturing the mean
ings of the real world is the definition
of elementary and special objects in terms
of symbols. These objects never exist in
their own right, but only in order to
describe other objects (for this reason,
they may have multiple occurrences in the
database, each occurrence being completely
independent from the others). Elementary
objects aim at defining classes of primi
tive concepts (like numbers, characters,
etc.), in order to establish the rules for
mapping those concepts into symbols and
for associating appropriate sets of opera
tors with those classes.
Elementary objects are described by means
of a structure consisting of a singleas
sertion (for this reason, elementary
objects, together with the special
objects, are called "unstructured") with
"symbol" as the domain. The following are
examples of elementary objects:

DEFINE ELEMENTARY Character::
val ue : Symbol ~ ~

DEFINE ELEMENTARY Real::
value: Symbol~~

DEFINE ELEMENTARY Module::
value: Symbol~~

Special objects are defined to represent
singular concepts:

UNKNOWN: to represent the fact that the
value of a property is not known at
the moment and that it may, then,
correspond to anyone of the possible
objects;

NULL/EMPTY: to represent the fact that the
value of a property does not corre
spond to any object in the knowledge
base, but to a non-existent object
which has the same properties as
"ZERO", or as the "EMPTY SET", in
relation to the "SUM" and "PRODUCT"
operators;

NON-SENSE: to represent the fact that a
property is not applicable, i.e. its
value corre$ ~nds to an object which
attributes a lack of meaning to the
assertion in which it appears as the
describing component.

Structured objects are distinguished from
the unstructured objects mainly because

291

they are not related to certain instru
ments used by human beings to acquire and
represent knowledge about the real world,
but constitute a "structured" organization
of that knowledge.
A distinction is made between
"Independent" and "Characteristic" objects
in the sense that: independent objects
are those objects existing in their own
right, while characteristic objects (as
well as elementary and special objects)
exist only in order to describe other
objects [15].
Independent objects will have one occur
rence alone in the database, and refer
ences to them are made by means of system
identifiers, as explained below.
Characteristic objects will have as many
occurrences in the database as necessary
(i.e., the same number as the number of
objects in whose description they concur).
The following are examples of character
istic objects:

DEFINE CHARACTERISTIC Name::
first name: Word;
second name: Word;
family name: Word~;

DEFINE CHARACTERISTIC Address::
street: Word~
city: Word;
ZIP-code: Integer;;

4.2 - System/K Navigation Logic

System/K, as an "object-oriented" system,
deals with objects, addressing them by
means of system identifiers which are
totally transparent for the user. In this
sense, the user refers to certain proper
ties of an entity (e.g. the personal code
af an employee) in order to find the
required object (the required employee).
From that moment on, the system uses the
appropriate identifier to present the
object to the user in its entirety (the
employee with all his/her properties).

The structure and the logic of using
system identifiers make up the "System/K
Navigation Logic" (KNL), that addresses
all the objects in the knowledge base
(assertions and sets included) by means of
bit-strings called KNLIDs. The appropri
ate KNLID is used every time a reference
is needed to any object in the knowledge
base. A KNLID can include the addressed
object or give the access path to reach
it: in the first case we talk about
"Immediate References", while in the
second case we talk about "Pointers".

Immediate references may address "Special"
or "Elementary" objects, the distinction
being made by-the target type. Pointers
refer to single objects or to a multiplic
ity of objects. A "Single" pointer makes
it possible to reach all the properties of
the object addressed. Sets are treated as

objects and their members are not select
able. A "Multiple" pointer makes it
possible to reach all the properties of
the objects addressed, but sets are treat
ed as collections of objects, thereby
allowing the selection of specific
members.

Pointers consists of a couple of system
identifiers: the "class identifier" and
the "object identifier". The first iden
tifier addresses the (base or derived)
class to which the concerned object
belongs, while the second one identifies
that object inside its "base" class (the
class origin of the IS-A hierarchy to
which the above mentioned class pertains).
The identifiers are generated by counters
(one for each class) wothout reusing
values previously assigned to deleted
objects; this is made to avoid problems
arising from not deleted references (but
invalid after the deletion of the
addressed object), A procedure of refer
ence validation and redefinition is
provided to solve the deadlock due to the
exhaustion of a counter.

Classes are considered at any rate as
objects of the knowledge base belonging to
the class "Sets", then they have the value
"zero" as class identifier and a generic.
value as object identifier (the class
"Sets" has the value "zero" both as class
identifier and as object identifier).
The object identifier of a class become
the class identifier in any pointer
addressing an object belonging to that
class.
In this way KNL makes it possible to
address any object in the knowledge base
following the same logic, independently
for the fact that it be a "Set" (group or
class) or an "Object" (in the strict sense
of member of a class), the distinction
being made by the value ("zero" vs
"not-zero") of the class identifier.

Every time a new independent object is
added to the knowledge base, an identifier
is automatically chosen and assigned to
it, in such a way that the sarne symbol
(the value of the identifier), used for an
object, cannot be assigned to another
object even if the first owner has been
cancelled from the system. This choice
prevents any possible misxse due to refer
ences not being cleared at cancel time,
but, on the other side, it implies a
finite life-cycle of the system: when
identifiers are exhausted, a check of all
the references in the system is made, in
order to clear out those which are
invalid, and a new life-cycle is set up
with usable identigiers available.

4.3 - Meta-database and Database

The term "meta-database" refers to the
structured collection of information about

292

both the abstract knowledge that comes
from a conceptual representation of the
real world (e.g. classes of objects), and
the description of the objects used by the
system itself.
The two basic structures of the system
(assertions and sets defined above) define
two classes of objects, and their
instances are a portion of the stored data
that materialize the meta-database, which
in turn "describes" the relevant concrete
objects stored in the database.
Every class of objects from the real world
is thus represented in the meta-database
by a specific set, and by as many
assertions as there are relevant proper
ties, according to the description
inserted by means of the conceptual
language.

The actual management of any kind of
stored data (meta-database included) is
performed by means of the underlying rela
tional DBMS (SQL/DS), while the nucleus of
the system takes care of any distinction
between abstract and concrete knowledge,
together with the management and control
of the conceptual aspects of the
meta-database (e.g. property inheritance
coming from IS-A relationships).

In terms of stored data, the ultimate
representation, for the meta-database too,
is by means of relations, but it is worth
while noting that these are completely
transparent to the users, who deal only
with objects and their properties: the
system uses appropriate internal identifi
ers to create and manage the relevant
references (both in the database and the
meta-database) and to return the objects
in their entirety.

The relation schemes are automatically
generated starting from the structures
defined by the user (or predefined into
the system) and can be changed by the
Knowledge Base Administrator by means of a
set of administration facilities.
As a starting point we assume that all the
objects of the sarne base class are materi
alized by means of a unique SQL/DS
relation scheme and by the relevant
relation.
Objects of the same derived class are
materialized by a unique additional
relation scheme (and by the relevant
relation), as far as additional properties
(owned assertions) are concerned. This
relation scheme is created as an extension
of the relation scheme of the class from
which the concerned class is derived.

A relation scheme R for System/K consists
of an attribute for the system identifier
and of as many attributes as are necessary
to represent the owned assertions in the
structure generating the relevant class.

A relation scheme R,
owned assertions of a
decomposed vertically

materializing
structure, can
into a set

the
be
of

relation schemes S = R1, R2, .,. , Rn ,
on the assumption that each scheme Ri of S
is a projection of R, necessarily contain
ing the attribute for the KNLID.

Horizontal decomposition can be achieved
by decomposing a class, at the conceptual
level, into a number of derived classes,
according to distinct selection criteria,
and presenting the original class as the
union of the new ones. The user of the
knowledge base may ignore this decompos
ition, even if it is represented at the
conceptual level.

Horizontal and vertical decompositions are
reversible, and, then, original relations
can be reconstructed.
Moreover, vertical compositions can be
operated, cOmbining several relation
schemes into one whose attributes are the
union of the attributes of the combined
schemes.
The relation produced will have
"NON-SENSE" values in those columns mate
rializing properties that are "inapplica
ble" for the corresponding object. On
this basis, owned assertirns of a derived
class can be materialized by adding new
attributes to the relation scheme owned by
the originating class.

There are certain exceptions to the crite
ria for automatically generating relation
schemes from th (conceptual definitions.
These exceptions are related to the char
acteristic objects, which exist only in
order to describe other objects and, then,
may have multiple occurrences in the data
base, and to the multimalued assertions,
which originate repeating groups of
values. These exceptions will be analyzed
in a technical note (to appear) specific
on the implementation of the database
interface.

5. - Conclusions

System/K has been presented as a knowledge
base management system running on top of a

'relational DBMS (SQL/DS [19]) • Its
purpose is to offer a set of facilities to
the user for knowledge representation and
use at the conceptual level. This means
that the user of System/K is not required
to know the structures into which data are
logically and physically organized by the
DBMS, but is able to dedicate his/her
efforts to the conceptual description of
the real world of interest.

The user may then define conceptual
relationships between the entities of the
real world to capture more semantics than
with the traditional DB systems.

The conceptual description produced can be
appropriately formalized to represent a

293

basic instrument for integrating knowledge
coming from different applicative sectors.
Such a description has a great adaptabili
ty to changes, being highly independent of
the specific applicative sectors and of
the database into which it is automat
ically mapped.

Moreover, it seems less difficult and more
systematic to approach quasi-natural
interfaces (languages) on top of a concep
tual representation of knowledge [12],
rather than traditional data structures
(hierarchic, network or relational models
[9] [18]). Natural languages are one of
the most important requirements to gain
the favour of casual users (especially in
the public administration environment).

On the side of the DB systems, the avail
ability of a knowledge base management
system will offer a great clearness of
roles. The existence of a system offering
appropriate facilities for representing
complex relationships at a higher level,
with respect to data, will better focus
the requirements to be satisfied by the
database system: flexibility, logic and
performance. In this sense, the relation
al approach seems to be the more quoted.
Its flexibility (ease of use of the
relation schemes) and logic (the power of
the relational algebra) are getting appre
ciated more and more.

REFERENCES

[1] ALBANO A., OCCHIUTO E., ORSINI R.,
"GALILEO: a conceptual language for
database applications", Tech. Rep.
RT-8-ISIPI-1, Computer Science
Dept., University of Pisa, 1981

[2] ANTONACCI F.,BARTOLO L.,DELL'ORCO p.,
SPADAVECCHIA V., "AQL: a relational
DBMS and its geographic
applications", Lecture Notes in
Computer Science 81, Data Base Tech
niques for Pictorial Applications,
Springer Verlag, 1980

[3] BORGIDA A., MYLOPOULOS J., "Semantic
models in databases: some formal
aspects", Advanced Seminar on
Theoretical Issues in Data Bases,
Cosenza, Italy, Sept. 1981

[4] BRACHMAN R.,SMITH B., (Eds), "Special
issue on Knowledge Representation",
SIGART, No.70, Feb. 1980

[5] BRODIE M.L., "On modeling behaviour
al semantics of databases",
proceedings of the Seventh Interna
tional Conference on Very Large Data
Bases, Cannes, Sept. 1981

[6] BRODIE M.L., ZILLES S.N., (Eds),
"Proceedings of Workshop on data
abstraction, databases and conceptu
al modeling", SIGART/SIGMOD/SIGPLAN
Special Issue, 1981

[7] CASAZZA I., CIRILLI C., MAIER M.,
"Conceptual modeling in territory
management: a proposal for a seman
tic subsystem", IBM Tech. Rep.,
G513-3590, Pisa, 1982

[8] CODD E.F., "Extending the relational
model to capture more meaning", ACM
Transaction on Database Systems,
Vol. 4, No.4, December 1979

[9] DATE C.J., "An introduction to data
base systems", Addison-Wesley.Publ.,
1975

[10] HMlMER M., MCLEOD D., "The Semantic
Data Model: a modeling mechanism for
database applications", SIGMOD
Conf., Austin 1978

[11] KILOV K. I.,POPOVA I. A.,
"Meta-database architecture for
Relational DBMS", SIGMOD RECORD,
Vol.12,No.1, October 1981

[12] MYLOPOULOS J. et al., "TORUS: a step
towards bridging the gap between
data bases and the casual user",
Information Systems, Vol.2, N.2,
1976

294

[13] MYLOPOULOS J., "An overview of know
ledge representation", Workshop on
Data Abstraction, Pingree Park,
Colorado, 1980

[14] OTT N., ZOEPPRITZ M., "USL: an
experimental information system
bas·ed on natural language", in
Natural Communication with
Computers, Carl Hanser Verlag, 1979

[1 5] SCHMID H. A., SWENSON J. R., "On the
semantic of the relational model",
SI.GMOD Conf., San Jose, 1975

[16] SCHMID H.A., "An analysis of some
constructs for conceptual model",
IFIP Conf., Nice 1977

[17] SMITH J .M., SMITH D.C. p., "Database
abstractions: aggregation and gener
alization", ACM Trans., 1977

[18] ULLMAN J.D., "Principles of database
systems", Computer Science Press,
Potomac, Md., 1980

[19] IBM Corp., "SQL/Data System: General
Information", GH24-5012, 1981

[20] BUBENKO J.A., "Information modeling
in the context of system
development", IFIP Congress, Tokio,
1980

•
7. Data Compression. Storage. and File Organization

Computer-Independent Data Compression for Large Statistical Databases
Fredric Gey, John L M £arthy, Deane Merrill, Harvard Holmes

296

Index Coding: A Compression Technique for Large Statistical Databases 306
D.S. Batory

An Overview of CANTOR - A New System for Data Analysis 315
Ilkka Karasolo, Per Svensson

Statistical Database Research Project in Japan and the CAS SDB Project 325
Kohji Shibano, Hideto Sato

A Strategy for Implementing a Computer Efficient Database Management
System - Preliminary Research Report 331

John Dixie, Philip Wake

Utilization of Character Reference Locality for Efficient Storage of Data Base 338
M.A. Bassiouni, K.A. H azboun

See Also .•••

Statistical Data Management Research at Lawrence Berkeley Laboratory 273

295

LBL-15824

Computer-Independent Data Compression for Large Statistical Databases

Fredric Gey. John L. McCarthy. Deane Merrill. Harvard Holmes

Computer Science and Mathematics Department
Lawrence Berkeley Laboratory

Berkeley. CA 94720

Abstract

This paper describes a dictionary-driven.
hardware-independent data compression
scheme for archival storage of large statisti
cal databases. It discusses motivations for
this development. storage format require
ments. implementation details. access con
siderations. and possible extensions of the
technique. It also analyzes the degree of
compression achieved for different types of
statistical data files.

1. Introduction and Motivation

SEEDIS is a research and development project
on Social, Economic, Environmental. and
Demographic Information Systems [MCCA82C],
[GEY 81]' The project was initiated in the
early 1970's to provide quick, low cost access
to databases including the 1-9"ffl-U. S. -C-ensus --
1.6 billion individual data values for some
400,000 geographic areas. Over the past
decade, SEEDIS has evolved from a batch
processing system on Control Data Corpora
tion (CDC) computers to an interactive system
on a distributed network of Digital Equipment
Corporation VAX. 111780 computers running
the DECNET communic~tion system.

By 1977, SEEDIS databases contained nearly
25 billion characters of information, primarily
1970 census data for numerous geographic
summary levels, including states, counties,
census tracts, enumeration districts, and oth
ers. Data were stored in a variety of physical
formats, usually a different format for each
major data set. Some had been converted to
binary representation on the CDC 6000-7000
computers at Lawrence Berkeley Laboratory
(LBL). Others had been converted to the CDC
display code character set (a 64 character
alphabet, with ten six-bit characters per com-

This work was supported by the Office of Health
and Environmental Research and the Office of Basic
Energy Sciences of the U.S. Department of Energy
under Contract DE-AC03-763F00098; and the Depart
-ffi€fit~ ~, ~ymeffi ~ 'r-r.ffiffifig Mmifffir
tration under Interagency Agreement No. 06-2063-
36.

296

puter word).

Data were stored, for the most part; on an
unusual mass storage device, the IBM 1360
photodigital chip store [GEY 75]. In 1977, IBM
announced it would no longer maintain this
storage device after October 1, 1979, and LBL
undertook to search for a replacement. The
LBL Computer Center eventually settled on a
Cal Comp automatic tape library (ATL), with a
3300 tape reel capacity, robot-assisted tape
retrieval, and mounting without operator
intervention.

The SEEDIS project was faced with re
archiving its entire database on the new mass
storage device~ The actual conversion effort
consumed 2.5 staff years over a period of 20
months. Given the magnitude of this conver
sion effort for existing archived data, the pro
ject -deciEled -t-<) -develop ~ st~-<l -ar-chWal
format in order to minimize the cost of
current and future reconversions which might
be necessary:

2. Storage Format Requirements

As the project reviewed its long-term archival
storage requirements, several common
characteristics of statistical databases helped
narrow the storage format design goals. First,
SEEDIS databases were archival rather than
transactional; updates were infrequent and
limited in scope. Second, large new databases
were continually being added, thus requiring
ever~increasing amounts of storage space.
Given these basic parameters, several basic
design goals were developed, as follows:

Computer-independent, binary physical
storage format for multiple data types

• Dictionary-driven data definition files for
data specification and access

Data compression for efficient storage,
retrieval. and transmission

2.1. Computer-lndependent Data Formals

For large archival databases such as those in
SEEDIS, the data may have a much longer life
-than. the bar.dwar..e .and sofi.:wa.r..e .used .to.stor.e
and manage them. Si.nce conversi.on i.s an
expensive and time-consuming process, data
need to be stored in formats that do not have

to be changed as hardware and software
change over time.

Unfortunately, most simple standard formats
(e.g., fixed length ASCII records) are too
inefficient for large numeric databases. Fixed
length records require more storage space,
more disk accesses for retrieval, and more
overhead for data transmission. Furthermore,
numeric data represented as characters must
be converted to binary before t.he data can be
used in calculations.

In order to provide a format that was simple,
efficient, and computer-independent, SEEDIS
staff developed a binary storage scheme based
on a "virtual machine" for portability of data
[HEAL 78]. The commonality of characteristics
whi<.:h <.:onstitute this "virtual machine" are as
follows:

• storage is divided into 8-bit byte segments

• character (or string) data are stored with
ASCII encoding

2.2. Dictionary-Driven Data Definition

Machine-readable data require data
specifications that retrieval and applications
programs can use. They also require code
books that human beings can read. The
S.F.EDIS project decided to meet both these
requirements simultaneously, by developing a
data definition language that could be used to
describe both compressed data files and their
uncompressed, fixed-length ASCII equivalents.

The basic approach is similar to that of data
dictionaries in other database systems and
statistical packages. Each self-describing
dataset consists of two logical components -- a
data definition fHe (DDF) and a data file (OF).
The logical data view is that of a table (or fiat
file) with a fixed number of rows and columns.
Data are arranged so each row of the table
contains all the attributes (data elements or
columns) of a named entity (e.g., Alameda
County), as well as a row label or stub plus any
keys necessary for data access and matching.
The number of rows is equal to the number of
entities in the data file, and the number of
columns is eq)lal to the number of data ele
ments in each row,

The basic structure of meta-data elements in
the DDF is:

<keyword> = <value(s»

with one "keyword=value" pair per unit record
(line). Keywords occurring before the fust
data element definition have global effect.
That is, they hold for aU data elements, unless
specifically overridden by keyword definitions

297

within the local environment of a data ele
ment definition.

SEEDIS COMPRESSED files, which will be
described in Section 3, separate data aI].d
description into two distinct physical files.
The data file (DF) is in a binary format, while
the data definition file (DDF) is in human
readable ASCII representation. One DDF can
describe an unlimited number of compressed
data files.

Another similar data format known as CODATA
(COmmon DATA Format) was also developed by
SEEDlS staff [MERR81], [MERR82]. CODATA
files contain both data definition and an
uncompressed, fixed-length, ASCII representa
tion of the data in a single physical file These
self-describing CODATA files are used to com
municate between various independent
modules within the SEEmS system (retrieval,
analysis, data entry, graphic display, data
export). A software library is available to
translate COMPRESSED datasets to CODATA
files and vice versa, as well as to extract par
ticular pieces of meta-data information from
data definition files,

2.3. Data Compression

Since the volume of SEEDIS databases was
quite large (over 25 billion characters of infor
mation in 1977 and growing), it was clear that
compression techniques were required to
minimize costs of data storage, retrieval, and
transmission. Initial experimentation
revolved around a modified form of packed
decimal format, a data compression technique
commonly used by COBOL programmers. This
technique, however, was soon rejected
because it would save only a fixed amount of
space (apprOximately 50%) for each numeric
data item.

Drawing on previous experience with the data,
project staff surmised that more substantial
compression could be achieved by exploiting
several characteristics common to many of
the databases in SEEmS:

• although fixed data fields on source tapes
allow enough space for the maximum possible
values, most data values require only one or
two digits

• many values (particularly zero and missing
data codes) are repeated in sequence

The project staff therefore undertook to
develop a format which takes maximum
advantage of these characteristics, and yet
retains the basic objective of hardware
independence. The details of this format are
described in the following section.

3. Compressed Format Specifications

The SEEDIS. compressed format which was
developed to satisfy the preceding require
ments is basically a binary coding scheme
with variable length records. Each data value
is stored as a variable-length sequence of 8-bit
bytes, preceded by an initial byte containing a
4-bit type code and a 4-bit length count. The
formal currently provides for three basic
types of data: integers, floating point
numbers, and character strings. Specific for
mats for each are described in the subsec
tions below.

3.1. Integer and Fixed Decimal Numbers

Both integers and fixed point decimal data
values are handled by a single compressed
data storage format. The only difference is in
the data definition file, where the "type" for a
data element (field) may be defined as either
decimal or integer, and a scale factor may be
included for decimal data. If a scale factor is
indicated, that constant value is multiplied by
the stored data value at retrieval time. Scale
factors may have any positive or negative
value; they may be used to convert units (for
example feet to meters) at the time data are
retrieved from archived files.

For integer and fixed point decimal data
values (type = i), the first four bits of lhe ini
tial byte contain a code indicating type "i,"
and the second four bits specify a "length
count," the number of bytes required to store
the integer in its signed binary representa
tion. The initial byte is followed by the "length
count" number of bytes containing t.he signed
binary represenlation of the integer data
value. The integer value 0 (zero) is stored in a
special way in the initial byte itself, with a
"length count" of zero. Exhibit 1 presents a
schematic representation of this compression
scheme for integers and values of zero, In
this schemat.ic represent.ation, the initial byte
is shown as byte position "I", while the vari
able number of succeeding bytes are labeled
"1" through 'IN". Thus the tolal number of
bytes required for a non zero integer data
value is N + 1, while a zero value requires only
a single byte of storage.

298

Exhibit 1: Integer Compression

II 1 2 3 ... NI
--+--+--+- -+ ... +--+
iNI integer value I
--+- -+- -+- -+ ... +--+

byte position

contents

I I zero value requires only initial byte
--+
iO I zero stored in length cou.nt
--+

Since many computers cannot handle integers
larger than can be stored in 32 bits, integers
larger than that are automatically stored in
ASCII character string form. The DDF plus the
access software can automatically translate
such data to floating point values on retrieval.

3.2. Floating Point Decimal Numbers

Floating poinl numbers are stored as two suc
cessive integers representing the exponent
and mantissa. The first four bits of the initial
byte of the exponent contain a code type indi
cating "e," and the second four bits contain a
"length count," the number of bytes required
to store the exponent in its signed integer
binary representation. The initial exponent
byte is followed by "length count" bytes' con
taining the value of the exponent. These are
followed by the initial byte of the mantissa,
with four bits indicating type "m" and four
bits for the "length count" of the mantissa.
Finally, there are the "length count" bytes
containing the value of the mantissa itself.
Exhibit 2 summarizes the compression
scheme for floating point numbers in
schematic form.

Exhibit 2: Floating Point Compression

I 1 ... PI I 1 2... QI byte position
--+- -+ ... +- -+- -+- -+- -+ ... +--+
ePl exponent IIrQI rmntissa I contents
- -+- -+ ... +--+--+--+- -+ ... +--+

As the schematic representation shows, the
amount of storage required for floating point
numbers is 2 + P + Q, where P and Q are the
number of bytes required to store the
integers representing the exponent and
mantissa, respectively. The values of P and Q,
in turn, are N + 1 and M + 1, respectively,
where N -is the -the number -of byt-es -required
to represent the signed integer value of the
exponent, and M is the number of bytes
required to represent the signed integer value

of the mantissa.

This compressed format for floating point
numbers is, in general, less efficient than
standard 32-bit binary representations. It
requires a minimum of four bytes (32 bits),
and frequently may require five or six bytes.
On the other hand, it provides a single
representation for decimal numbers of virtu
ally unlimited precision. Because of different
formats and precision limits for single and
double precision on 32, 60, and 64 bit
machines, and because most S.EEDIS data are
integers or fixed decimal numbers, the staff
decided to trade compression efficiency for
computer hardware independence. Depending
upon the data and applications, if large
amounts of floating point data became the
rule rather than the exception, it might be
desirable to add more data types to achieve
greater compression at the expense of preci
sion.

Scale factors may be used with the floating
point decimal format just as with the fixed
decimal format.

3.3. Character Strings

For character string data values (type = a),
the first four bits of the initial byte contain a
code indicating type "a," and the second four
bits contain a "length count," the number of
bytes required lo store the binary integer
representation of the length of the character
string. The initial byte is followed by "length
count" bytes containing a binary integer, "S,"
and then S bytes containing an ASCII
representation of the character string itself.
Character strings are further compressed by
removing trailing blanks.

For example, if we wish to store a 30-byte
character field which contains 6 trailing
blanks, the initial byte will contain a code for
type "a" and a value of 1, indicating that the
length of the character string will be stored in
the next 1 byte. The second byte will contain
a binary integer representation of the value
"24," and that will be followed by 24 bytes of
the actual character string, represented in
ASCII. Exhibit 3 shows a schematic represen
tation of the SEEDIS compressed format for
character strings.

299

Exhibit 3: Character String Compression

I I 1 2... RI 1 2 ... S I byte position
- -+- -+- -+ ... +- -+- -+- -+ ... +--+
aRl integer "S" I string value I contents
- -+- -+- -+ ... +- -+--+- -+ ... +--+

3.4. Repetition of Data Values

The' SEEDIS compression scheme is rounded
out by a fourth data "type" which specifies a
repeat count (type = r) of the data value
which follows it. Repetition of data values is
an extremely important consideration in sta
tistical summary data, which often consist of
multi-dimensional cross tabulations of micro
data files. For example, 1970 Fourth Count
census data for each geographic area consist
of 1178 data items for each of five race
categories (total. white, black, hispanic-origin,
other). For a large number of geographic
areas, all data for the latter three race groups
are zero or suppressed. Thus, for those three
racial categories, groups of 1178 data values
can be replaced by six bytes of actual storage,
assuming the appropriate arrangement has
been made for physical contiguity of the data
(which sometimes requires transposition of
the data matrix). Exhibit 4 presents a
schematic representation of the repeat data
type, using zero as an example of the
repeated value. The first four bits of the ini
tial byte contain a code indicating typle "r,"
and the second four bits contain a "length
count," the number of bytes required to store
the binary integer representation of the
repeat count W (the number of times the data
value is repeated).

Exhibit 4: Repetitive Value Compression

I I 1 2 3... WI I I byte position
- -+- -+- -+- -+. .. +- -+--+
!WI repeat count I iOl contents
- -+- -+- -+- -+ ... +- -+--+

Since repeated values of zeros and missing
data codes occur frequently in scientific and
statistical databases, this type of compression
is particularly effective. The repeated value
need not be zero, of course. It can be any of
the currently recognized data types -- integer,
floating point, or character string.

4. A Simple Example
Using the basic building blocks outlined
above, we illustrate in this section a brief
example using fragments of the data
definition file and a single abbreviated data
record from the 1980 Census Summary Tape
File 1 (STF1).

Exhibit 5 shows a slightly simplified version of
the global portion of a data definition file plus
definitions for several individual tabulations.
This data definition file contains information
for both the compressed data file and its fixed
field ASCII equivalent. The various meta-data
elements appearing in Exhibit 5 are fully
defined in [MCCA82A]. The meta-data element
"POSITION" gives the sequential field position
of the data element within each compressed
data record, while the corresponding lISTARTlI

and "LENGTH" meta-data elements give the
physical position and field length in the
corresponding fixed-length ASCII CODATA file.

Exhibit 5: Example Data Definition File

])\~ = 1980 Census STFl Fragrent
NIE = 17
m'AS = 4
mIIiD..llNi-1H = 40
TYPE = A
IE = FIPS. STATE

STARr = 1
I.ENTIH = 2
FOSITICN = 1

IE = FIPS. CIINIY80
STARr = 4
rENrlR = 3
fDSITHN = 2

IE = SIUB. Gill
STARr = 8
LENrlH,= 33
FOSITICN = 3

IE = TAm(1)
TYFE = I
STARr = 42
LENrlH = 9
FOSITICN = 4
UNIVERSE = lOO-Percent Count of Persons
HEIDR =#100-Percent Count of PersonS#

IE = TAB74
TYfE = D
STARr = 52
LENrlH = 9
RlSITICN = 5
SCALE = 0.001
lNIVER:E = Fani lies
.HFAJ:}R =#M'rl i an F.a:ni Iy .lncm:E In 1fJ79II
fiE'A['ER =!K in thousands of dollars)#

/

300

IE = TAB12
STIU:IlRE = NBAY
DMN3ICN = RACE(12)
'IYFE = I
STARr = 61
Ifl\GIH = 10
REITICN = 6
lNIVER)E = Persons

C'ATErXRf...5EI' = RACE(12)
C'A'IEIIRY = Whi te
CA.'IEIl.EY = Black
CA'IEIIRY = !trericanJIrlian
CA'IEIIRY = Eskirrn
CA'IEIIRY = Aleut
CA1EURY = Japanese
C'A'IEIIRY = Chinese
CA'IF.IIRY = Fi I ipino
CA'I'Er.IRY = KOrean
CA'IEIIRY = AsianJndian
C'A'IEIIRY = Vi etmrrese
CA.'IEIl.EY = tbwai ian

EN) illF

There are 17 data elements in Exhibit 5,
namely FIPS.STATE, FIPS.COUNTYBO,
TAB74, and the 12 elements of TAB 12. Note
that the last DE entry, TAB 12, is a vector (or
one-dimensional matrix) rather than a simple
single-valued field. This fact is denoted by the
meta-data information "STRUCTURE =
ARRAY." Information about the 12 components
of TAB12 is located in the category set
"RACE(12)" named in the "DIMENSION" state
ment. This notation considerably simplifies
specification of multi-dimensional arrays,
which frequently occur in scientific and sta
tistical data. It also saves space and process
ing time in handling large data definition files.
For such array data elements, the "POSITION"
given is the position of the first cell in the
array. Each element of an array is stored
exactly as a simple data element. Retrieval
software computes the linearized position
number of other cells from a standard array
notation such as "TAB51(3, 12,4)". Similarly,
the "START" for such data elements gives the
starting location of the first cell, while
"LENGTH" gives the length of each successive
cell in the array.

Exhibit 6 shows a fixed format ASCII represen
tation of a single data record as defined by
the DDF in exhibit 5. As implied by the
"RECORD...LENGTH" global meta-data item of
the DDF, each logical record is comprised of
five 40-character physical records (lines), with
20 characters of padding at the end of the last
line. This is the type of format that consti
tutes the data portion of a CODATA file, and it
typifies formats used for data export by many

•

agencies such as the U.S. Census Bureau.
Note how fields are allocated to accommodate
the largest possible value that might occur in
that field -- even though most of the actual
values are much smaller. The indication
ISCALE=O.OOl" under IDE=TAB74" specifices
that the stored value (17240), when multiplied
by the scale factor (0.001) will yield the
median family income in thousands of dollars
(17.240).

Exhibit 6: Flxed-length ASCII Data Record

byte position in physical record
10 20 30 40

++++ 1 ++++ 1 ++++1 ++++ 1 ++++ 1 ++++1 ++++ 1 ++++ 1
06 003 CA ALPINE

1097 17240 912 0
169 0 0 0

o 0 0 0
o 5

Exhibit 7 presents a schematic representation
of the compressed form of the data record
from E:xhibit 6. It shows how 200 bytes of ori
ginal data compresses to 38 bytes of output
data, or 19 percent of the original record size.

Exhibit 7: Compressed Data Record

byte position
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ID

--+- -+--+--+- -+--+--+--+--+--+- -+--+--+- -+--+--+- -+--+--+--+
a1206a13003a19CA ALPINE
--+

byte position (continued)
m~~a~~~~~~~~~M~~~~

~-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
i2 1007 i2 l7:?AO i2 912 iO i2 100 rl 8 iO il 5
--+- -+--+--+- -+--+--+- -+--+--+- -+--+--+- -+--+--+- -+--+

A close comparison of Exhibits 6 and 7 shows
that space savings occur in four major ways:
(1) truncation of the area name by removing
trailing blanks; (2) binary encoding of integer
and fixed point decimal data (e.g. one byte will
now hold numbers from -127 to +127, two
bytes will now hold numbers from -32,767 to
+32,767, and these can be scaled by an arbi
trary constant in the data definition file for
decimal fields); (3) run-length encoding of
repeated values; and (4) elimination of pad
ding at the end of the last physical record.
The largest single savings comes from the
repetition of 8 successive zeros, which

301

originally occupied 80 bytes, but takes only
three bytes in compressed form (byte posi
tions 34-36).

The next section provides more extensive
empirical data about the degree of compres
sion achieved over large numbers of records
for some actual SEEDIS datasets.

5. Analysis of Compression in SEFDIS

Previous sections have described SEEDIS
compression methods and an example of how
these compression techniques work for a sin
gle data record. This section analyzes the
results of compression on entire data files and
data bases. In general, data from public agen
cies such as the U. S. Census Bureau are for
matted into fixed-size records for each file,
regardless of the contents of the data. Thus,
for each data base, a single constant number
of bytes is associated with each record as
received by LBL. Of interest, therefore, are:

• The distribution of sizes of output records
after compression

• The ratio of compressed record size to origi
nal record size for different databases

• The cumulative percentage of all records in
a data base whose compressed size is less
than some percent of the original size

• Whether compression correlates with any
particular data item contained within the data
record

Exhibit 8 shows the distribution of records for
a single data base (1980 Census Summary
Tape File 3 (STF3) , county records) whose
compressed size is expressed as a percentage
of the original size. For this database (and
level of geography) the median compressed
record was 25 percent of the size of the origi
nal record.

Exhibit 9 summarizes these distributions over
several data bases, showing the cumulative
percentage of records with compressed size
less than some fraction of original size. The
best compression is achieved on the 1980
Census Equal Employment Opportunity (EEO)
data file, which contains counts of labor force
for 514 detailed occupational categories. The
high degree of compression is due to the large
number of repeating data values of zero in
this file. The worst cases are the air quality
and mortality datasets, which contain a high
proportion of floating point data.

Finally, we conjectured that the compression
might be related to the total population of the
geographic area corresponding to the data
record, since the proportion 'of data with
values of zero or suppression (missing data)

codes increases for smaller areas. Exhibit 10
is a scatter plot of compressed record size
versus the logarithm (base 10) of 1980 total
population for the STF3 data base.

A straight-line fit is a remarkably good one,
which is especially significant because it sug
gests that one can sometimes make quantita
tive estimates of storage requirements for
each record or set of records based upon a
single value conlained within the dala.

Our quantitative exploration of compression
results is continuing and we hope to use these
results in developing further analytic models
of compression.

Exhibit 8: Size of Compressed Records

Exhibit 9: Compression in Selected Data Files

C\UILulat've Percent 0 Count Level Records
Fraction of

Onl!inal EEO STFS COB STFI ~ MOR
a to 0% 06 0 0 0 -a 0
o to 10% 93 0 0 0 0 0
10to 10% .98 0 0 0 0 0
10 to 2O? 100 3 1 0 0 0
20 to 25? ~OO ~ 5 -.l 2 0
25to 3D? 100 92 94 18 7 0
30 to 35? 100 100 100 87 20 1
30 to 4O? 100 100 100 100 35 3
40 to 45? 100 100 100 100 46 8

35 to 00? 100 100 100 100 59 15
00 to 55? 100 100 100 100 73 28
00 to 60? 100 100 100 100 81 49
60 to 60? 100 100 100 100 88 64
65to 70? 100 100 100 100 92 75
70 to 75? 100 100 100 100 95 85
75 to BO? 100 100 100 100 96 92
BO to B5? 100 100 100 100 99 97
65 to 90? 100 100 100 100 99 100
90 to 95? 100 100 100 100 100 100
95 to 100? 100 100 100 100 100 100
Mean? 5 25 27 32 47 61

EEO - 1960 Census Equal Employment Opportunity
STF3 -.19BO Census Summary Tape File 3
CDB - i94D-1977 City County Data Book
STF1 - 1980 Census Swrunary Tape File 1
AQ - 1974-1976 Air Quality
MOR - 1966-1972 Age-Adjusted Mortality

Exhibit 10: Compressed Size ft. Population

...... r 0' 8u\H
oa "". STr3 Coopro

Rocorel

1.8

+

2.' 3.' 4.8 s .• 6.'
log (baa. 181 0' 19S8 \0\.1 popula"10ft

302

+
+

7.'

6. Access Methods for Compressed Data

In the simplest case, a SEEDIS compressed
dataset consists of four physical files. A
dataset known as MYFILE, for example, might
consist of files having the following names:

MYFILE.DAT: Compressed binary data file (DF)

MYFILE.NDX: Index file containing pointers to
individual records (entities) in MYFILE.DAT

MYFILE.DDF: ASCII data definition file (DDF)
describing individual named attributes (data
elements) in the DF

MYFILE.DDX: Index file containing pointers
(sequence numbers) corresponding to each
data elemenl in lhe DDF.

The multi-file scheme permits considerable
flexibility in the way data are stored and
accessed. For example, large county-level
data sets are normally stored with one DAT
and its corresponding NDX file for each state,
e.g.:

S01.DAT: Alabama DF
S01.NDX: Index for S01.DAT
S02.DAT: Alaska DF
S02.NDX: Index for S02.DAT
MYFILE.DDF: Same as before
MYFILE.DDX: Same as before

Corrections, if necessary, can be easily made
to one state at a time. Furthermore, not all
states need to be stored on the same disk
pack or even on the same node (host com
puter). Aulomatic schemes in SEEDIS
[MERR83] provide for selective caching of only
those files actually required by the user.
Because the meta-data (DDF and DnX) are
physically separate from the data files (DAT
and NDX), meta-data elements (for example
data element labels or scale factors) can be
conveniently changed without the need to
recompress the data.

6.1. Record Access Mechanisms

As stated above, the NDX file provides pointers
to the individual records (entities) of the
compressed SEEDIS data file (DAT file). In the
example above, the file SO l.NDX is itself a sim
ple CODATA file containing four dala elements
for each county in Alabama: the FIPS (Federal
Information Processing System) state code,
the FIPS county code, the size in bytes of the
compressed record for that county, and the
physical block location of the start of that
county in the file SO 1. DAT. Now suppose that
at some future date the F'IPS county number
ing scheme for Alabama is changed to

303

accommodate the splitting of a county or the
combination of two present counties. Without
modifying the file S01.DAT, one can easily
modify S01.NDX so that the existing data can
be retrieved via the revised county codes.
New county codes not corresponding to exist
ing data are simply omitted from the new NDX
file, resulting in a missing data indication
when data are extracted. Because the NDX
files are much smaller than the compressed
DAT files, multiple sets of NDX files
corresponding to various county definitions
can easily be created, all pointing into a single
set of large DAT files. Entities (counties) not
in the original DAT files can be left missing, or
can be created by aggregation or disaggrega
tion and appended to the original DAT file.
Each set of NDX files provides pointers to a
complete and non-oyerJapping set of entities,
for example 1960 FIPS counties, 1980 FIPS
counties, etc., with only a small increase in
stored data.

6.2. Intra-Record Access

When retrieving a particular data value from a
particular record, the access software must
search from the beginning of the record to
the particular data value. Thus, although
some time can be saved by computing intra
record positions over repeated data items,
access time is generally linear, with the last
data item in a record requiring the maximum
access time. This has not posed severe prob
lems for SEEDIS data records containing up to
1000 data it.ems but it could for much larger
data records. The 1980 Census EEO (Equal
Employment Opportunity) database, for
example, contains over 12,000 items per
record. Access time for some data elements
will be slow if the current scheme is nol
enhanced.

Recognition of t.he limitations of linear access
has provided impetus for additional research
on compression methods. This research has
lead to a variety of general results [EGGE 81]'
In the modified approach, which has yet to be
incorporated in SEEDIS, all counts are
removed from the data file and stored in a
separate header. The counts are cumulative,
allowing the header to be searched in loga
rithmic time. The header is used to form the
base level of a B-tree index into the data
record, which further improves the access
time by increasing the rate of the logarithmic
search.

An even simpler scheme involving less storage
overhead would be to include in the NDX file
not only the starting block location of data
element 1 in the DAT file record, but also (for

example) the starting block location of data
element number 1001, data elemeJ).t number
2001, etc. Considerable time would be saved
in retrieving from large files like the 1980
Census EEO file.

6.3. Other Access Considerations

A minor problem which arose during software
implementation 'V!as the fact that most
machines store data in contiguous byte
sequential format, but DEC equipment (PDP-
11 and VAX) stores numeric data in inverted
order within each word of the machine. This
fact has been noted in articles on portable
software [NEAL 78]. Thus the VAX implemen
tation of the access software had to be slightly
different from what it might be on IBM or
other hardware.

One other compromise to portability was
made within the data records themselves. In
order to efficiently use the FORTRAN language
for accessing variable-length data records ·on
CDC machines, the beginning of each record
contains the CDC word count as well as the
total length of the record in bytes.

7. Current and Future Developments

During the past two years a major develop
ment effor~ in SEEDIS has been the design of
extensions to meta-data structures for more
efficient processing of large summary data
bases lMCCA82A, MCCA82B]. These enhance~
ments include:

• matrix data elements

• category set specifications

• comprehensive handling of missing data

We are currently designing an enhanced
compressed interchange file wherein meta
data as well as data will be stored in the same
binary compressed format. Compressed files
will replace CODATA files as the standard for
mat for internal interchange of data between
SEEDIS modules, in order to provide for more
efficient data transfer and conversion. This
will be an upwardly compatible enhancement
to the original compressed data format,
adding new compressed data types for
specification of arrays, recursive hierarchical
structures, multiply occurring data values,
multi-valued missing data codes, etc.

8. Conclusions

With minor modifications and compromises,
the computer-independent compressed data
storage format described above has remained
the SEEDIS standard format for six years. We

are currently adding the 1980 Census to the
archive, bringing it from 3 to 6 billion data
values within a three-year period. We are able
to access and decompress on VAX computers
data which were archived on tape by CDC com
puters in 1977.

These compression methods have been very
successful from the standpoint of reduction in

. storage space. Most SEEDIS files occupy from
twenty to fifty percent of their original space.
Compression of integer and fixed decimal
fields to variable-length sequences of bytes,
and run-length encoding of repeated values,
have accounted for the majority of space
saved.

Although the methods currently used to
access SEEDIS· compressed data files have
been adequate for retrieval of data for
specified geographic areas, they are not
efficient for queries based on data values.
Analysis indicates that changes in access
methods as well as changes in the compres
sion scheme itself could considerably improve
performance for such queries.

Work is currently under way to implement
additional compression techniques, different
access methods, and compressed data types
to accommodate meta-data (e.g., data
description files) as well as data. The SEEDIS
project plans to use the compressed data for
mat as a medium for internal exchange as well
as for archival storage, in order to improve
data transmission efficiency between applica-
tion modules. .

9. Acknowledgments

Carl Quong, head of the LBL Computer Science
and Mathematics Department, is responsible
for the research environment in which this
work was conducted. Others who made these
results possible include Harvard Holmes, who
has directed the SEEDIS project and guided
design of the compression methodology, and
Bob Healey, who contributed to the design and
implemented the initial versions of compres
sion. Wayne Graves made substantial contri
butions to improving the efficiency of the
compression programs, and provided ideas for
intra-record access enhancements.

10. References

EGGE 81 Eggers, S., aiken, F., and Shoshani,
A., "A Compression Technique for Large Sta
tistical Databases," Proceedings of the
Seventh Interrw,tional Conference on very
14rge IJa;tabases, Cannes, France, September,
1981, 424-434.

304

•

GEY 75 Gey, Ii'. and Mantei, M. "Keyword
Access to a Mass Storage Device at the Record
Level," Proceedings of the Jitrst International
Conference on Very Large JJa;ta,bases, Fram
ingham, Massachusetts, September, 1975,
572-588.

GEY81 Gey, F., "A Beginner's Guide to
SEEDIS," Lawrence Berkeley Laboratory
Report LBL-11198, January, 1981.

