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PREFACE 

The Second International Workshop on Statistical Database Management will be held 
September 27-29, 1983 in Los Altos, California. The purpose of this workshop is to bring 
together statisticians and computer scientists, statistical database system users and system 
builders, to exchange ideas on statistical database management "Statistical databases" contain 
statistical information or are used for statistical analysis, and they present recognized problems 
that current data management and statistical software do not fully address. 

The goals of this workshop are the same as its predecessor held in December 1981, but its 
organization differs in a number of ways. The proceedings are being published prior to the 
Workshop so that they can: 1) report research results and work in progress, 2) provide an 
intellectual introduction to most of the workshop participants, 3) provide a point of departure 
for working group discussions. Only a few of the papers will be presented orally at plenary 
sessions of the three-day workshop. Working groups of five to ten participants each will 
meet the first two days to discuss and draft reports on· selected topics which have been used 
to organize these proceedings into sections. These reports will be presented on the final day 
of the workshop and published in the winter, 1984 IEEE Dalabase Engineering Newsletter. 

In response to our call for papers,t8 foreign and 42 U.S. paperS were submitted. Each 
paper was evaluated by at least three program. committee members, and 46 papers were 
accepted. In addition, 10\unrefereed papers were solicited for the section on Time Series and 
Econometric Database Management as part of a special working group. 

Participation in the Workshop is by invitation, and includes all authors of accepted papers, 
members of the special Time Series and Econometric working group, and the program 
committee members. About 80 statisticians, database researchers, . system developers, and 
others are expected to attend. . \ . 

As organizers of the 1983 workshop, we would like to extend our thanks to all authors who 
submitted papers for consideration; to program committee members who read papers and 
made valuable suggestions for improvement; to -Pam Weeks and Gwen Harlee who organized 
the special econometric woiking group; to Carl Quong, LBL's Computing Science and 
Mathematics Department Chairman, and Jean-Paui Trudel, Director-General at Statistics 
Canada, who supported the workshop since its inception;. to Julia Snyder, Carole Agazzi, 
Lesta Nadel, Meri Jones and Virginia Sveritek at Lawrence Berkeley Laboratory; and finally 
to Mike Jeays, Dave Emery and Shirley Jones at Statistics Canada without whom the 
workshop could not have taken place. 

John L McCarthy, 
General Chairman 

, 

Roy G. Hammond, 
Program Committee Chairman 
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DATA-BASES FOR CLINICAL HISTORIES. 

Anthony D. ELLIMAN. 

BruneI University, Uxbridge, ENGLAND. 

Medical researchers frequently investigate the progress of a disease or treatment by collect

ing a number of case histories. Data only becomes available when suitable patients present 

themselves and each patient may need to be followed for some years. A study of this type is a 

long term exercise. Such studies are only made possible by the availability of computers for 

data collection and analysis. 

Several data-base systems are available for clinical research, but many of these do not give 

enough attention to the dynamic aspects of this type of work. To identify the problem areas 

models for both the investigator's and patient's interaction with the data-base are presented. 

L INTRODUCTION 

In clinical research the data-base will hold 

medical histories from known cases. These 

case histories accumulate from clinical con

tacts with patients, and as such represent the 

investigator's view of the world. 

In medical research the data are subjected to 

analysis to find evidence to support 

hypotheses. Care is required to ensure that 

the process of selecting and recording data 

does not distort the record and thereby 

invalidate the conclusions drawn from it. A 

significant amount of the information in a 

data-base comes from the relationships between 

the items, and this can easily be distorted or 

lost. 

It is important to remember that, like a pho

tograph, the data-base is only a view of real

ity. Once the picture has been taken, the 

2 

imperfections and omissions are frozen into 

the record. If the colours of the trees might 

be important, colour film must be used; how

ever unless there were an interest in thermal 

profiles, 

required. 

infra-red film would not be 

In the same way a data-base is only 

a partial record of reality, whose value 

depends on the preservation of 

which may prove to be relevant. 

those facts 

Since a data-base is only a partial reflection 

of the real world it is important that all its 

users understand the rules by which data were 

selected for inclusion. In small groups all 

users tend to participate in the data collec

tion process and build up a common under

standing of the selection rules. As the user 

group grows or changes, the importance of 

keeping a record of these rules becomes 

paramount. When other research teams share 

the data they must be able to see the rules by 

which it was collected. One solution to this 

d 
I 
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problem is.to store the rules as part of the 

data-base, i.e. the system should include a 

data dictionary. 

2. INVESTIGATOR BEHAVIOUR 

A significant amount of medical research is 

concerned with long term problems. In such 

circumstances there will be a continuing 

growth in the information and this wi1'l 

present some difficulties. In the early 1970s 

several American research centers were sur

veyed by Pa11ey to deteruiinethe data process

ing needs of clinical investigators[7j. ThiS 

showed that in over twenty percent of the stu

dies, a single patient would be followed for 

at least 500 days. Since patients enter a 

sample at different times it seems reasonable 

to assume that the data collection period 

will genera1y cover several years. This sur

vey also suggests that a patient is likely to 

be seen on several occasions during a study. 

The naive solution is to collect paper records 

during this period and transcribe them onto 

the computer when they are complete: This 

denies any advantages that might come from 

using a computer system as part of the data 

collection process. Constructing a model of 

the investigator at work will help clarify 

some of the possibilities. 

Sibley's CLINFO system[8j uses a simple three 

stage model. 

1. Design study - decide what 

are to be collected. 

2. Collect data taking care 

check its validity. 

data 

to 

3 
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3. Review and summarise data using 

graphical and statistical tech

niques. 

Although the second and third stages may over

lap this model does not allow for a reassess

ment of the design. The initial selection of 

data items is often intuitive and investiga

tors should conduct a pilot study to test the 

design. 

This is not enough. It would be a poor 

researcher who spent several years collecting 

data without learning anything from it. Fig

ure 2.1 shows a more complex model which 

recognises the learning process that occurs 

once data collection has begun. This model 

contains a cyclic process of collection and 

examInation of data followed by revision of 

the study. 

The first iteration models a pilot study but 

these data are now retained within the full 

sample and subsequent iterations take place 

whenever the investigator wishes to review the 

situation. This progressive construction and 

analysis of the data-base allows the investi

gator to improve his observational techniques. 

In addition changes may arise either from 

the publication of other research or from the 

desire to start formal collection of data 

previously noted informally. 

These changes can take several forms. They 

may simply involve including additional obser

vations, or they ·may require changes or 

refinement of items already held in the data

base. Finally they may take the form of 

discontinuing the collection of items that 

become clearly irrelevant to the study. 



For data management software to be of value in 

these circumstances, it must accommodate 

changes in an easy and efficient manner. In 

1977 Chen[S] described how an evolving view of 

data can be handled by the entry-relationship 

model. There can be major problems practical 

problems in applying such conceptual changes 

to live data, but fortunately the most likely 

changes in research data are the easiest to 

implement. Here again a data dictionary can 

perform a valuable role. The system can take 

a new description of the modified data items, 

compare this with the existing description and 

reorganise the data accordingly. The addition 

or deletion of data items can be handled 

automatically, but refinement of existing data 

often requires action by the researcher. 

Since it can identify the cases to which a 

change applies and draw them to the 

researcher's attention the computer can be a 

considerable help in the updating process. If 

the original data-base includes annotations or 

references to a paper file this process is 

further simplified. 

3. PATIENT BEHAVIOUR 

The investigator is not the only active parti~ 

cipant in a study. Unless it is a short in

patient study patients must return to the. 

clinic or hospital for repeat examinations~ 

To study the implications of this the follow

ing model (figure 3.1) is proposed. 

Clinicians usually see more patients than they 

are following closely for research purposes. 

Before entering the sample a patient faces a 

selection process to determine whether his 

case is "of interest". Those who are· chosen 

must first be given 

within the data-base. 

a surrogate identity 

This is followed by 

4 

recording a 

of the first 

clinical history and the results 

examination. The investigator 

may start treatment and 

situation to develop. 

patient is re-examined 

then wait for the 

Subsequently the 

and the new results 

recorded. This cycle of waiting and re-

·examination is repeated until enough informa

tion has been obtained and the patient leaves 

the sample. 

The waiting period causes some. difficulties. 

At each re-examination the correct surrogate 

must be found.within the data-base. Ideally 

the intervals between the examinations are 

consistent for all patients but in practice 

patients do not make regular visits to clin

ics. Further problems occur when patients 

move away or refuse to attend. The data-base 

must. allow ·for both broken and truncated 

series of examinations. 

3.1 Dynamic Parameters 

Many of the observations made during a .clini

cal study are spot checks on continuously 

varying parameters such as pulse, blood pres

sure or weight. These .,measurements are usu-

ally repeated after each waiting period. 

Frequently the interests of the researcher are 

not focussed on the individual observations 

but on the trends or changes in the measured 

parameter. To test hypotheses about trends it 

will be necessary to compare the profiles of 

these "dynamic" parameters. 

By way of example, consider the following 

study of a treatment program for hypertension. 

To examine the response to various drugs a 

series of blood pressure readings is collected 

for each patient. The researcher is 

interested in the way in which blood pressure 

• 
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falls following the start of treatment and 

each patient is seen regularly at a Monday 

morning clinic. But it is only possible to 

compare readings taken at the same clinic when 

the patients start treatment at the same time. 

If Mr Jones starts treatment two weeks after 

Mr Smith, then Mr Jones' readings must be com

pared with those of Mr Smith taken a fortnight 

earlier. It is possible that MrJones and Mr 

Smith will start treatment on different days 

of the week. Here no t'wo Monday readings are 

comparable and some form of interpolation will 

be necessary. 

It is common for ad-hoc' systems to store the 

data on a relative time scale, such as blood 

pressure at first clinic, blood pressure at 

second clinic, and so on. The discrepancies 

resulting from varying starting dates are usu

ally ignored. This solution, already unsatis

factory, becomes even more so in'the presence 

of the irregularities and missed examinations 

discussed above. 

In general the reference points for comparing 

profiles of dynamic parameters are best esta

blished when a particular hypothesis is to be 

tested. Clearly a data-base that permits this 

must not entangle the events with the observa

tions. In a paper record this is done by 

recording a date (and time) at the head of the 

sheet or in the margin. The way in which we 

speak of time has been studied by Bruce[2] and 

formal analyses of information by Brunjes[3] 

and Bubenko[4] recognise the special role 

played by time. 

The most common implementations use a simple 

time-stamping technique[8,10]. This has the 

additional advantage that it is not necessary 

to determine the criteria for an event before 

any data are recorded. If the researcher 

5 

wishes to redefine an event he may do so. The 

event time is re-evaluated for each patient 

and the results re-ana1ysed in the light of 

the new definition. Thus enabling different 

sets of criteria to be tested which may lead 

to a deeper understanding of the disease 

processes involved. 

An important contribution here is TOD, the 

Time Oriented Database[6,9] This data-base 

marks each measurement with a contact number 

and records a list of contact dates for each 

patient. In this way it is possible to iden

tify events, critical periods and profiles for 

each case. An interesting development of TOD 

is its use bi Blum as a test vehicle for a 

knowledge based expert system in medical 

research [1] • 

Dekeyser and Bolour[11] have proposed a method 

for modelling time within clinical applica

tions. This scheme permits more comple~ ques

tions relating to the time, duration or 

sequence of events to be assessed. A good 

representation of time also permits longitudi

nal models to be used in data validation[12]. 

4. CONCLUSION 

A data-base system is 

'clinical software. 

an 

Since 

essential part of 

between items are important 

the relationships 

this cannot be 

based on simple matrix models of data; a more 

advanced approach, possibly the network or 

relational, model, is required. The inclusion 

of a data dictionary not only provides docu

mentation but may also support automatic 

verification of the data. 

Collection and validation of data should be 

viewed as a continuous process interleaved 



with data analysis. As the study continues 

the investigator will wish to modify the con

tent and structure of the data-base. The 

data-base management software must be suffi

ciently flexible to allow this to occur. 

Cases are generally followed over a signifi

cant time period. The time-stamping of obser

vations, determination of event times, and 

analysis of trends are fundamental to medical 

research. The data-base must support all 

these activities. It should be possible to 

define subsets of the data and event or refer

ence times at the analysis rather than data 

collection stage. 

The TOD database illustrates the structure 

required for medical research projects. It 

contains both schema or data dictionary and 

information about the time at which measure

ments were taken. Within certain limitations 

it permits data collection to run in parallel. 

with data analysis. 
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Abstract. 

We list desirable features of statistical databases (SOB) and summarize the 
architecture and major features of a statistical database management sys
tem, called the System for Statistical Databases (SSDB). SSDB uses a seman
tic data model designed to facilitate the data manipulation tasks of sta
tistical database users. It incorporates tools to model operational popula
t~ons such as experiment~l, cleaned, interpreted and representative popula
tlons, and has the capaclty to model summary tables, histograms, matrices, 
crosstabulations, scatter diagrams and two-dimensional plots. The data 
model uses the compartmentalization concept to minimize the effects of SOB 
security enforcement. The SSDB software is partitioned into certified and 
uncertified modules, and the flow of control within SSDB is designed to 
allow SOB security checking at execution time. Finally SSDB has a screen
oriented query language to manipulate summary and raw data. The paper con
cludes with a brief overview of the existing and proposed systems • 

I. INTRODUCTION 

Database researchers working on the 
statistical database (SOB) security 
problem usually define an SOB management 
system (SDBMS)as "a database management 
system that provides statistical infor
mation to users" where statistical 
information is defined as simple summary 
statistics such as SUM, COUNT, MEDIAN, 
etc. of some data in the SOB. The SOB 
security problem is then defined as con
trolling the use of the database in such 
a way that "statistical" queries are 
allowed but protected information in the 
database cannot be inferred from 
responses to queries~ 

While the above definition of SDBMS 
is sufficiently general to investigate 
the SOB security problem, a more useful 
definition of SDBMS may be given by 
observing the statistical usage of data 
by statisticians and users from other 
disciplines. These users employ a 
stored collection of data to (a) execute 
statistical data analysis procedures 
that range from simple summary statis
tics to advanced procedures like 
discriminant or factor analysis, (b) 
rearrange and manipulate data either for 
efficient storage and maintenance of 
data or for input to procedures in (a), 
and (c) to edit and tabulate summary 

*This research is supported by the Na
tional Science Foundation under Grant 
MCS-8306616. 
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data. Thus, .in this proposal we define 
SDBMS as a database management system 
that provides capabilities (i) to model, 
store and manipulate data and (ii) to 
apply statistical data analysis tech
niques to data in the SOB. Clearly data 
modeling, storage and manipulation capa
bilities should be developed in a manner 
suitable for the operational usage of 
data by SOB users. We also believe that 
an SDBMS should provide to users SOB 
security enforcement capabilities. 

With few exceptions, there are 
presently two approaches used to meet 
the needs of SOB users. One approach is 
to use special-purpose SDBMS's for 
specific applications (such as RAPID 
[TuHC 79] for census-like applications 
with very large, nearly static data). 
The other approach (hereafter called the 
statistical package approach) is to use 
a statistical package (such as SAS [SAS 
79]) for function (ii), and a file 
management system plus customized appli
cation programs or utilities for func
tion (i). The statistical package 
approach has few data modeling tools. 
Data independence and data sharing are 
usually difficult to achieve. There are 
incompatibility problems among files 
(each file usually has different lacel, 
format and value conventions [ChaS 81]). 
There are no powerful data manipulation 
languages, and SOB security mechanisms 
are nonexistent. One advantage of the 
statistical package approach is that 



users are free to choose any statistical 
package they like. The current SOBMS 
approach removes most of the above
listed disadvantages of the statistical 
package approach, with the exception of 
SOB security mechanisms. However, the 
majority of current SOBMS systems are 
limited in their capacity since they are 
tailored to specific applications. We 
think that the current SOBMS approach 
should be enhanced hy utilizing advanced 
data models for SOB~S, powerful query 
languag~s that manipulate objects of 
these models, and SOB security mechan
isms. 

In Section II we discuss desirable 
features of general-purpose SOBMSs. Sec
tion III summarizes design features of 
the System for Statistical Oatabases 
(SSOB). Section IV contains a brief 
overview of the existing and proposed 
SOBMSs with respect to the features dis
cussed in Section II. 

II. OESlRABLE FEATURES OF AN SOBMS 

This section argues that a 
general-purpose SOBMS should have a 
semantic data model with the capability 
to manipulate various data objects com
monly used by SOB users, and that vari~ 
ous SOB security mechanisms should be 
enforceable by the SOBMS. 

A. The need for ~ semantic data model 

Users of statistical packages who 
perform statistical data analysis always 
use conceptualizations of the real world 
to model the data they deal with. In 
social science research, for example, a 
researcher (i.e. the SOB user) may want 
to "describe social reality" or "to con
struct a social theory". The researcher 
makes decisions about variables (i.e. 
attributes of individuals) at the con
ceptual level and forms some generar-
ideas concerning the interrelationships 
and causal effects of variables upon 
each other. In current practice, the 
above conceptualizations and data are 
separated. Certainly a data model will 
be useful to represent and maintain 
these conceptualiza.tions, not only for 
documentation purposes, but also for 
implementation pur'poses. Several advan-. 
tages follow from the data model 
approach. First, providing the total 
information contents of the SOB will 
help users in their exploratory data 
analysis by making them aware of the 
richness of data. Second, it will 
enable users to use simple aggregate 
query expressions to request information 
from the SOB because of the explicit 
semantics of the data [Shos 82]. Third, 
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the data model will help in enforcing 
integrity, validity and security of the 
SOB. For example (due to the existence 
of a unified data model) labeling, for
matting, value, and naming incompatibil
ities will disappear. Finally, the data 
model, if designed properly, may also 
serve as a data model of a conventional, 
ordinary (i.e. ncorporate" [Oate 81]) 
database (COB), which may be desirable 
for those applications where there are 
SOB and COB users. 

usually, during the exploratory 
data analysis phase, original concep
tions of SOB users are modified through 
an iterative process of alterations and 
creation of new conceptions (inspired 
perhaps due to alterations). This 
iterative process may cause a data model 
representation of the real world to 
change or to be extended frequently. 
Therefore, there may be a need for a 
time period in which the SOB user exper
iments with a portion of the representa
tion while having exclusive control of 
that portion. Once a part of the . 
representation becomes more or less 
stable, and the user reaches conclusions 
about his understanding of the real 
world represented by that part of the 
datai he may move to "higher levels of 
analysiS" requiring more complex 
representations. Individuals in the 
"lower level" form members of units in a 
~higher level" ~hich is also represented 
in the data model, and the iterative 
process is repeated. From this brief 
discussion of processes in statistical 
research we conclude that an SOB seman
tic data model is indeed useful for 
SOB~s. 

Oue to the differences in data 
manipulation characteristics, semantic 
data models for SOB~s and COB~s should 
differ. The special utilization charac
teristics of SOB~s necessitate incor
poration of new operational tools into 
the SOB data models. An example may be 
the tools to model representative, 
experimental, interpreted or cleaned 
subsets of the data. ~ther objects that 
SOB users routinely use include summary 
tables, histograms, crosstabulations, 
scatter diagrams, two dimensional plots 
[OzsO 82b], sets, vectors, matrices 
[Shos 82, McCa 82b] and time series 
[McCa 82b]. These needs arise not so 
much from the semantic modeling aspect 
of data, but from the operational needs 
of SOB users. Since these abstract 
objects are manipulated using different 
operations, it is beneficial to define 
customized operations for different 
object types. This argument is in line 
with recent advanced semantic data model 

• 



proposals that contain a rich set of 
abstract data types and customized 
operations for each type. 

B. The need for new ~ languages 

Once the conceptual models of 
SOBMS~s are implemented using semantic 
data models with new objects having 
abstract data types, powerful data mani
pulation languages operating on these 
objects are needed. For example, sum
mary tables are used by SOB users to 
tabulate and compare redundant summaries 
of raw data. Therefore, SOB data models 
should naturally represent summary 
tables, and there should be a database 
language to define and manipulate sum
mary tables. 

C. The need for SOB security mechanisms 

The SOB is said to be compromised 
when, using responses to queries, users 
deduce protected information in the SOB. 
Compromise usually occurs when the pro
tected attribute value of some record in 
the SOB is uniquely identified as the 
attribute value of a certain individual. 

Protecting SOB~s from compromise is 
a difficult task since there are various 
inference mechanisms that may be 
employed by users. The security problem 
of the SOB involves inference and is 
therefore inherently different (and more 
difficult to solve) than the security 
problem of COB~s related to access con
trol. 

Some SOB~s used in application 
areas such as political planning, medi
cal research and strategic defense plan
ning contain security-sensitive informa
tion. Researchers and practitioners in 
database and statistical computing areas 
generally agree that SOB security is an 
important area. But there seems to be 
little enthusiasm among statistical 
software vendors and SOB users [LBLW 81] 
for introducing costly, complex and res
trictive protection mechanisms into 
SOB~s. The main objection of vendors of 
statistical software packages is that 
presently there is no demand from their 
customers for SOB security protection 
mechanisms ~owever, there have been 
publicly reported incidents of SOB users 
illegally deducing protected information 
[Park 76]. As far as we know~ SOB secu
rity mechanisms are applied only in 
census databases (in the form of secu
rity checks in 2,3-dimensional summary 
tables) and in some medical databases 
[SchI82]. Moreover, the majority of 
recently proposed SOB security tech
niques [Oenn 82] are as yet untested in 
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real world SOB applications. We feel 
.that any SOB architecture must be 
designed to support a variety of secu
rity mechanisms available if and when 
they are needed to enforce security. 
However, the architecture should also 
try to minimize any ill effect and cost 
due to applying security restrictions by 
encapsulating security-sensitive data in 
the SOB. 

O. Other advantages and potential prob
lems---

What other advanfages follow from 
an "enhanced" SOBMS approach that con
tains a conceptual (semantic data) 
model, a query language manipulating new 
objects and a capability to enforce SOB 
security mechanisms and to execute sta
tistical analysis .procedures by main
taining them within the SOBMS? 

(a) Compared with users of the sta
tistical package approach, the task of 
SOBMS users are simpler since. they need 
to become familiar with only one 
software system. Moreover, using inno
vative graphical query languages (such 
as QBE [Zloo 77], Abe [Klug 81] or STBE 
[OzsO 82a]) or user interfaces (such as 

GUIOE [WonK 82]) the SOBMS approach may 
be more user-friendly. 

'(b) The enhanced SOBMS approach 
removes potential incompatibilities and 
the often problematic data transfer 
between statistical package software and 
file management or SOBMS software. 

(c) Uniformity among operations 
(syntactically and semantically) can be 
achieved since one software system 
stores and manipulates data, and exe
cutes statistical procedures. 

(d) Users of the enhanced SOBMS 
approach will use simpler and fewer 
queries in their" statistical analysis 
since all the tasks of retrieving data 
from files, preparing data for input and 
storing data after analysis, can be 
expressed by queries of only one 
language. 

(e) Having a centralized control of 
dat~ and a statistical procedures 
library within the SOBMS allows the 
utilization of a security technique 
known as intentional resolution [Mins 
76]. If a user would like a multiple 
regression analysis, the SOB uses the 
protected raw data without making it 
available to users, and returns only the 
results of the analysis to users. This 
way users are provided with the results 
of the analysis they request but 



prevented from seeing the-protected raw 
data input to the statistical procedure. 
Another case might be to process the . 
protected raw data and provide users 
with an intermediate data analysis. An 
example is to give users correlation 
coefficient matrices (instead of the 
protected raw data) for possible input 
to procedures like factor analysis and 
canonical correlation. 

(f) Centralized control of data by 
the enhanced SDBMS approach allows 
execution-time SDB security enforcement. 

What are the possible pitfalls of 
the enhanced SDBMS approach? We envision 
the following potential problems. 

(1) Implementing SDB security 
enforcement (such as a security kernel 
or data-tagging [OzsC 82]) may make the 
SDBMS software less efficient, and the 
storage requirements may be higher. We 
think that a careful testbed implementa-
tion will answer this question. . 

(2) Feasibility qnd efficiency of 
the implementation of a conceptual 
(semantic data) model needs to be demon
strated on real life applications. 

(3) A more important issue, 
perhaps, is the acceptability of a con
ceptual data model to SDB users. A con
cern has been raised by practitioners in 
the statistical computing area that .the 
eagerness of SDB users to get on with 
their research usually results in 
bypassing the maintainance of simple 
data definitions such as variable iden
tification [Mark 81]). This then raises 
the user acceptability of the SDBMS 
approach that requires a full conceptual 
data model to be in place from the 
start*. We think that all the advantages 
listed above outweigh this inconvenience 
to users. In the long run, users bene
fit from having a well-specified data 
model by gaining a better understanding 
of the data. Nevertheless, this problem 
has to be investigated by experimenting 
with a testbed implementation of the 
enhanced SDBMS approach. 

SYSTEM FOR STATISTICAL DATABASES (SSDB) 

This section briefly discusses the 

* In order to help solve this problem, 
"stand-alone" views are proposed in 
[OzsO 82b]. However, users are still 
required to specify the schema of the 
stand-alone view. 
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features of a general-purpose SDBMS, the 
System for Statistical Databases (SSDB) 
[OzsO 82b] designed as a response to the 
problems listed in Section II. It should 
be pointed out that SSDB is an ongoing 
project, and several of its components 
are currently being researched. However, 
this section reports only those aspects 
of the design that are currently con
cluded. 

A. Architecture 

SSDB architecture consists of three 
levels, external level, conceptual level 
and internal level, in the conventional 
sense. The external level is concerned 
with individual SDB user views~ the con
ceptual level defines the community view 
(i.e. the conceptual view). The inter
nal level is concerned with secure, 
efficient and effective access and util
ization of data. Figure 1 illustrates 
the three levels. Each user has a data 
definition and manipulation language to 
~anipulate data objects at the external 
level. SSDB is designed by modifying a 
three level CDB architecture level by 
level thereby making it potentially pos
sible to serve as a CDB to some users. 

Conceptual Level: 

At the ~onceptual level, there is a 
Compartmentalized SDB Conceptual Model 
and a Security Database. The conceptual 
model uses the Heterogeneous Operational 
Data Model (HODM) as the data model and 
contains compartments of security
sensitive information. Figure 2 
represents the conceptual level. 

Conceptual Model consists of three 
layers. Innermost layer, Data Model, is 
concerned with the representation of the 
real world in a natural and semantically 
rich manner. The middle layer provides 
tools to model representative, cleaned 
and. interpreted subsets of data, and the 
outermost layer is concerned with easy 
and conv.enient representation of aggre
gate data (i.e. summary tables) and 
other new objects of the SSDB such as 
matrices, histograms, two-dimensional 
plots, etc •• 

The Security Database contains 
security-related information for each 
compartment such as security constraints 
[ChiO 81], user groups and user 
knowledge constructs [ChiO 81], query 
and update history of abstract objects 
[OzsC 82, ChiO 82, OzsO 81]. 

External level: 

At the external level,. there are 

• 



virtual and stand-alone user views. 
Virtual views are either derived or 
exact replicas of a part of the concep
tual model. Processing a query about a 
virtual view involves the usual 
processes of mapping the query to con
ceptual model and to inter,nal model, and 
optimization. Stand-alone views are not 
completely mappable to the conceptual 
model. Stand-alone views are introduced 
to manage the iterative stage (i.e. 
unstable data representation) of users· 
exploratory data analysis where data or 
its parts are experimental and are not 
shared, and the corresponding model is 
not stable. processing a query about a 
stand-alone view involves mapping the 
query to the internal level and optimi
zation. 

Internal level: 

With the exception of matrices and 
vectors, all objects of HODM are 
represented as nested relations [OzsO 
83] at the internal level of HODM. A 
nested relation is a relation with set
valued or simple-valued columns. 

File organization techniques for 
nested relations are currently being 
investigated. Since SSDB is general
purpose and allows updates, existing SDB. 
file organization techniques such as 
transposed files and cross product files 
[EggS 80] have to be modified. Another 
research problem is the maintenance of 
aggregate values in the presence of 
updates to the database. 

For compartments in the internal 
model, all data has security-related 
tagging [OzsC 82]. The tagging is used 
in verifying correctness of the physi
cally retrieved data during execution 
time. 

B. Data Model 

The HODM is designed by modifying 
the Data Abstraction (DA-) Model [SmiS 
77a, SmiS 77b]. The main reason for 
choosing the DA-model is that opera
tional characteristics of SDB users can 
be incorporated into the data model as 
specialized generalization hierarchies 
of the DA-model, thus making this model 

. a natural choice. It should be pointed 
out that the query language of SSDB does 
not utilize the structure (i.e. various 
hierarchies of HODM). The structure of 
HODM is used for browsing through the 
model 'integrity checking, SDB security 
enforcement and documentation. Query 
language of SSDB refers directly to 
abstract objects for data manipulation, 
and avoids navigation through the 
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structure of HODM. 

DA-Model: 

The DA-model uses aggregate and 
generic objects to name relationships 
and classes. The real world is modeled 
as a set of aggregation hierarchies 
intersecting with a set of generaliza
tion hierarchies. In the HODM, each 
abstract object forms a population about 
which statistical analysis can be be 
performed. Within compartments there are 
additional constraints placed upon gen
eralization hierarchies [ChiO 81]. 
Innermost layer of HODM uses only aggre
gation and generalization hierarchies, 
and is a semantic data model for cor
porate database (CDB) users as well as 
for SDB users. Figure 3 contains a 
university database. 

Teacher 

e9denotes a cluster 
[SmiS 77b] 

Figure 3. Representation of university 
database using the DA-Model 

Operational Data Model (ODM): 

ODM is used for the middle layer of 
the conceptual model of SSDB, and incor
porates hierarchies of various types of 
populations, called operational popula
tions, that are needed because of the 
operational characteristics of SDBs. 
There are four types of operational 
populations, representative, inter
preted, cleaned and experimental popula
tions, each created (perhaps itera
tively) from a population of the DA
Model called main population. Each type 
of population may form a hierarchy. Each 
type of operational population has a 
prefix (e.g. RP,IP, CP, EP) to indi
cate its type. 

(a) Representative populations (RP) 
are user-specified subsets of data. 
They are created to facilitate the effi
ciency of the operation, or due to 
either the inability to process large 
amounts of data or the sufficiently gen
eral nature of the conclusions drawn 
from representative samples using sta
tistical procedures. 

(b) Interpreted populations (IP) 
are created by classifying individuals 



in a given population using different 
interpretations of individuals~ attri
bute values. For example, "U.S.-made
cars" may be interpreted as "cars with 
at least 85% U.S.-made parts" or "cars 
produced by U.S.-companies". 

(c) Cleaned populations (CP) are 
created by eliminating some of the indi
viduals in them by selection tests that 
involve user requests or processing 
missing, suppressed and perturbed values 
and correctness ranges. 

(d) Experimental populations (EP) 
are user-created temporary subsets of 
other populations. They are used mainly 
to draw conclusions about phenomena not 
yet modeled by the database. 

Figure 4 contains a representation 
of a university database using OOM. 
CP-SECRETARY-PERMITTEO contains all 
those secretaries who are not assigned 
to security-related jobs (i.e. a cleaned 
population). IP-EXPERIENCEO-ENGINEER-l 
and IP-EXPERIENCEO-ENGINEER-2 are two 
different subsets of engineers selected 
according to different "experience" cri
teria. Within a generalization hierar
chy (or more correctly, ~set hierar
chy) , notations ~ and 4~ denote 
upward and downwa·rd existence dependency 
respectively (i.e. existence of a popu
lation is defined through the existence 
of other populations). Similarly, nota
tions ~ and ~ denote upward and 
downward existence dependency within an 
aggregation hierarchy respectively. For 
example, IP-EXPERIENCEO-ENGINEER-l is 
existentially dependent to ENGINEER, and 
RP-ASSIGNMENT is existentially dependent 
to ENGINEER and RP-PROJECT. 

Heterogeneous Operational Oata model 
(HOOM) : 

HOOM is used for the outer layer of 
the conceptual model of SSOB, ahd incor
porates new objects to help users model 
data according to their data manipula
tion needs. These objects are summary 
tables, crosstabulations, matrices, his
tograms, scatter diagrams and two
dimensional plots. Reference [OzsO 82b] 
briefly describes operations involving 
these objects. It should be pointed out 
that histograms, scatter diagrams and 
two-dimensional plots are mostly viewed 
as visual comparison aids utilized by 
SOB users and thus operations involving 
them are restrictive. 

Among the new objects in HOOM, sum
mary tables are very common. In fact, 
the Table Processing Language System 
[Uslb 80] produces only summary tables. 
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As an example a summary table scheme is 
shown graphically below: 

OCP 
CANCER-PATIENTS OCP SEX 

I AGE COUNT COUNT 

In this example, the summary table name 
is CANCER-PATIENTS. It has a column 
category attribute forest consisting of 
two trees. The first tree has a single 
node, OCP. The second tree has two nodes 
OCP and SEX where the root of the tree 
is OCP. The row category attribute 
forest consists of a single attribute 
AGE. In a summary table, each cell is 
defined by a set of row category attri
butes (which appear in a root-to-leaf 
path in a row category attribute tree) 
and a set of column category attributes. 

C. Query Language 

All populations at the conceptual 
model of SSOB are represented as rela
tions. SSOB uses a screen~oriented, 
two~dimensional query language, called 
Summary-Table-by-Example (STBE) to mani
pulate summary table and relations [OzsO 
82a]. STBE is a relational-calculus 
based language. It is similar Zloof~s 
Query-by-Example [Zloo 77] and may be 
considered as an extension of 
Aggregates-by-Example [Klug 81]. 

O. Security Considerations 

In [OzsC 82] we have argued that. 
for secure processing, SOBMS should be 
certified to guarantee that it works 
correctly. However, since certification 
is not an easy task, the software for 
certification should be minimized. The 
SOBMS of SSOB is grouped into modules 
and only a very small part of the SOBMS 
is certified. Execution flow within 
SOBMS is designed as follows. Popula
tion and attribute types (i.e. logical 
object types) involved in the query are 
derived by certified modules. A certi
fied security kernel accesses the physi
cal database and retrieves physical 
objects. After a secure mapping of phy
sical and logical objects (each physical 
object in a compartment is tagged by its 
logical name), SOB security enforcement 
rules are applied. Procedures in sta
tistical procedures library are not cer
tified, but they run isolated from users 
and other SOBMS modules. 

One may thInk that certification is 
too big a task for SSOB. However, there 
is already a successful implementation 
effort. [Oowp 77, OowP 79] that applies 



almost the same scenario above with the 
exception of SDB security enforcement. 
Moreover, a majority of the SDB protec
tion techniques can be implemented with 
very small code. Therefore we think 
that the proposed SDBMS execution flow 
is practical. We should also note that 
we propose tagging for only those 
objects that are in compartments. 

Since we design SSDB as a general
purpose SDBMS suitable for various 
applications we allow updates in the 
SDB. Consequently there should be some 
secure update handling mechanisms for 
objects in compartments. In [OzsO 81] 
we discuss a variety of update handling 
techniques that enhance security in a 
single population. 

IV. DATA MODELS AND QUERY LANGUAGES OF 
EXIST~SDBMS>S 

To contrast the design characteris
tics of SSDB with other systems, this 
section briefly surveys data models and 
query languages of existing SDBMS"S. 
Other characteristics of current SDBMS"s 
can be found in [Shos 82]. 

The discussion below should not be 
interpreted as a claim that the systems 
below are not successful. Indeed there 
are reports [Hamm 81 and others] that 
they are very successful for use in 
those applications fOr which they are 
targeted. However, we think that for a 
general-purpose SDBMS, requirements 
listed in Sectioh II should also be 
satisfied. 

A. Data Models 

Traditional data models are used in 
existing SDBMS implementations and pro
posals. For example, RAPID [TuHC 79], 
and the Table Producing Language System 
[Uslb 80] use the traditional re16-
tional network, and hierarchical models 
respectively.' Recently Ikeda and 
Kobayashi [IkeK 81] reported an SDBMS 
implementation on top of a relational 
DBMS. ' 

There are only three semantic data 
models specifically proposed for SOB"s: 
SAM* (Semantic Association Model) [Su 
82], the cluster and cross product 
hierarchies of SUBJECT [ChaS 81] and the 
infological framework of RAM [RapS 75, 
Sund 78]. The first two models are 
structured, redundant, and similar to 
semantic networks. SAM* has seven dif
ferent association (relationship) types 
and supports sets, matrices, vectors, 
and time series as complex data types. 
A proposed implementation of SAM* uses 
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G-(generalized) relations. Cluster and 
cross product hierarchies of SUBJECT use 
the concept of summary sets, distinguish 
between category and summary attributes 
for semantic modeling and simpler query 
expressions of summary statistics, and 
utilize cluster and cross-product 
abstractions to model both raw data and 
matrix representation of summary data. 
From the examples in reference [ChaS 
81], cluster abstraction is a combina
tion of generalization abstraction of 
[SmiS 77b] and attribute association of 
SAM'''. Cross product abstraction is, on 
the other hand, a new data modeling tool 
proposed to represent summary data using 
a n-dimensional matrix data type. The 
infological framework of RAM uses ele
mentary messages of groups of objects. 
To represent statistical surveys, a box 
structure which is always a n
dimensional cube ( not an arbitrary 
structure) is used.--Classification of 
objects. according to their data types is 
not mentioned. 

B. Query Languages 

Existing query languages of CDB"s 
can be used to produce summary statis
tics. However, the syntax and semantics 
for statistical queries are usually not 
well-defined. Moreover, operations on 
objects with complex data types (such as 
matrix, summary table, etc.) do not 
exist. 

.Aggregates-by-example (Abe) [Klug 
81] is a language proposed to ease the 
task of formulating statistical queries. 
Abe is a relational query language simi
lar to Query-by-Example (QBE) [Zloo 77]. 
It uses thesubquery concept to simplify 
complex statistical query expressions. 

Among user interfaces, SUBJECT uses 
a set of seven menu driven commands (not 
a query language) that includes browsing 
·capabilities in the cluster and cross 
product hierarchies to help users locate 
and retrieve aggregate information. 
GUIDE [WonK 82] is a graphics-based user 
interface that contains subject direc
tories, help messages, zooming facili
ties and partial query formulation 
features. 

C. SDBMS Implementations and Proposals 

Presently there are various SDBMS 
implementations and proposals. These 
systems include RAM[Sund 78], SUBJECT 
[ChaS 80], RAPID [TuHC 79], SEEDIS [McCa 
82a], Ikeda and Kobayashi"s system [IkeK 
81], Table Processing Language System 
[Uslb 80], System S [BecC 78], GENISYS 
[ManD 81] and others. The common 



features of all these systems are: 

1) None has any SDB security 
mechanisms. 

2) Except RAM and System S, all of 
the above systems interface to a sta
tistical package for statistical 
analysis procedures. RAM has a "macro 
data processing subsystem". ~ystem S 
maintains and utilizes statistical pro
cedures as functions (about 250) in an 
interactive environment. 

3) Except System S, SUBJECT, and 
Ikeda and Kobayashi~s system, none of 
the above systems model and support 
abstract data types. System S uses vec
tors, matrices, and time-series as con
crete objects without a data model. 
Cross product abstraction of SUBJECT can 
be considered as an object with a matrix 
data type, but SUBJECT does not have 
explicit operations for the cross pro
duct abstraction. The system of Ikeda 
and Kobayashi uses the summary table 
object, but has very limited operations 
involving summary tables. 

4) Since abstract object types are 
not supported, none of the above have 
query languages manipulating abstract 
objects. 
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ISSUES RELATED TO MEDICAL STATISTICAL DATABASES* 

John M. Long, Joseph R. Brashear 
University of. Minnesota, 2829 University Avenue S.E., #408 

Minneapolis, Minnesota 55414 

Abstract 

The underlying system for most if not all medical statistical databases is the patient 
medical record whose automation is still in a development stage. The automation of 
this underlying system is not standardized and its standardization is the subject of 
debate. Ethical and legal considerati'ons add to the difficulty in generating statistical 
databases containing medical data regardless of its use in demographic, epidemiologic, .. 
or other research and planning applications. None of these problems appear to have short 
range solutions. To minimize the impact of these problems on statistical databases in 
support of planning and research needs, the structure and content of statistical data
bases using medical data can and should be kept as simple as possible. 

1. BACKGROUND 

The medical tradition in the United States 
places a high value on the one-to-one 
doctor patient relationship. This aspect 
of medical tradition has had a decided 
impact on medical record computerization 
in that the provi der is entrusted with the 
responsibility for a patient's medical 
data including its dispersion to other 
users. As there are different types of 
medical care providers, there are differ
ent types of medical record databases. 
The style and format of each varies with 
the anticipated use of the data. Content 
and organizatiDn varies with perception 
of standards and the style of the medical 
practice. 

To date, the approach to formation of 
medical record databases remains highly 
individualized. There is no widely 
adopted standard even though several sys
tems have been proposed or developed. The 
degree of automation varies widely. The 
possibility of automation in the forseeable 
future is often in doubt. 

Amidst this apparent disarray, there is 
evidence that the need for systemization 
and standardization has been recognized. 
Medical record database systems have been 
developed for individual hospitals and 
medical practices. Systematic approaches 
to the organization of the medical record 
have been propounded. Standards for collec
tion, maintenance, and dispersion of medi-' 
cal data are being developed. 

2. UNIQUENESS OF THE MEDICAL RECORD 

Are medical records so unique that they require 
specially designed database management systems? 
At one time the new user was so overawed by com
puting that he failed to grasp the realistic 
potential and limitations of computers. This 
position seems to be reversed in medical appli
cations. The computing professionals can be so 
overwhelmed by the field of medicine that they 
fail to realize that they are faced with an 
essentially but not totally standard problem. 
Even among those who do understand both the 
computer's capabilities and the medical record, 
there are substantive differences of opinion 
regarding the unique position held by the medical 
record .. 

An overwhelming characteristic of the medical 
record is the enormous amount of data about each 
individual that is collected over time. A large 
amount of data is being collected and recorded 
in a variety of ways by one group of individuals 
to describe or monitor another group of individ
uals. Progress in medical science brings.about 
a shift in priorities, needs and emphases. The 
health care provide.rs cannot anticipate the 
impact of future developments on their practice. 
However, they have a clear responsibility to see 
that the patient is protected and benefits from 
medical progress. Therefore, there is a tendency 
to collect every scrap of data possible. 

3. SPECIAL DESIGN PROBLEMS 

The attempts to computerize medical records 
coupled with recognition of a need for medical 
data by users outside of the traditional 

*The authors' concerns for these problems are related to the maintenance of and abstracting from the 
medical records of patients enrolled in the Program on the Surgical Control of the Hyperlipidemias 
(POSCH) a national multiclinic clinical trjal supported by the NHLBI grant #HL15265-10. 
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provider-patient relationship has led to 
increasing concern about privacy. One 
cannot design flat files of data which 
allow individual items to be picked off 
for use without consideration of this 
issue. Either external or internal 
restrictions, probably both, are 
necessary. 

Tradition has placed the responsibility 
for protection of medical data with its 
custodian, the provider. This gives the 
provider of medical care direct control 
over the dissemination of a large body of 
medical data. Even when a patient has 
given blanket consent for release of data, 
the provider will still exercise control 
over what data are actually released. 
This circumstance is based partly on 
ethical and legal considerations. However, 
release of data is also affected by its 
availability and cost to access. 

Users of medical data are forced to go to 
a source which is fragmented, unsystematic 
and non-standard. The data source ,the 
provider, is faced with the choice of 
refusing a request, undertaking a costly 
abstracting chore,.or simply providing 
the entire record and hoping for the best. 

4. IMPACT ON DATABASE DESIGN 

There are recognized and legitimate needs 
for data to be extracted from i ndi vi dua 1 
medical records and aggregated for 
analysis. There are legit.imate reasons 
for the many different approaches to 
medical record computerization by 
providers. All of these become points of 
conflict which tend to cloud or overwhelm 
basic computing desjgp~issues. 

For the moment, let us consider the 
extremes of two dimensions of the ques
tion. The many concerns of the provider 
lead to a comprehensive accumulation of 
data about each individual over long 
periods of time. The dynamic nature of 
medical science results in highly variable 
or as yet undefined retrieval character
istics. Security measures beyond simple 
secrecy are required and access should be 
severely limited. 

These design considerations are very 
di fferent from those for a statistical 
database containing medical data. The 
content of the database is defined before 
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data accumulation begins and does not 
change over the life of an analysis 
effort. The lifetime of the database can 
be controlled to be as brief as possible. 
The amount of data collected on each 
individual can be minimized to alleviate 
the need for extreme security measures. 

These two different sets of design character
istics probably cannot be reconciled in any 
expedient manner. The question should become 
one of whether they ought to be reconciled. 
Integrated database systems which satisfy 
diverse needs for access to large databases do 
exist. However, there is control over the 
structure and content of the underlying data. 

We contend that the degree of control and 
standardization required cannot be attained in 
a reasonable time frame for the medical record. 
The debate over medical record databases will 
continue. The highly individualistic and 
entrepreneureal nature of health care delivery 
will be an impediment to rapid progress. 
Rather than continue to debate thegl oba 1 
issues of medical record database design in 
every arena, let us solve some computing 
problems. 

If we regard the comprehensive medical record 
database as a black box source of medical data, 
we can segregate and simplify many of the issues. 
The content of the black box, control over 
access to it, safeguards against inappropriate 
use, and patient consent to use individual data 
become the concern of the provider. The 
structure of the comprehensive database and its 
degree of automation become a choice for the 
provider. Willingness to provide data becomes 
a legal or ethical decision for the provider. 

The user of a statistical database containing 
medical data has fewer design decisions to make. 
To assure privacy and security, the minimum 
number of data items which will serve a specific 
purpose will be requested and the life span of 
the statistical database should be limited. The 
concept of informed consent by the patient for 
a specific use will do away with concern about 
combining or linking data. The variance in 
degree of automation within the black box 
will force a simplified or minimal data struc
ture. 

A part of good design practice is recognition 
of the fact that we cannot impose radical 
changes on data sources to meet computing 
requi rements. We can make the result of a 
computer application so desirable that the 



data source will want to cooperate and will 
take steps to reduce"the cost of coopera
tion. 
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MANAGEI4ENl' AND DISPIAY OF 
DATA ANALYSIS ENVIRC.HttENl'S FOR LARGE DATA SETS * 

Robert A. Burnett, Paula J. Cowley, and James J. Thomas 
Pacific Northwest Laboratory 
Richland, Washington 99352 

Data analysis is typically an iterative process in which the choice of the next analysis 
operation is largely detecnined by the results of previous operations on the data set. 
With large data sets, many analysis paths may be explored before meaningful results are 
obtained. Along each path, the analyst creates a sequence of "data analysis 
environments," each environment being a frame or "snapshotn of the data set and associated 
descriptions, conditions, IOOdels, and analysis results. The data analysis environment may 
be changed incrementally through temporary data roodifications, subsets, samples, or 
statistical operations; or, the analyst may wish to restore the conditions of a previous 
environment as a starting point from which a new analysis path can be generated. Existing 
analysis systems, however, lack facilities to maintain, save, or restore all of the 
components required to completely describe or reconstruct a data analysis environment. 

This paper describes ongoing research at Pacific Northwest Laboratory (PNL) in data 
management and display techniques for multiple data analysis environments. Specifically, 
research is being conducted in four major areas: (1) the development of a roodel of the 
data analysis process incorporating the concepts of data analysis environments; (2) the 
design and use of data modification definitions (differential files) to represent multiple 
versions of a large data base; (3) the use of data dictionaries/directories to manage, 
describe, and control multiple data analysis environments; and (4) the application of 
graphical display and interaction techniques to the examination and selection of data 
analysis environments. The results of these research efforts will be integrated to 
provide a new dimension in interactive data analysis. 

* Work supported by the U. S. Deparbnent of EnerW, contract DE-AC-06-76RLO 1830. 
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1.0 PRCBID1S AND OPPORlUNITIFS 
IN ANALyzrm IARGE Dl\TA SETS 

Data analysis is typically an iterative process 
made up of many operations that collectively 
refine the data. The analyst uses various data 
manipulation functions and statistical 
algori thins to extract useful information. The 
course of an analysis is often charted "on the 
fly" via a sequence in which the next operation 
is dependent upon the results of previous 
operations. Often the analyst will pursue a 
particular path and then decide to return to a 
previous point in the analysis to try a 
different approach [Denning, et al 1983]. 
However, it may be ilnpossible or, at best, 
difficult and time-consuming to restore the 
analysis to a previous state. 

While these observations apply regardless of 
the size of the data set, the difficulties 
associated with data analysis are compounded as 
the size of the data set grows. As the number 
of data variables increases, a more lengthy 
analysis may be required to derive a set of 
meaningful statistics, since there are more 
opportunities for unforeseen relationships. 
Operations on data sets with a large number of 
observations tend to require more time and more 
computer resources. The end result is a 
considerable amount of time and effort required 
to organize and manage the analysis of a large 
data set. 

Data processing activities on a computer are 
performed within the context of a "computing 
environment." This environment is defined ~ 
the hardware, the operating system, and the 
application software being used. Software is 
usually developed and tested with the aid of 
the operating system and associated program 
development tools which constitute a 
"programming environment." Similarly, during 
an interactive data analysiS seSSion, the 
analyst is working in an ever-changing 
"analysis environment" of available or 
currently active data elements, stored results 
from prior analysis steps, sampling or 
selection criteria, available operations, and 
other system or user-supplied specifications. 
These factors describe the relevant 
surroundings or "data analysis environment" 
which has been established ~ the operations 
performed on the original data set and ~ the 
software environment. We can define a data 
analysis environment as a combination of the 
following components: 

(1) the state of the currently active data 
set or subset, including any temFOrary 
IOOdifications to the original data set, 
new records or variables which may have 
been added, and analysis results which 
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have been stored for later review and 
possible additional analysis 

(2) the status of operational and user 
interface parameters (data selection or 
sampling conditions, convergence 
criteria, default command options, 
plotting parameters, etc.) which affect 
the mode of interaction, the 
interpretation of commands, and the 
disFOsition of analysis results 

(3) a description or listing of the sequence 
of analysis operations which produced 
this environment from a prior known 
environment 

(4) information describing the statistical 
IOOdelbeing used in the analysis 

(5) comments entered ~ the analyst to 
descr ibe the environment and document the 
analysis process. 

Although each statistical or data manipulation 
operation potentially creates a new (though 
perhaps only slightly different) data analysis 
environment, several steps may be required 
before a useful set of results are obtained. 
Multiple operations are often required to move 
from one well~identified stage of the analysis 
to the next stage. Only the analyst knows for 
sure when a significant new data analysis 
environment has been reached. The analyst 
should therefore have the means to name, 
describe, and save a distinct data analysis 
environment for later identification and use. 

During the exploratory stages of an analysis, 
many of these environments may be created 
temporarily for hypothesis testing. Thus many 
data analysis environments may be created, 
examined, and then either discarded or set 
aside for possible later use. The analyst is 
confronted with the problem of managing and 
referenCing these environments. 

CUrrent statistical packages do not provide 
facilities to maintain complete data analysis 
environments as defined above. Some statistical 
analysis packages allow the user to save 
elements of the current environment1 however, 
there are limitations in the types of 
information which can be saved and the 
flexibility and efficiency of saving and 
restoring the environment. For example, the 
Minitab statistical package [Ryan, et al 1981] 
allows the user to save a "worksheet," which 
consists of a snapshot of the working data set 
at the time the worksheet was saved. However, 
there is a limitation in the size of the 
worksheet that Minitab can handle, and there is 
no provision for saving only a subset of the 



worksheet. In addition, there is no provision 
for storing descriptive information about how 
the user arrived at that particular worksheet. 
Log files of Minitab command sequences can be 
saved, but the user must keep track of which 
log files are associated with each worksheet. 

The'S' language and system for interactive 
data analysis, developed at Bell Laboratories 
[Becker and Chambers 1981], goes much farther 
than most statistical analysiS packages in 
allowing the user to define COlIJIX)llents of an 
environment. The user can define new data 
structures as the analysis progresses. The 
results are returned as data structures that 
become part of the data base. 'S' also allows 
the analyst to maintain a journal of the steps 
taken during the analysis session. The analyst 
can edit this journal to remove superfluous 
commands and then apply the edited journal file 
to the same data set or to a different data 
set. 

Several data and file management systems have 
same features similar to those described 
above. DA~IEVE [Digital Equipment 
Corporation 1980] allows the user to define 
"collections" which are usually created ~ 
subsetting the data set in sane way. BASIS 
[Battelle Development Corporation 1981] allows 
the user to save operations as procedures that 
can be re-executed as desired. 

These techniques can be viewed as limited 
approaches to the definition and storage of 
data analysis environments. However, these 
systems lack facilities to automatically 
maintain a record of the saved environments and 
their relationships to each other and to the 
overall analysis. In addition, they require 
the entire data base snapshot to be physically 
saved, together with additional information 
which the software may require to enable a 
complete restoration of the environment •. This 
is usually not practical for large data sets. 

It is even more difficult to return to a 
previous data analysis environment if that 
environment has not been explicitly saved. The 
analyst must somehow try to undo the operatiOns 
which have resulted in changes to the data set 
since the prior environment was established. 
However, it may be difficult or impossible to 
back out previous analysis steps because the 
data base updates may be irreversible. The 
user's only option may be to restore an earlier 
version of the data set from a backup copy and 
repeat the previous sequence of operations to 
reconstruct a prior analysis environment. 

Two problems may occur when the user tries tQ. 
restart a previous analysis sequence: 1) The 
data set may be so large that it is very 
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time-consuming to re-establish the desired 
environment; and 2) the analyst may not 
remember or have access to the exact sequence 
of steps which were used to construct the 
former environment. 

In practice, the user normally maintains an 
abstract or high-level view of the manner in 
which a particular environment was created and 
the significance of that environment with 
respect to the overall analysis. Often 
information of this type is noted briefly on a 
sheet of paper and subsequently misplaced. If 
comments about the analysis process are 
included as part of the environment, they can 
be extremely useful to the analyst, 
particularly when returning to a data set after 
a period of time [Denning, et al 1983]. These 
analysis descriptions can provide documentation 
of the rationale for applying a particular 
operation to the data set. 

Another useful item of information is a 
description of the statistical model being used 
in the analysis. Same statistical packages 
allow the analyst to define the model directly 
to the system. For example, the GLIM 
(Generalised Linear Interactive Modelling) 
system [Baker and Nelder 1978] allows the 
analyst to define a model formula and then 
determines and performs the appropriate 
analysis steps without user intervention. 

In Slm1!llary, there is a need for tools. to 
maintain high-level descriPtions of data 
analysis environments for the user's 
convenience and to provide rapid restoration of 
previous environments. The discussion above 
has described many areas where facilities to 
manage, display, and control data analysis 
environments can be of significant help in 
performing an analYSis. Many of these problems 
are not serious for small data sets but become 
critical in terms of time and difficulty when 
the data set is la:rge. 

2.0 CXHE?TS AND SOF'lWARE NEEDS 
FOR DATA ANALYSIS EN\1IRCHmN1'S 

This section describes a new approach to data 
analysis based uJ;X>n the management and display 
of networks of data analysis environments. 
These concepts have evolved from work in data 
management and analYSis systems in the Analysis 
of Large Data Sets (ALDS) project at Pacific 
Northwest Laboratory (PNL) over the past four 
years. 

Data manipulation operatioris form a large part 
of interactive data analysis, especially during 
the early stages of preparing a data set for 
analysis, and also during the exploratory 
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phases of the analysis itself. The AIDS Data 
Editor (ADE) [Thomas, et al 1981], an 
interactive data editor and subset generator, 
was developed to provide some of these data 
manipulation capabilities. Experiences with ADE 
during its use to manipulate and to subset a 
number of large data sets at PNL led to the 
identification of some important 
characteristics of the data manipulation 
process for large data sets. One of these 
characteristics was the need to be able to 
fully control and verify the current status of 
the processing envirorunent. This is especially 
critical for large data sets because the 
consequences of an incorrectly specified 
operation or a processing error tend to grow 
exponentially with increasing size of the data 
set [Mllller 1970]. Full control xooans the 
analyst can interrupt any process at any time, 
determine the status, and decide whether to 
continue the process or abort it, saving 
partial results if appropriate. 

A second important characteristic of data 
manipulation is the significant number of 
conditions or envirorunental parameters that are 
often attached to a data manipulation operation 
or sequence of operations. For example, 
subsets of a data set are frequently defined by 
speCification of a logical (Boolean) condition 
for case selection, by a specification for 
random sampling, or both types of 
specifications. cases and variables for 
inclusion in the subset may also be explicitly 
specified. It was found to be important for the 
analyst to be able to specify and verify each 
of these conditions individually via 
clause-structured commands. It is also 
important for the analyst to be able to quickly 
and freely move from one subset to a previously 
defined subset or to move back to the full data 
set and have the associated conditions or 
envirorunental parameters automatically carried 
along. From these and other characteristics of 
the data manipulation process, the concept of 
temfOrary data manipulation envirorunents was 
conceived. The broader concept of data 
analysis envirorunents has been a natural 
outgrowth of these ideas. 

Another direct result of the development of and 
experimentation with ADE was the concept of 
"virtual subsets," It is usually impractical 
and often prohibitive to physically store 
subsets of a large data set if the subset is a 
significant fraction of the entire data set or 
if many subsets must be simultaneously 
maintained. A virtual subset is a definition 
of a subset1 this definition may be in terms of 
fOinters to the included cases and variables or 
in terms of a description of the selection 
conditions that define the subset. In ADE,the 
virtual subset is stored in lieu of physically 
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replicating the actual data values included in 
the subset. A physical subset is generated 
only UfOn explicit request by the user. The 
concept of virtual subsets led to the idea of 
storing data modification descriptions and 
virtual subset definitions in differential 
files to represent temfOrary versions of a 
large data set. 

The concepts of dynamic data manipulation 
envirorunents, virtual subsets, process control 
and verification, and user speCification of 
envirorunental conditions via clause-structured 
commands were embodied in an interaction model 
for manipulation of large data sets [Thomas 

.. 1982] • This model was developed to formally 
decompose and describe the interaction 
sequences between the analyst and the system 
during interactive exploration and data 
manipulation, and to provide a framework for 
the eValuation of the impact of large data sets 
on the design of interactive data analysis 
software. 

Current research at PNL is addressing several 
problems in the management and display of 
multiple data analYSis envirorunents for large 
data sets. We are developing and evaluating 
techniques to provide the user with control and 
flexibility to examine existing envirorunents, 
define new envirorunents, establish simultaneous 
parallel analysis activities in multiple 
envirorunents, and easily move the "interaction 
window" from one envirorunent to another. The 

. data manipulation/interaction model is being 
extended and refined to more fully model the 
data analysis process as a network of 
interrelated data analysiS envirorunents. The 
model will serve as a frame of reference for 
evaluating the effectiveness of the methodology 
and for comparing alternative techniques. 

TO accomplish the above objectives, we are 
conducting and integrating research efforts in 
three major areas: 

(1) the design and use of multiple 
differential files to store variations of 
a master data set in the form of data 
modification definitions and subset 
definitions, each differential file 
representing a different "virtUal data 
set" 

(2) the development of a data 
dictionary/directory system to maintain 
definitions of data analysis 
envirorunents. These definition would 
include logical (user-level) comIOOnts, 

. descriptions of associated statistical 
models, and access fOinters to a) 
differential files containing definitions 
of the physical state of the virtual data 



set associated with each environment, and 
b) journal files containing the sequence 
of analysis operations which produced 
each environment 

(3) the development and evaluation of 
graphic-based display and interaction 
techniques that would provide the analyst 
with a) a graphical representation of the 
currently active analysis environments 
and their interrelationships, and b) a 
convenient means of graphically 
selecting, monitoring, and controlling 
multiple data analysis environments. 