HALL 81 Hall, D., Scherrer, D., and Sventek,
J., "A Virtual Operating System/' 23 Gbmm.
ACM 9, September, 1980,495-502.

HEAL 78 Healey, R., "BYTER and DBYTE,"
Lawrence Berkeley Laboratory, Internal Docu
ment, May, 1978.

MCCA82A McCarthy, J., "Enhancements to
the Codata Data Definition Language,"
Lawrence Berkeley Laboratory, LBL-14083,
February, 1982.

MCCA82B "Metadata Management for Large
Statistical Databases," Proceedings of the
Eighth International Conference on Very
Large Databases, Mexico City, September,
1982.

MCCA 82C McCarthy, J. L., et aI., "The SEEDIS
Project: A Summary Overview," Lawrence
Berkeley Laboratory, PUB-424, May, 1982.

MERR 81 Merri.ll, D., "CODATA Users'
Manual," LBlD-021, revised October, 1981.

MERl~82 Merrill, D., "CODATA Tools: Port
able Software for Managing Self-Describing
Data Files," Lawrence Berkeley Laboratory,
LBL-15441, Proceedings of Computer Science
and Statistics: Fifteenth Symposium on the
Interface; Houston, Texas, March 16-19, 1983.

MERR83 Merrill, D., McCarthy, J., Gey, F.,
and Holmes, H.; "Distributed Data Manage
ment in ~ Minicomputer Network: The Seedis
Experience;" Elsewhere in the proceedings of
this workshop.

NEAL 78 D. Neal and V. Wallentine, "Experi
ences with the Portability of Concurrent Pas
cal," Sojt:wa:re Practice and Experience, V.8,
NO.3, 1978, pp. 341-353 (specifically p.346).

305

INDEX CODING: A COMPRESSION TECHNIQUE FOR
LARGE STATISTICAL DATABASESl

D. s. Batory2

Database Systems Research and Development Center
University of Florida

Gainesville, Florida 32611

ABSTRACT

Index encoding is a compression technique that involves the substitution of numeric codes for data values. Current
methods of index encoding are suited only for attributes whose underlying domains are small or static. In this paper,
general methods to encode dynamic domains are proposed and analyzed. A practical methodology for their applica
tion is presented. We also compare and contrast our methods with another that is now being used in a commercial file
management system.

1. INTRODUCTION
Scientific and Statistical Databases (SDDs) is a

generic name given to databases that are routinely subjected
to statistical analyses. SDDs are prevalent in scientific, socio
economic, and business applications. Examples are geologic
measurements and observations recorded over a period of
time, demographic databases such as the U.S. census, and
husiness ledgers.

SDDs differ from 'corporate' or nonstatistical databases
in a number of different ways [HaRi77), ITHC79), [Brag81),
[Gey81], [ChSh81J, [BBD82J, [Sh082j. SDDs usually have a
significant numerical content with tens or hundreds of at
tributes per file. Queries tend to be ad hoc and statistical in
nature, requiring the examination, sorting, and summariza
tion of selected attribute data of all records in a file. Record
deletions and modifications are relatively infrequent, so SDDs
tend to be either static or growing. Because of these
peculiarities, special techniques are often used to store and
process SDDs. Index encoding is one of them.

Index encoding is a data compression technique that is
used to some extent in almost all SDDs. Commercial and
specialized database management systems, such as RAPID
[THC79J, IRIS [Alsb75j, and CREATABASE [NDX8Ij, have
facilities to support it. Index encoding involves the use of
numeric codes to represent data values. The idea is to iden
tify the set of all distinct \"alues that an attribute assumes in
a data file. The elements of this set are sorted lexically and
the index position at which an element appears becomes its
index code. The data file is encoded by replacing attribute
values with their corresponding index codes. Since the
storage requirements of codes are less than their data value
counterparts, a sizable compression often results. In general,
if an attribute assumes D distinct values, the minimum num
ber of bits needed to represent an index code is rlog2D 1.

A dictionary is maintained for each attribute in order
to translate between index codes and data values. For ex
ample, a dict,ionary for the attribute STATE is shown in
Table L This dictionary enables the 14 byte string "North

306

Carolina" (or any other state name) to be encoded into
pog2

501 = 6 bits.

o Alabama 25 Montana
1 Alaska 26 Nebraska
2 Arizona 27 Nevada
3 Arkansas 28 Nev Hampshire
4 California 29 Nev Jersey
5 Colorado 30 Nev Mexico
6 Connecticut 31 Nev York
7 Dclavare 32 North Carolina
8 Florida 33 North Dakota
9 Georgia 34 Ohio

10 Hawaii 35 Oklahoma
11 Idaho 36 Oregon
12 IllinOis 37 Pennsylvania
13 Indiana 38 Rhode Island
14 lova 39 South Carolina
15 Kansas 40 South Dakota
16 Kentucky 41 Tennessee
17 Louisiana 42 Texas
18 Maine 43 Utah
19 l1aryland 44 Vermont
20 Massachusetts 45 Virginia
21 Michigan 46 Washington
22 Minnesota 47 West Virginia
23 Mississippi 48 Wisconsin
24 Missouri 49 Wyoming

Table 1. A Dictionary for STATE

An important feature of index encoding is the identity
of the index order and lexical order of (index code, data
value) pairs. Because of this identity, the costly process of
translating index codes to data values can be eliminated
during the data searching, sorting, and processing phases of
most file operations; this enables operations to be performed
directly and efficiently on compressed data [Alsb75j.

As an example, suppose a compressed file is to be
sorted lexically on STATE names. One way to do this would
be to expand the STATE field Cor each compressed record,
and th~n sort the expanded file. A more efficient way would
be to sort the compressed file on compressed STATE codes,
and then refer to the dictionary in Table 1 Cor expansion.

An obvious problem arises with index encoding when a
new data value is added to an attribute's domain; index
codes must be reassigned and the data file must be recoded.

Clearly, if data values are added frequently, the cost over
head of recoding becomes significant. An obvious remedy to'
this probkm is not to assign consecutive index codes to at
tribute values. For example, if (A, E, R, Z) is the domain of
an attribute, one might assign the codes (0, 4, 8, 12) rather
than (0, 1, 2, 3). Because the codes are nonconsecutive, new
data values can be added to the domain and be assigned
unused index codes in a way that preserves the lexical and
index ordering identity. The data value 'C', for example,
could be added to the above domain and assigned index code
'2' without altering previously assigned index codes or in
validating the lexical and index ordering identity. The in
tended benefit of this scheme is achieved; a limited number
of domain insertions can be accommodated before the dic
tionary and data file must be recoded. The penalty that is
paid for a reduced recoding frequency is slightly longer index
codes.

The initial assignment of index codes and the method
by which unused codes are selected and assigned to new data
values influences the overall performance of generalized index
encoding schemes. In this paper, we will present and analyze
two algorithms that index encode dynamic domains. A prac
tical methodology for their application is proposed. We will
also compare and contrast our methods with another method
that is presently in use.

2. ALGORITHMS TO INDEX
ENCODE DyNAMIC DOMAINS

Suppose a domain has D data values initially. Let AD ...
AD.1 be the lexically ordered sequence of these values, where
the lowest value is Ao and the highest is AD•l

3 It is expected
that subsequent record insertions and modifications will
cause new data values to be added to the domain.

Index codes can be assigned to Ao ... AD-l in the fol

lowing way. Data value Ai is given the index code i . 2k,

where k is a nonnegative integer. 2k is a scaling factor which
allows data values to be assigned nonconsecutive . (but
uniformly spaced) index codes. For example, the codes for

Ao, AI' '" AD.1 would be 0, 8, ... (D-1) . 23 if k=3. Whenever
k>O, unused index codes will be present. These codes will be
given to subsequent domain insertions. By assigning codes in
this manner, the number of bits needed to represent an index
code is pog2Dl + k.

We will consider two algorithms for assigning unused
index codes to domain insertions. The simplest is the true
order algorithm. It works by assigning a new domain value
an unused index code whose numerical value is the rounded
average of the index codes of the data value's lexical
predecessor and successor.

More formally, let V be a new domain value. Let V'
and V" be data values in the dictionary which are the lexical
predecessor and suecessor of V. Let C' and C· be their index
codes. The index code given to V is C = HC'+C")/2]. Nor-

307

mally C is an unused code, but there is one exception. If
C=C·, which occurs when C"=C'+ 1, there is no unused
code that can be assigned to V that preserves the lexical and
index order identity or dictionary entries. In this case, the
dictionary and data file must be recoded in order to accom
modate V.

Figure 1 illustrates the true order algorithm from the
time a dictionary was created to the time at which it needs
to be recoded. In this Figure, D=4 and k=2.

OA OA OA OA
4 E 4 E 4 E 4 E recode
8 R 6 M 5 H 5 H

12 Z 8 R 6 M 6 M is
12 Z 8 R 8 R

12 Z 10 W triggered
12 Z

la. lb. lc. Id.
Initial . Insert Insert Insert

Dictionary --M- !! -r
Note: Index codes are stored as 4-bit

numbers

le.
Insert
--L-

Domain values are single characters

Figure 1. Dictionary Insertions Using
the True Order Algorithm

As a general rule, the true order algorithm only allows
a certain number of domain insertions to be made before a
recoding is triggered. Another algorithm, called the interval
order' algorithm, causes recoding to be delayed to the latest
possible time. However, it is more complicated. To under
stand how it works, again let Ao ... AD_1 be the sorted se
quence of values that define a domain initially. Observe that
each pair of consecutive initial values defines an interval of
domain values. That is, pair (Ai' Ai+l) defines the value in
terval starting with Ai and ending with Ai+l . These inter
vals are fixed and do not change with subsequent domain in
sertions. Once index codes a.re assigned to Ao ... AD•1, a dis
tinct interval of unused index codes can be identified with
each value interval. For example, if (A, E, R, Z) are the in
itial values of a domain and (0, 8, 16, 24) are their assigned
index codes, value interval (A, E) is identified with the cod~
interval (0, 8). When a domain value is to be inserted, the
interval order algorithm finds the corresponding value inter
val and. assigns the new domain value the first unused index
code in the corresponding code interval. In general, the lex
ical and index order of dictionary entries is not preserved.

More formally, let Gi be the number of domain inser
tions whose values fall in the interval (Ai' Ai+l). Ci is the
index code for Ai' A new value V which satisfies Ai < V <
Ai+! is assigned the index code C = Ci + Gi + 1. Normally
C is an unused index code, but there is olle exception. If C
= CHI' which occurs when 2k_l values have already been
inserted into the interval, there is no unused code that can
be assigned to V. In this case, the dictionary and data file
must be recoded in order to accommodate V.·

Figure 2 illustrates the interval order algorithm from

the time a dictionary was created to the time at which it>
needs to be recoded. In this Figure, D=4 and K=2. Because
of the special role of the initial domain values, they are in
dicated by stars '.'.

o A* 0 A* 0 A*
4 E* 4 E* 4 E*
8 R* 5 M 5 M

12 Z* 8 R* 6 H
12 Z* 8 R*

12 Z*

2a. 2b.
InITial Insert

Dictionary ~

0 A* 0 A*
4 E* 4 E*
5 M 5 M
6 H 6 H
8 R* 7 L
9 W 8 R

12 Z* 9 W
12 Z*

2d. 2e.
Insert Insert
--W- --L-

2c.
Insert
--H-

recode

is

triggered

2f.
Insert
--G-

Note: Index codes are stored as 4-bit
numbers
Domain values are single characters
Original domain values are indica
ted by stars '*'

Figure 2. Dictionary Insertions Using
the Interval Order Algorithm

As mentioned before, the interval order algorithm does
not preserve the index and lexical order identity of dictionary
entries. It does, however, preserve a ranking of domain
values by their assignment to value intervals. That is, all
domain values in the interval (Ai' Ai+1) have index codes

that are strictly less than the index codes assigned to domain
values in an interval (Ai' Aj+l) where i < j. (Hence, data

values are ranked according to an "interval order.") Only
within the same interval does the index order differ from the
lexical order.

Whenever a difference exists between the index and
lexical order, dictionary references will need to be made in
order to process certain comparison and sorting operations
on compressed files. Such additional complications, however,
can be kept to a minimum. In processing an inequality of
the form (Attribute > V), for example, only the dictionary
entries of other values that belong to the same interval as V
need be kept in main memory; all other comparisons can be
made using index codes. The number of such entries that are
needed at anyone time is 2k. As we will see in the following
section, typical values of k will range from 2 to 8, so the
storage requirements for these entries is minimal. Similar
minor alterations would be needed to handle other opera
tions.

The oyerall performance of the true order and interval
'"der algorithms depends, in part, on the value k. In the (01-

308

lowing section, we analyze these algorithms. The results of
the analysis provide a guideline for selecting an appropriate
value for k.

3. ALGORITHM ANALYSIS
The length of an index code assigned by the true order

and interval order algorithms is [log2D1 + k bits. We will

refer to the most significant [log2D 1 bits as the baBe of an

index code; the least significant k bits will be called the
extension. The objective of our analysis is to determine an
appropriate value for k.

Consider any value interval. Let T k(l) be the

probability that I values can be ~nserted into the interval
without triggering a recode, given that index codes have k
bit extensions. For the interval order algorithm, T k(I) has a
particularly simple form:

-- { 0

1
Tt(I)

if 0 ~ I < 21.:
(1)

otherwise

T k(l) for the true order algorithm is more complicated. Each

time a new value is inserted, the true order algorithm
generates an unused code by taking the midpoint of an inter
val of index codes. The history of interval splitting caused by
a sequence of insertions can be modeled by the binary tree
that results from these insertions (see Figure 3). The height
of this tree is related to the function T k(l) in the following
way. When a new code is generated, the minimum number of
bits that are necessary to represent its extension is precisely
one more than that which is needed to represent t,he exten
'sions of the index codes from which it was derived. This
means that the number of levels in a binary tree resulting
from a: sequence of insertions equals the minimum number of
e:",tension bits that are needed to encode this sequence.
Figure 3 illustrates these relationships.s

Accordingly, T k(l) for the true order algorithm can be

int~rpreted as the probability that a binary tree of I nodes
'has k or fewer levels. Assuming that all possible domain
values are equally likely to be inserted, the following well
studied recurrence relation defines T k(I):

1 1-1
Tt(I) = E Tt - 1 (j) . Tt - 1 (I-1-j)

I j=O

{

if I = 0 or
T 1 (I) =

o otherwise

(2)

No closed. fO,rm solution to eqn. (2) is known (see IBKRi2J,
IFLOd81]). However, this does not present a problem since
values of T k(l) can be obtained easily by iteration. (As we

will see shortly, practical values for k do not exceed 8.)

Suppose a dictionary initially contains D distinct
values. Let Rk(D,I) be the probability that the dictionary will

be able to accommodate I domain insertions without trigger
ing a ,recode, given that index codes have k-bit extensions.

•

Level 1

IN
0
\0 Level 2

Level 3

Level 4

Binary tree resulting from the Binary Index Code Minimum fI of
insertion sequence T.E.S.C.W.I I-bit 4-bit
into interval (A.Z). data value base extension

A 0 0000
Z 1 0000

~ T 0 1000

~ E 0 0100
W 0 1100

C 0 0010
S 0 0110

I 0 0101

Figure 3. Correspondence of the Levels of a Binary Tree and the

Minimum Number of Extension Bits per Index Code

Extens ion bi ts
per Index Code

0
0

1

2
2

3
3

4

Clearly, when a dictionary contains only the lowest and
highest possible domain values:

(3a)

To determine Rk for D > 2, let Ao ... AD-l be the or
dered sequence that defines the initial domain values of a
dictionary. Without loss of generality, suppose D is odd
where D = 2N + 1 for some integer N. Let H(D,I,j) be the
probability that j of I insertions will have values which fall
within the interval (Ao ... AN)' i.e., the first half of the
dictionary.6 Assuming domain insertions have values that are
randomly chosen without replacement from a large and
static, but not necessarily lexicographically uniform, collec
tion of values, H(D,I,j) is found to be:7

2N-2 I
(2N -1) . () . ()

N-l
H(D,I,j) = ---------------------------

2N-2+I
(2N - 1 + I) . (

N-l+j

where (~) is a binomial coefficient and, again, D = 2N + 1.

A derivation of H(D,I,j) is given in the Appendix.

Doubling a dictionary in size and considering all pos
sible sequences of I insertions yields a general recurrence rela
tion for Rk :

I
Rk (2D-l.I) = E Rk(D.j) . RIt(D.I-j) . H(2D-l.I.j)

j=O
(3b)

The term 2D-l arises since each 'half' of a dictionary of 2D-l '
values contains D values, and one value (namely the Dth
value) is found in both halves.

The probability P k(D ,I) that a recode will occur orl'the
ith insertion into a dictionary is: .

Pk(D.I) = (4)
{

0 if I= 0

. Rk(D.I) - Rk (D.I+1), otherwise

The expected number oC insertions a dictionary can accom- .
mod ate before a recode Ek(D), and the standard deviation of
this quantity Sk(D) follow from eqn. (4):

Ek(D) = E I' Pt(D.I)
PO

SkCD) = E I 2 . PtCD.I) - EiCD))1/2

I>O

No closed form solution to eqn. (4) is known. Values
for Rk(D,I) can be obtained in a straightforward manner by
iterating equation (3b). This, as it turns out, is practical only
if I is small. For large I, values of Rk can be approximated
by calculating Rk(D,i) only for selected values of i; all other
values are obtained by linear interpolation. Because Rk is a
smooth and slowly changing cumulative probability function,
this approach to approximating Rk was found to work well.

310

The results of selected computations are listed in
Tables 2 and 3. The entries of these tables are indexed by
D, the initial size of the dictionary, and k, the number of ex
tension bits per index code. The values listed in the tables
are the expected growth and standard deviation expressed as
a percentage of the initial dictionary size:

~CP)/D

%St(D) = 100' St(D)/P

Note that values for some entries could not be determined
because the time required for' their computation was exces
sive.

A number of conclusions can be drawn from these
tables. It is not difficult to see that the expected dictionary
growth before recodin'g (%E) 'for the interval order algorithm
is uniformly better than that for the true order algorithm.
This in itself is not surprising, for only in the best possible
circumstances (i.e., for certain input sequences) will the true
order algorithm be able to :accommodate dictionary growth
as the interval order algorithm. What is important is that
the performance of the interval order algorithm provides a
theoretical upper bound on the expected case performance of
any algorithm which maintains the index order and lexical
order identity of dictionary entries.s For example, if inser
tions to a domain were I?atched (which can occur if record
insertions are batched), it is possible to order these insertions
so that each could be assigned an index code with the min
imum number of extension bits. While such optimization

.. ~ould significantly complicate an insertion algorithm, the
resulting gain in performance would never surpass that of the
interval order algorithm.

•. The primary objective of introducing extension bits to
index codes is to reduce the frequency of recoding. Providing
that domain insertions are random, it is clear in Tables 2
and 3, t~at allocating just aCew bits achieves this objective.
For example, if a dictionary initially contains 8193 values
,and 2-bit extensions are used, the dictionary would be ex
pected to grow by 5.3% if the true order algorithm is used,
or. by 10.5% if the interval order algorithm is used. This ef-

.' fectively reduces the expected frequency of recoding to every
434 and 860 insertions, respectively. (The corresponding
standard deviations of 2% and 3.3% indicate that the ex
pected growth rates are not g\laranteed; a rather wide range
of possible growth rates centered about these means should
be expected.) Except for highly dynamic domains, recoding
at these rates should not pose a significant problem. Even
higher percentage growth rates can be expected for larger
k. If four extension bits were allocated, for example, the cor
responding increases in expected dictionary growth are 27%

. and 114.1%.

k=2 !=1 k=2 k=4

D %E %s %E %s !2 %E %s %E %s

2 233.3 47.1 653.3 183.1 2 300.0 0.0 1500.0 0.0
3 156.3 51.6 437.3 147.9 3 203.8 53.8 1034.4 223.2
5 109.0 41.5 307.5 110.7 5 144.6 .;";'" .3 753.8 197.9
9 78.1 31.4 224.8 81.5 9 105.9 37.2 574.0 157.7

17 57.2 23.4 169.4 60.3 17 79.5 28.5 453.9 122.8
33 42.5 17.4 130.8 45.1 33 60.8 21.7 367.8 95.5
65 31.9 13.0 103.1 34.3 65 47.3 '16.1 305.9 74.9

129 24.3 9.7 82.6 26.4 129 37.2 12.8 259.4 59.2
257 18.6 7.4 67.1 20.7 257 29.6 10.0 222.9 49.2
513 14.3 5.6 55.2 16.4 513 23.8 7.8 194.0 41.3

1025 11.1 4.3 46.8 13.0 1025 19.3 6.2 170.1 36.0
2049 8.7 3.3 38.2 10.7 2049 15.7 5.0 149.7 33.0
4097 6.8 2.6 32.0 8.9 4097 12.8 .4.0 131.4 32.1
8193 5.3 2.0 27.0 7.4 8193 10.5 3.3 114.1 32.8

16386 4.1 1.6 22.7 6.4 16385 8.6 2.7 96.5 34.4
32769 3.2 1.2 19.1 5.6 32769 7.1 2.3 77.5 35.5
65537 2.5 1.0 16.0 6.1 65537 5.7 2.0 57.3 33.8

131073 2.0 0.8 13.1 4.8

E.§. k=8
k=6 k=8

D %E %s %E %s
D %E %s %E %s

2 6300.0 0.0 25600.0 0.0
2 1401.9 452.2 2713.1 957.0 3 4361.2 894.7 17669.6 3579.1
3 933.7 333.0 1796.5 673.5 5 3199.7 793.6 12985.3 3174.4
6 655.6 239.4 1255.9 472.5 9 2460.2 632.6 10012.3 2504.9
9 480.4 172.5 918.0 335.2 17 1965.0 490.8 7999.9 1977.4

17 364.5 126.0 695.9 242.1 33 1618.6 378.0 6556.7 1637.9
33 284.4 93.6 643.6 178.4 66 1367.4 286.4 6475.6 1400.6
65 227.2 70.9 435.1 134.2 129 1167.6 256.7 4600.1 1284.3

129 184.9 64.7 355.4 102.9 257 1011 .5 226.7 3828.5 1256.7
267 162.8 42.9 295.0 79.8 513 880.4 212.7 3087.1 1262.8
513 127.9 34.0 247.0 66.1 1025 761.4 213.7 2333.8 1225.1

1025 107.7 28.6 208.7 65.7 2049 644.1 223.8 1697.1 1066.4
2049 91.3 24.2 177.0 48.6 4097 519.9 232.6
4097 77.6 21.1 149.6 44.4 8193 386.2 225.5
8193 66.7 19.1 124.8 42.3 16386

16385 66.0 18.0 101.0 41.1 32769
32769 44.9 17.4 77.7 39.3 65537
65537 35.1 16.7 64.-9 34.9

131073 25.6 16.2

Legend: D initial number of entries in Legend: D initial number of entries in
dictionary dictionary

k number of extension bits per k number of extensibn bits per
index code index code

%E expected growth of dictionary %E expected. growth of dictionary
before recoding given as a before recoding given as a
percentage of D percentage of D

%s standard deviation of expected %s standard deviation of expected
growth as a percentage of D growth as a percentage of D

Table 2. Performance Measures of the Table 3. Performance Measures of the
True Order Algorithm Interval Order Algorithm

311

As a suggested guideline Cor choosing a value for k, two
to four bit extensions should be adequate for most purposes
(again provided that domain insertions are random). Exten
sions oC these lengths can be obtained easily by rounding the
number oC bits in the base oC an index code to the nearest
byte or half byte boundary. (Doing so allows one to take
advantage of a CPU's byte addressing capability.) More than
four bits may be allocated per extension. However, Tables 2

and 3 suggest that eight bits is a practical upper.

Our analysis has been based on the assumption that in
sertions were random. In real files, domain insertions need
not be random. Nonrandom insertions would make the
predictions in Tables 2 and 3 optimistic; clustered domain in
sertions would likely cause recodes to be triggered more fre
quently. To test the effect of possible clustering, some experi
ments on real files were conducted. It was observed that a
minimal amount of clustering does occur naturally, but the
observed deviation oC measured values from theoretical
predictions was only a few percent. For this reason, it is
believed that Tables 2 and 3 provide reasonable guidelines

. for the selection of k.

A final observation concerns an unexpected trend in
Tables 2 and 3. Namely, the expected Cactor by which large
dictionaries grow beCore t·hey need to be recoded is less than
that for smaller dictionaries, i.e., %E declines with increasing
D. To explain this trend, it is shown in the Appendix that
the probability Q(D,I,j) that a value interval will receive j of
I insertions given that D values were in the dictionary in
itially is:

I
(D - 2) . (

Q(D~I,j) = -----------------------
D - 2 + I

(j + 1) . (
+ 1

Although it is difficult to prove analytically, it is easy to
show by example that the value oC Q is essentially constant
for all dictionaries that have grown by the same Cactor (i.e.,
the same liD ratio):

Q ! i Q(D,I,l) Q(10D,10I,l) Q(100D,100I,U

256 50 4 .00056 .00059 .00060
256 300 4 .03935 .03906 .03903
512 256 7 .00030 .00030 .00030
512 1024 7 .01959 .01952 .01951

2048 512 5 .00025 .00026 .00026
2048 8192 5 .06556 .06554 .06554

From the above rule it is reasonable to define a growth fac
tor r and a function Q'(r,j) such that Q'(r,j) ~ Q(D,I,j) and r

= liD.

The relationship between %E and D can now be under
stood. As a general rule, if an interval experiences a large
number oC insertions, the probability that a rec,?de will be
triggered is large. The expected number oC intervals with j
insertions is (D-I) . Q '(r ,j). As D increases, there is a greater
expectation that one or more intervals with j values will ap-

312

pear. Consequently, the expected Cactor by which large dic
tionaries will grow before they need to be recoded is less than
that for smaller dictionaries, i.e., %E declines with increasing
D.

4. COMPARISON WITH ANOTHER
METHOD

An alternative approach to index encoding dynamic
domains is employed by CREATABASE [NDX811. [BrT076J.
The basic idea (not necessarily an exact description) is to as
sign index codes incrementally, ignoring the lexical and index
ordering identity oC dictionary entries. That is, if there are N
values in a domain, the next domain insertion will be as
signed index code N. Initially an attribute wiII have D
domain values; pog201 bits are allocated per index code.
Domain recoding occurs only aCter I insertions, where the
number of bits needed to represent D-t I distinct index codes
exceeds rlog201 bits. This does not happen very often.

CREAT ABASE performs operations directly on com
pressed files. Some operations, such as file sorting and
processing range queries, require the identity oC the lexical
order and index order oC (data value, index code) pairs. In
such cases, a surrogate index code is assigned to each data
value. This surrogate coding supports the lexical and index
ordering identity. As compressed records are processed, sur
rogate .codes are substituted Cor the index codes that were
originally assigned. (Note: the compressed Cile is not updated
with surrogate codes; substitution occurs only during record
processing and is temporary.) In this way, CREATABASE
index encodes dynamic domains.

This method does have its limitations. As long as the
dictionaries are small enough to be main memory resident,
this scheme works very well. The constant dictionary
references that are needed for surrogate substitution can be
done quickly with little overhead. However, if a domain con
tains many data values, which happens when an attribute is
an identiCier or primary key, it does not work as well. The
dictionary references caused by surrogate substitution would
create an enormous overhead. (CREATABASE, in fact, does
not encode such domains Cor this reason.)

Our method of index encoding should exhibit a com
parable perCormance when dictionaries are main memory
resident. It might be less efCicient because oC longer index
codes; it might be more eCCicient because code substitutions
are unnecessary. However, it is primarily Cor this latter
reason that our method should be more eCficient when large
domains are encoded. Another reason is given below.

When a dictionary is large, it must be organized on
secondary storage by a file structure. An appropriate and
practical Cile structure Cor eCCiciently maintaining and query
ing dynamic directories has been proposed by Eggers, Olken,
and Shoshani [EOS81J. This is a slightly modified B+ tree
structure which accommodates dictionary growth by node
splitting and allows records (i.e:, dictionary entries) to be ac-

cessed efficiently given either their data values or index
codes. (This is possible because of the coincidence of the in
dex and lexical orderings.) Thus, a single and simple direc
tory structure suffices. If the index encoding method of
CREAT ABASE were to be applied to a large domain, several
directory structures would probably need to be maintained.
One would be needed t.o quickly translate index codes into
data values, another for translating data values into index
codes, and possibly a third to support surrogate codes.

5. CONCLD.SIONS
Practical techniques to index encode attributes with

dynamic domains have been proposed and analyzed. The
goal of these techniql)es is to reduce the frequency of recod
ing whenever new data values are added to an attribute's
domain. Under the conditions that domain insertions are ran
dom, recoding frequencies have been shown to be reduced
significantly simply by enlarging the length oC an index code
by a few extra bits. Experimental results on real data sup
port our findings.

It is believed ·that the index encoding techniques
presented here are practical alternatives to those used in spe
cialized and commercial DBMSs today.

Acknowledgements. I grateCully acknowledge
the help of Ignacio Casas, Arie Shoshani, and
Won Kim for their constructive comments on an
earlier draft of this paper. I also thank J. Stevens,
D. Carter, R Hammond, M. Conlon, S. Su,
S. Navathe, and S. Kundu for their contributions
to the development and clarification of the ideas
in this paper.

REFERENCES

[Alsb75] Alsberg, P. A., "Space and Time Savings
Through Large Database Compression and
Dynamic Restructuring,· Froc. IEEE Vol. 63 #8
(Aug. 1975), pp. 1114-1122.

[BatS2] Batory, D. S., "Optimal File Designs and Reor
ganization Points," ACM Trans. Database Syst.
Vol. 7 #1 (Mar. 19S2), pp. 60-S1.

[BBDS2] Bates, D., Boral, H., DeWitt, D. J., "A
Framework for Research in Database Manage
ment Cor Statistical Analysis," Froc. SIGMOD
1982, pp. 69-7S.

[BKR72] de Bruijn, N., Knuth, D., and Rice, 0., "The
Average Height oC Phinted Plane Trees," in
Graph Theory and Computing, R-C. Read,
Editor, Academic Press, New York, 1972, pp.
15-22.

[BragSl] Brag, A. W., "Data Manipulation Languages for
Statistical Databases-The Statistical Analysis
System (SAS),· Proc. LBL Workshop on Sta,tis
tical Database Afa,nagement 1981, pp. 147-150.

313

[BrT076] Brill, R C., and Tolkin, S. E., ·Subset Selection
by Boolean Calculation,' 1!l76.

[ChS081] Chan, P. and Shoshani, A., "SUBJECT: A Direc
tory Driven System for Organizing and Accessing
Large Statistical Databases," Froc. VLDB 1981,
pp. 553-563.

[EOSSll Eggers, S., Olken, F., and Shoshani, A., "A Com-
pression Technique Cor Large Statistical
Databases," Froc. VLDB 1981, pp. 424-431.

[FIOdSl] Flajolet, P. and Odlyzko, A., "The Average
Height of Binary Trees and other Simple Trees,"
INRIA Research Report #56, Feb. 1981.

[FNPS79] Fagin, R, Nievergelt, J., Pippenger, N., and
Strong, H. R, "Extendible Hashing-A Fast Ac
cess Method for Dynamic Files," ACM Trans.
Database Syst. Vol. 4 #3 (Sept. 1979), pp.
315-344.

[GeySl] Gey, F. G., "Data Definition for Statistical Sum
mary Data or Appearance, can be Deceiving,"
Froc. LBL Workshop on Statistical Database
Management 1981, pp. 3-18.

[HaRi771 Hampel, V. and Ries, D., "Hequirements for the
Design oC a Scientific Database Management
System,· working paper, Lawrence Livermore
Laboratory, Berkeley, CA, 1977.

[Lar7SI Larson, P., "Dynamic Hashing,' BIT 18 (197S),
pp. 184-201.

[Lit7SI Litwin, W., 'Virtual Hashing: A Dynamically
Changing Hashing,·' Proc. VLDE 1978, pp.
517-523.

[NDX811 NDX Retrieval Systems, Inc., ·CREATABASE:
Performance Manual,· NDX Retrieval Systems,
Houston, TX, 1981.

[Sh0821 Shoshani, A., "Statistical Databases: Charac
teristics, Problems, and Some Solutions,· Proc.
VLDE 1982.

[THC791 Turner, M. J., Hammond, R, and Cotton, P., "A
DBMS Cor Large Statistical Data Bases," Proc.
VLDB 1979, pp. 319-327.

APPENDIX. DERIVATION OF H(D,I,j)
AND Q(D,I,j)

The ordered sequence oC all possible domain values can
be modeled by the real number interval [0 .. 1[. Let A * = (Ao

AD_l) be the ordered sequence that defines the initial
values of a dictionary. A * consists of the endpoints 0, 1 and
D-2 random points in (0 .. 1). Without loss of generality, sup
pose D is odd so that D = 2N + 1.

Let f(w) be the probability density function that the
value interval (Ao ... AN) has length w. f(w) ~s obtained by

observing that 1 point is at [0,0] with probability 1, N-I
points are in (O,w) with prohability wN-1, 1 point is at
[w,w+dw] with probability dw, N-I points are in (w+dw,I)
with probability (l_w)N-I, and 1 point is at [1,11 with
probability 1. The probability of all events occurring simul
taneously is proportional to the product of their individual
probabilities. Integrating this product from 0 to 1 and nor
malizing yields:

2N - 2
fCw)=(2N - 1) . () . WN- 1 • (1 -)N-1

N - 1

where (~) is a binomial coefficient and

2N - 2
(?N - 1) . ()

N -

is the normalization constant.

Arter the insertion of I values, the probability b(I,j,w)
that the interval (Ao ... AN) with a length of w will contain j
additional values is binomially distributed:

I
) . lJ1 . (1 - lJ)I-1

It follows that the probability H(D,I,j) that j of I insertions
will have values which fall within the interval (Ao ... AN)'
i.e., the first half of the dictionary, is:

H(D,I,j) = f& b(I,j,lJ) . f(w) . dlJ

2N - 2 I
(2N - 1) . () . ()

N - 1
=

2N - 2 + I
(2N - 1 + 1) . (

N - + j

Q(D,I,j) is derived in a similar manner. Let g(w) be the
probability density function that a value interval has length
w. g(w) is obtained by observing that 1 point is at [0,01 with
probability 1, 1 point is at [w,w+dwl with probability dw,
D-3 points are in (w+dw,l) with probability (l_w)D-3, and 1
point is at [1,1] with probability 1. Taking the product of
these probabilities, integrating from 0 to 1, and normalizing
yields:

g(w) = (D - 2) . (1 - lJ)D-3

The probability Q(D,I,j) that an interval will receive j of I
insertions is:

Q(D,I,j) = f& b(I,j,lJ) . g(w) . dlJ

I
(D - 2) . (

= ----------------------
D - 2 + I

(j + 1) . ()
+ 1

314

NOTES

IThis work was supported by the U.S. Department
of Energy under contract DE-A505-81ERI0977.

2Author's current address: Department of Com
puter Sciences, The University of Texas at Aus
tin, Austin, Texas 78712.

3 Ao and AD_1 should be the lexically lowest and
highest possible values that can occur in the
domain. If these values are not present when the
file is first examined, they are added to the
domain prior to index encoding.

4As an implementation note, it is unnecessary to
maintain an array of Gj's. Instead, an unused
code within a particular code interval can be
found easily by searching the directory.

5Readers may note a strong similarity between the
true order algorithm and its conditions for dic
tionary recoding, and the node splitting al
gorithm and its conditions for directory reor
ganization in dynamic hash-based files [Lar78J,
[Lit78], [FNPS79]. In spite of this similarity, the
analyses which model their behaviors are quite
different. Explanations of these differences, too
long to be included here, can be found in [Bat82,
pp.65-66J.

6By symmetry, H(D,I,j) is also the probability that
I-j of I insertions will fall within the interval (AN
... AD-I)' i.e., the last half of the dictionary. •

7This assumption is identical to that used to
derive eqn. (2).

8 A second possible qualification is tha't the al
gorithm does not recode subsections of a diction
ary to delay the complete recoding'of the diction
ary. While this extra qualification may be needed
to further specify when the performance of the
interval order algorithm provides a theoretic
bound, the idea of partial recoding may not be
practical. Preliminary investigations suggest that
complete recoding is not much more expensive
than partial recoding, and complete recoding oc
curs less frequently.

AN OVERVIEW OF CANTOR - A NEW SYSTEM FOR DATA ANALYSIS

Ilkka Karasalo and Per Svensson
Swedish National Defense Research Institute, Stockholm, Sweden

ABSTRACT J'; .1

A transportable system for the analysis of large sets. of data~ for
ming complex information structures, is being develop~d at the Swe
dish National Defense Research Institute, with financial support
also from some civilian Swedish government agencies. The system is
based on a relational data base handler of new design, permitting
efficient data storage and fast evaluation of complex, spontaneous
queries. A query language, based on set algebra and oriented towards
scientist users, was developed for the system. To this kernel will
be added subsystems for interactive sublanguage definition and user
communication, data loading, tabular and graphic data presentation,
statistical analyses, and data base backup and recovery. The paper
presents an overview of the system version now completed.

1. INTRODUCTION

Techniques and tools for the analysis of data have developed rapid
ly during the last decade. Much of this development effort has been
directed towards developing large libraries of statistical analysis
procedures and integrating them into user-controlled statistical

systems. In recent years, several of these systems (e.g., SAS 1
»

have been supplied with data management and data presentation capa
bilities, turning them into quite powerful general-purpose data
analysis tools. Users of statistical systems seem to be quite satis
fied with the facilities provided. So why bother to develop yet
another system, which in this light seems to stand a small chance
of becoming commercially accepted?

Existing statistical systems serve their purpose well, as long as
the data bases to be processed have a Simple, static logical struc
ture and are not too large, and moreover, stay that way during the
course of the analysis. In many scientific fields, however, the
steps in an analysis involve the creation of complex data structu
res and large data sets. Typically, such situations arise when look
ing for interactions between several separately monitored classes
of phenomena, for example the incidence rate of a disease and vari
ous environmental factors. If the kind of interaction is unknown a
priori, the data space in which to look rapidly becomes unmanageable.

The last decade's developments in the theory and technology of data
base management systems have led to new possibilities for the design
of general-purpose software useful for the detection and analysis
of unknown kinds of interaction between loosely related classes of
data.

The system to be described below was designed with the goal of
being able to analyze in depth large and complex data bases, with
out recourse to problem-specific programming in a general purpose
programming language.

The system contains a user language based on an algebra of rela
tions. In this language, a wide class of data transformations may

315

2

be expressed and stored as virtual data extensions, or "views", in
the data base itself. The evaluation of views is carried out in the
framework of a relational data base management system, designed for
efficient storage and access of data in a user environment where
the "queries" are statistical, i.e., whose results depend on large
subsets of the data. The few commercially available data base sys
tems which have enough functional power for this task are optimized
for queries, whose answers depend on small subsets of the data base.

2. PROJECT OBJECTIVES

The following design goals were formulated after an analysis of
the requirements on a data analysis support system in a scientific,

large data base environment2):

i) To allow the scientist users to work directly with their data,
the system must be highly automatic. In particul~r, it must not
require any tuning or extensive maintenance during its use.

ii) The system had to contain a very high level user language (query
language) suitable for the succinct expression and gradual accu
mUlation of complex data transformations. On the other hand, it
was considered reasonable to expect from the scientist user an
ability and willingness to express these transformations in a
formal language.

iii) Complex transformations easily lead to unacceptable execution
times unless efficient methods of query optimization are found,
not least when expressed in a very high level, "non-procedural"
language. Certain classes of queries are inherently impossible
to evaluate efficiently. Query classes which could be efficient
ly evaluated would have to be defined and appropriate algorithms

developed 3,4) •

iv) The typical user was envisaged as member of a small group of ana
lysts, working either with a dedicated, comparatively small com
puter system, or with a large, time-shared central computer. The
system should allow for easy sharing of results within the group.
To access data not originating within the group, conventional copying
and loading was considered adequate. Requirements for simultaneous
reading and updating of data would therefore exist but did not
impose stringent restrictions on the system design.

v) Within the user community many different types of computer
would exist. To allow ~he system to be used on different
computer types without unacceptable conversion costs, it
would have to be transportable, i.e., written mainly in a high
level language subset acceptable by most compilers for the
chosen language.

vi) Economy of data base storage space was found important both
directly, to reduce storage space costs for large data sets,
and indirectly, as a means of reducing the processing time
of a query. The more compactly data can be stored, the less
data transportation between primary and secondary storage will
obviously be required.

vii) A set of general-purpose application functions should be in
cluded in the basic system. Requirements for subsystems for

316

•

3

descriptive statistics, basic statistical analysis, data pre
sentation, and bulk data test, input, and transfer were formu
lated.

viii) A programming user must be able to add new application func
tions, written in some commonly used programming language,
to the system. Such additions always require additions to the user
language as well. To support a controlled language growth,a language
definition subsystem allowing the incremental addition of new gramma
tical rules was found highly desirable. Language and function exten
sibility were thus required.

ix) To enable adequate documentation and retrieval of data and views,
a meta-data subsystem would have to contain both system-created and
user-provided information about the elements of the data base.

3. SYSTEM STATUS AND ENVIRONMENT

The system, previously called Datalao but for trade-mark reasons
renamed.to Cantor in this paper, is in its present form a single
user, interactive relational dbms with an unusually powerful query
language and storage and access performance characteristics design
ed to fit the intended application area.

A few facilities remain to be implemented in order to bring the

database management system to the intended level of usefulness5) •
Subsystems for descriptive statistics, statistical analysis, and
data presentation also remain to be designed and implemented. We
will describe here mainly t:u,se functions which are already more
or less in their final form.

Cantor is designed to run under a time-sharing operating system
(or, obviously, on a single-user computer). All details of terminal
interfacing~ transaction queueing, and communication network manage
ment are assumed to be handled by the host operating system, as are
the allocation to different users of common resources, such as pri
mary memory and processor time.

It is intended to eventually allow several simultaneous users to
share data in its data bases. A user who wants to update a copy of
a data (relation) table can do so, as long as he is authorized by
the operating system to access the data base which contains it. An
update of a nonprivate data table must wait, however, until the
user has been granted exclusive access to it by the Cantor system.
In this way, a crude but in our opinion sufficient multiple user
facility is planned for later versions of the system.

The existing system consists of almost 70 000 lines of Pascal code
and 3 500 lines of Assembly language code, comments included.

At present, the system runs only on the Dec-l0 computer under the
operating system Tops-l0. The system is being transported to Tops-20
and Vax/VMS. An implementation for a powerful personal computer
("workstation") is planned.

An independent evaluation of Cantor was recently completed by the

Swedish Bureau of Statistics6). Allowing for the fact that some
parts of the system are still provisional, the evaluation report
states that the system permits very complex queries to be formula-

317

4

ted and evaluated without difficulty. Also, the report recognizes
that although no system tuning is necessary or possible (without
recompiling the system), data storage and subset selection are very
efficient.

Plans have now been made for a second development phase, with the
goal of making the system a marketable product. System security,
language facilities, and performance will be improved. Subsystems
for data presentation and descriptive statistics will be added. The
system will be priced, documented, and maintained so as to allow
widespread distribution.

4. DATA TYPES AND DATA OBJECTS

Objects recognized by the system have unique names and a well
defined although not always explicitly declared type •. They are either
flat objects viz. scalars or tuples or set objects. Sets of tuples
of a common type are called relations.

Each kind of data object can have two modes: value and view. A va
lue consists of explicitly stored data. A view is an expression
which can be evaluated, ultimately in terms of stored values, to
form a new value. Views may have parameters.

Scalar types are predefined: integer, float (optionally with rest
ricted precision or constant exponent), logical,·literal (used for
names of objects), and text, all extended by the special value
UNDEFINED. An unordered set of pairs (attribute name: scalar type)
determine a tuple type. A tuple value is an instance of its type,
i.e., a set of pairs (attribute name: scalar value). In the same
way, a set type is defined as the set of sets of values of a given
flat type. A relation is a special case of a set, namely a set for
med on a tuple type (even if this tuple type has only one attribu
te) •

Associated with each data base in the system is a meta database,
which contains all information required by the system to keep track
of stored data and its properties. The meta database {~ organised
as three relations, maintained automatically by the system. Views
may be defined whose value depend on the meta database relations.

5. BASIC COMMANDS

The terminal user language is planned to consist of a standard part
used for predefined operations and a variable set of private exten
sions to this language. In the existing version of Cantor, only the
standard language is recognized. It contains commands for declaring
the name, attributes, and key of a base relation, defining a view,
evaluating a parameter less view and storing its value, inserting,
removing, and updating tuples of a base relation, adding and dele
ting non-key attributes of a relation, loading and printing data
objects, etc.