The following sections describe each research 
area in greater detail. 

2.1 DATA mDIFICATION DFSlUP1'IONS 

Frequently during a data analysis session, the 
analyst wishes to temporarily modify one or a 
few data values and repeat a series of analysis 
steps on the modified data set. For example, 
it may be necessary to ranove one· or more 
outliers or supply estimated values for missing 
data items. In fact, the analyst may want to 
generate several independent versions of the 
data set, each containing a different set of 
data modifications based on different 
criteria. Each version of the data set would 
represent part of a unique data analysis 
environment. statistical procedures could then 
be applied to each of the resultant data sets, 
with the option of returning to one or more of 
the modified data sets and performing 
additional analyses, redefining the procedures, 
or augmenting the modifications. 

It would not be desirable to directly store the 
temporarily modified values in the master data 
base, even if the original values were saved 
and could be restored later. If this were 
done, other concurrent users would have to be 
tanporarily denied access to the updated 
portion of the data set. An alternate approach 
would be to generate a local physical copy of 
the data base (or a subset thereof) for each 
set of tanporary modifications. With large 
data sets, however, it is generally inpractical 
or impossible to do this, especially if many 
subsets or modified versions of the data set 
must be maintained. 

For situations in which the modifications apply 
to a small fraction of the entire data . set; a 
better approach would be to store updated 
records and/or concise descriptions of the 
individual modifications separately from the 
data base in a modification file or 
"differential file" [severance and Lohman 
1976]. During a data base access, the 
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appropriate updated values from the 
differential file would be substituted for the 
corresponding original values stored in the 
main data base. This would in effect allow 
multiple users to maintain local modifiable 
copies of a data set without requiring 
redundant data storage. Interference among 
temporary updates by different users is also 
eliminated. 

The concept of using differential files to 
store updates to a data base is not new 
[Severance and Lohman 1976]. Historically, 
there have been two major uses of such files. 
One use has been to provide an effective way to 
inplanent backup and recovery in a data base 
environment [Aghili and Severance 1982; 
Verhofstad 1978; Batory and Gotlieb 1982]. The 
second application has been to save updates to 
a data base until all the updates can be 
applied at once in a batch mode (e.g., 
[Battelle Development Corporation 1981]). 

We are extending the differential file concept 
to the inplanentation of multiple versions of a 
large data set for multiple concurrent data 
analysis environments. 

The design of a differential file for data 
analysis applications involves selection from 
among several different logical 
representations. The most straightforward 
technique for storing a data modification is to 
sinply store each updated record in the 
differential file. This approach is often 
combined with a multiple hashing scheme, called 
a Bloom filter [Gremillion 1982], to help 
determine . whether the most recent version of a 
record is in the differential file or in the 
main data base, thus attanpting to avoid an 
exhaustive search of the differential file for 
each data base request. 

Another method of storing a data modification 
is to store a description of the modified 
record or variable rather than the complete set 
of values contained in the record or variable. 
For example, if only one field in a record were 
updated, one could sinply store the record 
identifier, the field identifier, and the 
updated value. The most concise form of data 
modification description is a symbolic vector, 
in which an entire variable is defined by a 
data transformation in the form of a stored set 
of computational rules (e.g., an equation) 
involving other variables in the data base. 
The concept of storing descriptions of data 
modifications is similar to the concept of 
virtual subsets (data base subset descriptions) 
as inplanented in the AIDS Data Editor [Thomas, 
et al 1981]. A modified data set or subset, as 
represented by data modification descriptions 
stored in a differential file, could be defined 
as a "virtual data set." 



In the course of research at PNL in the above 
issues, several specific questions are being 
addressed: What types of data and file 
structures are most effective for storing data 
modification descriptions for data analysis 
environments? How should a differential file 
be organized to facilitate efficient access to 
the virtual data set? How should permanent 
updates to the main data base be handled to 
avoid invalidating existing virtual data sets 
as stored in differential files? 

2.2 DATA DIC'l'IONARIFS/DIROC'IDRIES 
FOR DATA ANALYSIS ENIJIRCDlEN1'S 

Traditionally, data dictionaries have been used 
to store meta-data describing the various data 
bases implemented on a data base management 
system (DBMS), as an aid to the data base 
administrator [Curtice 1981; Martin 1977; Date 
1982], and more specifically, as an information 
resource for corporate data bases [Plagman and 
Altshuler 1972]. Data dictionaries may be 
combined with a data directory to form an 
integrated Data Dictionary/Directory (DD/D) 
which additionally provides information on the 
location and structure of data base 
components. This information is needed by the 
DBMS to access the required data. Thus a DOlO 
can be used to control access, to insure 
integrity, and to enforce security in a data 
base system. 

The data dictionary/directory concept has been 
used frequently in general scientific and 
business data base management systems, but has 
seldom been used in statistical data analysis 
systems. However, such -a capability is 
required for the development of an interactive 
data analysis system which allows the analyst 
to save multiple data analysis environments, 
examine the set of environments which are 
relevant to the current analysis, and 
arbitrarily select and restore a previous 
environment. such a system needs a mechanism 
to organize and manage information describing 
each of the data analysis environments and 
their relationships to one another. . 

We are developing a two-level Data 
Dictionary/Directory System (DD/DS) to manage 
multiple data analysis environments. The 
system includes a top-level DOlO to describe 
the original data base and the entire 
collection of data analysis environments 
(modified data sets and subsets, various 
parameters and options, models, analysis 
results, surmnary statistics, and COIlll'!el1ts) that 
have been derived from the Original data base. 
The top-level or master DOlO contains pointers 
to the locations of differential files 
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containing definitions of subsets and 
modifications; these files comprise the second 
level of the DO/DS. Each modification 
description file in turn contains a description 
of a modified data base state in terms of 
differences from the original or main data 
base. The master DO/D also contains high-level 
user-supplied descriptions of each environment 
and pointers to journal files containing the 
command sequences (operations) which produced a 
given environment from a previously referenced 
environment. In surmnary, the ID/DS serves as 
an information resource and data base access 
control mechanism for an entire analYSis of a 
large data set. 

The DO/D must be capable of storing textual 
comments supplied by the analyst to further 
describe the environment. Other factors such 
as information required to generate displays of 
data analysis environments (See Section 2.3) 
needs to be included in the Data 
Directory/Dictionary System. Research is being 
conducted to determine the best configuration, 
content, and organization of data 
dictionaries/directories to facilitate the 
management of data analysis environments. 

~velopment of a data dictionary/directory 
system to organize and manage multiple data 
analysis environments is an outgrowth of 
ongoing work at PNL in the development and 
evaluation of data dictionaries/directories for 
large self-describing transposed data bases 
[Burnett and Thomas 1982]. A preliminary data 
dictionary/directory system has been 
implemented and tested. The system is 
interfaced to the ALDS data management software 
and provides access control to data bases 
stored in multiple Self-Describing Binary (SOB) 
data files [Burnett 1981; Burnett and Thomas 
1982] • 

2.3 GRAPHICAL INrERFACES '10 
DATA ANALYSIS ENVIROlfo!Et1l' 

During the interactive, exploratory phases of 
data analysis, many analysis environments may 
be created. To be useful, each of these 
environments must be easily distinguishable and 
identifiable. Recently the need has been 
expressed for "automated cartography of 
exploration" in data analysis [Tukey 1982] 
(e.g., a roadmap showing where the analyst is 
and where he has been during the analysis 
process). We are developing and evaluating 
alternative methods of graphically representing 
information that describes a collection of 
related data analysis environments. The 
representation techniques must allow the 
analyst to easily visualize the relationships 
among multiple environments, to identify and 



select a specific environment, to obtain more 
detailed information about an environment, and 
to verify the manner in which a particular 
environment was created. 

sane research has been done in the area of 
graphical interfaces to data base systems. For 
example, a system called GUIDE [Woog and Kuo 
1982], developed at Lawrence Berkeley 
Laboratory, uses a graphical network 
representation of data elements and their 
relationships as a means of "guiding" the user 
in the formulation of a data base query. The 
higher-level relationships among a set of data 
analysis environments could also be represented 
using similar graphical techniques. A network 
graph can be used to depict a starting 
environment (often the original data base) and 
the environments that have subsequently been 
defined by the analyst. Each node of the graph 
represents an environment. The directed paths 
between nodes indicate the ancestor-descendant 
relationships among the various environments. 
Figure 1 illustrates one way in which a network 
of data analysis environments could be 
presented. 

Network structures, as presented to the analyst 
on a display device, cannot show a complete 
description of an individual analysis 
environment. The user must therefore be able to 
select an environment and request more detailed 
information on that environment. The detailed 
information could be represented graphically, 
as text, or as a combination of text and 
graphics. 

Color and geometry can be used to convey 
information about data analysis environments. 
Environments that arise from such operations as 
subsetting and transformations could be 
represented using different colors and shapes 
to discriminate among different classes of 
environments and operations. 

Several techniques have been developed in the 
areas of word processing and editing [Meyrowitz 
and Van Dam 1982; Lerner 1982] that can be 
applied to graphical representations of data 
analysis environments. Both the Xerox Star 
workstation [Xerox Corporation 1982] and 
Smalltalk [Ingalls 1978] use a screen that is 
capable of displaying a full page of a document 
plus a large menu area. The Star presents 
"graphical icons" that resemble the entity to 
which the user is referring. The user performs 
a task by using a "mouse" to move the cursor to 
the appropriate icon on the screen. For 
example, to save a file, the user moves the 
cursor to the file folder icon. To dispose of 
a file, the user moves the cursor to the trash 
can icon. 

28 

The Apollo Domain system [Apollo COmputer Inc. 
1982] is an example of a system which gives the 
user the ability to create "windows" on the 
display screen, move these windows around, and 
change their sizes. The display screen can be 
compared to a desk; the windows then become 
documents on the desk and the windows can 
overlap like pieces of paper on the desk. 
Multiple windows can be active at one time. 
The user can make the window of interest more 
prominent and still be able to see the other 
windows. 

There are disadvantages to using a conventional 
single-screen alphanumeric terminal to display 
data analysis environments. When the analyst 
brings up the graphical display of 
environments, the screen showing the latest 
data analysis activity is lost. Rather than 
using a single conventional terminal, some of 
the multiple windowing techniques described 
above can be applied, or more than one screen 
can be used. If two or more screens are used, 
one screen could depict the latest data 
analysis activity while another is used to 
display information . on the enviromnents. A 
third device could be used for data plots. A 
sample . three-screen configuration, shown in 
Figure 2, consists of an alphanumeric control 
terminal used by the analyst to interact with 
the system, a graphics device to display the 

·various data analysis enviromnents, and a 
high-resolution display device on which graphs 
of data sets are displayed. A split screen, 
such as the one that Star uses, could be used 
instead of two screens to display the latest 
activity and the envirorunents at the same 
time. Moving the windows around, as Apollo 
does, allows the analyst to concentrate his 
effort on the area of primary concern - either 
the analysis activity or the enviromnent - and 
to move easily from one to the other. 

The discussion above describes same ways in 
which data analysis environments can be 
presented to the user. Research is being 
performed to determine the best display 
techniques for graphically representing data 
analysis environments and allowing the analyst 
to interactively manage and control the data 
analysis process. TOpics being investigated 
include: What information is required to 
convey the essential characteristics of a data 
analysis environment to the analyst? How 
should this information be presented? How can 
window-based systems and conventional 
workstation configurations be used most 
effectively? 



3.0 roMMARY 

This paper has described a si.nple model of the 
data analysis process as a treelike structure 
of data analysis environments. The leaves of 
the tree represent different data analysis 
environments defined during the course of the 
analysis and the branches represent different 
analysis paths. The need for techniques to 
control, manage, and display these environments 
has led to research in the areas of (1) the 
storage of data modification descriptions in 
differential files, (2) the use of data 
dictionaries/directories to manage, describe, 
and control multiple data analysis 
environments, and (3) the application of 
graphical display and interaction techniques to 
the examination and selection of data analysis 
environments. 

4.0 REFEREtI:ES 

Aghili, H., and D. G. Severance. 1982 • "A 
Practical Guide to the Design of 
Differential Files for Recovery of On-Line 
Databases. " ACM Transactions .QIl Database 
Systems. Vol. 7 No.4, W. 540-565. 

Apollo Computer, Inc. 1982. &lQllQ System 
User's Guide. Release 4.0. Chelmsford, MA. 

Baker, R. J., and J. A. NeIder. 1978. k 
~ System Manual. Rothamsted Experimental 
Station, Harpenden, Herts, England. 

Batory, D. S., and C. C. Gotlieb. 1982. "A 
Unifying Model of Physical Databases." ACM 
Transactions 9D. Database Systems. Vol. 7 No. 
4, W. 509-539. 

Battelle Development Corporation. 1981. 
~ User's Guide. Columbus, Ohio. 

Becker, R. A., and J. M. Chambers. 1981. ~ = 
A. Language ,gng System .f2I. ~ AnalYsis. 
Bell Laboratories, Murray Hill, ID. 

Burnett, R. A. 1981. "A Self-Describing Data 
File Structure for Large Data Sets." In 
Conputer Science .Bn!1 Statistics: Proceedings 
.Qf ~.lltll s.wmsitun .Qll .tm Interface. W. 
359-362. Springer-Verlag, New York, NY. 

Burnett, R. A. , and J. J. Thomas. 1982. 
"Data Management Support for Statistical 
Data Editing and Subset Selection." In 
proceedings .Qf .tm ~ .Lma Workshop .QIl 
Statistical Database Management. W. 
88-102. Lawrence Berkeley Laboratory, 
Berkeley, CA. 

29 

Curtice,R. M. 1981. "Data Dictionaries: : An 
Assessment of CUrrent Practice and 
. Problems. " In proceedings .Qf .the Seventh 
. International Conference m ~ ~ .oru;g 
Bases. Cannes, France. 

Date, C. J. 1982. M Introduction j;,Q Database 
Systems. 3rd ed., Addison-Wesley, Reading, 
MA. 

~ing, D., W. Nicholson, G. Sande, and A. 
Shoshani. 1983. National Research Council 
~ ~ m statistical Database 

. Management. Washington, D.C. 

Digital Equipment Corporation. 1980. 
Datatrieye-ll Y2.....Q. .User's Guide. Maynard, 
MA. 

Gremillion, L. L. 1982.· "Designing a Bloom 
Filter for Differential File Access." 
Comnunications .Qf ..tbe. .A.ClL. Vol. 25 No.9, 
W. 600-604. 

Ingalls, D. H. H. 1978.. "The Srnalltalk-76 
Prograrraning System: Design and 
Impl~entation. " In Proceedings .Qf j:;bg 
Principles. .Qf Programming Languages 
s.wmsitun. 

Lerner, E. J. (ed.) 1982. "Prograrraning for 
Nonprogranuners. n ~ Spectrtun. Vol. 19 No. 
8. W. 34-38. 

Martin, J. 1977 • Conputer Data-base 
Organization. Prentice-Hall, 1977. 

Meyrowitz, N., and A. Van Dam. 1982. 
"Interactive Editing Systems: Part I and 
II." ACM Conwting SUrvfW? Vol. 14 No.3, 
pp. 321-415. 

Muller, M. E. 1970. nComputers as an 
Instrument for Data Analysis. " 
Technometrics. Vol. 12 No.2, W. 259-293. 

Plagman, B. K., and G. P. Altshuler. 1972. 
nA Data Dictionary/Directory System within 
the Context of an Integrated Corporate Data 
Base. " In ~ Conference Proceedings: 
f.Qll Jlo.int. Conputer Conference. Vol. 41 , 
Part II, pp. 1133-1140. AFIPS Press, 
Montvale, ID. 

Ryan, T. A., B. L. Joiner, and B. F. Ryan. 
1981. MINITAB Reference Manual. Duxrury 
Press, Boston, MA. 



Severance, D. G., and G. M. Lohman. 1976~ 
"Differential Files: Their Application to 
the Maintenance of Large Databases. " Aa1 
Transactions .Qll PatabaseS,Ystems. Vol. 1 No. 
3, W. 256-267. 

Thomas, J. J. , R. A. Burnett, and J. R. 
Lewis. 1981. . "Data Editing On Large Data 
Sets." In Computer Science and Statistics: 
Proceedings .Qf ~ .l31.b QyDmsiwn .QJl ~ 
Interface. W. 252-258. Springer-verlag, 
New York, NY. 

Thomas, J. J. 1982. "A User Interaction 
Model for Manipulation of Large Data sets," 
In Conputer Science .smQ Statistics: 
Proceedings.Qf ~ .l4.th Syrrmsium QJl ~ 
Interface, Troy, NY. 

'l\1key, J. W. 1982. "Another Look at the 
Future. II In COmputer Science .mld 
statistics: Proceedings.Qf ~ lltb 
Syrrmsiwn .QIl ~ Interface. Troy, NY. 

Verhofstad, J. S. M. 1978. "Recovery 
Techniques for Database Systems." Aa1 
COmputing SUry~r Vol. 10 No. 2, W. 
167-195 •. 

Wong, H. K. T., and I. Kuo. 1982. "GUIDE: 
Graphical User Interface for Database 
Exploration. " In Proceedings .Qf ~ Eighth 
International Conference .Qll ~ LiWm. l6l.tg 
~ Mexico City, Mexico, W. 22-32. 

Xerox Corporation. 1982. amo. ~ 
Information ~stem Reference Guide. Dallas, 
TX. 

30 



ENVIRONMENT B 

SUBSET #1 
OFA 

ENVIRONMENT F 

SUBSET 
OF B 

ENVIRONMENT A 

ORIGINAL DATA 
SET 

ENVIRONMENT C 

SUBSET #2 
OFA 

ENVIRONMENT D 

TRANSFORMATION 
OFA 

ENVIRONMENT E 

REGRESSION 
RESULTS 

ENVIRONMENT G 

ANALYSIS RESULTS 

ENVIRONMENT H 

COMBINATION OF 
D AND E 

Fi gure 1. A Graphi ca 1 Representati on of Data Ana lys is Envi ronments 

DISPLAY OF DATA 
ANALYSIS ENVIRONMENTS 

ALPHANUMERIC 
CONTROL TERMINAL 

Figure 2. A Three-screen Configuration for Data Analysis 

31 

---
HIGH-RESOLUTION 

DATA DISPLAY 



MODEL FOR A CLINICAL RESEARCH DATABASE 

Anne Ipsen Goldman, Ph.D. 

Associate Professor, Biometry Division, University of 

Minnesota, Minneapolis, MN 55455 

Abstract 

A model for the organization of.a clinical research database is described. The model is based mainly 

on the Minnesota Bone Marrow Transplant and the Leukemia-Lymphoma Databases which are characterized 

by patient data with non-rectangular format, prospectively collected as patients are followed. The 

SIR data management system is used because of its flexibility and the ease with which statistical 

analysis files can be created. A main focus of the file organization is an emphasis on events rather 

than lab values as endpoints. Records for patients, event labels, and protocol are separate case 

types and linked together during retrieval. 

1. INTRODUCTION 

Researchers in clinical medicine are finding 

that a professionally designed and managed 

database can be a crucial component in the 

effective conduct of their research, particu

larly of chronic disease. These databases 

have a complex structure of data collected 

from many sources as patients enter the pro

ject over time and are followed during the 

course of their disease. The principal pur

pose is to provide data for statistical anal

ysis of research concerning patient care. 

Patient care may also be aided indirectly by 

providing information for clinical management, 

for scheduling of clinic visits, and for ac

counting purposes; but those activities are 

ancillary and not the raison d'~tre of the 

database. 

The organization of the database and the admin

istrative structure that supports it depends on 

the type of clinical research being conducted. 

The main types of research organization are: 

cooperative clinical trial, cooperative study 

group, comprehensive cancer center, research 

group, registry, single instution-sing1e trial. 

The associated databases differ mainly in com

plexity because of the number of clinical cen

ters involved, the types of patients enrolled, 

and the amount and sources of the data to be 

collected. It is worthwhile to give some 

examples and characterize some of the differ-

ences. 

Examples of the largest Cooperative Clinical 
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Trials are the recently concluded cardiovascular 

trials (MRFIT [1] and HDFP [2]) • These had 

10.to 20,000 participants, followed at over 20 

clinics for a period of 5 to 7 years, but all 

participants were enrolled in one protocol. The 

data were centrally managed and analyzed by a 

coordinating center. Although the database for 

such a trial may contain a vast amount of complex 

data, the primary purpose may be the estimation 

and testing of treatment group differences for a 

single parameter. In addition, however, ancillary 

studies may be added to the main protocol and many 

analyses of subgroups carried out. 

Cooperative Study Group. The Veterans Administra

tion has a long history and a well deserved repu

tation for conducting excellent cooperative stud

ies [3J. They are also common in cancer research 

(e.g., the groups knoWn as ECOG, CCSG, CALGB). 

These have many cooperating clinical centers, each 

submitting data for a few patients (typically less 

than 50), enrolled in one of a changing variety of 

randomized trials for different cancer diagnoses. 

Each trial may have only 100-200 patients followed 

for 1 to 3 years. Again, a central statistical 

center manages and analyzes the data. 

This work was partially supported by the National 

Cancer Institute Grant P01-CA21737 and by the 

Coleman Leukemia Research Fund. 



The National Cancer Institute has designated 

and supports Comprehensive Cancer Centers. 

They are similar to the previous but are loca

ted at a single institution. There are still 

many protocols, but not all are randomized 

trials; the patients have different types of 

cancer, but all are treated at one large re

ferral hospital. The statistical activities 

are carried out by an "Epi-Stat" unit which 

may create one or more statistical databases. 

Research Groups exist at single institutions, 

and specialize in a single disease (e.g., 

Leukemia, Diabetes) or treatment mode (radia

tion therapy, bone marrow transplantation). 

The investigators of such a team may represent 

a broad spectrum of disciplines and research in

terests such as chromosome abnormalities, graft 

rejection, infections, immune function, chemo

therapy, etc. If their data management and sta

tistical needs are extensive, they may have a 

statistical support unit which creates and uses 

one or more databases for analysis. 

Data from patients with a particular disease may 

be placed on a Registry. Examples are the In

ternational Bone Marrow Registry and the SEER 

Cancer Reigstry [4, 5, 6~. These databases 

contain all the patients with a particular 

disease (e.g., breast cancer) or group of di

seases (e.g., any cancer), from one or more 

institutions or geographical area. The data 

collected includes demographics and details 

of diagnosis but information on treatment and 

follow-up may be lacking. The usual purpose 

of the database may be to estimate incidence of 

disease and factors associated with differences. 

Oniy well managed registries can provide ade

quate data for such purposes. In keeping with 

this purpose the number of variables may be 

more limited and the database organization 

simpler than for the previous types. 

When a s1ng1e trial is conducted at a single 

institution, a complex database may not be 

needed. The quality of the research is, how-
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ever, improved if the data are prospectively 

collected, especially if a number of patients 

are to be followed over a period of time or 

the patient records and the protocol are complex. 

Although the different types of clinical research 

described above vary in the types and complexity 

of their databases, they have many features in 

common. The data deal with individual patients 

rather than aggregates. The records within a 

case are arranged in ru1hierarchy or tree-structure 

which may be cross-linked in a network. The data 

are ideally collected prospectively, hence the 

database continuously changes over time as new 

patients are enrolled and current patients fol

lowed. Because statistical analysis requ~s a 

static database, subsets of the data are periodi

cally retrieved from the parent database to create 

statistical databases for analysis of individual 

research projects. This paper describes a model 

for the administration and organization of clinical 

research databases. The model has evolved over 

time and is particularly suited for working with a 

research group as characterized above. It is pri

marily based on two University of Minnesota data

bases: the Bone Marrow Transplant Database and the 

Leukemia-Lymphoma Database. There has also been 

experience with databases from several other pro

jects starting with the VA-NHLBI Mild Hypertension 

Study [7] (a cooperative trial 1974-76), and two 

still-ongoing projects in Testis Cancer [7]and 
Breast Cancer. 

2. THE PATIENT DATA 

The Bone Marrow Transplant database currently has 

350 patients registered with 90-120 to be added 

each year. The Leukemia-Lymphoma database has 

1100 patients with 120 new cases expected yearly. 

Patients are registered on the database on ad

mission. Demographic data, details of the diagno

sis, history and past treatment are part of the 

baseline information collected. Results of spec

ial laboratory studies, such as hematology, genetic 

match for transplantation, cell markers, pathology 

reports, and chromosome studies, are also collected 



according to the needs of special studies. 

During hospitalization and subsequent fo110wup 

at clinic visits, details on chemo-therapy and 

other treatment, occurrences and dates of re

sponse, side-effects, infections, recurrenCe 

of disease, and death are recorded as they 

happen. The patient may be entered on' one or 

more research protocols, some of which involve 

randomization to one of several study arms. 

The details are recorded on a special proto

col record which can be protected with special 

passwords to mask double-blind randomization 

codes. Throughout the fo110wup period, any 

special or repeated 1abo,ratory or other data 

specified by protocols are also recorded. 

Whenever possible, the data are, collected and 

coded soon after the event happens. Although 

the hospital chart is used as a guide, it is 

seldom explicit nor complete enough 'for re

search purposes. Additional data and error 

corrections are extracted from conferences 

with attending physicians and nurses while 

the events are still fresh in their minds. 

3. DATABASE STRUCTURE AND MANAGEMENT 

There are two features of the data which 

necessitate the use of a database structure 

rather than an ordinary computer file for 

storing the data: the non-rectangular for

mat of the file schema and the prospective 

nature of the data collection process. The 

schem a is case oriented, where the primary 

case type consists of the data for a patient, 

organized as an hierarchy of records collected 

in a tree structure. There are many differ

ent record types corresponding to registration, 

lab., pathology, chromosome, treatment, event 

records, etc. Since many records of the same 

type can best be described with a non-rectangu

lar schema.' The data are prospectively col

lected and continuously updated and upgraded 

as the patient is followed. It is' therefore 

necessary to be able to add data and new 

patients in a routine manner. Neither of 
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these activities are within the scope of a simple 

data file. Some of the record types are very 

long, especially the complex laboratory reports, 

containing several sort keys to order the reports 

by date, sample n~ber, subsamp1e, procedure, 

etc. Some record types are very brief, containing 

only a date of onset, an event code, and possibly 

a date of resolution. 

Creation and maintenance of the database is 

carried out using the SIR (Scientific Information 

Retrieval) system. This system has several fea

tures which are extremely important to our type 

of databases: (1) ease of scheme modification, 

(2) analysis software interface, (3) archiving of 

files, and (4) networking of case types. The 

creative use of these capabilities is the hallmark 

of our databases and has made possible cost and 

efficiencies as well as extensive quality control 

of the data. 

a. Ease of schema modification. In a long-term 

project involving many researchers and many pro

tocols, it is inevitable that frequent changes 

have to be made in the database structure. The 

Bone Marrow Transpiant Database started out with 

very limited goals of recording a little informa

tion about the 50 or so patients a year being 

transplanted. By starting small, we quickly had 

a working, usable system. It has seen major 

growth and several extensive overhauls over the 

last three years as the usefulness of the data

base became realized. Record types have been 

added, others removed; labels for new codes are 

added as needed, and the whole file has been re

structured several times. 

b. Analysis software interface. Many reports 

are produced directly by SIR, especially for 

quality assurance, data management, patient sum

maries, and general administrative purposes. SIR 

is, however, not designed for statistical analysis 

but does have the capability of easily retrieving 

cases and records according to specifications of 

the user. These retrieval files can be stored 

as system files directly readable by SPSS, BMDP 



or SAS statistical packages or even IMSL and 

other FORTRAN language programs. Variable 

names and labels from the SIR file automatically 

become part of these retrieval files. As 

pointed out at the beginning of the paper 

the main purpose of the database is statis-

tical analysis of research projects. For 

preliminary examination of parts of the 

database, a temporary retrieval file is crea-

ted and analyzed. Final analysis of a pro-

tocol is usually a process which extends 

over a period of time, while the database is 

continuously changing. Analysis must be per

formed on an unchanging, stable file. Conse

quently, at the close of a protcol or other 

research project, a separate file is created con

taining only those patients and variables 

specified in the protocol fo r analysis. After 

the report is finished, that file and some of 

the special procedures which were used for its 

analysis are stored on a magnetic tape. This 

file then provides permanent documentation 

for the protocol report and is available if 

a manusript needs to be revised, sometimes many 

months after the file was created. The com

plex main database is thus the parent of a ser

ies of static statistical databases used for 

analysis. 

c. Archiving of files. Another feature of SIR 

is that the whole database, including its as

sociated procedure file can be readily archived, 

stored on tape, and brought back to disk. For 

smaller or less active databases, such as the 

Testis Cancer llitabase, there is no point in 

paying for disk storage of the database during 

periods when it will not be accessed. An 

automatic archiving procedure has been de

signed for use by an oncology nurse with 

only on-the-job computer training. She brings 

up the file when needed for analysis or data 

input, and the project assistant periodically 

archives any changed files and clears the 

disk. Similarly, the cost of keeping a large 

database constantly on-line can be consider-
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able. If only part of the file is active during 

a work week, it is possible to keep such a sub

file on the disk, while the rest is archived until 

needed. The cost effectiveness or archiving de

pends not only on the structure and usage of the 

database, but also on the charging algorithm of 

the computer center. A check on this algorithm 

can sometimes reveal unsuspected ways of saving 

on storage costs. 

d. Networking. The Bone Marrow Database has 3 

different kinds of cases. The central type is 

obviously that containing the records of a 

patient. There are, however, two other types 

which can be linked during retrieval: the proto

col case and the event label case. We have 37 

protocols of which 21 are active at the moment. 

Some of these are simple treatment protocols, 

describing treatment for a single rare disease 

with only one or two patients enrolled. Most 

protocols are for research to study transplant 

preparatory regimen, prevention of infection, 

graft-versus-host disease, or maintenance chemo

therapy. A single patient may be enrolled on 

several protocols and every patient is enrolled 

on at least one. Just keeping track of the 

information concerning the protocols, which 

patients are enrolled and to which arm they have 

been randomized is a non-trivial data management 

problem. In addition, it is necessary to monitor 

that eligible patients are enrolled, that the 

rate of accrual is as projected by the sample 

size estimation, and that special data needed 

for the study are being collected. By having a 

case type which describes protocols, there is a 

two-fold gain: the protocols become easier to 

administer and when the time comes to analyze, 

a link between the protocol case and the enrolled 

patient cases is automatic. 

The third type of case is really a file of labels. 

When the database was first designed, most labora

tory reports in the patient's chart and many 
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clinical signs, such as daily maximum temperature, 

were coded and stored. Two problems with this 



approach were quickly discovered: The amount 

of storage required was prohibitive, and most 

of the information was useful only for daily 

patient management, but was not in usable form 

for research purposes. Statistical analysis 

is usually of outcome variables, such as 'time 

to death, contributing causes of death, time 

to recurrence, occurrence of infection, graft

versus-host disease, and other complications. 

These outcome variables need to be carefully 

defined in the research protocol and uniformly 

coded on the database as they occur. It is, 

often not possible to reconstruct an event af

ter the fact based on recorded signs and 

symptoms. We therefore created an event record 

for these outcomes. The temperature is not 

important, but the onset of significant fever 

may signal the start of an infection; the 

event fever, date of onset and of resolution 

is coded. The white blood count is not in

teresting, pe,r se; reaching a certain level 

post transplant implies successful engraftment 

of the marrow; engraftment is coded with the 

date. 

Each event is coded using the SNOMED (Syste

matized Nomenclat~re of Medicine) standard 

coding system. The label for each event code 

was initially stored on the SIR file con

taining variable lables, but each time a new 

type of event was encountered and'coded, the 

whole database had to be restructured. It 

is much more efficient to store these event 

labels and codes as separate records of a 

label-case. Those retrievals requiring 

events'to have English labels can be run' with 

a link between the patient's event record 

and the correct record from the label-case. 

4. ADMINISTRATION OF THE DATABASE ACTIVITY 

By "administration" is meant the coordination 

of the people and computer activities, not 

just the management of the data. The clini

cal management of bone marrow transplant 

patients requires a large varied medical 

36 

staff all contributing tO,the patient's chart. 

"The number of researchers is also large. Conse

quently, coordination of effort, provided by the 

database committee, is crucial. Some of the pro

cedures instituted by this committee have had 

important consequences and are worth mentioning. 

Whereas the ability to link event codes and their 

labels is a convenience, the reorientation of the 

database to an emphasis on events rather than symp

toms has had important scientific implications. 

The concept is quite simple and it is easy to 

underestimate the improvement in the power of the 

database. Much close interaction with the clini

cal staff has been required to specify which 

events should be coded, how they are defined, when 

a patient had a problem, and when it was resolved. 

A standardized code for graft-versus~host disease 

and its"severity has been developed with the re

sult that all such events, are uniformly coded 

throughout the database. Such standardization 

imposes more control over the work of individual 

investigators, but the overall effect is a marked 

improvement in quality and consistenty and little 

restriction on innovation. It has also become 

necessary to insist that the description of each 

protocol must specify, at the time it is initiated, 

which endpoints are to be analyzed and what events 

are of interest, and if any non-routine variables 

are to be coded onto the database. These are, of 

course, basic sound scientific principles which 

are not, however, always followed. 

Because events are coded by a medical records tech

nician from incomplete charts, the quality control 

process involves the attending physicians. Bi

weekly complication conferences are held to review 

all records of all patients in hospital or recently 

seen in clinic. These conferences, which were in

stituted for the sake of the database, have proven 

so valuable in improving patient care that the 

original motivation has been forgotten by the clin

ical staff and they are viewed simply as good 

clinical practice. Thus, the accumulating records 

on a case undergo period review scheduled by the 



computer. The primary responsibility for as

suring quality of the data rests on the shoul

ders of the physician most familiar with the 

case. 

The database committee also reviews each pro

tocol before it is approved for patient enroll

ment. Details of data to be recorded, varia

bles, times and methods of statistical analysis 

must be specified. These must be reviewed to 

see what impact the new protocol will have on 

the workload of the small data center. If 

endpoints are specified which are not part of 

the ro~tine, the principal investigator of the 

protocol may be asked to participate in their 

collection and quality assurance. A final re

view of the scientific and ethical merits of 

the research and a comparison with other com

peting protocols is also carried out. Only a 

limited number of patients can be transplanted 

and priorities must be set to optimize their 

contribution to research. Again, fortunately, 

the investigators view this process as neces

sary for improving the overall quality of the 

group's research effort, rather than interfer

ence with individual creativity. 

The database is periodically monitored for 

signs of serious trouble which might necessi

tate the early closing of a protocol. There 

are three main reasons why a study might be 

stopped early: 1. low accrual. 2. high 

incidence of severe side-effects. 3. the 

early occurrence of a statistically signifi

cant difference between treatment groups. 

These stopping rules are carefully formulated 

and monitored by the database committee to 

protect both against panic and undue optimism 

by the research group. 

5. CONCLUSION 

Modern medical research often requires te~ 

effort, especially in the investigation of com

plex diseases. The integration of a compu

terized database into the research process can 
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be of great help in increasing efficiency and 

scientific quality. An example has been given 

of the design, management, and analysis of such 

a database serving a research group within a 

single institution. It has many similarities 

with other clinical research databases being 

intermediate in complexity in the spectrum of 

the types described in the introduction to this 

paper. Each situation is unique, but I have 

summarized the approaches and procedures which 

have been found useful at the University of 

Minnesota in order to model the design of such 

databases. 
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Abstract 

This paper traces the inception of a databas~ reorganization 

project that got its stimulus from a research question. When 

asked to look into what constitutes an oveiburdened court in 

terms of per judge case1oad, researchers at t~e Federal Judicial 

Center developed a research design calling for relatively 

sophisticated time series and survival analyses involving large 

amounts of data over a ten year period. 

Though the necessary data were available from the administative 

agency which prepares annual statistical reports for the federal 

court system, they were not organized in a way to permit the case 

tracking analyses called for by the research design. 

As a result, the Center is now in the process of developing a 

research oriented database which will integrate pertinent federal 

court case data from 1970 through 1982 and be updated as new 

information becomes available. 
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What follows describes how the statistical methodology devised 

for a particular research project can stimulate the 

reorganization of an administrative database. The story also 

contains a warning to other researchers concerning the data 

requirements of currently popular statistical techniques such as 

time series and survival analysis. We present this from the 

point of view of 'users' who must work with large amounts of data 

that were collected for purposes largely unrelated to research 

needs. 

The Research Question 

Tucked away in the judicial branch of the federal government is 

the Federal Judicial Center, the small agency for which I work. 

The Center's statutory responsibilities include research, 

training, and systems development for the federal courts, with an 

emphasis on court management. 

One type of research question that the Center addresses concerns 

the number of cases that a judge can effectively handle. 

Judicial cas~loads that ex~eed the judges' capacity can lead to 

unreasonable delay and other deteriorations in the quality of 

justice. To avoid these deleterious consequences, there needs to 

be a good estimate of what this capacity is in order to provide 

the system with an adequate number of judges. 

The magic number of 400 cases filed per judge per year is 

currently used as a standard capacity threshold in the federai 

district courts. There has been some dissatisfaction, however, 

with using this figure to recommend and allocate new district 

judgeships. Additionally, there is no accepted capacity limit 

for the appellate courts. Therefore, the Center was asked to 

explore further the relationship between workload and court 

burden. 
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The Research Design 

There are a number of ~roblemsin assessing "how many cases a 

judge can judge". First, ther~ ~il1 obviously be variation among 

judges. Second, there will be 'variation depending on the type of 

case involved because some are inherenily mor~ demanding than 

others. Additionally, it is unlikely that a single number can 

adequately identify the point at which a district is overburdened 

with cases. The impact of 400 filings per judge in one year will 

surely depend on the history of case filings in the particular 

district. There also seems to be a barn door problem with using 

the current state of affairs to recommend new judgeships to be 

filled in the future. 

We have therefore (in typical researcher fashion) rephrased the 

task to be that of investigating how many cases ofa particular 

type, and under what circumstances, an average judge can handle 

without experiencing overburden (defined initially for our 

purposes as delay). The general approach was to examine 

the distribution of case-processing times to see if we could 

identify historical patterns of filing, termination and pending 

caseloads that lead to delay. 

Determining the time from the fllirtg to the disp6sition of a case 

is a straightforward task. The real question of interest, 

however, is how much of that time constitutes 'delay'. The time 

required by judges and attorneys for case preparation and 

deliberation is not 'delay'. Only that portion of processing 

time that exceeds the necessary lifespan of a particular case 

should be considered. 

Though these lifespans for individual cases are unmeasurable, 

"typical" lifespans for p~rticular types of cas~s can' be 

estimated by their average disposition time over a range of 

courts and years. Using this 'as a base,courtswhich are 
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experiencing delay can be identified and their caseload history 

examined for clues to the causes of the current problem. This 

information should assist in developing warning signals 

indicating that a court could be headed for "backlog" trouble; 

cue when and where new judgeships or other court personnel slots 

should be created; and allow investigation of the management 

techniques of those courts that seem best able to avoid backlog 

difficulty. 

The Statistical Requirements 

The following steps were planned to accomplish the major 

objectives of the task outlined above. 

1. Our research question includes the phrase "particular types 

of cases". Unfortunately, the existing data system identifies 

over 200 types of civil cases and approximately 250 different 

criminal cases. Our first task is to develop useful case 

typologies that reduce this to a manageable number for which 

lifespans are to be calculated. Using a construction sample, we 

intend to use both (1) comparisons of survival distributions to 

tell us whether the survival curves of particular casetypes are 

similar or dissimilar and (2) cluster analysis to group casetypes 

that are similar as to particular case processing attributes. 

The reliability of cluster assignment will be assessed by 

discriminant analysis using a number of validation samples. 

2. Calculate the 'typical' lifespans for the identified 

casetypes, using ten years' worth of national case filing and 

termination information. 

3. Using comparisons of survival distributions, compare the 

individual courts against the national norms to identify courts 

that have experienced delay or evidence unusual case processing 

patterns. 
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4. Examine the caseload history for these courts using time 

series analysis, and display trends with three-dimensional 

plotting programs to assist in the explanation of the results. 

The Data Problem 

You will notice that these are so far only plans, not 

accomplishments. There is a good reason for this. The project 

has experienced delay of its own because the data we need, though 

available, are not structured in a way that fits the statistical 

analyses we plan to undertake. 

For both the survival and time series analyses, we need followup 

information on all (or a sample of) cases filed during particular 

time frames. The data we need is spread over more than 30 

separate data tapes. We are faced with a classic example of 

rearranging data collected for administrative purposes to fit 

research needs. The size of the problem is considerable, 

involving over one million records. 

The Administrative Office of the U.S. Courts is, as its name 

implies, the administrative arm of the federal court system. Its 

Statistical Analysis and Reports Division maintains all of the 

data needed to address our basic project goals including 

information on case type, district, and date of filing and 

termination for each case filed in the federal courts. The 

data are collected for the primary purpose of preparing annual 

statistical reports. 

The data collection process is based on forms completed by court 

personnel. When a case is filed, an 'opening' form is filled out 

by a clerk in one of the 95 district courts and 12 courts of 

appeals in the federal judiciary. A 'closing' form is submitted 

and matched with the 'filing' form upon case termination. The 
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Administrative Office has a tape for each "statistical year" 

(running from July 1 to June 30) that includes opening 

information for all cases filed during the year. They also have 

separate tapes which contai~ both filing and termination 

information for all cases terminated during a particular year. 

Up to 1980, still another set of tapes were compiled to indicate 

which cases were still pending (filed but not yet resolved) at 

the end of each statistical year. 

This database organization is satisfactory for yearly reports. 

It does not, however, allow for tracking of filing cohorts (all 

cases filed during a particular period) over time. Suppose we 

want to compare survival times for different types of cases filed 

in, say, 1973. We need information from ail of the termination 

tapes from 1973 onward, and the pending tape for the last year of 

the followup period. Only then can we have complete information, 

because every case filed in 1973 has either been since terminated 

or is still pending as of last count. 

To select all of the pertinent data from as many as 10 data tapes 

for each of the various analyses we have planned would be a major 

undertaking. There are over 100,000 records on each tape. The 

available variables, acceptable codes, and tape layouts have 

changed over the time period in which we are interested. We need 

a database which integrates the pertinent information. 

Preparing the Data 

The allure of an integrated database containing the detailed time 

information from the Administrative Office is irresistible given 

the data disaggregatio~ fle~ibility then available for various 

time seri~s and survival analyses. We are taking the followihg 

steps under contract to this end: 
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1. Document the changes in tape layout, variable definition and 

acceptable codes for the years from '70 through '82. 

2. Verify the information in the tapes themselves, flagging 

consistency check failures (e.g., a case can not be 

terminated before it ~as filed) and out-of-range values. 

3. Select the variables to be kept and decide on a master format 

for the data. 

4. Design a system for entry and storage of the d~ta. 

5. Update the system annually as new data become available. 

Researchers are fairly good at telling databas~ system de~igners 

their needs., We want a system that in.teg,rates existing data and 

incorporates future data in such a way that it can be e~sily 

accessed and·fits th~ requirements of the software packages we 

know and love.-

On the other hand, we 'users' are not really sure how much is 

possible at what investment of time and resources. For example, 

we learned through Step 1 of our data reorganizaticin project that 

shaping the data takes· time. Documentation of the changes made 

to an administrative ~ata system over a ten year period is in 

itself an exacting and time-consuming task. Any ideas from those 

of you in the area of database design that can help us as we back 

our way into a more sophisticated database would be appreciated. 
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Abstract 

This report identifies research topics in statistical data
base management. These topics are grouped into four 
major areas: characteristics of statistical databases, 
functionality jusage, metadata, and logical niodels. 

1. Statistical Databases Otaracteristics 

Computer scientists, especially designers of database sys
tems, commonly ask statisticians and data analysts to 
identify the characteristics or features of a database that 
identify it as a statistical database. Searching for a pro
found answer to this question has perplexed data 
analysts. Many conclude that there are no characteristics 
which uniquely identify a statistical database. In princi
ple, any collection of quantitative information residing in 
a computer is a candidate statistical database. As soon 
as the body of information is interrogated and statisti
cally analyzed, either in total or by sampling or subset
ting, it becomes a statistical database. 

There are, however, important characteristics that should 
be built into a database if it is going to be useful for sta
tistical analysis. These characteristics involve adequate 
description of the quantitative information in the data
base (i.e., the inclusion of appropriate metadata as 
defined in Section 3 below.). Such 'description is essen
tial to understanding inferences evolving from data 
analysis. Certain kinds of description or definition are 
almost always included in the database because it is well 
known that the particular description is critical to under
standing the data. On the other hand, certain other 
information is almost never included even though a 
detailed analysis will uncover subtleties that are corre
lated with such description and often cannot be modeled 
without it. A simple example will serve to illustrate the 
point. In a database of hospital records, the subject is 
always described as male or female. This description is 
important for prognosis and treatment. Periodic readings 
of blood pressure are also included in the database. On 
the other hand, the conditions under which the blood 

46 

pressure was taken -- patient lying· down, standing up, 
sitting; recording made on the left or right arm -- are 
almost never included. If the protocol dictates taking the 
blood pressure on the left arm with the patient lying 
down, then that information should be included in the 
database. If there is a variety of conditions, then each 
blood-pressure reading should be accompanied with a 
descriptor. When does such detailed information become 
important? When blood pressure is correlated with treat
ment protocol, we wish to minimize the random error in 
the measurements. Clearly if systematic changes in read
ings can be associated with the position of the patient or 
the arm on which the reading was made, then that ran
dom variability is reduced and a more precise statement 
can be made about the effect of a specified treatment. 

There are distinct types of quantitative data that may be 
recorded in the database. For each type, there are gen
eral conditions which should be met if the information is 
to be described adequately for detailed statistical 
analysis. 

1.1. Missing Data 

Almost every statistical database has incomplete records. 
Proper statistical treatment of missing data usually 
depends on the reason for the missing data. For exam
ple, in a seismology file listing individual station 
seismometer magnitudes associated with particular earth
quakes, values missing because a station was not opera
tional should be ignored in an estimate of earthquake 
magnitude. On the other hand, values missing because 
the signal was either below the seismometer threshold or 
beyond the seismometer range and off scale, bound the 
magnitude of the earthquake and should be utilized in an 
estimate of earthquake magnitude. 

As in the seismometer example, there are several possible 
reasons for a missing value. A set of tags to identify the 
particular type of missing value should be included in 
the file. In the seismology example, the tags would at 
least include "non-operational," "below threshold," and 
"offscale. " 

In some situations, such as with questionnaires, the logi
cal structure may influence the interpretation of a miss
ing value; e.g., whereas for males it is not important 



whether a question on the number of pregnancies is 
answered, for females, it is critical to distinguish 
between a nonresponse and zero. 

Most database management systems identify missing 
values but lack proper tagging capability. Research is 
needed to improve missing value treatment, and, in par
ticular, to include sufficient information in retrievals so 
that missing values (either included or excluded) can be 
properly handled during data analysis. 

1.2. Data Quality 

Knowing the quality of data is important for statistical 
analysis. For example, if data are keyed into a file from 
a remote terminal, how frequently are typographical 
errors made? Are the data cross checked before being 
accepted? If data come from a measurement instrument, 
what is the resolution of that instrument? What is the 
reproducibility of independent measurements on that 
instrument? Has that instrument undergone modification 
during the time that the total set of data was collected? 
Or further, is that instrument recalibrated every day 
prior to data collection? These are all important ques
tions; their answers may well influence the way the data 
are handled in any statistical evaluation. The file should 
include such data quality information. If the quality is 
uniform over the entire file, this information can be 
included in the file descriptor; if it varies in a haphazard 
fashion, it may be necessary to attach it to each datum. 

Further considerations with respect to data quality 
involve the frequency of spurious measurements through 
either a breakdown in the data-generating system or the 
introduction of a rare physical phenomenon which grossly 
changes the measurement process. For example, in a 
chemical analysis for trace constituents a contaminant in" 
the apparatus could cause major variation in the meas
urement. Here explanatory flags should accompany the 
data corroborating the presence of a contaminant or sug
gesting the possibility of a contaminant. 

Finally, when data are collected over a period of time, 
there may be changes in the data-collection process; e.g., 
in the method of reporting, measuring, validating, or 
summarizing. To sort out such effects, a time stamp 
should be associated with each datum giving the time 
when the data were generated, and the time of the partic
ular file update when the data were included. 

In many situations it is useful to have a "degree of 
believability" associated with data. For example, 
economic data on developing countries may be obtained 
by estimates. Using such data for economic forecasts or 
evaluation should take into account the believability of 
the data. Another source of imprecise data is introduced 
by imputation. Imputed data values should be marked as 
such and not interpreted as reliable data. 

Current database management systems do not havefacili
ties for keeping track of data" quality. Research is 
needed to find economical ways of storing information 
about data quality, and to find ways of passing this infor-
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mation to the data analyst. 

1.3. Data Sparseness 

In many data sets, there are structured patterns of miss
ing data. This is particularly the case for ~esigned 
experiments where the "design" is an optimum sparse 
coverage of the independent variable levels. Here the 
structure allows encoding which could materially reduce 
database storage requirements. 

To reduce storage requirements, designers of databases 
often change the logical structure of the data. For exam
ple, a file may be partitioned into multiple segments, or 
data values (e.g., year) included with a data element 
name. This practice can obscure the meaning of the data 
and complicate retrieval. 

Research is needed on the handling of sparse data to find 
ways to economize storage, to describe metadata, and to 
optimize retrieval while keeping the logical description 
independent of storage considerations. 

1.4. File Freezing 

Many databases are dynamic in the sense that they are 
continually being updated. If a statistical analysis is to 
be performed, there will be a natural time cutoff. All 
data resident in the file as of the cutoff point must be 
identifiable. Thus there must be a capability to segment 
on time so that information that comes in after the cutoff 
will not erroneously get into the statistical analysis and 
possibly bias the results. As a consequence of file freez
ing, there may be several versions of the same file in 
existence. 

Research is needed to find techniques that impose proper 
time constraints on retrievals. Research is also needed to 
find techniques for efficiently storing multiple versions of 
large files. 

1.5. Imprecise Keys 

In statistical analysis, information may be needed from 
various parts of a single file or from several files. Often, 
this must be done by making a cross reference linkage 
using imprecise keys. For example, in a hospital data
base system, all the information on a patient might be 
retrieved using the patient's name as an imprecise key to 
search portions of the same file or several files (name is 
usually an imprecise key because there may be several 
people in a database with the same name). A file struc
ture that allows cross referencing with such imprecise 
keys is very useful for statistical analysis. In statistical 
databases, subsetting and retrieval using imprecise keys 
is a difficult question that needs research. 

1.6. Security 

When a statistical evaluation is to be done on a file that 
contains sensitive information, the question of privacy 
protection arises. The confidentiality dilemma is to pro
vide useful summary information while protecting the 
privacy of the individuals. Suitable mechanisms for pro
tecting information may depend on the logical data 
model. Research is needed to determine what is obtain
able within the constraint of summary information 



criteria, and how to provide security mechanisms in a 
multiuser environment. 

2. Functionality jUsage 

Several issues were raised regarding the desired func
tionality or usage of statistical databases. 

2.1. Subsetting 

The key to successful data analysis lies in finding 
interesting subsets of the data. This requires the capabil
ity for multiple key retrievals or, more generally, for 
retrieval of any identifiable subset of data (e.g., all 
PhD's in the age bracket 25-40 living in California and 
earning more than $50,000 annually). Once a subset of 
data has been formed and analyzed, it is often desirable 
to retain the subset for further analysis, for aggregation, 
or for decomposition into smaller subsets. For example, 
the salaries for the preceding subset of PhD's may be 
aggregated by profession or by sex, or the subset of 
PhD's in the computer industry may be extracted for a 
more detailed analysis. Because subsets are obtained or 
retained for the purpose of aggregating or summarizing 
over certain attributes, they are often called summary 
sets. 

Many commercial database systems have facilities for 
specifying and retrieving arbitrary subsets. The storage 
and retrieval mechanisms of these systems are not always 
efficient, however, for statistical database structures, 
e.g., sparse data. Research is needed to find efficient 
techniques for statistical databases; transposed files are a 
good beginning. 

Some commercial database systems support view 
definitions, which permit subset definitions to be saved 
and managed by the database system. The data in a view 
is derived from the current state of the database'when 
the view is retrieved, rather than being stored as a 
separate data set. With large statistical databases, views 
may not allow efficient enough access to certain subsets; 
hence, it may be preferable to store these subsets 
separately. Additional metadata is then needed for 
describing the subsets and their relationship to the main 
database. Research is needed to develop techniques for 
managing these retained subsets. 

2.2. Sampling 

In addition to forming identifiable subsets of data, it is 
often desirable to extract samples of the data. This is 
particularly true for large databases, where it may be 
infeasible or impractical to analyze the entire database. 
Sampling can also provide a means of protecting the 
confidentiality of sensitive data. 

Most existing database systems do not support data sam
pling. Research is needed to develop efficient techniques 
for defining, retrieving, and retaining samples, and for 
combining sampling with other subsetting operators. 

2.3. Data Analysis 

Many existing database systems have operators for com
puting counts, sums, maxima, minima, and means. 
Although full data analysis capability should not be the 
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goal of statistical database management systems (see Sec
tion 2.6), research is needed to determine which data 
analysis operators can and should be included in such 
systems. For example, it is quite efficient to perform the 
sampling operations in the data management system. In 
addition, new methods are needed for accessing complex 
data structures, e.g., hierarchies, by data analysis pro
grams. 

The results of data analysis should be self-documenting; 
that is, they should contain metadata describing the 
resulting structure. Existing systems do not provide this 
capability, and research is needed to develop analysis 
tools that produce self-documenting structures. 

2.4. Adaptive Data Analysis 

Data analysis is an adaptive process, where intermediate 
results determine subsequent steps in the analysis. It is 
often desirable to go back to an earlier step and try a 
different path. With appropriate computer graphics, 
much of the analysis could be done on-line without 
recourse to hard copy. 

Existing database systems do not support this form of 
adaptive analysis. Research is needed to develop tech
niques for recording analysis paths, and to develop 
graphical aids for moving along these paths. 

2.S. Historical Data 

Traditionally, historical data has been difficult to assem
ble for analysis. If it is saved at all, it is usually 
archived on tapes. With on-line database systems, histori
cal data can be retained and retrieved by the database 
system. Research is needed to determine how historical 
data is ~est managed. 

2.6. Data Management and Statistical Analysis Inter
face 

The data management software and statistical analysis 
software should not form a single monolithic system that 
attempts to provide all capabilities for all users. Even if 
we could predict what capabilities would be required, it 
would be difficult to develop and maintain such a monol
ith. On the other hand, the user interface should provide 
the image of a single system. The data management and 
statistical analysis capabilities should be constructed 
from building blocks that allow their easy interface. 
Research is needed to determine what building blocks are 
needed, and to develop a methodology for constructing 
and interfacing them. Several interfacing styles are pos
sible; for example, the database system may drive the 
statistical analysis system or vice-versa, or both systems 
may operate as coroutines. 

2. 7. Distributed Systen 

Local and nonlocal computer networks can provide access 
to distributed databases and to computing resources not 
available at the user's personal work station. Several 
scenarios are possible; for example, data from one or 
more sites .may be assembled at a user's personal work 
station for analysis; data collected at different sites may 
be analyzed at the sites (e.g., to reduce the volume), and 
then transmitted to a central database system for further 



analysis; data managed at a personal work station may be 
sent to a more powerful machine for analysis, and the 
results returned to the work station, possibly for addi
tional analysis. Before any of these scenarios can be 
fully realized, research is needed to develop mechanisms 
for managing distributed statistical data and distributed 
analysis. 

3. Metadata 

Metadata is information about data. The panel has 
repeatedly emphasized the importance of metadata for 
statistical data. Often data becomes obsolete because the 
information about its content and meaning is nonexistent 
or lost. The following is a collection of metadata issues 
that could benefit from further research. 

3.1. Meaning of Data 

Most data management systems, as well as statistical 
packages, have a data definition capability for the 
specification of a data field descriptors such as type, size 
and acronym. This type of information is necessary for 
computer manipulation of the data. However, this infor
mation is not sufficient to characterize the meaning of 
the data to people. A description of the origin of the 
data, how it was collected, when it was generated and 
modified, and who is the responsible person for its collec
tion is also needed. The description should include the 
full names of data entities and an explanation of what 
they represent. Data types of statistical databases are 
often complex, such as time series, vectors, or categorical 
variables. In addition, special types of data values may 
be required, such as codes for missing, unavailable, or 
suppressed values. 

The lack of metadata is even more acute when data is 
collected through automatic data systems. Here it is 
necessary to be able to collect some of the metadata 
automatically as well. 

3.2. Metadata of Subsets 

As was mentioned in section 2, a large number of subsets 
can be generated in the data analysis process. In addi
tion, new data values can be generated by computations 
over previous data values. The metadata for these newly 
created data sets include the origin from which the data 
sets were obtained, the operations (selection, sampling, 
computations) involved, descriptions of the data ele
ments, who created the data sets, and time of generation. 

Most of this information can (and should) be automati
cally obtained by the system at the time of subset crea
tion. Some additional semantic information must be 
obtained from the user if he wants to keep these data sets 
for future use. The open research issues are how to cap
ture and store this information efficiently. In particular, 
if data sets are generated from each other, they would 
have much descriptive information in common that 
should not be stored repeatedly. 

3.3. Metadata Management 

It is necessary tei organize and manage metadata, just as 
it is the case with data. However, metadata typically 
contains much text, and its structure can be more 
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complex than just text strings. It is therefore necessary 
to manage metadata with tools that can handle text. 
Most data management systems and statistical packages 
have very limited capabilities in this area. 

One should be able to retrieve and search metadata, just 
as one does with data. For example, it should be possi
ble to ask the system for the data sets generated by John 
Smith after February of this year, or to search for all 
data sets that have information about a certain topic in a 
hierarchical fashion. Research is needed to determine 
how to organize the (mostly) textual information so that 
it can be searched, retrieved, updated, and automatically 
maintained. 

3.4. Consistency 

Unfortunately, the meaning of terms change over time, 
and they may be inconsistent across data sets. . This 
occurs often when similar data is collected over long 
periods of time. For example, the boundaries of a county 
may be redefined in a certain election year, but the 
change is not reflected in the name of the county. 
Clearly, it is invalid to compare data collected for that 
county over several years which include the change, yet 
it is commonly done because the corresponding metadata 
does not reflect the change. 

Another reason for confusion is the use of the same terms 
for different data elements. This occurs often when new 
data sets are generated from existing ones. For example, 
one data set may contain information about income gen
erated by an average over the entire set, while another 
may be generated by averaging over a sample. If both 
data elements are labeled the same (e.g. income), it is 
easy to make mistakes in comparing them. These 
changes should be captured in the metadata, and be 
readily available when the data sets are used. At the 
same time there should be a way to indicate that the data 
elements are related. 

The reverse problem is one of using different terms for 
the same data element. It is particularly important if the 
same data element, such as "state", is used by more than 
a single file, since this information is necessary to deter
mine if the files are comparable (joinable) over this data 
element. Using different terms in the same file requires 
the support of a synonym capability. 

Another related need is the use of metadata for compar
ing or merging data from data sets whose parameters are 
similar but not identical. For example, suppose that the 
partitioning of ages into age groups in two data sets is 
not the same. In order to compare or merge these data 
sets on the basis of age groups, one needs the metadata 
describing the age groups. 