6. THE QUERY LANGUAGE SAL

The view concept in Cantor is a natural generalization of the con
cept of a function procedure (subroutine) in conventional program-

318

5

ming languages. A view may have a number of parameters of arbitrary
type.

Recursive view references. which significantly extend the expressi

ve power of relational languages1•8) are not allowed in the present
version of the system.

Views are formulated in SAL9), the query language of Cantor. It was
developed under explicit assumptions about the users' educational
background. A user with a basic mathematical education at universi
ty level should be able to use the language with fairly little trai
ning. because all its important concepts are already in his reper
toire. In the requirements definition phase of our project a number
of existing query languages were studied, but for various reasons

no one was considered suitable5) •

The SAL language was designed according to the following basic ob
jectives:

i) It is only used to compute new data from existing data. For
example. no input-output statements are part of the language.

ii) The query language is not intended as a general-purpose computing
facility. Many kinds of computation will have to be done by spe
cial programs interfaced to the dbms. A user should not be misled
to use the query language for purposes where conventional program
ming is the only adequate technique. Control and data structures
proper to algorithmic languages were therefore excluded.

iii) A simple and formal structure was desired rather than simila
rity with natural language. with its many subtle ambiguities.

iv) The intended users should be familiar with the formalisms of
elementary algebra and set theory. The language should not intro
duce concepts outside of this domain unless necessary.

v) Data transformations are usually derived using the same step-
wise abstraction process found indispensable when solving non
trivial problems in other domains. such as programming or elementary
calculus. The view definition mechanism is suitable for this pur
pose and was therefore made central to the language.

The language has been successfully used in several pilot applica
tions. Among these are a cancer epidemiology study and a geographi
cal database application. With very few exceptions. the computatio
nal problems involved in these applications have been solved within
the language. The queries in a test set defined by M. Lacroix and

A. Pirotte'O)have also been expressed and evaluated without diffi
culty.

319

6

Operators are functions from operand values to result values, and
the result type is uniquely determined by the operator and the ope
rand type(s). If the result can not be computed, the result is
UNDEFINED of the appropriate type.

Any syntactically correct non-recursive expression will also have a
semantic interpretation provided that referred objects are defined
at execution time and provide appropriate argument types for all
operators involved. '

Unary operators are NOT, ISUNDEF, ROUND, TRUNC, CARDINAL, and
the arithmetic functions ABS, SQR, SIN, COS~ EXP, LN, SQRT,
ARCTAN. They are written in functional notation, e.g., NOT (a).

The binary operators +, -, *, I, DIV, MOD, =, <>, >, <~ >=, <=, OR,
AND have their usual meaning. They are valid for the appropriate sca
lar type, except = and <>, which are valid for tuple types as well.
Binary operators acting on sets are EQUALS, CONTAINS, CONTAINEDIN,
UNION, INTERSECTION, DIFFERENCE, and MEMBER with the conventional
set algebra interpretation. Binary operators have fixed priorities
and association rules. To override these rules, parentheses may be
used.

To operate on tuples, the identification (:), catenation (.(,',»,
and extraction (.) operators exist, as well as the relational ope
rators (=, <» already mentioned. The purpose of the first three
operators is to provide adequate facilities for naming attributes
which occur as intermediate or final results of a sequence of ope
rations on relations.

There are three kinds of operators acting on relations, namely func
tional form operators, the cartesian product operator, and the par
titioning operator.

Functional form operators are binary operators with a relation ex
pression as left argument and a flat expression, whose type depends
on the operator, as right argument. The right argument must be en
closed in brackets [J. They are:

restriction
generalized projection
selection
aggregation

- WHERE
- no keyword
- SELECT, SELECTMAX, SELECTMIN
- COMPUTE, SUM, PRODUCT, MAX, MIN, AVERAGE,

EXISTS, ALL, COUNT, CARDINAL.

Restriction and projection produce results of relation or set type.
Selection and aggregation produce results of tuple or scalar type.

The cartesian product operator *(,',) takes one or more relations
(factors) as argument and produces a result relation, whose attributes
are the union of the sets of attributes of the factors, provided
that all attribute names of the factors are different. If necessary,
the identification operator is used to achieve this. The set of tuples
of the cartesian product is the set of all catenations of tuples of
the factors.

The partitioning operator BY has a special form: R BY [e) agop[s]
where e is a tuple expression, s a scalar expression and agop
stands for any aggregation operator. R BY [e) may be viewed as a

320

7

functional form operator with a set of relations as r.esult, which
is however not an allowed object type. Aggregation over each of the
relations in the set is needed to obtain a result or'set type.

7. SYSTEM DESIGN ASPECTS

The system currently consists of five main subsystems: storage and
access, search and sort, g~ammatical analysis, evaluator, and com
mand handl~r.

The storage structure of Cantor is a development of the concept of

a fully transposed file"). Additional principles that have been emp

loyed are ordering, dynamic data compression, and B-list structure5),
i.e., an adaptation of the B-tree principle to linear lists of vary
ing length data.

Since transposed files are not well suited for fast random access
to single tuples, a special "cache" buffer is kept for the meta
database. A record in this buffer corresponds to a meta database
tuple.

The tuples of a base relation are ordered according to a sort order
implied by the relation key given by the user in the BASER ELATION
command. While storing a relation, the system applies a data com
pression algorithm to fixed-length segments of each attribute. This
algorithm reduces the number of bits,used for each object, and sup
presses the storage of repeating values within an attribute subfile
("run length compression"). The combined ef~ect of sorting and run
length compression provides for compact storage of relation tables
with multidimensional keys. Other desirable properties of the cho
sen storage structure are fast sequential and direct read access
and ability to update, insert, and delete values with good effi
ciency and without the accumulation of garbage.

The performance of a prototype system was measured and compared

with a commercially available data base system of good quality'2).
The results showed that very significant performance gains could be
achieved by combining transposed, file storage and data compression
techniques.

Batory") showed that search algorithms designed for use with
transposed files could outperform commonly used techniques such as

the use of inverted files (indexes). In '3), one of us presented
theoretical and empirical results showing that a certain class of
associative queries, called conjunctive queries, may often be eva
luated even more efficiently if the transposed file structure is
combined with sorting and run-length data compression. These re
sults led to the design decision not to implement indexes in Can
tor, although there exist special cases where the availability of
an index would have improved search performance.

321

8

The search and sort subsystem of Cantor was designed to take advan
tage of these observations as far as possible. It contains algo
rithms for internal and external sorting, duplicate tuple detection,
conjunctive query search ("box search"), key lookup, equijoin, set
union, difference, and intersection, all designed to work one (or a
few) attribute(s) at a time, to match the transposed file principle.
Only the conjunctive search algorithm has yet been critically eva
luated.

This subsystem performs syntactic and semantic analysis of command
language and query language syntax. When evoked by a STORE q state
ment, where q is the name of a parameterless view, it produces
either error messages or a syntax tree where all references to sto
red data, to attributes of relations in enclosing expressions (simi
lar to the referencing of non-local identifiers in a block structu
red language), and to views have been resolved. The types of each
partial result are calculated, checked for consistency, and stored
in the nodes of the tree.

In the case of a reference to an unevaluated view, its syntax tree
is generated and connected to the result tree. Reference to a pre
viously evaluated view is resolved as a reference to stored data
rather than to an expression, providing the user with a degree of
control which can be used to avoid the generation of very large
syntax trees through repeated view substitutions.

The evaluator subsystem performs optimization, "dataflow net gene
ration" and "dataflow net interpretation".

The optimizer works by transforming the syntax tree into a logical
ly equivalent one, corresponding to a different (more efficient)
query formulation, and with special-case information added to cer
tain nodes.

Two important special cases of expression, corresponding to box and
equijoin search are detected. Restrictions on factors and subpro
ducts of a cartesian product are analysed and when possible moved
so as to become evaluated before the full product is formed, thus
avoiding the formation of unnecessarily large cartesian products
The optimizer detects such common subtrees of the syntax tree which
need to be evaluated only once, using a fast hashing technique.

The optimizer will be extended with certain rewriting rules which
reduce the nesting depth of certain functional form operator expres
sions , enabling faster evaluation of important query classes. The
se rules are similar to, but more general than, those proposed by

Kim 15) for use with IBM:s query language SQL.

Using the possibly optimized syntax tree as input, the dataflow
net generator builds a hierarchy of static dataflow graphs. These
graphs, in which adjacent operator nodes are separated by buffer
nodes, describe the order in which the different operators are to
be executed. An operator node is either a simple operator node
representing other than functional form operators of SAL, or a com
posite operator node, i. e. a subgraph representing a functional

322

9

form operator. Each edge in the net signifies a dataflow for one
attribute or temporary data stream. The dataflow net generator
generates edges only for attributes which are part of an expression
and thus are needed to produce the required result.

Cantor uses an interpretation, technique which is analogous to the

operation of a vectorized dataflow computer'6) except of course
that only one processor is available. In a multiprocessor environ
ment, several operators could execute concurrently, since the order
of execution of operators is not rigidly determined. The use of
vector operators distributes interpretation overhead over many ele-o
mentary operations, invalidating the "folklore theorem" which sta
tes that interpretation of query language expressions is fundamen
tally inefficient.

The interpretation program has two main tasks. When initializing a
composite operator, it assigns space to its buffers. Then, it calls
the component operators of this operator in some order until all
its input has been consumed.

The system contains a large number (about 10) of operators, catego
rized as constant, scalar, tuple, set, relation, aggregation, and
transfer operators. Transfer operators move data between stream
buffers and B-lists. Scalar operators perform unary and binary ope
rations, cf. sec. 6, on (streams of) scalars. Set and relation ope
rators are used where the stream technique is inadequate, i.e.,
for operations which require the entire set as input. Dependent on
metadata about their operands, such as cardinality, sort order,
relation key, and extreme values for attributes, several of these
operators dynamically select which algorithm to use, usually by
calling different procedures in the search and sort subsystem.
Also, if the optimizer has detected that a restriction, or a part
of it, has the special property of a box search, or that a restric
tion of a cartesian product has components of equijoin type, special
relation operators will perform the required function.

As an example, the projection operator in general sorts its input
and removes non-unique tuples. However, analysis of relation key
information is done in the projection operator, which may thus de
tect that sorting and duplicate removal are not necessary.

8. SUMMARY AND CONCLUSIONS

A relational data base management system, designed for the analysis
of complex statistical data was presented. The system shows several
unusual design features, motivated by the intended application area
which in many respects poses different problems from more conventio
nal dbms applicationsw

The system has a powerful, formal query language whose concepts
closely follow those of elementary set algebra. Its design is strong
ly oriented towards fast evaluation of complex queries. Basic de
sign decisions of the storage, search, and query evaluation subsys
tems were made to this end. The use of ordered transposed files and
data compression techniques provide both economic utilization of
available storage and fast data access through mechanisms discussed
in this paper. Query optimization is performed in several levels of
the system.

323

10

9. ACKNOWLEDG~ENTS

Many individuals and organizations have contributed to this project
in different ways. Among the latter, the Swedish Bureau of Statistics
deserves special mentioning for its continuing support.

We are directly indebted for parts of this paper to our former col
league, Professor Stefan Arnborg of the Royal Institute of Techno
logy in Stockholm.

REFERENCES

1) SAS User's Guide, 1979 Edition. SAS Institute, Cary, NC, USA.
2) Svensson, P.: Om forskarens datormiljo (On the scientist's

computer environment), in Swedish. FOA Rapport C20215-D8, Jan.
1978. Swedish National Defense Research Institute, Stockholm.

3) Arnborg, S. and Svensson, P.: Fast multivariable query evaluation. FOA
Rapport C20189-D8, Aug. 1977. Swedish National Defense Research Insti
tute, Stockholm.

4) Arnborg, S.: On the complexity of multivariable query evaluation. FOA
Rapport C20292-D8, March 1978. Swedish National Defense Research Insti
tute, Stockholm.

5) Arnborg, S., Elvers, E. and Svensson, P.: Design specification for Datalab
- a system for data analysis based on the relational model of data. FOA
Rapport C20326-D8, Oct. 1919. Swedish National Defense Research Insti
tute, Stockholm.

6) Mourgues, K. and Strid, P.-O.: SCB:s utvardering av den forsta etappen i
utvecklingen av Datalab (Evaluation by Statistics Sweden of the first
stage in the development of Datalab), in Swedish. March 1983. Swedish
Bureau of Statistics, Stockholm.

7) Aho, A. V. and Ullman, J. D.: Universality of data retrieval languages.
Proc. 6th ACM Symp. on Principles of Programming Languages.
ACM, Inc., New York 1919.

8) Chandra, A. K. and Harel, D.: Structure and complexity of relatio-
nal queries. Proc. IEEE Symp. on Foundations of Computer Science 1980.
IEEE Inc., New York 1980.

9) Arnborg, S.: A simple query language based on set algebra. BIT 20 (1980),
266-218.

10) Lacroix, M. and Pirotte, A.: Example queries in relational languages. MBLE
technical note Nl07, Jan. 1976. MBLE Research Laboratory, Brussels.

11) Batory, D. S.: On searching transposed files. ACM Trans. on Data Base Sys
tems, 4, 4 (Dec. 1979), 531-544.

12) Svensson,-P.: Performance evaluation of a prototype relational data base
handler for technical and scientific data processing. FOA Rapport
C20281-D8, Dec. 1978. Swedish National Defense Research Institute,
Stockholm.

13) Svensson, P.: On search performance for conjunctive queries in compressed,
fully transposed ordered files. Proc. Fifth Int. Conf. on Very Large
Data Bases, IEEE Inc., New York 1919.

14) Svensson, P.: Contributions to the design of efficient relational data base
systems. TRITA-NA-7909, April 1979. Dept. of numerical analysis and
computer science, Royal Inst. of Technology, Stockholm.

15) Kim, W.: On optimizing an SQL-like nested query. ACM Trans. on Data Base
Systems I, 3 (Sept. 1982), 443-469.

16) Giloi, W. K.: Towards a taxonomy of computer architecture based on the
machine data type view. Proc. 10th Ann. Symp. on Computer Architecture,
Stockholm 1983. IEEE, New York 1983.

324

Statistical Database Research Project in Japan

and the CAS SDB Project

Kohji Shibano
Tokyo Scientific Center

IBM Japan

Hideto Sato
Economic Planning Agency

Abstract

In this paper, we describe working sta
tistical database systems in Japan. Most
are special purpose systems. In 1983, a
comprehensive statistical database
research project MUSE began in academic
societies. In conjunction with it, EPA
is going on an SDB development project
(CAS SDB project). CAS SDB plans to han
dle a large amount of statistical summary
data and to support a variety of social
scientific uses. We describe statistical
meta-data problems and a current design
for a statistical meta database. We also
describe a current implementation of CAS
SDB. It was implemented on,a relational
DBMS and has an interface with SAS. We
are now testing the capabilities of CAS
SDB in real statistical applications.

1. Introduction: Large Statistical Data
bases in Japan

There are a number of large statistical
databases and database systems in Japan.
Many government organizations, such as
the Economic Planning Agency, Ministry of
International Trade and Industry, Bureau
of Statistics, National Land Agency,
etc., are interested in developing sta
tistical databases.

325

Most current working large statistical
database systems in Japan are special
purpose, e.g., SDB of PPIS (Pollcy Plan
ning Information System: MITI) [FUJI83]
for industry and trade data, ISLAND (NLA)
system for regional grid data. HSDB (Hi
roshima University) [IKED82] is another
type of statistical database system
des igned for the management of summary
data which is consistent with micro data.
However, there are few statistical data
base systems constructed for
multi-purpose statistical use.

The comprehensive statistical database
research project MUSE (Multi-Use
Socio-Economic Statistical Data Bank)
began in academic societies in 1983
[SHIS83]. The center of the MUSE project
is the University of Tsukuba. In conjunc
tion with the MUSE project, the Economic
Planning Agency has begun to develop a
new statistical database management sys
tem, named CAS SDB, which would be the
core software of EPA. This project is
going on with the help of the University
of Tsukuba,' Mitsui Knowledge Industry,
and Tokyo Scientific Center (IBM Japan).

In the Japanese environment, large sta
tistical databases are usually databases
of statistical summary data because gov-'
ernmental statistics in micro data form
are not open to public use. Our first
object is to be able to handle large vol
umes of statistical summary tables in an
easy way.

1

2. The MUSE Project

The MUSE project includes the
components and corresponding
groups:

following
research

1. Databqse management research group

2. Distributed database and econometric
modelling software research group

3. Database construction and research
on multiple uses of MUSE SDB

•

•

•

SNA (System of
Accounts) and micro
research group

National
data set

Multi-sector economic
research group

Social and political
research group

data

data

• Regional economic data research
group

• Econometric data research group

The database construction group plans to
collect most Japanese machine-readable
statistics.

The MUSE project is intended to support
social science research. MUSE SDB will
handle a variety of summary statistics
from heterogeneous sources collected by
many different organizations. It will
support a variety of different research
and planning uses. We have a difficult
task to describe, store and utilize many
kinds of published statistics.

Hereinafter, we shall explain our treat
ment of these problems in the CAS SDB
which is developed with the cooperation
of the MUSE database management research
group.

326

3. Meta Database Problems of CAS Statis
tical Databa§e

In a statistical database unlike most
conventional business databases, the
amount of information concerning an
object database often is too large for
users to comprehend for the following
reasons:

• Abstract entities may consist of many
entities

•

•

•

There may be a large number of entity
types, attributes,. domains, and
relations

Many candidate schemata for the same
information are possible [KENT62,
HOTA63]

The amount of descriptive or
meta-data information may itself be
.very large.

As a result, statistical database systems
need to be able to handle many files,
meta-data information (the code: book
problem) and also to handle many alterna
tive representations. Few database sys
tems can. provide ·such an environment.

, For example, it is difficult to transform
a set of time' -series data to a
tross-sectiona1form where the set of
series are compounded according to the
same attribute, TIME. In fact, a set of
income time series for prefectures can be
regarded as cross sectional income data
categorized by time by prefecture. Con
vers'e1y, a cross-sectional statistical
data designed for a single survey, such
as population census data, is difficult
to treat as a set of time series. For
example, in order to retrieve time series
population data for Hiroshima ,Prefecture
from 1961 to 1960,' we need to access 20
files and select '- Hiroshima Prefecture
from each; then to combine 20 results of
the selection. This is a very complex and
cumbersome task for the user. As a
result, we need a database system which
can handle both time series and
cross-sectional data.

2

CAS SDB plans to allow users to have many
kinds of external views. Thus we must
take special account of how to represent
and manage complex meta-data
information. In order to do this, we
must first describe the meta-data in a
schematic manner and to give precise
descriptions of statistical data proc
essing operations that may be expected.

4. Design of Meta Database

Although record-based representations of
data have some limitations [KREP83] , they
are still an easy-to-understand repre-

sentation for statisticians. Statisti
cians terms 'samples' and 'items',
naturally correspond to 'entities' and
'attributes' , in terms of database
researchers.

We think that the -best way to deal with
statistical data is not to abandon the
record-based representation of data but
to add statistical meta-data to it.

Schematic representation of a meta data
base is shown in Figure 1. In order to
manipulate meta-data information and the
data itself in a similar manner, we made
a meta database and its object database,
both of which have the same structure.

~~~~------~-------------IProcess definition I 

IDomainl 

tablel 

tablel 

ICross-section tablel 

ITime-series table I 

ICategory value list I 

table/ 

\ ~IDerived attribute I 
IAttribute I 

ICategory attribute I 

- ISummary attributel 

A-+-7)B B is sub-type of A. 

entity type 

Figure 1. Schematic representation of meta database 

327 
3 



The main entity types of the meta data
base are 'table', 'attribute', and 'do
main'. 'Category value list' is a table 
of values of a category domain. 'Conver
sion table' describes the correspond
ences between the values of two category 
domains, e. g., a reclassification rule 
from minor categories to major 
categories. The 'table' and 'attribute' 
files describe the current status of the 
obj ect database. The domain file 
describes the range of domain values 
and/or the name of the 'category value 
list' table. 

In a statistical database, there is some
times confusion between two types of 
abstraction: value levels and type 
levels. For example, when we think of a 
certain category, such as 'California' as 
a state in the U. S., we recognize that 
'California' is an entity or an entity 
value. On the other hand, when we think 
of 'California' as a set of counties in 
California State, we recognize 'Califor
nia' is an entity type or an set of 
entities. 

We need to distinguish between an entity 
value and an entity type, but statisti
cians always recognize this difference by 
means of direct mentioning or from con
text. We plan to have the database system 
recognize this difference in a similar 
way. 

~ User I 
f /1 I '\ 

Query 

\II 

Retrieval from 
Meta DB~ Meta DB 

'-
Meta information 

"'\ 

./ 

In'/iddition, enumeration of domain values 
is Illot sufficient to distinguish real 
values and missing value codes. Many 
kinds of exceptional values are required 
,in statistics and statisticians always 
need to distingui~h different types of 
exceptional values (such as impossible, 
secret, lack of continuity, tentative 
values). For example, UN energy' statis
tics includes "impossible" and "missing" 
values in different codes. A statistical 
database system should support these dif
ferent missing data codes. In CAS SDD, 
such differences can be described in the 
'domain' file of the meta database. 

5. Current Implementation of CAS SDB and 
Future Plan 

A preliminary version of the experimental 
CAS statistical da~abase management sys
tem was implementeq at EPA. It supports 
some meta database facilities, and it was 
implemented on a relational DBMS. It has 
an interface with SAS [SAS79]. We are now 
testing the capabilities of CAS SDB for 
real statistical applications. 

Meta information -, 
'\ / 

\V 
Retrieval and 

Object DB-----7 Manipulation "-

" of Object DB Results 

Figure 2. Schematic Representation of Operations of CAS SDB 

328 
4 



The preliminary version also supports 
restriction, projection, reclassifica
tion of categories using conversion 
tables, and automatic aggregation. But 
it does not yet support view realization, 
automatic join or automatic aggregation 
directly inferred from meta information 
(directory driven). 

The user interface of our test version 
DBMS is a full screen menu interface like 
IBM's SPF (System Productivity 
Facility). Its operation is similar to 
SPF member list operations. First, the 
user retrieves or browses meta informa
tion from the meta database and sele'cts a 
desired table from the table list or the 
attribute list displayed on the screen. 
Next, the user specifies operations on 
the table. In such a manner, he can 
manipulate the object database itself. 
Information once entered never has to be 
re-entered. As shown in Figure 2, a user 
does not need to enter table names or 
attribute names in the meta database. The 
user does not need to look through a code 
book but only to browse a certain domain 
value list. 

The above consideration is highly neces
sary in Japan, because to input Japanese 
characters is still cumbersome even using 
computers. So to decrease input is more 
important in the Japanese environment 
than in the U. S .. 

Alphabetic or English expression of 
information is not sufficient for Japa
nese users. Japanese users need precise 
definitions of meta objects of statis
tical data in Japanese. Alphabetic or 
English expressions only play the role of 
aliases. 

For the next implementation of CAS SDB. 
self-descriptive database management 
facilities are planned. We plan not only 
to manage' the meta database (dictionary), 
but also to support operations on statis
tical data which is abstract and has 
special semantics. 

/ 

329 

6. Cone luding Remarks 

CAS SDB is a computer system for oper
ations. such as searching statistical 
tables. joining and transforming the 
tables, and preparing data for statis
tical analyses or modelling. 

However. meta database facilities which 
are the core of CAS SDB, require the 
users to input additional information. 
Probably they feel CAS SDn is cumbersome. 
Hence we have to pay closer attention to 
the user interface, in order to simplify 
its use. The most urgent issue for us is 
to devise an interface with which users 
can do their complex jobs with the least 
effort or less effort than in a conven
tional way. 

Another important problem for us is what 
can be a conceptual schema for'a statis
tical database. A conceptual schema lets 
users know what ihformation is in the 
databas,e. and what kinds of views may be 
allowed. 

We are now studyin8 a type of conceptual 
schema which willj:>ermit us to describe 
heterogeneous statistical data in an 
integrated manner, 'and in which alterna
tive representations of equivalent 
information can be treated as synonymous. 

Acknowledgment 

Our research has been carried on by the 
CAS SDB development group organized by 
the Economic Planning Agency. We have 
received several helpful comments and 
suggestions .from the committee members of 
the group. Especially, we would like to 
thank Professor R. 'Hotaka of the Univer
sity of Tsukuba, for his continuing 
encouragement and insightful 
suggestions, and Professor H. Ikeda of 
Hiroshima University. We also thank S. 
Saeda of Mitsui Knowledge Industry, and 
J. Sakamaki and Y. Toda of Fuj itsu Corpo-

5 



ration, who developed the early and 
current verions of CAS SDB with us. We 
are also grateful to J. McCarthy of LBL 
for many helpful suggestions. 

REFERENCES 

[EPA82] Economic Planning Agency, "De
sign of Cross-Section Database" (in 
Japanese), March, 1982. 

[FUJI83] 1. Fujimori, "Statistical Data
base of MITI" (in Japanese), . Pro
ceedings of the 2nd. Conference on the 
Advancement of Statistical Data,Pxo
cessing -Statistical Database-, Tok
yo Scientific Center, IBM Japan, 
January, 1983. 

[HOTA83] R. Hotaka, "Statistical Data 
from the Viewpoint of Database," Pro
ceedings of the 2nd Conference on the 
Advancement of Statistical Data.Pro
cessing -Statistical Database." .Tok
yo Scientific Center, IBM Japan, 
January, 1983. 

[IKED82] H. Ikeda, Y. Kobayashi, "Addi
tional Facilities of a Conventional 

33.0 

DBMS to Support Interactive Statis
tical Analysis," Proceedings ·of the 
First LBL Workshop on Statistical 
Database Management, Lawrence Berke
ley Laboratory University of 
California, March, 1982. 

[KENT82] W. Kent, ~Choices in Practical 
Data Design," Proceedings' of the 
International . Conference on Very 
Large Data Base (VLDB), 1982. 

[KREP82] P. Kreps,· "Semantic Core Model 
for Statisticai and Scientific Data
bases," A LBL Perspective on Statis
tical Database Management, pecember, 
1982. 

[SHIS83] S. Shishido , "Multi -Use Socia 
Economic Statistical Databank" ( in 
Japanese), Tokei, Vol. 34,. No; 1, 
January, 1983 .. 

[SAT081] H. Sato, "Handling Summary 
Information in. Database," SIGMOD 81, 
1981. 

[SAT083] H. -Sato, N .. Tamachi "Meta Data
base Management System for Statis
tical Database" (in Japanese), 
Proceedings of the 28th Conference of 
IPSJ, March, 1983. 

6 



• 

A STRATEGY FOR IMPLEMENTATING A COMPUTER EFFICIENT DATABASE MANAGEMENT SYSTEM PRELIMINARY RESEARCH REPORT 

John Dixie, Philip Wake 

THE OFFICE OF POPULATION CENSUSES AND SURVEYS, TITCHFIELD, FAREHAM, HANTS UNITED KINGDOM 

Abstract 
The United Kingdom census office has a need to improve access to large data sets such as the population 
census, registrations of births, marriages, deaths and diseases, and major social surveys. In general 
terms the need is to access a small number of data fields from a large number of records (with or without 
filtering) for applications in which the data volume is encormous but stable (say 100Mb or greater). A 
DBMS with transposed file structure (like RAPID) would appear to be ideal for this • 

A strategy is proposed for implementing such a system on ICL 2900 range computers. Questions are raised 
conerning enhanceability, programming languages, data packing and file structure, storage of meta-data, 
and the use of the operating system. A recently implemented secondary (macro) data TDF (Transposed 
Datastore File) is described and the possibility of using the same structure for primary (micro) data is 
discussed. 

1. OPCS' REQUIREMENT wrong, and it is not known for more than one of 

the datastreams to have to be accessed for one 

1.1 The Office of Population Censuses and Surveys table. Last minute adhoc tabulations are a 

(OPCS) is one of the main collectors of data for particular problem, and ther is a tendency to 

statistical anal:ysis in the UK. It has design the datastreams to contain more data 

responsibility for conducting the population fields than they should in an attempt to avoid 

census, for processing registration data on later problems. There is no doubt that if an 

births, marriages, deaths and diseases, and for economic system could be developed to avoid the 

government social surveys. necessity for creating data streams (or make it 

possible for datastreams to be created less far 

1.2 A need for better access to data has been in advance where the data has to be sorted) many 

identified in three main areas: census data users would more than pleased. 

CENSUS DATA: The 1981 census of population REGISTRATION AND MEDICAL DATA: Data for a single 

primary data comprises some 8,OOOMb (albeit with dataset, eg births for a single year, is 

some duplication under our current system of relatively manageable. But there is a need to be 

processing). The next census may possibly be held able to make links between data sets, for example 

in 1986, but more likely in 1991, and it is to analyse and tabulate deaths data over a ten 

necessary to begin planning the overall strategy year period (the life of a particular version of 

now. The problem to be solved is the ICD). Even for a single dataset (around 100Mb) a 

inflexibility of the current datastrearn approach transposed file storage system which would make 

in which supposedly small selections of data it feasible for ad hoc tabulations to be run at 

fields are serially extracted on to magnetic tape the terminal in a few minutes would be more than 

for the purpose of tabulating a series of related welcomed by OPCS statisticians, who currently 

tables. These datastreams have to be planned well find that a 10% sample is all they can manage on 

in advance for the efficiency of the approach to their assigned computer budgets. We also have a 

be realised. In practice this planning can go major longitudinal analysis project which 

331 



involves following the progress of a 1% sample of 

population over time starting from the 1971 

Census. This data will amount to some 750Mb, 

from the 1971 and 1981 Censuses and the 

intervening events, and will continue to grow. 

DATA COLLECTED BY SOCIAL SURVEYS: The larger 

surveys, such as the Continuous Manpower Survey 

and the General 

substantial volumes 

Household 

of data 

Survey, 

and 

involve 

computer 

efficiency is a consideration. The ad hoc surveys 

are much smaller, and do not present the same 

problems (but might benefit from a system 

developed for the above applications). 

1.3 Our research indicated that a relational 

database system using a 

structure, such as RAPID, 

transposed' 

would be 

file 

most 

appropr1ate for our needs. However, as we do not 

operate IBM equipment, the option to use RAPID is 

not open to us. We therefore studied 

commerically available software in order to see 

if any of it could provide an acceptable degree 

of efficiency. During 1982 we carried out a full 

trial of the most promising relational database 

management system, called RAPPORT. 

We found that the relational structure was well 

suited to our work and that relational databases 

seem to be relatively easy to, understand and 

design. But we found that processing costs for 

statistical work were exceedingly high. 

332 

1.4 Finally we made a preliminary study of the 

problem of implementing RAPID on ICL 2900 

computers. The task was seen to be daunting, to 

say the least, but we noticed that much of the 

package was concerned with updating the database 

with new data (rather than just amending current 

data). It seemed that this concern with updating 

created much complexity in the package, as also 

did the concern with packing data down to the 

smallest number of BITS by recoding. It occurred 

to us that if we assumed the data was totally 

stable (a fair assumption considering the way we 

process our data at the moment) and that packing 

below the BYTE level was too heavy on mill time 

to make the data storage savings worthwhile, we 

could build a new system from scratch in a 

reasonable period of time. As far as data 

packing is concerned we felt that if recoding to 

a sequential code is to be done, it should be 

done visibly and logically by the user (as if 

deriving a new variable) because then our TAU 

tabulation package could take advantage of the 

recoding by using direct table look-ups. 

1.5 From this study evolved the stategy for 

implementation described in this report. As one 

might expect at this stage in the project we have 

rather more questions than answers, but the 

position looks hopeful. 



2. A POSSIBLE STRATEGY 

2.1 OUr proposed strategy for implementing a 

statistical database management system is 

strongly influenced by our circumstances. We need 

to obtain as early a return as possible on our 

investment, and to limit our rate of investment 

to what c'an be provided in the current economic 

climate. This implies starting with a simple 

system, but one which has been designed so that 

more advanced facilities can be added as 

resources become available. We propose therefore 

to implement first a system to hold static edited 

microdata. We can then develop by adding 

utilities for expanding or contracting the data 

set, querying and altering ad hoc records, 

extracting subsets and PERHAPS interfacing to our 

editing systems. The facility to join two ordered 

relations to the form of a simple hierarchy (as 

used for census data) will certainly be an early 

enhancement to the software. We feel very 

strongly at the moment that the system will Nor 

be enhanced later to directly add new records to 

a datastore in amongst current records (either 

physically or logically). But there will be a 

facility to amend current data or create a new 

relation (these do not cause file design 

problems) • 

2.2 The overall concept will be one of loading 

data into the database format from whatever data 

collection and editing system is currently used 

and using the data store software to access the 

333 

data 'efficiently. Of course there would be 

nothing to stop the user reserving space for 

derived data fields and computing and storing 

these in the datastore for the period during 

which they were required. We would expect users 

to work in this way. 

2.3 For ease and speed of first implementation, 

we propose to use a high level language. This may 

sound illogical when the ultimate aim is high 

computer efficiency, but we hope to be able to 

contain the key processes within a limited set of 

modules, which can subsequently be rewritten in a 

low level language if absolutely necessary (a 

full system in the high level language would 

always be maintained for both maintainability and 

forward compatibility). 

* What languages should we consider in our design 

experiments for the first implementation? 

* In particular, is there any facility which 

would limit the choice to those languages that 

have it? 

There is another reason for beginning in a high 

level language. That is to ensure the 

portability of the system. In the UK the 

statistical function is not centralised in the 

sam way as in many other countries, and we expect 

a variety of machines to come into use. The use 

of common software is a major issue at the 

present time, and in our view a worthwhile cause. 



2.4 The use of a high level language would appear 

to allow packing only to the byte, rather than 

bit, level in the initial implementation. 

* Is packing to the type level adequate for the 

envisaged production systems? 

* Should we deviate from a fully transposed 

structure to allow grouping of short codelist 

data fields in order to minimise storage, and if 

so how should they be grouped? 

* Should data-recoding to facilitate reduction to 

te minimum number of bytes be part of the system, 

or should we just load the data given? 

(Certainly the latter in the first version, but 

should allowance be made for that kind of 

enhancement?) 

2.5 It might be advantageous for various reasons 

(statistical,- managerial and economic) to link 

the database system to our data dictionary 

system, which has been developed specifically for 

statistical work. We would certainly aim to make 

the loaded TDF version of data invisible to the 

user. 

* Can we avoid the need to store meta-data along 

with the data in the database? 

* What would be the disadvantages of doing this? 

* What are the implications of separating the 

334 

data from the meta-data for privacy protection? 

The latter is of prime importance to us, 

particularly for the census and the longitudinal 

study. 

2.6 We would like to use the operating system as 

little as possible, or at least contain its use 

to within specific parts of the system, in order 

to minimise the problems of portability. 

* Is there a conflict between this and the 

facilities needed for a TDF system? 

3. A DESIGN BASIS FOR INITIAL DEVELOPMENT 

3.1 The initial development of this TDF 

(Transposed Datastore File) system for primary 

data will be based on the experience gained on 

the secondary data TDF system which has been 

successfully used with the OPCS mapping system 

STATMAP. The data storage element was the word 

(instead of the byte) and each data element 

occupied precisely one word (instead of a 

variable number of bytes) but it is believed that 

the same simple technique is applicable in the 

more complex world of primary data fields by: 

- using VME to ensure efficiency at the byte 

(instead of word) level 

- not packing data below the byte level 

- making the data element the byte to correspond 

with the data storage element 

- let the software worry about which bytes need 



retrieving to make up a requested data field 

(ie the TDF structure should admit nothing 

about groups of bytes) 

3. 2 It is thought to be worthwhile to make the 

above 'adjustments' to contrive a TDF system for 

primary data which is as single and uncluttered 

with complications as is the secondary data TDF· 

system because of the results a,chieved. In the 

mapping TDF we have stored (in a 100Mb file) 188 

SAS (Small Area Statistics) 1981 Census derived 

variables for each of 130,000 EDs (Enumeration 

Districts) in Great Britain. For most mapping 

purposes the user needs to extract 4 variables 

for all the EDs in a chosen window of CB. The 

process of extracting 4 variables for the whole 

GB window takes between 36 and 108 elapsed 

seconds. The amount of mill time used is less 

than 10% of the average elapsed time (important 

if elapsed time estimates are to be meaningful in 

the context of a busy multi-program computer). 

3.3 If the same simplici ty (and therefore 

efficiency) can be attained, the access speeds 

achievable, in applications where such speed is 

USEFUL, are illustrated by the following 

examples: (What is meant by USEFUL is explained 

after the examples.) 

A census tabuation of 4 variables (data fields) 

might involve accessing only 4 bytes per person. 

The 100,000 blocks of data (assuming 2Kb per 

block, there would be 25,000 segments in a census 

335 

TDF) would be accessed in 60 to 180 minutes 

elapsed time (12 mill mins). That's less than 3 

minutes (12 mill secs) per county. Where 

filtering is required, only the variable to be 

fil tered need be accessed at first, the other 

variables only being accessed when the filter 

test is positive. 

A single year's deaths tabulations. involving 

similar variables would require the access of 

1000 2Kb blocks in 36 to 108 seconds (7 mill 

secs) • Accessing ten year's worth of deaths at 

the terminal becomes a feasible proposition when 

the elapsed time reduces to 6 to 18 minutes. 

* What does USEFUL (above) mean? 

The measure used (elapsed time) does not 

necessarily mean that the intention is to make 

access to data quick in a While-you-wait fashion. 

Where there is no need for terminal access to 

data, the facility for short access times has two 

main beneficial effects: The effective work-

capacity of the computer is increased because 

more access runs can be done in a day, and the 

need for dump-and-restart is reduced because of 

the lesser risk of the computer going down during 

a particular run. 

3.4 We will now describe how the secondary data 

TDF system works and then show how a primary data 

TDF system might be designed to take advantage of 

the simple structure and superb efficiency 

offered. 



4. TDF FILE STRUCTURE CONSIDERATIONS 

(The mapping TDF is a file set up for the OPeS 

STATMAP thematic mapping system currently being 

used to produce point maps of 1981 census data) 

4.1 The mapping TDF is designed as follows: 

A 100Mb file on an EDS 200 is divided into 261 

segments. Each segment is precisely one cylinder 

containing 188 2Kb blocks. Each block contains 

the data for variable (a single SAS derived 

count) for 500 consecutive records (Enumeration 

Districts). The 500 four-byte integer counts in 

a block represent the smallest unit of data 

transfer between computer memory and disc. All 

the blocks in a particular segment contain the 

counts for the same 500 areas, but represent 

different variables. Thus up to 188 variables 

for each of 130,500 EDs are held in the TDF 

(block 89 in segment 2 contains the data for 

variable 89 for the 501th to the 1000th ED). 

This partially transposed structure has the 

advantage that any number of variables for 500 

consecutive recordS can be accessed without disc 

read-head movement. It also has the advantage 

that the data loading process is perfectly serial 

and needs a program data core size of only 

188*2Kb. Conversely, entire-record access (eg 

for editting) is also achievable in a serial 

fashion, again involving a program data core size 

of only 188*2Kb. 

336 

Unlike the completely transposed and non-aligned 

( conventional) -structure, the partially 

transposed and - -aligned structure enables the 

fastest possible access speeds to be achieved and 

enables entire-record access to be achieved 

without loss of efficiency compared with using 

the original serial file from which the datastore 

was loaded. 

4.2 For a primary TDF: 

Precisely the same datastore structure could be 

used to hold 522,000 primary records with 188 

bytes per record. Each block would contain the 

data for one part-variable for 2000 consecutive 

records. A sequence of blocks would hold the 

data for a whole variable, the number of blocks 

being the same as the number of bytes needed to 

hold the variable block for a byte 

variable, 2 blocks for a 2 byte variable, and so 

on. Only the software needs to know which blocks 

represent which parts of which variable. 

The objective would be for the user to deal with 

the same Cobol-like record layout that he would 

normally deal with for accessing his data. The 

only difference would be that if the data is TDF 

loaded only the parts of the record layout being 

used would be • filled in' by the software each 

time the read-next-record subroutine is called. 

An initialising subroutine would have to be 

called to set the scene. 



It is envisaged that the TDF access and update 

subroutines would be used in the TAU tabulation 

package. A separate utility P10gram will be 

needed to load data into TDF format, given its 

meta-data and an appropriate disc file. 

4.3 The initial development will involve the 

loading qf a specific set of data into TDF format 

(yet to be chosen, but 1 years, worth' of deaths 

data is' a likely candidate). An ad hoc facility 

will be put into TAU to enable the TDF to be 

accessed for nominated variables, and the 

facility tried out on interested users, and 

empirical data collected to assist further 

development. 

337 



UTILIZATION OF CHARACTER REFERENCE LOCALITY FOR 
EFFICIENT STORAGE OF DATA BASE 

M. A. Bassiouni 
Department of Computer Science 
University of Central Florida 

and 
K. A. Hazboun 

Pennsylvania State University 

Abstract 

This paper describes an efficient character encoding method based on practically observed 
properties of character occurrences within files. The method is specially designed for 
the encoding of files containing both numeric and alphabetic fields. It is therefore 
particularly attractive for the storage of many large database files, encountered in 
practice, which are amenable to statistical analysis. The technique of using m-grams is 
also incorporated to enhance the compression efficiency. Numerical tests have given 
favorable results for the proposed method. 

Index Terms: encoding techniques, 
data compression, character 
reference behavior, storage 
efficiency, binary trees. 

I. INTRODUCTION 

Many encoding methods have been 

developed in the literature [1-9 ] for 

representing data with fewer bits than are 

required by a conventional fixed-length 

character representation. These methods, 

usually called data compression techniques, 

have wide applications in information pro

cessing systems, where character represen

tation has a considerable effect on the 

effiCiency of file storage on magnetic 

media and its transmission down tele-

communication channels. 

One of the popular data compression 

techniques is that developed by Huffman 

[3 ] who took advantage of the fact that 

characters do not occur with equal fre

quency. Accordingly the most frequent 

characters are assigned to the shortest 

codes and all larger codes are constructed 

so that shorter codes do not appear as pre

fixes. Simply, the Huffman's method is to 

build a decode tree (i.e., a binary tree 

in which external nodes represent 

characters) having minimal external path 

338 

length. If p(i) is the expected relative 

frequency (or the weight) of the ith character 

and d(i) is the distance of the external node 

for the ith character from the root node, then 

the Huffman's decode tree minimizes the quantity 

N 
L p(i)*d(i) 

i=l 

where N is the size of the character set. A 

recent implementation of Huffman's method along 

with compression statistics are reported in [6 J. 

Another observed property of character 

occurrence within files is the arbitrary alter

nation of alphabetic, numeric data, and spaces 

within predefined fields of one or more char

acters. The record layout of ~ost commercial 

files is designed such that the majority of 

fields are dedicated to contain a sequence of 

numeric or alphabetical data consisting of 

several characters in each field. In turn, the 

numeric field may be zero filled, while the 



alphabetic field may contain a succession 

of blanks. Consequently, the majority of 

characters within each field are limited to 

a subset of the global character set (we 

call this subset a locality set). Such 

locality of character reference behavior 

may extend over two or more adjacent 

fields. A recent compression technique 

[2 ] that makes use of the distributional 

as well as the correlational character

istics of character reference has been pro

posed by the authors of this paper. The 

technique is a two-level hierarchy of 

Huffman's type binary trees. The trees in 

the first level (called the local trees) 

are identified and constructed based on 

the divisions (groups) of characters as 

induced by the property of locality of 

character reference. The trees in the 

second level (called the failure trees) are 

used to indicate the transition from one 

group to another when there is a change of 

the locality set. 

In addition to the variability in 

frequency and the locality of reference, it 

has been also observed that certain se

quences of characters occur more frequently 

than others. One approach to data com

pression is to replace high-frequency 

variable-length fragments of words by 

fixed-length codesPbint1ng to a-'com

pression table containing these high

frequency fragments. Mulford and Ridell 

[ 5] , Ruth and Kreutzer [ 8J , and 

Schwartz and Kleiboemer [9: ] have used 

Huffman's encoding with frequently occur

ring bigrams (sequences of two characters) 

or m-grams (sequences of m,characters) 

added to the character set. This technique 

achieves tighter compression, but there is 

a tractability problem in finding the 

optimal m-grams for a given text. 

In the following sections, we de-

339 

scribe an encoding technique that combines the 

advantages of the techniques mentioned above. 

The method, which uses one level of Huffman's 

type trees, will be explained in stages, then a 

formal decoding algorithm is presented. Next, 

results of the numerical tests are reported. 

2. UTILIZATION OF CHARACTER REFERENCE LOCALITY 

For simplicity, we shall use a restricted 

character set to illustrate the technique. 

Assume that we have a set of 6 characters con

sisting of 3 alphabets and 3 digits. Table I 

gives the relative frequencies of these charac

ters along with the binary code obtained from 

applying the Huffman's method on these statis

tics as shown ,in Figure 1 (the value inside each 

node represents the relative frequency of all 

leaf nodes in the subtree whose root is this 

node). 

Table I 

Character Relative Huffman's 
Frequency Code 

A 9 01 
B 6 101 
C 5 111 
1 9 00 
2 6 100 
3 5 110 

1 

Figure 1. Huffman tree for the character 

set of Table I 



Now let us assume that in addition to 

the statistics of Table I, we also know 

that adjacent characters within text tend 

to fall within one of two groups (locality 

sets): alphabets or digits. Let us de-

fine the average sequential-run length of 

a group to be the expected number of con

secutive characters of this group before a 

character from a different group appears 

in the text. The reciprocal of the 

average sequential-run length of a group 

indicates the frequency of character 

switching (i.e., change of locality) from 

this group. 

For the example of Table I, let us 

assume that the average sequential-run 

length of both the alphabet and the digit 

group is 5, i.e., on the average 5 char

acters of the same group will appear con

secutively before a character from the 

other group interrupts the current local

ity. To make use of this alternating 

behavior, we construct two Huffman's type 

decode trees: the alphabet tree and the 

digit tree. In each tree, we introduce 

an extra imaginary character, $, called 

the switch indicator, which is merely used 

to indicate that the next character is from 

a different group and thus the other decode 

tree must be consulted. 

Figure 2 shows the alphabet and digit trees 

constructed using the statistics of Table I 

and an average sequential~run length of 5 

as explained above. The relative fre

quency of the switch indicator $ within the 

alphabet tree is given by (9+6+5)/5 = 4, 

Le., every 20 alphabet characters will 

contain on the average 4 switches to the 

digit group. Note that in general the 

relative frequency of $ within the two 

trees can be different. 

340 

alphabet tree 

digit tree 

Figure 2. Alphabet and digit trees for 
the character set of Table I 

As an example, the string ABAACll123AABCB 

will be decoded in 31 bits (assuming we start 

from the alphabet tree) as follows: 

o 10 
A B 

o 0 
A A 

110 
C 

III 
$ 

o 
1 

o 
1 

110 III 0 0 10 110 10 
3 $ A ABC B 

o 
1 

10 
2 

The Huffman's scheme (Figure 1) requires 37 bits 

for the same string. It is easy to show (assum

ing the statistics of Table I and the average 

sequential-run length reflect the true figures 

found in practice} that the average number of 

bits per character for the Huffman's method is 

2.55, while that of the scheme of Figure 2 is 

2.4. This means that the sayings achieved by 

using shorter representation (as a result of 



locality) exceeds the overhead introduced 

by the switch. indicator. 

3. OVERLAPPING LOCALITY SETS 

In general, the locality sets do not 

have to be mutually disjoint, i.e., a 

given character can belong to more than 

one locality set. As an example, let us 

add an extra character, the blank char

acter ~, to the set of Table I and assume 

that it has a relative frequency of 10. 

Furthermore, assume that the blank char

acter has equal probability to occur in 

any group. Figure 3 shows the Huffman's 

tree for this set and Figure 4 gives the 

alphabet and digit trees using an average 

sequential-run length of 10 in both trees 

(Note that the relative frequency of $ is 

2.5 in this case). 

Figure 3. Huffman's tree for the 
modified set 

341 

alphabet tree 

digit tree 

Figure 4. Locality trees for the 
modified set 

For example the string ~B~Cll~2l~ is repre

sented by 28 bits as follows 

11 11 01 00 01 100 
A A ~ B ~ C 

11 00 01 
1 ~ 2 

11 00 
1 ~ 

101 11 
$ 1 

Note that we deliberately made the code for the 

blank character be different in the two trees to 

emphasize that no ambiguity is introduced as a 

result of having the same character in more than 

one locality set. This is because only one 

locality tree is used at a time to control the 

decoding process, with control being transferred 

to the other tree whenever the code of the switch 

indicator is encountered. Using straightforward 

calculation it is easy to show that the average 



number of bits per character for the 

Huffman's scheme (Figure 3) is 140/50 

2.8, while that of the scheme· of Figure 4 

is 125/50 = 2.5. 

4. MULTIPLE LOCALITY SETS 

So far, we have dealt with only t\;"C 

locality sets. In practice, it migh.t he 

preferable to have more than two locality 

sets.. A general scheme could use four 

locality sets: alphabets, digits, suc

cessive blanks, and the special characters. 

Assume that the character set is 

divided into n locality sets (pot neces

sarily disjoint). In the locality tree of 

the ith group, there will be a switch 

indicator leaf node, $ (i,j)., to indicate a 

switch from group i to group j, i~j, and 

l=>i,j=>n. The relative frequency of $(i,j) 

within the ith tree is obtained by collect

ing statistics about the average sequential .. 

run length and transition frequency from 

group i to group j. 

As an example, suppose that we would 

like to divide the character set of Figure 

3 into 3 groups such that the blank char

acter is in a separate group. Figure 5 

shows the three locality trees: the 

alphabet, the digit, and the blank tree, 

using appropriate relative frequencies for 

the switch indicator nodes. 

342 

$(1,2) $(1,3) 
alphabet tree 

$ (2,1) 

digit tree 

$ (3,1) $ (3,2) 

blank tree 

Figure 5. Three locality trees 

'Note that the saving obtained from shorter rep

resentation of characters and the clustering of 

characters of the same type in adjacent positions 

of the input text outweighs the extra space due. 



to the less frequent occurring switch 

indicators. 

5. USE OF LOOK-AHEAD 

The idea of using bigrams Cor m-gramsl. 

can be easily incorporated into the 

previous technique if a look-ahead capa

bility is added to the encoding process. 

For example, if in the alphabet tree of 

Figure '2, we know that the bigram 'BC' 

occurs frequently, e.g., 50% of the occur

rences of the character B are followed by 

the character C. Then we can add a leaf 

node for the bigram BC as shown in Figure 

6. Whenever the character B is encoun

tered in the text, the next character is 

also examined to see if the code of the 

bigram BC can be used to encode the two 

consecutive input characters. It is easy 

to see that the use of the scheme of 

Figure 6, rather than that of Figure 2, 

will save an average of 0.5 bit for each 

occurrence of the character B. 

I 

Figure 6. An alphabet tree with 
a bigram leaf 

Another application of look-ahead is 

when a separate locality set is used for 

the blank character, yet the blank char

acter is also included in the alphahet tree 

in order to handle the occurrence of a 

343 

single blank he tween two alphabet words. When

ever a blank character is encountered after an 

alphabet, the next few characters are examined. 

If this blank is a member of a succession of 

blanks, control is transferred to the b.lank tree 

using the appropriate switch indicator. Other

wise, the local code of the blank character in 

the alphabet tree is used. 

6. THE COMPRESSION SUBSYSTEM 

A typical compression subsystem, based on 

our proposed scheme, would consist of three 

principal components; the statistics gathering 

function, the data compression function, and the 

data expansion (decoding). function. 

The Statistical Gathering Function: A statis

tically significant portion of the file is pro

cessed .and pertinent statistical information is 

collected (e.g., f·requencies of characters, 

transition .frequencies among locality groups, 

frequency of bigrams, etc.t 

The Data Compression Function; This function 

builds the decode trees using the statistics 

obtained by the statistical gathering function, 

The Data Expansion Function: This function re

stores the original text from the compressed 

data. The following is the decoding algorithm 

used by this function. We assume that the 

pointer R is initialized to point to the root of 

one of the locality trees. 



Decoding Algorithm: 

P + R 
/* R points to the root of current tree*/ 
/* P points to current node */ 

LOOP 
IF node P is not a leaf THEN 

CASE 
:input=o 
:input=l 
ENDCASE; 

P + rightchild(~) 
P + leftchild(Fl 

ELSE /* P is a leaf node *1 
IF node P is a switch indicator 
THEN R=P + DATA(~) 

/*New root */ 

ELSEDO; 
Print output character 
or m-gram of node P; 
P + R 
/* Start from the root */ 

ENDIF; 
ENDIF; 

UNTIL end of compressed data; 

7. NUMERICAL TESTS 

Two separate implementations (one on 

an IBM 370/3033 machine and the other on a 

VAX 11/780 machine) have been used to com

pare our proposed scheme and the Huffman's 

method. The extensive tests performed so 

far have shown a consistent superiority 

over the Huffman's method and an improve

ment over the results reported in [2] • 

The average improvement in compression over 

Huffman's method is 24%. The processing 

time during the decoding phase for the pro

posed scheme was 9% smaller (on the aver

age) than that of the Huffman's method (due 

to shorter search path, i.e., less number 

of bits in the compressed text). The files 

under consideration were files containing 

both numeric fields (thus they are amenable 

to statistical analysis) and alphabetic 

fields (e.g., names, addresses, etc.). 

These files are common in business, 

academic, as well as some research environ

ments. The implementation of m-grams has 

been limited to few (statically defined) 

bigrams. A dynamic (more sophisticated) 

344 

gathering statistics component, i.e., one in 

which the decision about the number of locality 

groups and their character members will be based 

on the statistics collected, is being planned. 

REFERENCES 

[ 1] Cooper, D. and Lynch, M. "Text compression 

using variable to fixed length encodings" 

JASIS, Vol. 33, No.1, January 1982. 

[ 2] Hazboun, K. and Bassiouni, M. "A multi

group technique for data compression" 

Proceedings of the ACM SIGMOD 1982 Int. 

Conf. on Management of Data, Orlando, Fl, 

June 1982, pp. 284-292. 

[3 ] Huffman, D. "A method for the construction 

of minimum redundancy codes", Proc. IRE, 

Vol. 40, 1952, pp. 1098-1101. 

[4 ] Mommers, J. and Raviv, J. "Coding for data 

compaction" IBM Research Report RC 5150, 

T. J. Watson Res. Center, Yorktown Heights, 

NY, Nov. 1974. 

[5 ] Mulford, J. and Ridell, R. "Data com

pression techniques for economic processing 

of large commercial files" Proc. ACM Symp. 

on Information Storage and Retrieval, 1971, 

pp. 207-215. 

[6 ] Pechura, M. "File archival techniques using 

data compression" CACM, Vol. 25, No.9, 

1982, pp. 605-609. 

[7 ] Rubin, F. "Experiments in text file com

pression" CACM, Vol. 19, No. 11, Nov. 1976, 

pp. 617 -623 • 

[8 ] Ruth, S. and Kreutzer, P. "Data compression 

for large business files" Datamation, Sept. 

1972, pp. 62-66. 

[9 ] Schwartz and Kleiboemer. A. "A language 

element for compression coding" Information 

and Control, Vol. 10, 1967, pp. 315-333. 



J 

8. Security and Integrity Issues 

Automated Cell Suppression to Preserve Confidentiality of Business Statistics . . . . . . 346 
Gordon Sande 

An Information Theoretic Approach to Statistical Databases and their Security: 
A Preliminary Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 

Mary McLeish 

An Introduction to Sampling ~ Estimate Database Integrity. . . . . . . . . . . . . . . . . 360 
Rick Greer 

A Security Model for the Statistical Database Problem . . . . . . . . . . . . . . . . . . . . 368 
Dorothy E. Denning 

Statistical Databases: Their Model, Query Language and Security. . . . . . . . . . . . . . 391 
Zbigniew Miehalewiez 

See Also .•.• 

Some Experiments in Evaluation of and Expert system for 
Statistical Estimation on Databases . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 235 

Neil C. Rowe 

345 



AUTOMATED CELL SUPPRESSION TO PRESERVE CONFIDENTIALITY OF BUSINESS STATISTICS. 

G. Sande, Structural Analysis Division, Statistics Canada 
Ottawa, Ontario, KIA OT6 Canada 

Abstract 
A Statistical Agency must balance the competing requirements of preserving the 
confidentiality of the data obtained from respondents and of publishing 
statistical summaries of the data obtained from respondents. This note will 
describe the components of an experimental suite of software which seeks to 
resolve this conflict in the case of economic censuses. The components 
described will be those which identify sensitive statistics, determine 
complementary suppressions and audit the suppressed publications. These 
components are supported by an infrastructure of utility programmes. Experience 
with the software on various economic censuses and opportunities for further 
work will be discussed. 

Introduction 

A Statistical Agency must balance the 

competing requirements of preserving 

the confidentiality of the data 

obtained from respondents and of 

publishing statistical summaries of 

the data obtained from respondents(2). 

This note will describe the components 

of an experimental suite of software 

which seeks to resolve this conflict 

in the case of economic censuses. The 

components described will be those 

which identify sensitive statistics, 

determine complementary suppressions 

and' audit the suppressed publications. 

These components are supported by an 

infrastructure of utility programmes. 

Experience with the software on 

various economic censuses and 

opportunities for further work will be 

discussed. 

Basic Data 

The foundation for all of the 

activities is the data supplied by the 

respondents. For business respondents 

we assume that the existence of the 

economic activity is known and that 

any interested observer can make a 

reasonable guess as to the amount of 

the economic activity. In precise 

terms, this means that the geographic 

location (SGC or Standard Geographical 

Code), the type of business (SIC or 

Standard Industrial Classification) 

and the owners identity (IDN or 

Identifier Number) are all known with 

certainty. The value of the economic 

activity ~ay be reasonably guessed and 

we will assume that an approximation 

of between 50 and 150 percent of the 

true value may be readily obtained. 

The details of whether the 

approximation should be 50 to 150 

percent or 60 to 140 percent do not 

much matter as only various ratios are 

important. The 50 to 150 percent 

assumption yields various coefficients 

of 1/2 which will arise later. 

The most striking feature of this data 

is the great diversity of sizes of the 

economic units. There are many units 

such as "Sam's Corner Store" with 

activity of $10,000 and a few units 

such as "Multinational Manufacturing, 

Inc." with activity of $500,000,000. 

A published total of these two would 

for all practical purposes be the 

value of the larger unit. An 

aggregation would require many more 

units before it is no longer just a 

minor perturbation of this large unit. 

*presented to Conference of European StaL1sticians, Working Party on Electronic 

Data Processing, March 21-25, 1983, Geneva 

346 



Identifying Sensitive Statistics 

The data supplied by the respondents 

is used to determine many related 

statistics. Examples would include 

total shipments of furniture 

manufactures in Saskatchewan, all 

manufactures in Saskatchewan, 

furniture m~nufactures in Canada or 

These all manufactures in Canada. 

illustrate various levels of 

aggregation (Saskatchewan and Canada 

or furniture manufacturing and all 

manufacturing) in both the geographi~ 

and industrial classifications. 

Standard rolling up schemes would 

allow the calculation of the various 

totals to be carried out. 

The problem is more involved as we 

would like to identify the large units 

in each of the totals we form. 

seek to aggregate 

10 50 60 

Tom Sue Dick 

with 

5 45 75 

Harry Sue Joe 

we get 

5 10 60 75 95 

Harry Tom Dick Joe Sue 

If we 

120 

Total 

125 

Total 

245 

Total 

The six separate units become five 

under aggregation as "Sue" is common 

and the size ordering under 

aggregation is quite unstable. The 

size ordered list of unique 

347 

respondents is used to determine which 

totals are sensitive. The respondents \ 

contributions to a particular total 

are identified directly, unduplicated 

for ownership arid then sorted to 

produce the desired list with no 

attempt made to roll up aggregations 

because of the difficulty illustrated 

above. Determining the respondents 

for a particular total is an example 

of a "range query" and may be 

processed efficiently with an 

appropriate data structure such as a 

k-d tree<l>. 

A typical rule to identify sensitive 

totals is if the three largest 

respondents contribute more that 75 

percent of the total then the total is 

sensitive. Dick, Joe and Sue, above, 

with combined value of 230 contribute 

more than 75% of the total of 245 so 

the example aggregation is sensitive. 

We would write this as 

x (1) + x(2) + x (3) > 

3/4fx(1) + x(2) + x(3) + x(4+)} 

where x (1) is the largest unit, and 

x(4+) is the sum of the fourth and 

smaller units. 

s'(x) = 1/4{x(1) + x(2) + x(3)} 

- 3/4 x(4+) > 0 

is the same formulae where s'(x) > 0 

has become the rule fo~ identifying 

sensitive totals. We prefer to have 

the coefficient of x(4+) be -1 so we 

have the equivalent rule 

s(x) = 1/3(X(1) + x(2) + x(3)} 

- x(4+) > 0 



We may demonstrate that 

s(x+y) ~ sex) + s(y) 

s(x+y) ~ sex) - t(y) (2 ) 

where x+y is the aggregation of two 

separate totals and t(.) is the total 

displayed in the same notation<3>. 

Equation (1) indicates that s(.), 

which we will call the sensitivity 

criterion, is subadditive and 

expresses precisely the intuitive 

notion that aggregation provides 

protection of the confidentiality of 

the respondents' data. Equation (2) 

shows that small totals cannot provide 

protection for very sensitive totals. 

Th e - 1 co e f f i c i e n t 0 f t ( .) in (2) is a 

result of our choice of -1 as the 

coefficient for x(4+) in s(.). We are 

more interested in the upper tolerance 

u(x) = t(x) + 1/2 sex) U) 

for the identification of the 

complementary suppressions. The 1/2 

is a reflection of the 50 to 150 

percent approximation assumption made 

earlier. 

In practice the sensitivity criterion 

in use will have other percentage 

thresholds and numbers'of units 

although the algebra will be formally 

the same. The d'etails of the 

sensitivity criterion are often held 

to be as sensitive as the data it is 

used to pro tect . 

Determining Complementary Suppressi~ns 

The identification of sensitive totals 

348 

gives us a cleanly stated problem 

which can now be solved. We do this 

by changing a sensitive total, 

temporarily,to its upper tolerance 

(3) and seeking to rebalance the 

table. 

Suppose 

2 2 4 

2 10 12 

4 12 16 

is a table with the upper tolerance 

1 1 for the sensitive cell with value 

10. We would get 

2 2 4 

2 10+1 12 

4 12 16 

which doesn't add up but the table 

2+1 2-1 

2-1 10+1 
f 

4 12 

4 

12 

16 

of 

does add up. Mathematical programming 

is designed to maintain' the equations 

which indicate that the total is the 

sum af its pa~ts. From this modified 

table we conclude that the three 

additional totals should be suppressed 

as complementary suppressions. The 

amount of change permitted in the 

totals of value 2 would be from 1 to 3 

by our 50 to 150 percent assumption. 

When' the examples are larger there are 

many alternate patterns which will do 

the job so we must specify how ~o 

choose between the many alternatives. 

We rate each pattern by summing the 



product of the size of the total being 

changed and the amount of change. 

This yields a linear objective 

function for the mathematical 

programming problem. This "size rule" 

tends to favour the suppression of 

small totals in order to preserve 

large totals. The mathematical 

programming obtains the best pattern, 

under the objective functio~, without 

having to examine all possible 

patterns. 

An objective function which summed the 

size of the totals being suppressed, 

without regard to the amount of 

change, would yield a discrete 

optimization problem well known to be 

much more difficult to solve. The 

solution algorithm in use applies the 

temporary modification to the most 

sensitive total first, and then to the 

second most sensitive to~al not 

protected with the previous 

complements used with no cost in the 

objective function. This is repeated 

until all sensitive totals have been 

protected'. The result is a simple 

sequential heuristic which works 

surprisingly well and which can be 

enhanced with minor manual 

intervention. 

The resulting operation may be 

described as the completion of the 

pattern of complementary suppressions. 

The smallest initial pattern of 

suppressions would be the sensitive 

totals with no presupplied 

complementary suppressions and leads 

to a completely automatic 

determination of all required 

complementary suppressions. Many 

349 

presupplied complementary suppression 

may result in the sensitive cells 

being already protected with no new 

complementary suppressions would be 

required. An example of this would be 

the use of the January suppression 

pattern for the February data of a 

monthly business survey. 

Auditing Suppressed Publications 

The results of the automated 

calculation of a suppression pattern 

are, of course, correct. To increase 

our confidence in the correctness or 

to examine a pattern prepared 

elsewhere we would like to audit the 

pattern for correctness. The 

aggregation structure of the table can 

be represented as a system of 

equations which can be used as 

constraints in a mathematical 

programming problem. 

The table 

x x 

x x 

4 12 

4 

12 

16 

yields the equivalent table 

0-4 0-4 4 

0-4 8-12 12 

4 12 16 

The ranges for the individual totals 

cannot be usefully added in general as 

illustrated by the first row has a 

total of 4 but has the ranges adding 

to the range 0-8. 

The ranges provide no information that 



is not already present in the table 

and could well be constructed by any 

user of the table. Providing this 

information may render the table more 

useful to the users who do not want to 

become well versed in the techniques 

of using suppressed tables. 

The exampl e 

x x 2 

x x x 

2 2 x 

2 2 x 

16 8 8 

is equivalent to 

8-12 0-4 2 

0-4 0-4 2-2 

2 2 0-4 

2 2 0-4 

16 8 8 

2 

2 

x 

x 

16 

2 

2 

0-4 

8-12 

16 

16 

8 

8 

16 

48 

16 

8 

8 

16 

48 

The range 2-2 is an example of what 

we want to avoid. This example 

illustrates that the rule of two 

suppressions in every row and columne 

is not enough to prevent residual 

disclosures. Such tables are not 

produced by the automated techniques 

discussed above as they are based on a 

muah stronger analysis of the problem. 

Support Utilities 

The three substantial components 

discussed above are supported by a 

collection of ten utility programmes. 

The rest of this section is a brief 

description of this infrastructure and 

illustrates the additional support 

required to extend the substantial 

components to a functional suite of 

software. All of the programmes use a 

350 

self describing free format file for 

both input and output so they may be 

run in any order which makes sense in 

terms of the operations performed. 

Occasionally, some very unforeseen 

execution sequences have made sense. 

The tabulation program which 

identifies sensitive totals, called 

~, has a limit of 35,000 

micro-records because it keeps the 

data in main memory. When this is a 

restriction, a utility program, ~, 

allows separate segments of the data 

to be tabulated and the results 

combined so that the 35,000 limit 

becomes a nuisance rather than a 

severe limitation. 

There are four variations on update 

utilities with Merge also having some 

update functions. The main update 

utility, ~, allows the 

specification of publish or suppressed 

status for individual totals as well 

as modification, including deletion, 

of upper tolerances when waivers from 

respondents allow changes in the 

apparent sensitivity status of totals. 

A bulk update, ~, allows transfer 

of a suppression pattern from one 

tabulation to another related 

tabulation such as the January to 

February transfer for monthly surveys. 

Another bulk update, ~, allows 

repetitive specification of publish or 

suppressed status as might be done to 

suppress all four digit SIC detail in 

a very small province. Segments of a 

tabulation may be extracted with a 

utility, Sbset, to break the 

computation into subproblems for large 

tabulations. / 



There are three variations on reformat' 

utilities. Most of the components 

deal with a tabulation having totals 

with a status code while others, most 

importantly the audit component ~, 

use a tabulation with totals present 

or absent. The conversion utility, 

~, that does this transformation 

is said to release the tabulation as 

the ouput ~ontains no sensitive 

information. The conversion of the 

files from the self describing fr~e 

format to a fixed format record is 

done by ~, with the ouput serving 

as a control file for the regular 

publication system. Transfer of files 

between the two classification 

variable suite and the three 

classification variable suite is done 

by the utility Face with the output 

typically serving as a bulk update for 

the transfer utility. 

Externally prepared tabulations often 

have empty totals omitted. The 

pattern is completed, by ~, so 

that empty totals are explicitly 

represented wi t.h a val ue of zero. The 

resulting table may not exactly add 

and must be adjusted, by ~, to 

correct for independent rounding or 

other errors before it may be audited. 

This adjustment is done by 

mathematical programming which is 

internally similar to the Suors 

component which calculates the 

complementary suppressions. The 

adjustment facility, which hardly 

deserves to be classified as a support 

uti lit Y , i s 0 f use in its 0 wn rig h t to 

adjust independent rounding and works 

even when there are suppressed totals. 

351 

Useage Experience 

The major benefit of the software is 

the discipline imposed in proceeding 

from various notions expressed in 

terms of convex spaces<5> to 

functioning software. The same 

discipline also applies to the 

preparation of tables from economic 

census takers for use with the 

software. 

An early problem was the geography 

where an economic region contains 

several counties which contain several 

municipalities as well as the economic 

region containing a metropolitan area 

containing several municipalities. 

The counties and metropolitan areas 

are equally valid disaggregations of 

the economic region and are built up 

from the same municipalities but in 

different groupings. The two 

classification variable suite 

addresses this problem with little 

external, but moderate internal, 

complication. In applications, it is 

easy to forget the metropolitan area 

implicitly defined by the remainder of 

the economic region after the regular 

metropolitan region is defined. (The 

first sentence of this paragraph 

illustrates how natural this mistake 

is.) Similar problems occasionally 

arise in the industry codes with 

non-standard aggregations. Included 

subtotals of some tables must be 

explicitly represented in the 

classification hierarchy. 

Live problems are much larger than the 

illustrations that are included in 

exposi tory notes. A typical economic 



census will have a geographic 

structure of 12 provinces or 

territories and 4 regional or national 

groups for a total of 16 geographic 

codes. The industrial classification 

structure may have 200 industrial 

codes which are 4 digit codes 

(industries), 3 digit codes (industry 

groups), 2 digits codes (major 

industry groups) or the grand total. 

These two classifications yield 3000 

totals organized into 200 tables at 

varying levels of aggregation. The 

tabulation of 30,000 manufacturing 

records to identify which of the 3006 

totals are sensitive takes around 2 

minutes. The calculation of 

complementary suppressions takes about 

20 minutes and the auditing takes 

about 3 minutes. The operation is as 

smooth as anything involving 200 pages 

of output can be reasonably expected 

to be. For 60,000 employment records, 

the tabulation is done in two 

segments, followed by a merge, with 

the similar overall timings. For 

360,000 financial records, the 

breaking of the tabulation into 15 

segments becomes annoying with the 

other timings as before. For 20,000 

food service records classified by 

three variables for 1000 totals, the 

overall timings totalled 10 minutes 

and was successfully completed on its 

first attempt. The census of 

agriculture was a problem in 

controlling the operation as 25 

different agricultural attributes; 

mostly crops, were processed for each 

of the 10 provinces in several weeks. 

Very large problems which must be 

broken into pieces are not smooth 

352 

operations. The manufacturing records 

classified additionally by country of 

control yield about 12,000 totals or 

by destination of shipments yield more 

than 50,000 totals. The labour 

records classified down to the city 

and county level yield more than 

50,000 totals. These very large 

problems have a high proportion of 

zero totals. A typical scheme is to 

determine the suppression pattern for 

the labour records classified to the 

province only and then to disaggregate 

each province in turn. 

Future Work 

The purpose of the suite of software 

was to provide a testbed for research 

into automated cell suppression 

techniques. It has demonstrated 

working techniques and the range of 

support required of a full collection 

of software. One train of development 

would be to reimplement the facility 

but with a stronger production 

orientation. For example, the 

existing software prints tables with 

labels of numeric codes only while a 

production oriented system would use 

descriptive text stubs. Various 

changes could be made in the existing 

software to reduce operational 

annoyances. For example, the status 

flagging mechanism should be able to 

indicate that a subtotal introduced 

for convenience purposes and not 

intended for inclusion in any 

publication may have its value 

determined exactly without drawing 

residual disclosure error messages as 

it does in the current system. A new 

implementation of Build to process 



more that 35,000 records without the 

help of Merge would relieve much 

annoyance. 

The real opportunities for future work 

are in enhancements in understanding, 

facility and capability. Use of 

degeneracy exploiting linear 

programming inplace of the existing 

steepest descent linear programming 

may make smooth operation possible for 

larger problems. Perhaps the 3000 

totals boundary may become 4500 with 

this internal tuning. A better 

segmentation scheme may make the very 

large problems more like smooth 

operations. An experimental version 

of the complementary suppression , 
calculator which uses ranges, such as 

might be used to represent error 

estimates, on all totals has been 

tested with encouraging results 

although elaboration on how to publish 

its results are required. A good 

understanding to the relevant matrix 

theory is only available for single 

two variable tables<4>. A 

corresponding understanding for 

hierarchies of tables and for three 

variable tables would provide insight 

into the pragmatic success of the 

methods and may lead to improved 

algorithms. Some interesting but 

isolated matrix theory facts have been 

discovered by exhaustive machine aided 

searching. 

Conclusion 

A suite of ~oftware has been 

implemented to carry out the automated 

cell suppressed required to protect 

the confidentiality of respondent data 

353 

in economic censuses. The original 

notions arose in the context of convex 

spaces. The result is a functioning 

suite of software which has been used 

by-sever~l users, some of whom 

stretched the limits beyond the 

development intentions. The very 

brief description here only 

illustrates the major notion of the 

main components. For the foreign 

control breakout of the census of 

manufactures, the user reports an 

increase of timeliness of ten months, 

in a biennial program, concurrent with 

a five-fold increase in the number of 

totals processed. Considerable 

opportunity exists for extending 

understanding and capability in what 

is already a successful development. 

References 

1. J.L. Bentley and J.H. Friedman, 

Data Structures for Range 

Searching, pp 397-409, Vol. 11, 

no. 4, Computing Surveys, 1979 

2. L.H. Cox and G. Sande, Techniques 

for Preserving Statistical 

Confidentiality, Proceedings of 

the 42nd Session of the 

International Statistical 

Institute, (in press), Manilla, 

1979 

3. 

4. 

G. Sande, Towards Automated 

Disclosure Analysis for 

Establishment Based Statistics, 

Statistics Canada, 1976 -

G. Sande, A Theorem Concerning 

Elementary Aggregations in Simple 

Tables, Statistics Canada, 1978 



5. G. Sande, Confidentiality and 

Polyhedra - An Analysis of 

Suppressed Entries in 

Cross-Tabulations, prese~ted 

American Statistical Assoc., San 

Diego, 1978 

354 



An Information Theoretic Approach to 
Statistical Databases and their Security: 

Abstract 

A Preliminary Report 

Mary McLeish 
University of Guelph 

This paper considers a statistical database model used by J. Kam and J. Ullman in [5J to 
study database security. Results for the transmitter-receiver problem studied in informa
tion theory are applied to the database model .to provide a measure of the information in 
the query-record system. A slightly different information theoretic approach is then used 
to provide a more effective model for the security problem. Results are obtained which 
give the conditions on queries necessary to minimize the information gained by making a 
query. Minimizing this information function corresponds to increasing the chance of a 
security breach. Statistical methods can then be used to determine if a series of queries 
are being used which have properties significantly close to those required to endanger the 
security. 

INTRODUCTION 

A statistical database is a collection 
of records about which primarily summ
ary data, such as means, medians, 
standard deviations etc., is required. 
Information about a particular individ
ual is to be protected and the security 
problem consists of preventing such 
information from being deduced from 
collections of summary data. Several 
researchers, [ 2,5,6 ] have considered 
this problem under a variety of circum
stances. In this paper, the model used 
by J. Kam and J. Ullman [5] is fUrther 
investigated and information theory is 
used to provide guidelines for restric
ting queries to reduce the likelihood of 
breaking the security. 

1.1 The Database model: 

In their model, a statistical database 
is a function 6 from strings of k bits 
to the positive and negative integers. 
The keys become the domain of 6. The 
range of 6 is usually considered to be 
finite. An (~,k) query is a sequence 
of length k consisting of O's, l's and 
'~'s with exactly ~ O's and l's. (If k 
is known, this is simply called an ~
query.) The symbol ,', stands for "don't 
care", in the sense that it matches 
either 0 or 1. Thus, the query *010* 
matches the keys 00100, 00101, 10100, 
10101. An (~,k) query matches 2k-~ 
keys, forming a cube of dimension k-~ 
in the Boolean k-cube. The result of a 
query q on a statistical database 6 is 

then l: 6 (l) As an example, 
q matches 

key ). 

consider a database of hotel worke~s 
salaries in a city. The key could 
consist of 10 bits xxxxxyyyzz as follows: 

i) xxxx is a code for the hotel 

ii) yy is a code for the type of 
employee~ e,g. lQU is the 
~anager, OOU is a bell-hop~ OUI 
1S the ball tender etc. . 

355 

iiil zz is a code representing which chain 
the hotel is part of, and is 00 if 
the hotel is part of no chain. 

Then 1000100001 would represent the sum of 
all bell-hops salaries at hotel 10001 of 
chain 01 and ,~*,b''''llOOOl would be the sum of 
all the managers' salaries in chain 01. 

If one can deduce the value of 6().) for some 
l; by knowing the result of a set of ~-queries 
the database is said to be compromisable by 
.&-queries. 

Using this model, several security results 
are obtained in [5]. Finite and infinite 
rangeS are considered separately. Further 
results involving sparse database (~nes in 
which many keys might have no records 
associated with them) have been proven by 
Chin in [2 J • 

1.2 Some Basic De'f:j:ni'tiorlS'in Information 
Theory: 

In this study, an attempt is made to measure 
the information received when querie,s are 
made. 

Let X be a random variable with sample space 
n. Suppose n is partitioned into a finite 
number o.f mutually exclusive events Ek with 
associated probabilites Pk' 
Then l(Ek) = -logPk (usually to base 2) is 
called the amount of sel.f-information 
associ~ted with t~e event Ek• A bi~of in
format1on =-log~ 18 the amount or-+nform
ation associated with the selection of 
one of two equiprobable events. The average 
amount of information or'erltropy associated 
with the random variable X and the events Ek 

is H(X) This then 

represents the expected value of the uncer
tainty associated with the probability 
scheme. The function H considered asa 
function of the Pk has certain well-known 
properties, such as continuity, additivity, 
symmetry etc., which will be recalled if . 
needed. 



This measure of information can be 
extended to a two-dimensional scheme 
with two finite discrete sample 

. n. 
spaces. If {x.}.=l represents the 

.(. .(. . 

possible values of the random vari~ 

able X and {y.}~=l those of another 
.(..(. 

rqndom variable Y, then the five 
quantities of interest are: 

(i) 
m· n. 

H(XIY1=-L L p{y.}p{xkly.}logp{xkly·}, 
j=l k= 1 j j j 

where p(xkIYJ) is the conditional 

probabili ty of x
k 

given y. and P (y .) 
j j 

.( or ( )(k» represent marginal probabi-

lities. 
n. 

(ii) H(X) =- L p{Xk}logp{x
k

}, 
k=l 

(iii) 
k=n. k=m 

H(X,Y)=- L L p{xk,y.}logp{xk,y.}, 
k= 1 j= 1 j j 

where p(Xk'Yj) is the joint probabi

lity of the pair (Xk'Yj)' 

(iv) 
H(X) 

H(Y), defined similarly to 
and finally, 

(v) H(YIX), as for H(XIY) with xk 
and y. and the order of summation 

j . 

interchanged. 

Another useful concept is that of 
mutual information, l(x.,y.) or the 

.(. j 
information about the event x. by 

.(. 

the occurrence of the event y .• This 
j 

is. defined to be log P {x.[, Y j}. It 
p{x.[} 

can be shown that l(x.,y.)=l(y.,x.), 
.(. j j.(. 

whence the word mutual. If x.=y., 
.(. j 

one obtains -log p(x.) or the 
.(. 

earlier self-information of theevent 
x.. l(X,Y) stands for the average 

.(. 

mutual information and is the expect 
-ed value of l(x.,y.). It can be 

.(. j 
shown that 
I (X, Y) =H (X) -H(XI Y) orH(X) +H(YJ-H(X, Y) or 

H(Y)-H(YIX). When the system under 
consideration is that of a source 
and receiver connected by a channel, 

356 

with {X 1' ••• XN} and {Yl""YM} the sets 

of possible inputs and outputs to the 
channel, C=max l(X,Y) is called the 
Channel capacity. This is the maximum 
taken over all possible sets of input 
probabilities and it can be shown to 
exist. (c.6. 1,3,6 for further details.) 

§2 Measuring Information for a 
Statistical Database System 

Consider again the concept of a trans
mitter and a receiver, both with given 
finite alphabets. Let our individual 
records be strings of independent binary 
bits which are receiving queries. If we 
look at one bit position at a time and 
assume the probability of a * in that 
position is P and that the a's and l's 
are equally probable, then the probabili
ty of a match is ~. 

2 

We could then assume a model like that 
for a binary symmetric channel o'f the 
form: (.c;,; 6.J) 

x p(ylx) 

1 1 

a G-__ ~~ ______ ~ a 

The value of £ will be 1- (1 ;p) or l;P. 

Here we have the query on the left, re
presented by x, but the possibility of 
obtaining a * is incorporated into the 
conditional probability of a match. On 
the right is the record, y. Here 
P (l)=P (o)=p (l)=P (0) are all taken to 

x x y Y 1+ 
be~. But P(l 11) is now ~ or 1-£ and 

similarly for (010) and (all). This is 
assuming that in fact the pair (1,1) can 
be obtained either by having (1,1), whose 

probability is (l;p x ~) or by having 

(*,1), whose probability is %. 
Th us P (1 , 1) , is 1 ~ P and 

P(lll) - P(l,l) - ~ 
- P x 0) - 2' 

In this scheme, the conditional entropy 
H(YIX) = -((1-£) log (1-£) +£log£). 

I (X,Y)=H( Y) -H(Y!X) =H(Y) + (l-£)log(l-E)+£1ogE). 

But f{ f Y) = -~log~-~log~ = 1. Th us the 
mutual information is then . 
l+(l-£)log(l-£)+£log£, which is also in 



fact the channel capacity. The de
rivative of H or 1 with respect to 

E is 0 when log ---IE. = 0, giving E=~ -e: 
or p=O. This would correspond to a 
completely noisy channel. In other 
words, input and output are statis
tically independent. In our situa
tion, there are no *'s and the value 
of P(x,y) is always~. The mutual 
information is 0 in this case. At 
the other extreme, when p=l or e:=0, 
the channel is noiseless or the 
query specifies the record with 
certainty and the mutual information 
is 1. 

Wi tn th;is model,. the extreme values 
occur when p is either 0 or 1. We 
actually wish,. for security purposes, 
to increase-the probability of a 
match .. : This means the sum of the 
6(i) over the matched records includ
es more terms and there is a smaller 
chance of determining a single6(i), 
with this or subsequent queries. 
This corresponds to keeping the value 
of the mutual information high. A 
series· of experiments would help to 
determine an optimal value of the 
mutual information or conditional 
entropy function for a specific 
application. An investiga1:;ionof the 
effect of subsequent, not necessari
ly independent, queries on the total. 
entropy in order to bound it appro
priately" is be;ing made., In section 
2.2,,9- slightly different model will 
be presented from which a cut-off 
point can be found directly. How
ever, if the security problem is not 
of primary concern, model 2.1 does 
provide a convenient measure of the 
information contained in a query
record system, when extended to se
quences of bits. This extension is 
purely additive for a memoryless 
system (no dependence between suc
cessive bits) 'and the extremal 
results possess the same character
istics. 

§3 A Revised Model for the 
Security Problem 

3.1 Definition of the Mutual 
Information Function: 

Consider our system as consisting 
of one query at a time being made 
against a set of n records. Let the 
probability p(x) of a match be 

simply ~; i.e. all the records are 

equiprobable. Then the entropy 

357 

function or the average self-information 
of the syst,em 
= E {-log p(x)} (the expected value) 

=_E p(x) log p(il 
)(. 

= log n. 

Now each query partitions the record space 
into two parts: S, the set of records 
matching the query and Se, the complement 
of S. In actual fact, usually the total 
sum of. the 6(i) for all records is known 
or can be easily found by querying with 
all *'s. 

Thus, when a query is made, not only is. 
information gained about the records in S, 
but also about the set se, by subtracting 
from the total sum for all the records. 
Suppose the number of records in S is n1 , 
then log nand log(n-n ) represent the 
self-infor~ation posses~ed by a record 
lying in S ,and Se respectively. The 
security is more easily violated the 
smaller the amount of information return
ed by a query. Therefore, the appropri
ate quantity to consider here is 
min. {logn 1 , log(n-nl~}. Then the infor
matlon galned by maKlng a qUery becomes 
log n-min (log n

1
, log n-n

1
) or 

log (n.· ( ) ) • (If Y represents the 
_ mln n 1, n-n 1 

query and X an individual record, this 
quantity is really I(X,Y)=H(X)-H(XIY).or 
the mutual information function.) This 
function will be bounded at the extremes by 
I1l or log n. Thus, if a query with no 1¢' S 

matches no record, I(X,Y) will be 
:simply 0 and if n 1 = n the function will be 
equal to log n.' That is, the mutual 
information will not be allowed to e,xceed 
the original self-information of X. 

Formally, we have the following defini tion: 

Definition 3.1.1. 

Given a statistical database as described 
in Section 1.1, containing n records and 
upon which a single query is made, the 
information gained by making the query 
is defined to be: . 

{

log {n. ( )} Where. n 1 =the number mln n 1,n-n 1 of records matched 
. by the query, pro..,. 

. vided.nl~n or 0; 
log n ; J.:f n l =n; 0 otherwlse. 

3.2 Determination of the Ex ected Mutual 
In ormatlon or a Random uery 

Assume that the variable n 1 is uniformly 
distributed on the set {a, 1, ... n}(e.6.4). 
If n is odd = 2m+l for some integer m, 



then log n. ( n-n) has expected 
mln n I' - I 

2 m 1 
value logn - n+1 ~ logj - n+1 logn 

J=l 
=log{n 2 1In+1} 

(nm! ) 
In the even case, if n=2m, one obtains: 

m-1 2 . 1 1 
logn-E ""+llog-<.- --=i=1 logn- -=i=1 logm 

.i.=1 n n n 
, n 
=log{ 11 +1}' 

( nm! ( m-1 ) ! L _~ ___ _ 

In both cases, the bounds log (n+
1

) 
n m 

<E(log . ( n n » $ log n may be mln n l , - I 

established. One wishes to investi
gate si tuations ~in which the values 
produced by queries are regularly 
falling below the expected value or 
its lower bound. This could corre
spond to a user attempting to break 
the security. Whether the regularity 
is statistically significant can be 
tested to further determine the like
lihood of this being tried. 

Now consider the above expected value 
when we are specifically in the situ
ation of queries being k-bit strings 
of O's,l's or *'s. Let us also 
assume that the distribution of the 
number of *' s in a query is binomial. 
Let p be the probability, p(*), of a 
* occurring in qny given bit position. 
That is, p(n

l
=2 J ) = 

k' 1<. • 
(7) pJ O-p) -J, j=0,1,2, ... k is the 

probability of j stars, which we will 
call p(j). Also suppose the full 
record set is available. Therefore 
- k n=2. Then we may prove the follow-

ing theorem: 

Theorem 3.2.1 

The expected value of the information 
gained by making a query of length k 
to a statistical database of 2k re
cords is minimized when 

1 11k-1 P = (~) , when k>l. 
Proof: Now the possible values of 
mln (n,n-n

l
) are all the powers of 

2 d · 1 d' 2k- 1 . up to an lnc u lng , wlth 

358 

respective probabilities p(j). Thus the 
expected value sought is 

n n) p(o) log (ii) +, pO) log(21 + 

p(k-1) log ~ + p(k) logn. 
2 f'-.I-

This equals log2 {~ p(.i)( k-.i.) +k p( k)}, 
.i.=O 

=E(k-X)+k p(k), where X is a binomial 
random variable 

=kO-p) + k l. 
Now the derivative of this last express-
ion with respect to p is 1 

k k 2 k-I . 1 f=T 
+ p , WhlCh equals a when p=(-) . 

k 
The second derivative is k 2(k_1)pk-2 
which is greater than 0, as long as the 
strings are at least of length 2. (If 
k=l, the expected value is constant with 
value 1 bit, regardless of p.) 0 

The minimum expected value becomes 
1 1 

k-(k-l)(f)R-1 This will be less than k 

except when k=l. When p=O or 1, we have 
the maximum value of k bits. 

Again, one would wish to observe the 
empirical value of p from a sequence of 
queries and determine if it was signifi
cantly close to the minimization value 
given here. The information function 
given by Definition 3.1.1 could be eval
uated for each individual query and its 
deviation from the minimum value just 
given, studied. 

§4 Concluding Remarks 

Some of the areas requiring further inves
tigation are: 

(i) Studying distributions other than 
the uniform distribution for the model of 
section 3. 

(ii) Constructing a test for the inde
pendence of successive queries. 

(iii) Measuring the information gain 
after a sequence of possibly dependent 
queries. 

(iv) Finding the distribution of the 
number of queries required to be made 
until a fixed amount of information is 
obtained. Also, determining the proba
bility of obtaining more than a certain 
amount of information in a fixed number 
of queries. 

(v) Other moments of the information 
function could give further knowledge of 
the behaviour of the information function. 



(vi) Finally, simulation experiments 
should be run to help substantiate 
the ideas given in the theory. 

REFERENCES: 

1. Ash, R.B., "Information Theory", 
Interscience Publishers, (1967) 

2. Chin, F. Y., "Security in Statis
tical Batabases for Queries with 
Small Counts", ACM Transactions 
on Database Systems, Vol.3, No.1, 
(1978), pp. 92-104: -

3. Gallager, R.G., "Information. 
Theory and Reliable Communication", 
John Wiley and Sons, (19&8). 

4. Hodges, J.L. and Lehmann, E.L., 
"Basic Concepts of Probability 
and Statistics", Holden Day (1970). 

5. Kam, John B. and Ullman, J.D., 
"A Model of Statistical Databases 
and Their Security", ACM TODS, 
Vol.2, No.1, (1977), P?l-lO. 

6. Reza, F.M., "An Introduction to 
Information Theory", McGraw-Hill, 
(1961). ! . 

359 



An Introduction To Sampling To Estimate Database Integrity 

Rick Greer 

Bell Laboratories 

Murray Hill, New Jersey 

ABSTRACT 

In order to create a sound and meaningful sampling plan for estimating measures of database 

integrity, a statistician must first have appropriate theoretiCal tools 

(j) for understanding the nature of databases and their integrity constraints, 

(ji) for developing reasonable numerical measures of database integrity, and 

(iii) for determining the sampling unit and its relationship to the integrity measures. 

This paper uses database theory, mathematical logic, and sampling theory to provide such tools. 

1. Introduction 

The practicing statistician can use the theory presented in 

this paper to define measures of database integrity and to 

develop sampling plans to estimate them. 

Section 2. presents a way to understand databases that 

fosters the selection of both appropriate integrity measures and 

appropriate sampling units. 

Section 3 defines integrity constraints to be assertions 

describing some database that one would like to have be true. 

Symbolic logic can be used to partially formalize integrity con

straints so that their new structure easily suggests meaningful 

numerical measures for measuring their proximity to truth. 

These measures form a family of database integrity meas

ures called the V criterion family which is the subject of Sec

tion 4. The first step in creating a V criterion is to use the 

structure of logic-formalized integrity constraints to "decom

pose" them into collections of simpler assertions called test 

assertions; this is done in such a way that any original integrity 

constraint is true if and only if all of its test assertions are 

true. Then, for atomic test assertions, one possible V criterion 

is a positive weighted average of the 0-1 numerical truth values 

of the given test assertions. In its simplest form, a V criterion 

is that fraction of a group of atomic test assertions which are 

true. 

The last section of this paper discusses the application of 

sampling theory to the estimation of V criteria. Part of this 

discussion is concerned with delineating the relationship 

between the sampling unit and the chosen integrity measure. 

The role of ratio estimation and cluster sampling in estimating 

V criteria is briefly mentioned. 

360 

While most of this paper lies squarely in the realm of 

computer science, the author believes that it nonetheless 

comprises essential knowledge for the statistician practicing in 

this area. It is the responsibility of the statistician to know 

enough about an application in order to ensure that the 

statistical methods he or she chooses will yield meaningful 

results. In particular, in the case of database integrity, it is 

the responsibility of the statistician to make sure that 

appropriate database integrity measures are selected since it is 

pointless to develop a sampling plan for estimating meaningless 

parameters. 

Although this paper is introductory in character, it does 

assume some familiarity with mathematical logic for Sections 3 

and 4 (see Mendelson [3]) as well as some familiarity with 

sampling for Section 5 (see Cochran [I]). Some familiarity 

with database theory is assumed; see Date [2) for more about 

this topic. Due to space limitations, points are sometimes 

sketched and other relevant points are not discussed at all. 

2. The Nature Of Databases 

A database can be thought of as having three 

components: assertions, symbols, and implementations. The 

assertions of a database are the meanings of its principal 

symbols; they are the information content of the database. The 

symbol s are merely abstractions that represent or stand for 

the assertions whereas the implementations of the 

symbols are those constructs which model the way the symbols 

are stored in some machine (or in some other medium). 

In the way of examples, a commonly used database symbol 

is that of a segment which is a sequence of values for a 

corresponding sequence of fields. A segment's field sequence is 

called its format. Suppose segments are the principal 

• 

• 



symbols of a database and that the format for parent segments 

is (MOTHER, AGE_OF_MOTHER, FATHER, 

AGE_OF]ATHER). Then the assertion represented by the 

segment ( Joanna, 32, Arthur, 35 ) is "The mother of a family 

is Joanna who is 32 years old and the father of this family is 

Arthur who is 35 years old". A computer implementation of a 

parent segment might be a record; here a record is defined 

to be a sequence of groups of bytes (corresponding to the 

sequence of fields) where each byte consists of a pattern of 

eight O's and l's that represents some character like "1". 

In contrast to the previous definition, the most common 

conception of a database considers it to be only the 

implementation of a collection of segments which themselves 

mayor may not be linked together in some fashion indicating 

their inter-relationships. This common database conception will 

probably also specify the access path pointers among the 

segment implementations that the machine uses in' order to 

retrieve them. In addition, it will probably confuse these 

pointers with the relationship links. 

Note that this paper's database definition is not given in 

terms of implementations alone. Instead, it emphasizes that 

the assertions do exist and are, in fact, the raison d'ctre for the 

symbols and their implementations. Furthermore, it 

distinguishes between the symbols and their implementations. 

The usual database definition fails to recognize that symbols 

and implementations are merely convenient tools for working 

with assertions; it considers them to be fundamental in 

character and thereby takes them too seriously. 

These distinctions among assertions, symbols, and 

implementations are useful ones to make and will be 

consistently made here. In particular, relative to database 

integrity, thinking solely in terms of the implementations of 

symbols can lead to two specific problems. The first is that it 

is likely that one's integrity measures will be based on the 

assumption that the validity of particular implementations can 

be determined. This is often much easier said than done. This 

problem does not arise for the integrity measures defined in 

this paper since they are defined to be direct functions of 

integrity constraints, not of symbols or implementations. 

Secondly, another good reason not to think in terms of 

implementations alone is that it may very well be that the best 