3.5. Reformatting 

It is not realistic to assume that at some point there will 
be a standard for data formats over all systems. There
fore, the need for reformatting data is inevitable. Meta
data should be used to facilitate the automatic reformat
ting of databases. Research is needed to determine how 
to organize the metadata and how to use it for the pur
pose of reformatting. Perhaps a standard for metadata 



specifications can be developed. 

3.6. Distributed Data 

There is additional metadata that is necessary when data
bases are distributed over several nodes of a computer 
network. For example, suppose that data is collected and 
analyzed at several hospital nodes on patients response to 
a certain drug. If one was to combine such information, 
it is necessary to synchronize the state of these databases 
as well as the correspondence between the items involved. 
Research is necessary to determine what status informa
tion should be kept, and how to coordinate such informa
tion for queries that involve several nodes. 

There is very little development of distributed systems 
that can handle statistical data, mainly because the 
difficulties in implementing such systems seem too great. 
But, as was discussed by many members of the panel, the 
trend is indeed towards distributed systems of work sta
tions. As powerful personal work stations come down in 
price, so it is more likely that future data analysis will 
be performed on a work station that is connected to other 
work stations and central machines through a cOmputer 
network. The central machines are likely to contain data 
that are of interest and are shared by many users, while 
the work stations will contain temporary or private data 
sets that analysts currently work on. Thus, we believe 
that it is not too early to conduct research in the area of 
metadata in distributed systems. 

4. Logical Models 

Logical modeling is that part of database management 
concerned with the meaning of data collected about the 
real world. The typical logical model encountered in a 
statistical textbook is the rectangular array or observa
tion on a case by attribute basis. The current status is 
that the real world is more complex than the logical 
models of database systems, but that logical database 
models are more complex and diverse than the logical 
models handled by standard statistical algorithms. 

4.1. Complexity of Data 

The data organizations encountered in statistical text
books are data matrices or contingency tables. The 
mathematical machinery used is the matrix and vector 
algebras or calculus. The traditional interface with com
puter science has been the numerical analysis of the com
putational processes needed to implement the arithmetical 
processes. 

When the data becomes more complex, of which the 
hierarchical relationship of individuals to a family is an 
example, differing information is relevant in different 
subsets of the data, and the classical notations quickly 
loose their elegance and power. In complex situations, 
the identification of an appropriate unit of analysis, and 
the collection of data for that unit, may become substan
tive problems. All of this may have the additional com
plication of missing and erroneous values. The notation 
needed to deal with other types of relationships, such as 
networks, is often weak and has weak associated theory. 
With complex data structures, the interface with com
puter science grows to include algorithms and data 
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structures, computational complexity, and database 
management. 

4.2. Missing Data 

A common characterization of complex situations is the 
need to use and identify insightful subsets. In the pres
ence of missing and erroneous data, this may be difficult. 
The missing data may arise for many reasons - not 
observed and not defined or relevant are the standard 
cases. The ability of database systems to approximately 
deal with the various types of missing data is weak in 
current practice. The initial machinery typified by the 
not-a-number symbols (NaNs) of the IEEE floating point 
standard have not been expanded or integrated into con
trol mechanisms (query languages) of database systems. 

4.3. Data Aggregation 

The various attributes of data may be more complex than 
is realized. Hierarchical relationships may be mul
tifaceted in practice. For example, in geographic aggre
gations, the notion of county and metropolitan area are 
intermediate between municipality and state and of equal 
standing; either may be embedded in a strict hierarchy. 
The form of the aggregation may change over time so 
that both analysis and representation are further compli
cated. Simple responses may be either multiple or 
repeated in practice. The representation of complex data 
which has been fully and correctly observed is now possi
ble, but the methods to deal with partially or incorrectly 
observed data have not been developed. 

4.4. Documentation 

The logical data model is part of the description of the 
data and should be included in the documentation of the 
data. The metadata has the role of communicating both 
the internal technical facts about the data, including the 
data models used in its representation, and the external 
information available about the data. The meaning of 
the data may be derived both from the data models and 
the external knowledge about the data. 

Logical data models should be associated with good 
analysis methods. The models that are available await 
analysis techniques, some of which may arise in the 
interaction of statistics and algorithm design. Some of 
the known problems with existing models are the 
identification of appropriate analysis units, and the 
bringing of data to those units. The current algorithms 
often are weak in the presence of the various forms of 
missingness and errors present in data. 
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I. INTRODUCTION 

The increasing use of computer-based systems, 
to support our modern, technological, administrative 
and office environment needs, mandates the availa
bility of highly integrated distribution systems. The 
driving force of converting raw data into informa
tion is a highly efficient communication network 
among the various databases and the user. We 
believe that the increasing demand for information 
at the various nodes of distributed network does not 
have to be matched with an increasing economic 
burden of acquiring large storage devices and high
speed transmission media; rather, the problem may 
be alleviated through the software and hardware 
implementation of efficient data compression 
techniques. 

The functional scheme presented in this paper, 
is a two-stage finite state machine implementation 
of a highly efficient compression algorithm. The 
algorithm is a reversible semantic..;independent vari
able-length character encoding method that makes 
use of two observed characteristics of the distri
bution of characters within most statistical data
bases. First, the group locality of character 
reference behavior. Second, the variable frequency 
of character occurrence. 

A horizontal finite state machine in its purest 
form will assign only one function to each bit, thus 
eliminating any vertical logic for decoding 
instructions. A typical microcomputer uses the 
maximum binary representation for an operand 
field, e.g., 2 bits to produce 4 functions or 3 bits to 
produce 8 functions; either would require external 
logic. On the other hand, a horizontal finite state 
machine uses as many bits in the micro-word as the 
number of functions desired, thus no combinatorial 
logic is needed. A microcomputer requires many 
clock cycles in order to fetch, decode, and execute 
an instruction. Whereas, a finite state machine 
executes all these functions in one clock cycle, 
typically, running at the serial data rate. 

Another difficult area to deal with is the 
synchronous to asynchronous interface. A sub
system must deal with two timing systems. The 
state machine portion runs synchronously with the 
bitstream clock but the control logic needed for 
host control must operate with system timing. On 
the other hand, a typical microcomputer requires 



extra timing interface for the network medium and 
the host interface. The choice of a state machine 
versus a microcomputer chip used as a controller is 
governed by two factors, speed and complexity. A 
complex logic tree would certainly require a micro
computer chip. A binary tree is ideal for a state 
machine which runs at memory speed (or can be 
operated at one bit per second to observe all 
processes if desired). A microchip would be 
adequate for most common data rates but multiplies 
the system interface complexity at both ends for a 
simple procedure such as outlined in this paper. 

In the following sections, we first define the data 
compression algorithm, the subgroupings of the 
character set, the corresponding tables and local 
binary trees. The various stages of the finite state 
machine are then outlined. The model contains the 
elements required to describe the mode behavior in 
terms of its inputs, outputs and timing. The paper 
also provides a separate section on possible 
extensions and limitations of the proposed design. 

2. ALGORITHM 

Two observed properties of data structures within 
a statistical database are the group locality of 
character reference behavior, and the variable 
frequency of occurrence of different characters 
within a well-defined subgrouping of a character 
set. The first property refers to the tendency for a 
string of characters (e.g., a data field within a 
record) to consist of a specific subset of the char
acter set, such as, alphabets, digits, successive 
blanks or zeroes. This locality of character 
reference behavior may extend over two or more 
adjoining fields. The second property implies that 
the skewness in the frequency of characters [1] may 
be extended to a well-defined subgrouping of the 
same character set [2]. The division of the 
character set into different subgroups and the 
variable frequency of character occurrence within 
each subgroup are the determining factors in 
lowering the length of bit representation per 
character. 

Using a Multi-Group (MG) encoding scheme, 
Hazboun and Bassiouni [2] have demonstrated an 
average character compression as low as 2.8 bits per 
character, and reported an overall compression 
efficiency of 17%-40% over the Huffman algorithm. 
The Multi-Group algorithm is constructed as a two
level hierarchy of Huffman-type binary trees. The 
first level represents the local trees for the sub
groups of the character set and the second level 
represents a set of binary trees which act as the 
switching mechanism between any two subgroups in 
the event that the next character of the string being 
encoded belongs to a different subgroup. 

In this section we present a modified version of the 
Multi-Group algorithm, denoted as MMG, which is 
more adaptable to a hardware implementation. In 
this modified version, the authors have eliminated 
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the two-level hierarchy of the local trees and the 
associated failure trees with no loss of meaningful 
expression. Additionally, the Multi-Group string 
attribute (the consecutive occurrence of a single 
character within a character stream, e.g., zeroes, 
blanks, etc.) which had been limited to the 'blank' 
character in the original algorithm was extended to 
any character in use. A subset of the ASCII 
character set and its subgroupings is presented in 
table 1. While the newly constructed local trees are 
described in figure 1 as a state transition diagram 
using the subset of characters given in this 
example, they may be extended to the full comple
ment of any character set. 

Sub
Group 

II 

III 

IV 

Character 

A 
I 
N 
o 
S 
T 
Y 
~ 

o 
1 
2 
3 
4 
5 

& 
$ 

Relative 
Frequency 

6 
5 
5 
6 
4 
6 
1 
4 

16 
6 
7 
6 
5 
9 

14 

Multi-Group 
Local Code 

001 
111 
100 
000 
110 
101 

0111 
0110 

11 
010 
100 
011 
001 
101 

11 
10 
01 

TABLE 1: The restricted character set, their 
relative frequencies, and the Multi-Group local 

. binary codes. 

Let, N, represents the number of characters 
within a specified character set; s, the number of 
subgroups; nit the number of characters within 
subgroup i. By definition, 

For each subgroup, Sit a local binary tree is 
constructed. Appended to each local tree are the 
extension states which implement the switch pointer 
mechanism to each remaining subgroup. The leg of 
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FIGURE 1: TRANSITION STATE DIAGRAM: The above diagram represents the 
construction of the transition state diagram corresponding to the four subgroups 
as defined in the restricted character set of Table 1. The finite automaton 
accepts a bit string if the sequence of transitions corresponding to the symboJs of 
that particular bit string leads from the start state to any accepting state and 
then back to the reentry address of the local tree. Each accepting state (double 
circled) represents a single and unique character within the restricted character 
set. If a failure occurs, the entry address points to the vertex of one of the 
remaining local trees. 
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the tree to which the state switch indicators are 
appended is the failure indication leg of that local 
tree. If subgroup; Sh has, ni characters then the 
local tree for that subgroup has, ni + s - 1, 
external states. The additional, s -1, external 
states represents the entry states of the remaining 
local trees. Note that these local trees are 
constructed by applying the Huffman's algorithm on 
the appropriate frequencies of the, ni + s - 1, 
external states, where the, s - 1, nodes are assigned 
a joint relative weight equal to the failure 
frequency within Si mUltiplied by the sum of the 
weights of the ni characters of Si. 

The Encode/Decode Function 

Either of two approaches may be adopted for 
building the coding tables and control decode local 
trees for a particular system environment or an 
individual database. First, the generalized 
approach where statistical information is collected 
from a representative sample of databases within a 
system environment. Second, individualized 
statistical information is collected from 
each database to reflect any variation among the 
different databases. The latter approach undoub
tedly produces a more efficient compression. In 
that case, each file will have its individualized 
coding tables and, consequently, its own level of 
security. If greater security is desired, it is possible 
to implement a dynamic start code to be used by 
the decoder to start processing the bit 
stream. This code could be implemented as a run 
time option known only to the user of the file and 
not available in any database file. 

When this implementation is used for transmission, 
the switching of translate tables must be 
coordinated by the sending host; i.e., if data has 
been sent using one local tree structure and is 
desirable to change to another tree structure better 
suited for the next file to be sent, the sending host 
will transmit a file containing the new table using 
the current tables. The receiving host acknowledges 
receipt of the new tables and instructs the sending 
host to load its new tables and wait for the next 
transmission which will be returned by the receiving 
host using the new table. If the load has been 
successful, the sending host will acknowledge 
receipt of the transmission using the new tables. 
Both ends are now in sync for block count, check 
sum, etc. Any failure of this process should 
cause both ends to adopt the last successful 
pattern. 

In the compression process, if the current 
character belongs to the same subgroup as that of 
the last encoded character, the bit representation of 
the current character, as obtained from the coding 
table corresponding to the local tree of its 
subgroup, is used directly. However, if the current 
character belongs to a different subgroup, a 'failure 
bit string' (FBS) is transmitted, see table 2. The 
FBS string, which is used to indicate a subgroup 
failure and to specify the next local tree, consists 
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of two parts: 1) a failure indicator (FI), which is 
the bit representation of the failure path through 
the local tree, and 2) a switch pointer (SP) 
indicating the next local tree to be used. 
Table 2 represents the failure bit string matrix 
among the various subgroupings of the character 
set. 

Alpha 

Digits 

String 
Group 

Alpha 

00011 

00 

Special 000 
Characters 

Digits 

01011 

010 

0010 

String Special 
Group Characters 

0100 01010 

00010 0000 

011 

0011 

TABLE 2: FAILURE BIT STRING MATRIX: The 
above matrix represents the overhead of a failure 
from any subgroup to all the other subgroups. 

3. PROCESSOR IMPLEMENT A TION 

The Multi-Group encoder/decoder is conceived 
as an I/O board in a host machine. Parallel data is 
exchanged over the bus and the host downloads the 
table memories and controls all functions via status 
flags and I/O commands. The host is also responsible 
for data check sum, data blocking and any 
sequential block verification hidden in the first part 
of the data. This model .is presented in an 
unbundled design which is amenable to hardware or 
firmware application in bit-oriented data 
transmission disciplines or mass storage systems. 

Transforming the MMG algorithm into a finite 
state model which is amenable to a hardware 
implementation requires attention to the following 
concerns: 

1. Characters will produce bit strings of 
. variable length. 

2. Anyone string may represent different 
character depending on the local tree where 
that character reside. 

3. The one character look-ahead capability by 
definition requires at least one extra register 
to store a character while the following 
character is being analyzed. 

4. The model must function independently of 
any external assistance (i.e. the burden of 
look-ahead must reside in the model and not 
in the host.) 

The design was divided into two parts, a decode 
state machine and an encode state machine, see 
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figure 2. The decode state machine consists of an 
input register and control logic, a receive FIFO to 
hold decoded characters, the microcode memory and 
address register, and one half of the encode/decode 
memory. A serial bit stream and clock stream are 
sent into the decoder. Upon recognition of a start 
pattern the receive transition diagram will advance 
according to the 'zeroes' or 'ones' received. A.s ea<;h 
accepting state is reached, the pattern contamed m 
the receive register at that moment in time is usec' 
as an address within the map of the receive-half C'" 

the encode/decode memory. The resulting data 
word, at the output of the memory, is loaded in tho, 
receive FIFO for transfer to the host. 

The encode state .machine consists of th:
transmit FIFO, the transmit-half of tht! 
encode/decode memory, the primary and . alternatE' 
send registers, transmit control logic, look-aheac 
logic, and three flags from the receive state 
machine which are used to monitor the transmitted 
bit stream. As parallel data is processed, the look
ahead logic operates on characters with string 
attributes. The characters are applied to the 
transmit-half of the encode/decode memory as 
addresses. The output data of the encode/decode 
memory is loaded into the primary and alternate 
send registers. Serial data is transmitted from one 
of these two registers at every state of the transmit 
machine based on flags obtained from the transmit 
data word and three flags coming from the receive 
microcode memory which identify significant 
patterns and strings. 

In addition to its own logic the encode machine 
uses the decode pattern detection firmware. The 
decode machine will always execute a jump 
instruction based on its current state and the next 
bit being received. It simply selects one of two 
jump addresses provided by a microcode data word. 
The choice is made by the next "zero" or "one" being 
received as shown in the Receive 'Code tables 
outlined in Appendix A. In addition to carrying two 
jump addresses, the data word carries map select 
bits; these bits select the block of memory required 
by the current tree to properly decode a pattern. 
The three bit flags identify the current state as 
either an accepting state or a failure bit string 
state. 

The encode machine actually consists of two 
distinct sections, the register control section and 
the look-ahead section. The register control section 
uses the three single bit flags from the decode 
machine (which monitors the output bit stream) to 
identify the last bit of the three types of strings 
being sent -- valid strings, failure indicator (FI) 
strings, and switch pointer (SP) strings. The look
ahead logic section examines each character and 
determines the bit string to be sent by using a pair 
of flags obtained from the transmit-half of the 
encode/decode memory. Each memory word in the 
transmit-half carries two string fields, map select 
bits and two single flags, see appendix A. 
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Parallel data is exchanged via FIFO registers 
used as the synchronous/asynchronous interface. 
Use of a FIFO simplifies the host interface to the 
model. 

The heart of the state machine is the single 
instruction processor which has all the power needed 
to climb through a logic tree of binary decisions. 
The microcode memory carries two jump addresses: 
I) decode map select bits, and 2) register control 
bits. The microcode address register simply selects 
one of two jump addresses based on the current data 
bit being received within a subgroup. In this case, 
the map select bits are the same at every location 
and the valid pattern bit indicates that an accepting 
state has been reached, the current pattern must be 
decoded, and the receive register zeroed out except 
for the next arriving data bit. 

In transmit mode, all receive activity occurs for 
one purpose -- to identify an accepting state or 
failure within a subgroup. Additionally, in this 
mode, the encode/decode memory functions as an 
extension of the microcode memory but running at 
character instead of bit rate. The requirement. for 
one character look-ahead imposed on the transmit 
logic requires two extra hardware registers over 
what would be required for a one-to-one character 
mapping such as the Huffman code [3]. Any further 
enhancements such as parsing for string content 
(e.g., 2-character look-ahead) would take the model 
out of the class of the machine being used here. 

Internal Logic 

The receive state machine is a series of binary 
decisions based solely on the current bit being 
processed. The transmit mode uses all the receive 
logic with additional look-ahead feature. The 
transmit state machine requires a hardware register 
both prior to and after the encoding process since a 
valid character which has 'string attribute' cannot 
be processed until the following character is 
examined. Consequently, the character must be 
stored in a register until the following character's 
attributes are determined. 

The encode/decode memory is subdivided two 
ways. First, into two parts by function of send or 
receive. Second, by the humber of local trees 
within each half. In the . decode state, the 
encode/decode memory map select bits are obtained 
from the receive microcode memory. In the encode 
state, the map seleGt bits are obtained from the 
encode/decode memory acting as an extension of 
the receive microcode memory. In the transmit 
map word shown in appendix A, five fields are 
defined -- a primary data field, and alternate data 
field, map select bits, and two single-bit flags. The 
primary data field carries either the string 
representation of a valid character or the switch 
pointer for an invalid character. The alternate data 

. field carries a failure indicator or failure bit string. 
The map select bits point to the valid map for a 
character regardless of the tree in which it is 



located. The two bit flags indicate 'string attribute' 
and 'valid/invalid' characteristics within the current 
subgroup -- all characters have flags and data 
entries in all subgroups. 

Decoder 

Let M = (K, L, d, qo, F) represent the decode 
automaton where K, represents the set of states; L, 
the input alphabet; F, the set of final states; qo, the 
start state; and 'd', the transition function such that 

K (00, 01, 02, ••••••••• 34) 
L = (0, 1) 
F = (07, 08, OB, OC, 00, OE, 10, 11, 18, lA, 

IB, lC, 10, IE, 24, 25, 26, 2A) 
qo = (00)-

and, d (qx,O) and d(qx,1) which represent the two 
transition states or jump addresses to which the 
current state may advance based on the nect input 
data bit, are given in appendix B. The closure 
property may simply be interpreted from the tables 
since the decode automaton must jump to anyone of 
two states for every bit received. 

Encoder 

Let M' = (K', L', d', qb, F') represent the encode 
automaton where, 

K' = (1024 address locations of the encode 
map) 

L' = (Full 'character set, Invalid flag, String 
flag, and Binary map select bits) 

F' = (Set of valid characters within their own 
local trees) 

qb (111111111111) = Address of start code 
pattern 

and, where the valid transition functions for the 
alpha, digits special characters and string 

Binary Flag Alpha Digits 
Conditions 

iNV G STR d'(q~, 0, 0, 11) d'(q~, 0, 0, 01) 

INV G STR d'(q~, 1, 0, 11) d'(qx, 1, 0, 01) 

iNVG STR d'(qk, 0, 1, 11) 

INV G STR d'(qk, 1, 1, 01) 

characters are represented in Table 3. Naturally, 
d'(q~, 0, 1, yy) = 0 for yy = 01, 10, 00 since a 
character cannot be both 'valid' and 'string' in any 
subgroup except the alpha local tree, and d' (q~, 1, 
1, yy) = 0 for yy = 11, 00 since a character can be 
invalid and 'string' only in yy = 01 (digit local tree) 
and yy = 10 (special character local tree). The 
representation '0' denotes an empty set. 

Every character in the valid character set does 
produce data in every tree and thus constitutes the 
full set of states. The subset of accepting states 
are the address locations represented by each 
character within a valid tree. Additionally, in the 
primary data field, every address location in every 
tree carries either a valid string to represent a 
character or a switch pointer to the tree where that 
character is valid. The alternate data field in every 
address location in every tree carries either a 
failure bit string, a failure indicator or is left 
unused in the case of invalid non-string characters. 
Any bit combination (if applied to any address 
location of any tree) will produce a defined result. 

The encoder stage has a more difficult task since 
look-ahead logic requires extra registers to accomo
date a character stream with string attributes. If 
the current character is valid, the primary data 
field carries the encoded string and the alternate 
field carries the failure indicator (FI) for that local 
tree. If the current character is simply invalid (non
string), the primary data field carries only the 
switch pointer portion of the failure bit string and 
the alternate data field is meaningless. A simple 
failure (see fig. 3) is handled by sending the failure 
indicator left in the alternate data register (by the 
previous valid character) and appending the switch 
pointer (SP) from the primary data field of the 
current invalid character. 

Any occurrence of a 'string attribute' character 
is handled as follows: if it occurs in a tree where it 
is valid, it must be saved in a holding register and 

Special String 

d'(q~, 0, 0, 10) d'(q~, 0, 0, 00) 

d'(q~, 1, 0, 10) d'(q~, 1, 0, 00) 

d'(qk, 1, 1, 10) 

TABLE 3: VALID TRANSITION FUNCTION MATRIX: The above table represents 
the valid transition functions for alpha, digits, special characters and string 
characters respectively. IN V, STR denote the invalid and string flag conditions. 

60 



the FIFO dumped to gain access to it. If is is also a 
'string' type character, the FI and SP are both sent 
from the alternate data field. If it is. non-string 
then the saved character is regated to the encode 
memory and sent normally. These processes are 
outlined on the right half of fig. 3. 

A complex failure occurs when a 'string 
attribute' character appears in a tree where it is 
invalid. Since it is multiply-defined, the next char
acter must be analyzed as before and correct FI G 
SP sent. In figure 3, the upper left quadrant 
outlines the hardware processes which take place 
when a space is encountered after a digit or special 
character. (Note that a space 'failure' in the string 
or alpha tree still goes only to one other tree). 

The encode automaton changes major states at 
character or pattern rate instead of bit· rate with 
the exception of the look-ahead logic. The serial 
bitstream produced by the encode automaton is fed 
immediately to the decode automaton for the sole 
purpose of identifying accepting states which mark 
the end of a variable length pattern transmission. 

The encode transition state diagram is presented 
in figure 3. The encode memory maps for the alpha 
and digits are defined in appendix A. The memory 
maps for d'(qk, M, N, 10) for M, N = 0,0 1,0 1,1 
and d'(qk, M, N, 00) for M, N = 0,0 1,0 which 
represent the special characters local tree and 
string local tree respectively, can be similarly con
structed from the data in table 1. 

Extensions &: Limitations 

Several possible variations may be implemented. 
First, the chosen groups do not have to be mutually 
exclusive, i.e., some characters can belong to more 
than one group. It is sometimes more efficient, for 
example, to put the blank character separating two 
alpha words in the local tree of the alphabets and a 
decimal point '.' in the local trees of both the digits 
and the alphabets. Furthermore, the 'string sub
group' can be extended to more than the· blank 
character (e.g., zeroes) if desired. However the 
hardware logic of the outlined model assumes that 
there is only one special subgroup of characters with 
'string' attributes; i.e., if a character is in the 
'string' subgroup, it can only be a member of one 
other major subgroup or class. 

A more sophisticated scheme is to let the 
Statistics-Gathering phase define the subgrouping of 
characters based on the distributional and the 
corrolational characteristics of the file being 
processed. If the statistics gathering program dis
covered that, in a particular database or trans
mission function , many numeric fields contained a 
'$' and a '.', those two characters could be placed in 
both the digit and special character groups. The 
objective is to eliminate numerous microcode sub
routine calls of the special character group while 
encoding the numeric fields of a statistical file. 
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The design presented in this paper is half-duplex. 
To implement a full duplex system require duplic
ation of the receive portion of the design. 
Additionally, two practical assumptions were made. 
First, a start pattern must be agreed upon. Second, 
a start group must be agreed upon. The start code 
must be loaded in the primary data field at address 
"all ones", and the alternate pattern field will carry 
the failure indicator for the alpha group, assumed to 
be first. Any preamble needed for system synch
ronization can be sent and it will be ignored until 
the specific start pattern is detected •. If this start 
code were obtained from an I/o register, a password 
type security is possible. The design assumes a hard 
wired start code. 

5. CONCLUSION 

A simple two-stage finite state machine for the 
efficient transmission of data within a distributed 
network was presented. The design is based on a 
modified version of the Multi-Group algorithm for 
data compression. The discussion throughout. this 
paper is intended to stimulate interest and research 
in this field of data management by persons possess
ing modest resources without access to a laboratory 
with advanced instrumentation. 
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1. Gate data patterns normally 
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Simple Failure upon Jump to String Mode 
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2. Sent FI ~ SP 
3. Inhibit FIFO dump . 
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2. Gate data patterns 
3 •. Dump FIFO 

FIGURE 3: ENCODE TRANSITION STATE DIAGRAM: The encode transition state diagram defines the behaviour of 
the transmit state machine within any local treee for any path defined for that local tree. The defined and undefined 
paths for each local tree are given in table 3. 
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ENCODE MEMORY MAPS 
d'(qx, M, N, Il) for M, N = 0,0 1,0 

'Ilc 
Validl 
Invalid 
Flag (M) 

Encode Memory Map for Alpha 

A ~ 41 HEX 
I ~ 49 
N ~ 4E 
o ~ 4F 
S ~ 53 
T ~ 54 
U ~ 55 
iil 20 
o 30 
I 30 

32 
3 33 
4 34 
5 35 

20 
& ~ 26 
S ~ 24 
UN OF ~ 20 

o 
o 
o 
o 
o 
o 
o 
o 
I 
I 
I 
1 
I 
I 
I 
1 
1 
o 

Encode Memory Map for Digits 

A ~ 41 HEX 
I ~ 49 
N ~ 4E 
Q ~ 4F 
5 ~ 53 
T ~ 54 
U ~ 55 
~ 20 
o 30 
I 31 
2 J2 
3 33 
4 34 
5 35 

20 
& = 26 
S = 24 
UN OF 

1 
I 
I 
I 
1 
I 
I 
I 
o 
o 
o 
o 
o 
o 
1 
I 
1 
I 

String 
Attribute 
Flag(N) 

o 
o 
o 
o 
o 
o 
o 
I 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
I 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

Primary 
Pattern 
Output 

001 
III 
100 
000 
110 
101 

0111 
0110 

11 
II 
II 
II 
II 
10 
10 
10 
10 

0110 

II 
II 
II 
11 
II 
11 
II 
11 
11 

010 
1~0 
011 
001 
101 

o 
o 
o 

II 

APPENDIX A 

Alternate 
Pattern 
Output 

010 
010 
010 
010 
010 
010 
010 

0100 

010 

10 
000 
000 
000 
000 
000 
000 

Valid 
Map 

Pointer 

11 
II 
II 
II 
II 
II 
II 
II 
01 
01 
01 
01 
01 
10 
10 
10 
10 
II 

II 
11 
II 
II 
11 
II 
11 
II 
01 
01 
01 
01 
01 
01 
10 
10 
10 
II 

ENCODE MEMORY MAPS for the alpha and digit local trees. In all 
cases qk defaults to some character. In the alpha local tree, the 
alternate pattern for the blank carries the switch pointer as well as 
the failure· indicator. For the digit tree, an undefined character will 
be directed to the alpha local tree where, the character can then be 
encoded. When a blank is encountered in the digits or special 
subgroup, it is necessary for two switch pointers to be present and 
selected based on the next character. If another 'blank' is encoun
tered then the failure indicator and switch pointer will send the 
automaton to the string local tree. If not, it will send it to the alpha 
tree. The encode memory maps for the special character and string 
subgroups can be similarly constructed. 

<Ix 
Accepting Map 

d(<Ix,O) d(q", J) 

Receive Microcode for Alpha 

01 
02 
03 
04 
05 
07 
08 
09 
OA 
OB 
OC 
00 
OE 
OF 
10 
11 

03 
05 
07 
09 
00 
01 
01 
28 
OF 
01 
01 
01 
01 
20 
01 
01 

04 
06 
08 
OA 
OE 
02 
02 
OF 
10 
02 
02 
02 
02 
12 
02 
02 

Receive Microcode for Digits 

12 
lJ 
14 
15 
16 
17 
18 
19 
IA 
lB 
lC 
10 
IE 
IF 

lJ 
15 
17 
19 
lB 
10 
lJ 
20 
lJ 
lJ 
lJ 
13 
13 
28 

14 
16 
18 
IA 
IC 
IE 
14 
IF 
14 
14 
14 
14 
14 
01 

State Select. 
Flag Bits 

o 
a 
o 
o 
o 
1 
I 
o 
o 
1 
I 

o 
o 
o 
o 
o 
o 
1 
o 
I 
1 
1 
1 
1 
1 

00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 

01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 

Receive Microcode for Specia! Characters 

20 
21· 
22 
23 
24 
25 
26 
27 

21 
23 
25 
00 
21 
21 
21 
12 

22 
24 
26 
27 
22 
22 
22 
28 

Receive Microcode for String 

28 
29 
2A 
2B 

29 
00 
29 
12 

2A 
2B 
2A 
20 

o 
o 
o 
o 
1 
1 
1 
o 

10 
10 
10 
10 
10 
10 
10 
10 

10 
10 
10 
10 

SP 

o 
o 
o 
o 
o 
a 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

1 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

1 
o 
o 
o 
o 
o 
o 
o 

FI 

o 
o 
o 
o 
o 
o 
o 
I 
o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
I 
o 
o 
o 
o 
o 
o 

o 
o 
o 
1 
o 
o 
o 
o 

o 
1 
o 
o 

APPENDIX B 

DECODE TABLES. The above tables represent the complete state 
function for the receive state machine of the four subgroups of the 
example given in table 1. d(Qx, 0) and d(Qx, 1) represent the two 
jump addresses to which the current state may advance based on 
the next input data bit. The actual data output defined by the 
accepting states can be found from the transition state 
diagram (fig. 2) corresponding to each address (q ) and these 
tables, e.g., locate the first 'I-Flag' in the Accepting'State column 
at address 07 which represents an '0' in the Transition State 
Diagram of figure 1. 
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Abstract 

This paper presents the design of a data base machine for sup
porting statistical data bases. The primary objective of this research 
is to introduce an architecture which performs efficiently in executing 
relational operations on fully transposed files. This objective is met 
by utilization of two functionally specialized subsystems: category and 
summary subsystems. The category subsystem exploits the parallel, 
content addressed search capabilities of associative memories (AM) while 
the summary subsystem employs a set of functionally equivalent proces
sors suitable for evaluating statistical functions. In order to support 
processing of category attributes, the design of an extended associative 
memory has been considered and its features are presented. The most 
important feature of this AM stems from its ability to sort selected 
tuples of a relation, with respect to several attributes simultaneously 
and at the same time to produce an inverted list f6r each attribute. 
Sorting is performed by enumeration. The sorted inverted lists are used 
for efficient execution of relational projection and join operations. 

1. Introduction 

Problems associated with the manage
ment of large data bases have received 
the attention of many computer designers 
in seeking an efficient solution. As a 
result, a number of design proposals have 
been appearing, offering solutions from 
software optimization techniques to hard
dware implementation of data base manage
ment system functions. The variety of 
solution alternatives have appeared to 
mark the innovation of a computer archi
tecture for data base applications, known 
as a Data Base Machine (DBM). A DBM is 
defined as a dedicated backend computer 
which manages the data base and performs 
the requested operations on data with the 
objective of releasing the mainframe from 
difficult and time consuming data proces
sing tasks. 

Statistical database management 
systems have different applications from 
traditional DBMS, although they suffer 
from the same problems to some extent. 
There have been few specific DBM design 
proposals for handling statistical data 
queries. An example is the design of MAS 
by Hawthorn [1] which has a limited 
capability and cannot be considered a 
true DBM, but rather a multiprocessor 
complex that handles decompression and 
assembly of tuples in statistical queries. 
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The problems and characteristics of 
statistical data base queries,are intro
duced in section 2, upon which the 
design objectives will be based. Section 
3 discusses the solutions provided by 
existing DBM designs and section 4 pre
sents architectural features of the pro
posed DBM in supporting statistical data 
operations. A short description of the 
system architecture follows in section 
5. Section 6 presents an implementation 
of relational operations and an algori
thm for a sorting scheme. Finally, sec
tion 7 presents some concluding remarks. 

2. Query Processing - Characteristics and 
problems 

Execution of a query on a data base 
mainly consists of three processing 
phases: data transfer, data qualification 
and data manipulation. During the data 
transfer phase, the required raw data are 
brought into the processors' memory from 
secondary storage devices. The processor 
then performs a search operation on the 
contents of its memory, selecting those 
tuples that satisfy the selection condi
tions, thus the qualification phase. In 
the data manipulation phase, the speci
fied operations (such as updating, aggre
gate operations, statistical function 
evaluation, etc.)" are executed on the 
qualified tuples. 



Statistical database systems 
generally are concerned with evaluation 
of statistical functions on a large set 
of selected tuples. Thus, each phase of 
statistical query processing makes a 
nonnegligible contribution to the overall 
execution time. Detailed descriptions of 
statistical data base characteristics can 
be found in [2] and [3]. 

Two important characteristics of 
statistical queries should be mentioned 
here. In statistical queries normally a 
small number of attributes are required 
to be processed. Moreover, attributes of 
relations, based on their usage pattern, 
can be classified as category arid summary 
attributes. However, the role of category 
and summary attributes may change for 
different queries. This implies that 
every attribute of a relation can be in 
either class. 

It has become evident that the data 
transfer phase causes the most serious 
problem in processing queries on large 
data bases. This is mainly due to the 
movement of a considerable amount ofre
dundant data between the processor memory 
and secondary storage devices. This prob
lem becomes more severe for statistical 
data bases in which size of relations 
(tables) are very large in terms of both 
cardinalities and record size. 

In a single processor architecture, 
the system performance in evaluating 
complex statistical functions with a 
large set of numeric data can degrade by 
becoming CPU-bound, even if I/O overhead 
is disregarded. Similarly, the execution 
of a complex operation such as a rela
tional join in the qualification phase 
requires a considerable amount of CPU re
sources. These imply that in a sequential 
processing architecture the data manipu
lation and qualification phases may in
deed degrade the system performance. 

3. Some existing solutions to the 
problems of statistical queries 

The major contribution of DBMs in 
processing data base queries is that of 
enhancing the system performance through 
facilities that reduces the time required 
for the data transfer phase. This has 
been accomplished by the use of special 
processors, referred to as filters. 
Examples of DBMs employing these devices 
are, DBC[4], SPIRIT-III[5], CAFS[6] and 
DIALOG[7]. Since the processing speed of 
filters in these machines match the speed 
of data transfer, the data transfer and 
qualification phases are processed 
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concurrently. However, performance of 
these machines for statistical data bases 
degrades for two reasons: First, the size 
of records in relations of statistical 
data are larger than the size of records 
in a normalized relation. As a result, 
there will be fewer records on a track of 
a disk, causing a fewer number of records 
to be processed in each disk revolution. 
Moreover, regardless of the number of at
tributes required by a query, the entire 
record must be transferred to the filters. 
Second, because ot the high selectivity 
factor in statistical data, many records 
will pass the filters to the processor 
memory, causing a decline in the filters' 
potential use and movement of unwanted 
attributes. In the design of SPIRIT-III, 
a group of attribute filters is utilized 
to remove the unnecessary attributes from 
the selected tuples. The same capability 
can be provided for in other d~signs. 

A better solution to the problem of 
data staging is offered by a special 
physical storage structure, referred to 
in the literature as fully transposed 
files, in which attributes of a relation 
are stored on separate files. A fully 
transposed file structure facilitates the 
transfer of only those attributes 
required by the query, not the entire 
relation. As a result, the data transfer 
time as well as processing time will be 
reduced considerably. An example of a 
statistical data base system utilizing 
transposed files is RAPID [2] which is 
operational at Statistics Canada. 

Taking the nature of statistical 
functions into account and considering 
the theory of statistics and mathematical 
set theory, the applicability of multi
processor parallel architecture for the 
efficient evaluation of statistical func
tions is clear. For example, in order to 
evaluate a statistical function such as 
variance, covariance, or a regression 
model in terms of a large set of numeri
cal data, it is possible to partition the 
given set into several subsets and assign 
the processing of each subset to an indi
vidual processor. The final value of the 
function can be computed by combining the 
results produced by all the processors. 
This property also holds for relational 
operations. Therefore, the processing 
time of the data manipulation and quali
fication phases can be reduced by use of 
an architecture which utilizes parallel 
processing elements. Although few data 
base machine designs have explicitly dis
cussed their application to statistical 
data bases, multiprocessor architecture 
has been included in most of the proposed 
designs. 



4. Architectural features 

The storage structure used in this 
design is the fully (completely) trans
posed file. It is concluded in [2] and [8] 
that the performance of transposed files 
declines as the number of attributes 
required by a query increases. In order 
to remove this dependency, a group of 
devices are employed which are capable of 
searching on different files in parallel 
while preserving the relationships 
between the files. In the realization of 
parallel processing of files (attributes) 
a storage strategy is used to facilitate 
the parallel transfer of data from 
storage devices to these processors. This 
requires the partitioning of attributes 
into several equal size files, each 
stored on a separate device. e.g. a track 
of a cylinder in magnetic disk units. The 
detail description of the storage layout 
is given in section 5. 

The processing time of the qualifi
cation phase depends on the type of rela
tional operations involved. It ranges 
from a simple selection operation on a 
single relation to a m-attribute join op
eration on (m+1) relations. Join is the 
most important and difficult operation 
that should be efficiently handled in a 
design. It is obvious that the best 
possible method of implementing a join 
between two or more relations is by means 
of a sort-merge which works essentially 
on presorted lists of records. 

The effectiveness of inverted files 
for th~ efficient access of data in a 
large data base is well understood. But 
because of the large number of tuples in 
relations, the versatility of data and 
the uncertainty in usage pattern of 
attributes, the process of producing, 
sorting and maintaining inverted files is 
very ~ime consuming. These facts detract 
from their general usefullness and can 
contribute to an overall degradation in 
system performance. 

This architectural design introduces 
a parallel algorithm which generates 
run-time inverted lists for one or more 
attributes of selected tuples. With this 
feature, it is possible to join two or 
more relations in O(C/N) time complexity, 
where C is cardinality of the relations 
and N is the number of processors. The 
benefit of inverted lists then can be 
realized in the implementation of complex 
relational operations and in the evalua
tion of statistical functions in data 
qualification and manipulation phases 
respectively. A set of special-purpose 
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parallel processors are utilized in order 
to process these two phases of the query 
processing efficiently. A description of 
this architecture is provided in section 
5. For convenience, new names have been 
adopted for the components of the system 
architecture which are self explanatory 
in the context of statistical data base 
characteristics. 

5. System architecture 

The overall architecture of this 
system is composed of three functionally 
specialized subsystems: the storage sub
system, the category subsystem and the 
summary subsystem. Figure 1 shows the 
conceptual system architecture of this 
design. As the names imply, each subsys
tem is devoted to process a class of at
tributes with different characteristics. 

Category Category 
subsystem < 

attributes 

Storage 
subsystem 

Summary Summary 
subsystem < 

attributes 

To the Host computer 

Figure 1 - Block diagram of the system 
architecture. 

5.1. Storage subsystem 

Moving head disks with parallel read 
write capabilities are employed as secon
dary storage devices. Relations of the 
data base are stored on tracks of the 
disks as fully transposed files. The 
tracks are partitioned into equal size 
pages, each containing an attribute or 
part of an attribute. Figure 2 shows the 
partitioning of relation EMPLOYEE into 
equal size pages and storage layout of 
the attributes of this relation on tracks 
of a cylinder. With this storage layout 

• 



the data staging time is minimized since 
only those attributes required by the 
query are staged into the memory subsys
tems. Maximum parallelism can be achieved 
in response to a data staging request by 
the device controller's parallel trans
mission of as many pages as can be 
handled by the other subsystems. 

ENO NAME JOB SAL 
(1) ( 1 , 1) ( 1 ,2) ( 1 , 3 ) (1) (1) 

100 Smit h,Jo seph SECIl 10000 
101 Jone s,Su sanll MGRIl 30000 
102 Brow n,Ka thyll ENGIl 22000 
103 Smit h,Jo hnllll MGRIl 30000 
104 Smit h,Pe terll TECH 20000 
105 Whit e,Ha rold MGRIl 25000 

ENO NAME JOB SAL 
(2 ) ( 2 , 1 ) (2,2) (2,3) (2 ) (2 ) 

106 Gray ,Tom Illlllll SECIl 10000 
107 Hall ,Ted Illlllll TECH 15000 
108 Gree n,Mi ke llll SECIl 10000 
109 Brow n,St evell MGRIl 35000 
110 Thorn as,L isall MGRIl 32000 
111 Grov e, Pa ulllt! SECt! 10000 

(a) 

Tracks page page 2 

ENO( 1 ) ENO(2) • 

2 NAME (1,1 ) NAME(2,1) • 

3 NAME(1,2) NAME(2,2) • 

4 NAME(1,3) NAME(2,3) • 

5 JOB ( 1 ) JOB(2) • 

6 SAL ( 1 ) SAL(2) • 
(b) 

Figure 2 - Representation of a partitioned 
transposed file on tracks ofa magnetic 
disk unit.(a) Partitioning of relation 
EMPLOYEE into equal size pages. (b) Storage 
layout of pages on tracks of a cylinder. 
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5.2. Category subsystem 

This is the most central subsystem 
of the proposed design. The primary objec 
tive of the design of this system is to 
extend the parallel search capabilities 
of content-addressable (associative) 
memories in the efficient processing of 
relational operations on transposed 
files. The basic function of this subsys
tem is to flag those tuples that have 
satisfied the query conditions and to 
generate addresses associated with the 
flagged tuples. Based on its functional 
characteristics, this system can be 
veiwed as a three-level hierarchy of 
components, shown in Figure 3. 

Level 
3 

Level 
2 

Level 
1 

From stora e subsystem 

2 • • 

Associative Memories 

• • 

Merger/Projector 

< 

Address 
generator 

> 

Counter 

To IP Processors 

N 

Figure 3 - Logical view of category 
subsystem. 



On level 3 of the hierarchy there 
are N distributed-logic associative 
memories, each with a comparand, a mask 
and two response registers x and y. The 
structure of the associative memories is 
similar to the memories designed in [9] 
with the exception that the capabilities 
of the memories employed here are limited 
to equality and threshold searches only. 
The hardware implementation of equality
threshold (=,<,») functions in an assoc
iative memory involves no complex logic 
circuitry. Moreover, the resulting sig
nals need to propagate in one direction 
only, along the bits in a word, making 
the words functionally independent from 
one another. Consequently, the length of 
memories can be expanded easily to accom
modate larger sets of data. 

On Level 2 of the hierarchy there is 
the PROJECTOR/MERGER that processes the 
responses generated by the associative 
memories of the level below. This 
component is an associative memory with 
equality search capability. Each bit 
column of this memory corresponds to an 
associative memory on Level 3. Its 
function is to project the results of 
search on associative memories and to 
maintain these results for future 
decisions so that previously selected 
tuples do not participate in subsequent 
searches. Its major function however, is 
to merge (combine) the responses genera
ted byAMs to produce the final results 
which satisfy the query expression in 
its entirety. 

On Level 1 of the hierarchy there 
are two components: a parallel counter 
and an address generator. The parallel 
counter is constructed from a set of full 
adders, and is capable of counting the 
number of responses in an array of size n 
in 0(10g2n) gate delay times. Detailed 
discussion for this device can be found 
in [10]. The task of the address genera
tor is to gener~te quickly addresses of 
the tuples satisfying the query condi
tions and to transfer these addresses to 
the summary subsystem. This component 
resembles the hardware implementation of 
a heap tree which is capable of genera
ting addresses of K responses in a mem
ory of size n in O(log n+K) gate delays. 

5.3. Summary subsystem 

The primary function of this system 
is to perform the required statistical 
functions on summary attributes of the 
qualified tuples. A set of functionally 
equivalent parallel processors called 
Post-Processors (pp) are used for this 
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purpose. Befor.e PPs apply the specified 
functions on selected tuples, the data 
produced are collected and partitioned 
into equal size, disjoint subsets. Data 
can be addresses, attribute values or 
both. Figure 4 shows the block diagram 

-of this system. 

. From one or more 
;:::;:;:..::.::..;;z.;:::~ 

subsystems 

• • • 
Intermediate Processors (IP) 

• • 
Post Processors (pp) 

2 3 • • M 

Memory Banks 

From storage subsystem 

Figure 4 - Block diagram of summary 
subsystem. 

The process of collecting and group
ing the data is carried out by a set of 
processors called Intermediate Processors 
(IP). The purpose of partitioning addres
ses into disjoint subsets is to minimize 
the access conflicts to pages of summary 
attributes. The purpose of attribute 
partitioning is to distribute the work 
equally among postprocessors. The PPs 
have access to a common memory bank which 
contains the summary attributes. A memory 
controller is in charge of scheduling 

i access requests and resolving any confl
icts, using a predefined priority scheme. 



6. Relational Algebra Processing 

In most statistical data base 
queries apart from statistical functions 
and analysis, the process of selecting 
qualified tuples involves the use of the 
same set of operations as in relational 
data bases. In this section we describe 
the implementation of relational algebra 
operations (i.e. selection, projection 
and join). Because parallel sorting has 
been used as a basic building block in 
the design of algorithms, we describe the 
sorting algorithm first. The following 
notations are used in illustration of the 
algorithms. 

Notation 

N : Number of Associative Memories and 
Intermediate Processors. 

M Number of Post Processors. 

K Length of associative memories in 
number of words, as well as the 
length of a page of an attribute. 

w Length of a word in array memory of 
each associative memory. 

C. : Cardinality of relation S. 

IS.sl : Average length of a data item in 
attribute s of relation s. 

nsa, nca : Number of summary and category 
attributes specified in a query. 

p. Maximum number of pages of category 
attributes that can be staged into 
the associative memories and 
processed in parallel, i.e. p.=N/nca. 
This set of attributes will be 
referred to as segments. A segment 
therefore occupies (Is.s. I/w)*nca 
associative memories. 

d. : Number of unique tuples in a 
projected relation. 

L. : Number of loads required to process 
the entire set of files containing 
the category attributes, i.e. 
L.=C./(K*p.) • 

A relation is divided into equal 
size segments, each segment contains K 
tuples, except possibly the last one. A 
segment is spread over as many files as 
there are attributes in the relation. A 
page of a transposed file may be stored 
on several tracks of a cylinder as shown 
in Figure 2. Without loss of generality, 
it is assumed that IS.sl<=w. That is, a 
page on a track contains a page of an 
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attribute "in its entirety and moreover, a 
page of an attribute occupies exactly one 
AM. 

Parallel sorting algorithm 

The sort algorithm is divided into 
three stages which can be processed in a 
pipeline manner. In the first stage, the 
category subsystem with the help of IP 
processors sorts contents of the associa
tive memories by enumeration. This 
process is repeated until all the records 
have been staged into the associative 
memories and sorted. At the end of this 
stage, each IP processor will have L. 
lists whose elements are unique and 
sorted within each list. 

In the second stage, each IP proces
sor performs a binary sort-merge on its 
sublists. The controller, based on infor
mation provided by IP processors, deter
mines a group of disjoint subintervals 
and assigns a postprocessor to"each sub
interval. Each IP in turn divides its 
sorted list into M groups, belonging to a 
different interval and transfers each 
group to the corresponding post 
processors. 

In the third stage, a post processor 
receives N sorted lists, one from each IP 
and performs a binary sort-merge on these 
lists. As a result, each PP will have in 
its possession a sorted inverted list of 
length d./M whose elements are greater 
than the elements in its left hand side 
processors and less than those in its 
right hand side processors. Second and 
third stages are clear and need no expla
nation. The algorithm for the first stage 
is provided below: 

To illustrate the algorithm consider 
the relation 5 with n attributes 
SI,S2, •.• ,So to be sorted with respect to 
each of the attributes SI,S2, ••• ,Sm 
(m<=n) while their association is to be 
represented by inverted lists. The data 
items s i , 1, S i ,2' •.• , S 1 ,m are referred to 
as the values of attributes SI,S2, ••• ,Sm 
in the ith tuple of the segment in the 
AMs, as well as the content of the ith 
word in the associative memories holding 
the attributes SI,S2, •.. ,Sm. 

For simplicity, assune that the 
attribute sJ is stored on the jth AM. 
CI, J is also referred to as the rank of 
Sl ,J among all the words in the jth AM. 
Each segment of relation 5' (S.SI' 
i=1,2, ••• ,m) in the AMs is associated 
with an IP processor which receives the 
data and acts accordingly. Since each 
segment in an AM is processed indepen-



dently, for simplicity throughout the 
algorithm we consider one segment and its 
associated IP processor. 

Algorithm - Sorting a relation on m 
attributes: 

Step 1 - Load associative memories with 
one page of the attributes Sl'SZ,'" 
and Sm. 
Let i = 1 

Step 2 - Move the contents of word i into 
the comparand registers, i.e. 
Si,l,SI,Z, ••• ,SI,m forms the content 
of comparand registers associated 
with AM 1 ,AM z , ••• ,AMm, respectively. 

Step 3 - Perform a search on these AMs. 
As a result, response bits XjYj 
(j=1,2, ••• ,k) will be in one of 00, 
01 or 10 states, indicating that the 
content of word j is greater than, 
equal to, or less than the argument 
in the comparand register. 

Step 4 - Employ the parallel counter to 
enumerate number of "10" responses 
(less than comparand value) in each 
AM. For this case, m numbers 
CI,l,CI,Z, ... ,Ci,m are generated. 

Step 5 - Transfer these data t~ the 
corresponding IP. The record which is 
transmitted has the following format: 
(SI", ••• ,SI,m:CI", ••• ,CI , m). 

Step 6 - Let i = i + 1, if i < K then 
proceed to Step 2, else proceed to 
Step 7. 

Step 7 - If there are more pages to be 
processed, proceed to Step 1, else 
STOP. 

While the category system executes 
this algorithm, the corresponding IP 
processor rearranges the attributes and 
produces the inverted lists as follows: 
For each segment of attributes in AMS, it 
uses m data arrays AI, Az, ••• ,Am with the 
same length K as the AMs, and m mark-bit 
arrays MAl, MA z , ••• , MAm also the same 
length K. Each element i of these data 
arrays has a field pointing to a bucket. 
This bucket is used for storing the 
addresses of tuples associated with the 
key i. The mark-bit arrays are used to 
mark and later locate the elements of the 
data array which contain a key value. 

Step 1 - Allocate a new set of arrays AI, 
A2 , •• • , Am. 

Step 2 - Receive from category system 
(.51, " ••• ,5j ,m:CI, 11 ••• 'C, ,m). 
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Step 3 - Store the key values in their 
corresponding data arrays at proper 
locations and the tuple IDs in the 
associated bucket. 

For j = 1 to m do 
begin 
MAj(Ci,J) = 1 
Aj(cl,j} = Sl,j 
bucket(c I, j) = bucket(c I, j) u i 
end 

Step 4 - If there are more tuples to be 
processed, proceed to 5tep 2, else 
proceed to Step 5. 

Step 5 - Arrange the inverted lists - To 
do this, the mark-bit arrays MA are 
used to locate the keys in the data 
arrays and to eliminate any existing 
empty locations. 

Step 6 - If there are more pages to be 
processed, proceed to Step 1, else 
STOP. 

Figure 5 shows the implementation of this 
algorithm on a single column of data. 

AMi 

o S3 

S1 

2 S4 

3 53 

4 S4 

5 S3 

6 S2 

Figure 5 -

(rank,da 
I 
ta, addres.s) 

t 
1 , S2 
5 , S4 
0 , S 1 
2 , S3 

~ ~ 
0 S1 

1 52 

2 S3 

3 0 

4 0 

5 54 

6 0 

Data array 

Implementation 
algori thm. 

, (6) 
, (2,4) 
, (1) 

,(~ 

e_> (1) 

e-> (6) 

·e __ > (0, 3 , 5 ) 

e __ > (2,4) 

in IP I 

of the sorting 



In order to derive the order of time 
complexity of the sort algorithm relation 
S is considered to be sorted on its prime 
key attribute, i.e. m=1 and all the 
values in the attribute are distinct. Let 
SI be the time complexity of the ith 
stage. The time of the first stage is 
equal to L. times the time of data 
staging plus the time of sorting N pages 
L. times. Thus, S,=O(C./N+C./N). Stage 2 
is a binary merge on L. lists, each K 
words long. Therefore, 
Sz=O( (C./N) *logzL.). Similarly, stage 3 . 
is a binary merge on N lists, each 
C./(N*M) words long. Thus, 
S3=O«C./M)*10g zN). Therefore, the 
overall time complexity of the sorting 
algori thm is : 
O(C./N + (C./N)*logzL. + (C./M)*logzN). 

Selection operation 

Selection is the simplest but very 
important relational algebra operation. 
Selection conditions are normally presen
ted in a disjunction or conjunction nor
mal form (ONF,CNF). An expression in ONF 
can be evaluated for all the K*p. tuples 
residing in AMs simultaneously. The 
processing cost of the selection opera
tion in terms of the number of compari
sons, is O(L.). For the best case where 
nca=1, the required number of compari
sons is C./(N*K) and for the worst case 
where nca=N, the number of comparisons 
would be C,/K. In either case, data can 
be searched faster than the storage sys
tem can provide them. However, due to the 
distinct storage organization, the effect
ive data transfer rate of the storage sys
tem is higher than those OBMs employing 
tuple oriented schemes. Thus, this system 
provides a considerably better response 
time which is an advantage over other 
data base machine designs. 

Projection operation 

Since fully transposed files are the 
basic storage units in this design, pro
jection of a relation on specified attri
butes already exists. However, in order 
to eliminate duplicate tuples among these 
attributes, the sorting algorithm is 
employed. Therefore, the time complexity 
of this operation is the same as the 
sorting algorithm except that, the term 
C. is to be replaced by d., number of 
unique tuples in the projected relation. 
The cost of data staging will remain the 
same. 

Join operation 

As in projection, the sorting algo
rithm is used to perform a join between 
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two or more relations. To join relations 
R(a~b) and S(b,c) on attribute b, the 
sorting algorithm generates an inverted 
list for each attributes R.b and S.b. 
These lists are then distributed over the 
PPs. Postprocessors merge the lists and 
with the occurrence of a hit (e.g. equal
ity), addresses in associated buckets 
give the logical addresses of the tuples 
in Rand S relations. These addresses 
then are translated to the physical loca
tion addresses in the memory bank where 
the summary attributes are residing. 

If any statistical function is to be 
evaluated on summary data, the PPs will 
carry it out and transfer the result to 
the user. The time complexity of executing 
a join operation in this system is equal 
to the time of sorting both relations, 
one at a time, plus the time of parallel 
merging of two inverted lists. This time 
is proportional to the cardinalities of 
the relations involved, divided by M. 

7. Summary and conclusions 

The processing steps involved in 
executing statistical queries have been 
specified. Based on these specifications 
and the characteristics 6f SOBs, the 
design of a OBMarchitecture is proposed 
which provides solutions to some of the 
problems of statistical query processing. 
Since the data staging phase of a query 
execution is the main factor in degrada
tion of system performance, the objective 
of this design is to provide for effi
cient performance in executing relational 
operations on transposed files. This ob
jective is met by distributing the work 
over two functionally specialized subsys
tems, each of which is responsible for 
executing the required operations on a 
different class of attributes, i.e. cate
gory and summary attributes. A partitioned 
AM is used as the main component of the 
category system. Conceptually, the assoc
iative memory can be viewed as a hierarch
ically structured associative memory with 
equallty-threshold search capabilities. 
Motives behind the design of this AM can 
be seen in the following statements of 
merits : 

1. In processing fully transposed files, 
the relationship between attributes of 
tuples must be kept properly. Because of 
the tabular structure of AMs, they are 
suitable devices for serving this 
purpose. 

2. Parallel content-addressed search 
capabilities of AMs will be enhanced, By 
partitioning AMs into equal, smaller, .and 



independent AMs, it is possible to carry 
out search operations on different 
category attributes specified in one or 
more queries. Thus, a faster search can 
be achieved. 

3. In executing a selection operation on 
a single relation, regardless of the 
number and types of clauses in the query 
expression, responses can be produced 
with one comparison. 

4. The most important feature of this 
component is its ability to sort the 
selected tuples with respect to several 
attributes simultaneously and at the same 
time produce an inverted list for each 
attribute. Sorting is performed by 
enumer- ation, i.e. the number of keys 
less than a particular key in an array 
specifies the location of that key in the 
array, had it been sorted. The sorted 
inverted lists are used for 
implementation of com- plex relational 
operations, projection and join. 

A considerable improvement in proc
essing statistical queries can be achie
ved by means of functionally specialized 
subsytems. Distribution of statistical 
query phases over these subsystems en
hances the system performance both in 
terms of response time and throughput. 
This improvement is due to the following: 
First, because of functionally special
ized subsystems, parallel pipeline pro
cessing is achieved. 
Second, the problem of data movement bet
ween system components is alleviated to 
the extent that only required category 
attributes will be staged into the cate
gory subsystem and only qualified sum
mary attributes are brought into the sum
mary subsystem. 
Third, because of implicit representation 
of qualified tuples by means of inverted 
lists and addresses, data exchange be
tween processors causes no communication 
di ff iculty. 
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ABSTRACT 

This paper presents a report on work in progress on the development of the SIBYL 
system, an economist's workbench at the World Bank. The principle objectives are to provide 
capabilities for sharing data among a large and diverse user community, handling a growing 
number of databases, and providing access to a collection of analytical and modeling packages. 

The implementation is oriented towards using off-the-shelf software, a large mainframe 
with Model 204 DBMS to handle the databases, and a group of microcomputers running UNIX. The 
key components integrating this architecture are a database template, a set of generalized 
procedures for browsing, updating and extracting data, and translators between the databases 
and the analytical and reportwriting packages. 

The project has been in progress 
for three user groups. It will continue 
ment focused on providing a batch update 
user interface, and establishing a local 

INTRODUCTION 

SIBYL is a specialized computing 
system dedicated to satisfying the needs 
of economists for managing economic and 
social data - specifically timeseries -
and for analyzing, projecting and 
presenting them. The system is currently 
under develoment by the World Bank, 
supported by consultants from Computer 
Corporation of America, System House 
International, and several other com
panies. 

The concept of a workbench 
derives from the idea of providing a 
suitable environment for access to 
materials, and carefully selected tools 
for economists similar to those available 
to other professionals, e.g., the car
penter's workbench or the chemist's 
laboratory. The successful implementa
tion[~f the programmer's workbench (UNIX 
PWB) demonstrated the feasibility of 
providing the needed facilities to sup
port programming professionals through an 
integrated computing system. The purpose 
of the SIBYL development is to provide a 
similarly friendly and complete set of 
facilities for economists. 

since May 1982 and a prototype system is installed 
to evolve over the next year with additional develop
facility, writing validation procedures-, refining the 
network. . 
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The World Bank environment places 
several specific requirements on any 
system to support economic work. First, 
it must"be capable of supporting several 
hundred economists and researchers 'who 
have varying levels of motivation and 
expertise in using computing systems, and 
whose problems present varying levels of 
complexity. Second, the Bank's databases 
are large, numerous, and diverse; their 
structure will changT2~ver time and their 
number will increase • 

The functions of the SIBYL system 
are to support maintenance and analysis 
of timeseries data, primarily social and 
economic indicators, and trade, com
modities, and international debt statis
tics. The system provides a central 
facility for sharing official Bank data 
and distributed facilities for analysis 
and presentation of the data. It sup
ports creation and management of 
timeseries databases, statistical 

analysis, econometric modeling, 
reportwriting and graphic presentation. 

This report describes work in 
progress on the system. We believe that 
it embodies an uncommon but effective 
approach to storing and processing 



timeseries data and an innovative use of 
microcomputer technology. 

SYSTEM FEATURES 

The implementation of the system 
in providing for management and analysis 
of timeseries data differs from most 
other approaches in three important ways: 
First, it uses a genf511-purpose commer
cial DBMS, Model 204 ,for management 
of its databases. Second, it provides a 
loosely integrated collection of 
indi vidual packages, a .. too1-box" of 
facilities for statistical analysis, 
modeling, reportwriting and graphic 
presentation, rather than a single 
monolithic system to support all of these 
functions. Not every user' necessarily 
will have or use the same tools. Third, 
it uses microcomputer workstations run
ning UNIX to perform statistical 
analysis, modeling and reportwriting 
functions. The microcomputers are linked 
to a mainframe where centralized 
databases reside. 

This approach has both good and 
bad points. The main benefit of using a 
general purpose DBMS is that it allows us 
to provide a full set of data management 
functions (including joins) with no time 
investment in data management software 
development. Also, because the function 
of data administration was new in the 
Bank when the project started, there was 
little knowledge of the available data 
and the relationships among them and no 
broad, long-range view of the functions 
that needed to be performed. Using a 
DBMS allows us to put up databases 
quickly, to modify their structure where 
necessary, to add new databases easily, 
and to combine data from disparate 
databases in an ad hoc fashion. 

There is an obvious disadvantage 
to using a DBMS for timeseries. While 
its storage and access mechanisms are 
reasonably efficient for large and 
numerous databases, they cannot be 
expected to be as efficient as those 
storage and retrieval mechanisms thaY41re 
specifically designed for timeseries • 
However, the inherent flexibility of the 
DBMS in responding to changes in the 
number and structure of the databases as 
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well as the variety of the functions to 
be performed on them, offsets the higher 
cost of processing and storage. 

The primary benefits of the 
tool-box approach using off-the-shelf 
software are that it minimizes software 
development time by using existing 
software, except for the interfaces 
between packages, and it encourages 
incremental system releases instead of a 
single release at a much later date. It 
also provides flexibility for con
tinuously adding new too1s'as new func
tions are required or as new products 
become·avai1ab1e. In addition, the tools 
are often more powerful, more task 
specific, or more appropriate to a par
ticular user's expertise than could be 
provided for by a comprehensive system. 
In this way, users can be selective in 
the portions of the system that they 
learn' and use. 

The disadvantages of such an 
approach are that many of the packages 
use different languages and some complex 
functions may require the use of multiple 
tools, requiring the user to pass from 
one language environment to another. To 
minimize this we have tried to select 
tools with overlapping functions so that 
simple tools are available for simple 
jobs with more sophisticated tools for 
complex jobs, but we have not completely 
eliminated the problem. 

COMPONENTS OF THE SYSTEM 

Each of the major components of 
the system is described briefly below. 
Some are included in further detail in 
the hardware and software architecture 
descriptions given later. 

The Databases 

The databases include various 
types of timeseries data, along with 
definitions, supporting information (such 
as code conversion tables and source and 
units information), and explanatory 
footnotes that may apply to any level of 
data in the database. The system sup
ports official databases (which are only 



updated on a fixed schedule after caretu1 
validation of the updates), working 
versions of the official databases, 
(which are continually updated), personal 
databases, and extracts from the official 
databases (whose contents are frozen for 
analysis or for the generation of Bank 
publications). The security mechanisms 
of Model 204 are used to control the 
status of each database. Many of the 
databases are relatively large, e.g. 60 
million characters. The final number of 
databases to be supported is expected to 
be several hundred. 

A Pro Forma Template 

The pro forma template is a guide 
for mapping the logical structures of a 
timeseries database into suitable Model 
204 structures. It is needed for two 
reasons: 1) to establish efficient 
structures within Model 204 to be used 
for handling each of the peculiarities of 
the data, specifically timeseries and 
footnotes; and 2) to provide some 
measure of consistency among disparate 
databases so that a standard set of 
access procedures can be prepared. 

The template accommodates data 
that are peculiar in several respects. 
Each database contains not only 
timeseries data but definitions, support
ing information, and footnotes that may 
apply to any data in the database. The 
data may contain timeseries of any peri
odicity, including usual ones (such as 
fiscal year, annual) and uneven ones. 
Multiple periodicites may occur within a 
single database or file. (For example, 
weekly, monthly, and annual versions of 
currency conversion rates are main
tained). If the data are thought of as 
multi-dimensional arrays, they are sparse 
with respect to all dimensions except 
time. (For example, many economic 
indicators that are available for the 
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developed countries are not available for 
developing countries). 

Access Procedures 

A set of screen-based procedures 
for browsing, updating, and extracting is 
provided for each database. Users fill 
in the screens with their parameters for 
the particular functions they require and 
the procedures generate Model 204 
requests to perform the functions. 

While the overall functions and 
basic screen layouts are common to all 
databases, the screens and procedures 
must be database-specific because each 
has its own unique fields and structural 
details. These procedures are generated 
for each database, because the number of 
databases makes it infeasible to 
hard-code procedures for each one. The 
data needed for generating the procedures 
are established by the template and 
stored in the database it describes. 

Ana1ytica1/Reportwriting Tools 

The system includes packages for 
statistical exploration, econometric 
modeling, spreadsheet analysis, 
reportwriting and graphics. Most of the 
packages are commerica11y available, 
off-the-shelf products but some are 
Bank-produced systems that solve problems 
specific to the Bank. Many of these 
packages have overlapping functions, to 
allow users to choose packages based on 
their specificity to a particular problem 
or the user's familiarity with them. 
This also means that a user can apply 
very simple tools to simple problems, 
reserving the need to upgrade to more 
sophisticated tools for complex problems. 
The system also includes standard utility 
software. 

Translators 

Because SIBYL uses off-the-shelf 



packages that process data in formats 
that are different for each package and 
different from the databases, translators 
must be present for each package to 
convert data from the database format to 
the package format. Packages that 
produce data that need to be stored in 
the database (e.g. modeling packages, 
which produce projections, but not 
reportwriters) also require reverse 
translators. To support translation for 
packages on the microcomputers, a stand
ard database format is provided on the 
microcomputers under UNIX. The extract 
procedures place data in this format when 
the intent is to process the extracted 
data with a package that runs on the 
micros. 

HARDWARE ARCHITECTURE 

SIBYL is implemented on the 
central IBM computing facility at the 
World Bank which was upgraded from an IBM 
3031 to a 3083 in April, 1983. The 
operating system is VM, under which CMS 
and OS/VS1 run. .Because the IBM center 
is run on a cost-recovery basis, users 
are obligated to pay for their processing 
and storage costs. 

In addition to the IBM mainframe, 
SIBYL uses Codata M6800Q-based worksta
tions that reside within the environment 
of each of the user groups. Each Codata 
includes 1 million bytes of memory, a 
5.25 inch floppy disk, an 84 million byte 
hard disk, and access to a cartridge or 
9-track tape drive. Experience to date 
indicates that each configuration can 
support about five or six simultaneous 
users, depending on which packages are 
running. Printers may be shared or 
dedicated to a terminal. The worksta
tions are purchased outright by each user 
group, and continuing costs are for 
maintenance only. 

The workstation/mainframe 
approach was chosen because each type of 
hardware provides benefits that cannot be 
attained from the other. 

The workstations provide 
low-cost means of processing 
some types of requests, 
without incurring the operat
ing and storage costs of 
using the mainframe. The 
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recurring costs associated 
with running the workstation 
are limited almost entirely 
to maintenance. They can 
provide the needed speed, 
power, memory and disk space 
for many analytical, report 
generation and graphics 
tasks. In addition, the 
workstations provide users 
with a level of control over 
their computing environments 
that is not available to 
users of the mainframe; with 
a workstation, users control 
the available hardware con
figuration, the load level on 
the machine, and the 
prioritization of jobs. 

The mainframe, on the other 
hand, is capable of providing 
the high speed, power, 
amounts of memory and disk 
space that are required for 
very long or complex jobs or 
for storing and managing 
large databases. In addi
tion, many software packages 
were designed solely to be 
run 'on mainframe computers 
and cannot cost-effectively 
be ported to workstation 
hardware. Finally, the 
mainframe is the most logical 
place to store shared 
databases because it is 
accessible by all users. 

The workstations are linked to 
the mainframe through dedicated phone 
lines (9600 baud) and dial-up lines (1200 
or 4800 baud). Direct hardwiring is 
difficult because the Bank is situated in 
several buildings in several different 
city blocks. Since the workstation does 
not resemble a standard peripheral device 
for the IBM software (3270 terminal), the 
workstations are connected through a 3270 
emulator. 

SOFTWARE ARCHITECTURE 

The main components of the 
software are Model 204, the DBMS that 
runs on the mainframe; UNIX, the operat
ing system on the microcomputers; the 
analytical packages; the translators; and 



the template. 

Model 204 was selected to manage 
the centralized databases following a 
benchmark of several DBMS's for mainframe 
computers. The main reasons for its 
selection were that it provides the 
needed flexibility for continuously 
adding new databases or changing the 
structure of existing ones; it supports 
ad hoc combining of dat'a from different 
files; and it is efficient for large and 
numerous databases and large numbers of 
concurrent users. Model 204 is also used 
for other major database applications in 
the Bank. 

UNIX was selected as the operat
ing system for the microcomputers because 
of its increasing use on a wide-range of 
machines, the availability of a number of 
analytical packages which already run 
under it, and the breadth and ease-of-use 
of its utilities. It is flexible enough 
to support many different kinds of 
end-user functions, ranging from, editing 
and basic wordprocessing to sophisticated 
statistical applications. In addition, 
it is a powerful system that supports 
system development well. It provides a 
large number of commands, and the command 
language itself is expandable. Simple 
commands may be readily combined to 
perform more complex functions. Finally, 
because UNIX is a somewhat standardized 
system, software that runs under UNIX is 
usually portable from one hardware system 
to another. As other suitable 
microcomputers enter the market, the 
software can be easily transferred to a 
new environment. This frees SIBYL from 
being tied to a particular vendor, or 
even a particular processor or architec
ture. 

Several analytical and modeling 
packages comprise the SIBYL tool box. 
These packages run on either the IBM or 
the Codata depending on which is the more 
appropriate ~nvironment. The packages 
include: ' 

HANDE - A Bank syst'em that 
assists in repetitive cal
culations and is particularly 
useful for production of 
Bank-standard tables. 

SAS - A statistica~ package 
developed by the SAS Institute. 
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SIM2 - A Bank system for 
simple models. 

TROLL - An econometric modeling 
package developed by the MIT 
Center for Computation Research 
in Economics and Management 
Science. 

MULTIPLAN - An electronic spread
sheet from Microsoft. 

AMP - A Bank-developed system 
that includes a modeling pack
age and a reportwriter that is 
especially suited to timeseries. 

S - A system for exploratory 
statistical analysis' 
developed by Bell Labs., 

Translators have been built to 
convert from the database structure to 
each of the packages formats, and vice 
versa as appropriate. 

Initially, no translators were to 
be provided between packages. This meant 
that to pass data from one package to 
another, it had to be re-stored in the 
database format and then translated to 
the second package. We did this to limit 
the number of translators that had to be 
written. However, since most packages do 
not handle supporting information or 
footnotes, the process of translation to 
the packages involves removing informa
tion as well as reformatting. We have 
therefore established a second standard 
format for translating to the packages 
which does not include supporting infor
mation or footnotes. The most obvious 
choice for the second standard format was 
the spreadsheet, and translators between 
the spreadsheet and several other pack
ages ere under development. 

The pro forma template provides a 
general format for all timeseries 
databases within Model 204. The template 
consists of a common set of characteris
tics for data content and structure with 
an associated set of metadata. The 
metadata facilitates the automatic gener
ation of database-specific procedures so 
that new procedures can be produced 
whenever a new database is designed and 
loaded. 
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All data for a particular 
database - timeseries, footnotes, conver
sion tables, ,.other' support information 
and the database ,description (field 
names, datatypes, ,etc.) -are stored in a 
single Model 204 file, using different 
record types. Within this file, a common 
set of index fields (or keys) is used. 
Each record type is associated with a 
particular combination of index fields. 
For examp1e,in a database where 
timeseriesare identified by country, 
indicator, and source "record-types are 
provided for country data, indicator 
data, country/indicator data, 
country/source data, etc. The template 
~pecifica11y identifies index fields, 
informational fields, footnotes, peri
odicity, user-defined period names, and 
period indices. 

Index and data fields are named 
and described by the database desigf!.er. 
Other fields have standard names and 
descriptions. The system distinguishes 
footnotes from user-defined data fields 
(which may contain textual information) 
because footnotes must be recognized and 
treated specially ,by computational, . 
programs (which inform the user of their 
presence) and report generators (which 
automatically print,them). 

STATUS/PLANS 

The project has been under 
development since May 1982, and the 
prototype system was released to an 
initial group of users in early October. 
There are ~urrent1y three distinct user 
groups in different divisions in the 
Bank. Since the.re1ease of the 
prototype, new information.has,been 
learned about the databases and user 
behavior that was not evident at the 
outset of the project. Our experience 
thUS' far ind'i~ates that: 

The template is flexible 
. enough to handle specifica

tions of virtually all 
timeseries ~atabases of the' 
types found in the ,worid 
Bank. In addition, storage 
and processing of databases 
designed under the template 
are reasonably efficient. 
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The programs needed to gener
ate database-specific proce
dures are sophisticated and 
complex. Although it is 
feasible and effective to 
generate these procedures, it 
requires more effort than was 
previously assumed. 

Interactive data entry and 
updating on the mainframe are 
considered to be expensive by 
the users for large amounts 
of data. The generated 
procedures must also provide 
for delayed batch updating 
and must be prefaced by an 
inexpensive facility for data 
entry. Transaction valida
tion and modification prior 
to initiating the batch job 
must also be present to 
protect the integrity of the 

. database. 

Extracts from the Model 204 
databases and working files 
on the Codata for batch 
updates present a data' 
management problem that is 
separate from the management 
of the databases themselves. 
The operating' environments on 
the IBM and UNIX on the 
Codata do not provide suffi
cient tools to handle this 
.easily. 

The next phase of theCSEW 
project will focus on three areas of 
development. The first is providing a 
reliable facility for manipulating 
extracts on the workstation, and sending 
batch updates to the mainframe. Our 
initial evaluation Y~1 resulted in the 
selection of Ingres to run on the 
Codatas. The facilities will minimize 
connect time on the IBM, provide a 10ca1-' 
ized capability for data manipulation" 
including arithmetic and Boo1eantechni
ques, and provide an audit trail which 
can be used to generate transactions for 
batch updates. Several concerns are 
raised with using a DBMS on the worksta
tion, such as performance, particularly 
with respect to the multiple users, file 
sizes, etc;'hand1ing duplicate data on 
the IBM and Codata; and the impact on 
package translators. These issues, as 
well as others, are currently under 
investigation. 



A second area of development will 
be on the implementation of a local 
network to improve the speed and 
reliability of communications. In addi
tion to improving data transfer and 
back-up, the network would offer the 
option for load balancing among user 
sites. 

Lastly, we plan to devote some 
effort to improving the user interface. 
The current menu-based system is adequate 
for new or infrequent users, but it 
becomes inconvenient and tedious for 
experienced users. It is important to 
provide a mechanism for moving quickly 
through the functions, either through 
some global command language, or a more 
natural query formulation process. 
Access to a data dictionary should 
provide a facility for identifying the 
database contents. The level of detail 
to be included in the data dictionary is 
still under discussion because the 
relevant user requirements are not com
pletely defined. 
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AIDS l'IDJEC1': foDrIVATION, srATlSTICAL DATABASE MANl\GD1ENl' 
ISSOFS, PERSPECTIVES, AN) D~ONS* 

James J. Thomas and David L. Hall 
Pacific Northwest Laboratories 

Richland, Washington 99352 

The Analysis of Large Data Sets (ALeS) project was initiated at the Pacific Northwest 
Laboratories in 1978 through funding from OOE/BES Applied Mathematical Sciences. At that 
time, it was evident that the technical community's ability to collect scientific data was 
far outstripping existing capabilites to manipulate, display, and analyze such large data 
sets. Therefore, a new research direction in the analysis of large data sets was 
established. The ALDS project is composed of a team of statisticians and computer 
scientists. Their close interaction has been a key factor in contributing to our 
discoveries and future directions for analyzing large data sets. To help guide this 
program, an interdiSCiplinary team of consultants and reviewers were gathered together on 
an periodic basis to review progress and suggest research directions. 

This paper will discuss the motivation and initial goals of the ALDS project, the impact 
of large data sets, the data management issues addressed by ALeS, current research tasks 
and their impact on statistical data base management, and perspectives. 

1.0 KJrIVATION & INITIAL OOMS 

The Analysis of Large Data Sets (ALDS) project 
was conceived jointly by Pacific Northwest 
Laboratory (PNL) and the OOE/BES Applied 
Mathematical Sciences Research Program in 1978. 
At that time it was evident that the technical 
community's ability to collect scientific data 
was far outstripping existing capabilities to 
manipulate, display, and analyze such large 
data sets. It was also recognized that a major 
component in solving tommorrow's energy 
problems was the development of this analysis 
capability. Therefore, a new research 
direction in the analysis of large data sets 
was established within the OOE/BES Applied 
Mathematical Sciences Research Program with PNL 
as the lead contributor. This section 
discusses the overall problem of analyzing and 
managing large quanti ties of data and discusses 
same of the ALeS research. 

Large data sets have existed as long as 
researchers have been collecting data. At times 
data has been successfully analyzed with 
dramatic results. A familiar case is the 
nationwide retrospective study using 
experimental data and vital statistics records 
on the effects of smoking. The study concluded 
that those who smoke excessively have an 
increased chance of developing lung cancer 
[Brown 1972). An example from the private 

sector is the analysis by Bell Telephone 
Laboratory statisticians [Gabbe 1967) of proton 
data from the Telstar I satellite. This 
analysis significantly increased understanding 
of the earth's radiation belts. Although these 
and other examples of successful analyses 
exist, historically there was no general 
methodology, applicable across many fields, for 
analyzing large data sets. Furthermore, there 
had been no research efforts directed 
specifically at the problem. Most researchers 
who had large data sets were necessarily 
interested in the analysis of only their 
particular data. Thus, almost all existing 
large data set analysis techniques were special 
purpose with little consideration given to the 
problems and opportunities common to all large 
data sets. 

This lack of a general methodology and the 
importance of such was recognized by the 
Institute of Mathematical Statistics (IMS), the 
theoretical statistics professional society. 
In February of 1978 IMS held its first special 
topics conference in 44 years. The topic of 
the conference was the analYSis of large data 
sets. Examples of large data sets were given, 
same specific analyses were presented, and 
general analysis philosophy was discussed. At 
the end of the conference, it was evident that 
an important problem, spanning many 
disciplines, had been addressed, but that there 
was no general solution. 

*Work supported by the u.S. Department of Energy, Contract DE-AC-06-RLO 1830. 

82 



Since 1978 the recognition of the analysis of 
large data sets as an important research· area 
has grown steadily. In addition to the AIDS 
project at PNL, several other institutions have 
begun research programs that address certain 
aspects of large, complex data sets. 
Researchers at oak Ridge National Laboratory 
(ORNL) are studying classification and patiern 
recognition strategies as a way of reducing 
dimensionality in large, complex data sets. 
Friedman and Breiman have recently begun a 
project in the analysis of large data sets 
researching 1) nethods of subsampling that 
weight sparse areas of the population, 2) 
software for selecting several subsamples and 
performing contrasts on each sample and 3) 
techniques for identifying outliers and 
imputing missing values. The American 
Statistical Association (ABA) held an invited 
paper session on the analysis of large data 
sets at its 1982 annual neetings. Within the 
computer science conmmity there is an annual 
international conference on Very Large Data 
Bases that addresses the data nanagement 
problems of large data bases. Large data sets 
have been a major reason for the recent 
increase in. interest by the computer science 
conmmity in the data nanagement problems of 
statistical data bases. Lawrence Berkeley 
Laboratory (IBL) organizes an annual Workshop 
on Statistical Database Management. Researchers 
at IBL, PNL, the University of Florida and the 
University of Wisconsin are supported byAMS to 
study data nanagement issues specific to the 
data analysis applications of statistical and 
scientific data bases. Thus from 1978 to the 
present the analysis of large data sets, with 
impetus from AMS, has grown from a recognized 
but unaddressed problem to an active research 
area with several groups of researchers 
studying various aspects of the field. 

When the AIDS project was begun in 1978, the 
overall objectives were to develop a large data 
set analysis capability and to apply this 
capability in the interests of DOE goals. To 
realize these objectives, an interdisciplinary 
team of statisticians and computer scientists 
was formed. The goals for the first three 
years were: 

1) to survey current' large data set 
analysis activities and software 

2) to research new large data set analysis 
methodologies 

3) to develop large data set ana1ysis 
tools 

4) to integrate appropriate existing and 
new methodologies into a viable large 
data set analysis software system 
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5) to establish a statistical laboratory 
dedicated to large data set analYSis, 
based on a widely available 
minicomIUter 

6) to analyze certain large data sets 

7) to disseminate information on the 
analysis of large data ,sets to the 
research conmmity and to encourage 
research in the area. 

To guide and advise the AIDS project in 
reaching these goals, the AIDS Review Panel, 
composed of leading statisticians, computer 
scientists, and data analysts, was organized to 
meet periodically to review the project. These 
goals have been attained for the most part. A 
later section of this paper will trace AIDS 
accomplishments in pur sit of these goals in the 
area of data base nanagement. 

To gain some perspective on the methodologies 
for large data set analysis and management, it 
is instructive to consider how the amount of 
data 'can impact the analysis process. 
Operations that are only minor annoyances with 
small data sets can become major roadblocks 
with large data sets. It is time consuming to 
enter the data or move it around. Multiple, 
nearly identical copies of a data set can 
require much more storage space than is 
available, and keeping track of what has been 
created is very tedious. Data handling and 
management in general are large problems. 

The analyses that are performed are also 
limited by the size of the data set. with a 
great many variables, the possible combinations 
of variables that must be considered can be 
overwhelming. The effectiveness of same 
analysis tools can be seriously reduced. For 
example, plots may be so saturated that no 
interesting features can be discerned, and 
searching or ordering the data set may require 
so much time that these operatiOns are avoided. 
sane analysis· procedures may be too time 
consuming to perform unless a useful outcome is 
a certainty; consequently, the analysis may be 
constrained and important features left 
undiscovered. Though it may not be an adverse 
effect, the whole course of analysis may' 
proceed differently with a large data set. 
Rather than analyz ing the complete data set at 
once, the analysis may have to proceed 
iteratively through the steps of subsetting, 
analyzing and verifying. Thus, part of large 
data set research must focus on expanding 
current computer science and statistical 
methodolgy to minimize the adverse effects of 
size. 



2.0 DATA MANAGEJo1ENl' :rsaJ&9 FOR 
'!HE ANALYSIS OF lARGE DATA SETS 

During the initial conceptual stages of the 
AIDS project, both'the computer scientists and 
statisticians worked closely together to 
identify the most critical problems. 
Questionaires were constructed and data 
analysts were interviewed. Statisticians were 
observed during analysis and a users manual for 
a desired system was written. It became clear 
that a critical limiting factor in the analysis 
of large data sets was data maniIXilation during 
the exploratory data analysis processes. 
Because of their size, large data sets require 
much data massaging before analysis can be 
started. Furthermore, an analyst needs to be 
able to quickly understand and access the 
several related components"of a data structure. 
But since great size usually entails great 
complexity, this can be a formidable task. 

To address the data management problems, the 
AIDS project decided to build a prototype 
system. Initially, adapting existing data 
management tools to satisfy some of the needs 
was considered, but many limitations were found 
in existing data management tools. Sameof 
these limitations were: 

1) It was difficult to transfer data from 
the data management tools to other 
tools such as statistical or graphical 
routines for analysis. 

2) The typical data management system was 
overburdened with overhead. This 
.overhead is typically required to allow 
for complex data structures and 
operations such as concurrent 
updating. 

3) Most data management systems require a 
preconceived data structure. However, 
none usually exists for the large data 
sets being analyzed. 

4) The data analysis process was dominated 
by colUllU1-oriented access rather than 
row-oriented access. This 
characteristic had a major performance 
:impact on the analysis in large data 
sets. Therefore, systems that 
contained "transposed file" format were 
seriously considered. 

5) Existing data management software would 
be difficult to modify at PNL. 

Because of these limitations, the AIDS Review 
Panel recorrmended that the AIDS team develop 
their own prototype analysis and management 
system particularily suited for large data 
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sets. 

OUr first major development was to define a set 
of "kernel" data management functions required 
for data maniIXilation on large data sets 
[Burnett, 1982]. These data management 
functions were designed around a Self 
Describing Binary (SOB) tranposed file format 
[Burnett, 1981a]. The three dominant 
characteristics of that proposed file format 
were 1) that it was relational in structure, 2) 
that the file contain descriptive information 
about the data for user access, and 3) that the 
data be stored in transposed file format. The 
transposed file format provided fast access to 
the data and offered new avenues for data 
compression. This self describing data file 
format has now been utilized in several other 
systems. 

The low-level BOO and kernel data management 
functions provided the base for the development 
of a tool that allowed the data analyst to have 
the same flexibility with data that computer 
scientists have in editing source programs and 
that data management experts have through the 
use of query languages in data management 
packages. This tool was called the AIDS Data 
Editor [Thomas, 1981]. The primary function of 
this tool was to enhance the data-handling 
process prior to the exploratory data 
analysis. Included in this tool were 
capabilities to create subsets based upon 
relational expresSions, to transform data, to 
select data based on missing values, and to 
restructure data into new files. A special 
facility called a "virtual subset" allowed the 
analyst to select a subset based upon a 
relational expression and then perform 
subsequent operations on that subset. The 
subset was formed internally by storing a 
definition of the subset rather than by 
replicating all the values in the subset. This 
reduced the required storage and improved the 
operational characteristics of manipulating 
large data sets, which typically involves 
analyses on numerous subsets. The virtual 
subset provided a technique for analysis 
(temporarily) with limited storage. If needed, 
actual subsets containing all selected data 
values could then be generated. The AIDS Data 
Editor also contains a limited nwnber of 
statistical tools including random selection, 
ordering, and histograms. 

It was imperative that the analytical and 
graphical tools be tightly coupled to the data 
maniIXilation tools. This was accomplished to a 
limited degree by providing access through the 
same data format to all tools within the AIDS 
system. For example, MINITAB was used as the 
primary analysis tool. An interface was 
provided between MINITAB and the SDB file 



format. This provided the functional 
capability of going from one tool to the next. 
Also this allowed the AIDS project to bring up 
a prototype system quickly. Ideally, the data 
management tools, the graphics tools, and the 
statistical tools would be under one single 
conceptual system. 

It was equally i.JnIx>rtant to the data analyst to 
have a workstation environment. TO accomplish 
this a DEC VAX 11/780 with a high resolution 
color Ramtek was acquired. other facilities 
included black and white printer/plotter, color 
film recorder providing 35mn, l6mn, and 8XlO 
hardcopy, desktop color. plotter, a letter 
quality printer, and user-mountable 300MB 
disks. It should also be noted that an 
important part of the analysis of large data 
sets research project was the preparation of 
material for presentations as well as 
publication. Therefore, tools in the form of a 
viewgraph generator and text processing tools 
are also part of the data analysis 
workstation. 

In conclusion, the prototype system did enhance 
the exploratory data analysis process. With 
the system, data analysts are now interactively 
manipulating millions of data points and 
exploring new techniques for visualizing high 
dimensions on large data sets. 

Many enhancements could be provided to the 
prototype system that would achieve improvement 
in efficiency and functional capabilities. 
These enhancements, however, would not provide 
"the next generation data analysis system." 
For purposes of this paper, we will define the 
next generation system as one that provides an 
order of magnitude more capabilities as 
measured by the analyst I s time to analyze large 
data sets and new capabilities not previously 
available. For the next generation system, the 
AIDS team first attempted to define the impact 
of large data sets on the interaction style for 
interactive data manipulation on large data 
sets [Thomas, 1982a]. This experiment lead us 
to believe that the next generation analysis 
systems will be designed around the conceptual 
model of the data analysis process. An initial 
attempt at such a conceptual model of only the 
data manipulation processes was called an 
Interaction Model [Thomas, 1982b]. The feedback 
from presentations of this model confirmed that 
others believed in this approach and a 
generalization to the data analysis process was 
conceived. This generalization is formulated 
around a concept called ndata analysis 
environments." A brief description is 
contained in the next section and a more 
thorough discussion is presented elsewhere in 
these proceedings [Burnett, 1983]. 
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3.0 AIDS RESEl\RCB AND DATA 
BASE MANAGIHm' 

Current AIDS research has resulted from PNL 
experiences in attempting to overcome analysis 
or data handling difficulties and trying to 
overcome the problems inherent in large data 
sets. Each also represents an area where 
current statistical or computer science 
methodology is not sufficient to permit the 
effective analysis of large data sets. All AIDS 
research areas are either directly concerned 
with or are significantly impacted by data 
management issues. The following subsections 
explain how the current research areas relate 
to data base management for large data sets. 

3.1 EXPUmAroRY DATA ANALYSIS GRAPHICS 

Most interesting large data sets are 
characterized not only by a large number of 
cases but also by a great many variables 
reported for each case. Both the number of 
cases and the dimensionality of the data 
present a challenge to the effective use of 
statistical graphics. Because of the high 
dimensionality, the number and complexity of 
multivariate relationships that can be explored 
is very large. However, there is usually a 
tradeoff between the number of points and the 
number of dimensions that can be displayed. 
With standard display techniques, this tradeoff 
is not really a problem since most provide only 
a two- or three-dimensional view, although with 
enough points even simple displays can become 
saturated. Thus, there is a need not only to 
expand graphical techniques to allow the 
display of four, five, or more dimensions, but 
also to make the displays useful in the context 
of large data sets. In order to effectively 
display high dimensional data, the variables 
will mst likely have to be scaled, binned, or 
otherwise transformed to control the high 
dimensional viewing. This process requires 
extensive data manipulation before graphical 
viewing. 

Because the visualization of graphics displays 
is a natural environment for interactive data 
analysis, computer science tools must be 
developed for direct analyst interaction with 
the data displayed in its full dimensionality. 
With many dimensions, the number of 
lower-dimensional views of the data that can be 
created is astronomical. It is physically 
i.JnIx>ssible for an analyst to study each one. 
Thus automatic techniques are needed to 
generate low-dimensional representations, to 
manage the large amounts of data generated by 
such a process, and to evaluate each 
representation as to its usefulness to 
analysis. 



3.2 MA!WB!E:Nr AND DISPLAY OF 
IlM'A ANALYSIS EN\7IRC&1EN1'S 

When the analysis of a large data set is 
attempted, the first problems to be encountered 
are usually data management problems resulting 
from the amount or complexity of the data. The 
iterative nature of data analysis tends to 
proliferate data sets and results. Thus, if 
multiple subsets of the data or analysis 
results are allowed to accumulate, the storage 
capacity of any system can be saturated 
quickly. Such proliferation also severely 
taxes the organizational ability of most 
analysts. At any stage of an analYSiS, there 
are usually many different analysis paths that 
should be followed, depending upon which models 
are assumed or which hypotheses are 
entertained. sane of these analysis paths will 
most likely result in dead ends, while others 
will suggest new aspects of the data to 
examine. A simple model of the analysis 
process is a tree-like structure with the nodes 
representing different versions or subsets of 
the data or results and with the branches 
representing different analysis paths. The 
analyst moves between nodes using analysis or 
data management software. As long as the 
analyst is moving down a branch, most existing 
analysis systems will suffice, although keeping 
track of the many subsets and results generated 
along the way can be a problem. The serious 
deficiencies in existing systems become 
apparent when it is desired to return to a 
previous node and start a new branch or to 
combine the results of several branches. With a 
large data set it is not possible to save 
everything because of time and storage 
limitations. Restoring saved nodes can also be 
very time consuming. If the desired nodes have 
not been saved, it can be a difficult task to 
repeat the steps that produced the nodes. 
These difficulties are a hinderance to analysis 
that may result in leaving useful paths 
unexplored. 

A more complete view of the analysis process 
replaces the nodes in the tree with ndata 
analysis environments. n Each environment 
represents not only the version of the data set 
at that time but also the sequence of 
operatiOns that produced it, the statistical 
model under which it was produced, the status 
of system parameters, and descriptive text. 
The realization in a data analysis system of 
this ndata analysis environment n model of the 
analysis process would permit more efficient 
and thus more complete analyses of large data 
sets. Research is required to evaluate the 
application of several computer science 
concepts to this ndata analysis environmentn 
model. These concepts include data 
modification descriptions (differential files), 
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data dictionaries/directories, and graphical 
network representation and interaction 
techniques. 

3.3 UNIFIED LINEAR SPACE INFERER::E 

Much of classical small sample statistics 
consists of confirmatory analysis procedures; 
that is, methods for examining the degree to 
which suspected patterns in or characteristics 
of an experiment are confirmed by the observed 
data. Methods for estimating the parameters in 
a model and testing hypotheses about the 
parameters are commonly used. Within the 
conte'xt of confirmatory analysis, large data 
sets conceptually 'require a similar analysis -
parameters will be estimated, hypotheses tested 
and patterns examined. However, within the 
context of large data sets, confirmatory 
analysis can profit from some new approaches. 
With large data sets, very general models and 
hypotheses may be formulated with complex 
constraints. Linear space methodology needs to 
be developed in the framework of large data 
sets to provide the flexibility to accommodate 
the very general models and hypotheses that 
assume only that the data are vectors in some 
linear space. To take full advantage of large 
data sets, aspects of inference in 
infinite-dimensional spaces must be 
considered. The efficient use of these 
techniques will require especially effective 
means of handling the very large sparse 
matrices generated by the linear space methods. 

Examples of large data sets where this 
methodology would have iImnediate application 
tend to have time series as their data 
npoints.n Though difficulties can occur in the 
areas of editing or processing time, a single 
time series of any length requires no new 
methodology for an effective analysis. However, 
when multiple time series, structured as some, 
form of analysis of variance (AmVA) design, 
are collected, current methodology lacks a 
coherent approach to the analysis. Moreover, 
the intelligent storage and management of this 
type of data is vital for a coherent analysiS. 
An area where this is especially obvious is 
multisource data. Often data relating to some 
question are available from a wide variety of 
sources spanning many different collection 
eras. Moreover, the data are usually collected 
for different purposes; thus, the AmVA 
structure of this data is after-the-fact. As 
a result, the ndesignn is incomplete in that 
the intervals between points in the series may 
vary between series or in that only partial 
information on the levels of the factors for 
some series may be known. Classical analyses 
can proceed only by the imposition of 

- restrictive assumptions or by discarding some 
of the information in the data. The 



unification of linear space methodology and 
infinite space inference will peIl1lit this type 
of problem to be addressed directly and more 
effectively. 

3.4 STATISTICAL SOMMARIZATIOO 
smATmIES FOR DATA cx:J4PRESSIOO 

Since large data sets pose considerable 
problems in the areas of data storage and 
retrieval, an iIrmediate solution is to use data 
nsturanaries n to reduce the volume of data. This 
solution, however, raises the question of what 
are adequate sturanaries. The answ~r depends both 
on what will be required of the data set and on 
the structure of the data. In special cases, 
all of the information in the data can be 
reduced to a few statistics. For instance, if 
the data are independent and from the same 
Gaussian dist'ribution, the sample mean, sample 
variance and sample size are all that is 
required to answer any distributional question. 
It should be noted that even in this simplest 
of all cases, there are still many questions 
that cannot be answered by the sample mean and 
variance; for example, what is the maximum of 
the data? Another problem with a data reduction 
of the type illustrated ab9ve is its lack of 
nrobustness; n that is, once the data have been 
reduced there is no way to check if the 
Gaussian asSl.lIl\Ption is acceptable or to see if 
the order of the data furnishes information 
concerning the independence asSl.lIl\Ption. There 
is thus a tradeoff between preserving the data 
to answer unanticipated questions and reducing 
its volume. 

A sturanarization strategy that retains much of 
the information for a wide variety of 
distributions is to use an empirically 
determined density estimate as the sturanary. 
For univariate data, several such estimates are 
available, although research is needed to 
determine which would be useful in the contexts 
of data compression, retrieval, and 
computation. 

For multivariate data, considerably fewer 
density estimates are computationally 
attractive and many questions remain 
unanswered. For example there exist no 
strategies for determining which of the many 
possible low-dimensional sturanaries should be 
saved. Even for bivariate data, research is 
needed on how to construct useful bivariate 
bins and how to approximate densities from 
nested regular grids. 

4.0 PERSPECTIVES 

Reflecting on what has been achieved and 
learned by the AIDS project, several points are 
worth noting. It is hoped that these will be 
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of benefit to others considering research in 
statistical data base management on large data 
sets. 

1) A characteristic of data management 
tools from the analyst's standpoint is 
that they must be hidden tools in the 
analysis of the large data sets 
process. One cannot afford the luxury 
of going between separate tools and 
requiring the user . to understand 
different command interfaces. 

2) The next· generation of systems will be 
driven by conceptual levels of the data 
analysis process. There is an obvious 
lack of understanding and tools to help 
characterize this process. The ALDS 
team as well as others in the technical 
community have attempted a questionaire 
and interviewing approach. This offers 
some insight, but ususally results in a 
list of desired functions out of 
existing data analysis systems. 

3) The graphics component is an intergral 
part to effective data manipulation. 
It is necessary to understanding 
initial data structures and cannot be 
considered a secondary tool. 

4) .. An interdisciplinary approach of 
statisticians and computer scientists 
continually working together is 
required to address the above research 
issues. 

5) Flexibility is of the utmost 
importance. Under certain 
circumstances, any data base can be a 
nstatistical n data base. 
Characteristics of statistical data 
management systems that cause 
flexibility to be limited are of 
marginal use. 
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Abstract 

A file-handling full screen data entry, verification, updating, and display sys
tem, with overtones of a data base management system without the overhead is 
described. Using a high level specification language, created automatically by 
describing a form on the screen, a PL/I program is generated which will display 
empty forms allowing data entry, verification and retrieval (by example). Files 
or transactions to data base systems may be constructed, and existing files for
matted for display, post hoc field validation and restructuring. The system is 
complete but may be interraced with other systems and, because it is a program 
generator, used to provide building blocks (reusable code) for other full screen 
applications. 

Key words and phrases: full screen, data entry, edit, display, reusable code, 
design specification, code generator, form design, IBM 3270, reliable code, data 
management, file management. 

Introduc tion 
The design of reliable programs is 
expensive and time consuming. In 
recent years we have seen an emphasis 
on methodologies aimed at providing 
robust, comprehensible, and maintaina
ble systems. This thrust manifests 
itself in such areas as design specifi
cations, reusable code, and program 
generators. A practical working exam
ple of these software practices is pre
sented. 

Much of the jtatistical worker's job is 
concerned with data management. This 
system was designed to do the screen 
handling tasks of data management and 
perform the storing and retrieval when 
the expense, overhead, and commitment 
to a DBMS is unjustified. To perform 
analysis one collects data, which must 
be validity-checked and arranged in 
suitable order. Occasions arise when 
complex editing rules have to be 
applied to data and there is always the 
desire to view, in a legible format, 
individual cases for possible update. 

These tasks are essentially the same 
for all data sets. Passing from one 
study to the next should not therefore 
require repetition of mundane program
ming tasks. Finesse at the specifica
tion level is needed. The current sys
tem-- Design ~ Form addresses the need 
for creating a system with many of the 
features of a data base management sys
tem but which preserves the physical 
form of the data and does not require 
the overhead of a DBMS. For a very 
large quantity of highly structured 
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data a DBMS is mandatry. By using 
transactions to such a system 
Design ~ Form can be used as a powerful 
front end. 

The system is a program generator- a 
specification directing a compiler to 
produce PL/I source code. This source 
is complete and will on compilation and 
linking to the nucleus of the system 
enable data to be entered retrieved and 
updated. A code generator removes any 
constraint implied by the specification 
language and further permits the gener
ated code to be used as building blocks 
in systems that require screen manage
ment. 

System Requirements 
The initial requirements for the system 
are a full screen data entry method 
which to the user looks like a form. 
This "form" should allow single-f ield 
and across-field validation to be per
formed, to any degree of complexity. 
Facsimiles of the filled-in forms 
should be available. Files created by 
the system should be simple data files. 
Other systems could immediately use 
these files and conversely files 
created by other systems should be rea
dable by this system. A mechanism 
should be available to pass the data 
entered or derived in other ways, such 
as transactions. Thus more complex 
data structures may be accommodated. 
Retrieval, updating, restructuring, and 
post hoc data validation should be sup
portea:-

Presentation of data either for entry 



or retrieval is via a form displayed on 
the video terminal. There are two 
aspects to forms: the geometric or 
graphical design which is captured by 
drawing directly on the screen; the 
attributes of the fields which specify 
the color, highlighting, and the valid
ity checks, edit rules and other 
aspects of the input data. The speci
fication language cap,tures both these 
aspects. . The "drawn I form is read and 
the first stage of specification is 
automatically obtained. Each field is 
then displayed, together with a set of 
attributes that may be chosen, and the 
ability to enter and alter editing 
rules is provided. The second stage in 
specifying the form is thereby accom
plished. 

In any system, as the number of options 
increases so does the richness of the 
specification language. To create a 
system which will not suffer from arti
ficial constraints imposed by the spe
cification language it would appear 
that the latter would have to evolve 
into a programming language. Extreme 
simplicity and a high degree of flexi
bility are not, however, mutually 
exclusive. The reconciliation of these 
requirements has been realized ·in a 
program generator. The target language 
chosen was PL/l and the display device 
the IBM 3270 series of both monochrome 
and color terminals. Communication 
between this full screen device and a 
program is via a data or message stream 
and a controller. As only fields that 
change need be transmitted, the minimum 
amount of data need be sent. The onus 
is, however, on the program to deter
mine which areas of the screen have 
changed. There is no higer language 
level support for this device in full
screen mode. This need is addressed by 
providing support through generated 
PL/l code. 

It must be emphasised that although the 
system generates PL/l source code, in 
the vast majority of cases, the speci
fication language captures all that is 
required and· going from form design to 
data entry, updating, and retrieval 
requires no programming knowledge. It 
is a task easily accomplished by non
technical people. Complex situations 
involving multiple farms with cantext
dependent decisions, will require some 
intervention. Experience has shown 
that this open-ended feature is wel
comed by those who use packaged pro
grams but have needs that transcend 
them. 
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System Design Considerations 
In program writing the most serious 
errors are those involving control 
structures (dynamic conditions for fol
lowing a particular path are incor
rectly computed) and data structures 
(bounds of arrays are erroneous). Syn
tax errors are, for the most part, 
found by the compiler. Generating 
source code, via a specification lan
guage, offers a number of advantages. 
The most important is that the produc
tion of error-free programs is an 
achievable goal. Simple applications 
can be "brought up" in a few minutes. 

Customizing starts off with complete, 
correct code and is therefore at mini
mal risk with respect to the introduc
tion of errors. This is because all 
the "hard" error-prone program facets 
such as management of data structures 
and, in this system, screen-handling 
code is produced automatically. Adapt
ing the code to perform such operations 
as complicated table-look ups and 
embedded computations can of course 
introduce errors. These, however, will 
be confined to small domains and are 
easily detectable. 

This system is an example of "reusable 
code", each new application can be 
thought of as a progeny varying from 
its parent in its specific function, 
yet sharing a common, reusable, core. 
Others my view this system as a tool 
for generating screen management code 
which can be incorporated into other 
systems. 

The concept of abstract data types and 
encapsuled modules is used in code that 
is "hidden" from the user thereby 
retaining its viability. The generated 
code is, however, open to the user. 
Hidden code ensures that it can only be 
approached and used in a controlled 
way. Open code provides for easy and 
swift customization. The capsule 
"screen" which consists of the abstract 
data type used to hold and manage data 
going to and from the display device is 
available as hidden code. This means 
that the user can control what is dis
played, and receives back the analyzed 
replies to the screen. The mechanism 
for doing this is hidden from the user 
and therefore cannot be compromised. 
Each screen is represented by an open 
code PL/l procedure which contains 
three distinct parts: a PL/l structure 
whose elements contain all'the replies; 
the actual stream of characters sent to 
the terminal controller; and a "case" 



block (called Select in PL/1). In this 
case block each field which has a reply 
is represented and is available to the 
user. In-line code can easily be 
incorporated - a marked advantage over 
having to provide a subroutine. A 
developer who wishes to use the system 
beyond that which is generated, via the 
specification language, has only to 
know the specifics of his data and not 
how screen management is accomplished. 
In the same vein a user may want to use 
only part of the generated code in con
junction wi th a·nother program. For 
this situation the PL/1 structure is a 
compact way of holding the variable 
information presented on the screen. 
Automatic production of the "message" 
to be sent to the controller relieves 
the user of the task of constructing 
the correct sequence of control infor
mation. The "case" block facilitates 
operations on individual replies. 

Since logic between screens is indepen
dent of the hidden code, versatile 
applications can be designed with ease. 
For example, in a financial planning 
example three screens were used for 
each case: the first to collect data 
and the others to display computed 
results. A procedure was written to do 
the required computations. The only 
system housekeeping required was dec
laring the PL/1 structures defining the 
three screens to this procedure and 
steering, via calls, the display of 
each individual screen. Indeed skele
tal steering procedures are part of the 
system and are generated when mUltiple 
screen applications are defined. A 
user then had available a system that 
dynamically displayed the consequences 
of, for example, a fluctuating dollar 
value on the cash flow situation of a 
company that deals .wi th purchasing and 
leasing goods. 

Form or Screen Design 
A program "BLANK" presents a screen to 
the user, on to which the form or 
tableau is typed. This will consist of 
legends or narrative material, field 
names, and re~ly fields (denoted by 
asterisks). Lateral movement of 
objects on the screen is accomplished 
via the terminal's positioning 
keys(insert and delete). Vertical 
movement and copying of a line to 
another line is done by typing the tar
get row number on the source row and 
using a function key. When the 
desired result is achieved a function 
key is pressed resulting in the trans
lation of the screen into an instance 
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of the specification language. For 
example if Income ****** were typed on 
line 10 column 5 on the screen it would 
be translated into 

Income (10,5,6) This is of the form 

Legend or field name 
(row,co1umn,length) 

After form design, attributes and edit 
rules may be applied to each fie 1d 
interactively. 
The specification Income (10,5,6,NB), 
contains the attributes "NB", this 
means accept up to six numeric charac
ters (N) insisting that this field be 
entered i.e. non blank (B). Figure 1 
shows this field with the editing 
criteria chosen together with the rules 
generated by placing bounds on the 
entered value. For the field "Sex" to 
take on only the values "M" or "F" with 
a user-defined message the customised 
rule is written as 

:,='M' &' ='F' Sex can only be M or F 

Other field attributes include date, 
right justification, full replies, 
default values compute fields, and 
value carryover (from one form to the 
next) are shown in figure 1. The most 
general specification for a single 
field is 

Legend (row,co1umn,length,attributes) 
failure condition message ; 
failure condition message; .•• 

On data entry and update, erroneous 
entries will be signaled by writing a 
message, sounding a bell, positioning 
the cursor and, highlighting the 
offending field. The operator can 
either correct the field or, by press
ing a function key, force the reply to 
be accepted. 

Retrieval and Updating 
The screen displayed when retrieving 
and updating is shown in figure 2. 
Some of the options need explanation: 
"y" implies a pattern match is to be 
performed over non contiguous fields or 
field fragments; "=" is restricted to 
pattern matching over contiguous fields 
or field fragments and is therefore 
cheaper than ''Y''; "@" is a range over 
the supplied value, the default value 
is 10%; "(" is a substring taken over a 
contiguous set of fields the last of 
which may be partial; "s" evokes the 
display of an information panne1 which 
gives, among other things, the current 



default values, which can be reset. A 
mask character is used as a 'wild' 
value and to define the scope of the 
search as in option "(". 
Retrieval is by example. An empty form 
is presented on to which search crite
ria is typed. This in conjunction with 
a condition (equality, greater than, 
less than, substring, or range, men
tioned above) is used to find cases. 
In addition, all cases can be sequen
tially displayed or, for post hoc edit
ing, a search for cases that fail an 
edit rule selected. In the update 
mode, cases can be altered with dynamic 
recalculation of compute fields. 
Pressing a function key will redisplay 
the changed case. Editing criteria and 
reformatting data can be respecified. 

It is unfortunate that designers of 
data-gathering forms still continue the 
archaic practice of encoding items at 
source rather than leaving this to the 
computer (males=l etc required by some 
packages for grouping variables). 
Design ~ form takes the position that 
source data should be readable and 
therefore provides a translation 
mechanism to go from a source of one 
size to a target of another. The 
default value in the printed facsimile 
of the form is the source while the 
target value is written to the file. 
On retrieval both the stored value and 
the inverse translation can be dis
played. 

Interface Considerations 
In the normal situation the files 
created by the system are standard sys
tems files, with the data appearing as 
characters without any embedded control 
information. Such files can immedi
ately be read by any other program as 
raw data. Since "ghost" fields (usu
ally filled with blanks) can be speci
fied variable values can be se~arated 
from each other to facilitate 'free 
form" entry in other packages. 

This detachment of the files from the 
system provides for complete data inde
pendence. This makes feasible the use 
of the system as a "front end" to a 
data base system for situations where 
the data are too voluminous for simple 
files. In this situation transactions 
would be sent between the two systems. 
One variant of this system exists that 
acesses save files created by the BMDP 
statistical package. Queries written 
in "Sequel" like languages can readily 
be serviced. 
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System Limitations 
Functional separation and modularity 
are part of the design philosophy of 
this product. Features that rightly 
belong in other systems are excluded. 
As the system has overtones of a data 
base management systems (DBMS), the 
important differences must be stressed. 

Here data is looked at in a case-by
case manner, a DBMS is more global in 
approach. In a good DBMS, searches do 
not usually require passing the whole 
file. In inverted systems much logic 
can be performed on the reference files 
or directories before looking at the 
actual data. Retrieval using logical 
expressions is limited in this system. 
Although hierarchical cases are sup
ported, no connectivity is internally 
maintained between the various record 
types (relations). Cross-case computa
tion (means, minima, etc.) is a simple 
customization task: however, anything 
more complex is the province of a sta
tistical package. A DBMS excels in 
handling relationships between volatile 
data. This system is geared towards 
changes to data items rather than rela
tions. File, rather than data base 
functions, are performed, although new 
cases may be inserted anywhere and 
deletions performed. 

For a very large file the overhead in 
computer cost, storage, and more com
plex operator training required by a 
DBMS is warranted. There are, however, 
many situations when data management 
should be restricted to files. In such 
situations a DBMS would be too complex. 
Many studies fall into this category. 
Instances exist where data remains 
static and essentially lost because no 
suitable means is available to read and 
comprehend it. A large series of files 
containing encoded information concern
ing land utilization lay unused because 
of the difficulty in using it. A 
translator to these files was incorpo
rated into this system which was used 
to display the data in English in a 
pleasant format that encouraged use. A 
DBMS would have been too costly and too 
difficult for the casual user, and 
since the nature of the searches neces
sitated either passing the whole file 
or searching until the first record 
satisfying the conditions was found, no 
advantage would have been gained in 
using the more powerful search strate
gies of a DBMS. 

This system, because of its ease of 
use, its file handling features, its 



simple interface to other packages, its 
flexibility, and its parsimony can play 

an important part in data management. 

Figure 1. 

Selection of attributes and specification of rules 

Current field is: Income 
Attributes NB 
Edit rules : ~ 15000 Too small ; ~ 60000 Too large: 

Select the attributes to be appl ied with CURSOR SELECT 
After you press ENTER the new attr i butes wi 11 be shown. 

Integer (N) r 
Floating point ('F) 7 

Right justify (R) 7 

Non blank (B) r 
Compute or defined fields (C) 7 

Date field (D) 7 

Full width reply (w) 7 

Set carry forward (S) 7 

Ghost field (set length) (G) 
Before/After B 

Defaul t va 1 ue (set va lue) 

Translate field (set target size) 

Al ign (set position from right) 

Minimum value 

Maximum value 

93 

or "Y" 



\. 

FIGURE 2 

Modes of retrieval 

Choose your retrieval mode with: CURSOR SELECT, "V" or Option 

Remember PFKEV 3 will get you out. 

CONDITION ? 

START AT TOP ? 

UPDATE ? 

RETRIEVE ALL ? 

SKIP TILL ERROR? 

TRANSACTION ? 
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Options: V = > < @ ( S 

Options: D-delete 
A, B-insert, after, before 
P-point C-copy M-move 
T-merge transaction 
E, X-extract set, current 
L-list from this record 
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This is a definition of terms and discussion of the design and development of an 
interactive, portable, user-friendly statistical database management system from 
the perspective of a computer scientist. The definitions are fairly clear and 
can be found in most textbooks but their interactions, particularly when a sys
tem is being designed and developed which attempts to include all of them, have 
been given relatively little attention. This paper will focus on how the major 
structural elements of an "ideal" statistical database management system impinge 
on each other during the design and development phases of that system. There 
will also be a discussion of how these elements and their interactions affect 
the people designing, writing and using the system. 

This is a definition of terms and discussion of 
the design and development of an interactive, 
portable, user-friendly statistical database 
management system. The definitions are fairly 
clear and can be found in most textbooks but their 
interactions, particularly when a system is being 
designed and developed which attempts to embody 
all of them, have been given relatively little 
attention. This paper will focus on how the major 
structural elements of an "ideal" statistical 
database management system impinge on each other 
during the design and development phases of that 
system. 

The paper consists of two parts. The first part 
is a brief discussion of the definitions of the 
terms portable, user-friendly, and statistical 
database management system and their interactions 
while designing a system which attempts to embody 
all of them. 

What will follow is a discussion of the imple
mentation of these three primary attributes in a 
system with a focus. on their impact on the com
puter scientists - programmers and statisticians 
developing the system, the same professionals' 
bringing the system up on a different computer, 
and the end users; primarily statisticians, but a 
few computer scientists as well. 

It is important to emphasize that this paper is 
not a description of a system which has already 
been built, and is not an explicit design docu
ment. It is hopefully a complete review, from the 
perspective of a computer scientist who works with 
statisticians, of the factors which must be given 
careful consideration when designing and building 
such a system. 

DEFINITIONS 

A portable system is one which can be brought up 
and run on any machine, no matter what the word 
size and manner of representation of numbers, with 
an absolute minimum of effort on the part of the 
person/people installing it on the new machine. 
Numerical precision differences between machines 
should be easily correctable by the installer(s) 
or, if not correctable, clearly and completely 
documented by the developers in the installation 
guide. In addition, the user's manual should be 
written so that it does not depend on the machine 
that the system is running on. This latter point 
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is one which seems to have been neglected by the 
developers of a number of the more popular, 
"portable", statistical ·packages in existence 
today. 

A user-friendly system should be just that: 
friendly to the user. The designers and devel
opers of the system need not be psychologists or 
group therapy leaders, but they should make the 
users comfortable when running the system. 

The system should guide the user clearly through 
every phase of its use. Questions presented to 
the user during an interactive session should be 
clear and unequivocal with a detailed explanation 
of each question, examples of answers to the 
questions and consequences of each of those 

·answers readily available. 

An extensive, thorough, multi-level help facility 
or subsystem should also be available at every 
point in the operation of the system if the user 
wants or needs to use it. This help facility 
should be written to supplement, not replace, the 
users' manual. 

A user-friendly system should recover gracefully 
from and offer possible solutions to I/O errors 
and computational errors resulting from processes 
such as those which may attempt to divide a number 
by zero, determine the square root of a real nega
tive number, or require a datum that is missing. 

The system should also be unaffected by hard sys
tem crashes insofar as the database being worked 
with when a crash occurs will not be affected. In 
addition, the system should allow the users to 
easily get back to where they were in an interac
tive session at the time that the system crashed. 

A good deal of time has already been spent and 
more will be spent, especially at this workshop, 
discussing what a statistical database management 
system is. A basic definition of one might be as 
follows: a database management system which 
allows for the rapid storage and extraction of 
data in a format suitable for statistical analy
sis.·· A method for satisfying this definition 
might be that the statistical analysis procedures 
should themselves. be part of the system and it 
should be easy to add, remove or replace these 
procedures. 



RELATIONSHIP BETWEEN 
PORTABLE, USER-FRIENDLY AND 

STATISTICAL DATABASE MANAGEMENT SYSTEM 

Most of the relationships between these three 
attributes have, as one of their nodes, porta
bility. This is not surprising, since it is 
probably the most difficult one to implement in a 
large system. 

Making the users comfortable while using the 
system but allowing it to run on any machine means 
that in most instances, good programming will have 
to be substituted for innovative hardware. Along 
the same line, it will have to be good writing 
with a statistician, not a computer scientist or 
ichthyologist in mind. 

The methods of trapping computational and I/O er
rors vary from machine to machine, and memory and 
storage management differences between machines 
will affect the preservation of data upon occur
rence of a system crash. Differences in the load
ing and/or binding of programs from one machine to 
another will affect the easy addition, removal and 
replacement of statistical procedures. 

Finally, the size of the system is an important 
consideration when writing a portable software 
package •. 

DESIGN AND IMPLEMENTATION 

For quite some time now computer scientists and 
statisticians have been meeting in an attempt to 
recognize and solve common problems. The Inter
face Symposium and this meeting are typical 
examples of the effort. This paper explores an 
area .in which those two professions are going to 
be obliged to work in close harmony. No attempt 
is being made to determine which is church and 
which is state or the benefits of being affiliated 
with one or the other. It is simply important to 
note that when this effort is undertaken the two 
professions will have to be extremely cooperative 
with, and understanding of, each other. 