sampling unit for a good integrity measure is not some portion 

of an implementation. 

As for terminology, the symbol (component of a) 

database is the database's collection of symbols and 

similarly for the assertion database and the 

implementa~ion database. 

361 

-- an example database --

A discussion of a hypothetical family database will serve to 

illustrate the preceding philosophy concerning the nature of 

databases. Suppose it is desired to structure, represent, and 

store age and relationship information on a number of 

biological families. '(A biological family consists of a mother, a 

father, and the children they produce.) 

There are a number of symbolic systems that can be used 

to represent such information. Other than natural languages, 

these include the hierarchical, network, and relational database 

models. Since the main production database systems in use 

today are based on the hierarchical model, this model will be 

used to provide the symbols for the family symbol database. 

The structure of each symbol in a hierarchical database 

model is that of a tree obtained by linking segments together in 

a hierarchical fashion. 

Figure I shows the structure of the segment trees used 

here in the family symbol database to represent age and 

relationship information on biological families. The first level 

of one of these two level trees consists of a single segment 

which, as the format indicates, has seven field values, one for 

each of the fields SEG_TYPE, SEG_ID, MOTHER, 

AGE_OF_MOTHER, FATHER, AGE_OF]ATHER, and 

NBR_OF _CHILDREN. Figure 2 portrays this paper's family 

symbol database. (This symbol database does contain errors.) 

By definition, the root segment's value for the SEG_TYPE field 

is P. This root segment is linked to a list of segments, all of 

which have the indicated format for C type segments. 

So far, only the structure of these segment trees has been 

discussed, not what they might mean. Their meaning is 

specified by stating (j) what each segment in a given tree 

means and (ij) what it means for a segment of one type to be 

linked to a list of segments of another type. 

In general, each segment is taken to represent an assertion 

about the attribute values or characteristics of an entity. (An 

attribute is a function mapping entities to their properties 

or characteristics.} Each of the non-SEG_TYPE, non-SEG_ID 

fields in the format is taken to be an attribute of the entity 

being described. In the family example, the P format is used 

for the creation of assertions which describe the parents of a 

family. By virtue of giving values for the appropriate 

attributes (i.e., fields), each P type segment in a family symbol 

database represents an assertion about a family's parents: this 

assertion states the mother, mother's age, father, father's age, 

and the number of children associated with the given parents 

entity. SEG_TYPE and SEG_ID will be discussed in a 

moment. A C type segment represents an assertion about a 



FIGURE I: THE FIELD CONFIGURATION FOR SEGMENT 
TREES IN THE FAMILY SYMBOL DATABASE 

FIGURE 2: THE FAMILY SYMBOL DATABASE IN 
PICTORIAL FORM 

362 

child entity that states the child and its age. 

In general, linking a segment of one type to a list of 

segments of another type is taken to mean an assertion that the 

entity described by the first segment is in some specified 

relationship to each of the entities described by the segments in 

the list. The nature of this relationship is required to be 

determinable from the SEG_TYPE and SEG ID values 

occurring in the segments involved. 

Relative to a tree of segments from the family symbol 

database, the linking of a P segment to a list of C segments 

represents an assertion that the parents being described by the 

P segment are, in fact, the parents of the children being 

described by the C segments in the list. 

In more detail, the SEG _TYPE value for a segment has 

two functions. First, it tells. how to decode the sequence of 

values' in the segment by indicating that the appropriate 

sequence of fields is the one that corresponds to that type. 

Second, it helps to identify the role that the associated entity 

plays in the relationship indicated by any linkings. 

The SEG_ID fieid value for a segment gives an identifier 

for that segment and serves to mark the involvement of that 

segment's entity in the indicated relationship, regardless of 

what other relationships that entity is involved in. 

Possible implementations of the family symbolic database 

will not be discussed here. 

3. The Nature Of Integrity Constraints 

An integrity constraint is an assertion about 

a database that one would like to have be true. As such, it 

may refer to any of the three components of a database. This 

section is concerned with categorizing integrity constraints and 

with discussing how to use symbolic logic to formalize their 

expression and to reveal their structure. 

Integrity constraints can be dichotomized into internal and 

external constraints. Internal integrity 

constraints assert the internal consistency of a database 

component whereas external integrity 

constraints assert that a database component is accurate 

in that it agrees with reality. Due to space limitations, only 

internal integrity constraints will be dealt with at length in this 

paper. As it turns out, it is possible to view external 

constraints as internal constraints and therefore to treat them 

both with the same methods. 

As an example of an internal constraint for an assertion 

database, consider the following one for the family assertion 

database: "The assertions in the family assertion database are 

such that the stated ages of the children are less than the 



stated ages of their parents." 

The analog for the family symbol database of the 

preceding family assertion database constraint is: "For each 

segment tree in the family symbol database, the values for the 

AGE_OF_CHILD field for the C type segments in the tree are 

each less than the values for the AGE_OF_MOTHER and 

AGE_OF]ATHER fields in the corresponding P type 

segment." Note the difference in character: the family symbol 

database constraint is asserting something about database 

symbols, not about the assertions they represent. The family 

assertion database constraint, on the other hand, is an assertion 

about the assertions in the family assertion database: it is 

totally oblivious to any symbolic system for represe~ting family 

information as well as to any physical system (paper or 

computer) that may be used for storing such symbols. 

The implementation database analog of the preceding 

family assertion and symbol' database age constraints makes 

reference to following various record pointer chains in such a 

way as to verify that the bit patterns of various fields are in 

the proper relationships. The details are omitted. 

This brings up an interesting observation. Database 

integrity issues typically arise when people are concerned about 

the integrity of an implementation database. But observe that 

when people express their constraints in natural language, they 

are often found to be stating assertion or symbol database 

constraints. The reason is clear: it is' a real nuisance to 

mention all of the intricate implementation details necessarily 

involved in the complete specification of an implementation 

database constraint. Consequently, it is often convenient to 

state instead a truth-value equivalent assertion or' symbol 

database constraint. 

As an example of an internal family implementation 

database integrity constraint that 'has no assertion or symbol 

database equivalent, consider: "Beginning at the first record tree 

in the family implementation database and (by following the P 

pointer chain) continuing through each succeeding record. tree, 

the chain of C type records in each record tree is accessed in 

order of increasing value of the bit patterns implementing the 

values of the AGE_OF_CHILD field." 

As an example of an external family assertion database 

integrity constraint, consider: "The parent-child relationships 

asserted by the family assertion database are consistent with 

what can be independently verified about the actual families." 

-- integrity constraints expressed in logic 

Integrity constraints can be expressed in a number <if 

languages. It will now be shown how a simple language based 

on first order logic can be used to illumine the structure of 

363 

constraints, to achieve a certain precIsion in their expression, 

and ultimately, to formally suggest measures of database 

. integrity and sampling units. 

The basic building blocks of the logic language used here 

consist of (j) sets of entities called domains, (ij) variables 

which range over domains and whose names begin with "v _", 

and (iii) predicates which are either domains or subsets 

of Cartesian products of domains. The atomic declarative 

statements in the language are the membership claims 

which assert that domain entities or vectors of domain entities 

are in predicates. Other statements are generated from the 

membership claims by using universal and existential 

quantification and the usual connectives such as "not", "and", 

"if ... then ... ", etc. 

The following logic language statement AGE is equivalent 

to the preceding English family symbol database parent-child 

age integrity constraint (an explanation of the symbols follows): 

for e~ch value of v _P )D, v_age _ mom, v_age _dad ( 

if P_SEG_ID( v_P_ID ) 

and SEG:AGE_OF_MOTHER( v_P_ID, v_age_mom ) 

and SEG:AGE_OF_FATHER( vY_ID, v_age_dad ) 

then for each value of v_C_ID, v_age_kid'( 

if C_SEG_ID( v_CJD ) 

and LINKED~TO( vY_ID, v_C_ID ) 

and SEG:AGE_OF_CHILD( v_C_ID, v_age_kid ) 

then v_age_kid < v_age_mom 

,and v_age_kid < v_age_dad» 

Here P_SEG_ID is a domain consisting of all segment ID's 

for P type segments in the family symbol database. The 

membership claim "P _ SEG _10 ( v _P _10 )" in the constraint is 

an assertion that the value of the variable v _P _ID is in the 

domain P _SEG_ID. The membership claim 

"SEG:AGE_OF_MOTHER( v_P_ID, v_age_mo~ )" is an 

assertion that the value of v_age_mom is the value of the 

AGE_OF _MOTHER field for the P type segment whose 

SEG _ID value is the value of v _P _ID,.' The membership claim 

"LINKED _ TO( v _P _10, v _ C _10 )" is an assertion that the 

segment whose ID is v _P _ID's value is in the same relationship 

chain as the one whose ID is v _ C _ID's value. 

There are, other 10gicaJly and model equivalent ways ·to 

write this constraint,in logic. 

By using the formula manipulation theorems of symbolic 

logic, one can often transform logic language integrity 

constraints into logically equivalent constraints that are of a 

particular form. This form is called un i ve r sal 

implication form and is that of 



for each value of vI' ...• Vn 

( if Ul vI' ...• vn ] then 11 vI' ...• vn ] ) 

Here "Ul vI' ...• vn ]" represents a logic language 

statement whose free variables are exactly vI' ...• vn and 

"11 VI' ...• vn ]" represents a logic language statement whose 

free variables are among vI' ...• vn. 

Define the jurisdiction J (C) of a constraint C 

having this form to be the set of all n-tuples ( e l •...• en ) of 

domain entities such that Ul el!vl •...• e/vn ] is a true 

statement. (This latter statement is formed from Ul VI' ...• vn ] 

by replacing all free occurrences of vk with ~ for I ~ k ~ 
n.) 

11 e/v i •...• e/vn ] is a test assertion for 

constraint C if and only if ( el' ...• en ) is in J(C). 

The age constraint above is already in this form. Relative 

to the family symbol database. J(AGE) equals ( ( #501. 32. 

35 ). ( #502. 54. 57 ) }. where the ordering of the free 

variables is as in ( v_P_ID. v_age_mom. v_age_dad). The 

(false) test assertion for jurisdiction element ( #501. 32. 35 ) 

is: 

for each value of v_C_ID. v_age_kid( 

if C_SEG_ID( v_C_ID) 

and LlNKED_TO( #501. v_C_ID ) 

and SEG:AGE_OF_CHILD( v_C_ID. v_age_kid) 

then v_age_kid < 32 

and v_age_kid < 35 ) 

As a final comment. observe that the integrity constraints 

for a database actually form an assertion database themselves 

for which one corresponding symbol database consists of the 

associated logic language sentences. The corresponding 

implementation database is very likely the way one would write 

or type the sentences. Thus the "integrity constraints" for a 

database can be seen to be a database in their own right; one 

wants the original database to be such that its integrity 

constraint database accurately describes it. 

4. The Design Of Database Integrity Measures 

A common way to define a database integrity measure is 

to define it as· a function mapping databases to numerical 

indices of their integrity. This paper takes a somewhat 

different approach. The guiding idea is this: Suppose there is a 

function 7r which maps statements to numbers between 0 and I 

which indicate the proximity of those statements to being true. 

Then in order to measure the integrity of a database. it suffices 

to apply 7r to the one big assertion one would like to have be 

true for the database. namely the conjunction of all of the 

364 

basic integrity constraints for that database.. Call this 

conjunction the database's meta-constraint. 

Consequently. a measure of database integrity 

is just a 7r-type function which is evaluated primarily on 

database integrity constraints. As will be seen. the highly 

structured. recursive form of integrity constraints expressed in 

the logic· language virtually automates the definition of 

measureS of database integrity. 

The first step in the recursive definition of a truth 

proximity measure 7r is to specify the values that 7r takes on 

the membership claims associated with various predicates. 

Here it will suffice to consider only those 7r such that. for all 

membership claims M. 7r(M) I if M is true and 7r(M) = 0 

if M is false. 

The next step is to extend 7r to the measurement of 

compound logic language statements which 

are those that are formed from one or more membership claims 

by the use of connectives and quantification. In general. 7r 

measures of compound statements will be functions not only of 

the 7r measures of their constituent statements but also of 

positive weights that have been assigned to these constituent 

statements. 

Like 7r. the weight function w will be recursively defined. 

For each membership claim M. w( M ) is defined to be some 

positive number. possibly solely dependent on the predicate 

involved in the claim. In the equi-weighting 

scheme. w( M ) is a constant (say. 1) for all membership 

claims M. 

The most predictable extensions for 7r and ware to define 

for statements S. 7r( not S ) to be I - 7r( S ) and w( not S ) 

to be w( S ). 

Letting w( SI ) and w( S2 ) be the positive weights 

associated with statements SI and S2' here is the weighted 

average definition for 7r( SI and S2 ): 

(weighted average) 
W(SI )7r(SI) + w(S2)7r(S2) 

W(SI) + w(S2) 

In support of this definition. observe that 7r( SI and S2 ) = I 

if and only if both 7r( SI ) and 7r( S2 ) are 1. Also. as 

7r( SI ) increases (decreases). so also does 7r( SI and S2 ). 

w( SI and S2 ) is defined to be w( SI ) + w( S2 ). 

Since a statement in universal implication form with non

empty jurisdiction is true if and only if all of its test assertions 

are true. the 7r value of such a statement with a finite 

jurisdiction is defined to be the 7r-value of the conjunction of 

all of its test assertions. In the special case that the 



jurisdiction is empty, the 1r-value is defined to be 1. The w 

value of a statement in universal implication form with finite 

jurisdiction is 1 if the jurisdiction is empty and is the w value 

of the conjunction of the test assertions if otherwise. 

For example, if conjunctions are measured by averages 

under the equi-weighting scheme, then (by applying 11' 

recursively), 1r( AGE) = 7/8 (not 112). 

-- V criteria --

A Vcr i t e r i on measure of database integrity is a 

1r-type truth proximity measure which measures conjunctions 

with weighted averages and which is used to measure 

constraints for databases all of whose basic constraints are in 

universal implication form. Hence, the V criterion maps the 

meta-constraint for a database to a weighted average of the 

values it takes on the test assertions associated with all of the 

basic integrity constraints. (The "V" is for "validity".) In 

symbols, for basic constraints C\, ... ,Cm and designated 

weight function, vec] and ... and Cm) = 

m 

i =] ~ E HC) 

m 

i -] ~ E HC) 

where e is a vector of domain entities and ~ is an appropriate 

vector of variables. 1r( AGE) above is a V criterion value. 

It is worthwhile examining how V's value on a conjunction 

of m statements is determined by its value on a conjunction of 

two statements. In this regard, note that V's value on the 

meta-constraint is not an average of V's values on the basic 

constraints. Finally, observe that, under. the equi .. weighting ....... 

scheme, if each test assertion is a membership claim, then the 

value of the V criterion is that fraction of all the test assertions 

which are true. 

-- the U criterion --

The nature of the V criterion is illumined by contrasting it 

with what is probably the most widely used measure of 

database integrity, namely a measure here called the U (for 

unreliability) criterion. U criteria are typically defined for 

record-based implementation databases. In its simplest form, a 

U c r i t e r i on for such a database is determined by 

decomposing that database's records and/or pointers into pieces 

and then computing that fraction of those pieces which are in 

error (or, alternatively, which are unreliable in some sense). In 

the case of a hierarchical implementation database, such pieces 

may be record trees or records or sub-record byte groups or 

365 

" access-path pointers. 

The essential difficulty with the U criterion is not that it 

doesn't measure something of some interest but rather that in 

general, it is very hard to compute. The computation of the U 

criterion presupposes that it is possible to identify exactly 

which implementation pieces are incorrect when a test assertion 

is false. This is frequently impossible if two or more such 

pieces refer to values from a single jurisdiction tuple generating 

a false test assertion. For example, suppose a test assertion for 

AGE fails: one doesn't necessarily know if it failed because the 

AGE_OF_CHILD value is incorrect or because the 

AGE_OF _MOTHER (or AGE_OF _FATHER) value is 

incorrect." 'What is even more insidious here is that the 

incorrect implementation pieces may be the ones referring to 

values from the jurisdiction tuple that do not appear in the test 

assertion. After all, the values that appear in the test assertion 

are not the only ones being tested: if the other ones are 

incorrect, then one may be making test assertions that one 

shouldn't be making and conversely. 

Anyway, if the implementation pieces are field value 

implementations, then which is to be marked wrong? The U 

criterion demands an answer; the V criterion doesn't care since 

it is only concerned with whether or not a test assertion is true. 

Furthermore, if for some reason the pieces are records or 

record trees and even if one can decide which piece is at fault, 

then is it really fair to denigrate every field value 

implementation in the piece in the event that only one such 

byte group is involved in the test assertion? 

In short, the V criterion is concerned with determining the 

truth or falsity of assertions about a database component (such 

being integrity constraints) whereas the U criterion is 

concerned with determining the correctness or incorrectness of 

the symbol implementations themselves. As it turns out, the 

former is easier to do than the latter. The U criterion is the 

"result of paying too much attention to symbols and their 

implementations. The V criterion is the more successful 

because it works directly with the integrity constraints 

themselves, not with database symbols and implementations. 

5. Sampling To Estimate Database Integrity 

Statisticians can use the material of the preceding sections 

to help design appropriate measures of database integrity. 

Once this has been done, they can begin to decide how to 

estimate these measures. The first step is to decide what is to 

be the sampling unit. 

As with implementation, anything true to the purpose at 

hand is fair in the selection of a sampling unit. The best 

choice for a sampling unit is one which is feasible, one which 



yields valid estimates for the parameter, and one which yields 

the optimal combination of efficient sampling and small 

variance. 

One possible choice for the sample universe is the set of 

all test assertions over all basic constraints. This is inadequate 

however since two elements from the same jurisdiction can 

generate the same test assertion. So consider instead a sample 

universe which is the union of all the jurisdictions of the basic 

constraints. Observe though that this is not well-defined since, 

given a tuple, one does not necessarily know which test 

assertion to generate from it. Some form of constraint 

identification is necessary. To tag a basic constraint 

jurisdiction is to map that jurisdiction to a set of ordered pairs 

such that each jurisdiction tuple is mapped to a pair whose 

first component is an identifier for the constraint and whose 

second component is the tuple. The result is that the union of 

all tagged basic constraint jurisdictions is a legitimate 

candidate for the sample universe. 

In this case, V can be re-written to explicitly indicate its 

relationship to this particular sample universe. If UJ = 

{ (i, ~ : 1 ~ i ~ m and ~ E J ( C i ) }, then 

V(C1 and . and Cm) = 

~ w(Ti[~ / ~]) . V(Ti[~ / ~]) 
G, ~ E UJ 

~ w(Ti[~ / ~]) 
G, ~ E UJ 

As can be seen for this choice of sample universe, the V 

criterion value for the meta-constraint is a ratio which can be 

estimated by using standard ratio estimation techniques. If in 

addition, all test assertions have equal weight, then this V 

criterion value is a mean which can be estimated by standard 
mean estimation techniques. 

-- root tagged jurisdictions 

In other situations, the basic constraints may be such that 

some tagged basic constraint jurisdictions can serve as roots for 

others. For example, consider the situation where the 

constraints form a list such that the jurisdiction of each 

constraint after the first is that portion of the jurisdiction of its 

predecessor which has true predecessor test assertions. In this 

case, the first tagged jurisdiction is considered to be the root of 

the others since each subsequent tagged jurisdiction l' k for 

k~2 can be determined from the previous one in the sequence 

1'k-l by applying a known algorithm to each element of 1'k-l' 

namely, (k, ~ is in J'k if and only if (k - 1, ~ is in J'k-l 
and ~ generates a true test assertion for the (k - I)th 
constraint. 

366 

In a more general setting, tagged jurisdiction A is a 

. root of tagged jurisdiction B if a reach function has been 

defined r from A to' B. The function r is a reach 

function' from tagged jurisdiction A to tagged, jurisdiction 

B if and only if (j) there is a known algorithm for computing 

its values, (ij) for each w in A, r(w) is a (possibly empty) 

subset of B,and. (iii) ( r(w) : w E A ) is a partition of B. A 

tagged jurisdiction element z is reachable from w if there 

'is a reach function r such that z E r(w). So, tagged 

jurisdiction A is a root of tagged jurisdiction 8 if and only if 

(j) for each element w of A, one can determine whether or not 

elements of B are reachable from wand if so, which ones and 

(ij) each element of B is reachable from exactly one element of 

A. Every root tagged jurisdiction is considered to' reach itself 

by virtue of the w - {w} reach function. 

Now, in'the event 'that no root tagged jurisdiction is the 

root of another one distinct from itself and no tagged 

jurisdiction has more' than one root, it may well be convenient 

to let the sample universe be the union of the root tagged 

jurisdictions. In order to write the V criterion in terms of 

measurements on these sampling units, it is necessary to define 

two measurement functions, say, x and y. The x value on a 

sampling unit is the sum of the test assertion weights of the 

tagged jurisdiction .elements reachable from that unit and the y 

value is the weighted sum of V's values on the associated test 

assertions. The corresponding V criterion value is the ratio of 

.the sum of the universe y values to the sum of the universe x 

values. When sampling to estimate this V criterion value, one 

is cluster sampling to estimate a ratio. 

Some symbols may aid the reader's understanding of the 

previous paragraph. Suppose that the first k tagged basic 

constraint jurisdictions are the roots of all the others. Then 

the formula for the V criterion may be rewritten to explicitly 

indicate its relationship to these sampling units and to the x 

and y measurement functions: 

k 

~ ~ ~ wi(~) 'V/~) 
(k,!V E J'( Ct ) G, ~ E R«k, !V) 

k 

~ ~ ~. wi(~) 

(k,!V E J'(Ck ) G, ~ E R«k, !V) 



k 

~ ~ y«k, ~) 
(k,!!) E ]'( Ck ) 

k 

~ ~ x«k, ~) 
(k,!!) E J'(Ck ) 

where J'(Ck) is {k} x l(Ck) , R( (k, ~) is the set of 

tagged jurisdiction elements reachable from (k, ~, wi = 

w 0 Ti [ . /yl and similarly for Vi' Note that x and yare 

operating on tagged tuples. 

It should be noted that in the preceding two situations, the 

sampling units may very well not be in one-to-one 

correspondence with any decomposition of the symbols (or 

implementations) in the symbol (or implementation) database. 

For example, observe that the jurisdiction of AGE is not in 

one-to-one correspondence with the set of segment trees, with 

the set of segments, with the set of segment field values, with 

the set of segment field 'values for AGE_OF_MOTHER, 

AGE_OF_FATHER, and AGE_OF_CHlLD, or with the set of 

relationship linkings. If; in fact, the tagged jurisdiction of a 

constraint like AGE is the best choice for a sample universe 

(as indeed it was for the author in a Bell System application), 

then those .who are thinking only in terms of symbolic sampling 

units will be at a loss to make the best choice. 

-- symbolic sampling units --

However, while there are situations when no symbolic (or 

implementation) sampling unit is acceptable, there are also 

situations where symbolic sampling units are the most 

convenient. What must be done in these cases is to define at . . 

least implicitly a function tJ; which maps elemerts of the union 

of tagged jurisdictions onto an exhaustive set of symbol pieces 

(such as the set of all segment trees or the set of all segments 

in the symbol database). One of the better ways to define tJ; is 

to map a tagged jurisdiction tuple to that symbol piece which 

contains within it at least some of the values in the tuple. 

Then to define V, define two measurement functions, say x and 

y, on the sample universe as follows: the value that x bikes on 

a sampling unit is the total test assertion weight of the tagged 

jurisdiction elements that tJ; maps to that unit and the value 

that y takes on that unit is the weighted sum of V's values on 

the test assertions associated with those tagged jurisdiction 

elements. Here again as well, when sampling to estimate such 

a V criterion value, one is using cluster sampling to estimate a 

ratio. 

As before, in symbols, if S is the set of symbol pieces, 

then the V criterion can be re-written as a function of the 

sampling unit as follows: V(C) and .,. and Cm) = 

367 

Often, one is not only interested in the V criterion value 

for the meta-constraint; the V criterion values for the 

individual basic constraints may also be of interest. Such a 

group of V criterion values form a trivial V criterion hierarchy. 

Non-trivial V criterion hierarchies also exist. In one of the 

author's Bell System applications, it was necessary to estimate 

a four level V criterion hierarchy. by using one level of 

subsampling and two levels of stratification. The details of this 

application of sampling to estimating database integrity are left 

to subsequent papers. 

By way of summary, an awareness of the assertion, 

symbol, and implementation components of a database serves to 

focus appropriate attention on each and to explain the nature 

of various kinds of .integrity constraints. Symbolic logic can be 

.used to reveal the structure of integrity constraints as well as 

to create a vocabulary for talking about them. Furthermore, 

the structure of constraints expressed in logic can be used to 

formally suggest meaningful measures of database integrity. In 

order to use sampling to estimate these measures of database 

integrity, a suitable sampling unit must be identified. A theory 

for the selection of appropriate sampling units is made possible 

by an understanding of both the nature of databases and the 

role that symbolic logic can play in formalizing the expression 

of integrity constraints .. 

Acknowledgement 

I would like to thank B. Gopinath for many valuable 

conversations. The V criterion was originally developed by 

Gopinath in a non-logic, non-'II"-measure setting. 

References 

[I] W. G. Cochran, Sampling Techniques -- Third Edition. 

New York: John Wiley, 1977. 

[2J C. J. Date, An Introduction To Database Systems -

Third Edition. Reading, Mass.: Addison-Wesley, 1982. 

[3J E. .Mendelson, Introduction To Mathematical Logic. 

Princeton: Van Nostrand, 1964. 



A Security Model for the Statistical Database Problem 

Dorothy E. Denning 1 

Abstract. A security model for addressing the statistical inference problem in 
online query processing systems is described. The set of all statistics computed 
over groups of records having common characteristics arc structured as a 
lattice of logical tables. The lattice model provides a mathematical basis for 
studying the inference problem, and a framework for evaluating and comparing 
different controls. Although the lattice model has been used by census agencies 
to protect statistical tables published oITline, it has only recently been used to 
develop infel'ence controls for genera.l purpose query processing systems. 

1. Introduction 
With the rapid proliferation of online database systems containing valuable 

or confidential information, computer scientists became concerned with the 
problem of protecting this data 'from unauthorized disclosure or modification. 
This concern led to the development of access controls, which ensure that all 
retrieval, update, insert, and delete operations are performed only by 
authorized individuals. 

Although access controls solve much of the database security problem, they 
do not completely solve it. One area they do not address is the inference 
problem or statistical database problem. The problem here is to provide certain 
users with statistical access to sensitive data, while ensuring that the sensitive 
dala cannot be inferred from released statistics. 

Over the years, census agencies in the United States, Canada, and Sweden 
have developed many techniques for ensuring the confidentiality of statistical 
data published offline in tabular form [1. 2. 3, 4, 5, 6, 7]. These techniques have 
been developed within the framework of a publication hierarchy [8], which is a 
lattice structure of statistical tables. The table structures are analyzed prior to 
publication, and table entries (cells) are suppressed or perturbed where needed 
to protect sensitive data. 

In the 1970's, the computer science communily began to study the 
statistical database problem in general purpose online query proceSSing 
systems, where arbitrary sets of records can be formulated in high-level 
languages. Because many online databases are continually evolving, efficient 
controls thal can be applied during query processing time are desirable. 

The early results of our research were discouraging. A user wilh the ability 
to formulate queries for statistics over e8sentially arbitrary groups could, 
circumvent many controls wilh just a few queries. To quote a statement made 
by this author at the 1977 Symposium on the Interface, "With few exceptions, 
most of the proposed controls are either easy to circumvent or impractical to 
implement" [9]. 

Recent research done in collaboration with Jan Schlarer at the Univ'crsity of 
Ulm, W. Germany has become much more encouraging. An important insight 

1. Author's uddress until May W: Computer Sciences Dept., Purdue Univ., W. Lafayette, IN 
47907; After Muy 18: sm {nt.emutional, 33:3 l~avcIlswood Ave., Menlo Park. CA 94025. Research 
supported in part by NSF Grant MCSUO-154U4. 

368 



2 

came when we began to transform our relational view of the data into a lattice of 
statistical tables. Although we did not consciously plan to use the census model. 
this is precisely where we landed. In the process. we have come toa better 
understanding of the problem. and are beginning to find a collection of controls 
that can provide a high level of security at reasonable cost. Not surprisingly. 
many of these controls are adaptations of techniques developed by census 
agencies. 

The purpose of this paper is to describe the lattice model. and to show why 
it is a useful security model for the inference problem in online query 
processing systems. If a database is described by some other data model. such 
as the relational model. then this model can be mapped onto the lattice for the 
purpose of developing security controls. We will show how this can be done for 
the relational model and for one statistical database model. 

2. The Lattice Model 

For security purposes. a statistical database can be viewed as a lattice of 
logical tables defined by the attributes of the database. There are M primary or 
atomic attributes A l •. ..• AM' Each primary attribute At gives rise to a 

k . . 
hierarchical structure of attributes Atl < ... <Ai'. where ~l = Ai and. for k, > r. 
~2 •...• ~t are secondary or clustering attributes. The relation AI < A{+l 

means that A!+l is a clustering or aggregation of values in the domain of A/; 
conversely. AI is a refinement or disaggregation of A/+l. Since Ail is atomic. it 
cannot be further refined. If a primary attribute has no secondary attributes. 
the superscript "1" may be omitted. In the degenerate case where none of the 
attributes has secondary attributes: the model corresponds to that described in 
[10]; if in addition each attribute is binary. lhe model is equivalent to the bit 
string model of Kam and Ullman r 11] (their model can also be interpreted as 
attribute hierarchies formed by bisection). 

Example 1. Cities are aggregated by state. giving the attribute hierarchy: 

A = A 1 = City < A2 = State. 

Each value in the domain of State names an aggregate of values in the 
domain City (e.g ... California' names a group of cities that includes 'San 
Francisco'. ·Berkeley·. ·Carmel'. etc.). 

Example 2. In a university. departments are grouped by school. giving the 
hierarchy 

A == A 1 = Department < A2 = School. 

Example 3. Ages may be aggregated at several levels: 

Al = 11. 2. 3. 4 ...... 100. >1001. 
A2 = 1[1-10]. [11-20] ..... [91-100]. [101-H. 
AS = 1[1-20]; [21-40]. [41-60]. [61-80]. [81-100]. [101-]1. 
A4 = 1[1-40J. [41-80]. [81-100]. [101-]1. 

All primary and secondary attributes can be used to select subsets of 
records in the database. The database may have additional quantitative 
(summary) attributes that 'are used in statistical' calculations but cannot be 
used in subset selection. 369 '. 



3 

. There is a functional dependency from an attribute Ai in a hierarchy to Ai+l 
(j = 1, .... k -1). For example. Oity in Example 1 determines State; Department 
in Example 2 determines School; each age group in Example 3 determines the 
next age group. In some cases. this dependency may not be immediately 
apparent if the same name is used to denote different entities. For example. the 
name "Rochester" refers to a city in New York. Michigan. and Minnesota (and 
probably several other states as well). We will assume this apparent confiict is 
somehow resolved by using unique names to denote different entities (e.g .. 
qualifying city names with state names). 

Although an attribute Aj~l is a refinement of a higher-level attribute Ai (for 
j > 1). sarno values in the domain of Ai may not be disaggregated in Ai-I. For 
example. the age group [81-100] in A4 of Example 3 appears in AS. The ot.her age 
groups in A4. however. are disaggregated in AS; for example. the group [1-40] is 
disaggregated into the two groups [1-20] and [21-40]. In general. some values in 
a domain may be carried through several levels in a hierarchy; e.g .. the age 
group [101-] in Example 3. 

Given m ~ 0 primary or secondary attributes A{I . ...• A~m. an elementary 
m-set over these attributes is an m -set specified by a conjunctive formula: 

E=(A{1 =al)& ... &(A~m=am). (1) 

where ai 'is a value in the domain of Aii . The set of all possible elementary m
sets over the attributes defines an m -dimensional logical table. or m-table for 

short. The size of the table is given by sm = n I Ali I. where I Ali I is the size of 
. i=l· 

domain Ai;. . Eachm-table partitions the complete d~tabase into Sm elementary 
sets. For m = O. there is a single elementary set, denoted ALL, which is an 
aggregate of all records in the database. 

Given attributes AI' .... Am' there is an m-table for each combination of 
attributes in the hierarchies for AI . .... Am. Since each attribute Ai has k i 
atomic and clustering attributes in its hierarchy. the lotal number of m-tables 

Tl~ 

over attributes AI' .... Am is n k i · 
i=l 

The set of all tables forms a lattice with partial ordering relation "<", where 
T2 < Tl means that each elementary set in Tl is a union of elementary sets in 

M 
T2 . The total number of tables in the lattice is given by n (k i + 1). For the 

. i=l 
special case where there are no secondary attributes. this is 2M. The top table 
in the lattice. denoted 7ALL • corresponds to the O-set containing all records in 
the database. The bottom table partitions the database according to all atomic 
attributes Al . .... AO. None of the tables in the lattice need exist as physiCal 
structures of the databases. The lattice is a logical structure. 

Let T 1 be defined by the attributes A{ 1 •...• A~m. and let T 2 be a table 
directly beneath Tl in the lattice. T2 refines Tl in one of two ways: 

1. T 2 is an m + i-table ovcr the attributes of T 1 plus an additional primary 
attribute A~+l; that is. T2 is defined by the attributes A{I . .... A~m. ArA+l' 
Then each elementary set. P, = (/l{1 = (11) & .. , & (A~m = am) i.n Tl 
corresponds to a union of elementary sels in T2 as follows: 

E= u 

The number of possibilities for T2 by this method is M - m. 
370 

(2) 



4 

2. T2 takes one of the secondary attributes of T1• say A/i. and refines it by 
taking it down one level in the hierarchy; that is. T2 is defined by 
Ail Aii-l Aim TJ h 1 1 t ' •• I fli I··' 'm· .len eac e ementary set E = 
(A{l = al) & ... & (A:: = u.m) in Tl is given by the union 

( i I) ii -1) i E = U Al = al & '" & (Ai = rli' & ... & (Amm = am) • (3) 
Clt,'EA/C

l 

"i· ... "i 

where ai' -+ ~ means that ai' determines ai' Thus. the union is taken over 
all values ai' in A!i- 1 

that disaggregate at in A/.1.. The number of possibilities 
for T2 by this method is n.. where n:::; m is the number of secondary 
attributes among A; I •••.• A~m. 

Thus the total number of direct descendents of T 1 is (M - m) + n :::; M. 

Figures 1 and 2 illustrate two simple lattice st.ructures. Figure 1 
corresponds to the lattice in [8], where attribute A is the hierarchy 

Al = City (within County) 
A2 = County 
A3 = State. 

and attribute B is the hierarchy 

BI = 6-digit industry code 
B2 = 4-digit industry code 
B3 = 3-digit industry code 
B4 = 2-digit industry code. 

Figure 3 shows a more detailed view of a lattice over two attributes A and 
B. where B is hierarchically structured: B = Bl < B2. The entries inside the 
tables are counts of the number of records belonging to each set. Note that 
~ach table partitions the 102 records of the database into disjoint sets. 

Statistics, such as the counts in Figure 3. are computed over subsets of 
records having common attribute values. A set of records is specified by a 
characteristic formula F'. which, informally. is any logical formula over the 
values of the primary or secondary attributes using the logical operators OR (+), 
AND (&). and NOT( ...... ), plus the relational operators. If a formula is expressed 
solely in terms of logical AND and equality, then it is a conjunctive formula of the 
form (1) specifying an elementary set. The set of records whose values match a 
characteristic formula P is called the query set of P. 

We will concentrate mainly on additive statistics [10]. Letting q denote a 
statistical function, q is additive if and only if 

q (PI + F 2) = q (FI ) + q (P2) (4) 

when FI and F2 are disjoint query sets. Counts, sums, and higher order 
moments [12] are additive. 

Additive statistics have the important property that the st;:o:tistics in the 
tables of the lattice are lincarly relaled. In particular, if T2 < T I • then the 
statistics in TI are marginal sums of those in T2 . This mcans that the statistics 
in Tl can be computed from those in any descendent of T \ in the l~.ttice. To 
make this precise, let T 1 be an m-lable over the attributes A;l, ... ,A~m, and let 
T2 . be a lable directly below T 1 in the lattice. Let 
E = (A{l = at) & '" & (~m = am) be an elementary set in T t. Then q (E) is 

371 



• 

Figure 1. Lattice of tables over a.ttributes A = A 1 < A2 < A3 and 
B = B 1 < B2 < B3 < B4. 

372 • 



Fir,ure 2. Latt.ice 0)' to.blc:: ewer :riJxibuLes 11, JJ I o.nd C; jJ is hierarchically 
::::Lruclm'ccl ns JJ ::; jJl < jJ;~ < jJ'J < l/'c. 

373 



46 

35 

28 

92 

13 

0 

7 

24 

20 

5 

8 

43 

7 

5 

1 

19 

0 

11 

3 

6 

12011 

TALL 

12 

24 

13 

32 

T 2 
AB 

3 

12 

0 

8 

14 

6 

7 

17 

9 

1 

10 

18 

{bl,b2}{b3,b4,bS}{b6} 

I 76 1 81 144 I 

/ 
b

1 
b

2 
b

3 
b

4 
b

S 
b

6 

144 1
32 

1
20 

1
23 

1
38 1

44 
1 

14 

6 

7 

7 

/ 
T 1 

B 

Figure 3. Lattice of counts over attributes A and B = Bl < B2 

374 • 



5 

computed from T2 in one of two ways, depending on whether T2 refines Tl by 
adding an extra attribute (dimension) A,A+l or by disaggregaUng one of the 
attributes Aj : 

1. If T 2 is an Tn + l-table over the attributes A{t, ... ,A~m, Mt +1' then 

q (E) = (5) 

The counts in tables TA and TEl of Figure 3, for example, are the marginal 
sums of TAB1 : the counts in TB2 are the marginal sums of T AD2: and the 
counts in TALL are marginals of both TA and T B2 . 

2. If T 2 is an m -table defined by A{ 1, ... ,Afi. -1, ... i A~m, then 

q(E).= 2: q((A{l=al)& ... &(Afi-l=~,)& ... &(A~m=am».(6) 
j -1 

"i.'EAi i 

"i.'->"i 

The counts in TAB2 of Figure 3 are obtained by addi,ng groups of columns in 
TABt . 

Additivity implies that statistics in the bottom table of the lattice, namely the 
table over all M atomic attributcsAl, ... ,AA}, is a basis for computing all other 
tables in the lattice. 

Additivity has another important property as well: statistics for 
nonelementary query sets (Le., those sets that cannot be defined without using 
logical OR, NOT, or the relational operators other than equality) can be 
computed from those in the tables. Ji'or example, count ((A", (3) & (B = b 2» 
can be computed by adding the statistics in column 2 of table TABI of Figure 3, 
omitting the statistic in row 3. This property implies that an m-table of 
statistics over attributes A{l, ... ,A!n,m serves as a basis for computing all 
statistics of a given type for query sets over these attributes. Moreover, the 
bottom table of the lattice serves as a basis for computing all possible statistics 
of a given type. 

Additivity has important implications for both security and freedom of 
information: we can restrict the syntax of queries to conjunctive formulas 
without causing any information loss. Indeed, we could conceivably withhold all 
statistics in the database except for those in the bottom table of the lattice 
without causing any loss. Of course, this does not solve the security problem 
because the low-level tables, in particular the bottom table, usually contain 
sensitive data that must be withheld to ensure privacy. But, as discussed later, 
restricting the syntax is a useful tcchnique for thwarting many attacks. 

Eqs. (5) and (6) show how statistics of a given type (e.g., all counts or all 
sums over a given attribute) are related in the lattice. Statistics of different 
types may also be related. For examplc, let T 1 be an m -table over attributes 
A{l, ... ,A~m, and suppose Tl contains sums over attribute Am + 1• If Am+! can be 
used to select subsets of records, then the sums: in Tl are linearly related to 
counts in Tl'S descendent overA{I, ... ,A~m,ArA+l as follows: 

sum((A{l = ( 1) & ... & (A!n,m = am» == (7) 

L: [count ((A{t :::: ( 1 ) & ... & (A~m = am) & (A,A+l = am + 1» ., ~+l] . 

um + t EAJi+l 

Nonadditive statistics are related to additive statistics through counts and other 
375 



6 

higher-order statistics. For example, mean (F) = sum (F)I count (F) for any 
formula F. (See also [13].) 

Users often want complete tables of statistics (e.g., total salaries of 
employees in a 2-table broken down by sex and age) or cross sections of tables. 
Such queries can be expressed by allowing "*" for an attribute value in the 
formula, where (Aft = "') generates the set of all values in the domain of Ali 
[14,5]. Looking at Figure 3, the query q ((A = "') & (Bl = "')), for example, 
returns the entire 2-table of statistics TAB I in Figure 3; the query 
q ((A = "') & (Bl = b s)) returns the statistics in column 3 of TABI ; and q (Bl = b s) 
returns the column sum, which is a cell in the l-lable 7BI . 

The table structures of the lattice model are closely tied to the publication 
format of statistical applications, including census data, where the marginal 
sums in the higher-level (lower-dimensional) tables are usually displayed with 
the lower-level tables from which they are derived. Figure 4 illustrates a single
table presentation of the statistics in all six tables of Figure 3. 

3. The Security Problem 

The problem is to prevent the inference of sensitive statistics. A statistic is 
sensitive if confidential data could be deduced from the statistic alone. A 
statistic computed from confidential information for a group of size 1 is usually 
considered to be sensitive. Thus, the count for (A = as) & (B = b 2 ) in table JABI 
of Figure 3 is sensitive. A statistic computed from a group of size 2 may also be 
classified as sensitive because a user with supplementary knowledge about one 
of the values can deduce the other from the statistic. The exact criterion for 
sensitivity is determined by the policies of the system. One criterion used by 
the U.S. Census Bureau for economic data is the "n-respondent, k %-dominance" 
criterion, which defines a sensitive statistic to be one where n or fewer records 
comprise more than k% of the total [8,1]; n p.nd k are. parameters of the 
database, usually kept secret. The disclosure. risk, or identification risk, of a 
table is given by the numbcr (or percent) of sensitive cells in the table. 

Personal disclosure (compromise) occurs when the user can infer a 
previously unknown sensitive statistic about an identifiable individual [15,16]' 
Disclosure may be either exact or approximate, positive or negative 
[17,18,15,5,6]' Releasing counts for query sets of size 0 always leads to 
negative. disclosure because one can deduce that a particular individual does not 
have the associat~d properties. 

Clearly, all sensitive statistics must be restricted (i.e., not permitted). In 
addition, we must restricl nonsensitive statistics that could lead to disclosure of 
sensitive ones. Such disclosures arise mainly from the linear relationships in 
thc lattice structure, as defined by Eqs. (5)~(,(). Given all of the statistics in one 
of these equations but one (which is sensitive), the missing statistic is easily 
computed. For example, using Eq. (5), the sensitive count for 
(A = as) & (B = b 2) in TAB I of Figure 3 can be computed by subtracting the 
other entries in column 2 of the table from the column sum in TBI . 

In general, a sensitive cell in a lable T cannot be inferred from tables above 
T in the lattice; it is usually necessary to obtain other cells in T (or at least 
sl::lListics computed over Lhe allributes defining '1'). There are exceptions, for 
example, when Lhere are "magical zeros" [5,10], or when the counts 
disaggregated by attribute 11711 +1 in an m+l-table are determined by the sum 
over Am+1 in the parent m-table as defined by Eq. ('7) [19]. For example, if the 
domain of Am+l = {11, 1'(1. then the only integral solution to the sum 

376 • 



6f 

Total 

13 7 20 0 3 9 12 14 46 

0 5 5 11 12 1 24 6 35 

7 1 8 3 0 10 13 7 28 

24 19 43 6 8 18 32 7 92 

44 32 76 20 23 38 81 44 201 

Figure 4. Publication format for counts of Figure 3. 

377 



7 

50 = n 1'11 + n2'17 

is n 1 = 3, n2 = 1. Because this method of attack requires exact answers, 
perturbation techniques (see Section 4.3) are a good countermeasure. 

To prove that information in an m + 1-table cannot be inferred exactly from 
parent tables, one can show that the database is m-transformable [20,21]. 
Unfortunately, this is not usually practical. 

The lattice model is a powerful and effective tool for modeling the security 
problem. It provides a simple structure for relating different statistics through 
linear equations (or more complex equations for nonadditive statistics). This is 
important for understanding the rules of inference used by an adversary to 
compute a sensitive statistic from nonsensitive ones, and for proving that a 
particular countermeasure makes such inferences impossible or unlikely. With 
this framework, it becomes immediately obvious why certain controls are 
ineffective or undesirable. For example, neither a query set size control [22] 
nor an overlap control [23] foil "trackers" [24,25,26,16,27] and other inference 
techniques that exploit the linear relationships [18]. Moreover, an overlap 
control is readily seen to be undesirable, as it rules .out releasing many 
statistics for aggregates, which are vital to most statistical applications. 

4. Security Mechanisms 
The lattice model provides a framework for evaluating, and comparing 

different controls in terms of their security and information loss. Security is 
measured by the relative number of sensitive statistics that can be inferred by 
circumventing the control. by the difficulty (computational complexity) of doing 
so, and by the probability of success. Information loss is measured by the 
number of nonsensitive statistics or tables of statistics that are unnecessarily 
restricted by the control. and by the amount of noise injected in permitted 
statistics. 

There are two general techniques for enforcing security: res'triction and 
perturbation. Restriction techniques aim to prevent infercnce of sensitive 
statistics by withholding additional nonsensitive ones. In [28], we survey various 
strategies, classifying them according lo whether they restrict at the table level 
or cell level in the lattice. The conlrols are also classified according to whether 
they are a priori (precompule which statistics to release),audit based (decide 
whether to release a statistic by consulting a log of previously released 
statistics), or memoryless (use heuristics at query processing time). 

4.1. Table-Level Hestriction Techniques 
Table-level controls restrict complete m-tables of statistics, including all 

statistics for query sels defined by lh('~ associated attributes. Security is 
measured in part by the number of tables that are falsely permitted; i.e., are 
permitted despite having sensitive cells. Information loss is measured by the 
number of tables lhaL are falsely resLricLed; i.e., are restricted even though 
lhere are no sensitive cells. 

We have used tbe lattice model to describe and evaluate several 
mcmoryless Lable resLriclion criterion [10]. Two attractive criterion are 
relative table size and expliciL l'isk estimation; both are heuristics. The relative 
lable ~,j:;:c (suJ N) criLc~rioll reslricLs an Tn.-lable of eounls when iLs size Sm 
relative to the number N of records in the dalabase exceeds a threshold 1/ k. 
The control is applied to a query q (P) by taking the product of the domain sizes 
for the attributes named in F, therebyobLaining lhe size of the corresponding 
logical table in the lattice. For k = 10 and the database of F'igure 3, all counts 

378 



8 

over attributes A and Bl would be restricted since the relative size of table TABt 

is 24/201 = .12 > .10; all other counts would be permitted. Thus,. the sensitive 
cells in the restricted table TAnt are protected. The results of experiments 
reported in [10,29] show that relative table size can predict the disclosure risk 
of a table. Explicit risk estimation uses frequency distributions of the data to 
obtain even closer estimates of table risk, but at the price of increased 
computation [10,29]' Table level controls can also be used with statistics other 
than counts, e.g., sums; higher thresholds are generally needed, however, 
because higher-order statistics contain more information [10]. 

Clustering attributes can enhance security while reducing information loss. 
For example, if the 2-table TABI is restricted, statistics over attributes A and B 
can still be released through the clustering attribute B2, because table TABZ 
does not contain sensitive cells. Schlarer [30] studies the security aspects of 
clustering, showing that clustering attributes must form hierarchies as in the 
lattice model. The inclusion of clustering attributes to enhance security is also 
called "grouping" or "rolling up" [3,4,5]. . 

4.2. Cell-Level Restriction Techniques 
Cell-level controls aim to restrict only the sensitive cells of an m -table, and 

just enough nonsensitive statistics over the assvciated attributes to prevent 
inference. Security is measured by the number of sensitive cells that can be 
inferred; information loss by the number of nonsensitive cells that are 
restricted. Although cell level controls can be applied to queries for single cells 
(or cell unions), they are belter suited to queries for complete tables or cross 
sections of tables. This is because they must examine more lhan one cell of a 
table to determine whether a particular cell can be securely released. 

An example of a cell-level control is cell suppression, which is an a priori 
control used by census agencies to protect data published in tabular form. The 
linear relationships among all cells of a table and the marginal sums in the 
parent tables are analyzed to determine whether sensitive cells can be deduced 
(exactly or approximately) from those that are released; additional cells, called 
complementary suppressions, are suppressed until this is no longer possible 
[E?, 1. 5, 6, '7]. To prevenl inferences using Eqs. (5)-('7), the suppressed cells must 
fall into (possibly overlapping) hypercubes of size 2m , where m is the size of the 
table; that is, 2 cells in each row (column, etc.) are suppressed. In addition, if 
any attribute is aggregated into clusters at a higher level in the lattice, then the 
hypercubes musl be contained within clusters. Figure 5(a) illustrates how cell 
suppression could be applied to table TAB 1 of Figure 3. Three cubes are 
suppressed, where the cells of each cube are marked X, y, and Z respectively. 
(cubes Y and Z overlap on one cell). Figure 5(b) shows an alternative 
suppression that is not secure because hypercube Z is nol conlained within a 
cluster. The sensitive cell in rew 2, column 5, for example, can be deduced by 
subtracting the cells in columns 3 and 4 from the marginal in TAUZ for the row 2 
cluster Ib s,b 4 ,b 51. 

Because cell suppression can be expensive, it is used as an a priori control 
rather than on a pcr qucry basis. A memoryless heuristic based on lhe principle 
of restricting hypercubes of slatistics has been proposed as a less expensive 
alternative [or online query processing system::; with conjunctive queries [10]. 

By providing sLatistics for aggregates, clustering atlributes can reduce the 
information loss caused by suppressing nonsensitive cells. For example, the 
query count.([(A = as) &' (iJ I = b l )] + [(A = as) & (BI = b 2)]) would not be 
allowed because the formula is Lhe disjunction of restricted cells. This statistic 

379 



8f 

13 7 Y Y 9 14 

x x 11 z Z 6 

x x y y/z z 7 

24 19 6 8 18 7 

a) Secure suppression 

13 7 Y Y 9 14 

x x 11 12 Z Z 

x x y y z Z 

24 19 6 8 18 7 

b) Insecure suppression (hypercube Z crosses partitions) • 

Figure 5. Cell suppression applied to T 1 of Figure 3. 
AB 

380 



9 

can be obtained, however, through the clustering attribute B2 with the query 
count ((A = as) & (B2 = Ib l ,b 2 l). 

4.3. Perturbation Techniques 
Perturbation techniques add noise to statistics. These techniques are 

usually used with some form of restriction technique, applied at either the table 
or cell level. Perturbation techniques are judged not only by their security and 
information loss, but by their bias, which should be zero or at least negligible, 
and by their consistency. Inconsistencies arise when, for example, repetitions of 
the same query yield different results, or when the statistics in a row (column, 
etc.) of a table do not add up to their marginal sum. Unfortunately, the goals of 
consistency and statistical quality of perturbed statistics can be conflicting 
[31, 4, 6, 32, 33], so that perfect consistency is probably unrealizable. 

We also survey perturbation techniques in [28], classifying them according 
to whether are record (input) based or output based. Given a query q (F), 
record based techniques perturb the input to the statistical function for q. An 
example of a record based technique is random sample queries [34,18], which 
uses random samples of the records in a query set to compute a statistic. One 
of the difficulties encountered with this strategy is maintaining consistency. If a 
statistic can be requested in many different ways, and each query returns a 
different response, then a better estimate of the true statistic can be obtained 
by averaging the responses. To see how Lhis might be done, suppose sampling is 
applied to queries for nonsensitive statistics over attributes A and B I of TABI in 
Figure 3 (queries for sensitive statistics would be suppressed). Then the query 
count ((A = as) & (BI = b I» for the 'nonsensitive statistic in row 3, column 1 
would return a count computed from a sample of the records in the query set, 
where the variance of the perturbed count is great 'enough that the "1" in row 3, 
column 2 cannot be accurately inferred (using the marginal in T ABa). But 
additional estimates of the perturbed count might be obtained by formulating 
the query in different ways, for example: 

count ((A = as) & (BI < b 2» 
count ((A > a2) & (A < a4) & (8 1 < b 2» 
count([(A = as) & (BI= b l )] + [(A = as) & (BI < b2)]) 

By taking the average of many such estimates, a better estimate of the true 
count can be obtained, 

To protect against averaging attacks, equivaient queries should always 
return the same response. One way of doing this is by restricting the syntax of 
queries to conjunctive qu.eries, which allows easy reduction to a normal form. 
The reduced normal form would then functionally determine which records are 
selected for the sample, A less restrictive, but somewhat more costly, way is to 
make the sample dependent on the composilionof the query set., This could be 
done by first making a preliminary pass over the query set to compute a 
checksum over the record id's; the checksum would ,then functionally determine 
which records are selected for the sample [34,18]' 

Unfortunately, guaranteeing a constant response for equivalent queries is 
not suITicient. If table ''1~lJl has d descenclc~nts in the lattice, Lhen estimates of 
Lhc cell in row 3, column 1 can be obtained from these descendents, Let E = 
(/1 = (13) & (JJ 1 = l> J, and suppose Lhc synLax of queries is unresLricted (wiLh Lhe 
checksum scheme used Lo ensure consLancy for sLaListics computed over the 
same query set). There is an exponential number of ways of estimating 
count (E) from each deseendenL of T ABl in the laLLice, For example, suppose 
TABle is a descendent of TAnl , where C is the ordered domain C = Ic I, . " . ,Ct}· 

381 



10 

Because there are Zt-l-1 ways of partitioning the domain of C into two 
nonempty subsets, there are zt -1-1 ways of expressing count (E) using just two 
queries; e.g., 

count(E & (C = c 1» + co'Unt(E & (C > c 1» 
count(E & (C::: C2» + count(E & (C > C2»' 

Because different query sets are used in each estimate, the checksum scheme 
does, not detect equivalence among the pairs of queries. If Zt-l-1 > 
151 E 1 (1 - p)/ p, where 1 E 1 is the size of the query set and p is the expected 
fraction of records retained in the sample, then the set of all sl.!-ch estimates 

. gives enough information to estimate count (E) to within one record with a 95% 
confidence interval when 1 E 1 is around 30 or so [34]. For 1 E I = 30 and p = .75, 
for exampl/3' a domain size t of just 8 gives enough estimates .. If the syntax of 
queries is restricted to conjunctive /ormulas, . then only one estimate of 

count(E) can be obtained, namely I:co'Unt(E & (C = Ci», .so an averaging 
i=1 

attack is not likely to succeed. 

The checksum scheme has another potentially serious security flaw. 
Suppose it is known that a formula F uniquely identifies some indivtdual in the 
database, but it is not known whether that individual has attribute A = (1 l' 

Because the size of the query set F & (A = a 1) is 0 or 1. the database would 
withhold the statistic count (F & (A = (11»' It is, however. possible to deduce 
whether this count is 0 or 1 from two queries. q (F + P) and 
q{F &(A =.(11) + P). where P is a tracker [Z4,25,26.16]; that is. a,formula 
disjoint from F that pads F with enough extra records that the queries are 
answerable [35]. If both queries return exactly the same answer, one can infer 
Lhatboth have the. same query sets (otherwise the samples, and therefore 
responses. would be diiIerent with high probability). whence the individual has 
the attribute A = (11 with high probability. This security flaw in the checksum 
scheme is not unique to random sample queries; it arises with any perturbation 
scheme (e.g., random rounding), where Lhe perturbation is functionaliy 
determined by the composition of the query set .. ' 

In practice, it may be easy to prevent users fr0m obtaining estimates of 
cells in TAB 1 using descendenLs of T AB1 in the lattice. Because the descendents 
are further down in the lattice, they will contain more sensitive cells than TAB1 . 

, Therefore, lattice based restriction techniques ca.n restrict statistics in these 
tables, and perturbation techniques can introduce larger errors so that 
statistics in lower-level Lables cannot be used to estimate those higher up. 

Output based techniques perturb a result q (Ji') after it has been correctly 
computed, typically by systematic or random rounding [36,4,37. 38.33J. or by 
controlled rounding [39.2.10,11.42]. Systematic and random rounding can 
introduce inconsistencies. Controlled rounding forces consistencies for additive 
statistics by making· the marginal slJms of rounded statistics equal their 
rounded sum. Since this can be expensive, it is presently used only as an a priori 
control for offline publi(~at.ion of tables. Handom rounding. which has the 
a.dvantage of being unbiased, is vulncrn.ble to averaging attacks in the same way 
as random sample quorio:;,· Tbe sol uLion is al so the same: resLricL Lhe syntax to 
conjunctive formulas. and leL Lhe reduced normal form functionally determine 
wheLher Lo round tIP or down. 

Two observations arc worth noting. f'irst. the attilcks formulated in terms 
of "key-specified queries" I: 18}, including the linear system attacks on sums 
[23,43] and mediiln attacks [4-4,4·5. 46J. may not be as serious as originally 
thought. Indeed, it seems unlikely that any of these attacks could succeed in a 

382 



11 

system with security controls developed in the lattice model, t.hough further 
research is needed to substantiate this. To see why, consider the following linear 
attack, which determines the value x7 in: 5 queries, where Xi is the value of some 
numeric attribute in record i, and qj denotes the statistical sum returned in the 
jth query: . 

Obtain these statistics: 

Ql=X I +X2+ X 3 

q2 = X4 + X5 + Xe 
Q3 = Xl + X 4 + x7 

q4 = X2 + X5 + x7 

q5 = X3 + Xe + X7 

Now, to perform this attack, a user must be able to formulate characteristic 
formulas for the query sets in the, attack (users with statistics-only access 
should not be permitted to request statistics "for groups of named individuals). 
This means that the pser must have enough supplementary knowledge about the 
individuals in the database that precisely controlled groups of individuals can be 
identified through characteristic formulas: for many applications, this 
information will not be available. But even if it is, the formulas defining these 
groups must use enough attributes to isolate single individuals, whence the 
query sets will correspond to sets (or set unions) defined over tables containing 
sensitive cells. ' Table-level and cell-level controls can prevent their release, or 
add enough noise that estimates of sensitive cells. cannot be obtained. 

The second observation is that there is a case for restricting the syntax of 
queries to conjunctive formulas. There is a paradoxical tradeoff between the 
power of the query language and the amount of obtainable information [33]. If 
the syntax of the query language is restricted to conjunctive formulas, then the 
only statistics released are those corresponding to table cells in the lattice: 
statistics for query sets defined by logical OR and NOT are not released. But 
restricting the syntax reduces considerably the number of possible attacks, so 
that the database can release more table cells, and more accurate statistics for 
these cells. Because additive statistics for arbitrary formulas can be computed 
from the table cells, more information may be effectively released than with a 

. free syntax, where controls must be tighter. 
This tradeoff arises with random sample queries and random' rounding, 

where restricting the syntax to conjunctive formulas allows easy reduction to a 
normal form, and reduces exponentially the number of ways of expressing a 
particular query set. The tradeoff also arises with memoryless cell restriction 
techniques, where using conjunctive queries can permit the release of partial 
tables through a heuristic based on withholding.hypercubes [10]. With a free 
syntax, complete tables of statistics mllst be withheld to ensure s('!curity. We 
also observe that the Swedish National Bureau of Statistics has adopted a 
partially restricted syntax [fl, 6]. 

5. Data Models 

We began our research on Lhe statistical inference problem with a 
relational [47] view of the data. We modeled a statistical database as a single 
relation (also called universal relation [4UJ) of N records (tuples), where each 
record contains values for the M atomic attributes AI" .. ,AM, plus any 
quantitative attributes used in statistical calculations, but not for specifying 

383 



12 

query sets. 

We chose tq.is model over the publication hierarchy because we "\V"anted to 
study the problem as it arises in general purpose online query processing 
systems, such as relation~l database systems, where arbitrary query sets can be 
formulated in high-level languages, and where some users may be allowed direct 
access to the data. Because many online databases are dynamic, we wanted to 
find efficient inference controls that could be applied at query processing time. 
This ruled out many techniques used by census agencies, including cell 
suppression, which are applied a priori to the one-time publication of tables. 

The results of our research led us to the lattice model. This is not 
incompatible with our earlier objective of studying relational databases. A 
relation over M primary attributes is easily mapped onto a lattice structure for 
the purpose of studying security. Clustering attributes can be added uS an aid 
for releasing more information without jeopardizing security. Because the 
tables of the lattice are logical rather than physical structures, the lattice 
serves only as a tool for estimating disclosure risks and developing security 
controls. 

Recently, 'efforts have been made to develop a data model for statistical 
databases that models the semantic cOliceptsof statistic'al applications, namely 
clustering attributes and table structures. An example' is SUBJECT [49,50], 
which represents the attributes and tables of the lattice with a graph, A graph 
has two types of nodes: "clustering" hodes (labeled "C") for attributes (primary 
or secondary), and "dross product" nodes (labeled "x") for tables over multiple 
attributes, In addition, special cluster nodes, called "subject nodes", group 
attributes, tables, arid other subject nodes. Figure 6 shows a SUBJECT graph for 
the database depicted by the lattice of Figure 3, Attributes A and Bare 
represented by clustering nodes: the 2-dimensional tables over A and B by a 
cross-product node. The SUBJECTgrilph has the advantage of. showing the 
hierarchical dependency relationships between clusters and values in an 
attribute hierarchy. 

A SUBJECT graph can be mapped into the lattice model for the purpose of 
developing security controls. Consider the SUBJECT graph in Figure 7, which 
corresponds to that in }i'igure 4 of [1,9] minus the quantitative a'ttributes 
(variables). The lattice for this graph is equivalent to that in Figure 2,where the 
attributes are interpreted as follows: 

A = States, (atomic attribute) 
B = Industrial Classes (attribute hierarchy with 4 levels) 
C = Employment Size (atomiC attribute) . 

The database contains one quantitative attribute, Reporting Units, which is 
broken down by aU three attributes, The raw data for this attribute is 
associated with table T

IIl
]4C in the lattice, and aggregations of the data are 

associated with the higher-level tables, The database also has two quantitative 
attributes, Number of Employees and Taxable Level, which are broken down by 
attributes A and B only. The raw data for these attributes' is associated with 
table TAB4 , and aggregations of the data are associated with the ancestors of 7~B4 
in the lattice. 

u. Conclusions 

The lattice model provides a'maLhematical basis for studying Lhe iuference 
problem and iLs solution. IL hilS provided a framework for estimating disclosure 
risk, and for evalualing and comparing difIerent controls, It has suggested ways 
of adapting techniques used by cenSllS agencies' to online query processing 

384 • 



Figure 6. SUBJECT graph for lattice of Figure 3. 

385 



Industry x State x Employment size 

Industry x 
size 

Industry Code 
4-7 .•. 

1381 1382 1389 

Figure 7. SUBJECT graph of industrial data. 

386 



13 

systems, and has suggested new controls. 

Although considerable progress has been made towards solving the 
statistical database problem in general purpose systems, further research is 
needed to determine more precisely the security and information loss of 
parLicular controls. Experimental studies along the lines initiated by Jan 
Schlarer at the University of Ulm are needed to confirm or refute the 
effectiveness of these controls on actual databases. Guidelines are needed for 
selecting the best controls for a particular application, for setting table 
restriction thresholds, and for selecting perturbation amounts. Additional 
research is also needed to understand the security problems associated with 
database updates [51. 52]' 

Acknowledgements 
Many thanks to my colleagues at sm for a stimulating discussion about the 

lattice modeL especially Leslie Lamport who prodded me to think more about 
using checksums to guarantee constant perturbation for equivalent queries. 
Special thanks to Jan Schlerer whose insights and results have strongly 
influenced this paper .. Jan Sehlerer', PeLer Denning, and Gordon Sande provided 
helpful comments on an earlier version of this paper. 

Hcfercnccs 

1. Cox, 1. H., "Suppression Methodology and Statistical Disclosure Control." J. 
Amer. Stat. Assoc. 75(370) pp. 3?7-385 (June 1980). 

2. Cox, L. H. and Ernst, L. R, "Controlled Rounding," U.S. Bureau of the 
Census, Washington, D.C. (Jan. 1981). 

3.. Fellegi. 1. P., "On the Question of Statistical Confidentiality," J. Amer. Stat. 
Assoc. 67(33?) pp. 7-18 (Mar. 1972). 

4. Fellegi,1. P. and Phillips, J. 1., "Statistical Confidentiality: Some Theory and 
Applications to Data Dissemination," Annals Econ. Soc'l Measurement 
3(2) pp. 399-409 (April 19?4). 

5. Olsson, L., "Protection of Output and Stored Data in Statistical Databases," 
ADB-Information,4, Statistika Centralbyran, Stockholm, Sweden (19'75). 

6. Rapaport, E. and Sundgren, B., "Output Protection in Statistical 
Databases," S/SYS-E04. Nat. Central Bur. Stat., Stockholm, Sweden (1975). 
(Invited paper. Warsaw Meeting Int. Stat. Inst., Oct. 19?5) 

7. Sande, G., "Towards Automated Disclosure Analysis for Establishment Based 
Statistics," Statistics Canada (197?). 

8. Cox, L. H., "Suppression Methodology and Statistical Disclosure Control." 
Confidentiality in Surveys, Report No. 26. Dept. of Statistics, Univ. of 
Stockholm, Stockholm, Sweden (Jan. 1978). 

9. Denning, D. E., "Complexity Results Helaling to Statistical Confidentiality," 
ComputeT Sdence and Sta-list1.cs: 12th Annual Syrn.p. on the Interface, (May 
1979). 

10. Denning. D. 1';., Schlorer, .f., and Wehrle, K, "Mcmoryless Inference Controls 
for Statistical Databases," Computer Sciences Dept., Purdue Univ. (1982). 

11. Kam, J. 13. and Ullman, J. D., "A./vlodel of Statistical Databases and their 
Security," ACM Trans. on DatabcLse Sysl. 2(1) pp. 1-10 (Mar. 1977). 

387 



15 

32. Reiss, S. P., Post, M., and Dalenius, T., "Non-Reversible Privacy 
Transformations," Technical Heport PRT 2/4, Dept. of Computer Science, 
Brown Vniv., Providence, RI. (Nov. 1981). 

33. Schlerer, J., "Query Based Output Perturbations to Protect Statistical 
Databases," Klinische Dokumentation, Universitiit Ulm, VIm, W. Germany 
(October 1982). 

34. Denning, D. E., "Secure· Statistical Databases Under Random Sample 
Queries," ACM Trans. on Database Syst. 5(3) pp. 291-315 (Sept. 1980). 

35. Denning, D. E., "The Many-Time Pad: Theme and Variations," Proc. 1983 
Symp. on Security and Privacy, (April 1983). 

36. Achugbue, J. O. and Chin, F. Y., "The Effectiveness of Output Modification by 
Rounding for Protection of Statistical Databases," INFOR 17(3) pp. 209-218 
(Mar. 1979). 

37. Narglmdkar, M. S. and Saveland, W., "Random Rounding to Prevent 
Statistical Disclosure," Proc. Amer. Stat. Assoc., Soc. Stat. Sec., pp. 382-
385 (1972). 

38. Schlerer, J., "Confidentiality and Security in Statistical Data Banks," pp. 
101-123 in Data Documentation: Some Principles and Applications in 
Science and Industrlj; Proc. Workshop on Dal"a Documentation, ed. W. Guas 
and R Henzler,Verlag Dokumentation, Munich, Germany (1977). 

39. Causey, B., "Approaches to Statistical Disclosure," in Proc. Amer. Stat. 
Assoc., Soc. stelL Sec., , Washington, D. C. (1979). 

40. Dalenius, T., "A Simple Procedure for Conlrolled Rounding," Statist'L<;k 
Tidskrift, (3) pp. 202-208 (19B1). 

41. FcUegi, 1. P., "Conlrolled Random Hounding," Survey Melhodology 1(2) pp. 
123-133 (1975). Statistics Canada 

42. Newman, D., "Techniques for Ensuring the Confidentiality of Census 
Information in Great Britain," Office of Population Censuses and Surveys, 
Great Britain (Sept. 1975). Presented at the 2nd Meeting of the Int'l Assoc. 
of Survey Statisticians, Warsaw 

43. Schwartz, M. D., Denning, D. K, and Denning, P. J., "Linear Queries in 
Statistical Databases," ACM Trans. on Database Syst. 4(1) pp. 476-482 
(Mar. 1979). 

44. DeMillo, R A., Dobkin, D., and Lipton, R J., "Even Databases That Lie Can Be 
Compromised," IEEE Trans. on Software l!.:ng. SE-4(l) pp. 73-75 (Jan. 
1978). 

45. DeMillo, R and Dobkin, D. P., "Combinatorial Inference," pp. 27-35 in 
Foundations of Secure Computation, Academic Press, New York (1978). 

46. Reiss, S. P., "Medians and Database Security," pp. 57-92 in Foundations of 
Secure Computation, ed. R. A. DeMillo et al.,Academic Press, New York 
(1978). 

47. Codd, E. y, "A Relational Model for Large Shared Data Banks," Comm. ACM 
13(6) pp. 377-387 (19'(0). 

48. Ullman, ,T. D., Pri.,nci.ples of lJatabase Systems, Computer Science Press 
(1980). 

49. Shoshani, A., "Slatistical DaLabnses: Charactcristics, Problems, ar.d Some 
Solutions," Proc. b1-ghth Int'l Conf. on Very Large Data Bases, pp. 208-222 
(Sept. 1982). 

389 



16 

50. Chan, P. and Shoshani. A., "A Directory Driven System for Organizing and 
Accessing Large Statistical Databases," Proc.'dnt 'leonf. on Very Large Data 
Bases, pp. 553-563 (1981). 

51. Chin, F. Y. and OZSOY0ci1u, G., "Security in Partitioned Dynamic Statistical 
Databases," pp. 594-601 in Proc. IEEE COMPSAC Conf., (1979). 

52. Ozsoyoglu, G. and Ozsoyoglu, M., "Update Handling Techniques in Statistical 
Databases," in Proc. First LEL Workshop on Statistical Database. 
Management, Lawrence Berkeley Lab, Berkeley, CA (Dec. 1981). 

390 



STATISTICAL DATABASES: THEIR MODEL, 0UERY LANGUAGE AND SECURITY 

Zbigniew rUCHALm'lICZ 

Department of Information Science, Victoria University of Wellington 

l'lellington, Private Bag, New Zealand 

Abstract. 

In this paper we deal with the problem of security of statistical databases, i.e. file systems. 

l'le propose a model of a statistical database in which to investigate the properties of statis

tical databases and we de~cribe a query language connected with such a database. We discuss the 

problem of denendencies between attributes and we consider the case when database contains in

complete information. In the case of incom1)lete information the problems arrive with the inter

pretation of the query language, mainly for statistical terms. The need fora precise semantic 

is here evident. 

1. INTRODUCTION 

There are a number of fundamental distinctions 

between data bases and file systems. In parti

cular a data base has more structural complex

ity, different access methods and contains 

intrarecord relationships. The term "data base" 

usually refers to both file systems and data 

bases, for example a statistical database is 

a file system containing records for some num

ber of individuals. A user generally has access 

to an external database, which is a view of 

part of the conceptual database. Such a view 

is often simply collection of records, e.g. 

one relation scheme, and may be seen as a file 

system. For example, with a database containing 

information about flights and passengers, a 

clerk may need to know about flight numbers 

but not about the assignment of pilots to 

flights. The dispatcher may need to know about , 
flights and aircraft, but does not need to know 

about personnel salaries (cf. [5lJ). 

This paper is connected with the problem of 

inference control. The problem of inference 

control in statistical databases has been of 

growing concern in recent years; several stu

dies have been reported (cf. [11, (3-7J , [1l1 , 

[13-l4J, [16J , [18-23J , [30] , [37-431, [45-50] , [55J ) 

involving different models and different allow

able statistical queries. Inference controls 

protect statistical databases by preventing 

questioners from deducing confidential infor-

391 

mation by posing carefully designed sequences of 

statistical queries and correlating the responses. 

In general all protection policies impose some 

restrictions on the database system. A "good" pro

tectionpolicy should be effective (it should pro

vide security to a reasonable extent), feasible 

(there should exist a way to enforce restrictions) 

and efficient and at the same time maintain the 

richness of the information revealed to users of 

the database (cf. [4J). 

There are two main restrictions connected with the 

previous studies. Almost all previous studies con

sidered static databases (except [4J,[42-43J, [55}) 

in order to simplify the problem. On the other 

hand the inference control in statistical databa

ses should also be investigated for dynamic data

bases. The second restriction is more serious: all 

researchers (as far as the author is aware) studied 

the case of a statistical database which contain 

"complete" information, it is, for every object 

and every attribute (property) there exist a unique 

value which correspondes to them. Note that the 

situation when data are incomplete is quite common 

mainly in statistical databases which should con

tain a lot of information about large groups of 

population. 

Now we propose and investigate a model for statis

tical database. For this purpose we use the model 

prooosed by Lipski [32]; in the next section we 

summarize the basic notions used in this model. 



2. A MODEL OF A STATISTICAL DATABASE 

We give below a mathematical model of a sta~: 

tistical database. The model will then be used 

in the rest of the paper. 

Def.l. 

A statistical database is a quadruple 

S where 

x is a finite set of objects, 

A is a finite set of attributes, 

Qa is a nonempty set called the domain of 

attribute a, 

U is a function U : Q -> IP (X) , 

(where Q denotes the "disjoint union" of attri-

bute domains: Q !<a,q) : a€A and q€QaJ, and 

[['(X) denotes the set of all subsets of X) , 

such that for every a€A: 

(1) ll{u(a,q) : q€Qal = X. 

The function U associates with any a€A and 

q€Q a set of objects U(a,q)~X. 

Let us consider the following example. Suppose 

that a statistical database contains the fol

lowing information: the age of the object x 

is 30, the age of the object y is 28, 29 or 30 

and the age of object z is 30 or 31. Now we 

want to list all objects which age is 30 (it 

is, we want to list all objects which age is 

30 in reality). Note that the answer may be 

{xl, ~x,Y3, 1x,zl or lx,y,z}. Of course, the 

information contained in the system is not 

sufficient to exactly determine this set. 

However, for any query we may consider the 

following two bounds of interpretation of the 

query: 

(2) the set of objects for which we can con

clude from the information available in 

the system, that they must satisfy condi

tion expressed by the query, 

(3) the set of objects for which we cannot 

rule out the possibility of satisfying 

condition expressed by the query. 

In other words, (2) and (3) are the best pos

sible bounds of the interpretation of the 

query, logically derivable from the system. 

In our example the answer under the first 

interpretation is 1xJ and under the second 

interpretation is lx,y,z~. 

392 

Now we turn to the function U .• Intentionally, U(a,q) 

is the set of objects for which attribute a possibly 

takes value q. From the function U we can determine 

the set, denoted by u(a,q), of all the objects for 

which the value of attribute a is known to be q: 

(4) u(a,q) = x'UtU(a,s) : s€Qa and s 4' qJ. 

The intuition connected with the above rule is that 

we know that a takes value q exactly when we know, 

that it is not possible for it to take any other value 

S€Qa'{ql. From (1) and (4) we may easily obtain the 

following two intuitively evident facts: 

(5) u(a,q)!: U(a,q) 

(6) u(a,q)~U(a,s) = ¢ for all q t s, q,S€Qa. 

According to the interpretation of function U, we 

may determine, for every x€X and every a€A, the set 

(7) ~a(x) = ~q€Qa: x€U(a,q)J 

of all possible values attribute a can take for 

object x. Converselly, U can be obtained from fun

ctions ~ (aeA) by the formula: 
a 

(8) U(a,q) = ~X€X : q€~a(x)J. 

We shall call (~a)a€A the classification associated 

with system S = < x, A, (Qa) a€A' U>. 
3. A QUERY LANGUAGE 

Below we describe the main characteristic of a que

ry language. 

By a query we shall mean a term. A term can be 

descriptive, numerical or statistical. A descrip

tive term is built up from certain elementary parts 

called descriptors and symbols for Boolean opera

tions 0, ], ~, " +. The set T of descriptive terms 

is defined to be the least set Tl with the following 

two properties: 

(i) ~,] and all descriptors are in Tl , 

(ii) -t, (t·s), (t+s) are in Tl whenever t,s€Tl . 

Every descriptor is of the form (a,B>, where a is 

an attribute and B is the subset of attribute do

main 0 . Descriptor (a,B>' denotes the set of ob-
"a -

jects for which the value of attribute a is in B. 

We treat descriptors as indecomposable elements 

without any internal structure. 

For every descriptive term t, a numerical term #t 

can be constructed (cf. [29], (33]). It denotes the 

number of objects with the property expressed by t. 



The set of numerical terms T# is defined as 

A statistical term is given by the triple 

(Y,f,a), where Y is subset of X, f indicates 

a "statistical" function which associates a 

real number with any finite collection (with 

repetition allowed) of reals, and a is an 

attribute (not always arbitrary). A statis

tical term (Y,f,a) is intended to denote 

either the specific value from the set 

f~a(x) : X€yl with repetitions allowed, when 

f is maximum, minimum or medium, or a value 

computed using the values ~a(x), x€Y. 

Note that the set of attributes can be parti~ 

tioned in to two groups, A = D v W, where a€W 

if QaSR and a€D otherwise (R denote the set 

of real numbers). It means that we may arith

metically add the values Ql,Q2eQa only in the 

case when a€W. In many cases in modern sta

tistical databases (cf. [3J, [13J, [lSJ , [17J , 

[30) the set of attributes A is divided onto 

two subsets A = C v V, where C is the set of 

categories and V - the set of data. These 

sets need not be disjoint. Categories are 

used to distinguish the subsets of objects 

having common characteristic (the values of 

attributes), and data keep their numerical 

val ues. Of course V ~ W, ie. for all a€V : 

Qa ~ R. Since categories describe characteris

tics of objects, the descriptors, which are 

used to build the descriptive terms are of 

the form (a,B>, where a€C (and consequently 

B S:Q). On the other hand the requirement for 

statistical terms <Y,f,a) is a€V. 

Now we give a definition related to descrip

tive terms. 

Def. 2. 

(i) A descriptive term is primitive if it 

is of the form 

where ajtak for j~k 

for all j€J 

n(a.,B.) 
j€J J J 

and ¢"I= Bj~Qa. 
J 

393 

(ii) A descriptive term is in additive normal form 

if it is of the form 

where all tk's are primitive 

(iii) A descriptive term is coprimitive if it is of 

the form 

2:<a.,B.> 
j€J J ) 

where ajtak for j~k 

all j€J 

and for 

(iv) A descriptive term is in mUltiplicative normal 

form if it is of the form 

where all tk's are coprimitive 

ITt 
k€K k 

(v) A descriptive (primitive) term is simple if it 

is of the form 

n<a,YQaP 
a€C 

(vi) A descriptive term is in standard form if it 

is of the form 

L't 
k€K k 

where all tk's are simple. 

4. STATISTICAL DATABASE - COMPLETE INFORMATION 

We say that a statistical database contains comple

te information if and only if u = U. Note that 

this condition is equivalent to "J3
a

(x) consists of 

a single element of Q
a

, for all a€Aand x€X". In a 

complete system we know exactly the unique value 

attribute a takes for object x for any a€A and x€X. 

Although the semantic connected with complete sys

tem is intuitively evident and is "the only natural 

one", nevertheless we give below a formal defini

tion of the interpretation of (ie. the response to) 

a query. 

Def.3. 

The value of a query q in system S is denoted by 

IlqHs (or \lql\) and defined inductively as follows: 

(i) 

(H) 

\1<»1\ = ¢' 
lI(a,B)1I 

PI! = X, 

U U(a,q), 
q€B 



(iii) II-t \I = X'lItH, 

(iv) IIt·sll = IItlll'lllsll, 
(v) 1\ t + s II = \I t II v Ii s \I , 

(vi) \I#t II = card( U tn ), 

(vii) \1<Y,f,a>1I = f(f!a(xl)""'''a(xm», 

where Y = txl, ••• ,xml. 

Note that the set Y in (vii) may be given as 

a value I\tll for some descriptive term t; 

than Y is the set of objects satisfying pro

perty expressed by t. In that case such a 

statistical term we denote by (t,f,a). 

Example 1. A statistical database containing 

information on employees. 

Objects Cat ego r i e s 
Sex Dept. Position 

1.Adams M Math 

2.Baker M BioI 

3.Cook M BioI 

4.Dodd F Psy 

5.Engel F Math 

6.Flood M Math 

7.Grady F Psy 

8.Hayes M Math 

9.Iron M BioI 

10.Jones 

Il.Knapp 

12.Lord 

M Math 

F BioI 

F BioI 

Prof 

Prof 

Stu 

Asist 

Stu 

Prof 

Stu 

Prof 

Stu 

Asist 

Asist 

Asist 

D a t a 
#Ch.Li.d. Salary 

o 
4 

1 

1 

1 

2 

3 

3 

3 

o 
2 

2 

24000 

24000 

5000 

17000 

16000 

22000 

9000 

21000 

10000 

16000 

17000 

15000 

In the above statistical database we have 12 

objects (X = ~Adams, Baker, ..• ,Lord}), which 

are described by 5 attributes (A = iSex,Dept., 

position, #Child., SalaryJ). The categories 

describe characteristics of the objects (sex, 

position, department), where Qsex= {F,MJ, 

QDept.= ~Math, BioI, psyl, and Qposition= 

tprof, Asist, Stu};- whereas data (number of 

children and salary) specify numerical values 

for these objects. Below we give three simple 

queries and responses for them. 

ql= (Sex, ~Ml>'<Dept,IMath!)+(Posit, iStul), 

IIql ll = ~Adams, Cook, Engel, Flood, Grady, 

Hayes, Iron, Jones}, 

394 

q2= # (Sex,{M}>.<Dept,{Math1)+(Posit, {Stu}» , 

IIq2" = 8, 

q3= «Dept ,I Math J) ,MAX , Salary), 

IIq311 = 24000. 

Now we give a definition and a theorem which will 

be important in the following text. 

Def.4. 

Two descriptive terms t, seT are equivalent (t ~ s) 

if for all systems S: II til S = II s II S (the phrase 

"for all systems" refers to all systems with fixed 

Theorem 1. 

(a) For each descriptive term t there is a term s 

in normal addi ti ve form such that t ~ s . 

(b) For each descriptive term t there is a term s 

in standard form such that t ~ s. _ 

(c) For each descriptive term t there is a term s 

in multiplicative form such that tZs. 

For the proof the reader is refered to (32J. 

We say that a compromise occurs when a user deduces, 

from responses to one or more queries, confidential 

information of which he was previously unaware (in 

such case we say that a database is compromisable). 

A database is secure, if it is not compromisable. 

In general, a user is not allowed to know some'va

lues in the database. Thus interpretation of a query 

for a user is usually different from interpretation 

for the administrator of the system. During the last 

years there has been a great effort to find a secu

re interpretation, under which a database is secure. 

There have been two main approaches to this provision 

of security. First, the administrator of the system 

may restrict the class of admissible queries. This 

restriction may be done in a syntactic way, for 

example an admissible query may use only a primiti

ve terms (Def.2(i», cf. [3),[181,(30], or a user 

must not use particular attributes. Alternatively, 

the restrictions may be done in a semantic way, for 

example the answer to a query may depend on the 

number of objects involved in this query, cf. [16J. 

The second method of providing database security 

is by giving an "inprecise" answer to a query (cf. 



• 

• 

(11 , (14] , [IS) , (20]) . 

One of the most promising is the concept of 

defining "statistical information". This cor

respondes to the definition of sets of popu

lation (cf.[4]). We may apply this idea by 

using our model. Suppose that in our model 

there are p category attributes and that the 

i-th category attribute can 

vil, ... ,vin .' We may form N 
3. 

take n. 
p 3. 

=n n. 
i=l 3. 

values 

elemen-

tary conjunctions, each of them being a con-

junction of a different combination of cate-
, , 

gory values. Each elementary conjunction 

correspondes to some simple term (see Def.2(v». 

Example 3. Consider the database shown in 

Example 1. It contains 12 records 

and the set of elementary conjunctions (simple 

terms) having II t \I t ¢ is ttl' .• ·; tsl' where 

t l = <Sex,~M3)' (Dept, {Math!>' <Posit, lProfJ> 

t 2= (Sex, tM})' (Dept. ~Math 1> • (Posit, tAsistl> 

t3= <Sex, tM}>' (Dept, {BioI}>' <Posit,lprof I> 
t 4= <Sex, tM}>' (Dept, ~ BioI}>' "Posi t, 1 Stu J> 
ts= (Sex, ~F!>' (Dept, lMathJ>' <Posit, istu l> 
t6= (Sex,lFl> • <Dept, 1 BioI}>' <Posit, iAsistl> 

t7= <Sex. tF!>' (Dept,lPsyl>' (Posit, ~ Asist}> 

ts=<sex, ~Fl>' <Dept,~PsyJ> • {Posit, \Stu}> 

Under the assumption, that the cardinalities 

of domains for attributes Sex, Dept. and Po-. 
sition are 2, 3 and 3 respectively, the total 

number of elementary conjunctions is' IS. 

Def.s. 

We say that Y ~ X is describable in S if there 

is a descriptive term t such that Y is the set 

of all objects satisfying the property ex

pressed by t (y = litH). 

If we restrict the set of allowable queries 

to queries specified by descriptive terms., a 

user is allowed to ask for properties of any 

describable set (not every possible combina

tion of records can be requested). However, 

such a restriction alone is still ineffective' 

(cf.[16]). So the task of the administrator 

of the database is to partition records into 

395 

disjoint groups, which define atomic populations. 

Note that every atomic population should be one of 

the describable sets, so the set of atomic popula

tions may be given as a set of descriptive terms. 

Def.6. 

We say that the set {yl, .•. ,Yrl of describable sets 

form the set of atomic pbpulations,'if for arbitrary 

itj: Y./,\Y.='¢ arid 
3. J 

r 
Uy. = ,X; 
i=l 3. 

Example 4. Taking into account the previous example 

the administrator may define the following atomic 

populations as a set of descriptive terms: 

sl <Dept,fMathJ>.<sex,fF~> 

s2 (Dept, ~MathJ>'<Sex, {Ml> 

s3 <Dept,~Bio13>'<Posit,fAsistJ> 
s4 <Dept,~Bio11>'(Posit'1Stu,profJ> 

ss (Dept,tpsyJ> 

Def.7. 

Let lYl, ••• ,Y
r

} be the set ~f atomic populations. 

A set Y will form a population over tYl' •.. 'Y ~, if 
r , 

it is a union of a certain number of atomic popula-

tions from !Yl, ..• ,yr }. 

Note that the set of atomic populations implies 

the set of populations. A user is only allowed to 

learn about populations. For example, a user may 

learn about the maximum salary of all objects, 

which satisfy the following condition: 

<Dept,tMathJ>.<sex,~MJ> + <Dept,~Bio13>· 

'«Posit, {Asist'!> = s2 + s3 (see Example 4). 

A formal definition of the interpretation for a 

user is: 

Def.S. 

Let tYl •••. 'yr} be the set of atomic populations, 

fixed for a given database S. 

(a) The value of a numerical term #t for a user is: 

II #t 1\ = card (Y). where Y is the least population 

over [Yl,.' •. ,yr } such that ntll~ Y. 

(b) The value: of a statistical term <:t,f,a) for a 

user is\l(t.f.a)1I = U(Y,f,a>U " where Y is the 

least popu~ation over 1 Y l' .•. , YJ such that II t II ~ Y. 

This protection policy may be easily implemented. 

Each query, numerical or statistical term is speci

fied by a descriptive term, which has an equivalent 



standard form (Theorem 1). Each atomic popu

lation may be described by a descriptive 

term in the standard form. An algorithm to 

transfer an arbitrary descriptive term t into 

an equivalent standard form is given [32]. 

To maintain the richness of the information-

revealed to users. the administrator may fix 

different atomic populations for different 

attributes a€V. For every statistical term 

(t.f.a) we must take into account the set of 

atomic populations which correspondes to 

attribute a. However the administrator of 

the· database must be aware that there may be 

some relationships between the attributes 

from the set V. More precisely: 

Def.9. 

Let S = (x. A. (Qa)a€A' U> be a statistical 

database (A=C~V). Then a is a binary relation 

defined by x a y if ~a(x) = ~a(Y). 

It is easily seen that a is equivalence rela

tion. Let a.b € V be two attributes. Attribu

te b is dependent on a (a-> b) if 'i ~ r,i 
a and b are equivalent (a~b) if a = ki. 

For example. there may be some relationship 

between attributes "Tax" and "Salary" (ie. 

J3Sal (x) < J3sal (y) implies ~Tax (x) < 13Tax (y) ; 

moreover. the opposite implication is also 

true). In that case the attributes "Tax" and 

"Salary" are equivalent. 

Let us denote "'" B 0-a. 
]. 

(B =V). where 0 is 

a.€B 
]. 

a product of partitions (equivalence relations) 

a. defined in a usual way. Obviously. B is 
]. 

equivalence relation. 

Now we give two definitions (cf. [44J): 

Def.lO. 

The set V of attributes in S is called inde-

pendent in S if for every V 1 ~ V: V 2V· 
1 

If there is a subset Vl~V such that =-
VI 

then the set of attributes V will be called 

dependent in s. 

V 

396 

Def.lI. 

The smallest set Vl~ V such that VI is independent 

in S = (X. A. (Qa)a€A' U) (A=C"V) will be called 

reduct of V and the corresponding database 

Sl = <X. AI' (Qa)a€A • U1> (Al=C"Vl ) - reduced 
1 

database (U
l 

is the restriction of the function U 

to the set AI) • 

Under the above definition it is clear that the 

administrator should fix atomic populations for 

reduced database. ie. for all attributes which be

long to the reduct of V. The set of atomic popula

tions for the attributes from the reduct of V 

imply the other sets of atomic populations for 

other attributes. 

If a-->b for some a.b€V and {yl ••••• yrJ is the set 

of atomic populations for attribute a. then for eve-

ry atomic population Z for attribute b: 

where J ~ ~l, ...• rJ. 

Z = Uy .. 
i€J ]. 

Therefore equivalent attributes should have the same 

sets of atomic populations. For example. having 

Tax ~ Salary, the set of atomic populations for 

attributes Tax and Salary should be the same. 

5. STATISTICAL DATABASES - INCOMPLETE INFORMATION 

As we point out in the previous section, the seman

tic connected with the query language for formu~a

ting queries to a statistical database with comple

te information is intuitively evident and is "the 

only natural one". It is no longer so when the in

formation is incomplete. To give a precise notation 

of interpretation of a query language, we introduce 

the following definition (cf.[32): 

Def.12. 

Let Sl= <X, A. (0 ) Ul ' and "a a€A' / 
S2= (x, A. (Qa)a€A' U2) be two statistical 

databases. We say that Sl is an extent ion of S2 

(and denote S2' Sl) if Ul(a.q)~U2(a,q) for all 

a€A and q€Qa. 

It is obvious that , is a partial order on the set 

of all systems with fixed X and (Qa)a€A. This par

tial order has the least element (ie. where U(a,q)= 

=X for all a€A and q€Qa). Such a database contains 



no information at all, except for the mere 

fact what attributes refer to the objects. 

Using the above definition we may define a 

complete statistical database as a maximal 

element in the order' , ie. if it has no 

extentions S ~ Sl except for S = Sl' A statis

tical database is called incomplete if it is 

not complete. 

Now we are ready to turn to interpretation 

of a query language in incomplete statistical 

databases. Taking into account the conside

rations in Section 2, we give two bounds of 

interpretation of a query. Note that objects 

in incomplete database S are in reality des

cribed by a completion of S (we do not know 

by which one). So we may conclude that x has 

in reality property t only if x has property 

t in every completion of S. This leads in 

natural way to the following definition: 

Def.l3. 

(i) The lower value of 

t in S is \I t II *S 

a descriptive term 

n \\tlls 
S'SI 1 

Sl complete 

(ii) The upper value of a descriptive term 

t in S is II t II; = V \\t\\s 
S~ Sl 1 

Sl complete 

In other words, the lower value of a descrip

tive term t in S is a subset Y of X such 

that x€Y iff for every completion Sl of S: 

x€ 1\ t 1\ S . The upper value of descriptive 

term t i~ S is a subset Y of X such that 

x€Y iff for some completion Sl of S: x€ IItUs . 
1 

Sometimes, when S is clear from the context, 

we write simply \I t 1\ * or \I t \I * instead of 

11 t i\ *s or II t 1\ ;. 

The following theorem gives the basic pro

perties of II • 1\ * and \I. \I * • 

Theorem 2. 

In any statistical database 

S = <X, A, (Qa) a€A' u) we have 

* (i) /Ie) \I * = \I (!I \I = ¢ 

397 

(ii) 

(iii) 

(iv) 

II] \I * = 

U<a,B>II * 

\I(a,B) II * 

* IIDII =X 

X" UU(a,q) 
q€Qa' B 

UU(a,q) 
q€B 

* (v) lI",tll*=x'lIt!l 

(vi) 1\ ~ t ~ * = X' II til * 
(vii) lit + sll* 2 Iltll*vllsll* 

(viii) \I t + s II * = 1\ t II * v \I s 1\ * 

(ix) IIt·s 1\ * lit 11*,,11 s n * 

(x) lit· s II * 1\ t 1\ *" II s 1\ * 

For the proof the reader is refered to (321. 

Note that the inclusion (vii) cannot be replaced by 

equality, since lit + 511* may contain objects 

know to have property t or property s (and it is not 

known which one). 

However, two basic kinds of queries to a statisti

cal database are numerical and statistical terms. 

We may extend easily the interpretation of query 

language to capture numerical terms: 

Def.14. 

(i) The lower value of a numerical term #t in S is 

II #t II * = card II t II * 

(ii) The upper value of a numerical term #t in S is 

II #t \I * = card \I t II * 

In [291 the authors describe some propreties of 

* 11 • 1\ * and 1\. II for numerical terms; for more 

details the reader is refered to this work. 

More serious problems arrive with statistical terms. 

Recall that the set of attributes is usually divi

ded into two (not necessarly disjoint) sets named 

categories and data. Both categories and data may 

contain incomplete information. The need for a 

precise semantic is hehe evident. For instance, 

what should be the response to the qu~ry "give sum 

of salaries of all objects which age is 30"? 

Should we take into account only the objects which 

are known to be to be 30 and have the unique value 

for attribute "Salary"? Can we rule out all objects 

for which there is a possibility to be 30? What 

about objects for which age is 30 and the value 

of attribute "Salary" is unknown or, at least, 

given in some range? Below we propose the inter-



pretation for the statistical term: 

Def.15. 

(i) The lower value of a statistical term 

(t,f,a) in S is a range 

lI(t,f,a>lI* = [p,r], such that 

p f(inf(f!a(x1»,···,inf(lIa (xk ») 

r = f(sup(lIa (x1», ... ,sup(}3a(xk») 
where IItll* = lx1 , ... ,Xk}, 

(ii) ,The upper value of a statistical term 

<t,f,a> in S is a range 

U(t,f,a)U* = [p,r], such that p and r 

have the same mean~ng as in (i) and 

II t \I * = t xl' .•. , xkl· 

Note that there exist several other possible 

interpretations of a statistical term. For 

example the query (t, sum, salary) may be in

terpreted as a sum of salaries of all objects 

which are known to satisfy the property 

expressed by t and, in the same time, have 

a unique value for attribute "Salary", 

increased by a sum of an average salaries 

of all objects which are known to satisfy 

the property t and have not a unique value 

for attribute "Salary" (similarly for all 

objects for which the possibility of satis

fying property t cannot be ruled out) • 

We choose a range as an interpretation of a 

statistical term, since it provides the user 

with bounds for the true values. The true 

value (perhaps unknown in the database) can 

be trusted to lie between these bounds. 

Example 5. Let us consider the same set of 

objects and attributes as in Example 1. 

We assume that 

J3sex (Cook) = }3sex(Enge1) = iF,MJ, 

~Dept(Baker) = lBio1, PSyJ, 

~DePt(Hayes) = iMath, Bio11, 

~S 1 (Baker) = 122000,23000,24000,250001, a ary 
}3sa1ary(Iron) = {8000,9000,10000,11000}, 

and the rest of values remain the same as 

in Example 1. 

Then for the query: 

t = <Dept,~Bio13>, we have 

398 

lit II * = ~Baker,cook, Hayes, IrOn,Knapp,Lord}, 

whereas 

II t 1\ * = ~ Cook, Iron, Knapp, Lordj • 

For a numerical term #q = #(Dept,iBio11>, we have 

II #q II * = 6 and II #q \I * = 4, 

and for statistical term s= (Dept,~Bio13 ,SUM, Sal) 

we have 

\I s 1\ * 

II sll * 
[88000,94000}, 

[45000,48000J. 

The output of ranges to protect confidential in

formation released as statistics about groups of 

individuals was proposed previously (cf. [431, 

[49]). However .the meaning of those ranges is quite 

different to these proposed in this paper. The 

reason is that all previous studies deal with 

complete information and the range (as the answer 

for the query) contains the true value. In the case 

of incomplete information the range has the follo

wing meaning: "in every completion of system S, 

the true value (answer for the query) is in the 

given range". The one point is common: the admini

strator of a database should fix the interpreta

tion of a query language such that users may 

obtain valuable (meaningful) information and in 

the same time cannot infer about confidential 

va1ue(s). Below we give one of the several possible 

interpretation of a query language for a user .. 

Def.16. 

(i) The value of a numerical term #t for a user 

is the range II #t II = ( \I #t II *, II #t II *], 

(ii) The value of a statistical term <t,f,a) for 

a user is the range U<t,f,a}1I = [p,r], where 

l\(t,f,a>lI* = [P1,r11, 
* \I (t,f,a)1I = (P2,r2J, and 

p = minfp1,r1,P2,r2!' r = maxtP1,r1,P2,r2J' 

Example 6. The value for the statistical term 

s = <Dept,~Bio1J ,SUM,Sa1ary) for the user is 

\I sll = (45000,94000], where the database contains 

the same values as in Example 5. 

The important point connected with above defini

tion is that users are allowed to obtain in some 

sense "true" values, that is for every completion 

of the system S, the true value (true answer for 



• 

a query) is in the given range. On the other 

hand, having the range [p,r] as the answer 

for the query (t,f,a), a user is uncertain 

whether interesting for him (her) object x 

is an element of the set 1\ til * and whether 

~ (x) is one-element set. For more details 
a 

connected with inference controls in statis-

tical databases with incomplete information, 

the reader is refered to [40J. 

In a statistical databases with complete in

formation there is a serious threat of 

inferring confidential value, when an object 

is inserted or deleted (cf. [4],[43]), simply 

by querying just before and after a change. 

In our proposed model there are two different 

kinds of updates. The first is when the 

information about the objects increases, 

while the objects themselves remain invariant. 

The second possibility of update is to insert 

(delete) some object(s) (the modification 

of a value for existing object we may treat 

as a sequence of of delete-insert operations) • 

To improve security in our system we may 

assume that every inserted object x has 

"large" sets 13a (x) for all attributes aeA 

(even if the values of this object for some 

attributes are known to the administrator) 

and then, gradually, the administrator increase 

information about this object. There is no 

more need to process changes in pairs (cf. [41). 

We may consider similar approach when the 

object x is to be deleted. Before this ope

ration we may enlarge the sets ~a(x) (for a€A) 

and then delete object x "safely". Thus sta

tistical databases with incomplete information 

handle with updates much easier then wQen 

information is complete. 

6. CONCLUSIONS 

As we have mentioned in Introduction, the 

model of a statistical database with incom~ 

plete information was taken from [32J. In 

that paper the author distinguish t\-l0 diffe

rent ways of int.erpreting a query - the 

399 

ex':ernal one and the internal one. The external 

jntE!rpretation.J;'efers the queries directly to the 

real world modelled (in incomplete way) by the 

system, whereas under the internal interpretation 

the queries refer to the systems's information 

about this world rather than to the world itself. 

In this paper we.consider only external interpreta

tion as a tool of preventing a user to infer con

fidential value(s). 

This approach was based on the partial information 

on the value of an attribute. Note that in the 

other possible approach to incomplete information 

based on null values, we are restricted to the two 

extremal cases when either everithing is known 

about the value of an attribute, or nothing is 

known about the value of an attribute. 

We may consider also more general description of 

a statistical term (t,f,N), where W is a subset of 

the set of data Vi for example 

in the case of complete information (where 

fXl, ••• ,~1 is the set of objects satisfying pro

perty expressed by t).The theory presented in this 

paper can be extended to the language involving 

such statistical terms. 

Another extention is to allow "binary descriptors" 

of the form (a,R,b), a,b€A, R!;;:Qa" Qb' where 

\l<a,R,b;>\!= \x€X: fJa (x)-J3b (x) € R\, in the case 

of complete information. Examples of such descrip

tors are <Expenses ~ Salary), etc. 

Presented model is appropriate also for modelling 

supplementary knowledge of a user. We may think 

that Sl ~ S for a given database S. In particular, 

when a user has not any supplementary knowledge, 

Sl correspondes to the least element in the 

partial order , on the set of all systems with 

fixed X and (Qa)a€A' This knowledge is only about 

what attributes refer to the objects and what 

domain particular attribute has, and is essential 

to formulate queries. However, not every informa

tion is representable in a such model. 



REFERENCES: 

[lJ Beck, L.L. "A Security Mechanism for 

Statistical Databases", ACMToDS, 5(3), 

1980, pp.3l6-338, 

[2J Champine, G.A. "Distributed Computer 

Systems", North-Holland Pub. Co. 1980, 

[3J Chin, F. "Security in Statistical Data

bases for Queries with Small Counts", 

ACMToDS 3(1), 1978, pp.92-l04, 

[4J Chin, F. and Ozs.oyoglu, G. "Statistical 

Database Design", ACMToDS 6(1), 1981, 

pp.1l3-139, 

[5J Chin, F. and Kossowski,' P. "Efficient 

Inference Control for Range SUM Queries 

on Statistical Data Bases", 1981, 

[6J Chin, F. and Kossowski, P. "The Theory 

of Secure Policies for Inference Control 

by Auditing in Statistical Databases", 

1981 (ext. abstract), 

[7J Ch'in, F. and Kossowski, P, "Formal 

Theory of Secure Policies for Statistical 

Queries", (ext. abstract), 1981, 

[8J Codd, E.F. "A Relational Model of Data 

for Large Shared Data Banks", Comm. ACM, 

13(6), 1970, pp.377-387, 

[9J Codd, E.F. "Extending the Database Re

lational Model to Capture More Meaning" , 

ACMToDS, 4(4), 1970, pp.397-434, 

[lOJ Date, C.J. "An Introduction to Database 

Systems", Addison-Wesley Pub., 1978, 

[llJ Davida, G.I., Linton, D.J., Szelag, C.R. 

and Wells, D.L. "Database Security", 

IEEE Trans. of S.E., SE-4(6), 1978, 

pp.53l-533, 

[12J Denning, D.E. "A Lattice Model of 

Secure Information Flow", Comm. of ACM, 

19(5), 1976, pp.236-243, 

[13J Denning, D.E. "Are Statistical Databases 

Secure?", Proc.AFIPS, NCC 47 (1978), 

pp.525-530, 

[14J Denning, D.E. "Secure Statistical Data

bases with Random Sample Queries", 

ACMToDS, 5(3), 1980, pp.29l-3l5, 

400 

[15J Denning, D.E •. and Denning,P.J. "Data Security", 

Compo Surveys, 11(3) , 1979, pp.227-249, 

[16J Denning, D.E., Denning, P.J. and Schwartz, 

M.D. "The Tracker: A Threat to Statistical 

Database Security", ACMToDS, 4(1),1979, 

pp.97-l06, 

[17J Denning, D.E. and Schlorer, J. "A Fast Pro

cedure for Finding a Tracker in a Statistical 

Database Security", ACMToDS, 5(1), 1980, 

pp.88-l02, 

[18J Denning, D.E., Schlorer, J. and Wehrle, E. 

"Memoryless Inference Controls for 

Statistical Databases", Proc. 1982 Symp. on 

S(ecurity and Privacy (Berkeley), IEEE Com. Soc. 

[19J DeMilIo, R.A., Dobkin, D., Jones, A.K. and 

Lipton, R.J. "Foundatiohs of Secure Com

putation", Academic Press, Inc., 1978, 

[20J DeMilIo, R.A., Dobkin, D. and Lipton, R.J. 

"Even Data Bases that Lie can be Compromised", 

IEEE Trans. of S.!., SE-4 (1), 1978, pp. 73-75, 

[21] Dobkin, D., Jones, A.K. and Lipton, R.J., 

"Secure Databases: Protection against User 

Inference", ACMToDS, 4(1),1979, pp.97-l06, 

[22J Dobkin, D., Lipton, R.J. and Reiss, S.P. 

"Aspects of the Database Security Problem", 

Proc. Conf. on Theoret. Compo Sci., Aug. 15-

17, 1977, Waterloo, Canada, 

[23J Haq, M. "Insuring Individuals Privacy from 

Statistical Data Users", Proc.AFIPS, NCC, 

1975, pp.94l-946, 

[24 J Hartson, H.R. and Hsiao, D.K. "A Semantic 

Model for Data Base Protection Languages", 

Systems for Large Data Bases, P.:::. Lockemann 

and E.J. Neuhold,(eds), North-Holland Pub. 

Co., 1976, pp.27-42. 

[25 J Hoffman, L.J. "Modern Methods for Computer 

Securi ty and Privacy", Prentice-Hall,. 

Englewood Cliffs, N.J. 1977, 

[26] Hoffman, L.J. and Miller, W.F. "Getting a 

Personal Dossier from a Statistical Data 

Bank", Datamation, 15 (5), 1970,' pp.74-75, 

[27 J Hsiao, D.K. and Baum, R,K. "Information 

Secure Systems", Adv. in Comp., 14, 1976, 
pp. 231-272, 



[28J Hsiao, D.K., Kerr, D.S. and Madnick, 

S.E. "Privacy and Security of Data 

Communications and Data Bases", Proc. 

Int. Conf. Very Large Data Bases, 

1978, pp.55-67, 

[29J Jaegermann, M. and Lipski, W. "Numerical 

queries in incomplete information data 

bases", ICS PAS Reports 388, Warsaw 1980, 

[30J Kam, J.B. and Ullman, J.D. "A Model 

of Statist~cal Databases and Their 

Security", ACMToDS, 2(1), 1977,pp.l-lO, 

[3lJ Landwehr, C.E. "Formal Models for 

Computer Security", Compo Surveys, 

13(3), 1981, pp.247-278, 

[32J Lipski, W. "On Semantic Issues C.on

nected with Incomplete Information 

Data Bases", ACMToDS, 4(3), 1979, 

pp.262-296, 

[33J Lipski, W. and Marek, W. "Information 

Systems: On Queries Involving 

Cardinalities", Inf. Syst. 4 (3-E) , 

pp.24l-246, 

[34J Lipski, W. and Marek, W. "On Information 

Storage and Retrieval Systems", Math. 

Foundations of Compo Sci., A. 

Mazurkiewicz and Z .. Pawlak (eds), 

Banach Center Pubs., 2, Polish 

Scientific Pubs., Warsaw, 1977, 

pp.2l5-259, 

[35J Marek, W. and Pawlak, Z. "Information 

Storage and Retrieval Systems: 

Mathematical Foundations", Theoret. 

Compo Sci., 1, 1976, pp.33l-354, 

[36J Martin, J. "Security, Accuracy and 

Privacy in Computer Systems", Engle

wood Cliffs, Prentice-Hall, 1973, 

[37J Michalewicz, Z. "Compromisability of 

a Statistical Database", Inf. Syst., 

6(4), 1981, pp.30l-304, 

[38J Michalewicz, Z. "Security of a 

Statistical Database", Ph.D. disser

tation, Polish Scientific Publishers, 

Warsaw, 1982, (in Polish), 

401 

[39J Michalewicz, Z. "A Coin-Weighing Problem 

and its Connection with the Security of a 

Statistical Database", ICS PAS Report, 

No.426, Warsaw, 1980, 

[40 J Michalewicz, Z. "Inference Controls in 

Statistical Databases with Incomplete 

Information" Inf •. Syst., 8(3), 1983, 

[4lJ Michalewicz, Z. "Improving Security in a 

Statistical Database", Proc. ACSC 6, Sydney, 

10-12 Feb. 1983, 

[42J Ozsoyoglu, G. and Chin, F. "Enhancing the 

Security of Statistical Databases with a 

Question Answering System 'and a Kernel Design" , 

IEEE Trans. of S.I. 

[43J Ozsoyoglu, G. and Ozsoyoglu, M. "Update 

Handling Techniques in Statistical Databases". 

1981, 

[44J Pawlak, Z. "Information Systems, ICS PAS 

Report 338, Warsaw 1979, 

[45J Schlorer, J. "Identification and Retrieval 

of Personal Records from a Statistic'al Databank" , 

Methods Inf. Med., 14(1), 1975, pp.7-13, 

[46J SChlorer, J. "Confidentiality of Statistical 

Records: A Threat-Monitoring Scheme for On 

Line Dialogue", Methods Inf. Med., 15(1), 

1976, pp.36-42, 

[47J Schlorer, J. "Disclosure from Statistical 

Databases: Quantitative Aspects of Trackers", 

ACMToDS, 5(4), 1980, pp.467-492, 

[48J Schlorer, J. "Security of Statistical Data

bases: Multidimensional Transformation", 

ACMTODS, 6(1), 1981, pp.95-ll2, 

[49J Schlorer, J. "Security of Statistical Data

bases: Ranges and Trackers", 1981, 

[50J Schwartz, M.D., Denning, D.E. and Denning, 

P.J. "Linear Queries in Statistical Data

bases", ACMToDS, 4(2), 1979,pp.156-l67, 

[5lJ Ullman, J.D. "Principles of Database Systems", 

Pitman, London 1980, 

[52J Van Leeuwen, J. "On Compromising Statistical 

Data Bases with a Few Known Elements", Inf. 

Proc. Let., 8(3), 1979, pp.149-l53, 



[53J Wong, E. "A Statistical Approach to 

Incomplete Information in Database 

Systems", ACMToDS, 7(3), 1982, 

pp.470-488, 

[54J Yao, A.C. "A Note on a Conjecture of 

Kam and U11man.Concerning Statistical 

Databases", Inf. Proc. Let., 9(1), 

1979, pp.48-50, 

[55J Yu, C.T. and Chin, F. "A Study on the 

Protection of Statistical Databases", 

Proc. ACM SIGMOD, Int. Conf. Manage

ment of Data, Toronto, 1977, 

pp.169-181. 

402 



9. Benchmarks and Performance Evaluation 

Performance Prediction Methods for Evaluating PDE Algorithms 
on MIMD Machines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 

Simon K. Fok, John R. Wilson, Harry G. Heard, Joseph A. Parker 

Using Statistical Software with a Database Management Data Theory ........... 414 
Robert J. Muller 

403 



PERFORMANCE PREDICTION METHODS FOR 
EVALUATING PDE ALGORITHMS ON MIMD MACHINES* 

Simon K. Fok, John R. Wilson, Harry G. Heard. Joseph A. Parker 

Technology Development of California. Inc. 
3990 Freedom Circle. Santa Clara. California 95054 

Abstract 

In this paper • .a variety of current performance measures for SIMD machines are 
extended to MIMD machines. The concept of cost-effectiveness is elaborated and used 
to obtain an ~ posteriori estimate of the optimal number of processors to be used for 
a particular problem. Using both probability modeling and simulation, performance 
prediction methods are developed to evaluate the performance of the Large Eddy 
Code [7] of NASA-Ames on a tightly-coupled system such as the CRAY X-MP. 

1. INTRODUCTION 

Currently. many performance measures have been 
developed for SIMD machines; straightforward 
extensions of these to MIMD machines are not 
sati sfactory. as key features of MIMD machines 
are not adequately reflected. Considerable care 
has been taken in generalizing these SIMD 
concepts of performance measures to MIMD 
machines. To obtain an a posteriori estimate 
for the optimal number of processors to be used 
on a multiprocessor system. the concept of 
cost-effectiveness is applicable. However. to 
predict performance of an algorithm on a MIMD 
machine accurately, either simulation or 
probability and queuing models have to be used 
to deal with important problems such as 
synchronization. memory contention, and 
interprocessor communication. In this paper. we 
will examine algorithm performance in a 
tightly-coupled system such as the CRAY X-MP and 
use performance prediction methods based on , 
analytical modeling and simulation to evaluate 
some fluid flow codes. 

*Funds for the support of this study have been allocated by the NASA Ames 

Research Center, Moffett Field, California under Contract No. NAS 2-11065. 

404 

2. PERFORMANCE MEASURES FOR MIMD MACHINES 

2.1 Measure Extension. 

Performance measures have become an essential 
tool in the development of new computer 
architectures and new computational methods. 
The basic notions of execution time serve as the 
foundation for the derivation of other useful 
measures such as the speedup. the efficiency. 
and the utilization for SIMD machines. 

The objective of measure extension is to clearly 
separate architectural and algorithmic elements 
of the measures where possible, so that the 
suitability of each element to the task at hand 
can be clearly evaluated. 

Following Siegel [1]. the fundamental measure of 
performance is the execution time TN(M) 
involved in performing the algorithm for a 
problem of size M on a system having N Processing 
Elements (PE's). Other useful measures can be 
derived from TN easily. see Figure 2.1. TN(M) 
can be expressed as the sum of two components: 



CN(M), the time spent by PE's performing 
computations which are actually part of the task 
being performed; and 0N(M), which is the, 
"overhead" time spent "managing" the 
parallelism. To extend this measure, it is 
possible to decompose CN(M) and 0N(M) into 
various timings which contribute to each 
component. 

Speed 

VH(M) • M/TN(") 

speedup Efficiency 

SH(M) • T 1 (H)/T,.(11) EN(H). SN(M)/N 

Execution time overhead Ratio 

TN(M) • CN(M) + 0N(M) OVN(H)' 0N(H)/TN(M) 

Note: 
it • I of" sequential operation steps 

tx • time to perform step x 

Px • # of PE active for step x 

Fig. 2.1 SIHD Algorithm Performance Measures 

We have chosen to extend the execution time 
measure by first observing that the computational 
element of the execution time has, in general, 
two contributing elements: CN(M) = SEQN(MJ + 
PN(M) where SEQN(M) is th~ time required by, the 
system to compute serial portions of the 
algorithm,and PN(M) is the time spent in 
computing in parallel according to the 
algorithm. All algorithms (depending on the 
granularity with which one views them) are 
mixtures of inherently serial and parallel 
sequences, and this division merely formalizes 
what must be done in estimating algorithm 
performance in any case. This division into 

405 

serial and parallel components is fundamentally 
algorithmic in orientation, although it could 
also find origin, perhaps, in the execution 
strategies of particul ar architectures •. While 
possible this is rather unlikely, and so the 
utility of this first division is of primary 
value in algorithm assessment. 

The "overhead" represents another candidate for 
extension. In general, we feel that a useful 
decomposition of this element would be: 
0N(M) = SYNN(M) + DN(M) + RN(M) where SYNN(M) is 
the delay attributable to PE synchronization 
requirements; DN(M) is the delay associated with 
the internal transfer of data within the machine, 
fundamentally interprocessor communication 
delays; and, RN(M) is the residual delay, 
basically attributable to operating system 
actions. These elements have architectural 
and/or algorithmic origins 'which can be 
separated in each case of interest. 

Finally, in order to estimate the optimal number 
of PEs to. be used in performing the algorithm, 
for a problem of size M on a system having N 
PEs, the speedup SN(M) must necessarily be 
balanced by the 'cost' of the system of PEs. 
This concept is used in the development of the 
effectiveness measure in the next section. 

2.2 The Effectiveness Measure 

The two most commonly used measures iii the 
performance evaluation of SIMD/MIMD 
machines are speedup SN(M) and efficiency EN(M). 
Unfortunately for a typical problem of, fixed 
size M, SN increases asymptotically to a finite 
limitSoo as N -I- 00, while EN decreases to ° as 
N -I- 00, this results in the dilemma of choosing 
between better speedup or better effici~ncy. 
Hence, the determination of an 'optimal' number 
of processors N is impossible until a balance is 
struck between speedup and efficiency. 



To attain this balance, the notion of 
performance must be approached from the cost
effectiveness side. In other words, the speedup 
must be balanced with the basic cost of using N 
processors. The 'space-time' cost of an 
algorithm is defined as: 

CON(M) = N T N(M) • 

The effectiveness of an algorithm is then given 
by: 

This can be simp 1 ifi ed to a more familiar form: 

SN SN SNEN 
FN(M) =-= =-- < 1 NTN TN Tl 

NT Tl 
1 

Therefore, for a given algorithm (T1 is 
fixed), an effective algorithm is one which 
maximizes the product of speedup and efficiency 
(Kuck [2]). 

Example 

This example illustrates the usefulness of the 
concept of effectiveness based on a simulation 
run of the fluid code SIMPLE at LLNL (Axelrod et 
al [3]) using their MPSIM simulator. Their 
results are tabulated in the first four columns 
of the following table: 

N Mflops SN EN SN*EN 

1 9.04 1.00 1.00 1.00 
2 16.00 1.77 .89 1.99 
4 26.45 2.93 .73 2.14 
6 32.17 3.56 .59 2.10 
8 34.70 3.84 .48 1.84 

The measure of effectiveness is calculated in 
the fifth column. Axelrod et al arrived 
intuitively at the conclusion that the optimal 
number of processors should be 4. Using the 
effectiveness concept, however, this can be 

406 

easily seen. The effectiveness is maximum 
around N = 4; moreover, one is better off using 
2 processors than 8 in this case. This is 
clearly illustrated by Figure 2.2. 

4 

3 

2 

o 

o Shllllation results of a LLNL flow code on the S-1 
• Hand computed results 

SPEEDUP CURVE 

. .round 4 PROCESSORS, . / ""'"'" """IV"'" 

EFFECT! VEIIESS CURVE 

EFFICIENCY CURVE 

2 4 6 8 

I of PROCESSORS 

F1g. 2.2 Appllcat10n of the Effectiveness Heasure 

3. PERFORMANCE PREDICTION METHODS 

In Section 2, the disjoint components of both 
the computational time CN(M) and overhead 0N(M) 
were extended for algorithmic evaluations on MIMD 
machines. An approach for determining the 
optimal number of processors to be used for an 
algorithm of fixed size based on the cost
effectiveness idea was developed and shown to be 
useful in giving an ~ posteriori estimate. 
However, in order to predict performance of an 
algorithm on a specific MIMD machine, each 
component of the extended MIMD versions of CN(M) 
and 0N(M) has to be computed. There are 
basically two approaches: (1) Hand compute each 



component based on some probability 'or queuing 
mode ls and (2) S imul ati on. ,:; 

Simulation, though more accurate than hand·' 

computation, m~ be very time consuming, 
espec i ally when many sets of parameters are:':' 
required to assess global performance behavior. 
Furthermore, tailoring the algorithm for 

simulation, requiring code segmentation for 
parallel calculations, is both non-trivial arid' 
sensitive; slightly different segmentation can 
produce drastically different results. On the'" 
other hand, hand computation, although 
simplistic, provides a quick way to gain 

valuable insights into the performance of.·an 
algorithm within' a'nMlr.D machine. Finally; 'in 

order to obtain reliable performance prediction, 
'perhaps the best approach is to cross-correlate 

the results obtained from hand calculations and 
simul at ions. 

3.1 Performance Prediction Via Modeling' 

In order to isolate each component of 0N(M) a'nd' 
CN(M) and obtain approximate results based on 
some modeling techniques, the types of 

algorithms and MIMD architectures of interest 
have to be put in focus. First, the numerical 
method to be evaluated, the Large Eddy Code 
(NASA AMES), is primarily of the synchronized 
iterative type. Second, a, type of MIMD 
architecture of interest is the CRAY X-MP, and 
it will be modeled as a tightly-coupled system, 
see Fi gure 3.1 

Fig. 3.1 Tightly-Coupled (Shared Memory) System 

407 

" . ~ .' 

From Secti on 2,.1, the overhead 

0N(M) = SYNN(M) + 0N(M) + RN(M). 
. ~ . 

, First, the ·residual delay RN(M), due basically 
to oper~ting system actions will be neglected. 

The effects of synchronization will be drawn ' 

from order statistics. Finally, since the MIMO 
machine under consideration is tightly-coupled, 
the dominant factor due to delay associated 
with' the internal transfer of data within the 
machine willprimarily'arise from memory 
coritentions and not frominterprocessor 
corrmi-lli i cati on de 1 ays. 

Based on the above Simplification, the strategy 
for computing'the performance measure 
util iZation' for a tightly-coupled system is 
clearly depicted in Figure 3.2. 

",N 

H - ',of memory modules 
N - , of PE's . 
ljI -, memory, cycles/ac~1Ye cycles 
m ,02 - mean & variance of 

o a active cycles . 
m, 0',· mean & variance of total 

, of cycles 
U • utilization 

Fi,g, 3.2 Strategy for Computing Utilization. ' 

The set 01' input parameters necessary for 
computing the utilization for a shared memory 
system (tight ly':coup 1 ed system) . is defi ned in 
Figure3.2~ 'tt is nontrivial in some 2ases to 
obtain'numerical values for some of the input 
parameters. 

M, N are architectural design dependent so the 

values are directly available. 1/1 represents 



the instruction mix of the raw code. This 
value is very difficult to obtain, because it 
will involve counting memory access cycles and 
active cycles line by line in the parallel 
portion of the code. A more viable approach is 
toestimC!-te roughly this ratio and compute 
uti 1 i z at i on based on a range of IjJ centered at 
this estimated value. 

mo' . 0' ~ can be computed byperformi ng a flop 
count for each allocated task of a processor in 
the multiprocessor system. An easier way is to 
run the sections of the code corresponding. to 
each allocated task and compute mo'O'~ 
directly based on the timings obtained. Note 
that if all the allocated tasks are the same, 
then 0'0 is zero; however, because of memory 
contention, the variance of total cycles 
involved, 0' , is non-zero, as seen in 
Equation 3.6. 

3.1.1 Memory Contention Models in Synchronous 
Multiprocessor Systems 

Cons i der a synchronou s mu.lti processor system 
with N processors and M memories with a basic 
time unit of 1 memory cycle. The N processors 
are assumed to be independent and their requests 
are distributed uniformly among the memories. 
At the beginning of a memory cycle, the 
processors present their requests. If more than 
one simultaneous request is made to a particular 
memory, access confl ict occurs. On ly one 
request of a conflicting set is accepted while 
the others are rejected. All the accepted 
requests are served simultaneously during the 
cycle, while processors with rejected requests 
are blocked during that cycle. These blocked 
processors will resubmit their requests to the 
same memories in the next cycle. 

408 

The following parameters are crucial to the 
characterization for modeling memory contention: 

1/J = programned request rate of the processor 
(or the density of the memory requesting 
part of a T-cycle trace), 

a = dynamic request rate of the processor (or 
the density of the memory requesting part 
of the T'-cycle trace), 

PA = probability that a request is accepted. 

Since those cycles in which the processor is 
doing internal computation with no generated 
memory request are the same in the two traces 

(3.1) or 

T(1-1jJ)= T' (1-a) 

T 1- a 
f = T' = 'f:li' 

Here f is known as the performance degradation 
factor. Also, the expected number of rejections 
(blocked cycles) plus the one accept cycle per 
request is ~, therefore 

A 

( 3.2) 
1/J/P

A a = ---"'-'--
1 - 1/J + 1/J/P

A 

= -,--_~1_~_ 
1 + P A (I/1/J - 1) 

[ . N] 
The bandwi dth BW = NaP A = M 1 - (1 - aIM) so 

(3.3) 

Equations (3.2) and (3.3) constitute a pair of 
simultaneous equations where PAand a can be 
solved for in terms of M, N, 1/J. 



Yen et al [4] developed a new model which gave 
better values for BW since the above approach 
would cause an overestimation of the bandwidth. 

Their results can be sumnarized as follows: 

BW Nf1jl 

, (3.4) M 1 -(1 fMW) , 

l 1 - { 1 I Mf)")" 
M 

(3.4) can be solved for f by iteration using 

Newton's method; a reasonable initial guess for 

f is 1. 

P A and (l can then be so lved for in terms M; N; I/J 
via (3.3) and (3.1) respectively. 

3.1.2 Law of Total Probability 

Let mo and 0 ~ be the mean and variance of ", the 
random number of active cycles n ' in a task. o 
(Active cycles are execution cycles and memory 

access cycles which are not rejected.) We need 
to evaluate the mean (m) and the variance (0 2) 

of the total number of cycles (n) in a process. 
This is done via the 1 aw of total probabil ity, 
i.e. , 

, 2' m . 

where E and Eo designate the expected values 
taken over D and no respectively. Consequently, 

409 

E[nln o] = (1 - I/J)n o + I/Jno/P A ' 

E[ n2 Ino
] = E[(n-E[n])2] + E2[nlno]' 

1 - P A 
= I/Jno p'2 

A 

+ 

Then applying (3.5), 

(3.6) 

m = mo + mol/J(l - PA)/PA 
0 2 = 0 2 + m 1/J(1 _ P )/p 2 

o 0 A A 
+ cr~(1- PA)/PA 
·1/J(2 +:1/1(1 ~ PA)JP~) 

In (3.6) the effect of me~ry,conflicts appear 

as additional terms in the value of mean and 

vari ance of a process time. In the next 
section, the 'factor of synchroniHtion ~i 11 be 

" . ",I"' 

a~co,unted for, through ,u,se of ord~r statistics; 
the util,ization will then be computed. 

3.1. 3 Synchron 1zat'i o~ and Util i zat ion 

Dubois and Briggs [5J modei the factor of 
synchronization through order statistics. 

Let 0j:N be the mean of the jth order statistics 
among N samples drawn from the processing time 
distribution with mean 0 and variance 1. Then 

if mI is the mean iteration time, 

(3.7) 

Here 0N:Ndepend~ only on the distribution of, 
the ,normalized processing time. 

m m 1 
Th~ utilization is U = .J? = 0 = -1 + A 

'" mI m + ON : Ncr ' LI 



1 - P 
t.. = 1/1 A + 

°N:N PA 

with VC~ (C 1- 1/1) + L )2+ L 1 - PA 
P
A 

. m 
0 p2 

A 

_ Go 
where Co mo and PA comes from Yen's model, 
Equation (3.4). 

In the following sections, this model will be 
further developed and compared with the results 
from simulation runs of the Large Eddy Code. 

3.1.4 The Large Eddy Code 

A study and analysis of mapping the Large Eddy 
Code [7] from a sequential machine to an MIMD 
machine can be found in Greenberg & Stevens [6]. 

A high level structure of the code representing 
the division between serial and parallel 
portions of the code is displayed below: 

Iteration 

loop 

Fig. 3.3 High level Structure of the large Eddy Code 

The fundamental approach for arriving at the 
algorithmic concurrency is based on decomposing 
mathematically the existing 3-D spatial operator 
into a sequence of orthogonal one-dimensional 

410 

operators. As a result, when applying one of the 
operators to the 3-D cube, all lines of data may 
be updated concurrently since they are totally 
independent. The two concurrent porti ons shown 
in Figure 3.3 represent allocation among N PE's 
of the 3-D cube divided into N slabs in each of 
Y and Z directional groups. In particular, if a 
2 processor MIMD architecture was used, each 
processor wou 1 d take two of the Y and Z slabs. 
In such a case, each task assigned to a PE is 
almost identical, i.e., 0 0

2 = O. However, based 
on the analytic model developed the variance of 
the total number of cycles M is non-zero; in fact, 
the mean and variance from Equations 3.6 are: 

m=m l+ljJ __ A 
( 

1 - P ) 
o PA ' 

The utilization is U = ~ where t.. is now 
.L +t.. 

expressed as 

t.. = 1jJ 1 - PA + 0 ... /L 1 - PA 
PA N:Nl mo P 2 

A 

However, as noted by Dubois and Briggs [5], for 
mo > 10 4 cycles, the dependence of t.. on mo is 
negligible. 

where PA depends on a given memory contention 
model. 

In the following, we will apply the two models 
developed to the Large Eddy Code using the 
hardware configuration of the Cray X-MP. First, 
the i nstructi on mix 1jJ of the Large Eddy Code is 
based on the simple assumption that in the 
iteration loop, there are two memory fetches to 
one floating point operation, i.e., 1jJ= j. 



Second, for the Cray X-MP, which is a dual 
processor machine N = 2, while the number of 
memory modules M is either 16 or 32. Applying 
the first model based on the rate adjusted 
probabilistic approach and Yen's model of memory 
contention, the following table can be derived. 

In 

TABLE 3.1. UTILITIZATIONS AND LOCAL SPEEDUP 
RATIOS 

Model A - Rate Adjusted Probabilistic Approach 

M 

16 
32 

M 

16 
32 

.981 

.990 

Model 

PA 

.9975 

.990 

.013 

.0067 

B - Yen's 

I:l 

.0154 

.0067 

U 

.987 

.993 

Model 

U 

.984 

.993 

1.974 
1. 986 

SN 

1.968 
1.986 

Section 4.1, these results will be correlated 
with the simulation results of the Large Eddy 
Code which we now discuss. 

3.1.5 Simulation Results of the Large Eddy Code 

Following is a summary of the simulated perfor
mance of the Large Eddy Code on the CRAY X-MP: 

TABLE 3.2. AVERAGED SPEEDUP RATIOS 

Number of 
Iterations 

5 
100 

5 
100 

Grid or 
Mesh Size 

163 

163 

323 

323 

1.68 
1.977 
1. 74 
1.99 

411 

Basic data for these results are obtained by 
running the Large Eddy Code on the CRAY IS at 
NASA Ames [6].· Timings thereby obtained are 
then extrapo 1 ated for a CRAY IS with two 
processors, assuming that the parallel portions 
of code are divided evenly among the two 
processors. The speedup obtained is then assumed 
to be the same for the CRAY X-MP. There are 
four cases with different values for grid size 
and number of iterations. Note that for a 
problem with fixed mesh size, as the number of 
iterations increases, the speedup ratio increases 
also. This can be easily explained. For a 
problem with fixed mesh size, the timing for the 
sequential part is constant, so SEQ is constant, 
while the timing for the parallel part increases 
as the number of iterations increase, so PN 
increases. But from Equation 4.3, dSN/dPN > 0, 
so the speedup ratio SN increases also. 

4. CORRELATIONS BETWEEN PERFORMANCE 
PREDICTIONS VIA MODELING AND SIMULATION 

In order to compare results from modeling and 
simulation, the relationship between the 
measures speedup and utilization must be clearly 
drawn. 

There is a basic difference between the speedup 
measure and the utilization measure. Normally, 
the speedup measure is calculated based on the 
overall execution time of the code which will 
include the sequential, as well as parallel 

I 

portion of the code. On the other hand, by 
definition, utilization is a measure based 
solely on the parallel portion of the code. 
Therefore, speedup measures the global· behavior 
of the code, while utilization is directed 
specifically towards the parallel portion. 
However, if one restricts the definition of 
speedup so lely to the parallel section of the 
code, 



(4.1) 
N.mo 

SN = -mr- = N.UN ' 

(4.2) and EN = UN" 

Therefore, the utilization me'asure is nothing 
more than the efficiency measure restricted to 
the parallel portion of the code. In 
particular, in an ideal situation where 

mo = mI , SN = N and UN = EN = 1 as expected. 

4.1 Comparisons Between the Analytical Model 
and Simulation 

The results obtained for the Large Eddy Code via 
analytical modeling and simulation are presented 
in tables 3.1 and 3.2 respectively. As pointed 
out in the beginning of this section, the 
speedup ratios of the analytical model measure 
only the concurrent portion of the code while 
speedup ratios from simulation runs assess the 
global performance of the code. However, as the 
number of iterat ions increases (to '" 100) so 
that the timings for the concurrent portion 
become dominant, the speedup ratio obtained by 
simulation is between 1.977 and 1.99, which is 
almost identical to that obtained via analytical 
modeling, see table 3.1. It is interesting to 
note, however, that even if the parallel portion 
of the code is 100% efficient,the speedup 
ratio, according to the simulation methodology 
used in [6 J, can never reach 1. O! More 
interestingly, for a problem of fixed size, 
using more processors increases the gap from the 
ideal speedup. This puzzling phenomenon will be 
discussed in the next section. 

4.2 Proper Interpretation and Extension of the 
Speedup Measure 

For simplicity, assume the overhead 0N(M) is 
zero, so the speedup can be written as: 

412 

(4.3) 
, T 1 (M) 

SN(M) = SEQN(M) + PN(M) 

where as before, SEQN represents timing of the 
sequential part of the code and PN the parallel 
part. 

To be specific, consider a problem of fixed size. 
In many tases, the sequential time is independent 
of N, therefore, for ideal speedup of the N PE's 

(4.4) 
SEQ + PI 

SN = SEQ + P
1

/N < N for N > 1. 

In fact if N increases, N - SN increases. This 
result does not seem reasonable, because ideal 
speedup has been attained by the N PE's of the 
system; if there is any justice at all, SN should 
equal N. Moreover, why should performance of a 
multiprocessor system be penalized for using 
more PE's just because a portion of the code 
involves constant sequenti al 'execution time? 
Therefore, in order to reflect correctly the 
performance of the N PE's in this particular 
case, SEQ should be eliminate from the 
evaluation of the speedup SN. Otherwise, the 
degree of concurrency attained by the 
multiprocessors system will be camouflaged! 

In other words, when comparing the performance 
of two MIMD architectures using a fixed 
algorithm, the 'concurrent' speedup measure is 
much better suited than the'conventional speedup 
measure, because the conventional one typically 
disperses the focus on the concurrent portion of 
the algor ithm. 

5. CONCLUSIONS 

(1) Correlations were made between the 
simUlation results and that of analytic modeling 
in Section 4. The analytic models calculate the 
utilization of the multiprocessors per iteration 
loop and hence assess only the local performance 



of the code. whereas simulation models the 
global performance. Some simulation calculations 
are based on straightforward extrapolations and 
are not concerned with memory contention and 
processor synchronization. Improved tools would 
come from simulations incorporating analytical 
models. such as the LLNL MPSIM. 

(2) Extensions of performance measures from 
SIMD to MIMD machines are fundamental in 
architectural evaluations. The proper extension 
is important. because the concept of 
optimization rests entirely on a chosen 
norm/measure. Therefore. only correct choices 
can lead to correct optimal performance 
predictions. We have identified and extended 
the measures essential to MIMD machine 
evaluation in Sections 2 and 4. 

(3) The development of a methodology for the 
optimal and orderly mapping of numerical 
algorithms onto a MIMD machine is entirely 
lacking today. The present strategy is very 
primitive and usually done at a very low level 
of the software -- dividing up a DO-loop evenly 
among 'the PE's is typical. as in the case of the 
Large Eddy Code. The concept of optimization 
has never been thoroughly investigated in such 
instances. The creation of taxonomies for both 
fluid flow codes and MIMD machines aids in 
bringing the essential elements of both software 
and hardware into proper focus. so that the 
domain and range of the mapping can be clearly 
identified. However. further work in the area 
of multi-task scheduling is still urgently 
required to maximize overlapping of the software 
tasking into complex MIMD machines to obtain 
optimal utilization. 

6. ACKNOWLEDGEMENT 

The authors are indebted to Ken Stevens. who 
read the manuscript critically. The support of, 

413 

the NASA Ames Research Center in this research 
is gratefully acknowledged. 

References 

1. ,L. J. Siegel. H. J. Siegel. and P. H. Swain. 
"Performance Measures for Eva luati ng 
Algorithms for SIMD Machines". IEEE Trans. 
Software Engineering. Vol. SE-8. No.4. July 
1982. 

2. A. H. Sameh and D. J. Kuck. "Parallel Direct 
Linear System Solvers". Parallel Computers -
Parallel Mathematics. 1977. pp. 25-30. 

3. T. S. Axelrod. P. F. Dubois. and P. Eltgroth. 
"A Simulator for MIMD Performance 
Prediction - Application to the S .. I MkIIa 
Mu lti processor". Lawrence Li vermore 
Laboratory. Livermore. California. 
UCRL-88765. 1983. 

4. D. W. Yen. J. H. Patel. and E. S. Davidson. 
"Memory Interference in Synchronous 
Multiprocessor Systems". IEEE Trans. 
Comput •• Vol. C-3l. No. 11. November 1982. 

5. M. Dubois and F. A. Briggs. "Performance of 
Synchronized Iterative Processes in 
Mu lti processor Systems ". IEEE Trans. 
Software Engineering. Vol. SE-8. No.4. 
July 1982~ 

6. M. G. Greenberg and K. G. Stevens. Jr •• 
"Efficiencies of MIMD Architectures in 
Computation Fluid DynamiCS". NASA Ames 
Research Center Report. December 1982. 

7. R. S. Rogallo. "Numerical Experiments in 
Homogeneous Turbulence". NASA Technical 
Memorandum 81315. 1981. 



USING STATISTICAL SOFTWARE WITH A DATABASE MANAGEMENT DATA THEORY 

Robert J. Muller 
Oracle Corporation 

ABSTRACT 

This paper analyzes several statistical computing environments in 
the relationship between formal database management theory and 
environment as an integral part of data analysis. 

an effort to show 
the computational 

The oaper uses Entity-Relationship theory as a data theory to compar~ the 
flex1b i ·.ty, representation, and problem-solving difficulties of the analyst ~n the 
Minitab, BMDP, SPSS, SAS, OSIRIS, SIR, and the consistent/System. computing 
environments. It shows that none make full use of database managem~nt 
capabilities; it also shows that even those capabilities are not capable of deal~ng 
with all problems confronting the statistically oriented data analyst. 

IRTRODUCTION-

A data analyst uses a data theory to 
represent information within a software 
enVironment, producing analysis. This 
simple model--analyst, theory, 
environment--is treated in more detail 
elseWhere [1]. 

As in all socially constructed 
realities, there is a tendency for the 
conceptual to seem real. Thus I say 
that a particular software environment 
implements a particular data theory. 
The reader ~hould bear in mind, however, 
that the ~ata theory may not resemble 
the physical architecture of the 
computer in any respect. The software 
which comprises the environment is the 
only "real" thing which the analyst 
sees, and even that software is a 
relatively high-level abstraction. 

Database management theory is a useful 
tool for representing data. The purpose 
of any data theory is to allow an 
analyst to interpret observations to 

*The interpretations and opinions 
presented in this paper are those of the 
author, and Oracle Corporation bears no 
responsibility for them. A longer 
version of this paper is available from 
the author and in reference [1]. 
CoPyright (C) 1983 Robert J. Muller. 

414 

give 
world 

them 
under 

meaning relative to the real 
study--that is, to make 
into data. A true data obse rva tions 

,theory is a set--ofaxioms and 
definitions that specify the basic 
structures of observations [2'. 

There are many variants of database 
management theory [3, 4,51. I have 
chosen to use one such theory, 
entity-relationship (ER) theory, because 
it is compatible with most of the other 
theories and represents the meaning of 
data well without incurring the 
complexity of more specialized 
theories [6,71. This is not to say 
that all meaning is captured; for 
example, data relating to procedural 
entities su~h as scripts, reCipes, or 
other procedural constructs cannot be 
represented. 

Briefly, the entity-relationship (ER) 
data theory conists of structures, 
operations, and constraints. The 
structures include entities, attributes 
of entities, relationships, and 
attributes of relationships. The 
operations include query and nonquery 
operations. Query operations retrieve 
data by specification of a predicate on 
the structures. Nonquery operations 
manipulate data, also by specification 
of a predicate; these include insertion, 
deletion, and structure definition 
operations. Finally, constraints 
restrict the possible states of the 
database under the available structures 
and operations, again by specification 
of a predicate. Major types of 
constraints include key, domain, 
dependency, and existence constra~nts. 



A database is a series of tables that, 
represent sets of entities associated j 
with properties. These tables are! 
connected to each other by i 
relationships, which are tables relating' 
entities to entities but which also 
contain properties of the relationship. 
Constraints on these tables--entity and 
relationship tables--restrict the states 
of the database under the available set 
of ope ra tions. 

The implications of this data theory are 
numerous, as are the potential problems; 
too numerous to deal with in a short, 
paper. I have dealt with some of these 
issues elsewhere [11, as have many 
authors in the database management 
literature. In this paper, I will take' 
for granted the basic data theory 
presented above, using it as a basis for 
comparing the several software 
environments. 

Flexibility is the manner in which the 
software environment is able to allow 
'novel uses of the environment. A 
flexible system is one which an analyst 
~an use to solve a wide variety of 
~roblems, at least some of which had not 
occurred to the system designers. 
Modern software system designers may 
take flexibility into account in at 
least two ways--command configuration 
and extension facilities. 

Command configuration is the 
relationship between commands and 
problem solutions. By Q~~and, I mean a, 
single procedure or operation that takes 
some input and produces some output. 
There are at least two aspects to 
command configuration: modularity and 
intercommunication. Modularity is the 
degree to which an environment breaks up 
functional elements. Intercommunication 
is the degree to which the output of one 
command may act as input to another 
command. Modularity varies from highly 
modular to monolithic. For example, a 
system that has one command for each 
calculation involved in solving a 
problem is a highly modular system; a 
system that solves the entire problem in 
one large command, pirforming all 
subsidiary calculations as part of the 
command, is a monolithic system. 
Intercommunication varies from strong to 
weak. For example, an extremely strong 
system would be able to transmit results 

415 

:from each command to each other command, 
,at least insofar as the receiving 
lcommand could sensibly use the 
:communicated data. A weak system would 
(be unable to transmit results. 

Extension facilities are software tools 
that allow analysts to extend the 
system. That is, these tools allow 
analysts to produce new commands or 
novel combinations of old commands. 
There are at least three methods for 
providing this sort of facility: an 
environmental procedural capability, an 
external procedural capability, and a 
macro facility [8J. 

An environmental procedural capability 
allows 'the analyst to compose a new 
command that is used like the other 

'commands of the environment. Usually, 
this involves writing a program in the 
language in which the system is written, 
integrating this new command with the 
others by means of standardized 
subcommands and protocols for input an~ 

output of data. This sort of facility 
allows the analyst the full flexibility 
of the programming language to create 
new commands. 

There are really two factors involved in 
judging the difficulty of integrating a 
new command into an environment. Given 
proper access to the source code and 
sufficient programming sophistication, 
new environmental commands can be added 
to anything. Most social scientific 
analysts do not have, and do not want to 
have, such programming sophistication. 
Effectively, an environment~l procedural 

,capability is a part of the software 
environment that allows more-or-less 
competent--not just sophisticated--
programmers to add commands to the 
environment. 

An external procedural capability is an 
interface between the software 
environment and some external 
envir6nmerit in which a command is 
available. Typically, this sort of 
capability consists of either the 
ability to run a previsouly written 
subroutine in the general computer 
environment from the software 
environment in which the analyst works 
or the ability t<> send data from the 
system to another software 
envi~onment (another statistical 
package, for example) by means of some 
protocol, such as a system file or 



da~aset readable by the external 
environment. The facility always 
provides some kind of standardized 
input/output protocol for communicating 
with the external command. 

A macro facility is, in a special sense, 
an abbreviation facility. There is an 
enormous variety of macro facilities. 
One common type is pure abbreviation; a 
macro consists of a sequence of 
instructions issued whenever the macro 
name is issued. More sophisticated 
types have procedural control arguments 
such as if-then structures, looping 
capabilities, and the ability to pass 
parameterized arguments to the macro-
qualities making the macro facility a 
high-level programming language. 

Flexibility is determined by a quite 
complex combination of these tools in a 
given software environment. A 
monolithic system, for example, has less 
need for strong intercommunication than 
a modular system. Still, provision for 
intercommunication can make even a 
monolithic system more flexible, since 
many analytic procedures use very 
similar sorts of input and output. It 
is certainly much easier to create novel 
applications in a modular system, 
however; such a system is designed to be 
flexible in combining commands. And a 
modular system comoined with a macro 
facility can be extremely flexible, 
while a monolithic system can't take 
much advantage of macros; such a system 
would depend mainly on environmental 
procedural extensions. 

The data model is a combination of 
structures, operations, and constraints; 
representation is the ability of the 
software environment to represent the 
data model desired by the analyst. For 
the purposes of comparison, a somewhat 
more general approach ~ust be taken. I 
will describe the general capabilities 
of each system in each category of the 
data model. After this general 
exposition, I will compare the 
capabilities to the entity-relationship 
data model. I will also mention the 
extensional capabilities of the 
environmen t, the exten t to which the 
analyst can extend the data model in 
novel ways. 

416 

There are many different aspects to this 
problem area; it defies easy 
categorization. I will limit myself to 
several very important aspects of the 
software environment that have an impact 
on problem~solving difficulties: 
processing mode, command style, 
procedurality, error messages and 
processing, editing capabilities, and 
documentation and help facilities. 

'Processing mode is the way in which the 
,environment proceeds. An environment 
can be interactive, batch, or both (but 
not both at the same time). An 
.interactive system is one in which the 
analyst communicates directly with the 
computer before and after each' command. 
A batch system is one in which the 
analyst submits a batch of commands, 
complete in itself, and gets back output 
afte r the compute r executes the 
commands. An environment may have both 
capabilities; it may be able to run 
interactively, but it may also be able 
to execute batches of commands with no. 
intervention from the anlayst. 
Interactive processing is extremely 
useful for exploratory analysiS; batch 
processing is useful for jobs that 
require large amounts of computation 
with little intervention. Highly 
modular systems tend to be interactive; 
monolithic systems then to be batch. 

There are two command styles, command
driven environments and prompting 
environments. A command-driven 
environment is one in which the analyst 
issues commands containing all the 
options necesary for the command to 
proceed. The choice of which commands 
are appropriate at any given time is 
left totally to the analyst. A 
prompting environment is more 
structured; the environment prompts the 
analyst with structured prompts that 
guide the choice of the analyst either 
with respect to options or to commands. 
Prompts may be brief, conversational, or 
menu (several commands or options 
displayed at once, allowing the analyst 
to quickly specify choices). An 
environment can have both styles. 

The relationship between command style 
and problem-solving difficulty has to do 
with the way the analyst works. A 
computer-naive analyst, or an analyst 
~ith little software or analysis 



experience, may strongly prefer to be· 
~rompted for commands or options. But a 
sophisticated analyst, who knows 
computers and the software environment, 
is likely to be annoyed by constant 
prompting and structuring. In addition, 
highly structured systems may be 
difficul~to adapt to novel 
analyses [9]. 

Procedurality is the extent to which 
operations in the sy~tem are proc~dural. 
In particular, the presence or absence 
of control structures, combinations of, 
statements that conditionally execute 
commands, determines the extent of 
procedurality. There are two aspects to 
the impact of procedurality in a 
software environment, both relating to 
the difficulty of proceeding. First, 
for simple problems it is faster to 
specify a result rather than to tell the 
computer just how to achieve that result 
in terms of control operations on the 
data [10J. But, second, for many 
complicated problems, if there is no 
straightforward way of specifying the 
result, the procedural solution may be 
less complex. There is some 
experimental evidence that procedural· 
environments are better for complex' 
problems than nonprocedural 
environments [11J, but this evidence 
isn't very conclusive and doesn't really 
apply to the sort of environments which 
I discuss. Complexity, in this case, 
depends on the operations available to 
the system and on the extensibility of 
the system. 

~rror messages and handling are the ways 
in which the computer responds to the 
analyst when a mistake, either by the 
analyst or by the command, occurs. Some 
systems provide extensive error 
messages, though most err toward 
brevity. Although extensive error 
messages can be useful, most errors are 
typographical. To print an extensive 
message detailing all the ways in which 
the command as given is wrong is likely 
to be annoying to the person who just 
typed the wrong letter and realized the 
mistake immediately [9]. On the other 
hand, just printing error numbers or 
meaningless system messages is annoying 
and difficult to interpret. 

Even more important than 
is error handling, what 
does on the occurrence 
Some systems have 
capabilities, essentially 

error messages 
the environment. 
of an error. 
virtually no' 
destroying the 

417 

environment when an error occurs. Other 
systems have extensive error facilities 
giving the analyst a great deal of 
control over what happens when an error 
occurs. Other systems assign an 
interpretation to the problem and 
continue processing. 

Most systems have the ability to change 
data known to be invalid. Editors come 
in many colors, minimal and fancy. Two 
basic types are editors that work by 
specifying the location of the entity to 
be changed and editors that specify the 
logical characteristics of the entity 
with a predicate. 

The main resource for an analyst 
confronted with a complex software 
environment is the documentation for 
that system, either in printed form or 
as an on-line help facility. 
Documentation of either sort comes in at 
least four levels: (1) the primer or 
introduction to the system; (2) the 
middle-level summary of commands; 
(3) the guide to particular 
applications; and (4) the complete 
reference to the system. Most on-line 
help facilities are limited to middle
level summaries telling the analyst the 
syntax and usage of commands. 

All of these aspects of the software 
environment have some impact on problem
solving difficulties. The overall 
environment is a subtle and complex 
conjunction of these and other 
components of the software system. Each 
environment is different; each must be 
evaluated for a particular analyst's 

.needs and experience. 

Table summarizes the three problem 
areas and the specific aspects of the 
software environment relative to each. 

I selected the several systems I discuss 
below from those available on the basis 
of the popularity of the system followed 
by my own access to the system. I have 
used all of the systems aside from 
OSIRIS and SIR, both of which I des~ribe 

.from the documentation. I make no 
sampling claims; this is basically a 
series of case studies rather than a 
sampling of available systems. A~ well, 
I haven't the space to go into much 
detail about each system; the reader is 
urged to use the system before forming 
strong concl~sions about the system's 
suitability for any purpose. 



Table 1: Aspects of the 
Software Environment 

Flexibility 

Modularity 
Intercommunication 
Extensibility 

Representation 

Structures 
Operations 
Constraints 
Extensibility 

Problem-Solving Difficulties 

Processing Mode 
Command Style 
Procedurality 
Error Messages and Processing 
Editing Facilities 
Documentation and Help Facilities 

In order to better compare these 
software environments, I will solve two 
problems as examples for each 
environment. I assume a database 
concerning criminal victimization with a 
hierarchical structure of three tables, 
household information, personal 
information, and incident information. 
The first problem, a problem in 
tabulation, is designed to show how the 
environment deals with conceptually 
simple but structurally complex 
problems. The problem: tabulate the 
number of criminal incidents by family 
income and type of crime. This 
tabulation would show how the affluence 
of the victim affects the various rates 
for different types of crime. I limit 
the example to counts; percentages or 
rates in the general population would 
complicate the issue, since that would 
involve estimating the relevant 
population or using the weights assigned 
by the sampling strategy. 

The second problem illustrates the 
flexibility and power of the 
environment. The problem is to 
calculate a special sort of matching 
similarity measure for incidents, then 
to use the measure in a straightforward 
hierarchical clustering porcedure, then 
to interpret the results using median 
polishing [1J. 

418 

This example also illustrates the 
tension between database and analysis. 
environments. The similarity operation 
should probably be an internal 
procedure. To attempt to implement this 
complex a procedure in regular database 
operations is (1) unlikely to work or 
(2) likely to be computationally 
inefficient or dangerous. Some systems 
designers (Janus, for example) would 
discourage the attempt; others (SAS, for 
example) would encourage it. The latter 
see their systems as all-purpose 
systems; the former as instruments 
designed for relatively special purposes 
as components of a more general system. 

Table 2 shows how the software 
environments considered rate in each of 
the various categories considered. 
Combined with the above discussion, 
Table 2 should give the reader a clear 
idea of the nature of these 
environments. The following sections 
examine each environment to see how the 
two example problems might be solved and 
how well the environment is capable of 
representing the Entity-Relationship 
data theory. 

MINITAB 

Minitab cannot be used to implement the 
ER data model. The folylowing command, 
given properly structured input, could 
do the required tabulation. 

TABLE COL1 COL2 

The clustering problem could not be done 
in Minitab. 

BMDP 

BMDP cannot be used to implement the ER 
data model. The following job does the 
tabulation. 

IIRJMX JOB RJM, 
II PROFILE=(DEFER,M8MORY=25fiO), 
II TIME=20 
II EXEC BIMEDT,PROG=BMDP4F,PRINT=PRINT, 
II TIME=20 
IITRANSF DD • 

.<here would be the appropriate 



..... 
I-' 
\0 

Aspect of 
System 

Flexibility 

Modularity 

Intercommuni
cation 

Extens I bill ty 

ER 
Representation 

Structures 

Operations 

Constraints 

Extenslbll tty 

~-SolvlnQ 
Difficulties 

Processing 
Mode 

Command Style 

Procedurallty 

Mlnltab 

more or less 
modular 

some 

simple macro 

rectangular 
data matrix 
with limited 
Information 

limited 

none 

none 

BMDP 

monolithic 

some 

environmental 
procedure 

rectangular 
data matrix 

limited 

value 

none 

Table 2 
Comparison of Software Environments 

SPSS 

monolithic 

none 

none 

rectangular 
data matrix 

limited 

value 

none 

SAS 

monolithic 

extensive 

enVironmental, 
external pro
cedures; macro 

rectangular 
data matrix 

moderate 

value 

none 

OSIRIS IV 

monol Ithlc 

some 

env I ronmenta I , 
external pro
cedures 

rectangular 
data matrix, 
I Inked tables 
limited to 
hierarchical 
structure 

moderate 

key, condi
tional depen
dency, exis
tence 

none 

SIR 

monolithic 

none 

environmental 
procedures 

I Inked tables 

moderate 

key, value 

none 

ConSistent 
System 

modular 

extensive 

environmental, 
external pro
cedures, mac
ros 

multidimen
Sional data 
matrix; I inked 
tables 

extensive 

value, condi
tional depen
dency 

none 

Interactive, batch batch batch, Inter- batch batch, Inter- Interactive 
batch active acttve 

command driven command driven command driven command driven command driven command drtven command driven 

nonprocedural nonprocedural nonprocedural procedural, nonprocedural procedural nonprocedural 
nonprocedural 



"'" N 
o 

Table 2 (continued). 

Aspect of 
System 

Error Messages 
and Hand 1 I ng 

Editing 

Documentation 

Minltab 

brief. Infor
mative errorll; 
returns con
trol to ana
lyst most of 
the time 

POSition edi
tor 

BMDP 

extensive. 
uninformative 
errors; stops 
running on 
error 

position. con
d it i ona 1 ed i -
tor 

primer. referc reference 
ence. On-line 
help 

SPSS 

extensive. 
uninformative 
errors; stops 
running on 
error 

conditional 
edi tor 

primer. refer
ence 

SAS 

brief. infor-
mative errors; 
stops current 
step; some-
times aborts 
environment 

line. full-
screen posi-
tion; condi -
tional edl tor 

primer. refer-
ence. appl Ica~ 
tlons guides 

OSIRIS IV SIR Consistent 
System 

1; returns 7 brief. infor-
control to mative errors; 
analyst returns con-

trol to ana-
lyst; infre-
quently aborts 
environment 

conditional conditional pos i ti onal . 
edi tor editor conditional 

edi tors 

reference re.ference primer. refer-
ence. appl ica-
tlons guides 



FORTRAN subroutine> 
IIGO.FT10FOOl DD DSN=NCS,VO~=SER=002035, 
II UNIT=T6250,LABEL=(1,SL), 
II DISP=(OLD,KEEP) 
IIGO.SYSIN DD , 
IPROBLEM TITLE IS 'INCIDENT, FAMILY 

INCOME VERSUS CRIME TYPE.' 
IINPUT VARIABLES ARE O. 

CASES ARE 13368. 
UNIT IS 10. 

IVARIABLE ADD = 2. 
NAMES ARE INCOME, TYPE. 

ICATEGORY CODE (1) ARE 1, 2, 3, 4, 5, ~" 
7, 8, 9, 10, 11, 12, 13, 14, 
lS, 16, 17, 18, 19, 20, 21, 
22, 23, 24, 25, 26, 27, 28, 
29, 30, 31, 32, 33, 34, 35, 
36. . 
CODES (2) ARE 1, 2, 3, 4, 5, 
6, 7, 8, 9, 10, 11, 12, 13. 

ITABLE COLUMN IS TYPE. 
ROW IS INCOME. 

lEND' 
I' 

The only way to do the clustering' 
problem would be to deSign a BMDP 
envirori~ental prodedu~e complete with, 
similarity judgment, clustering, and: 
median polish, since none of these are 
present elsewhere in BMDP. 

SPSS 

SPSS can't be used to represent the ER 
model. The job . to produce the 
tabulation follws. 

RUN NAME 

VARIABLE LIST 
INPUT MEDIUM 
N OF CASES 
MISSING VALUES 

INPUT FORMAT 
VALUE LABELS 

INCIDENTS, FAMILY INCOME. 
VERSUS CRIME TYPE 
INCOME, TYPE 
CARD 
13368 
INCOME (14,15,15)/TYPE 
( 0) 
FIXED (2F2.0) 
INCOME (1) UNDER $1000 
(2) $1000-$1999 (3) 
$2000-$2999 (4) 
$3000-$3999(5) 
$4000-$4999 (6) 
$5000-$5999 (7) 
$6000-$7499(8) 
$7500-$9999 (10) 
$12000-$14999 (11) 
$15000-$19999 (12) 
$20000-$24999 (13) 
$25000 AND OVERI TYPE 
( 1) RAPE TfiEFT (2) , AT : 
RAPE THEFT" (3) ASSAULT· 
WEAPON THEFT (4) ASSAULT 

421 

NO WEAP THEFT (5) MIN 
ASS THEFT (6) RAPE NO 
THEFT (7) ATT RAPE NO 
THEFT (8) ASS WEAP NO 
THEFT (9) ASS NO WEAP NO 
THEFT (10) MIN ASS NO 
THEFT (11) ATT ASS WEAP 
~O THFT (12) AT AS NO 
WEAP NO THF (13) ROBBERY 
WEAPON (14) ROBBERY NO, 
WEAPON (15) ATT ROB 
WEAPON (16) ATT ROB NO 
WEAPON (17) PURSE SNATCH 
(18) ATT PURSE SNATCH 
(19) POCKET PICKING (20) 
BURG FORC NO STL DAM 
(21) B Fe NO STL NO DAM 
(22) BURG FORCE (23) BUR 
NO FORC (24) BURG ATT 
FORCE (25) LARC < 10 
(26) LARC 10-24 (27) 
LARC 25-49 (28) LARC 
50-99 (29) LARC 100-249 
(30) LARC > 250 (31) 
LARC NA AMOUNT (32) ATT 
LARCENY (33) CAR THEFT 
(34) OT.HER VEHICLE THEFT 
(35) ATT CAR THEFT (36) 
ATT OTHER VEH THEFT 

CROSSTABS VARIABLES = INCOME (1, 
13) TYPE (1, 36)/TABLES 
= INCOME BY TYPE 

READ INPUT DATA 
<data here> 
FINISH 

The clustering example can't be done in 
ispss at all. 

SAS 

iSAS can't be used with the 
;theory. The following SAS 
'produce the required table of 

ER data 
job will 
incident 
type of frequencies tablulated by 

crime (TYPE) and family income (INCOME). 

IIRMX JOB RJM, 
II PROFILE='DEFER,MEMEORY=1000', 
II TIME=20 
IIEXEC SAS,PRINT=PRINT,TIME=20 
IIIN Dti DSN~RM.SAS.LIBRARy,DISP=OLD 
PROC SORt DATA=IN.PERSON; I'SORT DATA *1 

BY PKEY; I'PREPARING FOR THE MERGE'I 
PROC SORT DATA = IN.INCIDENT;I' SORT 'I 

BY PKEY; I'PREPARING FOR THE MERGE'I 
DATA A; I'CONSTRUCT INCIDENT LEVEL 'I 

MERGE IN.PERSON IN. INCIDENT; "MERGE'I 
BY PKEY; I'ASSOCIATE PERSON VARS 

WITH INCIDENT VARS 'I 
KEEP IKEY PKEY HKEY TYPE; I' KEEP ONLY 

THESE *1 



PROC SORT; 1* PREP FOR MERGE WI 
BY HKEY; 

PRoe SORT DATA~IN.HSEHOLD;I*PREP MERGE*I 
BY IiKEYj 

DATA Bj I*CREATE INCIDENT LEVEL DATA WI 
MERGE IN.HOUSEHOLD Aj I*MERGE*I 

BY HKEYj 
KEEP TYPE INCOME; I*KEEP THESE *1 

PROC FREQj I*PRODUCE THE TABLE wI 
TABLE TYPE*INCOME; 

1* 

It would be possible, if difficult, for 
a sophisticated programmer to write an 
internal procedure to do the clustering 
problem. 

OSIRIS IV 

OSIRIS can represent more, but not all, 
of the structures, opera tions, and 
constraints of the ER model. The 
following example assumes a structured 
OSIRIS file and produces the appropriate 
tabulations. 

&ENTRY 
ENTRY = 1 
UNIT = 3 
G 1 + G3 
GNUM = 1 
GNUM = 3 

&TABLES DICTIN=<dict file> 
DATAIN=<data file> 

TABLE OF INCIDENTS, FAMILY 
INCOME BY CRIME 

ENTRY = 1 
VAR=V~081 STRATA=Vl024 

&END 

OSIRIS can't do the similarities at .all. 

SIR 

SIR does not have the full range of, 
operations and constraints necessary to 
the ER model. The following retrieval 
would produce an SPSS file which could 
be input to the SPSS job above to 
produce the appropriate table. 

RETRIEVAL 
PROCESS CASES 

422 

, . 

PROCESS REC 2 
MOVE VAR INCOME 
PROCESS REC 4 

MOVE VAR TYPE 
PERFORM PROCS 

END PROCESS REC 
END PROCESS REC 

END PROCESS CASES 
SPSS SAVE FILE FILENAME = 

'END RETRIEVAL 
XTABFILE 

SIR probably can't perform the retrieval 
necesssary to enabling SPSS to do the 
clustering. 

CONSISTENT SYSTEM 

Janus, ~he database management system of 
the Consistent System, has almost the 
full ER model capabilities. The 
following series of commands yields the 
tabulation. 

create relation MEMBER VICTIMIZED IN := 
, comp~se (POPULATED_BY, VICTIMIZED_IN); 
create attribute family income in 

incident := infer (family income 
thru MEMBER_VICTIMIZED_IN)j 

change_default_dataset incident; 
eval xtab (family income, 

type_of _crime); 

The similaritylclustering problem could 
be most easily done in the CS by 
altering an already existing pro~ram to 
do the similarities and feeding the 
output into a clustering program. This 
requires moderate" '. programming 
sophistication. 

SUMMARY 

None of the software environments 
examined proved completely satisfactory 
from the analyst's perspective. Some 
environments were, however, better tHan 
others. Some, such as Minitab, could 
not handle complex data at all. Others, 
such as BMDP, proved very unwieldy. 
Three general conclusions can be drawn 
from the evaluative effort. 

First, most software environments 
oriented toward data analysis are not 
very friendly to the analyst. Most lack 



basic facilities such as help files or 
extensibility; others are unwieldy and' 
difficult to use, such as the batch 
systems. 

\ 

Second, most such software environments 
cannot deal with complex data 
structures. Most rely on the 
rectangular data matrix. Most do not 
have the capacity to represent the basic 
structures of the ER model, itself not a 
particularly strong representational 
system from the viewpoint of theoretical 
social science [11. 

Third, most environments lack 
necessary to doing 

Even if the system 
sophisticated 

the 
data 

has 
da ta 

can't 
novel 

flexibili ty 
analysis. 
moderately 
representation, 
be easily 
applications. 

the system usually 
extended to 

Data analysis, because it is done by 
people who don't know much about 
computers but who have sophisticated 
scientific problems to solve in creative 
~ays, has some special needs for a 
software environment. Such an 
environment must be able to represent 
data to the satisfaction of the analyst. 
It must be flexible ~nough to allow the 
analyst to do what he or she wants. And 
last but not least, the environment must 
be easy to use. 

1 • 

REFERENCES 

Robert J. Muller, Data 
Q.!:s.ani~~::':~!!.: Th~ In!~.!:at1o!!.--of 
Qi!~i!ba~~ !:!~~~~!!.!, Da t~ 
~!!.~is, and SOf!~~~ Te£hn~l~s.l 
A££lied to the National Crime 
~~.!:vey~ Pho-- --dissertatio~ 
Massachusetts Institute of 
Technology, October 1982. 

2. Clyde H. Coombs, ! The£!X of Q~!~, 
Wiley, 1964. 

3. 

4. 

Christopher 
Introduction to 
Third Editio~ 1Qa,:- -----

J. Da te, An 
Da!~~~~ ~stem~, 

Addison-Wesley, 

Dionysios C. Tsichritzis and 
Frederick H. Lochovsky, Q~ 

!:!~~~ls, Prentice-Hall, 1982. 

423 

5. Jeffrey D. Ullman, frincl£l~~ of 
Q~!~ba~~ ~st~~~, Computer Science 
Press, 1980. 

6. Peter Pin-Shan Chen, "The entity
relationship model--toward a 

9. 

10. 

11. 

unified view of data," 
~~~oc ia tio!!, fo.!: CO~2..!!!ins. 
!i~!!!!l~ Tr~~!io~ ~ Da!~bas~
~l~~~' Vol. 1, March 1976, pp.
9:-36.