The first major decision which must be made during 
the development stage of a system such as this is 
in which language to write the system. With 
portability in mind, it will first be necessary to 
study the compilers/interpreters available on all 
possible, existing target machines paying partic-. 
ular attention to word size, precision, and I/O 
and memory management facilities available. At 
the present the language of choice, primarily 
because of its popularity, would probably be 
FORTRAN, although by the time this effort is 
undertaken, PL/I or PASCAL (or ADA?) might be 
universal enough to be considered. It will be 
important that everyone involved with this initial 
phase of the design effort have facility and be 
comfortable with a number of major computer lan
guages. It is also important not to pick FORTRAN 
just because "everybody knows it" and "every 
machine has a FORTRAN compil~r". 
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A second part of this initial design phase will be 
the development of standards for everyone who will 
be writing the code. The standards should include 
the types of statements allowed and a thorough 
list of the types of statements not allowed. They 
should also include internal documentation stan
dards for the programs. The standards will have 
to be well written, easily used, and on the desks 
of everyone who is writing code for the system. 

One standard which can be stated immediately is 
that absolutely no machine or assembly code at all 
is allowed. With the definition of portability in 
mind, it is obvious that machine or assembly code 
cannot be used in the system if it is to be 
brought up easily on many different machines. 

The next major decision in the design phase of 
this project would be what the overall structure 
of the system should look like. The terms "top
down" and "modular design" have become popular 
buzzwords, but they are very powerful design tools 
when dealing with large systems. A top-down, 
modular, or inverted tree approach to the design 
of this system would seem to be perfect for a 
number of reasons. 

Any machine-dependent routines performing such 
tasks as I/O and memory management and those rou
tines with machine-dependent constants, which 
would affect the precision of results, could be 
placed at the very highest levels of the overall 
structure. This would allow for easy access/ 
creation/alteration of logical unit numbers for 
I/O and modification of constants by those 
installing the system on a different machine. As 
an aid to implementation on different machines, 
standard sets of constants for machines with dif
ferent word lengths could be made a part of the 
appropriate high-level routines. 

The actual statistical·and data base manipulation 
routines would exist at the very bottom of the 
tree. These leaves would have their constants 
already set at a considerably higher level of the 
tree and would not have to be altered in order to 
be brought up on another machine. The "proven" 
algorithms would remain intact. It would be the 
responsibility of the statisticians participating 
in the development phase to insure that these 
algorithms ~ere indeed proven. Incidentally, 
internal documentation is extremely and equally 
important at all levels of the tree. These 
routines would produce results or manipulate data 
items and return them to a higher level routine 
for appropriate disposition. This disposition 
would include output to the user, input to another 
algorithm and input to the data base. It is 
important to emphasize that there would be no I/O 
operations from within these routines. This 
absence of machine-specific code would allow for 
relatively easy addition, removal and replacement 
of leaves by the developers and the end users. 

The impact of computer systems hardware on porta
bility would be of considerable importance during 



the design phase. One of the first items which 
would have to be resolved would be the structure 
of the database. Anyone familiar with the theory 
of database management systems has heard or read 
the terms network, hierarchical and relational 
when reference is made to the structure of such 
systems. There are advantages and disadvantages 
to each of them, and there are very few commer
cially available database management systems which 
are pure examples of anyone of these structures. 
No attempt will be made in this paper to describe 
these structures and their differences. It is 
simply important to note that they have different 
requirements in the areas of data storage and 
retrieval. Differences in machine word size would 
affect pointers, sorting and searching algorithms 
and actual data storage, and this is where careful 
thought would have to be given to the portability 
of the system. 

A relational database management system seems to 
be the best from the point of view of speed of 
data retrieval and ease of use, but the memory 
requirements of such a system might be too large 
to allow it to be portable. If the number of 
overlays or amount of paging required for a simple 
data retrieval operation were too large, the delay 
would be intolerable for the end user. At the 
same time, the installer(s) should not have to 
redesign the database management system to make it 
fit on their machine. 

The modular design considerations would have to be 
taken into account when designing the overlay 
structure, if such a structure were necessary. 
For true virtual memory machines this would not be 
a problem, but there are few of them around. If 
an overlay structure is necessary, the design 
should allow for different ones for machines of 
different word lengths and memory sizes. The 
installation documentation and/or files should 
allow the installers to select the appropriately 
sized set of overlays. As an addendum to this 
point, it is to be noted that the system should 
function at approximately the same speed no matter 
what the overlay structure, but it would probably 
be slower on the smaller machines. 

One aspect of portability which must be taken into 
account when writing the system is that obviously, 
the same statistical procedures processing the 
same data but running on two different machines 
should produce the same, with allowances for pre
cision differences, results. This.will require 
careful programming to eliminate problems result
ing from round-off error, truncation and internal 
accumulation of round-off error. 

I/O routines would have to use standard methods, 
with nothing tricky or unique to the machine the 
system was developed on. Since everyone does not 
have light pens, mice or touch sensitive displays, 
the I/O routines should not be predicated on these 
hardware innovations. 

Building a user-friendly system means that overall 
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design considerations will be strongly influenced 
by the requirements for a help facility, graceful 
recovery from I/O and computational errors and 
easy recovery from hard system crashes. 

Help in using the system should be available to 
the user from any level of the system. If all 
I/O, including interaction with the user, is 
occurring at a high level of the system, the help 
facility could be built in at, or immediately 
below this level. This would require that the 
system maintain, possibly through the use of a set 
of flags or global variables, a knowledge of what 
the user is doing during an interactive session. 
When the user requests help, the system needs to 
be able to provide the appropriate explanations. 
This self-informing portion of the system would 
have to be readily and easily expandable as new 
leaves are added to the overall system. 

A selection of the method for interacting with the 
user would affect the design of the help facility. 
Two possible options are the use of menus with 
help available for each item on each menu if the 
user wants it, or a simple question-and-answer 
approach with clear explanations of each question 
readily available. 

Setting up appropriate, universal methods of error 
recovery may be the most difficult aspect of this 
entire design effort but again, a top-down, modu
lar approach may facilitate the process. One 
might devise a system of flags or error returns 
which could be set at the lower levels and tested 
and acted upon appropriately at the higher levels. 
Depending on the language used, there might also 
be a machine-specific, high-level process which 
would disable system trapping of I/O and computa
tion errors, allowing for a "normal error 
return". 

Insulation of the system from hard, computer 
crashes will also be a difficult part of the 
design effort. Requiring that a recent backup 
copy of each database is maintained at every site 
will help. In addition, no database should be 
left open when it is not directly involved with 
some data storage/retrieval operation. In order 
to minimize the affects of a crash on the users, a 
log or audit of each user session could be kept. 
This would be fairly easy to do within the frame
work of a top-down system. All input from the 
user could be written to a log file by one of the 
high-level I/O routines. This would be done 
before the command or request was processed. When 
a system crash occurred, the user could, when the 
system came back up, either obtain a printed copy 
of the audit file and re-enter the commands during 
a new interactive session, or use the audit file 
as a command file which would be executed up to 
the point of the crash. This would leave the user 
at, or just before, the point she or he was at 
when the system crashed. 

The other aspects of creating a user-friendly sys
tem depend on a good working knowledge of the 



native language where the system is being created 
(usually English), and a good working knowledge of 
statistics. Whatever mode of interaction with the 
user is selected, the questions, explanations, 
examples, help facilities and manner of presen
tation of results will have to be clear and 
unambiguous. While we are not about to create a 
good version of ELIZA, the user should feel com
fortable interacting with the system. It would 
not be a place for short, cryptic questions or 
explanations. Highly technical questions and 
comments, with appropriate explanations available, 
would be acceptable, but not the three-word gems 
of statisticianese or computerese. 

The impact of user-friendliness on the person or 
people installing the system on a new machine 
would revolve primarily around the methods used 
for error recovery and insulation from computer 
system crashes. If a high-level process to dis
able system trapping was selected, the installers 
would have to create a new process for each 
machine. With appropriate complete documentation 
of that process, including all that it does, where 
and when it does it and expected input and output, 
the task would not be terribly difficult. Again, 
as with the machine-dependent constants, a stan
dard set of processes might be made available, and 
the appropriate one could be used for each 
machine. 

If frequent backups of the databases were 
required, the installer(s) at a new site would 
have to be most strongly reminded of this, and the 
standard operating procedures for system backup at 
that site might have to be modified. The use of 
log or audit files as command files would present 
a problem at some sites. The installer(s) might 
have to provide the users at that site with a pre
processor program which would make the log file 
acceptable to the machine's command processor. 

The impact of a user-friendly system such as the 
one being described in this paper on the user com
munity would probably be an increase in the use of 
computing facilities by statisticians and an 
increase in cooperative efforts to solve statis
tical problems. A truly user-friendly system 
would "bring into the fold" a number of statisti
cians who presently see the computer as a large, 
expensive calculator. It would be so easy for 
them to perform complex calculations in a matter 
of minutes, study the results and perform them in 
a different way, that their productivity would 
increase immensely. . 

Implementation of the two primary characteristics 
of a statistical database management system, rapid 
extraction of data in a format suitable for sta
tistical analysis and ease of addition, removal 
and replacement of statistical procedures, have 
already been discussed but their impact on the 
design of the system will now be considered. 
Rapid extraction of the desired data will require 
that the structure of the database management sys
tem be such that storage/retrieval algorithms are 
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fast and efficient. It is important to note that 
the system should only retrieve the data that is 
needed to satisfy a request. The format of the 
retrieved data might simply be vectors, but the 
system should be able to reformat the data where 
necessary for input to a statistical procedure or 
other output process. A relational database 
management system might do the job very nicely, 
but on a machine with limited memory this could 
prove costly. A standard for the format of data 
extracted from a database would have to be imposed 
on the extraction process. The statistical proce
dures or the twigs above them could alter this 
format where necessary, but with these standards 
it would be relatively easy to add, remove and 
replace statistical procedures if they existed at 
the very outermost points of the system. 

With a top-down structure, alteration of the array 
of statistical processes should be nothing more 
than a straightforward recreation of the execu
table system. This could be done at any site with 
a command file which had been modified to reflect 
the alterations. The most important point, from 
the developers' perspective, is that new processes 
should be documented, tested, and proven or appro
priate caveat emptor warnings about the processes 
given. 

CONCLUSIONS 

The most important conclusion that can be reached 
from this paper is that the design, building and 
implementation of an interactive, portable, user
friendly, statistical database management system 
will require the joint efforts of computer scien
tists and statisticians. The members of these two 
disciplines participating in the effort will have 
to work in a close, cooperative fashion in order 
to create such a system. The resulting system 
will prove to be immensely rewarding, although for 
different reasons, to both groups. The computer 
scientists will have solved some interesting prob
lems unique to their profession and the statisti
cians will have a system which will enable close 
collaboration in the solution of statistical 
problems. If groups of statisticians in different 
cities, states or countries are able to use the 
same computer system as an aid in solving prob
lems, they will be able to communicate with and 
help their colleagues much more easily than is 
presently the case. 
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Abstract 

This paper describes distributed data management aspects 
of SEEDIS (Socio-Economic Environmental Demographic 
Inf_tion System). SEEDIS is an experimental system 
for the retrieval, analysis, and display of geographically 
linked data. SEEDIS operates on nine computers in a 
nationwide network. Users at any location select and 
retrieve all data in the same way, regardless of whether 
they are stored locally or at a remote location. 

The network implementation has been substantially 
modified during 1983. New enhancements include: local 
caching of data files to improve efficiency; linking to an 
automatic tape library (ATI...) to make larger volumes of 
data accessible; node independence to facilitate automatic 
sharing of data among autonomous SEEDIS installations 
without the need for central control; improvements provid
ing robust operation despite unreliable network connec
tions; and automatic recording of all cache transactions 
for subsequent statistical analysis. 

1. History and Background 

SEEDIS (Socio-Economic Environmental Demographic 
Information System) is an experimental integrated com
puter system for the retrieval, analysis and display of 
geographically linked data [1]. SEEDIS embodies 60 
person-years of cumulative integrated development, sup
ported since the early 1970's by the Department of 
Energy, Department of Labor, Environmental Protection 
Agency, and other government agencies. SEEDIS is used 
both as a development testbed for computer science 
research, and in selected applications. 

A major task of SEEDIS is the integration and organiza
tion of data from diverse sources. Used primarily by 
universities and government agencies, SEEDIS fills a 
need not met by two other kinds of systems available in 
the private sector: time series financial systems used for 
modeling and predicting economic trends, and small-area 
demographic systems used to access census data for mar
ket site analysis [2]. 

On the average, SEEDIS is used about 500 times per 
month. Usage is equally divided between development 
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and applications. The Populations at Risk to Environ
mental Pollution (PAREP) project, which is concerned 
with relationships between human health and environ
mental pollution, provides and uses data on mortality, 
cancer incidence, socio-economic characteristics, and air 
quality [3]. 1980 Census reports being produced for the 
Department of Labor will require incorporation of most 
of the 1980 Census of Population and Housing, bringing 
the size of the SEEDIS database to about 50 gigabytes 
(500 tapes at 6250 bpi) [4]. 

SEEDIS data currently available to the interactive user 
include 350 million individual data values on disk and 
over 5 billion data values on a tape-based mass storage 
system. Data are available for about a million distinct 
geographic areas. These include eighty different types of 
geographic entities (e.g., states, counties, census tracts, 
enumeration district/block groups, etc.). 

The size of SEEDIS databases, financial constraints, and 
the need for local control over data stored at dispersed 
geographic locations prompted development of techniques 
for data retrieval and display in a distributed computing 
environment. SEEDIS meets the needs and resources of 
small groups in the research community who can afford a 
small computer but not the resources required for on-line 
storage of large databases, nor the costs of timesharing 
on a large mainframe computer. SEEDIS software is in 
the public domain; it runs in the standard DEC (Digital 
Equipment Corporation) VMS operating system on a 
VAX 11/780 computer. To access SEEDIS databases at 
LBL (Lawrence Berkeley Laboratory), DECNET 
hardware and software are required. 

2. Initial Network Implementation 

SEEDIS operates in a homogeneous network of DEC 
VAX computers and uses standard DECNET facilities. 
The network presently comprises some 50 minicomputers. 
There are currently nine V AX-ll/780's running SEEDIS. 
These are located in the San Francisco Bay area, the 
state of Washington, Washington DC, and North Caro
lina. Program modules, area and data definition files 
and geographic base map files (about 75 megabytes) ar; 
stored at each SEEDIS site, or "node." Selecting (i.e., 
specifying for retrieval) or displaying data (e.g., map
ping) does not involve network access, so response time 
depends only on the local system load and the speed of 
the user's terminal connection. 



2.1. Distributed Data Operations 

After the user has specified data selections, SEEDIS 
automatically extracts the requested data values from 
local and remote files, copying them into a self
describing file in the user's working space. Standard 
DECNET facilities automatically provide shared access 
to archived data files (about 1 gigabyte) on disk packs 
mounted on two of the nodes in Berkeley. Except for 
response time, the difference between retrieval of 
locally-stored and remotely-stored data is not apparent to 
users. 

DECNET naming conventions automatically permit tran
sparent access to remote files without additional program
ming effort. For example, Iblg::dbaO:[mydirlxyz.dat is a 
file in directory "mydir" on disk drive dbaO on node 
LBLG. Since data are stored on a particular disk pack 
and not a particular drive, SEEDIS maintains tables 
specifying the name of the disk pack on which database 
is instaJled, (e.g., SEEDIS005). The VMS operating sys
tem automatically assigns logical names to locally 
mounted disk packs, so data can be directly accessed by 
disk pack location, (e.g., disk$seedisOO5: [mydirlxyz.dat). 

Special software was written to extend the standard DEC 
capabilities to remotely mounted SEEDIS packs. For 
example, whenever SEEDIS is invoked at any node, a 
background process searches the network for disk pack 
SEEDISOO5; if it is found on drive dbaO at remote node 
lblg, a local system logical mime assignment is esta
blished to translate disk$seedis005 to Iblg::dbaO:. If the 
pack is not found, any previous assignment for 
disk$seedis005 is canceled. 

Disk packs SEEDISOOI through SEEDISOO5, containing 
on-line SEEDIS databases, are located at LBL and can 
be mounted by an operator on either of the nodes LBLG 
or LBLH. A program DSCHED, which can be invoked 
from any node, allows remote users to easily determine 
when a disk pack will be mounted, or to request future 
mounting. 

2.2. Initial Implementation limitations 

The initial 1979 SEEDIS network implementation had 
several limitations. First, even for small requests, data 
extraction took 20 to 30 minutes for remotely stored data, 
as compared to 2 or 3 minutes when data were stored 
locally. The difference was due to overhead in underly
ing DECNET remote file access protocols, which were not 
well understood at the time the SEEDIS data extraction 
module was written. Second, only a small fraction 
(about seven percent) of all SEEDIS databases could be 
stored on disk packs and an even smaJler fraction could 
be on line at any given time. Data which had originally 
been stored on an IBM photodigital mass storage device 
now reside only on tape. In the absence of another low 
cost mass storage device, new mechanisms were necessary 
to access the large amount of archival data. Finally, the 
original implementation did not provide for automatic 
updating of SEEDIS system tables on data locations 
across the network, so changes required intervention by a 
central database administrator. While this was tolerable 
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initially, it was clearly preferable to give each node 
independent responsibility to alter physical storage loca
tions of its own individual data sets in a way that could 
be automatically communicated to other SEEDI~ nodes. 

3. Distributed DBMS Enhancements 

During the past year, a number of improvements have 
been made to overcome limitations of the initial network 
implementation. They iriclude mechanisms for: local 
caching of data files to improve efficiency; linking to an 
automatic tape library (ATL) to make larger volumes of 
data accessible; node independence to facilitate 
automatic sharing of data among autonomous SEEDIS 
installations without the need for central control; 
improvements providing robust operation despite unreli
able network connections; and automatic recording of all 
cache transactions for subsequent statistical analysis. 

3.1. Caching 

In order to speed up access to frequently-used data and to 
provide an automatic mechanism for allocating scarce 
on-line storage space to the most frequently-used data, a 
simple system of caching was introduced. Archived files 
containing data required by the user are temporarily 
copied in their entirety to a disk cache at the user's local 
node. Archived data are partitioned so that no single file 
occupies more than a small fraction of the total cache. 
Files remain in the local cache for shared use until the 
space is needed for a more recent request. Every file is 
marked with the date and time of last access; least 
recently used files are removed first. Each file's lifetime 
depends on its utilization and the size of the cache, 
which is set by the local system manager. 

Precautions are taken to prevent deadlock or thrashing: 
(1) a user request is immediately rejected with a message 
if the data request will exceed the total available space in 
the cache; (2) user requests are completely processed one 
at a time; (3) recently requested or used data have a 
guaranteed minimum lifetime of several hours in the 
cache, regardless of the number of pending cache 
requests; (4) a safety margin of about 2000 blocks (one 
megabyte) is maintained for necessary housekeeping 
functions. 

All cached files copied from archive locations reside in a 
"temporary" cache subdirectory. All cache updates are 
accomplished in batch mode by a pseudo-user CACHE. 
The date of last access of each file (plus a constant incre
ment) is automatically maintained by the VMS operating 
system. Another portion of the cache consists of small 
"permanent" files which are periodically updated but 
never deleted. These files contain pointers to information 
at other nodes. 

This caching scheme is largely transparent to SEEDIS 
users, but it has involved an important enhancement to 
the user interface. Following standard SEEDIS pro
cedures for data. selection, the user defines a geographic 
scope and level (for example California by county) and 
then selects desired data elements from one or more on
line data dictionaries. After data selection is complete, 
the user types "extract" to append the data values to 



his/her working data set. 

In the new caching implementation, the "extract" com
mand first automatically copies entire archived files to 
the cache if they are not there already, and then extracts 
selected data from the cached files to the user's working 
directory. If the required data are not already in the 
cache, the user is warned to expect a delay. The user may 
choose either to wait or to put the process into the back
ground by typing an interrupt character (control-Y). The 
user then can type "show" to check the status of the 
cache request, "cancel" to cancel the request and begin 
another unrelated SEEDIS task, "continue" to complete 
the requested extraction as soon as caching is completed, 
or "quit" to leave SEEDIS. In all cases the background 
caching process proceeds to completion. Re-entering 
SEEDIS an hour or two later, the user can extract the 
requested data without delay. 

If the requested data reside on the automatic tape library 
(ATL) at LBL (see below), the cache request requires 
access to BKY, the Lawrence Berkeley Laboratory com
puter center operating system. The user is prompted for 
a BKY account number and password, if not already 
specified in the user's login command procedure. 
Interactive help is available for the new user who needs 
to open a new BKY computer account. 

3.2. Automatic Tape Library Mass Storage 

The initial implementation of SEEDIS on CDC comput
ers in the mid-1970's made use of an IBM photodigital 
storage device, the "chipstore." When IBM discontinued 
support for that product in 1979, SEEDIS databases were 
moved to a tape-based mass storage "gettape-stotape" sys
tem (GSS). This system, developed at LBL, implemented 
a self-describing UNIX-like directory structure for tapes 
and optionally makes use of an Automatic Tape library 
(ATL) connected to the CDC machines. 

When SEEDIS was initially reimplemented on the Distri
buted Computer Network VAX's, there was no link to the 
ATL. Selected databases were installed on disk for the 
initial implementation. At present, installed data occupy 
1 gigabyte on five disk packs. The 1979 network imple
mentation accessed only files on disk packs mounted at 
nodes in the network. In order to access data on tape, 
the tape had to be manually mounted, copied to disk, and 
installed in SEEDIS, a time-consuming and labor
intensive process. Although SEEDIS tapes contained 
much useful data (including most of the 1970 U.S. 
Census), they were virtually inaccessible. SEEDIS use 
did not justify the number of disk packs, let alone disk 
drives, required to keep the data on line. 

With anticipated arrival of 1980 census data, there. was a 
need for low-cost, moderately quick access to mass 
storage. Although optical disks had seemed a likely 
answer in the late 1970's, that technology was still too 
costly and unreliable. In order to fill this need, the 
SEEDIS project proposed a network link from the V AX 
machines to the Computer Center's CDC computers, in 
order to access and make use of the Automatic Tape 
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library and its GSS mass storage tape file system. 

Two-way communication with the ATL is accomplished 
by programs BKYSUBMIT and BKYCLAIM, which are 
installed on every SEEDIS node. BKYSUBMIT and 
BKYCLAIM use DECNET to talk to a special network 
node DGATE, which in turn communicates with the ATL 
over a high-speed hyperchannel link. The 1983 SEEDIS 
network implementation includes an interface to 
BKYSUBMIT and BKYCLAIM, including proper han
dling of the various errors that can occur. As a result, 
low-priority SEEDIS data are now gradually being moved 
to tapes on the ATL, freeing valuable disk space for more 
important files and caching. 

3.3. Node Independence 

One of the most serious drawbacks of the 1979 implemen
tation was the difficulty of modifying archived data files. 
Every node had an identical copy of program modules, 
database lists and data dictionary files. Files at every 
node had to be modified if any changes were made to 
publicly installed data files. Obsolete data files could not 
be removed until new software and data dictionaries were 
installed on every SEEDIS node, a time-consuming pro
cess even with only nine nodes. With additional SEEDIS 
nodes planned for 1983 and beyond, a better solution was 
required. 

One of the guiding principles of the 1983 SEEDIS net
work implementation has been node independence. Every 
node should have the ability to install its own data 
locally, which it may optionally share with other nodes 
on the network. When a data· file is installed, modified, 
or removed at any node, new information must automati
cally propagate to every node that has access to that file. 
The procedures for installing data must be simple and 
robust enough that only minimal consultation will be 
required from LBL staff. 

The 1983 implementation allows data to be installed at 
any node, whether or not that node is connected to other 
SEEDIS nodes on the network. Optionally, the installed 
data may be flagged for public access, in which case the 
data become available to remote users as soon a network 
connection is established. The existence of data is made 
known to other users through a summary data base direc
tory, which may be printed off line or browsed on line. 
A copy of the on-line directory is maintained at every 
node as described in the following example. 

Suppose a user at the ETADC node (in Washington, DC) 
installs or modifies a public-access data file. With the 
permission of the local system manager, s/he uses docu
mented installation procedures to automatically modify 
certain files in the local subdirectory seedis/etadc. This 
portion of the file system contains all ETADC node
specific SEEDIS information. In particular, it contains 
pointers to permanent archive locations of data and docu
mentation installed by ETADC users. (The data may 
actually reside elsewhere, for example on the ATL in 



Berkeley, California). 

The installation procedure invokes a batch process at 
ETADC, which in turn causes batch processes to be ini
tiated at every other presently connected SEEDIS node. 
The subordinate processes modify files in the "per
manent" portion of their local cache. For example, node 
RX in Seattle has a subdirectory cache/perm/etadc 
where it maintains current copies of small files describing 
ETADC-installed data (Le., a copy of seedis/etadc from 
node ETADC). Conversely, node ETADC has a sub
directory cache/perm/rx .. where it maintains current 
copies of small files describing RX-installed data (Le., 
seedis/rx at node RX). 

When the network is down, there is no guarantee that the 
directory cache/perm/etadc at RX is a correct copy of 
seedis/etadc at ETADC. If the RX network connection is 
down at the time ETADC data are installed, that infor
mation is kept in a small file at ETADC, and SEEDIS 
periodically resubmits the same batch update request 
(once a day until successful). In addition to the broad
cast of updates, each node regularly (once a day) checks 
all other connected SEEDIS nodes to bring information 
from other nodes in its own "permanent" cache up to 
date. 

Periodically (once a day) at each node, the information 
in all the subdirectories cache/perm/(anything) is 
merged and reformatted, to form a global database direc
tory (also in cache/perm). This global database direc
tory is the primary source of inforrruition at each node 
for SEEDIS users and data retrieval software. 

The list of known SEEDIS nodes is itself a file which is 
automatically maintained at every node. For example, a 
file in seedis/etadc at ETADC identifies ETAOC as being 
a pUblic-acceSs SEEDIS node. When SEEDIS is installed 
at ETADC, it attempts to broadcast that fact to every 
node on the network; those which have installed SEEDIS 
automatically receive and record the information in their 
directories cache/perm/etadc. Even if ETADC is tem
porarily disconnected, it is remembered as a SEEDIS 
node in future broadcast attempts from other nodes. If 
SEEDIS is deinstalled at ETADC, the information is 
properly recorded at each node the next time it achieves 
a network connection with ETADC. 

3.4. Robustness Considerations 

The caching software needs to be unusually robust to 
cope with a still unreliable hyperchannel link and DEC
NET phone connections that may operate only a few 
hours a month. On several occasions when the hyper
channel was inoperative for an extended period, the 
requested data were automatically and correctly put in 
the cache when the link was restored three weeks later. 
Even such a delayed response is valuable to certain 
classes of remote users, provided the data are certain to 
arrive sooner or later without further attention. Users do 
not have to remain on line waiting for the data to arrive. 
Once in the local cache, data used with some regularity 
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are likely to remain available for months or longer. 

Another aspect of robustness concerns the ability of the 
system to correctly recover from power failures, system 
crashes, scheduled and unscheduled shutdowns, VMS 
system updates, and well-intended but incorrect actions 
by system managers. In general, the contents of disk 
files are the only reliable records left by an interrupted 
job -- batch queues may not survive system updates or 
system crashes. Each SEEDIS node maintains a record of 
a pending job it expects to find in the batch queue of 
every other SEEDIS node, together with the password 
required to resubmit that job if necessary. This job 
(which runs once a day at each SEEDIS node) performs 
routine maintenance operations and keeps alive its 
"clones" at all other connected nodes. As the job runs 
only a few minutes a day, the likelihood of its being 
removed from the batch queue (due to a crash while it is 
running) is small. The likelihood of such a disaster 
affecting every node simultaneously is negligible. In 
other words, the system becomes more robust as more 
nodes are added (like the brooms of the "Sorcerer's 
Apprentice!"). Once started at a node, it can be per
manently turned off only by a deliberate action of the 
system manager, for example by deleting critical files or 
removing the login privilege of the. pseudo-user CACHE. 

4. Recording of Cache Transactions 

Since January, 1983, transaction records of every cache 
request have been continuously recorded in a compact 
machine-readable form. Usage patterns are being statist
ically analyzed to isolate bugs and improve efficiency. 

Between January and June, 1983, the caching mechanism 
was continuously tested via daily automatic submission of 
randomly generated requests. Two nodes connected via 
DECNET shared a common cache on a single disk. Files 
were routinely and correctly cached from the ATL; delays 
varied from 20 minutes to 20 days depending on the state 
of the hyperchannel link. Fewer than 1 percent of the 
requests failed, in all cases due to hardware error. On 
only three occasions did the system fail irrecoverably and 
require intervention -- twice when hyperchannel hardware 
malfunctions caused the cache to overflow, and once 
when disk hardware errors caused the batch queues of 
both nodes to be simultaneously destroyed. 

Under normal day time load conditions, a typical small 
request involving the ATL takes about an hour -- 5 
minutes to formulate and submit the request, 20 minutes 
in batch queues, 10 minutes to read the tape, 20 minutes 
to put the data in the cache, and 5 minutes to copy the 
requested data from the cache. Subsequent requests for 
the same data would require only 10 minutes -- 5 minutes 
to formulate the request and 5 minutes to extract the 
data. Some of these times will be reduced in the future 
by improving the efficiency of the software. 

S. Conclusions 

Major enhancements have recently been implemented to 
permit efficient and robust access to distributed data in 
SEEDIS. Specifically (1) an automatic caching mechan
ism provides local shared access to user-selected subsets 



of SEEDIS databases; (2) automatic access to 50 giga
bytes of archived data is achieved through a hyperchan
nel link to an automatic tape library; (3) data can be 
independently installed, modified, or removed at any 
node, with all changes automatically recorded in copies 
of a global database dictionary at every other node; (4) 
every node is responsible for initiating periodic house
keeping functions at every other node, so that the whole 
network is much more robust than any individual node; . 
(5) a continuous log of every cache transaction is being 
recorded for statistical analysis. So far, caching has 
been implemented for only one SEEDIS database -- a 
portion of the 1980 Census that was too large to reside on 
disk. During late 1983 and early 1984, the mechanism 
will be implemented for most other major SEEDIS data
bases including most of the 1980 Census. Distribution of 
a new version of SEEDIS in 1984 will give remote users 
automatic access to a vastly increased database, with no 
increase in local disk storage requirements. At the same 
time, remote users will be able to install their own 
SEEDIS databases and make them mutually accessible to 
other SEEDIS nodes. 
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An Integrated Research Support System for Inter-Package Communication 
and Handling Large Volume Output from Statistical Database 

Analysis Operations 
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Jerry Toporek, BMDP Statistical Software 

Abstract: 
This paper describes work underway to develop an integrated research support system designed 

to link together into a unified system a generalized DBMS, a relational database query system, 
statistical packages, a graphics system, text editors and a generalized screen oriented output 
handler. 

The work is being carried out on the He~ett Packard HPgOOO 32 bit micro computer system 
under HP-UX; HP's implementation of the UNIX operating system. The intent of the project is to 
provide a unified environment designed specifically for the researcher. 

1. Introduction: 
Most longitudinal studies require 

that complex hierarchically related data 
be collected, maintained and updated as 
the study progresses over time. 
Statistical analysis, reporting and 
graphical display on the other hand, 
require only simple rectangular (or flat) 
files. A package that is suitable for 
managing a complex database will not 
likely provide all of the statistical and 
graphical tools needed for analysis. To 
manage databases, perform statistical and 
graphical. analysis and to conduct 
necessary updating and reporting tasks, 
the researcher needs convenient access to 
more than one single program package. 
This paper deals with the following 
aspects of the use of multiple systems in 
statistical database analysis: 

A description of the set of 
computer facilities needed by a 
researcher working with 
Statistical databases. 

- A discussion on how most of these 
needs can be met using a 
combination of existing packaged 

, systems available through software 
vendors. 
A description of additional 
facilities needed and a proposed 
approach to providing those 
facilities. 
A description of a menu driven 
user interface system designed to 
integrate access to and use of 
these various systems. 

2. User ReqUirements for Statistical 
Database Analysis 
In this section, we will attempt to 

justify why we feel the following set of 
facilities are required for effectively 
working with statistical databases: 

Access to a comprehensive DBMS for 
database creation, maintenance and 
administrative functions. 

- An easy to use relational query 
language retrieval system with 
which to produce simple flat file 
units of analysis from the 
potentially complex structured 
data being managed by the database 
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management system. 
Access to at least one 
comprehensive batch statistical 
package for large scale model 
building and hypothesis testing. 

- Access to an interactive 
statistical analysis and display 
system for immediate investigation 
of smaller data sets. 

- Linkage to a flexible interactive 
graphics package system through 
which data can be displayed 
graphically. 

- An output management system by 
which the large volumes of 
listings generated in the process 
of statistical database analysis 
can be viewed, annotated and 
modified in preparation for 
listing or archiving. 

2.1 DBMS Characteristics: 
Three types of database model are 

discussed When referring to database 
management systems; the relational model, 
the hierarchical model and the network 
model. 

The relational model is the simplest 
conceptually. Each type of record 
collected in a study is viewed, in the 
relational model, as a simple table 
(relation). The record variables make up 
the columns of a relation and the 
obsevations form the rows. As many 
relations are formed as are necessary for 
the different types of records collected 
in the study. For example, a clinical 
study might have demographic records, 
initial assessment records, follow-up 
records and final assessment records. Any 
interrelationships which may exist between 
individual relations are retained in the 
values of variables included in the 
relations. For example, each relation in 
the clinic example would have a variable 
containing the patients unique study id. 
Variables in one relation possesing a 
relationship with one or more variables in 
other relations are called candidate keys. 
Any desired relationship is 'realized' 
only at the time that a particular 
retrieval is requested. The relational 
model, through a well defined relational 



algebra, provides very powerful rules by 
which relations may be joined on candidate 
keys during a retrieval to create new 
relations or desired units of analysis. 

The hierarchical and network models 
differ from'the relational model in the 
sense that they generally impose a very 
rigid structure on the data records. 
Whereas the relational model allows the 
user to choose the relationship desired at 
the time a retrieval is requested, the 
hierarchical and network models require 
the user to choose a specific set of 
relationships to be operationalized as 
part of the original design. Systems 
based on these models then physically 
implement the chosen design in the form of 
index keys, inverted lists or even chains 
of pointers actually embedded in the 
individual records. Databases implemented 
using a hierechical or network system have 
the advantage of highly efficient access 
to records and sets of records in the 
order defined in the design. These 
databases generally suffer the 
disadvantage, however, that they do not 
retain the flexibility of the relational 
model for easily accessing records in 
other ways not anticipated in the original 
design. 

Database management needs for 
statistical databases require aspects of 
all three models as we will discuss in the 
next two sections. 

2.2 DBMS Requirements for Building and 
Maintaining a Statistical Database: 

The fixed structure of a specific 
hierarchical or network model is extremely 
important for maintaining an ongoing 
database. The database administrator 
needs access to a dictionary driven DBMS 
which supports a defined structure, which 
then enforces database integrity, provides 
for efficient interactive input and 
updating of records and maintains the 
database as an integrated whole. 

Building and maintaining a 
statistical database requires a DBMS which 
provides: 

The ability to implement 
potentially complex hierarchical 
and network data structures which 
are capable of modeling the real 
nature of the data being 
collected. 
A centralized schema (data 
dictionary) facility within which 
data characteristics (meta data)' 
as well as integrity constraints 
can be defined. 

- Both interactive data entry access 
and volume batch data entry and 
modification facilities. 

- Security provisions, database 
integrity checking and database 
recovery facilities. 

- Report generation, descriptive 
statistics and tabulation 
proced ure s. 
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- A comprehensive set of maintenance 
utilities for unloading, 
reloading, subseting, merging, 
recovering, restructuring and 
.transporting the database. 

2.3 DBMS Requirements for Statistical 
Analysis and Graphical Display: 
With the availability of a 

comprehensive database management system 
to handle the capture, editing, updating, 
reporting and general maintenance of a 
complex set of data, the researcher's 
primary concern is the production of flat 
files for analysis. Although some file 
management capabilities are being added to 
statistical analysis systems, they do not 
provide a full range of capabilities 
provided by a DBMS. 

If the DBMS has a 'simple to use' 
query retrieval system linked into the 
database, the researcher can accomplish 
analysis most easily by creating flat 
files containing necessary units of 
analysis directly from the database as 
required. The resulting flat files can 
then be passed to the statistical or 
graphical analysis system where the 
desired analysis can be done. This 
approach has the added advantage that the 
centralized schema maintained within the 
database contains extensive meta data 
which can be passed to the analYSis system 
with the retrieved units of analysis. 
This elimin,ates, for example, the data 
description and manipulation step required 
by statistical systems and allows the user 
to go right into statistical analysis. 

The primary difficulty with retrieving 
analysis files directly from a database 
has been the inability to view a database 
relationally which was initially 
structured hierarchically or as a network. 
Clearly, the database administrator needs 
the structured model while the researcher 
needs the flexibility of the relational 
model. 

In sectioon 3, we will review the SIR 
database management software package. The 
SIR system allows the user to logically 
impose multiple hierarchical structures 
with any necessary interconnecting network 
access paths on a set of relations. This 
structured model is maintained through 
independent index files which provide 
direct keyed access to any record in the 
database. This logical structure provides 
the rigid model needed by the database 
administrator for building, updating and 
maintaining the ongoing database. To meet 
the needs of the researcher, the SIR 
software provides a relational query 
system which allows the user to completely 
ignore the structured model and to treat 
the database purely as a set of relations. 

A second difficulty with retrieving 
analysis sets from a database has been the 
fact that the user must interact 
independently with several separate 
program packages. In addition to moving 
manually between various systems, the user 

'must define the various command files 



separately for each system. This process 
often means moving repeatedly in and out 
of a system text editor and much 
interaction with the computer operating 
system. A major emphasis in this project 
will be the provision of a smooth, 
automated, menu driven user interface 
between separate systems. 

2.4 Output Handling: 
The use of a statistical analysis 

package often results in large volumes of 
output. Such large output can not easily 
be viewed and comprehended as it is being 
produced. The output from batch oriented· 
packages is also often wider than the 
standard 80 column width of most computer 
terminals. Yet it is not always cost (or 
time) effective to print the output to' 
hard copy. Very often the analysis may 
only be preliminary. A quick look at 
several results is sufficient to allow 
discarding an initial output and 
proceeding on to the next analysis. 

The researcher needs a flexible 
system for terminal screen handling of 
large files of output. This is 
particularly import11t when computing at a 
distributed microcoJ. "\uter workstation 
which may not includl.: a local high speed 
printer. A comprehensive output handling 
system should be considered as·a necessary 
part of the integrated .research system. 
The following is a list of the 
characteristics we feel are required in an 
output handler program: 

- The ability to browse sequentially 
forward and backward through a 
file and to window sideways when 
the length of lines exceed the 
screen width. 

- A facility for marking locations 
in the file so that they can be 
recalled at will. 

- A comprehensive pattern searching 
capability. 

- The ability to 'window' together 
side by side on the screen parts 
of the file from different 
locations for comparison purposes. 

- A facility for annotating the 
output and adding notes which 
become part of the resulting hard 
copy. 

- A flexible capability for cutting 
and pasting a listing in order to 
eliminate unwanted output. 

3. Available Packaged Systems which Can 
be Used as Components of an 
Integrated System: 
This section describes existing 

packages available to include as 
components in an integrated statistical 
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database analysis system. These include 
the SIR research database management 
software(1), the Minitab interactive 
statistical system.( 2), the BMDP (3) and 
SPSSX(4) large volume batch statistical 
systems, Hewlett Packard DSG graphics 
package( 5) and the vi full 'screen 
editor(6) • 

3.1 Database Management: 
The SIR software system is probably 

the most comprehensive set of database 
management facilities currently available 
that is especially designed for the 
research environment. The system 
presently.runs on 12 seperate computer 
systems and is highly portable to other 
systems with 32 bit processors and virtual 
memory. 

The following is a description of the 
main features of the four seperate 
packages which currently make up the SIR 
softWare: SIR/DBMS, the SIR database 
management system; SIR/FORMS, a full 
screen data input, modification and 
viewing system; SIR/SQL+, a relational 
query language retrieval system and 
SIR/HOST, a host language interface 
system: . 

3.1.1 SIR/DBMS - A Research Database 
Management System: 

The following is a list of the main 
features of the SIR/DBMS: 

A relational data structure on 
which one can superimpose any 
hiererchical, network and 
relational data model with 
multiple record types. 

- An integrated data dictionary for 
establishing the database 
structure and for naming, labeling 
and documenting the database 
variables and record types. 
Extensive facilities for data 
quality control including checks 
for invalid and out-of-range data, 
tests for consistency between data 
items and special handling of 
missing and undefined data. 
Security levels for reading and 
writing variables or entire 
records. 
Interactive access to the data 
dictionary. 
A structured procedural retrieval 
language, consistent with the 
other SIR/DBMS facilities (data 
dictionary, data input and built 
in procedures), that enables the 
user to navigate the database with 
a minimum of programming. The 
retrieval language also provides 
facilities for direct database 
modification, report generation 



• 

and interactive terminal input to 
an executing retrieval program. 

- A set of simple statistical 
procedures that operate directly 
on the summary records created by 
a retrieval. These include 
frequency distributions and 
histograms, descriptive 
statistics, scattergrams, line 
printer plots and simple linear 
regressions. 

- A sophisticated tabulation 
procedure patterned after the TPL 
program produced by the Bureau of 
Labor Statistics. This procedure 
produces device-independent, 
camera-ready tables. Individual 
table cells can contain frequency 
counts, means, minimums, maximums, 
standard deviations, medians, 
quartiles and percentages. The 
user also has complete control 
over all output format options. 

- A report generator which allows 
the user to produce simple reports 
with Column headings, breakpoints, 
sorting, totals, subtotals and 
formatting automatically produced. 
With more extensive user 
specifications, complex 
hierarchical and branched reports 
can also be produced. 

- Direct system file creation for 
BMDP, SPSS and SASe The system 
files created by SIR/DBMS can be 
used directly by these statistical 
packages. 

- A complete set of database 
maintenance utilities including 
subseting, merging, restructuring, 
unloading, reloading and 
transporting facilities. 

3.1.2. SIR/FORMS - Interactive Data Entry 
and Retrieval s: 

The SIR/FORMS subsystem is an 
integrated system for interactive, 
screen-oriented data entry, modification 
and retrieval. It permits the user to 
enter, retrieve, delete or modify data in 
a SIR/DBMS database. 

The SIR/FORMS subsystem provides the 
screen designer with a comprehensive set 
of design capabilities to handle a variety 
of application requirements. Among these 
are: 

- Security and activity control for 
individual or groups of users. 

- Conditional execution of screens. 
- Linkage of screens along 

hierarchical or network paths. 
- Validation of input based on 

existing data in the database. 
- Customized help and error message 

texts. 
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- A wide range of data verification 
capabilities. 

- Automatic creation of Log and 
Journal files. 

SIR/FORMS makes direct use of the 
SIR/DBMS centralized data dictionary to: 

Create default screens. 
- Provide automatic data quality 

control. 
- Provide automatic help screens for 

each data item. 

In addition to data entry and 
modifiction, SIR/FORMS allows simple data 
retrieval and query functions without any 
programing by the user. These retrievals 
can be done by record key values, a range 
of key values, inverted list lookup or by 
a data value in a field. In the latter 
case, the operator simply types the search 
criteria values in the appropriate fields 
and SIR/FORMS retrieves the matching 
records and displays them one at a time. 
This can be considered as a type of query 
by example capability. 

3.1.3 SIR/SOL+ - A Relational Query 
System: 

SIR/SOL+ is an interactive relational 
query system that allows users to 
interrogate a SIR database using an 
English like relational language. 
SIR/SOL+ is an extended Implementation of 
SOL (IBM's Structured Query Language). In 
addItion to providing the full SOL, 
SIR/SOL+ can take advantage of the 
existing structure of the database to 
perform retrievals with maximum 
efficiently. Frequently used queries can 
also be saved as part of the database. 

The following examples illustrate the 
use of SIR/SQL+ to perform retrievals. 
The structured SIR/DBMS retrieval language 
code necesary to generate the same output 
!.S also shown for comparison: 

List the employee ID, name and 
salary of all managerial level 
employees (position level greater 
than 10): 

SQL+: 
SELECT EMPLID NAME SALARY 
FROM DEMOGRAF 
WHERE PLEVEL GT 10 

SIR/DBMS: 
RETRIEVAL 
PROCESS CASES 

PROCESS REC DEMOGRAF 
IFTHEN (PLEVEL GT 10) 

WRITE NAME SALARY 
END IF 

END PROCESS REC 



END PROCESS CASES 
END RETRIEVAL 

List the results of a 10% raise 
given to all the employees in 
departments 3,8 and 10. Sort the 
output by salary in descending 
order. If there are two people 
with the same salary, sort them by 
employee ID. 

SQL+: 
SELECT EMPLID NAME 1.1*SALARY 
FROM DEMOGRAF 
WHERE DEPT EQ ANY (3,8,10) 
ORDER BY SALARY DESC EMPLID 

SIR/DBMS: 
RETRIEVAL 
PROCESS CASES 

PROCESS REC DEMOGRAF 
IFTHEN (DEPT EQ 3 OR 8 OR ID) 

MOVE VARS EMPLID NAME 
COMPUTE NEWSAL=1.1*SALARY 
PERFORM PROCS 
AUTOSET 

END IF 
END PROCESS REC 

END PROCESS CASES 
REPORT FILENAME=SALRPT/ 

SORT=NEWSAL(D),EMPLID/ 
PRINT=EMPLID,NAME,NEWSAL/ 
NOTOTALS/ 

END REPORT 
END RETRIEVAL 

- For the whole company, find the 
average salary for each 
educational category (eg. 1=High 
School, 2=Some College, 3=BA or 
BS, etc.). 

SQL+: 
SELECT VALLAB(EDUC) MEAN(SALARY) 
FROM DEMOGRAF 
GROUP BY EDUC 

SIR/DBMS: 
RETRIEVAL 
PROCESS CASES 

PROCESS REC DEMOGRAF 
MOVE VARS EDUC,SALARY 
PERFORM PROCS 
AUTOSET 

END PROCESS REC 
END PROCESS CASES 
REPORT FILENAME=EDUCRPT/SORT=EDUC/ 

NOTOTALS/PRINT=VALLAB(EDUC) 
MEAN (SALARY)/BREAK=EDUC/ 

END REPORT 
END RETRIEVAL 

The VALLAB function displays the 
meaning (value label) of the 
education categories rather than 
their codes. 
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In addition to these simple examples, 
SIR/SQL+ will handle full relational JOIN 
queries in which data from two or more 
relations (SIR/DBMS record types) is 
joined. 

3.1.4 SIR/HOST - A General Host Language 
Interface: 

SIR/HOST provides access directly 
into a SIR database from any standard high 
level language able to call a FORTRAN 
subroutine library. Through SIR/HOST, the 
user can take advantage of the storage, 
maintenance and retrieval capabilities of 
the SIR/DBMS database directly from within 
his own programs. 

3.2 Statistical Systems: 
The most popular and widely used 

statistical packages in North America 
today are BMDP, Minitab, P-STAT, SAS and 
SPSS. All of these except SAS have been 
converted to a large number of computer 
systems and will readily transport to any 
32 bit computer with virtual memory. The 
recent work at SAS Institute on portable 
SAS promises to make that system much more 
broadly available in the future as well. 

BMDP, PSTAT, SAS and SPSS are all 
similar with respect to their provision of 
a reasonably broad and comprehensive array 
of statistical procedures and the batch 
nature of their execution. All work on 
flat files of records on disc and can, 
therfore, handle indefinitely large data 
sets. 

Minitab is decidedly different than 
all of the others in that it works with an 
in memory worksheet array and is 
completely interactive. This approach 
gives it great flexibility and makes the 
system very simple and easy to use. 
Minitab is, however, limited in its 
ability to handle really large research 
problems. Minitab is thus complementary 
to the other four systems mentioned above 
and should probably be included with 
whichever one of the batch systems is 
chosen in order to provide a complete 
spectrum of statistical capability to the 
researcher. 

The P-STAT, SAS and SPSSX systems 
provide file management facilities in 
addition to statistical_procedures. SAS 
and SPSSX also provide report generators 
and tabulation procedures. If the 
researcher is able to extract analysis 
files easily from the statistical database 
and is able to accomplish reporting and 
tabulation needs within the DBMS, these 
facilities in the statistical system 
become less important. 



3.3 Graphical Systems: 
As a result of great interest in the 

area of graphics in recent years, much 
work has been done to provide graphics 
software and the hardware to support it. 
Most computer vendors now provide 
comprehensive graphical software packages 
which support the graphics devices that 
they produce. 

General packages (eg. the ISSCO and 
Precision Visuals Inc. products) run on a 
large number of computers and support 
multiple vendors graphics devices. In 
addition, both SAS and SPSS have graphics 
options available for their systems on 
some computers. 

Whichever approach is adopted to 
provide graphical support to the research, 
a mechanism is needed for getting flat 
files from the database to the graphical 
system in much the same way this 
mechanisim is required for statistical 
systems. 

3.4 Editors: 
As mentioned earlier, access to 

flexible text-editing facilities is 
important to the researcher. Most 
computer systems have several text editors 
available and different users prefer 
different editors. In addition, many 
systems also provide some type of editor 
capability as an integral part of the 
system. SIR and P-STAT are examples. The 
SIR system provides a comprehensive and 
quite general line oriented editor. Often 
users wish to use the editor provided with 
a system like SIR because they become very 
comfortable with it and because it is 
identical on every computer on which they 
use the system. In this way, moving 
between computers doesn't require them to 
learn a new set of· editor commands. 

System specific editors, on the other 
hand, are often tailored to the computer 
and offer advantages such as full screen 
capability. Thus the user needs 
flexibility in using the editor of choice 
without paying a high overhead in terms of 
moving between systems and re-assigning 
files. 

4. Development Considerations for the 
Output Handler 

The output handler will allow a 
researcher to examine large output files 
in as natural and flexible a manner as he 
examines printouts. This is currently 
done in a somewhat ad hoc manner. For 
example, we manipulate large files using a 
number of tools supported by the UNIX 
operating system. These include the vi 
full screen editor as well as several 
programs that compare files, merge files, 
separate files, etc. The most obvious 
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problem with handling output files in this 
manner is that these are all separate 
programs, each of which requi res a 
different set of parameters and cryptic 
commands to perform its function. A less 
obvious problem is that all of these 
programs treat files in a very general 
manner, as a sequence of characters, or at 
most as a sequence of lines: Output from 
statistical packages always has some 
higher level structure such as tables, 
graphs, text, etc. and there is a great 
loss in efficiency if this is ignored. 

To solve these problems, the output 
handler will be an integrated package 
which supports most of the functions of a 
full screen editor plus additional 
capabilities to allow multiple windows 
into multiple files, automatic comparison 
of windows, etc. In addition it will 
recognize the high level structure of an 
output file and use that to facilitate 
searching, comparing, and cutting and 
pasting of files. 

In operation it will accept output as 
it is produced by a statistical package. 
It will build an index into the file based 
on the syntax, or structure of the output. 
The researcher can then direct his 
searches, comparisons etc. in terms of the 
structure of the output. For example, let 
us consider the steps necessary to compare 
two tables. First of all the tables are 
located by repeatedly executing the "next 
table" command. This is very rapid 
because the output handler has built an 
index of the tables in the file. Once the 
desired tables have been located, the 
display screen may be divided in two and 
one table put into each window for visual 
comparison. If the tables are too big to 
be completely displayed they may be 
scrolled side to side and up and down. 
Another situation might require the 
assembly of several columns from different 
tables. Again, the tables may be found 
and the columns selected quickly and 
easily because the output handler 
recognizes the structure of a table. The 
columns may then be assembled in a 
separate window and then saved as a file 
for later printing or review. 

5. The Proposed Comprehensive 
Research Support System: 

The Statistical Software Group (SSG) 
at McMaster University has, for five 
years, been converting and distributing 
statistical software (BMDP, Minitab, SCSS 
and SPSS) on the HP3000 16 bit 
minicomputer. The SSG has presently 
entered into an agreement with Hewlett 
Packard to convert and distribute 
statistical packages, database management 
software and research support tools on the 



new HP9000 32 bit microcomputer running 
under the HP-UX operating system (HP's 
implementation of Bell Laboratories 
UNIX(7) operating system). 

In addition to making the individual 
packages available, it has been decided 
that an overall user interface system is 
needed to help the user make effective use 
of these individual packages' in concert. 

The proposed system will provide the 
user with a menu driven user interface 
subsystem which will integrate the 
following component systems: 

1. SIR/DBMS research database 
management system for statistical 
database definition, 
administratt'on and maintenance. 

2. SIR/FORMS for full screen forms 
data entry, modification and 
viewing. 

3. SIR/SQL+ for relational database 
retrievals of units of analysis. 

4. A choice of BMDP or SPSSX batch 
statistical systems for large 
scale statistical analysis. 

5. The Minitab interactive 
statistical analysis and display 
system. 

6. Hewlett Packard's DSG Decision 
Support Graphics package. 

7. The vi full screen editor and the 
SIR/DBMS line oriented editor. 

8. An output handling subsystem as 
described in section 4. 

The user interface will allow the 
researcher to move smoothly between these 
component systems as well as provide the 
mechanism for handling the communication 
of data between systems via temporary 
files, pipelines and buffers. This 
removes one of the last machine specific 
burdens that the statistical researcher 
has traditionally had to face. 

All of this will be made available on 
the HP9000 32 bit microcomputer system. 
The HP9000 computer ranges in size and 
power from a desk top workstation version 
with a single 32 bit CPU, an I/O processor 
and one megabyte of memory to a multi-user 
system with three 32 bit CPU's, an I/O 
processor and eight megabytes of memory. 

Plans call for incorporating support 
for distributed 16 bit processor 
workstations into this research support 
system as well. In the distribution 
workstation environment, the SIR/DBMS 
database would likely reside on the 
central HP9000 where the SIR/SQL+ 
retrievals would be done. The resulting 
flat file would then move to the 
workstation where the researcher would do 
required statistical processing, graphical 
displays, output processing, etc. on the 
local personal workstation. The resulting 
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output might then be sent back to the 
HP9000 for printing if a large output was 
required. Alternatively, one or more of 
the workstations on the network might have 
a printer or graphics plotting device for 
public use where required output could be 
produced. 
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INTEGRATING DATA AND DOCUMENTATION IN A 
MULTI-NATIONAL RESEARCH PROJECT: THE lEA 

SECOND INTERNATIONAL MATHEMATICS STUDY 

Richard G. Wolfe 
The Ontario Institute for Studies in Education, Toronto, Canada 

With recent advances in the design of statistical software systems, 
data files with a hierarchy of observations can be stored with appropriate 
linkage of data and documentation and analytically aggregated and 
disaggregated. However, additional layers of organizational complexity 
need to be incorporated into the design of statistical databases when it 
is desired to integrate research studies that are parallel in sampling and 
instrumentation, but not identical. This occurs when a research survey is 
is repeated over several years or in several countries. Integration may 
be facilitated with a central documentation file of tables and text that 
capture inter-study variation and can drive analysis programs. This is 
illustrated in an application to a 20-country set of school mathematics 
surveys. 

O. Introduction 

Over the last several years, the 
designers of statistical software systems 
have begun to recognize that many data 
files, especially in the social sciences, 
have a structural complexity that exceeds 
a simple observation by variable matrix. 
An important example concerns a hierarchy 
of observations (e.g., students, teachers, 
schools) where each level may introduce 
new variables. In such a case, the 
organization of the statistical database 
must include linkage of data and data 
documentation between levels and should 
facilitate the analytiC processes of 
aggregation and disaggregation. 

It is suggested in this paper that 
sometimes additional layers of 
organizational complexity will need to be 
incorporated into the design of 
statistical databases. The complexities 
arise from the integration of research 
studies that are parallel in sampling and 
instrumentation, but not identical. For 
example, this would occur when a research 
survey is repeated over several years. The 
main example in this paper is of a set of 
very large-scale surveys in school 
mathematics that are being carried out in 
a coordinated but not centrally controlled 
fashion across 20 countries. 

First, the nature of the data 
organization and documentation problem in 
the mathematics project is described. Some 
of the complications include hierarchical 
sampling and instrumentation, intended and 
accidental national variation, 
simultaneous item and respondent sampling, 
and multi-language translation. Second, 
the design objectives and constraints for 
database integration are discussed. It is 

111 

especially important to capture the 
national variation in the surveys and to 
facilitate repeated but differentiated 
analysis. CompreSSion and portability are 
also important. Third, the approach being 
taken to integration is described. This 
involves a central documentation file 
containing tables and structured text that 
define the internationally standard 
instrumentation and data coding as well as 
national deviations from the standards. 
Fourth, it is explained how the central 
documentation file is used as basic 
reference documentation and also as a 
source data file for programs that produce 
codebooks and statistical package setups, 
adjusting automatically to the specifics 
of each country's data. Fifth, 
consideration is given to what aspects of 
the system might be considered for 
incorporation in general-purpose software. 

1. The lEA Second International 
Mathematics Study 

The lEA (International Association 
for the Evaluation of Educational 
Achievement) is a consortium of 
governmental and private research 
institutes around the world that carries 
out a program of coordinated educational 
research studies in a variety of content 
areas. The lEA Second International 
MathematiCS Study involves 20 of the lEA 
countries (some are jurisdictions within a 
country) in an analysis of mathematics 
teaching and learning at two levels in 
secondary education: one is called 
population ~ and corresponds to students 
in the school grade where most students 
are age 13, and the other is called 
population ~ and corresponds to students 
who are studying mathematics in the final 
year of secondary education. Some of the 



countries are carrying out the study only 
for population a, so across the 20 
countries there are a total of 35 surveys. 

It is important to note that while 
the general design of the study is set in 
international meetings and defined in 
international instruments and operating 
manuals to be followed by the national 
centres, each centre is responsible for 
the detailed design and implementation, 
includiug translat.ion, sampling, 
administration, and initial data coding 
and processing. Control mechanisms for 
assuring consistency and quality of the 
surveys include having international 
sampling referees, obtaining back
translations of the national instruments, 
and carrying out an elaborate audit 
of the data and reports submitted by 
each country. 

These surveys are of large scale and 
national scope. For a given country and 
study population, there might be 150 
schools, 300 teachers, and 7000 students 
participating. In most cases, stratified 
random cluster sampling is used, although 
the particular nature of the sampling 
stratification and hierarchy depends on 
the school system of the country. For 
example, some countries have distinct 
subsystems of schools (e.g., academic and 
vocational training); others have tracking 
within a single system (e.g., algebra and 
basic mathematics classes in comprehensive 
schools). Essential first aspects of the 
data documentation and storage concern the 
identification of the sampling structure, 
linkage of records from student to 
classroom to teacher to school to stratum, 
and recording of appropriate replication 
categories and sampling weights at each 
stage. Of course, thes"e aspects vary from 
country to country. 

Response information is collected at 
each level of the school hierarchy. 
Students take knowledge tests in 
mathematics and answer background and 
attitude inventories. Teachers fill out 
questionnaires covering their educational 
backgrounds, their attitudes toward 
mathematics, and their topic coverage and 
teaching practices. Teachers also provide 
reaction to the student test, indicating 
for each item whether the content needed 
to answer the item was included in 
classroom instruction; this is called the 
opportunity to learn (OTL), and becomes a 
variable in analyzing student achievement. 
School principals fill out a questionnaire 
concerning facilities, length of the 
school year, organization of the 
mathematics instruction, etc. 
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The core of the surveys is the 
mathematics test, and it is administered 
through a process of item sampling. The 
pool of test items is too large (180 at 
population a, 136 at population ~) to 
administer to each student, without using 
an impractical amount of classroom time. 
So the pool is divided into stratified 
random forms, of which each student takes 
2. (The details of constructing the forms 
differed between the two populations and, 
to some degree, between countries.) The 
assignment of forms to students is 
randomized in each sampled classroom. So 
for purposes of analysis, each test item 
is responded to by an inner-penetrating 
subsample of the total student sample, and 
each stUdent takes a stratified random 
subsample of the items. Special 
statistical procedures are needed, of 
course, in descriptive analysis of item 
and subtest response and in explanatory 
analysis of student achievement. 

The intricacies of the multi-stage 
sampling design, of multi-level data 
instrumentation and collection, and of the 
item sampling process mean that the 
organization and documentation of each 
national survey is complex and extensive. 
From the perspective of international data 
processing, archiving, and analysis, the 
complexity is compounded by national 
variation, both accidental and 
intentional. 

Accidental variation is bound to 
occur in a study of this magnitude. 
Mistranslations, misprintings, and 
misunderstandings of the operating manuals 
will contribute to variation. The 
international standards have improved and 
shifted over the several years of the 
study, and national studies have begun and 
ended at different times. 

The more fundamental, intentional 
variation derives from the fact that each 
national survey is intended to be a good 
and practical research study for the 
purposes of national analysis and 
interpretation. One obvious national 
interest and point of variation is in the 
nature of the sampling stratifications, 
since a country will usually want to 
differentiate teaching practices and 
student performance between educational 
groupings of local definition and 
importance. For practical reasons, a 
country may need to reduce the sizes of 
the item samples--e.g., students might 
take 1 rather than 2 forms--or ensure that 
some kinds of items are given to larqer 
samples of stUdents. For political or 
pedagogical reasons, a country may need to 
delete some of the content of the 



instruments. Or a country may need to add 
questions and test items to the 
instruments in order to capture essential 
local context. A major and internationally 
coordinated variation occured in 
population ~ in that for 8 of the 
participating countries, the students took 
the mathematics tests at the beginning as 
well as the end of the school year, and 
during the year, the teachers answered 
extensive questionnaires on specific 
content areas. 

2. DeSign Objectives for Database 
Integration 

There are two international data 
processing centres for the study: the 
Department of Education in Wellington, New 
Zealand, is responsible for the population 
~ surveys and for the cross-sectional 
population ~ surveys, and the University 
of IllinoiS, U.S.A., is responsible for 
the longitudinal population ~ 
surveys--that is, the 8 with the extra 
topic-specific questionnaires and 
beginning-of-year testing. The data 
processing load is extraordinary. There 
are 35 surveys, each with at least 13 and 
as many as 25 different data collection 
instruments, with extensive information 
collected from 3 levels (student, teacher, 
and school) plus linkage and sampling 
information from 2 other levels (classroom 
and stratum). Each country submitted 
copies of the original instruments, with 
back-translations where pOSSible, and 
detailed audits of national options, 
modifications, deletions, and omissions. 
In the course of the data processing steps 
of checking, cleaning, and merging, 
hundreds of data files and thousands of 
working versions are involved. 

The management of this data 
processing operation is obviously 
difficult and worthy of careful attention 
as a problem in database management. But 
that is another story. We are concerned 
here with defining and implementing the 
output of the data processing. The final 
goal of the data centres is to produce a 
data bank containing all the response data 
and the corresponding documentation for 
the 35 surveys. This is immediately used 
to produce analyses for the international 
reports on the study, for which the 
international processing centres have 
major responsibility. The data bank also 
needs to be immediately distributed to 
author-analysts for other international 
analyses and back to the national centres 
for national reporting and regional 
comparisons. Finally, the data bank needs 
to be archived and made available for 
future secondary analysts. Since a study 
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like this is only done once every decade 
or two, and since the data array is so 
extensive and rich, it is likely that the 
most significant findings will arise in 
reanalysis over the coming years. 

The database design problem is to 
store the data and data documentation from 
the study in a manner that captures the 
details of each national survey and, at 
the same time, integrates the data and 
documentation in terms of the 
international plans and standards. The 
complexities of anyone of the surveys tax 
or exceed the capabilities of current 
statistical database software. The 
integration across surveys requires a new 
kind of organization. Several design 
objectives should be met. 

Integration. There must be a true 
integration of the documentation, in which 
the common, international 
information--variable names, codes, texts, 
etc.--are stated once, and national 
variations are presented-as exceptions. 
This is necessary simply because of the 
size of the problem: the international 
coding documentation for each population 
takes about 100 pages. If this were 
repeated and modified for each country, 
there would be 3500 pages of 
documentation, and that would be 
impractical to generate and maintain. 

Utility. The integrated documentation 
should be usable both manually and through 
computerized interpretation. Some analysts 
will want to read about the 
characteristics of the data and then 
devise their own procedures for acceSSing 
and proceSSing them. Other analysts will 
want to obtain access to data files 
through their favourite statistical 
systems, and so the documentation and data 
must be made accessible to those systems. 
As will be explained later, an important 
capability is automatic generation and 
execution of analy.ses adjusted to the 
characteristics of each national survey. 

Compression. The data files 
themselves should be kept reasonably 
small, without too much redundant linkage 
and filling. An earlier lEA study has a 
databank that requires 10 computer tapes, 
and this leads to unfortunate costs and 
administrative hassles (e.g., in customs) 
for copying and transporting. All the data 
from the current mathematics project will 
fit, in theory, on one standard computer 
tape. 

Portability. The entire data and data 
documentation system should be reasonably 
portable across computing environments. 



The international data processing centres 
must be responsible to 20 different 
national centres, with a wide variety of 
hardware and software facilities. Current 
and secondary analysts will also have 
particular computer constraints. The goal 
must be to deliver the data and 
documentation in a universally readable 
form, together with as portable as 
possible an arrangement for extracting 
informati"on and feeding it into local 
systems. 

3. Central Data Documentation File 

Since no existing statistical 
database package can meet those design 
goals adequately, it has been necessary to 
improvise a system. This system is based 
on a central, integrated data 
documentation file, as illustrated in 
Figure 1. (Actually, one central file was 
established for each of the two 
populations, with equivalent codings in 
areas of overlap. The following discussion 
applies to either.) The central file was 
initially set up to contain the 
internationally standard information, and 
as the data development work has 
proceeded, it has had notations concerning 
national variations added to it. 

In the interests of portability, the 
physical format of the documentation file 
has been kept very simple. It is an 
ordinary text file, with BO-character 
lines. There are about 6500 lines of 
international information, and now about 
4000 additional lines of national 
notations. The content is a mixture of 
unformatted explanatory material, 
including the essential auto-documentation 
of the file itself, and formatted tables 
and structured text, Which contain the 
documentation of the survey data and the 
national variations. These different kinds 
of information are set off with lines of 
asterisks, slashes, and minuses, partly to 
facilitate a human reader's scanning of 
the file, but also so that a computer 
program can easily locate the tables. 

The central file begins with an 
introduction, containing a table of 
contents and an explanation of the general 
formatting conventions for the rest of the 
file. The main body of the file is divided 
into 6 sections, each beginning with a 
unformatted text explaining the purpose of 
the section and defining the specific 
format of its table or structured text. 

Basic parameters and sizes. The table 
in this section is organized by country. 
For each country, there is one line for 
each data collection instrument (test, 
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questionnaire, etc.). For example, one can 
determine here.which parts of the 
mathematics test a country administered at 
the beginning and the end of the school 
year. 

Definition of the response data 
layout. The actual response data for each 
country are stored separately, and the 
details of the storage scheme are not 
necessarily linked to the specification of 
this documentation file. For example, 
there may be independent distribution of 
the data files in the form of some popular 
package, such as SPSS. However, for 
purposes of the ultimate compression and 
long-term storage of the data, a storage 
scheme is described in the documentation 
file. The main emphasis of the present 
paper is on the documentation file, but 
some features of the data storage scheme 
are worthy of note. The most portable 
record format is used: BO character 
records. All logical record organization 
and linkage is coded within the physical, 
eO-character records. Logical records have 
a special starting symbol (asterisk), and 
a record length indication. The data part 
of the record begins with a code 
indicating the level of the data (student, 
teacher, classroom, school, stratum, 
population) and special linkage keys that 
vary depending on the level. The linkage 
keys show which instruments are included 
and which units at one level are 
associated with which at another. 

Cognitive item table. For each of the 
mathematics test items, there are two 
lines with international information 
followed by one line of national 
information for each country. For example, 
one can determine whether the use of an 
item in a given country followed the 
international standard and where the item 
appeared in the national test instruments. 
This information is generated from audits 
of the instruments and back-translations 
at the national and the international 
centres. 

Questionnaire item table. For each of 
the items on the stUdent, teacher, and 
principal questionnaires, there is one 
line of international information. This is 
followed by a line with coded and textual 
comments whenever a country deviates from 
the international standard, as determined 
through the national and international 
audits. 

Sampling notes and stratum 
definitions. In this section information 
is included for each country on the sample 
design, stratification and cluster codes, 
stratum weights, etc. What information 
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Fiqure 1 

Outline of the Central Documentation File 
for the lEA Second International Mathematics Study 

INTRODUCTION to the Central 
Documentation File 

- table of contents 

- formatting conventions 

SECTION 1. Basic Parameters 
and Sizes 

By data collection instrument 

>
l. 

1: - was it uti I ized? 
:;) 

3 - how many international items? 

&I - how many nationol items? 

- given to sample or subsample? 

- which OTL questions? 

SECTION 2. Definition of the 
Response Data Layout 

- physical records - linkage keys 

- logical records - ordering 
- level code - response layout 

SECTION 3. Cognitive 
Item Table 

By mothematics test item 
~ 

o c: r--------------------------------------------j 
~ i - item number and label i 
g i-correct response key : 
!u: - content and subtast codas : 
1: i-standard form and position i 
...... , ' , ..... --_ ..... --- -_ ................ -_ .......... -_ .... --_ ...... -_ ........ ---' 

"'---------------------------------------------, ' 
t' i-was it utilizad? i 
1:: - was it modi fiad? : 
6! - national form and position? : 
u: _ which OTl questions? : 

rf;;' i _____________________________________________ 1 
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SECTION 4. Questionnaire 
Item Table 

By questionnaire itam 
~ 

.~ f---~-::;;:~~:-~:::-:~~-;:~:-;-----------l 
1::: - standard instrument position : 
~ i-response code width : 
1:: - subscala codas i - ~----------- .. --- .... ---------------- .. ----- .... ----: 

r----------------------------------_ .. _------- j 

>-: - was it utilizad? i l. , 
1:: - was it modified? : 
~ i-national instrumant position? i 
u: - notional option question? : 
>. : : CIl , ____ .. __ ............ __ ....... __ ... ________________________ .. 1 

SECTION 5. Sampling Notes 
and Stratum Definitions 

By stratum, clustar,' atc • 

.. ---------------------------_ .. _------_ .. _-_ ..... _-, , , , >- , , 
l. ' , 
+> ' , § i ~ tQxtual description of sample i 

3! - stratum identification and siZQS i 
>- : : CD: - clustering and subsompling : , , 

i-weighting requiremllnts : 
! - repl ication and balancing ! , , , , , , 
L ___ .. _ ........ _ .... __ ....... _ ........................ __ ..... _ .... _ .... _ .... __ J 

SECTION 6. Detailed Coding 
and Textual Explanations 

: .......................... ; ........................ . 
: Oata levels 

· - population 
- stratum 

school 
· - classroom BOY 
- classroom EOY 

· - tgachgr 
· - topiC spgcific 
· - classroom procgss 
· - student BOY 
· - studgnt EOY 

: : I ntgrnat i ona 1 
: : standards 
: : - saction hgadings 
. - instructions 

: : - variable namgs 
: : - question tgxt 
. - response tgxt 

. . - response codes 
: : - rasponse labals 
'. - commgnts 

· . ........................... ......................... . 
: .............. ·~Qti6nQr \,ior·{ciHi:iris··············: 



needs to be stored for a country is 
determined by the international sampling 
referees. 

Detailed coding and textual 
explanations. The final section of the 
documentation file contains the 
questionnaire texts from the international 
instrumentation together with substitute 
or supplementary texts to describe 
national variations. An extract (partly 
artificial) from the population ~ 
documentation file is given in Figure 2. 

As can be seen in the extract, the 
international and national information are 
collated into a single structured text. 
The important structural conventions are 
exemplified in the extract: 

- The text is keyed to the 
questionnaire item table through 
the variable names that appear 
here at the left margin. The 
extract contains material for 
variables SAREA, SENROLB, 
SENROLG, SAPOPA, SAPOPG, SHEET, 
SPOLFF, and SPOLPP. For each 
variable, the name and the exact 
text are given. For 
multiple-choice response 
variables, the response codes 
and texts are also given, 
together with short labels where 
appropriate. 

- A hierarchy of text to surround 
variables is given by lines 
beginning with numbers. This 
includes the instrument names, 
section names, and other 
material that applies to sets of 
items. A numbered text applies 
until superseded by a text with 
an equal or higher number. 

- Comments about national 
variation are enclosed in 
special brackets formed with the 
country's code number. In the 
extract, notations are made 
concerning a country number 
97, called "Zembla". All 
material in the (+97 ••• +) 
brackets applies .only to Zembla. 
New or replacement variables and 
surrounding text for Zembla are 
defined in lines begining with 
(+97+). Lines that apply except 
in Zembla are marked with 
(-97-). The last four lines in 
the extract indicate that in 
Zembla a different 
categorization of calculators 
was made than in the other 
countries. 
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- The last part of the extract 
also illustrates a system for 
simplifying the description of 
partly parallel questions. A 
special name beginning with ",It" 

is associated with a text 
string. The string will be 
inserted whenever that special 
name is encountered. 

4. Use of the Central Documentation File 

Even if no further computerized use 
is made of the central documentation file, 
it is providing a systematic framework for 
recording and preserving the information 
about the international standards and the 
national variations that is vital for 
on-going and future analysis. It replaces 
what in other studies have been haphazard, 
unintegrated collections of separate 
documentation files or integrated files 
with inadequate notation of true 
inter-survey variation. Several 
computerized applications make the central 
documentation file even more useful. 

A program has been prepared to read 
the central documentation file together 
with a selection of one country and the 
specification of a set of questionnaire 
variables. The program produces a 
annotated codebook by carrying out these 
steps: 

- The basic parameter and size 
table is examined to find out 
which instruments are included 
for the country. 

- The questionnaire item table is 
examined to determine the 
labels, widths, and standard 
locations of the variables, 
together with any special 
notations entered for the 
specified country. 

- From the last section, the 
detailed texts and codings are 
extracted, together with all 
indicated surrounding 
information. Specially bracketed 
material is included only when 
appropriate. 

Another progr~ goes a step further, 
producing not just the codebook, but also 
a data file containing the extracted 
variables together with a setup, including 
the labels, to read the data into a 
statistical software package. So far, the 
setup is restricted to SPSS, which is the 
package available in most of the national 
centres. 
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Figure 2 

Extract from the Documentation File's Section of 
Detailed Coding and Textual Explanations 

9 School questionnaire 
7 Section A - to be campleted by the school principal 
SAREA Which of the following best describes the community served 

by your school? (+97 In Zembla. the national capital is 
counted in the 5th category+) 
/1 rural /2 suburban /3 urban /4 urban-suburban 
/5 inner-city metropolis (i.e .• for cities with a total populatian 
greater than half a million) = inner city metra 

(+97+)3 In Zembla. the enrolments are not differentiated between 
boys and girls. The totals are given under the international 
variables for boys. 

2 What is the total enrolment of full-time (or full-time equivalent) 
secondary students in your school? 

SENROLB boys (+97 and girls+) 
SENROLG girls 
2 What is the number of population A students in your school? 
SAPOPB boys (+97 and girls+) 
SAPOPG girls 

7 Section B - to be completed by the head of the mathematics department 
(+97 In Zembla. the information came from central records.+) 

SHEET How frequently are meetings of the mathematics teachers held 
in the school? /1 never /2 less frequently than once a semest~r or 
term = infrequent /3 once a term or semester = once a term 
/4 once every month /5 once every two weeks = fortnightly /6 once a 
week or more frequently = weekly or more 

*DEPTPOL Which of the following best describes your department's 
policy on the use by population A students of 

*CALPOL calculators in the mathematics classroom? 
/1 no policy formulated. Teachers allow use as they see fit = 
no policy /2 students are forbidden to use calculators in the classroom 
= forbidden /3 students may use calculators. but they are not provided 
by the school = permitted /4 calculators ore provided by the school. 
but used only rarely in the classroom a provided low use /5 calculators 
are provided by the school and are used frequently in the classroom 
aprovided used /6 question does not arise (e'9 .• calculators are not 
available to students) = no calculators 

(-97-)SPOLFF *DEPTPOL 'four-function' *CALPOL 
(+97+)SPOLFF *DEPTPOL non-pro9rammoble *CALPOL 
(-97-)SPOLPP *DEPTPOL preprogrammed multifunction and programmable *CALPOL 
(+97+)SPOLPP *DEPTPOL programmable *CALPOL 
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A potentially more significant kind 
of application involves running programs 
against the central documentation file to 
produce a series of processings, one for 
each national data file, adjusted to the 
characteristics of the file. For example, 
there is interest in the content area of 
achievement in algebra. In the cognitive 
item table for population "A", about 30 
items are flagged as being part of the 
algebra subtest. The assignments of these 
items to test form and the positions in 
test form are given for each country. In 
addition, country-specific ratings are 
given of the adherence of the item to 
international standards. A program can: 

- read that information from the 
central documentation file; 

- determine according to rules 
which items to include for each 
country; 

- determine the location of the 
items in the response data 
files; and 

- go get the data, country by 
country, or prepare setups for 
some other program to do that. 

The final output might be an item by 
country table containing the mean levels 
of performance, with indications of gaps 
where data were missing. 

When it is noted that there are about 
40 subtest areas to be examined for each 
of the 35 surveys, the need for this kind 
of automation is apparent. 

5. Conclusions 

The details of the method used to 
integrate the statistical database for the 
lEA Second International Mathematics Study 
are, admittedly, ad hoc and particularized 
to this project. But for multi-national 
studies of this sort, the approach 
represents an effort to reach a new 
standard for integration of surveys and 
for recognizing and recording the 
variations that exist between surveys. 
Such variation has always been present in 
earlier studies, but conventional data 
banks hide rather than reveal. 

It would be convenient if this kind 
of integration and annotation could take 
place within a general-purpose 
environment. The experience in designing 
and using the current system suggests the 
importance of several features. First, 
since integrated studies, at least 
multi-national ones, will have to operate 
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in a variety of computing arrangements, it 
is important that the basic central files 
be accessible in as neutral as possible a 
form. Some user~ of an integration simply 
want to read the documentation. Second, it 
has proved very useful to make a formal 
coding of the variable by study matrix of 
information concerning quality and 
application. This is effectively a 
database on variables. Initially, it 
forces a complete audit and evaluation of 
the data files; later, it makes 
automatically adjusted analysis possible. 
Third, until this kind of system is 
incorporated into high-level processing 
and analysis packages, attention must be 
given to the interface, and the current 
approach of producing setups has proved 
useful to analysts. 
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ABSTRACT 

The collections of statistical packages, tabulation systems, and database systems that 
have grown up in the past 10 years constitute a significant advance in the tools 
available to the statistician. Unfortunately, each of these tools is limited. The 
developer of an application system using these tools is often faced with the 
difficult problem of stringing these systems together to get a complete application 
system. Two approaches have been applied to alleviating this problem. Arguments are 
advanced against each of these approaches. A new solution to the problem is 
proposed. The solution is a system called PASTE whose purpose is to Put Application 
Systems Together Easily. A preliminary design of this highly flexible and extensible 
data description and file transformation system is described. 

1. THE PROBLEM 

In the ideal world, an application 
designer at the Bureau of Labor 
Statistics (BLS) or some other 
statistical organization should spend 
nearly all of his time determining what 
he wants his computer system to do. He 
should then drop his specification, 
along with the data and a description of 
the data, into a super statistical 
system which will produce the specified 
outputs. 

In the real world things aren't quite so 
simple. In the past 10 years, there 
have grown up a number of excellent 
statistical systems which are steps 
toward producing our ideal world. 
Systems such as PSTAT, SAS, TPL, SPSS, 
RAPID, SIR, ORACLE and INGRES are each 
steps toward the ideal super system. 
The.systems vary in what they do, how 
easy they are to use and how portable 
they are. They do have two important 
things in common. They are all tools 
which are designed to make the life of 
the statistician easier. They are all 
limited in what they can do. 

The statistician wishing to do a 
regression analysis or produce a nicely 
formatted table on an IBM mainframe 
would in general be ill advised to write 
his own PL/l, FORTRAN, oi COBOL 
program. The statistical packages that 
exist will certainly produce the desired 
results faster and often at less cost. 
Even more importantly, the output 
produced by the statistical system is 
more likely to be correct that the 
output of the application program. 

The problems come because of the limited 
capabilities of the existing systems. 
The Table Producing Languag~ (TPL) will 
produce tables of almost any format if 
the input data is in an appropriate 
format, but it will not do a regression 
analysis. SAS will do the regression 
analysis, but if your data is 
hierarchical, you may have a lot of 
programming to do either to prepare your 
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data for loading into SAS or within SAS 
itself. A system designer may find that 
one general system does nearly 
everything he wants for a particular 
job. He then must find a way to trick 
the system into doing those last few 
things. There are, for example, many 
very ugly and cryptic TPL jobs around 
BLS which were written to get results 
from TPL that the system was not 
designed to produce. In some cases the 
application designer cannot get a single 
general system to produce the results he 
wants regardless of his machinations. 
Then he must get his data out of one 
general sys~em and into another. This 
often involves a fair amount of COBOL, 
FORTRAN, or PL/l programming. 

2. CURRENT SOLUTIONS 

There have been two approaches which 
have been advanced to solve this problem 
of limited systems. One has been to 
create system interfaces. At the last 
meeting of the Workshop of Statistical 
Database Systems, we described the 
interfaces which allow TPL to directly 
access data stored using the RAPID or 
TOTAL database systems. We have also 
built an interface to move data from TPL 
into SASe Others have created 
interfaces to move data from SAS into 
TPL and from ADABAS into TPL. There are 
probably several other TPL interfaces 
that we are unaware of. 

The biggest problem with the individual 
interface approach is that it is an 
unending task. In general, interfaces, 
especially good ones, require a lot of 
work. There are just too many potential 
interfaces to devote the needed time to 
each of them. Further, there are 
certain important interfaces which will 
~robably never be built. For example, 
there is a seasonal adjustment program 
which is used by some TPL users in BLS 
and Statistics Canada. It is very 
important to the work of these people. 
An interface between it and TPL is 
unlikely because the use of the seasonal 
adjustment system is not extensive 



enough to justify the development of 
such an interface. 

The second solution to the problem of 
not being able to do everything in one 
system is for one system to copy another 
system. For example, the developers of 
the SIR database system wanted an 
interface from SIR into TPL. It was 
technically very difficult for the SIR 
people to develop the interface 
themselves. SIR is not currently used 
in BLS, so we did not have a reason to 
build the interface ourselves. The SIR 
solution was to use the TPL manuals as a 
system specification and build their own 
tabling system to duplicate TPL. We 
haven't had the opportunity to try the 
SIR tabulation system but their manuals 
certainly do look familiar. The SAS 
Institute's PROC TABULATE was also 
strongly influenced by TPL. 

This copy approach makes good sense, 
especially to a commercial software 
vendor. He has a more powerful and 
hence more marketable system. He also 
has total control over the entire system 
and so does not have the problems of 
maintaining an interface with a foreign 
system. Finally, by copying another 
system, the developer is relieved of the 
difficult tasks of requirements analysis 
and language design. 

The user of statistical systems views 
this copy approach ambivalently. On the 
plus side, the copy approach may result 
in a more efficient system than the 
interface approach. Also, the copy 
approach can sometimes result in an 
easier to use system. Finally, the 
copier can modify the language being 
copied so that it looks more like the 
copier's language. The rewulting 
similarity in user language should make 
request writing easier for the user. 

The copy approach however does have its 
drawbacks. One is that it is very 
difficult to reproduce all of the 
functionality of another system. This 
is especially true if the copier copies 
only user language and not internal 
design. Invariably important features 
will be difficult to implement in the 
new system. So the user will end up 
with a subset. And, as luck will have 
it, he will eventually need to use 
features that the subset does not 
contain. Some BLS users of the SAS PROC 
TABULATE have found this to be the case. 
Thus the user may be forced back into 
the original system. Further, if the 
original system adds new features, the 
copier will have to duplicate the work 
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in his copy rather than get the new 
features for free. 

Of course the biggest problem with 
copying another system is that it 
requires even more work than building an 
interface. Thus again, important but 
not widely used systems like the 
seasonal adjustment system will not be 
copied. The community of developers of 
generalized statistical software systems 
is really quite small. If we spend too 
much of our time copying the 
capabilities of each other's systems, we 
will not be able to provide the 
statistical processing community with 
the new functionality and ease of use 
they need. 

3. THE PASTE SOLUTION 

We at BLS are currently pursuing a new 
approach to the problem of incomplete 
systems. The system which we have 
tentatively called PASTE will be a 
generalized interface system. The 
purpose of PASTE is to enable the 
application developer to Put Application 
Systems Together Easily. The 
application developer writes the various 
parts of his system in the languages of 
the higher level statistical packages 
and databases. He then uses PASTE 
rather than writing programs to paste 
together these parts into a complete 
application system. 

To show what the goal of PASTE is, we 
will examine an application system. 
Suppose an application programmer wishes 
to take a sequential hierarchical file, 
load it into a RAPID database, extract 
some of the data, use SPSS to calculate 
some additional information from the 
extracted data, feed his data into TPL 
to table it and photocompose it and 
finally feed the result into a page 
makeup system s~ch as ATL to insert it 
within the text of a book. 

The application programmer first writes 
a program to split the hierarchical file 
into flat files for loading into RAPID. 
To do this he must write a programming 
language description of his data and 
programming logic to split the file into 
flat sequential files. Also the program 
must add key fields to the files to 
facilitate the eventual reconstruction 
of the hierarchical file. The 
programmer then must write a RAPID data 
description of the input flat sequential 
files plus a description of the data as 
it will exist in RAPID. Now he can use 
the higher level RAPID utilities to load 
his data into RAPID. There happens to 



be a RAPID to SPSS interface but for the 
purposes of this example we will pretend 
it does not exist. Thus the user must 
instruct RAPID to dump out the desired 
subsets of his files. He must then 
write an SPSS description of the dumped 
data and use the high level SPSS 
language to calculate the additional 
information he needs. Notice that RAPID 
output and SPSS input facilities are 
flexible enough so that there is 
probably no need for a program between 
the two systems in our application. The 
system developer probably will need to 
write a program with its data 
description to recombine the flat files 
back into a hierarchy for his TPL 
request. Then he must write one more 
data description for TPL. Now the 
system developer is finally finished 
with data descriptions and programming 
languages since the TPL, 
photocomposition, and page makeup 
systems are nicely interfaced. 

To do this straightforward application 
system, the application developer has 
had to describe his data six different 
times and has written two programming 
language programs. The multiple data 
descriptions are not only a waste of 
time, but also a significant source of 
errors. This is especially the case 
when the translation of data description 
from one system to another is 
complicated. For example, a field 
described to RAPID as FIXED DEC(p) where 
p = decimal digits, must be described to 
TPL as PACKED n where n is the largest 
integer <= p/2 + 1. 

Using PASTE the application builder's 
job will be somewhat easier. He will 
begin by describing his sequential 
hierarchical file using the PASTE data 
description facility. This facility 
will allow him, if he chooses, to 
specify nearly all the data description 
he will need for his entire system. For 
example, he can specify the data type to 
be used when the data is in RAPID and 
the print labels to be used when the 
data is in a TPL table. The developer 
may add to or change his descriptions at 
a later time if he chooses. 

In the high level PASTE language, the 
application developer will request that 
his data be split into a collection of 
flat files and that RAPID input and 
storage data descriptions be generated. 
He will then use the high level RAPID 
utilities to load his data into RAPID. 
At this point, if we again ignore the 
existence of the RAPID to SPSS 
interface, the application developer has 
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a choice. He can either use PASTE to 
extract the subset of data from RAPID 
and prepare an SPSS data description or 
he can use the RAPID utilities to dump 
out his data. If he uses the RAPID 
utilities, he must provide PASTE with 
information about changes in the format 
of the data coming out of RAPID. Notice 
that the programmer does not need to 
provide an entirely new data description 
since most of the descriptive 
information in PASTE is still correct. 
The application developer now uses SPSS 
instructions to specify the additional 
processing he needs for his application. 
Since the resulting data is not created 
by PASTE, the application developer must 
supplement his PASTE data description 
with information about the new data. He 
then uses PASTE to specify the 
reconstruction of his sequential 
hierarchy and requests that a TPL data 
description be created to describe it. 

What we have described is an ideal 
application of the PASTE system. In 
this application, a complete data 
description is provided only once. The 
only additional data description 
required is information about data 
transformations done outside of PASTE. 
Further, in this example, all of the 
required data transformations could be 
provided by the available statistical 
systems or by PASTE itself. In some 
real applications none of the 
statistical systems nor PASTE will be 
able to provide certain file 
transformation functions. In such cases 
programs in PLll or other programming 
languages will still have to be written. 

4. OTHER USES OF PASTE 

In the above example we saw how PASTE 
could aid in creating an application 
system by stringing together several 
different systems. Will PASTE help us 
when all of our processing will be done 
by a single system? The answer is often 
"Yes." PASTE will allow its users to put 
data into the ideal format for the high 
level system rather than make the system 
strain to process awkwardly organized 
data. Consider a TPL request for 
percent changes. Such requests are very 
awkward to write if the data is arranged 
as a collection of time series in which 
each record contains a year's worth of 
data as a 12 month repeating group. The 
problem is most acute when we wish to 
find the change between January of one 
year and December of the previous year. 

We can use PASTE to transform each 12 
month record into 12 separate records. 



Each record will contain 2 months of 
data, the "current" month and the 
"previous" month. Note that each 
month's data appears twice in the new 
file, once as a current month, and once 
as a previous month. This redundancy is 
not dangerous since the transformed file 
is a temporary file to be used by TPL 
and then discarded. The resulting file 
with a format of 2 month repeating 
groups is ideal for a TPL percent change 
request. The required TPL request is now 
straightforward, as is the PASTE request 
which restructured the data. The system 
resulting from using PASTE and TPL 
should be much easier to understand and 
maintain that the system which uses TPL 
directly. 

Actually PASTE can be of value even to 
the builder of an application who does 
not use any higher level systems except 
PASTE. Data files tend to be created in 
a form which is designed to be 
convenient for the data collection 
process. Often this structuring of the 
data is not ideal for the application 
which uses the data. The application 
developer can restructure his data by 
writing a special program. This is 
often unacceptable because another 
application may need the data in a 
differen~ configuration. The usual 
solution is that the application 
developer just lives with the data in 
its awkward structure and writes a 
convoluted program to process it. This 
is frequently done without the 
application programmer even realizing 
that restructuring will make his proiram 
simpler. With PASTE the application 
programmer will have an easy-to-use tool 
for configuring his data in a convenient 
form for his application. We hope that 
the existence of this tool will not only 
make restructuring of data easier, but 
also will make the application 
programmer more conscious of the need to 
structure his data to facilitate his 
application. 

5. PASTE MAKEUP 

The PASTE system will consist of two 
main parts. The first is a very 
flexible data description module or 
DESCRIBER. The second is a data 
transformation module or TRANSFORMER. 
The two modules interact in several 
ways. When a transformation of the data 
is specified in the high level PASTE 
language, the TRANSFORMER must extract 
information about field locations and 
data types from the DESCRIBER, since 
this information is not explicitly 
present in the user's transformation 
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request. This interaction between data 
transformation and data description is 
common to many high level language 
systems. The PASTE system also has a 
somewhat less common interaction between 
data transformation and data 
description. When a data transformation 
is specified, the PASTE system not only 
generates code to transform the data but 
also generates code to transform the 
data description so that it will match 
the transformed data. In general, the 
PASTE language will blur the distinction 
between data and its description. The 
exceptions to this will be the initial 
data descriptions plus the PASTE 
statements which explicitly request that 
data description be generated for use by 
an external system, e.g., a request to 
generate a PL/1 description of a file. 

The user interface to the DESCRIBER will 
be primarily via an interactive menu and 
fill-in-the-blanks system. The user 
begins by specifying statistical systems 
and databases which will be used in his 
application system. PASTE returns a 
list of the different types of data 
description that may be used with these 
systems. The application developer 
chooses those that he plans to use. 
This information is used to construct a 
set of fill-in-the-blank forms. If the 
user already has a description of his 
data, he may be able to request that the 
DESCRIBER use this description to fill 
in some of the blanks for his new 
description. If he later decides to add 
more description, he may do so. 

The data description will have a 
hierarchical structure. At the lowest 
level will be the data element or field. 
The descriptio~ of the data element will 
include such things as field size, data 
type, values the element can take, and 
the print labels that will be associated 
with them. The next level up is 
variously called record, case, or 
observation. At this level, the user 
will specify the fields that occur in a 
record and their order. He will also 
specify structures such as repeating 
groups. Above this is information about 
files. This includes clustering and 
other ordering information which can 
potentially be used in estimating the 
cost of various transformations. At the 
highest level is information about the 
interconnections between files. At this 
level is the information about the pairs 
of fields which may be used for joins 
when the data is in a relational system. 
It is also the level for the information 
that TPL uses to produce heirarchical 
paths through a database. (See our 



paper, "Must We Navigate Through 
Databases?" in the Proceedings of the 
First LBL Workshop on Statistical 
Database Management.) 

The most important characteristic of the 
data description facility will be its 
flexibility. The system should make it 
unnecessary to keep information about 
data on scraps of paper or in our heads. 
To assure the flexibility the users will 
need, we will have to make the system 
easily extensible. The developers of 
PASTE and perhaps even sophisticated 
users of the system should be able to 
add new types of data description. To 
do this they assign a name to the new 
data description element. If the new 
element is a complex item such as a TPL 
print label, they will also specify a 
grammar for the element. Finally they 
may specify semantic checks for the 
individual productions of their grammar. 
This will enable the system to check for 
such things as the size and alphabet 
conventions for names used in a 
particular system. PASTE should also be 
able to detect and flag such errors as 
duplicate names. The goal of these 
checks is to attempt to assure that when 
a PASTE request is ~ade to produce a 
data description for a system, the 
description will be error free. 

The second major component of PASTE is 
the TRANSFORMER. Unlike the DESCRIBER 
which stores descriptive information, 
the TRANSFORMER does not store anything. 
The TRANSFORMER operates in one of two 
modes. In one mode the system operates 
as a record processor. It reads a 
record or group of records, does some 
calculations, and writes out zero or 
more records. As an optimization the 
system may read and write a block of 
records at a time, but this is not 
essential. This mode of operation can 
be used for simple tasks such as 
changing the data format of a field or 
splitting a hierarchical file into a set 
of sequential files. 

In some cases, the desired 
transformation requires more complex 
processing. The system recognizes these 
situations and automatically switches to 
the information extraction mode. In 
this mode of operation, which is used by 
TPL, information is extracted from the 
incoming records and is temporarily 
stored. The information is stored in a 
condensed form which does not preserve 
the identity of the record from which it 
came. When all of the input records 
have been processed, the system 
constructs a new set of records from the 
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stored information. The information 
extraction mode is more expensive than 
the record mode, but is also much more 
powerful. 

The user interface to the TRANSFORMER 
will probably be a command oriented 
language. This might be implemented by 
selecting the appropriate words from a 
menu. Typical commands are: CHANGE 
COST TO PACKED DECIMAL; WRITE PL/l 
DESCRIPTION OF PERSONS; SORT PERSONS BY 
FAMILY# THEN AGE. 

6. PROBLEMS AND CONCLUSIONS 

The biggest problem with the PASTE 
system from the user's point of view 
will be the description of data after it 
has been manipulated by systems other 
than PASTE itself. If the external 
system is what we earlier called a 
record processor, the specification of 
the changes in the record format will be 
relatively easy. Records may be split 
or joined, fields may be added, deleted, 
or rearranged, extra summary records may 
be created or data types changed, but 
the basic identity of most of the fields 
will be unaltered. 

If the external system which changes the 
data operates as an information 
extraction system, the user may find it 
difficult to describe the changed data 
file by a specification of changes of 
the old data. In such cases the user 
should probably redescribe his data to 
PASTE as a new file. Using PASTE he 
will still find his job easier than 
without it since he should be able to 
use parts of his old data description in 
describing his new data. In particular, 
many of the large sets of codes and 
associated print labels will be 
reusable. 

As we have seen, the PASTE system has 
the potential to greatly simplify the 
work of the application system builder. 
For this potential to be realized we 
must design and implement a system which 
satisfies two conditions. It must be 
significantly easier to transform files 
using PASTE than using a standard 
programming language. Further, PASTE 
must be usable with a large share of the 
database and statistical processing 
systems used by statisticians. 
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ABSTRACT 

PIGAS is an interactive statistical database management system whose main assets include 
logical data checking, data entry for meaningful variables only, three different types of mis
sing value codes, non-rectangular data structure and user interfaces with BMDP, GLIM or specifi
cally written FORTRAN programs. 

The structure of the PIGAS language is the same as one passes from one phase of a re
search study to another, whether it be data updating, checking or analysis, thus requiring only 
a minimum amount of initiation in its use. It is particularly appealing since data verification 
is completely specified through variable names as they appear on the questionnaire. Instructions 
given in how to fill in a questionnaire can thus be directly incorporated in the data checking 
process, thus ensuring a good quality data base. 

1. INTRODUCTION 

PIGAS is an interactive statistical da
tabase management system designed especially 
for persons with little or no formal computer 
training. This general purpose package can be 
used by all personnel engaged in the study of 
a particular research project. For example 
by data managers responsable for data col
lection, data management, data editing and 
physicians or statisticians for data analy
sis. 

PIGAS was developped for computer ana
lysis of medically oriented research studies 
at the INSTITUT GUSTAVE-ROUSSY but may be 
used for other types of research projects. 

Different functions of the system will 
be presented : 

1 coding of missing values 
2 describing variables whether unique 

or occuring several times in any data record 
3 controlling the data by logical com-

mands 
4 updating the data 
5 creating new variables as part of the 

file or temporarily during the analysis 
phase 

6 analyzing the data by : 
- statistical functions incorporated 
into PIGAS 
- interfaces with BMDP, GLIM or a 
specifically written FORTRAN program. 

The PIGAS user is guided by a menu 
which is displayed on the terminal screen. 

2. PIGAS AND MISSING VALUES 

The results of a particular research 
project depend on the quality of the ques-
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tionnaire used for data collection. 

It is essential to formulate clearly the 
questions and to provide a code for each answer 
to ensure that data will be collected in the same 
manner for every case of the study. 

One should always use the same code for 
answers yes or no (for example, the answer yes is 
coded 1 and the answer no is coded 0) and a stan
dard code for missing values whatever their type 
(date, value of a dose, ... ). 

During the phase of data collection, certain 
variables may be considered as missing for three 
reasons : 

- UNKNOWN 
The lnformation is unknown : the person in

terrogated refused to answer, a certain measure
ment was not made, ..• 

The information is lost and cannot be obtai
ned. It is coded "UNKNOWN". 

- HOLD 
The lnformation is not yet available but 

shall be communicated later. This information is 
coded "HOLD". This particular feature enables the 
data manager to introduce in the file all the va
riables of the questionnaire without having to wait 
until all the information is collected. 

- NOT APPLICABLE 
Some varlables are meaningless for certain 

cases of the study. For instance, the questions 
- "Age at which you started smoking" 
- "Last type of tobacco smoked" 

are meaningless for non-smokers. 
If these two questions are preceeded on the 

form by another question with answers yes or no, 
for instance : 

"Have you ever smoked (yes, no) ?" 
they will be considered as meaningless for non-



smokers. 
PIGAS automatically codes these two 

variables "NOT APPLICABLE". This notion is 
an option offered when describing varia~ 
bles and shall be described in the next 
section. 

3. DEFINITION OF TERMS 

In PIGAS language, each questionnaire 
constitutes one CASE which is distinguished 
from all other cases by the value of a CASE
IDENTIFIER. 

A questionnaire consists of several re
cords which regroup all the information rela
tive to the same theme. 

Each case may have a variable number of 
such records which are called CHAPTERS. 

For example : an identification chapter, 
a prel iminary examination chapter, a treat- . 
ment chapter, and a follow-up chapter in a 
medical research study. 

Each question is called a VARIABLE. 
Questions relative to a part of the popula
tion are gathered in a PARAGRAPH preceeded 
by a LEADING VARIABLE, a question with a 
"yes" or "no" answer only. In the example of 
the preceeding section, the question : 

"Have you ever smoked (yes, no) ?" 
is the LEADING VARIABLE of the paragraph cal
led "TOBACCO". The questions: 

- "Age at which you started smoking" 
- "Last type of tobacco smoked", mea-

ningless for non-smokers, are the variables 
of the paragraph "TOBACCO". 

4. DESCRIBING THE QUESTIONNAIRE TO PIGAS 
SYSTEM 

PIGAS displays questions on the termi
nal screen to help persons who wants to des
cribe a questionnaire. 

To describe a chapter, the following 
information needs to be provided (an example 
is given in appendix 1). 

- NAME - the name of the chapter used 
to identify it in the file (ex : "CHILD") 

- "LIBELLE" - label used for the purpo
ses of edition. 

- OBLIGATORY (Y,N) - indicates if the 
chapter is necessary for every subject or not 
at the moment the case is created. 

- REPETITIVE (Y,N) - whether the chap
ter may occur several times for the same case. 

For example, in a study on Mothers and 
their Children, the chapter "CHILD" is filled 
in for each birth. The number of children may 
vary from one mother to another. 

For the PIGAS system, the chapter 
"CHILD" is considered as REPETITIVE. 

- NAME OF THE REPETITIVE CHAPTER IDEN
TIFIER - used for repetitive chapters only. 
These variables (up to 3) permit to distin
guish one chapter occurence from another. 

In order to distinguish each child from 
the next, the REPETITIVE CHAPTER IDENTIFIERS 
are the date of birth and the rank of birth 
(in case of gemellary births). Each child 
constitutes a unique occurence of the chapter 
"CHILD". 

Double occurences are not allowed. 
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Occurences are stored according to the in
creasing values of the repetitive chapteridenti
fiers. 

- MINIMAL AND MAXIMAL NUMBER OF OCCURENCES 
(limits of which are 0 to 40). 

Once the chapter is declared, the following 
information needs to be provided for each variable 
concerning this particular chapter: 

- its NAME (up to 8 characters) 
- its "LIBELLE" (up to 30 characters) 
- the TYPE : E = "numeric" (maximum of 8 digit~ 

F = "floating point" (up to F15.6) 
fa. = "alphanumeric" . 
D = "date" (expressed in day, month, 

year or month, year or year only; one can also 
indicate the century) 

L = "logical" (coded 0 or 1). 
- LG : the number of spaces to be filled in for 
its coding 
- MIN, MAX : its range of variation (minimale 
and maximale value) 
- CRX : whether or not the missing value code 
"UNKNOWN" is allowed or not. 
- NATURE: whether or not the variable belongs 
to a pa ragraph. 

An example is given in appendix 2. 
Variables in a repetitive chapter are declared 

only once no matter how many occurences for each case 
and are referred to by an index number. The descrip
tion of variables or the structure of chapters can 
always be modified if necessary (especially useful 
when certain incompatibilities became evident during 
a trial run on the first few cases). 

The information describing the questionnaire is 
useful for data checking. A minimum amount of errors, 
such as the value of a variable outside the range of 
variation, a missing chapter declared obligatory, ••. 
can thus be detected and reported. More complete 
checks taking into account logical relations between 
variables will be discussed in the next section. 

5. ENSURING LOGICAL CHECKING OF THE DATA 

Logical relations may exist between several va
riables in the questionnaire and can be very easily veri
fied through the use of logical controls written in 
PIGAS language. 

The logical relations can apply to variables 
from the same chapter or from different chapters. 

There are two types of logical relations : 
- UNCONDITIONAL : true for every case. For 

example, the relation "birth date is earlier than 
all other dates" must be true for every case. 

-CONDITIONAL : concern only cases for which 
the first condition is true. They are expressed as 
follows : 

IF CONDITION 
THEN EXPRESSION 

When a logical relation is false, an error mes
sage appears On the terminal screen at the end a re
cord update for a case and errors are reported on pa
per at the end of the interactive session. 

Logical controls may be modified and new ones 
may be added at any time. PIGAS checks all the cases 
of the file each time logical controls are modified. 



6. CREATING NEW VARIABLES 

New variables may be created using the 
declared variables of the questio~naire. 

In PIGAS language, these new variabl.es 
are called "GENERATED VARIABLES". 

For example : on a questionnaire are 
noted the date of birth, the date of first 
treatment and the date of last folloW-up of 
a case. Using these dates, the following va~ 
riables may be created : 

- age at first treatment 
- age at last follow-up 
- delay between the first treatment 

and the last follow-up date. 
The GENERATED VARIABLES must be des

cribed in the same way as the original va
riables of the questionnaire indicating : 

- its NAME 
- its "LIBELLE" 
- the TYPE (numeric or date) 

The value of a GENERATED VARIABLE is 
computed with logical or arithmetical equa~ 
tions. . 

There are two types of GENERATED VA
RIABLES : 

- UNCONDITIONAL GENERATED VARIABLES : 
GV = ARITHMETICAL OR LOGICAL EXPRES
SION 
CONDITIONAL GENERATED VARIABLES 

IF CONDITION 1 
THEN GV = EXPRESSION 1 
ELSE IF CONDITION 2 

THEN GV= EXPRESSION 2 

ELSE IF CONDITION N 
THEN GV = EXPRESSION N 
ELSE GV = EXPRESSION N+1 

When the condition or the expression 
cannot be evaluated (i.e. because Of a mis
sing value code in a variable), the genera
ted variable is coded "UNKNOWN". 

Generated variables may be interacti
vely modified, deleted, or new ones may be 
added at any time. When created or modified, 
they are recalculated for each case in the 
file. During an updating session, generated 
variables are recalculated only for those 
cases modified. 

Temporary variables may also be created 
during the analysis phase using the same syn
tax but are lost after each new call to the 
generating function. 

7. PIGAS LANGUAGE 

A logical relation consists of several 
logical expressions linked together by logi
cal operators. A logical relation is expres
sed as follows: 

EXPRESSION 1 "LINK" EXPRESSION 2 "LINK" 
EXPRESSION N Logical controls are writ~ 
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ten using the variable names, relational operators 
("EQ", "NE", "LE", "LT", "GE", "GT"j, linking ope.,. 
rators ("ET", "OU" for "AND", "OR"), mathematical 
functions and particular functions. 

Up to three levels of nested parenthesis are 
authorized, 

For a unique variable, its name completely 
identifies the variable. 

For repetitive variables, .the index number 
of the occurence corresponding to their respective 
repetitive chapter identifiers need ot. need not to 
be indicated. 

When indicated, the variable is considered 
as a unique variable, otherwise each occurence of 
the variable is considered. 

Some operators are specific to the treatment 
of occurences : 

- The operator I 
The operator I 1S used to compare two neigh.,. 

bouring occurences of variables. 
For example, the date of entry (natne DATEN) 

are noted for each hospitalisation. To control that 
dates of entry are increasing, the following 
expression is used : 

DATEN( 1) L T DATEN(I+1) 

I is also useful to compare a repetitive va
riable to a unique variable, 

For example, the date (name DATDOSjand the 
resu,t (name DOSE) of doses of a certain substance 
are regularly noted in a repetitive chapter. When 
the dose reaches the value p, the subject presents 
a certain condition, The date of the condition 
(name DATHEP) is a unique variable noted il:\ a sum
mary chapter describing the condition. To control 
that the date of the condition in question is the 
date for which the result of the dose is p, the 
following expression is used. 

IF DOSE(I) GE p 
THEN DATHEP EQ DATDOS(I) 

- The index number of an occurence 

It can be 1, 2, •.. , N : N being the index 
number of the last occurence. In the hospitalisa
tion example : 

DATEN(1) is the date of the first entry 
DATEN(N) is the date of the last entry 
Cot;lstants l)1ay be used in the comparison of 

variables. They can be numeric constants (up to 8 
characters), date constants expressed in day, month, 
year or alphanumeric constants (up to 8 characters) 
expressed between quotes (" "). 

Wild characters may be used in alphanumeric 
constants. Suppose an alphanumeric variable (name 
DRUG) is coded with 6 characters. Every drug which 
n.ame begins by "ASP" can be selected using: 

DRUG EQ "ASP***" 
Mathematical operators (add, substract, mul

tiply, divide, power) and Mathematical functions 
(exponential, natural logarithm, decimal logarithm, 
~quare root, absolute value, minimale and maximale 



value of several variables) are provided. 

Other functions are also particular to 
PIGAS language : 

- 2 functions (DEL and ANI) used for 
the calculation of a aeTay between two dates. 
The unit used for the calculation may be day. 
month or year. The result of function "DEL" 
is rounded to the nearest unit whereas the 
result of function "ANI" is the number of 
completed units. 

- Function CLAS which transforms a con
tinuous variable into a discrete variable. 

Particular functions for treatment of 
repetitive variables are provided. These 
functions are expressed under the form : 

FUNCTION( VAR) 
where VAR is a repetitive variable name. The 
result is a unique variable. 

- The functions MIN and MAX give the 
minimale/maximale value taken OY-a repeti
tive variable which can be either numeric or 
date. For example. the value of doses are 
regularly noted and one is interested in the 
minimale (maximale) value observed. The syn
tax is : 

MINDOS=MIN(DOSE) 
MAXDOS=MAX(DOSE) 
The results of functions MIN and MAX 

are coded "unknown" only when all the occu
rences of the variable are codea-missing. 

The computation of the functions MIN 
and MAX only involves non-missing values. 

- Function SOM is used to compute the 
sum of the values-oT a repetitive numeric 
variable. 

For example. at each session of radio
therapy. a chapter is filled in with the 
date and the dose delivered. The total dose 
delivered may be obtained as follows: 

DOSTOT=SOM(DOSE) 
The result of function DOSE is coded 

"unknown" if at least one occurence the va
lue of the variable DOsr-is coded as missing. 

- Function SOMX ignores those variables 
with a missing varue-code. For example. the 
total dose del ivered is obtained as follows: 

DOSTOT=SOMX(DOSE) 

- The functions IMIN and IMAX give the· 
index number of the firsr-occurence for 
which the value of the repetitive variable 
is minimale/maximale. 

For example. date and results of doses 
are regularly noted. The following may be 
used to find the date at which the value of 
dose was minimale(maximale) : 

A=IMIN(DOSE) or A=IMAX(DOSE) 
DATMIN=DATDOSE(A) DATMAX=DATDOSE(A) 
The treatment of missing values in the 

variables used is the same as for functions 
MIN and MAX. 
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- Function IND gives the number of occurences 
of a variable in a repetitive chapter. 

For instance. the number of occurences of the 
fo 11 ow-up chapter for each casei s obtained as fo 1-
lows : 

NBFU=IND(FU) 
FU being the name of the follow-up chapter: 

- Function INDX gives the number of occu-
rences for which a repetitive variable is not coded 
missing. 

For instance. to compute the mean dose. one 
cal) use : 

MEANDOS=SOMX(DOSE)/INDX(DOSE) 
MEANDOS can thus be computed even if one 

dose is missing at anyone occurence. 

8. UPDATING THE DATA 

Data may be recorded either in batch proces
, sing mode or in interactive mode. 

If a great amount of cases need to be intro
duced in the file at one particular moment. a data 
entry operator may assure this part of the updating 
process. Data are then introduced in the file in 
batch processing mode. 

To record or to update a case in the file. 
the following information needs to be provided: 

- the value of the case identifier 
- the type of 'update to be performed on the 

case 
- the name of the chapter or the variable 

name to be modified. 

corded 

Several types of updates are possible : 
- introducing a new case in the file 
- deleting a case 
- adding a new chapter to a case already re-

- deleting a chapter for a case 
- updating the value of a variable 
- updating several variables of the same 

chapter. 

To update a chapter. the uP. down. left. 
right arrow keys may be used to move the pointer 
on the terminal screen until it reaches the charac
ter to be modified. 

Each time a variable is updated. PIGAS checks 
and reports any coding errors. The code of a va
riable must match its description (cf. Section 4.m. 

Erroneous values mayor need not be immedia
tely corrected. If not immediately corrected. the 
variable is recorded in the file with the "hold" 
code. 

Once a case is updated. logical checks are 
performed on the case and errors are reported be
fore any new updates can be made. When logical 
controls report errors and the case is not imme
diately corrected. the case is recorded in the 
file but temporarily excluded from statistical 
analysis. Only edition of variabJes of the case 
may be obtained. 



9. ANALYZING THE DATA 

The analysis stage is interactive ~nd 
m"lY concern the whole population or just a 
part of it. 

9.1 SELECTION OF CASES 

PIGAS offers four functions in order 
to select cases for treatment. The mnemonic 
of the function and the condition must be 
indicated. 

The selected cases constitute a wor-
king subfile. 

· Function SD 
For example-;-the condition is : 
AGE IT 50 
If AGE is a unique variable, all cases 

with AGE less than 50 are retained for ana~ 
lysis. 

If AGE is a repetitive variable, in 
matched case-control studies for example, 
the case and his controls are retained on~y 
if the condition is true for each QCCurence. 

• Function SIF 
Only the first occurence of the repe

titive chapter for which the condition is 
true is retained in the working subfile, 

For example, the condition : 
DOSE GE P 

will select the first occurence of the repe
titive chapter for which DOSE is greater 
than or equal to p. 

• Function SIG 
Same as sIF except that all occurences 

are retained. -

• Function ECLAT 
Function ECLAT breaks down the notion 

of a case and considers all occurences as 
unique and independant variables. 

The number of cases indicated equals 
the total number of occurences for which the 
condition is true. 

For example, the condition : 
DOSE GT 0 

selects all records with DOSE greater than O. 

· Function POP 
Functlon POP'Ts used to obtain calcula

tions for each value (except missing values) 
of the variable name cited. 

For example, by typing in the variable 
name SEXE after the function POP, all the 
following calculations will be done separate
ly for each sexe. 

· HIERARCHY OF SELECTIONS 
There are three levels of selections 
level 1 - SD 
level 2 - SIF, SIG, ECLAT 
level 3 - POP 
For example, consider the following 
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successive selection~ : SD, SIf, POP, SIG, SD. 
Working subfiles are created as described on the 
fOllowing figure; 

PIGAS FILE 

Subfile 4 

9.2 EDITION FUNCTIONS 

Three functions exist in order to obtain 
sorted edition of variables. By default, the list 
is sorted according to the ascending value of the 
case-identifier. 

The list may be sorted in ascending order 
according to other sort keys (up to 10 by numbe
ring from 1 to 10 the variables to be so~ted. 

* function ED lists one or more unlque or 
repetitive variables with one line per case. The 
number of variables is limited by the size of the 
terminal screen (80 characters). 

* function EDPAP same as ED but only printed 
on the output file (up to 132 characters). 

* function EDCOl used for repetitive varia
bles with numerous occurences. The repetitive va
riables are printed with one line per occurence. 

9.3 CROSS-TABULATIONS 

These functions give tables, one line of 
which corresponds to a unique combination of va: 
lues of all variables mentionned as well as thelr 
frequency of occurence. .. 

* function HIST1 - used for unlque varlables 
or repetitive variables for which the index number 
of occurence is indicated. Tables cannot exceed the 
size of the terminal screen. 

* function HSTlRG same as HSTCOL but tables 
are only printed on the output file. 

9.4 STATISTICAL FUNCTIONS 

Cases for which logical controls failed do 
not take part in the analysis as well as those va
riables with missing value codes. 

Variables may be : 



- variables of the questionnaire 
- generated variables 
- temporarY variables 
Variables may be unique or repetitive 

with the index number of the occurence indi
cated either : 

- as the result of a selection of the 
occurence (SIF orSIG) . . 

- by the index number of the occurence, 

The syntax is very simple: the (I!nemo .. 
nic of the chosen function then the variable 
names must be indicated. 

* function HIST2 and function HISTV -
block histograms (cf. appendix 3) 

* function C - histogra~ of a discrete 
variable. 

* function MOY - mean and variance of 
a continuous variable 

* function M ~ histogram of a conti~ 
nuous variable 

* function ANDAR - Anderson-Darling 
Statistic for testing the normality 
assumption. 

* functionMED - median value of a va
riable 

* function MGEO - geometric l11ean of a 
variable 

* function TABC ,.. RxC contingency ta~e 
without any test 

* funtion CC - RxC contingency table 
analysis, Chi-square and G (maximum 
likelihood) tests and Chi-square wi~ 
continuity correction in the case of 
a 2x2 table. 

* function CM - Analysis of variance 
* function MM - Simple linear regres

sion (1 independant variable) 
* function CCC - RxCxK contingency ta

ble analysis 
* function CMM - Analysis of covariance 
* function MMM - Multiple linear re

gression (2 independant variables] 
* function REG - StepWise mUltiple li

near regression (forward then back .. 
ward) 

* function KPL - estimated survival 
rates according to the KAPLAN-MEIER 
method. 

* function SUAC - estimated survival 
rates according to the actuarial me
thod 

* function LGR - comparison of 2 or 
more survival curves USing the LOG
RANK test(cf. appendix 4) 

* function LGRA - comparison of 2 or 
more survival curves using the stra
tified LOG-RANK test. 

* specific functions for the analysis 
of matched case-control studies with 
a variable number of cases and con

. trols in each strata. 
* function call to BMDP - which allows 

direct access to BMDP (cf. appendix 5) 
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* function call to GLIM - which allows di
rect access to GLIM. 

* function USER - used to call FORTRAN pro
gram written to analyse data stored in 
PIGAS file (cf. appendix 6) 

* function VAR - used to extract variables 
of a PIGAS file in order to create a sub
file readable by FORTRAN programs. The su~ 
file is created in the user's directory. 
PIGAS indicates the FORTRAN format to be 
used for reading extracted variables. Cases 
with missing values are transcribed in the 
subfile and it is up to the user to treat 
them accordingly. 

9.5 EDITOR FUNCTION (EDT) 

All the PIGAS commands (described in sections 
9.1 to 9.4) are recorded in a "command file". The 
results are recorded in another file named "results 
file". 

At any time during the interactive session, 
PIGAS allows the use of the computer text editor 
in order to : 

- display or modify the command file 
- display the results file. 

When the command file is modified, all the 
commands included are recomputed. 

PIGAS offers the possibility of saving the 
command file for future use. For example, routine 
calculations done every six months can be saved 
in this way without having to retype all the func
tions. 

10. FILE PROTECTION 

Each study is recorded in a specific PIGAS 
file identified by a name and a password. This 
name and this password are known by a person in 
charge of the study and by the computer manager. 
The names of persons authorised to access the 
PIGAS file as well as their code are checked at 
every login. 

11. DATA RECOVERY 

PIGAS files are saved daily. 
The last two versions of all PIGAS files are 

kept so that in case of a user error or any other 
related incident, one can always go back to the 
N-lst version. 

In case of power failure during an interac
tive session, only the results of the last inter
active active is lost. 

In case of program failure, all access to 
the PIGAS file of the study by the user are not 
possible until the computer manager corrects the 
problem. 

12. TECHNICAL CONSIDERATIONS 

PIGAS runs on a DIGITAL VAX 11/780 computer 
at the INSTITUT GUSTAVE-ROUSSY (Medical Statistics 
Department), in Villejuif. PIGAS may run on other 
computers similar to VAX. PIGAS is written in FOR-



TRAN (according to the standard 77, X: 39-
1978. For the terminals the standard is ANSI 
X3. 64 - 1977). 