Peter Pin-Shan
~!!.!!!l-Relationshi£

~~~~ An~ll~~~ 
No rth-Holland, 1990. 

Chen, 
!££!:.2..~!!. to 
~~ De ~!.s.!!. , 

Ree Dawson and John C. Klensin, 
"User extension to statistical 
software, " f.!:2.£eedin~ of th~ 
~l~tis!ical Co~~~!!.!i Se£~~, 
American Statistical Association, ' 
'Americ;n Statistical Association',-
1980, pp. 332-334. 

John C. Klensin, "Is all the 
world a list? or The ontology of 
programming languages or It is 
what you say it in or if we build 
a context-dependent model in a 
context-dependent programming 
language, do we understand the 
resulting context?". 

Ben Shneiderman, ~Qftware ' 
f!!.l£holoS.l: Hu~~ Fa£!~ in 
Com£uter and Information 1l~te~~, 
Winthrop --Publishrn~- Inc., 17 
Dunster Street, Cambridge, MA, 
02138, 1980. 

Charles Welty and David 
W. Stemple, "Human factors 
comparison of a procedural and a 
nonprocedural que ry language," 
~~~~ci~!!£!!. fo.!: £~~~~~!!.£ 
!:!~hine!X Tr~~~ct~~ £!!. Data~~~
~l~tem~, Vol. 6, December 1Q81,
p p • 6 2 6 - ,64 9 .•

I

AUTHOR INDEX

Gary D. Anderson, McMaster University (Canada). • 104

A.N. Amason, University of Manitoba (Canada) • . • . . 133

G. Barsottin~ Systems and Management (Italy). • . 178

M.A. Bassiow1~ University of Central Florida. 338

Don S. Batory, University of Florida. 251, 306

Jean Bell, University of Colorado. 196

Rita F. Bergman, Computer Corporation of America . •.•..... 73

Yvonne M. Bishop, Departtrient of Energy . 230

Joseph R. Brashear, University of Minnesota . 19

Virginia A. Brown, American Bell Inc. • . 188

Robert A. Burnett, Pacific Northwest Laboratory•............... 22

P. Chan, Lawrence Berkeley Laboratory 273

Stephen R. Childs, Data Resources, Inc.. • . . • 157

Qaudio Cirill~ IBM (Italy)•......... -' . 287

Paula J. Cowley, Pacific Northwest Laboratory. . • . . . • • 22

Roger E. Cubitt, Statistical Office of the European Communities (Luxembourg)•....... 167

M. David, Organization for Economic Cooperation and Development (France). • 223

Dorothy E. Denning, SRI International. 46. 368

Sue M. Dintelman, University of Utah. 245

John Dixie, Office of Population Censuses and Surveys (England) . 331

S. Eggers, Lawrence Berkeley Laboratory . • 273

Anthony D. E1Hman, BruneI University (England) 2

J.C. Farget, European Economic Communities (Belgium). • 178

Hamid Fars~ University of Alberta (Canada) 64

Simon K. Fok, Technology Development of California, Inc. • 404

Michael A. Fox, UCLA Hospital Computing Facility 89

Stanley R. Freedman, Department of Energy. 230

Fredric Gey, Lawrence Berkeley Laboratory 99, 273, 296

M. Gibbons, Organization for Economic Cooperation and Development (France) 223

Anne 1. Goldman, University of Minnesota. 32

Rick Greer, Bell Laboratories . 360

David L. Hall, Pacific Northwest Laboratories 82

Gwendolyn L. HarUee, Bureau of Labour Statistics . 154

K.A. Hazboun, Pennsylvania State University. 54, 338

Harry O. Heard, Technology Development of California, Inc 404

Sandra Heiler, The World Bank .. 73

425

Harvard Holmes, Lawrence Berkeley Laboratory. 99, 373, 296

P. Jan, Institut GUSTAVE-ROUSSY (France)•.................. 124

Ilkka Karasolo, Swedish National Defense Research Institute (Sweden) ',' ; . 315

John C. Klensin, Massachusettes Institute of Technology. 280

Andrew Kramar, Institut GUST A VE- ROUSSY (France) . 124

P. Kreps, Lawrence Berkeley Laboratory .. 273

D. Kruger, Institut GUSTAVE-ROUSSY (France) 124

Phyliss Levioff, Chase Econometrics. 172

John M. Long, University of Minnesota. 19

Robert T. Lundy, DIALOG Information Services, Inc.'. 152

Mauro Maier, IBM (Italy) ... 287

A. Timothy Maness, University of Utah . 245

John L. McCarthy, Lawrence Berkeley Laboratory 99, 273, 296

Mary McLeish, University of Guelph (Canada) ; 355

Barbara Meierhoefer, Federal Judicial Centre .. 39

Deane Merrill, Lawrence Berkeley Laboratory 99, 273, 296

Zbigniew Michalewicz, Victoria University of Wellington (New Zealand) 391

Robert J. Muller, Oracle Corporation ~ 414

Shamkant B. Navathe, University of Florida . 188, 251

Wesley Nicholson, Pacific Northwest Laboratory '.' 46

Inger Nilsson, liS Datacentralen of 1959 (Denmark) . 173

Lars Nordback, Statistics Sweden (Sweden) . 170

Frank Olken, Lawrence Berkeley Laboratory 212, 273

Gultekin Ozsoyoglu, Case Western Reserve University 9, 202

Z. Meral Ozsoyoglu, Case Western Reserve University 9, 202

Joseph A. Parker, Technology Development of California, Inc. .. . 404

Martin Podehl, Statistics Canada (Canada) ... 144

Helen C. Poot, Data Resources, Inc ... 148

Maurizio Rafanelli, 1st. Analisi dei Sistemi ed Informatica (Italy) 264

J.L. Raymond, Ohio Bell Telephone ... 54

Fabrizio L. Ricci, 1st. Studi e Ricerche Documentazione Scientifica (Italy) 264

Barry Robinson, SIR Inc.. 104

Neil C. Rowe, Stanford University . 235

Gordon Sande, Statistics Canada (Canada). 46, 346

Hideto Sato, Economic Planning Agency (Japan). 325

Gordon L. Schiff, Hoffman- Laroche Inc. 95

D.H. Scuse, University of Manitoba (Canada). 133

426

•

Kohji Shibano, IBM (Japan) . • • . • . 325

Arie Shoshan~ Lawrence Berkeley Laboratory•.....•.••..•...•....•...•. 46, 273

Tim Snider, McMaster University (Canada) • • . • . 104

Stanley Y.W. Suo University of Florida ...• 188, 251

Don Swartwout, Bell Laboratories. 220

Per Svensson, Swedish National Defense Research Institute (Sweden) . • • . . . • 315

John Tarter, University of Alberta (Canada)•.................... 64

James J. Thomas, Pacific Northwest Laboratories 22, 82

Jerry Toporek, BMDP Statistical Software. • • . . . 104

Philip Wake, Office of Population Censuses and Surveys (England) . 331

M. Wartelle, Institut GUST A VE- ROUSS.y (France). 124

Pamela L. Weeks, Bureau of Labour Statistics. 119

Stephen E. Weiss, Bureau of Labour Statistics .. 119

John R. Wilson, Technology Development of California, Inc. 404

Richard G. Wolfe, Ontario Institute for Studies in Education (Canada) 111

H. Wong, Lawrence Berkeley Laboratory • • . . • 273

427

LEGAL NOTICE

This book was prepared as an account of work spon
sored by an agency of the United States Government.
Neither the United States Government nor any agency
thereof, nor any of their employees, makes any war
ranty, express or implied, or assumes any legalliabi
lity or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein
to any specific commercial product, process, or ser
vice by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the
United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States
Government or any agency thereof.