13. CONCLUSIONS 

The most essential point to any statis
tical exploitation still depends on the way 
the questionnaires are filled in. 

The ideal questionnaire should be set 
up in such a way as to take advantage of all 
the possibilities PIGAS has to offer: nota
bly incorporating leading var.iables so as to 
diminlJlish data entry time, and logical checks 
through variable names so as to correct data 
during the updating process. 

From our experience, most question
naires with errors are detected during the 
updating process and corrected almost imme
diately, which is much more desirable than 
having to correct data during the analysis 
phase because of inconsistencies encountered 
during a cross-tabulated examination of the 
data. 

The statistician thus spends less time 
on data checking and more time in the data 
analysis phase. 

PIGAS has been operational since ja
nuary 1982 and so far handles approximately 
150 research projects. The number of cases 
vary from 50 to 4 000, the number of varia
bles from 50 to 500, most of them being re
petitive. 

PIGAS in its actual form is very well 
adapted to the internal structure of our 
department and is also used by other depart
ments who need to analyse studies with a non
rectangular data structure. The flexibility 
of the system has been demonstrated and espe
cially appreciated by physicians working in 
direct collaboration with our department. 
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APPENDIX 1 DESCRIPTION OF THE TABLE OF THE CHAPTERS 

*********************** * TABLE DES CHAPITRES * 
*********************** 

****************************************************************************************************** 
* * * * * * * * 
* NOM * LIBELLE * OBLIG * REPET * MIN * MAX * CUES DE TRI DU CHAPITRE * 
* * * * * * * * 
****************************************************************************************************** 
* * * * * * * * 
* I DENT * IDENTIFICATION CHAPTER * OUI * NON * * * * 
* * * * * * * * 
* FOLLOW * FOLLOW-UP * NON * NON * * * * 
* * * * * * * * 
* META * METASTASES * NON * OUI * o * :; * DATMETA * 
* * * * * * * * 
****************************************************************************************************** 
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APPENDIX 2 DESCRIPTION OF THE FOL.LOW-UP CHAPTER 

••••••••••••••••••••• 
• CHAPITRE FOLLOW • ..................... 

.................................................................................................. 
•• • •••••• 
• NOH • LIBELLE' • TYPE. LQ • "INII'IUIt • MXJ"U" • CRX • NATURE • 
•• • •• • •• • .................................................................................................. 
• • • • • • • • • .~ • ~ OF THE CASE • A • 3 • • • NON • ISOLEE • • • • • • • • • • • DATFU • DATE OF FOLLOW-UP • D • 6 • • • NON • ISOLEE • • • • • • • • • • • AeRD • ALIVE OR DEAD • L • • O. • NON • DIRECT • • • • • • • • • • • CAUSE • CAUSE OF DEATH • E • • 1 • 3 • OUI • PMAQ • • • • • • '. • • • • STATE • STATE OF HEALTH • E • • 0 • a • QUI • PMAQ • • • • • • • • • • .................................................................................................. 

DESCRIPTION DE LA FICHE FOLLOW 

ID COL 1 - 2 22 

NBCENTER 3 - 4 

NBCASE 5 - B 

NNE 9 - 11 

DATFU 15 - 20 

PARAGRAPHE ACRD 
AeRD 21 - 21 
SI OUI : 

CAUSE 22- 22 
SI NON : 

STATE 23 - 23 

APPENDIX 3 : HISTOGRAM EXAMPLE APPENDIX 4 ; LOG-RANK TEST EXAMPLE 

Number of cases as a function of the stage 
of a particular disease. 

TRAIT is the treatment variable coded 1 or 2 
DATTAS is the date of randomisation 
DADERNO is the date of last follo~-up • 

Function syntaxe : 

FONCTION SOUHAITEE HIST 
VARIABLE STAGE 

Result: 

e 

STAGE 

-- 0-
W IU 
co -GO) 

<.II 

e e 
? 1 3 

@ 2 4 

'A' is the symbol used 
for the "UNKNOWN" code 

'@' is the symbol used 
for the "NOT A~PLICABLE" code 

'?' is the symbol used 
for the "HOLD" code ) 
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ETAT is the patient status at last follo~-up-

FONCTION : LOGR 
LA VARIABLE: TRAIT CONTIENT LES CODES A.@.? 0 FOIS 
LA VARIABLE: DATTAS CONTIENT LES CODES A.e.? 0 FOIS 
LA VARIABLE: ETAT CONTIENT LES CODES A.@.? 0 FOIS 
LA FONCTION DELAI N'A PAS ETE CALCULE 0 FOIS 

PAR MANOUE DE PRECISION 
LA VARIABLE: DATDERNO CONTIENT LES CODES A •• ,? 0 FOIS 

•• ********.* •• ****** 
• TEST DU LOG-RANK * 
*.****************** 

CLASSE NBSU.J DC OBS DC EST DC OBS/EST 
--------------------~-----------------------------------

2 

CHI2 
1. 3357 

12 

13 

DOL 
1 

6. 

11. 

PROBABILITE 
0.24780 

8.3823 0.7158 

8.6177 1.2764 



APPENDIX 5 

FONCTION SOUHAITEE BMDP 
NOM DES VARIABLES 
WEIGHT 
AGE 

NOM DU PROGRAMME : 6D 

BMDP 

DMDP6D - BIVARIATE (SCATTER) PLOTS 
DEPARTMENT OF BIOMATHEMATICS 
UNIVERSITY OF CALIFORNIA. LOS ANGELES. CA·90024 
(213) 925-5940 TWX UCLA L9A 
PROGRAM REVISED JUNE 1991 MANUAL REVISED.-- 1991 
COPVRIGHT (C) 1991 REGENTS OF UNIVERSITV OF CALIFORNIA 

17-DEC-92 AT 16: 55: 19 

NUMBER OF CASES READ. . . . . . . 

.. + .... + .... + .... + .... + .... + .. X. + .... + ..... 
100.0 + 

1 
97.50 + 1 

P 
0 
I 75.00 + 1 11 
D 1 1 1 
S 1 21 

1 1 1 1 
131 2221 

62. 50 + 121 1431 
4142 232 

1 3 1 11 1 
Y 123 4213 134 

11 12 4232 3222 
50.00 + 2 2 11 11 4 511 

1 1 12 1 32 
11 111 1 1 

1 

1 1 
1 1 

1 2 21 
111 2 11 
2 53 12 
4122 42 
2413 2324 
43 1 33 
51 1 1441 
26 53 3 

23 2 4421 
121 11 

112 133 
12 1 

1 

+ 

+ 

+ 

+ 
V 

+ 

~.~ + + 
.. + .... + .... + .... + .... + ... X+ •... + .... + ..... 

·20 29 36 44 
16 24 32 40 

N= 335 
CORm .0769 AGE 

MEAN ST. DEV. REGRESSION LINE RES. MS. 
X 36. 491 5. 9377 X- .04979*Y+ 33.667 35. 154 
V 57. 669 9.3425 V. .·12079*X+ 53.262 97.029 

VARIABLE 2 AGE VERSUS VARIABLE WEIGHT 

CPU TIME USED 6.990 SECONDS 

335 
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FONCTION 
VARIABLE 
VARIABLE 
VARIABLE, 
VARIABLE .. 
VARIABLE 
VARIABLE 
VARIABLE 
VARIABLE 
VARIABLE' 

APPENDIX 6 : USER 

SOUHAITEE USER 
1 CENTER 
2 CASE 
3 DATRANDM 
4 GROUP 
:5 CHEMO 
6 SURGERY 
7 HISTOLOQ 
8 RADIO 
9 FOLLOW 

NOM DU PROGRAMME : PROG 

****-•• ****.**.*.**.*********.*** •• ****.*** 
* CENTER .: VILLEJUIF * 
******************************************* 

Case number 

5 31 5/1981 

6 221 511981 

8 161 611981 

11 221 811981 

12 181 811981 

16 25/10/1981 

24 811011980 

28 5/1111981 

32 41 1/1980 

45 61 5/1981 

46 221 511981 

Missing records 

RADIOTHERAPY 

FOLLOW-UP 

RADIOTHERAPY 

SURGERY 

RADIOTHERAPY 

SURGERY 
HISTOLOGY 
RADIOTHERAPY 

SURGERY 
HISTOLOGY 
RADIOTHERAPY 

SURGERY 

RADIOTHERAPY 

FOLLOW-UP 

SURGERY 
HISTOLOGY 
RADIOTHERAPY 



SIMULATORS, STATISTICAL ANALYSIS, AND DATABASES 

D.H. Scuse 
Associate Professor 

A.N. Arnason 
Professor 

Department of Computer Science 
University of Manitoba 

Winnipeg, Manitoba 

Abstract 

This paper describes the advantages of integrating simulators, statistical 
analysis programs, and databases in a common statistical information system. We 
have found that the integration of the components in a statistical information 
system greatly enhances the value of the individual components, makes the 
resulting system easier to use by end-users, and reduces the amount of work 
required to implement new applications and modify existing applications. 

1. INTRODUCTION 

For a statistical information system to be 
useful in the current research environment, it 
must contain routines that manipulate data 
organised in complex data structures 
(databases, as opposed to simple flat files) 
and routines, statistical analysis programs or 
SAPs, that analyze these data. The 
integration of the statistical analysis 
programs and databases makes the system more 
powerful than the equivalent separate systems, 
one to manipulate databases and the other to 
perform statistical analyses. As we shall 
show, the value of the statistical information 
system is also enhanced by the addition of 
simulators that permit end-users to develop 
and refine management sampling or data 
collection strategies. 

There are many systems that provide excellent 
facilities for the manipulation of complex 
statistical databases (SIR, RAPID), for the 
analysis for statistical information (SAS), or 
for simulation (SIMSCRIPT). However, few of 
these systems provide acceptable facilities 
for even two of these functions (manipulation, 
analysis, and simulation) and no 
general-purpose system that we are aware of 
provides all three functions. As applications 
become increasingly complex, it will not be 
acceptable to have to copy information 

* This research was supported by grants from 
the Natural Sciences and Engineering Research 
Council of Canada, the Canada Department of 
Fisheries and Oceans, and Algas Resources 
Ltd., Canada. 
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manually from one system to another as 
different functions are required when 
processing the information; instead, 
integrated systems that provide all three of 
these functions and make them available 
directly to end-users in a friendly manner 
must be developed. 

Our interest in simulation, databases, and the 
analysis of information has led to the 
development of several information systems 
that provide some but not all of the 
facilities that we feel are necessary in a 
statistical information system. These systems 
include the POPAN system [1] for the 
maintenance and analysis of mark-recapture 
databases for wildlife sampling experiments, 
the MANHIS system [2] for the maintenance and 
analysis of both social services and medical 
data in community .health centres, and the 
Fisheries Information System [3] for the 
simulation and storage and reporting of 
fish-hatchery management data. Of these 
systems, the Fisheries system is the most 
recent and most advanced, integrating 
stat~-of-the-art database technology with a 
powerful second-order Markovian simulator 
system. 

In the remainder of this paper, we indicate 
the advantages of integrating simulators, 
statistical analysis programs, and databases 
into a common statistical information system. 
The problems involved in implementing such a 
system and the techniques that we have found 
to be useful in eliminating some of the 
problems are also examined. 



2. INTEGRATION 

In this section we examine the advantages 
obtained when the various components are 
integrated into a common statistical 
information system. The database component is 
assumed to include an interactive query/update 
facility that permits the user to insert 
information into the database and to examine 
selected portions of the database, preferably 
wi thout having to know the structure of the 
information in the database. 

2.1 SIMULATORS AND DATABASES 

The importance of databases as support for 
developing, fitting, testing, and running 
simulations has recently been discussed by 
Markowi tz [4]. As co-developer of both the 
SIMSCRIPT II language [5] and of the EAS-E 
database system [6], he has given some thought 
to the facilities that a database system must 
have to provide this support. EAS-E is a 
Query/Update database system that permits the 
structuring and manipulation of data using the 
same time-ordered, entity-attribute-set view 
of a system as is taken by SIMSCRIPT in 
modelling that system. Such a view is 
important for simulation involving scheduling, 
queuing, and contention by transactions 
(temporary entities) for limited physical 
resources (permanent entities); for example, 
in a job-shop scheduling model, machines 
(permanent entities) may own a set of tasks 
(temporary entities) which in turn may own 
other sets (e.g. job stages) and attributes 
(type classifications, service time durations, 
etc.). While EAS-E is not (yet) fully 
integrated wi th SIMSCRIPT, the advantages of 
adopting a parallel data structuring in the 
database and the simulation are already 
apparent: browsing through the database or 
extracting reports from it orients the 
end-user to the structural and set 
membership/ownership relationships that he 
will have to use in simulating the system; the 
same code for generating reports from the 
database can be used to generate equivalent 
reports on the simulated model; the database 
is structured in a way to accept data from the 
simulated model, preserving its structural 
relationships; real data in the database can 
be extracted (usually as time-ordered sets) 
for driving various mechanisms of the 
simulations (arrival times of temporary 
entities, with their attributes, and other 
demand or service-time mechanisms). Markowitz 
has pointed out [4], however, that this is not 
sufficient support for many simulation 
applications. Often real data is of limited 
value in production runs of the simulator (it 
is of most value in validation runs). 
Instead, one wishes to extract data on such 
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exogenous mechanisms as inter-arrival times or 
service times, fit theoretical or empirical 
models to the data, and then use these 
mechanisms, or hypothesized modifications of 
them (e.g. the same form of distribution but 
with an increased mean and/or variance) in the 
simulation. This gives the user the freedom 
to explore hypothesized strategies or 
non-existent but plausible environments to 
judge how the system responds. Such 
experiments with simulation models are often 
the main purpose for their construction. 
Clearly this facility requires the further 
integration of the system with statistical 
analysis features for exploratory data 
analysis, model fitting, and testing. Once 
such models are fitted, most simulation 
systems already incorporate methods of 
parametric or empirical random variable 
generation, given the fitted parameters. 

In the analysis of real data, statistical 
analysis methods are useful for summarizing 
and revealing relationships in the data. 
Since simulations can frequently produce 
voluminous data on system performance, access 
to standard statistical analysis procedures 
can greatly assist in the process of 
summarization. As we explain later, we feel 
that this facility is best provided by having 
the simulator write out its results, in as 
detailed and unprocessed a form as possible, 
to the database. It is then the role of the 
database query system to provide flexible, 
on-line end-user control over the data 
summaries and reports. 

The entity-attribute-set representations of 
SIMSCRIPT/EAS-E are not always the most 
appropriate or natural system representations. 
Our Fisheries system involves a more 
restrictive system representation, but as a 
result, we have been able to make much greater 
progress in integrating the simulator with the 
database, and have a much clearer idea of how 
statistical processing features can be 
implemented. As with the SIMSCRIPT/EAS-E 
system however, the crucial correspondence 
between the structuring of the database and 
the structural relationships in the simulation 
is preserved. In our case the basic 
structural relationship is one more suitable 
to Markovian systems: data on the actual 
hatchery consists of two types of variables: 
exogenous events (which we call \ management 
interventions, consisting of setting stocking 
leveis in tanks, feeding rates, water 
temperature and flow rates) and endogenous 
results of these interventions (called 
observations, consisting of censuses of fish 
numbers and weight distribution, water quality 
variables, etc.). In addition there are 
static system descriptors which may be real or 
hypothetical (called physical conditions, such 



as numbers and size of tanks, wa ter 
availability, filter capacities and 
charac teristics, fish species and food type 
characteristics as they affect growth rate). 
The database must, and does, permit the user 
to follow groups of fish forward and back in 
time, within tanks or relocating to other 
tanks as groups of fish are split among tanks 
or transferred to other tanks. The user can 
specify the variables to be displayed as he 
navigates through the data. . The important 
relationships that must be .preserve!! are the 
time orderings of events and observations 
within tanks (e.g. it is vital to· know if a 
census, at the same time as a transfer, was 
before or after the transfer). The simulator 
allows the end-user to specify initial 
conditions (physical conditions) and a 
sequence of interventions interactively. A 
multilevel growth model then generates the 
observed results of the management strategy to 
a degree of detail depending on the level 
chosen (e.g. the basic model only simulates 
growth and imposes no constraints on density 
or water quality; higher level models also 
simulate effects on water quality). The 
results of such a simulation can be saved to 
the database and are, in every respect, 
comparable to real data (except for an 
additional variable to indicate that they 
arise· by simulation and hence may be deleted 
from the database, unlike real data). 

The preservation of an exact correspondence 
between real and simulated data enables a 
number of desireable capabilities. First, 
real physical conditions and interventions can 
be extracted from the database and used to 
drive the simulator. The simulated results 
are saved in the database and are associated 
with the interventions that gave rise to them. 
Thus the. same code (in the database query 
system) used to compare two real growth 
strategies can be used for comparing real and 
simulated outcomes for validation purposes. 
Secondly, the results of a successful 
management strategy, obtained by simulation 
against a real or hypothetical physical 
configuration can be saved and extracted later 
as the strategy is actually implemented. 

The statistical analysis requirements of this 
system fall into two main categories: 
statistical summaries and calibration. The 
first has already been mentioned as it 
involves the ability to compare two growth 
runs (real/real; real/simulated; or 
simulated/simulated). The problem is that 
aquaculturists want analyses based on derived 
statistics (e.g. instantaneous growth rate, 
food conversion ratios, etc.) which require 
data from the same or different database 
segments at two different times. This 
involves extensive checks to ensure that the 

135 

derived statistics are meaningful (e.g. that 
no deaths or transfers intervene between two 
censuses) and is best provided ·through the 
data .. dictionary and database interface 
facilities described later in this paper. 

Calibration involves the extraction of data 
from the database in forms (case by variable 
data) suitable for non-linear growth model 
fitting and the fitting of various ancillary 
models (variance in growth, oxygen 
consumption, fish metabolite production rates, 
etc.). This involves the same problems as for 
generating derived variables. Full 
integration of calibration with the system 
would require some means of designating groups 
of segments in the database as belonging to 
calibration sets suitable for a particular 
model fitting routine and/or programming 
extensive checks that sets of data chosen by 
the end-user are complete and consistent for 
use by a particular fitting routine. 

2.2 STATISTICAL ANALYSIS AND SIMULATORS 

Statistical analysis procedures may be roughly 
categorized into survey analyses and model 
fitting analyses. The former often involve 
massive amounts of data, sometimes 
incorporating complex relationships among 
records, where the main objective of the 
analysis is to summarize properties of the 
variables (means, variances, histograms) or of 
relationships among variables 
(crosstabulations, breakdowns, scattergrams). 
Model fitting analyses attempt to elucidate 
structure and relationships by positing, 
fitting, and testing for goodness of fit, some 
theoretical model for the expected values of 
the observations (data) and the variation of 
the data about expectation (residual error 
distribution) • The model parameters, or 
rather their estimates formed in the fitting 
stage, may be of interest in providing insight 
into the mechanisms that gave rise to the 
data, or the fitted model itself may be of 
primary interest for use in prediction, 
interpolation, optimisation, or simply as a 
data summary. 

Most general-purpose statistical packages 
(SPSS, GLIM, BMDP, SAS, etc.) have 
capabilities spanning both of these 
categories.. None, however, incorporates 
simulation capabilities, and so are rather 
poor in supporting the major planning and 
interpretation concerns of statistical users 
in both these categories. 

We do not propose that these concerns can be 
fully met by simulators, particularly for 
survey analyses. However, methods for random 



sampling from sequential files are well known 
[7], and it would be quite straightforward and 
useful to have a general simulation capability 
for generating random samples according to 
various standard designs (stratified, ratio, 
multi-stage, etc.). Experimentation with such 
a system would be of great help to the 
end-user in planning efficient surveys. What 
limi ts the usefulness of this method is the 
necessi ty to provide a file to be sampled. 
This might be an actual census or sample 
survey from some comparable experience, but 
more likely the file itself would have to be 
simulated, using the distributional and 
relational characteristics from some previous 
survey analysis, plus some hypothesized model 
assumptions (e.g. multivariate normal or 
multinomial distributions for variables) to 
generate simulated populations. 

For the end-user concerned with model fitting, 
the much greater usefulness of simulation for 
planning and insight is illustrated by the 
POPAN system. This large batch system, while 
specific to marking and banding data from 
animal sampling experiments, edits and 
structures the end-user's data, gives him 
access to a comprehensive set of models for 
parameter estimation (of survival, birth 
rates, abundance), and includes a very general 
but easy-to-use simulation capability. All 
these functions are directed by a BMDP-like 
paragraph-structured command language. The 
simulator permits the user to simulate a 
theoretical population's stochastic dynamics 
(recruitment, death, emigration) and impose 
stochastic sampling at user chosen intensities 
and frequencies. The simulator is general 
enough to permit him to specify models that 
incorporate mechanisms that violate 
assumptions of the analysis methods (e.g. 
distributions for heterogeneous survival or 
capture rate among animals). The data are 
generated in a form that is (almost) 
indistinguishable from real data, and so can 
then be analysed using the model fitting 
procedures, presenting results exactly as for 
real data. The only difference is that the 
system reports the "true" population 
properties, against which the estimates can be 
compared. Simulations without assumption 
violations are useful in planning allocation 
of sampling effort so that experiments will 
yield adequate precision in the estimates. 
Simulations with assumption violations are 
useful in determining the bias or robustness 
of an estimate to various types and degrees of 
assumption violations and the power of tests 
to detect such violations. Conclusions from 
such runs lack the generality of an analytic 
investigation by a mathematical statistician, 
but they reveal the same sort of insights, can 
be carried out easily by a non-statistician 
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end-user (e.g. a biologist or wildlife 
manager), and can be tailored to the specific 
population parameters and dynamics which the 
end-user has to hand. 

Such capabilities would also be enormously 
useful, for the same sorts of purposes, in 
more general statistical analysis systems. 
Capabilities to generate stochastic data from 
wide classes of models (including various 
independent or correlated error or residual 
distributions) would be useful for planning, 
robustness, and power studies in many classes 
of analysis: linear, log-linear, general 
linear, failure time, even multi-variate 
models. 

Note however that it would be a mistake to 
"tack-on" such simulation features to a 
statistical analysis program. In fact, the 
statistical analysis program must be 
incorporated within a general statistical 
model simulator. This way, the simulator can 
invoke the analysis procedure on the 
(stochastically) generated data file 
automatically. This is, to our mind, the only 
realistic approach if replicated simulations 
are to be allowed. Replicated realisations of 
a given model and/or the sampling imposed on 
it are essential for investigating bias and 
power, though are less essential for 
experiment planning. Thus the simulator, and 
not the statistical analysis program, is 
responsible for generating the data file, 
carrying out the analysis, extracting and 
accumulating statistics to be reported over 
replicated simulations, conversion (e.g. to 
means, standard deviations, proportions over 
replications), and report generation. The 
simulator must also report on the simulation 
mechanisms and the "true" properties of the 
model. Analysis of real data is then a 
special case of a single replication where 
file generation consists merely of extraction 
of cases and variables from a file or database 
of real data. This system structure would 
confer advantages in analyzing real data which 
was (exactly) repiicated. The sorts of 
summaries across replications suggested here 
could then be applied to real data as well; 
this is a rather rare requirement, but one 
which is difficult to meet with most 
statistical analysis programs at present. 

We defer until later a discussion of the role 
played by a database incorporated into such a 
system, though it is clear that some database 
support has been implied in the discussion in 
this section. 



2.3 STATISTICAL ANALYSIS AND DATABASES 

Since the use of databases in statistical 
information systems is becoming the accepted 
practice (one has only to examine the number 
of papers involving databases at conferences 
such as the First LBL Workshop on Statistical 
Database Management and the Symposia of 
Computer Science and Statistics: the 
Interface), in this section we discuss only 
briefly the advantages to the integration of 
databases and statistical analysis programs, 
as they apply to our experience. 

The use of a database instead of the more 
common flat file makes the conceptualization 
and manipulation of data by end-users during 
the analysis of the data significantly easier. 
For example, as shown in the papers 
[8,9,10,11] on volume testing presented at the 
13th Symposium of Computer Science and 
Statistics and the First LBL Workshop on 
Statistical Database Management, the analysis 
programs were easier to design and understand 
when the underlying system supported databases 
than the equivalent analysis programs when the 
underlying system supported only flat files. 
When a database is used, it is normally not 
necessary to perform complex file 
manipulations (merges, sorts, etc.) in order 
to place the data in the correct format for 
the analysis. The use of the database 
facilities also makes the management of 
information being prepared for analysis easier 
than in the flat file analysis system since 
most database systems support some type of 
interactive method for entering data into the 
database and automatically perform integrity 
checking of the information as it is entered 
to ensure that it is valid. 

The integration of the statistical analysis 
program with a database permits the end-user 
to examine portions of the database 
interactively using the query component of the 
database system before defining the analysis 
program. Such interactive access to the data 
often gives the end-user a better "feel" for 
the data, enabling him to develop appropriate 
analyses more quickly. 

The integration of statistical analysis 
programs and databases does not have to be a 
one-way transfer of information (from the 
database to the statistical analysis program); 
it is frequently desireable to be able to 
store the results of an analysis back in the 
database to avoid having to recalculate them 
the next time thilt the information is 
required. For ex~mple, summary information 
that contains means and variances may be a 
useful addition to a database. Such summary 
information is then available to the user 
through the database query component. Of 
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course, such information may be invalidated 
should the underlying data be modified but 
statistical databases tend to be modified 
infrequently compared with entity-oriented 
databases (personnel, inventory, etc.). 

2.4 SIMULATORS, ANALYSIS, AND DATABASES 

The advantage of integrating all three 
components has already become evident in the 
Fisheries system which contains a simulator 
and database system but does not contain 
statistical analysis programs. Both the data 
generated by the simulator and the data 
generated by the hatchery are stored in the 
fisheries database. In order to compare the 
simulated results of an experiment with the 
real results for the same experiment, it was 
necessary to export the real and simulated 
data outside of the Fisheries system in order 
to perform the analysis. If the Fisheries 
system contained the appropriate analysis 
routines, it would have been much easier to 
perform the comparison. The same process must 
also be followed for model calibration, with 
the additfonal re-importing of the fitted 
model parameters into the species 
characteristics file of the database before 
the end-user can make use of the system's 
powerful model validation capabilities. 

An interesting use of the integration of all 
three components is to use the simulator to 
generate test data for a new application 
before data are actually collected. These 
simulated data can be stored in the database 
and then queried and analyzed by the user to 
ensure that the data are complete. Such a 
technique would be useful in experiments 
involving surveying or sampling in order to 
reduce the possibility that part of an 
experiment is performed before it is realized 
that insufficient or incorrect data are being 
collected. 

3. IMPLEMENTATION TECHNIQUES 

The major problems involved in integrating the 
components of a statistical information system 
can be reduced to more manageable problems 
through the use of current database and 
software engineering technology. The 
techniques that are described in this section 
have already been implemented (in whole or in 
part) in the Fisheries, POPAN, and/or MANHIS 
systems and have been found to work well. The 
organisation of components used in the 
Fisheries system (extended to suit the current 
di~cussion by the addition of statistical 
analysis) is shown in Figure 1. Access to the 
system is through a common user interface. 
The major components then interact with a data 
dictionary/database system (but not directly 



with each other); this makes the components 
more modular, more independent of each other 
(so that changes in one component do not 
affect the other components), conferring great 
advantages on ease of development while 
preserving the maximum power and flexi bili ty 
of the system. As was illustrated in 
Section 2, the pairwise or vertical 
interaction of the components with the DD/DB 
system reduces application coding. 

USER INTERFACE 

SIMULATOR ANALYSIS QUERY 

DDMS - INTERFACE 

DBMS 

DATA DATA FLAT 
DICT BASE FILES 

FIGURE 1 STATISTICAL INFORMATION SYSTEM 
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One of the major problems encountered in the 
design of an interactive system is the 
technique used to parse the users' commands 
and then to pass the necessary information to 
action routines to process the commands. In 
order to provide a common method 6f access to 
all programs in the Fisheries system, a 
generalized user interface, called EASYPARSE, 
was developed. With EASY PARSE , users need 
learn only one set of conventions in order to 
use the Fisheries system. EASY PARSE contains 
a powerful Backus-Naur Form (BNF) parser that 
was designed for users who are technically 
competent in their own areas but are not 
familiar with the intricasies of interactive 
systems. The parser is keyword oriented 
although it can also parse commands with 
positional parameters. The syntax of the 
commands that the parser is to process is 
defined in an external table which is read by 
the parser during system initialisation. 
After the parser has recognised a command and 
its parameters, the parser isolates the 
command parameters by creating a list of 
pointers that point to the individual 
parameters and subparameters. This list of 
pointers creates a level of indirection 
between the parser system and the action 
routines that process the commands, making it 
possible to make minor syntax changes to a 
command without having to modify the action 
routine. The parser system automatically 
abbreviates all commands, keywords, and 
aliases as much as possible (as long as ·no 
ambiguities are created); however, for 
particularly critical commands, keywords, or 
aliases, a minimum number of characters that 
must be entered for the command to be 
recognized can be specified when the command 
syntax is defined. To simplify the entering 
of commands and parameters, the parser permits 
the definition of substitution variables, 
variables that are assigned character strings 
by the user. Whenever a substitution variable 
is entered by the user, the parser system 
replaces it with the character string 
associated with that variable. Thus, 
frequently-used phrases can be replaced by a 
substitution variable. The parser system also 
supports a sophisticated command-editing 
facility which permits the user to modify 
portions of the current command or a previous 
command without having to retype the entire 
command. EASYPARSE has recently been prepared 
as a stand-alone system for use with any 
interactive program and is described in [12]. 

In order to make the statistical information 
system as general as possible, the description 
of the processing to be performed on each 
database should be stored in a data dictionary 
instead of being "hard coded" into the system 
components. The Fisheries system is 
dictionary-driven and contains little logic 



that is specific to the manipulation of 
hatchery information; as a result, it has been 
possible to make major revisions to the system 
without having to modify the application 
programs. This technique has also been used 
very successfully in the RAPID system [13 i . 
The meta data stored in the data dictionary 
describe the organisation of the database, the 
input/output formats of data, security 
information, integrity information (horizontal 
and longitudinal edit and consistency checks), 
data transformations (for example, the value 
of the variable SEX might be input and output 
as M or F but stored internally as 0 or 1), 
command syntax information for the user 
interface, and descriptive information. The 
data dictionary should be stored in a database 
that is manipulated by the database system so 
it is not necessary to write low-level 
database manipulation routines as part of the 
data dictionary management system (DDMS), and, 
even more importantly, so that it is possible 
to display the contents of the data dictionary 
using the query system. This last feature is 
important for end-users since it provides a 
convenient means of obtaining the descriptive 
information about the databases maintained by 
the system, such as the use of a particular 
field and its input and output formats. 

The Fisheries system does not permit programs 
that require data from a database to issue 
requests directly to the database management 
system (DBMS); instead, an interface was 
placed between the DBMS and the processing 
programs, and all programs issued requests for 
data to the interface instead of to the DBMS. 
This interface was originally developed 
because the only DBMS available (IBM's IMS) at 
the university at the time was not suitable 
for the type of manipulations being performed 
(and we did not want to develop a complete 
DBMS by ourselves), but the interface was 
gradually improved until it became a 
high-level database management system in its 
own right.. The interface supports the 
relational model of a database and a 
sophisticated database manipulation language 
by translating the requests passed to it into 
the equivalent requests to the low-level DBMS 
being used. The interface also provides many 
additional facilities such as the ability to 
dynamically display program debugging 
information. The interface has proven to be 
valuable because it can be extended quite 
easily and because it has permitted the other 
components of the statistical information 
system to be made independent of the actual 
DBMS being used to store the database. 
Further details of the interface can be found 
in [14]. 
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In statistical information systems it is 
important that the user be permitted to define 
fields whose values are derived from the 
values of other fields. The use of the data 
dictionary system and the database interface 
in the Fisheries system has made the 
manipulation of such derived fields reasonably 
easy. Derived fields are first defined to the 
data dictionary; then, when the derived field 
is accessed, the database interface invokes a 
special routine to obtain the value of the 
derived field. The value may already be 
stored in the database (for example, as the 
result of adding summary data to the database, 
as was mentioned earlier), in which case, the 
value is read from the appropriate database 
segment; otherwise, if the value has not 
already been calculated, its value is 
calculated dynamically by processing the 
values of the fields from which the value is 
derived. We feel that the manipulation of 
derived fields is an important consideration 
in the design of a statistical information 
system: 

To facilitate access to a database by the 
end-user, the query component of the sys tem 
must require as little knowledge of the 
structure of the database as possible. As was 
mentioned earlier, the database interface in 
the Fisheries system supports the relational 
model of databases so that users need not be 
aware of the links between segments/tuples in 
the stored version of the database. However, 
even the relational model is more complex than 
was desired for end-users since they would 
have to be aware of the grouping of fields 
into tuples. Consequently, an abstract model 
of the database was defined for the users. 
This abstract model permits the user to access 
the database by field name without having to 
know the name of the tuple in which the field 
is defined. The query component performs the 
mapping from the abstract model to the 
relational model before it issues a request to 
.the database interface for information. The 
support for multiple models of the database 
has been facilitated by the use of the data 
dictionary: the data dictionary contains a 
description of each of the three models of 
data, including the name of each field, the 
tuple in which it is defined, and how the 
tuple must be accessed using a particular 
model. As a result, the mapping processes in 
the query component and the database interface 
have been made completely general, using the 
data dictionary description of how a 
particular field or tuple is to be processed 
during the mapping from one model to another. 



While much of the discussion in this section 
has been specific to the Fisheries system, the 
techniques used in that system are generally 
applicable to the problems encountered when 
creating a generalized statistical information 
system. In fact, the Fisheries system'is such 
a generalized system, capable of manipulating 
any database; the only component that it lacks 
is the analysis component. 

4. CONCLUSIONS 

The statistical information system described 
in this paper has two main functions: to 
provide the user with sophisticated facilities 
for manipulating statistical information, and 
to reduce the amount of programming required 
to implement a new application.' The 
interactive nature of the system encourages 
users to experiment with the system and the 
user interface eliminates much of the 
frustration that end-users typically feel when 
dealing with a complex system. 

Since the system is dictionary-driven, few 
application programs should be required in 
order to implement a new application. 
Instead,-the system administrator defines the 
data requirements of each application to the 
data ,dictionary. This approach to the 
development of applications has recently been 
emphasized by Martin [15]. The use of 
software interfaces to control access to 
critcal portions of the system permits 
debugging and trace information to be 
generated during program testing by toggling 
various switches in the interfaces instead of 
having to recompile programs during testing in 
order to insert and then remove debugging 
statements. 

We are currently in the process of extending 
modules written for the Fisheries system in 
order to construct a prototype of this 
statistical information system on the 
University of Manitoba's Amdahl 470/V8 
computer system. Unfortunately, the scope of 
the information system precludes our being 
able to implement it on a small computer 
system. 
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CANS 1M, THE CANADIAN SOCIO-ECONOMIC MANAGEMENT INFORMATION SYSTEM 

Martin Podehl, Statistics Canada 

Abstract 

CANSIM, the Canadian Socio-Economic Information Management system is Statistics 
Canada's computerized data bank and information retrieval service. This paper 
gives an overview of the current status and development activities of 
electronic information services provided by Statistics Canada. 

INTRODUCTION 

Econometric and statistical 
analysis requires two ingredients: 
data and analytical software tools 
(in addition to a computing 
environment of course). 
Statistical data are either 
available in the public domaine or 
are the result of a researcher's 
own statistical collection 
program. They are either micro 
data, for example the result of a 
survey, or they are macro data, of 
aggregated nature, for example 
economic statistics. Analytical 
software tools are available in a 
wide variety of packages which 
have been developed over the years 
and are being refined constantly 
to take advantage of newly 
developed algorithms as well as 
new hardware/software 
environments. 

In the beginning of statistical 
computing the main concern was 
with the development of efficient 
and sound algorithms. Statistical 
analysis packages were developed 
usually by universities and 
Research Institutes. As these 
packages matured, data and file 
handling facilities were added in 
order to ease the burden for the 
researcher in that respect. In 
the commercial environment, on the 
other hand, data base management 
packages were developed in order 
to ease the burden in organizing, 
storing, documenting and accessing 
data in a flexible manner. As 
these systems matured, flexible 
retrieval and analytical software 
of statistical nature were added 
in order to explore the 
full information potential 
contained in those data bases. 

Today these distinctions are of no 
significance anymore as both, the 
data base management system 
developer and the statistical 
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package developer have realized the 
importance of a smooth interface 
between both environments. 

CANSIM, the Canadian Socio-economic 
Information Management system of 
Statistics Canada fulfills both needs: 
an organized data base of statistical 
information, and analytical tools for 
statistical and economical modelling 
and interpretation. 

CONCEPT AND PURPOSE 

The concept of CANSIM was born in the 
late '60's as a mechanism to store and 
make available to the public key 
statistics to economists and 
statisticians in Canada. CANSIM brings 
together under one umbrella data from 
Statistics Canada as well as other 
organizations such as Federal 
Departments, Provincial Governments and 
the Bank of Canada. Today, in a 
publicly accessible data base, 
socio-economic data of time series as 
well as cross-classified nature are 
stored, documented and disseminated to 
the statistical community in Canada. 
From a modest start CANSIM has grown in 
volume and in importance and is now an 
integral part of socio-economic 
analysis in Canada. 

The original concept placed primarily 
emphasis on a simple data organization 
such that data from different sources 
could be related to each other. Simple 
access routine allowed the retrieval of 
selected time series which then were 
taken by the user into his own 
environment for further computation. 
Over the years much software was 
developed or interfaced with CANSIM for 
increasing complex analysis. 

EVOLUTION AND OPERATION 

Initially CANSIM was synonymous with 
time series. In 1968 the foundation 



was laid with 2,500 series, today 
the time series module carries 
over 350,000 time series. In 
order to handle cross-classified 
data efficiently, a cross
classified module was added to 
CANS 1M which since 1976 has been 
used to store data of multi
dimensional nature, referred to as 
tables, where a table can be 
either retrieved in whole or only 
parts of it. CANSIM Cross
Classified now carries data from a 
variety of predominantly social 
statistical areas, such as health, 
justice, education, and 
demography. 

Recently a third module was added, 
referred to as CANSIM Summary Data 
which allows access and selective 
retrieval of data which are also 
available in the form of User 
Summary Tapes. At present our 
Census data aggregated to small 
areas are available in this 
module. That we now have three 
distinct information systems is 
not the result of design but 
rather historical evolution. At 
some future point unification has 
to be attempted such that one data 
model can be used to describe all 
data regardless of whether they 
are predominantly of time series 
or predominantly of cross
classified' nature. 

The CANSIM systems are maintained 
and operated by Statistics 
Canada. They are maintained under 
contract at a commercial computing 
service organization and they are 
updated daily. The public has 
access to these data bases under 
separate, individual contracts 
with the supplier. However CANSIM 
daia are also available under the 
trade name CANSIM Mini Base, 
through other computing services 
companies which we call Secondary 
Distributors. Secondary 
Distributors obtain daily updates 
to a standard sub-set of the main 
base. In addition they can obtain 
supplementary time series as 
requested by their clientele. 

This delivery mechanism of Host 
Service Bureau and Secondary 
Distributors offers our users a 
choice in access and ,analytical 
software. Some of the Second~ry 
Distributors are in the 
information base business and 
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make CANSIM data part of a larger set 
of economic and statistical 
information, while others are general 
purpose computing services companies 
who had been asked by specific 
customers to make CANSIM data available 
at their computing centres. 

In Statistics Canada the CANSIM 
Division is responsible for all 
development and operational aspects 
concerning this information 
dissemination approach. The CANSIM 
Division adds new data and maintains 
existing data in all data bases at the 
Host Service Bureau, and it produces 
and distributes printed data 
directories which describe the data and 
provide the access identifications. 
CANSIM Division undertakes a marketing 
and training program and as well 
provides a marketing and training 
program and as well provides 
consultation to all users of CANSIM 
data who are searching for particular 
data or have difficulties in 
interpreting them. Last but not least 
CANSIM Division maintains and develops 
new software to explore further the 
CANSIM data bases for analytical 
purposes. 

ANALYTICAL SOFTWARE 

Originally Statistics Canada had to 
develop software for retrieval, 
manipulation, statistical analysis, and 
representation of results. However 
over the years many packages have been 
interfaced to CANSIM either by 
Statistics Canada as part of the Main 
Base~ or by Secondary Distributors who 
took the CANSIM Mini Base and 
integrated it into their own software 
facilities. This was only possible 
because the data model for the time 
series data is very simple and follows 
common conventions within the economic 
and statistical community. In the 
beginning of the CANSIM development the 
linking of data to software tools 
needed a lot of attention for reasons 
of limitations in speed and size of 
hardware, as well as lack of adequate 
packages. Today, computing resources 
are much cheaper and the concern has 
shifted to developing an environment in 
which packages can be used at ease by 
providing smooth and transparent 
interfaces between data storage and 
access systems and analytical tools. 

Software tools for the exploitation of 
statistical data bases can be 
categorized broadly as follows: 



a) Basic retrieval and selection 

This function is usually 
provided by the access soft
ware to a particular data base 
environment. 

b) Normalization and 
Transformation 

Having retrieved selecte~ data, 
they often need to be 
normalized and transformed to 
make them compatible. An 
example would be two time 
series which both contain price 
indexes, but based on different 
base years. Before they can be 
compared they need to be 
adjusted to a common base year. 

c) Statistical/Econometric 
Analysis 

Here we have a variety of 
packages. For example CANSIM 
data have been interfaced to 
TROLL for econometric analysis 
and SAS for statistical 
analysis. In addition APL has 
become the defacto standard as 
the fall-back software package 
for manipulation which other 
packages cannot provide. 

d) Reports 

A convenient and powerful tool 
to present data, particularly 
larger amounts of data is 
essential. We have used two 
particular approaches. 

On one hand we have interfaced 
the package TPL as a convenient 
way to provide cleanly labelled 
tables, on the other hand we 
have developed what we call a 
chinese menu which provides 20 
standard options under which 
time series data can be 
presented together with 
calculations such as percentage 
change over periods of time. 

e) Graphs 

There are many plotting and 
charting packages available. 
As well, several APL macros 
have been developed for that 
purpose. Our newest addition 
is a service called TELICHART 
which will be described later 
on. 
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In analytical software the saying holds 
true: "Different strokes for different 
folks". CANSIM data are not only used 
by experts in econometric analysis and 
statistical analysis, they are used 
increasingly by less trained users. 
Thus there must be a range of software 
tools which strike a balance between 
power and flexibility on one side and 
complexity of use on the other. We 
found it convenient, for purposes of 
discussions, to plot these analytical 
software tools on ~ chart with axis 
corresponding to the above two terms. 
Thus we can discuss in which area 
further work needs to be done. 

CURRENT DEVELOPMENTS 

CANSIM has become a vital part in the 
tool kits of statisticians and 
economists in the public and private 
sector. This is the result of 14 years 
of development which started out with a 
simple basic idea and a modest 
beginning. Enhancements and further 
developments were undertaken as the 
result of users requests and market 
pressure. We see no reason to change 
the basic thrust of our approach with 
CANSIM, however, adjustments in terms 
of data contents and analytical 
software may need to be made in order 
to lay the foundation for future 
growth. The following following are 
our current activities in that respect. 

TELH~HART 

During recent months we have introduced 
a new graphic on-line display service 
which we call TELICHART. TELICHART 
utilizes low cost videotex (TELIDON) 
display terminals and is linked to a 
subset of our CANSIM Data Base. The 
user enters simple commands, such as 
"CPI" and sees immediately on the 
screen the Consumer Price Index time 
series displayed as a curve over time. 
Other commands are available to adjust 
the automatically provided scaling, to 
window in on specific time periods, to 
extend the time period, or to add other 
time series as curves or bar charts on 
the same screen. Also, the screen can 
be divided into a bottom chart and top 
chart in which different time series 
can be displayed. 

The attractive feature of this new 
service is the depths of the CANSIM 
data base, as well as the low cost 
graphic access and display facilities 



provided through the TELIDON 
technology. The service was 
introduced in May 1983 and has met 
very favourable acceptance. While 
similar plotting and charting 
~acilities have existed before, 
for the first time ease of use and 
much lower costs are offered for 
such a service. We anticipate 
growing demand for this particular 
service which we offer currently 
in market test mode. 

Micro Computer Interface 

The raison d'etre for CANSIM is to 
provide key statistical 
information to users on their 
screens on the1r desks. Thus we 
are servicing the market needs of 
those users who are familiar with 
computer equipment and have the 
necessary training to operate 
them. Rapid changes are taking 
place in this market through the 
installation of an increasing 
number of micro computers. We· 
anticipate that users of these 
micro computers wish to receive 
CANSIM type information via public 
communication lines and we are 
currently developing a streamlined 
interface between CANSIM and micro 
computers. The market for such 
services seems to be developing 
very rapidly. We receive an 
increasing number of inquiries 
about such a service. Already, we 
have created an interface between 
our CANSIM data base and micro 
computers in allowing to download 
selected time series such that 
they can be manipulated using 
standard micro computer software 
such as spread sheet calculation, 
statistical packages, plotting 
software and other manipulation 
facilities. 

Another interesting development is 
that micro computers become 
videotex compatible. Through 
additional hardware or software a 
micro computer can be made to 
behave like a videotex terminal. 
The whole area of micro computers 
is a most exciting development and 

'we feel that it will increase 
significantly the market for 
electronic information in the near 
future. 
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Electronic Mail Services 

Public electronic mail services have 
been introduced in Canada. Again, our 
orientation here is to support screens 
on our users desks with relevant 
information. The information could be 
of textual nature, such as the 
announcements of the most recent 
results of our statistical collections, 
but could also be of more specific 
nature, such as selected statistical 
tables. Through public electronic mail 
services we will enhance our electronic 
information services from pure 
statistical numbers to general type 
information. 

Meta Data 

The concept for documenting time series 
data in CANSIM was established in the 
late 60's.CANSIM documents each time 
series as an individual data item. As 
a result, our documentation of 
currently 350,000 time series has 
become rather bulky. While we have 
introduced keyword searching facilities 
on the existing documentation, we are 
in the process of re-evaluating our 
whole approach towards documenting 
statistical data. This we do with the 
view of simplyfing the concept and 
making the documentation tight and 
precise. In particular, the matrix or 
table approach has to be considered 
where an individual time series would 
be referenced as a particular data cell 
within a larger cross-classified table. 

CONCLUSION 

Statistics Canada as a central 
statistical agency is in a key position 
to develop the infra-structure in which 
national statistical information and 
analytical tools are combined to 
address the needs of the right spectrum 
of users, from a presentation of 
statistics in chart form, to fact 
sheets containing data from ~ variety 
of sources in easy to view form, to 
powerful econometric modules. With the 
move of our society to supplement paper 
based communication with electronic 
communiction means we will continue 
paying attention to this part of our 
communication obligations. 



Abstract 

Diversification in Statistical Data Bases 

and its Consequences 

Helen C. Poot 

In this brief report the author discusses the consequences of the growth and diversification in statistical data bases as 
evidenced at Data Resources, Inc. (DRI). In general, one sees time-series being used in closer conjunction with cross
sectional and textual information. This has a great impact on the types of software used. The variety of data available 
requires more diverse methods of quality control. The amount and scope of information now online requires that 
descriptive and reference materials be made available online, particularly in the area of current awareness. 

I. Introduction 

The rapid growth and diversification 
which has taken place in statistical 
databases over the last decade has put 
greater demands upon data base producers 
and vendors. Originally the information 
contained within these data bases 
consisted primarily of macroeconomic 
time series. The software applied was 
almost exclusively analytical, and the end 
users, working with a limited number of 
variables with which they were usually 
already familiar, did not require the 
assistance of information or data 
specialists. Much has changed since that 
time, as is evidenced by the current 
situation at Data Resources, Inc. (DRI). 
Macroeconomic information is now only a 
part of the data base system; data 
coverage extends into a variety of areas. 
Time-series are now used in conjunction 
with cross-sectional data and textual 
information. This has required the 
development of new software, facilitating 
the retrieval of these new data and their 
integration with or conversion to time 
series. The expansion of data offerings in 
terms of the subject areas covered and 
the actual form which the data may take 
has led to more active interaction 
between the data or information specialist . 
and the user and has required the 
development of more descriptive 
information online. 

II. Growth in Data Base Coverage 

In 1969 DRI offered one data base 
containing one to two thousand time 
series on the U.S. economy. This was 
supplemented in 1971 by a regional data 
base, providing information at the Census 
Region, State and SMSA level. Between 
1973-1978 these data bases had 
themselves grown dramatically, and were 
supplemented by 36 additional data bases 
in the international, financial, microecono
mic/interindustry and energy areas. In 
1983, DRI's data bases exceed 80 and 
contain over 10 million time series. 
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Although this growth in the amount and range 
of statistical information is important, of perhaps 
more significance is the fact that included in the 
current roster of DRI's data bases are those which 
do not, strictly speaking, consist of time series. 
Cross-sectional data and textual information 
represent a growing part of the data base system. 
Cross-sectional data would range from the results 
of the 1980 Census to fundamental, descriptive 
information on securities. Textual data bases 
available online include DATAPRO, which 
provides information on computer software and 
hardware, and DMS/ONLlNE, which describes the 
defense and aerospace industries. The situation is 
compounded by the fact that statistical 
information may be embedded in a textual data 
base and that, on the other hand, some data, 
maintained in time-series mode, also lend 
themselves to cross-sectional analysis. 

m. Software Diversification: Data Requirements 

The growth in the number and types of 
information available has necessitated a 
diversification in the software used in accessing 
them. Statistical data bases were in the past 
associated almost exclusively with a powerful, 
analytical language permitting efficient access, 
display and analysis of data. This remains the 
case for the most part; clients use EPS Plus, 
DRI's proprietary language, to conduct 80 percent 
of their work. Because they were originally 
designed for time series analysis, however, the 
analytical languages have had to be expanded or 

- supplemented to include search capabilities and to 
handle better cross-sectional information. 

The addition of textual data bases to· the 
system required that DRI develop a new language, 
TEXT, which permits full text searching using 
Boolean operators. In this area statistical data 

- base producers have had much to learn from the 
original bibliographic and textual data base 
vendors, such as BRS and Lockhead. 

The development of a language with extensive 
search capabilities for text data bases, then, does 
not represent a dramatic innovation; such 
languages have existed before. The ability to 



search through a group of statistical data 
bases in order to determine what data are 
available on a certain topic is, however, a 
much needed development. The amount of 
statistical information currently available 
is too great for most users to fully fathom, 
much less to be able to access readily. 

In order to meet the consequences of 
the explosion in the number of statistical 
data bases, DRI developed another search 
language, ABSTRACT. In one instance, key 
word searching is performed on major 
groups of data bases, rather than on a 
single bank; search strategies need not be 
saved and input repeatedly as one goes 
from one bank to another. Searching is 
possible on retrieval code, prefixes, the 
online documentation associated with the 
time series (on the DRI system each time 
series may have up to 5 lines of 
documentation), or a particular data base. 
Currently it is possible to search through 
DRI's 22 international data bases at once; 
it will be expanded to include most other 
data bases in the near future. 

Ultimately, however, the data 
retrieved become the subject for analysis, 
as the 80 percent figure noted above 
indicates. There has to be, therefore, some 
integration between the searching language 
and the analytical one. 

The ABSTRACT program, then, was 
adapted to include the ability to route 
search results to namelists in EPS format 
which may then be used to retrieve and 
display data. Although this is a two-step 
process, involving ABSTRACT and EPS 
Plus, the user can readily search a vast 
number of data bases at one time, 
determine those series pertinent for his or 
her purposes and then display them and 
analyze them with very little effort. 

To better deal with cross-sectional 
data, DRI developed RETRIEVE. Unlike 
ABSTRACT, RETRIEVE is an EPS-based 
system; it is not necessary to exit one 
program and go to another. RETRIEVE 
allows the user to screen the data base so 
that only data meeting specified criteria 
will be brought into the workspace. Once 
there, the data can be analyzed or 
displayed using EPS Plus. 

One of the interesting consequences 
of dealing with cross-sectional data is that 
users now have the ability to screen 
through data bases consisting of time series 
more efficiently using the same software. 
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Another consequence is that statistical data 
may be extracted from quasi-textual data bases 
using the ABSTRACT and RETRIEVE programs 
and then manipulated using more analytical 
languages. 

IV. Software Diversification: Applications Requirements 

The previous section dealt with the various 
software required to access the information 
efficiently. Once this had been done, one finds 
that the applications made of the data have also 
grown dramatically. 

Initially, the major historical data bases were 
closely associated with econometric forecasting 
models, the former being viewed primarily as 
vehicles for supporting and generating the latter. 
DRI today has 36 models available for its users. 
On the other hand, there are over 80 historical 
data bases on the system, clearly the majority. 
The number of specialized software packages, 
however, has proliferated. For the high-frequency 
Financial and Credit Statistics data base (DRI
F ACS), the number of software routines is over 
20. The direction is away from providing general, 
probable scenarios of the future to providing very 
specific tools and applications which are flexible 
enough to allow the user to perform almost any 
function necessary and to pursue very individual 
interests or queries. , , 

V. Software Diversification: Quality Control 

One of the major concerns of statistical data 
bases has always been quality control. How 
accurate are the data being provided by sources? 
If the data are entered manually, how accurately 
is the task accomplished? 

Testing has always been an important part of 
maintaining a statistical data base. Data sets are 
checked automatically to verify that" within 
certain tolerances, the total really does equal the 
sum of the parts. Indices may be evaluated by 
displaying percent changes and comparing them to 
those published by the source. If a source agency 
typically publishes the change between the 
current observation and the previous one, this 
difference is calculated on the system and also 
compared with the published. 

In the latter two instances, sight proofing 
remains a major ingredient of quality control. As 
the amount of statistical information available in 
a data base system increases, the need for 
automatic checking routines will become more 
essential; it will become humanly impossible to 
keep up. 



Not all statistics lend themselves to 
these types of testing. Financial data, such 
as interest rates, futures prices or bond 
yields, are among the most significant 
members of the "difficult-to-test" group. 
The financial area, however, has exhibited 
the greatest growth among statistical data 
bases. New quality control techniques have 
had to be developed and still need 
refinement. Currently, testing may include 
verifying that highs are always higher than 
any other price quotation for that period, 
and that the lows are lower; other checks 
involve running standard deviations and 
setting certain range limits. This kind of 
testing will determine outlyers, but it will 
not catch all errors. An important question 
for statistical data base producers in the 
future will be the degree to which data 
accuracy and data base integrity can be 
guaranteed. 

VI. Diversification in On-line Aids: 
Current-Awareness 

The proliferation of statistical data 
bases has necessitated development of 
online tools which permit the optimal use 
of the information. This need is 
underscored by the fact that much of the 
data are subject to frequent and extensive 
revision due ta changes in seasonal factors, 
benchmarking, definitional or 
methodological changes. 

Stored with each time series on the 
DRI system are potentially five lines of 
documentation containing a full name 
(GROSS NATIONAL PRODUCT instead of 
GNP), units, seasonality, source and source 
document. Also stored as part of the 
series' intrinsics are the conversion method 
and, if applicable, if the data have any 
embedded gaps (due to disclosure, or 
weekends and holidays for daily data). Due 
to the fact that data are not constant and 
are being revised so frequently, another 
feature has been added to the series' 
intrinsics, the revision status. It is now 
possible to "flag" a series as being in the 
process of being revised; if accessed, a 
notation to that effect is sent to the user. 

The number of current-awareness 
files has increased greatly. In 1970 DRI 
had a text service providing online access 
to major statistical news releases from 
major government sources on such subjects 
as consumer prices, industrial production, 
and so on. Another text service provided 
information on any additions, deletions or 
revisions which may have occurred with the 
data base system. Neither text service had 
full-text searching, and searches could only 
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be limited by specified time parameters (before or 
after a certain date). 

In order to meet the needs of a massive data 
base system, these first, inflexible current
awareness services are in the process of being 
enhanced. Full text searching is now possible for 
the services monitoring changes within the data 
base system (additions, deletions, name changes). 
A user may screen on a series mnemonic, bank 
name, or subject area using the TEXT program 
discussed above. The new service will be 
similarily enhanced in the near future. 

Current awareness needs vary from data base 
to data base, depending on the kind of information 
stored within them. There has been in recent 
years the addition of several current awareness 
files to the system which are very specific and 
unique to certain data bases. For high frequency 
or high priority data bases these files would 
include those listing everything tha t had been 
updated during that day. For data bases where 
the statistics are extremely volatile, files listing 
data sets under revision would be maintained 
online. Calendars are accessible online so that 
users may know when to expect certain data to 
become available. 

VII. Diversification in On-line Aids: Reference 

Because of the growth in size and diversity of 
the statistical data bases available, the need for 
more descriptive information online about the 
data is becoming more important. One has seen 
for many years the online dictionaries for 
programming languages, where by entering 'HELP' 
or 'EXPLAIN' the use and proper syntax of certain 
commands would be described; this is now 
becoming more important for the data 
themselves. Within the U.S. macroeconomic data 
bases, for example, one may have three different 
definitions of inventories and five different trade 
balance variables. The user needs ready access to 
these definitions so as to make the best and most 
appropriate choice. Financial analysts need ready 
access to more descriptive information about 
financial instruments: dates of issue, amount 
issued, yield to maturity, etc. 

Not all these tools are currently available. In 
the short term, what is seen with statistical data 
bases is the increased participation of data 
specialists. Data consulting is now an integral 
part of DRl's service, where the user may address 
his or her questions to someone who works closely 
with that information. 



VIII. Conclusion 

The scope and size of statistical data 
bases has grown dramatically in recent 
years. This has increased the 
responsibilities of the data specialists both 
directly and indirectly. More online tools, 

"in terms of new software and current
awareness or reference materials, are 
needed. The data specialist must take a 
more active role in working with the end 
user. 
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Econometric Time Series on DIALOG 

Robert T. Lundy 
DIALOG Information Services, Inc. 

3ij60 Hillview Avenue 
Palo Alto, CA 9ij30ij 

Abstract 

DIALOG Information Services, Inc., the leading commercial provider of 
online non-numeric database services, has also been involved in the 
development of numeric databases, particularly time series. This report 
describes the, efforts being made to adapt an essentially text-oriented 
retrieval system to the needs of users of econometric time series. 

The DIALOG Information Service has for some 
time been interested in the problems inherent 
in the handling of econometric time series., 
This report describes the service currently 
being developed to deal with this interesting 
and valuable class of databases. 

The DIALOG service originated as a bibliograph
ically-oriented system. All search and display 
functions have been oriented towards picking up 
text strings based on identity and proximity to 
other defined strings and displaying them in a 
manner appropriate to text handling. Numeric 
items have been treated as just another text 
field. They can be searched for and displayed, 
but no computations or other analysis can be 
performed. 

This approach works well as long as the number 
of numeric items remains small and algebraic 
comparisons are not often required. DIALOG has 
for years had a number of databases in Which 
numeric items have been available for display 
only. These have usually been Simple scalar 
items, and no computational or other analytic 
capabilities have been available for them. 
However, with the advent of major time series 
such as the Bureau of Labor Statistics time 
series, DIALOG has had to revise its approach 
to numeric data in general and time series in 
particular. 

There are several issues to be considered when' 
planning a database for online search and anal
ysis: 

1. Finding the desired data. 

In the context of the BLS database, for 
example, this might be one of the hundreds 
of price index series available. 
It is in this area--that DIALOG's original 
query scheme has its greatest value. 
Instead of having to memorize an obscurely 
named keyword, derived from the painstaking 
study of a thick codebook, the DIALOG user 
can select the desired (group of) series by , 
means of a set of meaningful keywords or a 
context search through a descriptive para
graph. This feature is especially useful 
when searching for series that do not have 
well-known acronyms such as GNP. 
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2. Displaying the data once found. 

Formatting the data in a meaningful way is 
not a severe problem conceptually. Howev
er, two problems can arise w~en dealing 
with time series: _ 

a. How much of the series should be dis
played. 

Users mayor may not be interested in 
seeing the whole file. Generally, 
DIALOG's dIsplay scheme calls for the 
user to select one of a limIted number 
of formats in which the data could be 
displayed, and none of the formats per
mitted modIfication. This is being 
modified to permit the user to display 
only the time range of interest. 

b. How much ancillary information should 
be displayed ? 

There may be footnotes and qualifica
tions that are vital to the understand
ing and interpretation of the data. 
Methods need to be developed to mini
mize the chance that this information 
will escape the-user's notice without 
cluttering up the display to the degree 
that the user will abandon it and go 
off to a competitor. 

3. Generating Reports 

It often happens that the data in the form 
of a single seriee is far more meaningful 
if displayed in conjunction with one or 
more other series or other forms of data. 
For this purpose a report generating pro
gram is being developed. However, for a 
general service such as DIALOG, most report 
generators are 9'1ther too restrictive or 
too complicated to be useful. We are 
attempting to solve this problem with a 
system that _will operate in three different 
modes depending on the sophistication of 
the user. These modes range from a very 
terse and arcane command with very few 
prompts or other attempts at 'us
er-friendliness' to a verbose prompted 
menu-oriented interactive mode in which the 
user is led very carefully through the spe
cification of a report with detailed 
explanations at every step. 



4. Predefined Reports In many cases, users may 
want the same kind of report. For example, 
a listing for selected products of the pre
vious 3 year's exports arranged by country 
of destination. As such .commonly desired 
reports are identified, we will try to set 
them up as 'canned' report formats that can 
be generated simply by giving their names 
as part of a terse command. 

5. Interfacing with a computational analysis 
system. 

DIALOG is strictly a search-and-retrieval 
system with no intrinsic computational 
facilities of its own. Consequently, a 
mechanism must be found to enable users to 
integrate and use the various data items in 
meaningful ways. A group of price series, 
may be useful as a set of independent 
tables, but it is more useful still when 
combined into a single table or processed 
through an econometric model. 

At DIALOG we are addressing. this problem by 
setting up an interface between the DIALOG 
time series files and the SAS system. 

6. Interfacing with MIcrocomputers 

An increasing number of users are inter
ested in downloading data from services 
such as DIALOG and processing it on their 
own machines. To answer this need, we are 
developing an interface that prints out the 
selected series in the Visicalc DIF format. 
When captured on the user's micro, it is 
then ready to use with any program (and 
there are several "visiclones" around now) 
that can read it. 

7. Support of User Equipment 

The customer base at DIALOG is character
ized by extreme heterogeneity in the kinds 
of hardware that is available. DIALOG has 
traditionally dealt with this problem by 
aiming for the lowest common hardward 
denominator - no assumptions whatever are 
made about the hardware configuration, nor 
are any attempts made to support any 
devices with even slightly non-standard 
features. Only the page size (for CRTs) 
and line length may be reset to take advan
tages of differences between terminals. 

For the econometric time' series service, 
however, graphics and complex reports will 
inevitably be required, and this will 
require that the extended DIALOG system be 
able to support a variety of graphics ter
minals. 
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Evolution in Storage and Retrieval: The LABSTAT Data Base and Software System 

Gwendolyn L. Harllee 

Bureau of Labor Statistics 

June 1983 

ABSTRACT 

The use of an integrated data bank for time series data was initially introduced at the Bureau 
of Labor Statistics two decades ago. The data bank has been available on line since LABSTAT 
was introduced in 1977. This paper summarizes some of the major developments in the data 
bank and access software and discusses some enhancements currently being considered. 

The Bureau of Labor Statistics is 
responsible for the production of a 
number of economic statistics, including 
national and local area estimates of 
employment and unemployment, the 
Consumer Price Index, Producer Price 
Index, Employment Cost Index, measures 
of productivity, and others. 

The surveys that produce these statistics 
are processed by Bureau staff who do much 
of their work from specific data bases 
designed to handle the screening, 
estimation, and other processing in the 
particular survey. Each survey, or 
program, has a data base and processing 
system designed to perform efficiently in 
that survey. Once the estimates are 
calculated and become part of a time 
series, there is more similarity than 
difference in processing requirements for 
analysis and publication. 

Since 1963, the BLS has used an integrated 
data bank for time series analysis and 
tabulation. The initial system, the BLS 
Information System, was a tape system with 
tabulation capabilities and interfaces to 
statistical processors. Over the next 
decade and a half, the Bureau's systems 
moved to on-line data bases. 

In 1977, a small group of systems analysts 
at the Bureau developed a time series data 
base system which allows on-line storage, 
manipulation, and display of the Bureau's 
summary data. This system, called LABSTAT, 
rapidly became established as a useful tool 
for economic data analysis. 

From its beginning, the LABSTAT design 
provided a standard time series record 
format, a common central data entry 
facility and a variety of retrieval 
options. The data entry procedure was 
designed with a central main program 
handling common functions and a group of 
separate subroutines for processing the 
various input formats produced by the 
Bureau's survey systems. Each survey 
subroutine processed the appropriate 
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survey estimates and produced the 
standard LABSTAT update format. The 
retrieval options available included the 
Macro Data Language (MDL), which was 
developed at the Federal Reserve Board and 
adopted for use in LABSTAT. MDL provided 
processing capabilities ranging from simple 
percent changes to limited regression or 
seasonal adjustment. Most of these 
operations could be done interactively as 
well as in batch operations. In addition to 
MDL, other retrieval options were available 
through TRIM, a BLS-developed facility which 
provided generalized data manipulation 
capabilities for data bases such as LABSTAT 
which use the TOTAL Data Base Management 
System. Because of the flexibility of TRIM, 
data could be extracted from the data base 
for generalized statistical processors 
including SAS and SPSS. The user could also 
develop tailored formats for use with other 
programs. 

One of the earliest enhancements provided 
security. The security mechanism in LABSTAT 
restricts access to protected data. All 
non-zero data are encrypted as they enter the 
system. The data reside on disk in 
permanently encrypted form. LABSTAT's 
security mechanism decrypts data only after 
determining that the requesting user is 
authorized to access the requested data. 

Security protection of two types is provided, 
observation protection and date protection. 
Observation protection applies to statistics 
which are permanently withheld from public 
release for such reasons as confidentiality. 
These data are made available only to 
analysts authorized by the survey manager. 
Observation protection may be defined at 
different levels, with access to the most 
secure data limited to a few individuals, 
while other data may be made available to a 
still restricted, but larger group of 
analysts. Date protection provides security 
for data which are stored in the data base 
prior to public release. This facility 
allows survey managers to store estimates as 
soon as calculations are complete and use 



the LABSTAT facilities to produce 
pUblication tables and charts for 
release. The security mechanism 
protects. the data up to the specified 
release date and time, allowing access 
only to those individuals authorized by 
the program manager. Unlike observation 
protection, date protection is not 
permanently encoded with the data 
estimates. For each survey using date. 
protection, the system stores the date 
of the earliest observations to be 
protected, the release date and time, 
and the code identifiers of users who 
are authorized early access. 

For example, estimates for a survey may 
be updated into LABS TAT several hours 
before public release. The date 
protection mechanism will prevent 
release to the general user community, 
while allowing the authorized analysts 
to use LABSTAT facilities to produce 
publication tables and charts. At the 
specified release time, the data are 
released to all users without 
intervention of any kind. 

The observation and date protection 
facilities have enhanced the utility of 
LABSTAT by making it feasible to store 
data which are available only to an 
appropriately authorized user community. 
Other users, attempting to access 
protected data, may have their listings 
footnoted to show the reason for 
withholding the data. 

Perhaps the most significant enhancement 
of the system's analytical power is the 
development of an integral data access 
mechanism in LABSTAT. The TRIM step, 
which extracted data for many 
applications, has been replaced by a 
data retrieval module which can access a 
user's private working file as well as 
the LABSTAT data base. With the 
extension of LABSTAT's data retrieval 
module to interface directly with SAS 
and other processors it became 
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unnecessary to execute a separate data 
extraction step for most LABS TAT applications. 
The expansion of the data access module also 
makes it possible to calculate new series, 
store them in an MDL working file, and use 
the calculated series together with LABSTAT 
series in charting or other applications. 
This working file facility also allows users 
to enter data from outside sources and use 
LABSTAT's analytical and display tools on the 
full set of data from the data base and the 
user's own working file. The pre-release 
protection and working file extensions work 
together to facilitate the production of 
publication tables and charts. . 

The introduction of the LABSTATPress Release 
Service increased system utilization 
significantly by making available on-line the 
text and tables of Bureau Press Releases. 
The Press Releases are stored in a separate 
TOTAL "data base with its own access software 
and security system. The BLS Regional 
Offices, in particular, find this service to 
be of value in getting information on a 
timely basis. Partly because of the LABSTAT 
Press Release Service, the Bureau is now able 
to offer on-line public access to its Press 
Releases. This service was introduced last 
year, and while it is not a part of the 
LABSTAT system, the existence of LABSTAT made 
it relatively simple to establish 
machine-readable versions of Press Releases. 

Data coverage has more than doubled from 
approximately 60,000 series in the beginning 
to approximately 140,000 series containing 
1.5 million yearly records. Data from more 
than twenty different BLS surveys and some 
statistics from the Commerce Department's 
Business Conditions Digest are now available 
in LABSTAT. This expanded data coverage 
facilitates analysis of data from different 
surveys and also increases the number of BLS 
surveys which are available to the public on 
the standard LABSTAT export tapes. All BLS 
survey data in LABSTAT may be extracted for 
public dissemination at relatively low cost. 
Many of these data tapes are prepared on a 
regular basis for researchers in other 



government agencies, universities, 
information services, and a variety of 
other organizations. 

LABSTAT system usage has sometimes 
doubled in a single year. Overall usage 
has increased ten-fold since the first 
year of operation. A large portion of 
this access is for information retrieval 
or special research projects. There is 
an increasing usage of LABSTAT to 
produce publication products, including 
tables and charts. The charting 
facility in LABSTAT is provided by a 
Bureau-developed system known as SCS, or 
the Statistical Charting System. This 
system produces publication quality line 
charts of time series data with simple 
user input instructions. Using the 
Bureau's Table Producing Language, TPL, 
users have available a direct interface 
to the LABSTAT data base for TPL's wide 
range of calculation and cross-tabulation 
capabilities as well as photo-composition. 

Many further enhancements are desirable. 
Users of LABSTAT must still request 
series using 16 character identifiers 
which sometimes seem clumsy or arbi
trary. This means, in most cases, that 
thick series directories must be avail
able for reference. This inconvenience 
to the users limits the utility of the 
system. Further, the cost of producing 
and printing the series directories is 
increasing significantly. For these 
reasons, we are beginning to develop a 
data access option which will allow 
users to query the system for data using 
English-like descriptors or by 
responding to system prompts. When this 
facility is in operation, users will be 
able to enter requests for classes of 
data such as "employment in New York's 
apparel industry." the processing of 
queries will be possible because the 
system will include directory or 
dictionary information and users can get 
an up-to-date description of data base 
content on-line. 
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Another requested enhancement is incorporation 
of more detailed footnote information. 
Statistical publications typically include a 
variety of footnotes giving significant 
explanatory information. The most frequently 
occurring footnotes, such as "Rounded to 
zero", "Continuity break", or "Preliminary 
estimate" are coded in the LABSTAT data base 
and may be displayed automatically with the 
data. Other notes are combined in a single 
category and the LABSTAT footnote will simply 
read "Footnoted in Publication." The user 
must go to the printed material to obtain the 
text of the applicable footnote. The 
inclusion of the full footnote text is an 
enhancement which would be of significant 
value to analysts using the data base. 

The use of an integrated data bank is firmly 
implanted in BLS operations. The data bank 
has, in many cases, reduced costs and 
increased timeliness of delivery. With 
improved facilities for accessing, 
manipulating, and displaying data, the system 
becomes useful to a broader audience and 
meets an expanding set of data requirements. 
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INTERACTIVE INFORMATION MANAGEMENT WITH EPS 

Stephen R. Chi Ids 
Data Resources, Inc. 

This paper provides an illustration of interactive statistical 
data base management. Its focus is on the use of the EPS 
(Econometric ProgranlTling System) software language as a manager of 
infonnation. EPS is usually employed to analyze time series 
information using econometric techniques. The paper will illustrate 
some EPS capabilities using several data bases developed by Gnostic 
Concepts, Inc., a subsidiary of DRl (Data Resources, Inc.) 
speCializing in market analysis of the Electronics Industry. 

INTRODUCTION TO EPS EPS is a proprietary software developed and 
maintained by DRI for a real time analysiS of economic and financial 
infonnation. It is an interpretive, cOnlTland driven language which 
mimics English sentence structure. Its syntax rule is simple and 
consistent: 

eg., 

COnITIand 
Verb 

< Option block 
Adverb 

PRINT (DOWN)%CHANGE{GNP) 

» Command Body 
Object Expression 

There are 130 cOnlTlands and 250 options which combine to give the 
user a vast menu of possible requests. The cOnlTland body expressions 
may utilize infonnation objects (items) as well as some 60 operators 
or 275 functions to tailor user-specific infonnation transfer, 
manipulation or presentation. 

EPS has been focused for use by quantitative business analysts 
in econometric model building. Clients access ORI's projections of 
aggregate time series as exogenous inputs to their own satellite 
business models. There is an historical bias in EPS documentation 
toward time series structures which can be easily accessed, 
powerfully manipulated, and beautifully presented with either high 
resolution graphics or tabular report generation • 

Time series might be thought of as particular slices from 
multidimensioned arrays. EPS is less well-known for its complete 
array manipulation capabilities. Arrays in EPS are multidimensional 
infonnation objects having homogeneously classed elements. When an 
array is defined, the structure requires each dimension to be 
indexed, or mapped, by labels or numbers so that selection of 
partitioned subarrays is simple and display is meaningful. The cell 
values of arrays most often are scalar (numeric) valued but may 
alternatively be string (alphanumeric) valued, or boolean 
(true/false) valued, etc. For a list of EPS classes see Appendix I. 
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COMPOSITELY-CLASSED EPS ARRAYS Recently, DRI released some 
significantly improved capabilities for data base management with 
EPS. Formerly, users were required to house alphanumeric 
information in one array and numeric information in another •. This 
necessitated careful software development to ensure that the 
different arrays were consistently maintained and manipulated. It 
is now possible to construct an element-class which is composed of 
scalars, strings, dates, booleans, time stamps, etc. This enables 
the analyst to produce one structure for all cross-sectional 
attributes related to each sample observation. 

REGIONAL MARKET PATTERNS (RMP) DATA BASE We will illustrate 
composite classsed arrays with RMP, an annual survey of electronic 
equipment production facilities. This snapshot records the 
geographic distribution of production by equipment type for 
currently 2474 sites. These data have been housed in a 
one-dimensional EPS array with 2474 records. The composite class 
contains the following eight fields: 

COMPANY : STRING 
DIVISION : STRING 
CITY : STRING 
STATE : STRING 
ZIP : STRING 
PHONE : STRING 
GCICODE : SCALAR 
PRODUCTIONal : SCALAR 

PRODUCTIONal represents the 19a1 value of equipment production 
in millions of dollars. It is paired with GCICOCE, a product 
classification scheme developed by Gnostic Concepts., Inc., which is 
far more detailed than government product classifications. There 
are over 250 unique products classified within RMP's 2474 sites. 
The GCICODE is a six-digit hierarchical coding system summarized to 
the second level below: 

100 FAMILYTREE<DEPTH=2>(500000) 

500000 
510000 
520000 
530000 
540000 
550000 
560000 
570000 

ELECTRONIC EQUIPMENT 
BUS/RETAIL/EDUC 
COMMUNICATION 
CONSUMER ELEX 
COMPUTER EQUIPMENT 
GOVERNMENT/MIL. 
INDUSTRIAL ELEC 
INSTRUMENT 
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FAMILYTREE is an EPS application program or routine which 
discloses the codes associated with equipment descriptors. Another 
routine, HIERARCHY, is used to detail an exact code's product 
description. 

1DO HIERARCHY(545221) 

(545221) 

5 ELECTRONIC EQUIPMENT 
4 COMPUTER EQUIPMENT 

5 TERMINAL/WORKSTATION 
2 CRT TERMINALS 

2 GRAPHIC TERMINALS 
1 STORAGE lUBE DISPLAY 

REPORT WRITING Arrays provide natural structures for report . 
writing within EPS. The user simply prints the array, or a specific 
partition of the array. The syntax for selecting a partition of the 
RMP array by records and by fields is straightforward: 

PRINT RMP [recordnumbe~ «fieldname» 

1P RMP[1927J 

COMPANY DIVISION CITY 

RMP[1921J ROBERTSHAW CONTROLS NEW STANTON YOUNGWOOD 

PHONE 

RMP[1927J q12-925-721l 

GCICODE PRODUCTION8l 

561200 

1PRINT HMP[1781]«GCICODE» 

RMP[1781J«GCICODE» = 511500 

38.400 

STATE 

PA 

The first example illustrates the reporting of one record for 
all attributes, while the second selects one record and one field. 
Finally, a selection of fieldnames can be requested as illustrated 
below: 

ZIP 

15697 

1PRINT<DOWN>RMP[12]«NAMELIST(COMPANY,GCICODE,PRODUCTION81»> 

RMP[12]«NAMELIST(COMPANY,GCICODE,PRODUCTION81»> 

COMPANY 
GCICODE 
PRODUCTION81 
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RECORD SELECTION AND SORTING Partitions of the data base follow 
selection rules established by the user. EPS offers some functions 
which are easy to use. The COMPRESSMAP function produces a list of 
records satisfying the user's selection criterion. 

?CALIF=COMPRESSMAP(RMP[*]«STATE» EeL "CA") 

The argument passed to COMPRESSMAP asks that all of RMP's sites 
(*J be compared in the state field, to the stringl"CA"). For each 
site's result that is true, its record number is placed into a 
vector of record numbers called CALIF. We can discover how many 
California sites there are in RMP by typing: 

?WHATS CALIf 

CALIF ARRAY(FROM 1 TO 713) 
DECS: 0 . 
713 SCALAR ELEMENTS 

We can further partition RMP into California producers of 
computer equipment, where GCICOOE begins with 54 in its first two 
digits. The DIV operator allows us to truncate the six digit 
GCICODE to its first two digits. We compare this two digit product 
scheme to the value 54 to produce a new vector of record numbers . 
restricting California producers to those who produce electronic 
data processing (EDP) equipment. 

?EDPeCA=COMPRESSMAP(RMP(CALIF]«GCICODE» DIV lUOOO EOL 54) 

?\,JHATS EDPeCA 

EDPeCA ARRAY(FROM 1 TO 264) 
DECS: 0 
264 SCALAR ELEMENTS 

Let us further restrict our subset of 264 California EDP sites 
to those whose 1981 value of production exceeds $150 million. We 
can also sort this final subset by the field "CITY" using the 
KEYSORT function. 

?LARGE=COMPRESSMAP(RMP[EDP@CA]«PRODUCTION81» GTR 150) 

?WHATS LARGE 

LARGE ARRAY(FROM 1 TO 9) 
DECS: 0 
9 SCALAR ELEMENTS 

?SORTED=KEYSORT(RMP[LARGE]«CITY») 
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Finally, we wish to display some fields for our nine large 
California EDP producers, sorted alphabetically by city. The 
leftmost column of the display indicates the record number within 
the RMP data base. Note that a variety of equipment types is 
indicated in the column labeled GCICODE. These are particular 
computer equipment classifications. 

?P RMP[SORTED]«NL(COMPANY,CITY,GCICODE»> 

RMP[SORTED1«NL(COMPANY,CITY,GCICODE»> 

1148 
1150 
1580 
2445 
2084 
1243 
1244 
1521 
1614 

Cm~PANY 

HEWLETT-PACKARD 
HEWLETT-PACKARD 
;"iOTOROLA 
XEROX 
SPERRY 
IBM 
I Sf-! 
MEMOREX 
NATIONAL SEMICONDUCTOR 

CITY 

CUPERTINO 
CUPERTINO 
CUPERTINO 
HAn-lARD 
IRVINE 
SAN JOSE 
SAN JOSE 
SANTA CLARA 
SANTA CLARA 

GCICODE 

542300 
541000 
541200 
545210 
541200 
542400 
544130 
542300 
540000 

LINKING TIME SERIES FORECASTS TO RMP Gnostic Concepts also 
provides forecasts which can link to and augment the RMP data base. 
Econometric models are run each quarter to update projections of 
electronic equipment production. These forecasts are also indexed 
by the product category codes found in RMP's GCI~ODE. As a base 
scenario, each site's 1981 value of production is grown by the 
national growth factor for its specific equipment type. ' 

Following the procedures outlined for using the routine 
PROD@SITE, we rebase the equipment forecasts in the array E832@VAL. 
These results are stored in the growth factor array EQUIP%GR, whose 
rows identify equipment types and whose columns indicate forecast 
years. 

?DESCRIBE PROD@SITE 

--- PROD@SITE --
CLASS: ROUTINE 
LONG: PROD@SITE ••••••••••••••••• This routine forecasts the 

production by RMP sites. It requires a vector of growth factors 
(use routine PCTBASE on retrieved ECON equipment fest) by equipment 
type. 'PRODUCTION84= DO PROD@SITE(EQUIP833GRFACTORS)' 

4 LINES, 1 THRU 4 
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?DESCRIBE PCTBASE,E832@VAL 

--- PCTBASE --
CLASS: ROUTINE 
LONG: PCT8ASE •.••••••.•••••••••• This routine indexes an N

dimensional array to one of its column vectors. ARGUMENTS: an array 
and a string containing a 'select'or' from the column map. e.g. 
:1SALES=DO PCTBASE(COMPDATA,"SALES")*100 

21 LINES, 1 THRU 21 

--- E832eVAL ---
CLASS: ARRAY(LIST£D(SCALARS,V(200000,210000,211000,211100,211110,211120, 

211130,211140,211141,211142,211143,211150,211160,211200,211210, 
211220,211250,211300,2;1310,211320,212000,212100,212110,212120, 
212130,212140,212150,212160,212180,212200,212210, ••• , ••• ) ), ••• ) 

DECS: 0 
6140 SCALAR ELEMENTS 

?EQUIPSGR=DO PCTBASE(E832@VAL,"A(81)") 

. We again use t~e routine HIERARCHY to describe the military 
, s1mulators and tra1rlerS product codes. We then display the rebased 

growth factor array selected for those categories over the specified 
subinterval. 

1DO HIERARCHY(555000) 

(555000) 

5 ELECTRONIC EQUIPMENT 
5 GOVERNMENT/MIL. 

5 SI~UL & TRAIN 

?PRINT EQUIP~GR[V(500000r550000,555000),81 TO 85] 

EQUIP~GR[V(500000r550000r5550qO),81 TO 85] 

500000 
550000 
555000 

1981 1982 1983 1984 1985 

1.000 
1.000 
1.000 

1.111 
1.199 
1.328 

1.261 
1.361 
1.565 
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1.459 
1.511 
2.001 

1.684 
1.812 
2.655 

6 



Finally, we invoke the PROD@SITE routine to construct the 
forecasted production value, by site, for 1985. 

, ?PROC85€SITE=DO PROD@SITE(EQUIP~GR[*,85]) 

?~HATS PROD85eSlTE 

PROL85€SITE ARRAY(FROM 1 TO 2474) 
DECS: UNSPECIFIED 
2474 SCALAR ELEMENTS 

LINKING TECHNOLOGICAL CONSUMPTION FACTORS TO RMP Gnostic 
Concepts also provides forecasts of technological consumption 
factors for over 500 electronic components which are used in the 
p~oduction of particular equipment. These are value-based 
input/output (I/O) ratios relating the derived demand for a 
particular component per dollar of production for a particular 
equipment. 

Again, following the instructions described for the routine 
VAL@SITE, we access the I/O array 10736100. This array contains the 
consumption factors by 31 types of equipment for a particular type 
of fiber optic connector over a ten year forecast horizon. 

?DESCRIBE VAL@SITE 

--- VAL€SITE --
CLASS: ROUTINE 
LONG: VAL@SITE •••••••••••••••••• This routine produces the nominal 

dollar demand for a particular component at each'site. It requires 
a vector of production by site and an I/O vector by equipment type. 
'VALS4=DO VAL€SITE(PRODUCTIONS4,IOa42216[*,a4])' 

4 LINES, 1 TBRU q 

?DO HIERARCHY(73b100) 

(736100) 

7 PASS/ELECTROMECH COMP 
3 CONNECTOR & SOCKET 

6 FIBER OPTIC 
1 CABLE TERMINATION 
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?WHATS 10736100 

10736100 ARRAY(LISTED(SCALARS,V(500000,510000,5'1000,520000, 
521000,523000,526000,529000,530000,535000,540000, 
541000,543000,544000,545000,550000,551000,552000, 
553000,554000,555000,556000,557000,558000,559000, 
560000,561000,562000,564000,570000,571000»,CATED ••• ) 

DECS: 5 
310 SCALAR ELEMENTS 

Imbedded in these ratios are patterns of technological change 
over time for particular markets. We note below both the small 
level of demand as well as the high rate of growth. Finally, we 
invoke the routine VAl@SITE to produce F085@SITE, a forecast of 
demand for fiber optic cable termination connectors, by site, in 
1985. 

?P<ROWMARGIN "'GR">10736100[V(500000,550000,555000),81 TO 85] 

I0736100[V(500000,550000,555000),81 TO 85] 

1981 1982 1983 1984 1985 

500000 0.00003 0.00004 0.00006 0.00008 0.00013 
550000 0.00006 0.00008 0.00010 0.00013 0.00016 
555000 0.00003 0.00004 0.00006 0.00008 0.00011 

?F085€SITE=DO VAL€SITE{PROD85@SITE,I0736100[*,85]) 

?WHATS F085@SITE 

FoB5@SITE ARRAY(FROM 1 TO 2474) 
DECS: UNSPECIFIED 
2474 SCALAR ELEMENTS 

~GR 

45.47 
25.51 
41. 31 

REGIONAL AGGREGATION OF RMP SITES Each market analyst working 
with the RMP data base and forecasting extensions of it will be 
interested in particularizing its regionality to his/her own 
marketing regions. These regions may be developed by utilizing 
groups of zip codes, states, or phone area.codes. In our final 
exhibit, we illustrate the u~e of a ~outine called AGGRMP. This 
routine requires, as its se~nd argument, some allocation rule for 
grouping 2474 sites into predefined r'egions. As an illustration, we 
build a rule, ZIP1, containing the first digit of a site's zip 
code. We then execute AGGRMP fo~ both equipment and component 
demand forecasts for 1985. !' 

" , 
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?DESCRIBE AGGRMP 

--- AGGRMP --
CLASS: ROUTINE 
LONG: AGGRMP •.••.•.•..•..•.••... This routine summarizes RMPsites 

into aggregate groupings. It requires two conformable arguments: 
the data to be aggregated and the aggregation rule. 'V,YREG=DO 
AGGRMP(PRODUCTION85,STATERULE)' 

9 LINES, 1 THRU 9 

?ZIP1=RMP[ll«ZIP» DIV 10000 

?PROD85€ZIP1=DO AGGRMP(PRODB5@SITE,ZIP1) 

?F085@ZIP1=DO AGGRMP(F085@SITE,ZIP1) 

?P<DOWN zCOMMAS>PROD85gZIPl zF085@ZIP1 

PROD85@ZIP1 F085@ZIP1 

0 29,400.341 5.751 
1 20,277.052 2.576 
2 11,608.108 3.050 
3 11,557.422 1 .719 
4 14,104.646 4.199 
5 11,512.881 0.827 
6 15,972.038 7.403 
7 18,047.690 4.476 
8 14,445.429 1.683 
9 '52,809.158 'i·5.99J·· .' ::.}. .,. II ::' . '. 

" 1', ,.". 
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• AKSYNOPSIS (AMSYNOPSlS) 
ARHAY (ARRAYS) 

• ATOMIC (ATOMICS) 
BOOLEAN (BCOL~ANS) 

• BUNDL~ (BUNDLES) 
CLASS (CLASSES) 

• CO~VERSION (CO~VERSIONS) 
• COVERING (COVERINGS) 

DATE (DATES) 
• DISTRIBUTION (DI~TRIBUTIONS) 
• DRAWING (DRA~INGS) 
• ENDMARK£R (ENDMARKERS) 
• EQSYNOPSIS (EQSYNOPSES) 

EQUATION (EQUATIO~S) 
• EXECKEY~CRU (EXECKEY~ORCS) 
• EXTRACTION (EXTRACTiONS) 
• FIELDFORHAT (FIELDFORMATS) 
• FIELDTtPE (FIELDTYPES) 
* FILE TITLE (FILETITlES) 

FRECUENCY (fREQUE~CIES) 
• GROUP (GROUPS) 
• INTERPOlATIO~ (INTERPOLATIONS) 

INTERVAL (INTERVALS) 
KNO~NWORD(KNO~NWORtS) 
LSSYNOPSIS (LSSYNOPSES) 

• MAP (MAPS) 
• ~ATHTERM (MATHTERMS) 
• MATRIX (MATRICES) 

MEMO (~EMOS) 
NAMELIST (NAMELISTS) 

• NULLMARKER (NULLMARKERS) 
• NUMERIC (NUMERICS) 
• fADTRIMTYPE (PADTRI~TYPES) 

PICTURE (PICTURES) 
• PLOTSPEC (PLOTSPECS) 
• POLYNOMIALDISTRIBUTEDLAG (POLYNOMIALDISTRIBUTEDLAGS) 

PORT (PORTS) 
• PORTATTRIBUTE (PORTATTRIBUTES) 
• PORT~I~D (PORTKIUDS) 
• PORTUSE (PORTUSES) 
• RANGE (RANGES) 
• kECORD (RECORDS) 
• REFERENCE (REFERENCES) 

ROUTINE (ROUTINES) 
§ ROWLIST (ROWLISTS) 
• SASYNOPSlS (SASYNOPSES) 

SCALAR (SCALARS) 
SERIES (SERIES) 

• SLASHING (SLASHINGS) 
STRING (STRINGS) 
STUBLIST (STUBLISTS) 
SYNOPSIS (SYNOPSES) 

• SYSTEMFILEKIND (SYSTEMFILEKINDS) 
• TABLEAU (TABL~AUX) 

TEMPLATE (TEMPLATES) 
• TICKER (TICKERS) 
• TIMESTAMP (TIMESTAMPS) 

TOOL (roo~) 
• UNSPECIFIED (UNSPECIFIEDS) 
• VALUE LIST (VALUELISTS) 

VECTOR (VECTORS) 
VERSION (VERSIONS) 166 
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Meta data an experience of its uses and management 

Roger E. CUBITI' 

Data Processing Management Unit, Statistical Office of the European Communities, Luxemboure. Grand Duche 

Abstract 

This short paper presents some of the problems surrounding the management and use of the meta data 

which is associated with most types of statistical data. Current approaches to the problems which 

are being taken within the Statistical Office of the ~C are described. 

1. CONTEXT 

The Statistical Office of the EC (SOEC) is p 

service Directorate General with respon

sibilities for the collection, supply and 

analysis of data for the Institutions of the 

EEC and in particular the Commission of the 

European Communities. It is a very large user 

ot computer processing power (20 to 25 Terra

instructions/year) and is responsible for one 

of the largest Socio-Economic Time Series 

Databases in Europe called CRONOS. This data

base, which was constructed in-house,contains 

of the order of 1.3 million time series 

covering a large range of statistical domains 

for all EEC countries and in some cases other 

developed and developing countries. This data

base represents only a small part of the total 

data processed by the SOEC but is at the 

present time the most visible part in that it 

is distributed both via data service companies 

to the public and via X25 networks to the 

contributory member country statistical offices 

and governments. 

2. TIlE PROBLEM 

Since the implementation of the network based 

SOEC distribution policy some two years ago it 

has become increasingly obvious that the major 

restriction on the use of our data has been 

the problem of description. In other words 

"How do I (the user) find out what data is 

available in the Database, select the data I 

require and ensure that when I find it, it 
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represents what I want?". The SOEC has, like all 

statistical environment~ a classification scheme 

which is partly defined internally and partly 

dictated by external constrainta(e.g. International 

Common Agreements). This classification is 

inevitably hierarchical which in practice means 

that a search procedure using the classification 

structure is only of any real use to people with 

an a priori knowledge of the classification 

scheme ~ procedure. It is in this light that 

the SOEC began some investigation work into the 

possibilities of using meta-data to provide both 

alternative non-hierarchical access paths to data 

and descriptions of what had been found. 

3. INITIAL ORIENTATIONS 

Two parallel investigations were initiated at 

about the same time which eventually cross

fertilized to provide a hybrid approach to our 

immediate problems. One investigation centred on 

a theoretical data modelling/data dictionary 

approach, the other was based on a pragmatic 

examination of the particular instance represented 

by the CRONOS system. The former led to proposals 

for a classification orientated hierarchical data 

model with an assooiated data desoription 

language ;the latter resulted in proposals to use 

keyword based documentation with associated 

interrogation facilities. As it was obvious that 

a keyword facility would become very cumbersome 

if applied to all the time series in CRONOS, the 

data model provided a means to describe a level 

in conceptual terms which was logically higher 

than that of a single series, but which did not 



exist in the CRONOS system as implemented. 

CRONO$ also provided a specific case of data 

identification which enabled the attribute 

description and classification facilities 

in the theoretical model to be refined and 

developed. 

4. THE CURRENT STATE 

Once the keyword approach had been accepted, 

a pilot application was developed to demon

strate how such a facility would ~/ork for 

both interrogation and documentation purposes. 

To do this the structure and content of a 

specific sector of the CRONOS data base was 

analysed by a profeSSional documentalist, 

particularly to clarify the problems resulting 

from the use of this approach to statistical 

data (e.g. the use of classification codes 

and abbreviations as keywords). There were 

also particular local problems which 

resulted from the multi-lingual environment 

in which thes~rstem had to operate. This 

had particular effects on the provision of 

s;ynonyms and descr-iptors. The problem of 

description was tackled by comments 

facilities which could be associated with 

each of the elements in the logical model 

and which were themselves classified by 

type. The result of this work was a proto

t;ype facility which enabled a user with no 

prior knowledge of the data to discover the 

contents of the base either via a specifi-
, 

cation of ke;ywords or hierarchical inter-

rogation or both. Both access paths lead 

to the definition of a logical group of 

data items from which specific identifiers 

can be constructed. Meta-data relating to 

individual time-series can be presented in 

tabular form at the logical group level and 

descriptions are accumulated through the 

hierarchy as required. Classification plans 

can be produced automatically both in printed 

form and on magnetic media for external 
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clients. A spin-off benefit has been the 

ability to carry out audit activities on the 

content of the data base. 

5. PRODUCTION IMPLEMENTATION 

The pilot facility appears to provide a 

potentially useful service for a number of types 

of user. The major outstanding problems are the 

following. 

Meta-Data I~nagement 

In practice the management of the meta-data 

as it has been extended presents a task which is 

of non-trivial size and complexity. Experience 

to date has led us into the consideration of a 

DBMS solely for meta-data. This management task 

can be alleviated to some conSiderable extent if 

the modifications to data content in the 

CRONOS database are submitted via or in 

parallel to modifications to the meta data. This 

contradicts an original objective from the data 

model investigations whioh was to provide a 

more loosely coupled facility which could be 

applied to more than one tJ~e of data base. In 

fact the documentation investment made from the 

keywork point of view would appear to demand 

application to more than just one single data 

base. 

Data acoess 

At present the pilot facility indicates the 

location of data described by the user. Access 

to that data is then obtained via the particular 

application facilities. Closer direct integra~ 

tion again presents problems of coupling parti

cularly in the multi-machine environment which 

prevails in the Commission. Advances in 

distributed data-base facilities may provid.e 

answers here. 
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Confidentiality/Security 

Application of a meta-data management system 

to a number of different data bases is 

leading us towards a centralised control. 

of access rights for all SOEC system users. 

This again presents particular problems in 

a multi-machine environment. Not all of 

our data is fully public and at the present 

time we avoid disclosure by only documenting 

via the meta-data those sectors whioh are 

truly publio. This has disadvantages for 

both internal users and also for the 

completeness of the audit procedures 

mentioned earlier. At present no 

convenient solution presents itself to 

ensure that accidental disclosure of data 

existence does not oocur via the meta-data 

for numerical data which is oonfidential. 
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PROBLEMS, PLANS AND ACTIVITIES CONCERNING THE ECONOMIC DATABASES AT STATISTICS SWEDEN 

Lars Nordback 

Head of generalized software development and marketing 
at Statistics Sweden 

Abstract 

In this paper some of the issues concerning the move towards the termina1ized disse
mination of statistics from a central statistical office will be highlighted. The im
plications of the new techniques on the in-house activities. The way to assimilate 
this new technique into the different statistics consumers' hardware and software en
vironment. The problems to suite different levels of knowledge of data processing in 
the man - machine interface. 

INTRODUCTION 

Statistics Sweden has statistical databases ma
naged by the in-house developed AXIS-system. Ori
ginally AXIS was developed to serve regional 
planning authorities with data from a regional 
statistical database. The experiences inspired us 
to use this tool for the dissemination of statis
tics to other users as well. 

After an introductory period when we had several 
different organizations linked to our computer 
free of charge, we went smoothly into the busi
ness of commercial database services in the 
spring of 1982. Now we have some 70 paying cus
tomers, ranging from manufacturing companies, 
banks and labour market organizations to local, 
regional and central government authorities. 

Below I'll mention some issues of interest in the 
management of commercial statistical databases 
from the point of view of a central statistical 
office. 

MOVING TOWARDS COMPUTERIZED DISSEMINATION OF 
STATISTICAL DATA - AN INTERNAL MARKETING 
PROBLEM 

Statistical database services consist of at least 
two principal parts, viz. the database management 
system and the database(s). Disregarding the DBMS 
for the moment, in a statistical office the data 
needed to solve the customers' problems are not 
only - or even mainly - bought from outside the 
office. They are to a great extent produced with
in the office. Of course, this is an advantage, 
but not an advantage gained without a lot of 
work. 

Some factors that inf1 uence the possibi1 ity to 
get statistical data into a database are: 

a) The organization of the office, in particular 
the autonomy of the different statistical "pro_ 
ducts". Very operative decisions have to be made 
to ensure a rapid development of the databases. 

b) How well the DBMS fits into the traditional 
production process. Does it merely mean extra ef
forts to satisfy new requirements, or does the 
software yield some advantages for the tradition
al production of statistical publications as 
well? Within Statistics Sweden we are studying 
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the possibil ity to develop general software to 
produce pub1 ications from data stored in the sta
tistical databases, i.e. not only to supply the 
figures but also the metadata. 

c) Information to and training of the people re
sponsible for the different products to make them 
aware of the advantages of the new way of disse
minating statistics. 

d) Training of the database management staff in 
how to structure and describe the data. 

e) Existence of standard definitions of varia
bles. Harmonization of definitions which for a 
long time has been a problem to discuss is in 
this environment a problem to solve. 

All the above issues need to be penetrated. The 
amount of work required depend on the internal 
marketing of the statistical databases. 

STATISTICAL DATABASES VS THE USER'S HARDWARE 
ENVIRONMENT 

This issue should not be neglected. In the work 
of establishing the statistical database servi
ces, we have confronted many different users, all 
with their own specific EDP-background. There are 
differences both in knowledge and in the equip
ment they use or intend to use to 1 ink up wi th 
our databases. Some examp1 es of user hardware are 
3270 compatible terminals closely connected to a 
service bureau, word-processing machines, micro 
computers and, which suits our computing centre 
best, normal TTY-compatible terminals. Our ser
vice now is 8 TTY-lines 300 baud, 6 TTY lines 
1200 baud, one 2741 line 134 baud, and one manual 
3270 line 2400 baud. When customers use equipment 
with facilities for storing data retrieved from 
our computer, the uncertainty in the normal TTY 
protocol with its lack of a data transmission 
check becomes clearly inconvenient. We have to 
fi nd a safer way of data transmi ss i on for thi s 
kind of customers. 

Those of our customers who are closely tied to a 
service bureau could, if they are 'cluster cus
tomers' to the same service bureau, get linked up 
to our computer through the service bureau. We 
have not yet any arrangements of this kind, but 
users connected to the same bureau exist among 
organisations on both local and regional level 
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and among governmental authorities. 

Another connection to our databases tried on a 
test level, is through the Swedish teledata net 
called the Datavision. This is a way to get in 
contact wi th our customers in a gateway wi th 
very small equipment requirements. I do no think 
the gateway effect shoul d be underestimated. 

STATISTICAL DATABASES VS THE USER'S SOFTWARE 
ENVIRONMENT 

The problems in this area are of at least the 
same magnitude as in the hardware side. Of 
course, the different users use different soft
ware for their various projection and econometric 
work. The reasons are different hardware and dif
ferent ideas of how to handle the data from the 
point of both the econometric work and the com
puting technique. On one hand there is no con
formity in different users' software, on the 
other hand there is no conformity in different 
statistical databases as regards user interface 
and technical format of data (both figures and 
meta data). The number of problems equals the 
product of the number of users and the number of 
statistical database vendors. 

I think this meeting has the responsibility to 
initiate efforts to minimize the negative effects 
that the users of several databases experience. 

Some of the users do not have any former experi
ence of EDP in their econometric work, having 
previously tried a manual approach. This catego
ry of clients are interested in software develop
ment work at our office and want to use our com
puter as a service bureau. For that reason, as 
well as for internal use, we intend to develop 
more functions within our DBMS, as well as inter
faces to some external software packages, e.g. 
SAS/ETS, X-II-Arima and APL. 

THE MAN - MACHINE INTERFACE AND THE CURVE OF 
LEARNING 

We have 1 earnt a lot from our experi ences wi th 
the statistical databases handled by the AXIS 
system. One thing is that AXIS is very easy to 
1 earn for the unexperienced user, but somewhat 
heavy to use fo r the famil i ar user. Consequentl y, 
we are now developing an alternate way to access 
the data, viz. by means of a command language. 
This command language will be integrated with the 
system for the additional functions mentioned 
above. The best composition of a generally used 
system like AXIS would probably be a menu-driven 
system where every use of the menu should be some 
kind of training an underlying command language. 
When the user has achieved a certain level of 
proficiency he will be abl e to abandon the me
nues and continue in the command language. Then 
answers in terms of the number in front of an al
ternative in the menu should be forbidden. When 
using the touch method it is less convenient to 
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enter a figure from the key-board than a short
word. 

STATISTICAL DATABASE SERVICES AND THE STATISTICAL 
OFFICES 

Most of the statistical database services are 
supplied by commercial service bureaus. The data 
in these databases are bought from international 
organizations and in some cases directly from the 
federal or national statistical offices. Some of 
the statistical offices have decided to use com
mercial bureaus for the statistical database ser
vices. This implies that the user will have ac
cess to some data and perhaps some publ ications 
from the institutions responsible for the data. 
When access is made to a certain set of data, it 
is up to the user to try to find some information 
on these very data to get an idea of the qual ity 
of the retrieved figures. In the AXIS system at 
Statistics Sweden much work is done in the meta
data area. Just to mention one function, a com
pulsory comment is displ~ed just before the re
sult of a retrieval is displ~ed. This comment 
can sometimes include references to the respon
sible department including telephone numbers. 

What I want to stress is the fact that statistic
al databases in commercial bureaus in general are 
not supported in the sense of knowledge of the 
data. Since it is easy for a statistical office 
to make their statistical data accessible by a 
commerci al bureau, it is al so easy to run the 
risk of misuse of data. 



PROPOSAL FOR WORKSHOP ON LARGE ECONOMIC DATA BASES 
By Phyllis Levioff 

Outline for discussion purposes concerning problems confronting data base 
managers in their role as conduits between data sources and end users 

1. PROBLEMS ASSOCIATED WITH CHANGES 
IN CONCEPTUAL TREATMENT OF DATA 

A. How to integrate conceptual 
changes into a macroeconomic 
data base 

B: How to communicate these 
changes to users 

1. in the short-term, i.e., 
online 

2. in the long-term, i.e., 
in hard copy documentation 

II. PROBLEMS ASSOCIATED WITH CHANGES 
IN DATA COLLECTION 

A. How to deal with a definitive 
break in a time series 

B. How to deal with discontinued 
series 

1. when there are substitutions 

2. when there are no substi
tutions 

C. How to deal with series in 
terms of documentation which 
are no longer published but 
are still available in unpublished 
form or on tape 

III. PROBLEMS ASSOCIATED WITH TIME 
AS A CONCEPT 

A. How to present data series that 
are really not a true time 
series because of the 
inconsistency of the data over 
time, but that are presented 
as time series online 
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B. How to communicate to the end 
user the nature of the. above 
problem without destroying 
credibility in the data 

IV. PROBLEMS ASSOCIATED WITH 
DEFINITIONS OF DATA TYPE 

A. How to field technical questions 
from end users 

B. How to utilize source materials 
most effectively 

1. What sources are available, e.g., 

Dictionary of Economic and 
Statistical Terms, Bureau of 
Economic Analysis (out of print) 

BLS Handbook of Methods, 
Bureau of Labor Statistics 

Handbook of Cyclical Indicators, 
Supplement to Business Conditions 
Digest, Bureau of Economic 
Analysis 

Statfacts, New York Federal 
Reserve 

Other 

2. What reference materials should 
be included in a comprehensive 
bibliography for data base 
managers 



SAS APPLIED TO STATISTICAL DATABANKS VIA A COMMAND LANGUAGE. 

Inger Nilsson, System Engineer 

I/S Datacentralen af 1959, Copenhagen, Denmark 

Abstract 

This paper describes how a command language, DC-TIME Series Management System, is used 
as an interface between the user, a databank and SAS, Statistical Analysis System. 
The aim is to give easy access to time series in a large databank to a great variety 
of users ranging from those just in need for the data to the ones requiring an analysis 
tool like SAS. 
The paper gives an account of the structure of DC-TIME, which is actually a combinati
on of a command language and a dialogue. To illustrate the application and the useful
ness of the system some examples are given using the databank CRONOS-Eurostat, which 
contains macro-economic time series concerning national accounts, production, trade etc. 
for a large number of countries. Various ways of presenting the data, using the facili
ties in SAS, are also given. 

1. INTRODUCTION 

Statistical data are conveniently 
stored in large databanks in the form 
of time series. To make efficient use 
of such data there is a need for a 
simple method which allows various 
types of users - specifically those 
without previous programming experi
ence - to carry out advanced statisti
cal analysis on data and having the 
results presented in an easy and clear 
way, for example as tables, graphs or 
histograms. 

The command language, DC-TIME, links 
the databank, CRONOS-Eurostat, to all 
the facilities in SAS. It has been 
developed so as to enable the user, 
who is interested in the data but not 
in the programming problems, to make 
use of all the possibilities in SAS. 

DC-TIME is used to select time series 
from the databank and build up a data 
set, so the various SAS procedures can 
be applied by. simply writing the pro
per SAS statements. 

2. THE CONTENTS OF THE DATABANK, 
CRONOS-EUROSTAT 

CRONOS-Eurostat is a macro-economic 
databank, containing more than 700,000 
time series. The databank is sub
divided by subject into six main 
topics, as briefly described below. 

General Statistics. 

This main topic covers statistical da
ta regarding short-term economic fi
gures for the European Community with
in the following subject areas: 
population and employment, industry, 
agriculture, prices, services, trans
port; finance and national accounts. 
Also available are macro-economic in
dicators of the developing countries, 
concerning demography, social and eco
nomic indicators, transport and 
services, industrial and agricultural 
production, external trade, national 
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accounts and balance of payment. 

National Accounts, Finance and 
Balance of Payments. 

Within this main topic the European 
System of integrated economic Accounts 
(ESA) is used. ESA consists of a 
coherent and detailed set of accounts 
and input-output tables, which are in
tended to provide a systematic, com
parable and - as far as possible -
complete picture of the economic acti
vity within each of the member coun
tries. 

Information on transactions in goods 
and services directly related to the 
formation of the Gross Domestic Pro
duct are available and further the 
balance of payments of the European 
countries, USA and Japan. 

Industry and Services. 

This heading covers: annual surveys 
of a number of economic variables -
f.ex. turnover, production, value, 
value added, number of employees - for 
companies with more than 20 employees. 
Also included are figures for produc
tion, import and export of textiles, 
footwear, paper, computers and elec
tric appliances to name some examples. 
Data on energy production, export and 
import are available as well as in
formation on production, trade and em
ployment within the iron- and steel 
industry. 

Agriculture, Forestry and Fisheries. 

Here, agricultural prices and price 
indices are available on crop pro
ducts, animal products and the means 
of agricultural production. Also pro
vided are fisheries statistics on an
nual catches 'by fishing region for 
300 species, monthly data on landings, 
and annual data on forei9n trade. 



Foreign Trade. 

For foreign trade more than 300.000 
time series are available. It provides 
information on import and export, in 
values and quantities, either by pro
duct (300 SITC headings) or by trading 
partner (200 countries). 

Mischellaneous. 

This group provides information on 
government expenditure on research and 
development concerning: earth and at
mosphere, human health, energy, agri
culture, industrial technology etc. 

3. EUROSTAT 

CRONOS-Eurostat is produced by the 
Statistical Office of the European 
Communities, EUROSTAT. The aim of the 
office is to measure and analyse the 
inter-European economic and social ac
tivities, and the Common Market's re
lations with the rest of the World. 

Data are collected from - amongst 
other sources - the national statisti
cal offices of the member states of 
EC and stored as monthly, quarterly 
and yearly time series. 

Geographically is covered EC, other 
industrial countries such as USA and 
Japan plus about 160 developing coun
tries. 

4. CONSIDERATIONS FOR A COMMAND LANGUAGE 

In November 1981 Datacentralen imple
mented CRONOS-Eurostat, with the aim 
of offering the content to any user, 
interested in such macro-economic data. 
It was foreseen that many of the po
tential users, f.ex. on a management 
level, might be without previous ex
perience in the use of computer sy
stems and therefore reluctant to accept 
this type of service. On the other 
hand, some would be familiar with pro
gramming and therefore inclined to 
carry out further processing of the 
data - like regression analysis, for
casting etc. The system to be develop~ 
ed should therefore be flexible enough 
to satisfy a wide range of users. As 
regards the statistical analysis it 
was obvious to make use of SAS, which, 
in addition to a number of statistical 
procedures, offers a number of data 
presentation facilities. 

Consequently a suitable solution for 
satisfying all types of users was to 
develop a command language, which acts 
as an interface to the databank and to 
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SAS. This enables the user to apply 
all the facilities in SAS on the da
ta, without having to engage in a 
study of the SAS language. This ap
proach would further have the advan
tage of enabling the experienced SAS 
user to apply all the SAS procedures 
on the data. The command language de
veloped, named DC-TIME, is described 
below. 

5. FACILITIES IN DC-TIME 

The command language DC~TIME is a time 
series management system, offering the 
following facilities: 

display of the time series, as 
tables, graphs and histograms 

- creation of 'derived time series 

- storage and maintenance of own 
time series 

statistical processing of time 
series 

6. THE USE OF SAS 

The diagram, figure 1, shows how DC
TIME acts as an interface between the 
user, the databank and SAS. In a dia
logue with DC-Tn-lE the user specifies 
a command and the time series to be 
analysed, as described in detail in 
the following section. The command and 
the time series numbers are trans
ferred to the SAS program via SAS ma
cro's which are built up by DC-TIME 
and linked to the SAS program. 

The time series specified are select
ed from the databank by DC-Tn-IE, 
stored in a file and transferred to a 
SAS data set by the DATA step in the 
SAS program. The SAS procedures, cor
responding to the command, are now 
executed without any further action 
from the user. The output is presented 
directly on the terminal or, should 
the user want so, printed off line at 
Datacentralen. 

7. COMMAND AND DIALOGUE STRUCTURE IN 
DC-TIME 

The principle of the dialogue with 
DC-TIME is shown in figure 2. The 
user types in one of the available 
commands - Lex. TABle, GRAph or 
HIStogram - and the codes for the time 
series to be analysed. The system re
plies by writing the name of the com
mand and a list of parameters 
attached to this command. The parame
ters have initially been assigned 
some default values, for which reason 
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the user only has to specify desired 
changes. Also, the code numbers of 
selected time series are listed, al
lowing the user to add or delete time 
series before execution. When the com
mand, the parameters and the time 
series list are acceptable, the command 
is executed by entering (CR). 

Terminal Databank 

Fig. 1 

r----- COMMAND TSLI ST 

1 
command 
list of parameters 
list of time series 

J 
OK? 

~s 
'- mod If \j command Is 

executed 
'-- cancel 

~-------------------------
8. DISPLAY OF TIME SERIES 

Fig. 2 

The following examples show different 
",ays of displaying the registration of 
new passenger cars in Germany, France 
and U.K. 

The table, figure 3, can be obtained 
by typing: 

TAB TS=ICG:124251006,14,26 

to which the system replies: 

TABLE: 
DEC Ir."..AL= 
INTERVAL= 
LINESIZE= 
PAGESIZE= 
TITLE= 
OUT= 

TIME SERIES: 

o 
6801,8101 
72 
24 
ENGLISH 
LIST 

ICG 124251006 144251006 264251006 

MODIFY/EXECUTE/CANCEL ? 

TSOOl=ICG :124251006,REGISTRATION OF NEW PASSENGER CARS 1 
TS002=ICG :144251006,REGISTRATION OF NEW PASSENGER CARS 
TS003=ICG :264251006,REGISTRATION OF NEW PASSENGER CARS 

DATE_ TSOOI TS002 TS003 

6801 1425 1240 
6901 1841 1365 
7001 2107 1342 
7101 2152 1469 1335 
7201 2143 1638 1702 
7301 2027 1696 1688 
7401 1693 1525 1274 
7501 2106 1482 1198 
7601 2312 1858 1288 
7701 ,2561 1907 1335 
7801 2664 1927 1618 
7901 2623 1976 1732 
8001 2426 1873 1536 
8101 2330 1879 1514 

Fig. 3 
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A graph showing the same time series 
can now be obtained by just typing: 

As an illustration of the links 
between DC-TIME and SAS, figure 6 
shows the principles underlying the 
generation of the table. 

GRA GO 

where GO is used to avoid repeating 
all the parameters and the time series 
list. (Figure 4). 

The user only has to be concerned 
with the DC-TIME part, while the SAS 
steps are automatically activated by 
DC-TIME. 

The histogram in figure 5 can be 
obtained by using the command HIS. 

TS001=IeG :124251006.REGISTRATION 
TSOO2=IeG :144251006.REGISTRATION 
TSOO3=IeG :264251006.REGISTRATIDN 

PLOT OF TSOO1*YEAR_ 
PLOT OF TS002*YEAR_ 
PLOT OF TS003*YEAR_ 

TS001 
2500 + 

I 
I 
I * * * 2000 * * 

+ 
1500 + 

I * + + 
I + 
I 

1000 + 

OF NEW PASSENGER CARS 1 
OF NEW PASSENGER CARS 
OF NEW PASSENGER eARS 

SYMBOL USED IS * 
SYMBOL USED IS + 
SYMBOL USED IS 

* * * 
* * 

* 
* + 

+ + + + 

* 
+ + 

----+----+----+----+----+----+----+----+----+----+----+----+----+----+----
Fig. 4 

Fig. 5 

Fig. 6 

68 69 70 71 72 73 74 75 76 77 78 79 80 81 

YEAR 

REGISTRATION OF NEW PASSENGER eARS 
GERMAtlY (A). 

TERM SUM 

6000 + 
I 

5000 + eeee eeee eeee 
I ecce ecce ecce 

4000 + ecce ecce ecce 
I BBBB BBBB BBBB 

3000 BBBB BBBB BBBB 
BBBB BBBB BBBB 

2000 + AAAA AAAA AAAA 
I AAAA AAAA AAAA 

1000 AAAA AAAA AAAA 
AAAA AAAA AAAA 

71 72 73 

DC-TIME: 

TABLE TS1,TS2, TS3 

FRANeE (B) • UNITED KINGDOM 

BAR eHART OF SUMS 

ecce ecce 
eeee ecce 
ecce BBBB 
BBBB BBBB 
BBBB BBBB 
BBBB AAAA 
AAAA AAAA 
AAAA AAAA 
AAAA AAAA 

74 75 

SAS: 

ecce 
ecce 
ecce 
BBBB 
BBBB 
BBBB 
BBBB 
AAAA 
AAAA 
AAAA 
AAAA 
AAAA 

76 

YEAR_ 

SAS macro's 

ecce ecce 
eeee eeee 
ecce ecce 
BBBB BBBB 
BBBB BBBB 
BBBB BBBB 
BBBB BBBB 
AAAA AAAA 
AAAA AAAA 
AAAA AAAA 
AAAA AAAA 
AAAA AAAA 

77 78 

MACRO TS TS1 TS2 TS3 1-

(e) 

ecce ecce 
ecce ecce 
ecce ecce 
BBBB BBBB 
BBBB BBBB 
BBBB BBBB 
BBBB BBBB 
AAAA AAAA 
AAAA AAAA 
AAAA AAAA 
AAAA AAAA 
AAAA AAAA 

79 80 

__ r MACRO INT IF 6801<=DATE<=8101 1-
DECIMALS= 0 ..... 
INTERVAL= 6801.8101 
LINESIZE= 72 
PAGESIZE= 24 DATA step SAS data set 
TITLE= ENGLISH DATA A ; DATE TS1 TS2 
OUT= LIST MERGE TS ; 6801 - -

BY DATE ; i- 6901 - -
INT ; 7001 - - -

I 
PROC step output 
PROC PRINT ; table I 
FORMAT ... ; 1-- - - ? TITLE ... ; - - - -

, - -
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ecce 
ecce 
ecce 
BBBB 
BBBB 
BBBB 
BBBB 
AAAA 
AAAA 
AAAA 
AAAA 
AAAA 

81 

TS3 
--

1 

/,,--



DC-TIME: SAS: 

SAS-macro's 
CREATE TS4, TS5 ~ MACRO TS TS4 TS5 " 

MACRO INT 7101<=date<=8206 " 
INTERVAL= 71 01,8206 -- MACRO FORM (TS4+TS5)12; Yo 

Fig. 7 

NAME= NE 
KEEP= YE 

t~pe In formu 

CTS4+TS5)/2; 

W 
S 

la: 

9. CREATION OF DERIVED TIME SERIES 

DATA step 
DATA A ; 
MERGE TS ; 
BY DATE; 
INT ; 
NEW=FORM 

Some users might wish to create de
rived time series on the basis of 
existing data. The command CREate is 
used for this purpose. For creating a 
derived time series, the user has to 
type CRE, the codes of the time se
ries from which the new series is to 
be calculated and the formula defining 
the derived time series. The new time 
series may now be used together with 
any other time series in the databank. 
The formula and the derived data may 
even be kept for later usage. 

SAS data set 
DATE TS4 TS5 NEW 
7101 - - -

1-+ 7102 - - -
7103 - V~ 7104 -

The most obvious procedures to be 
applied to these data are regression 
analysis, forecast and seasonal ad
justment, but any SAS procedure may 
be used. 

The DC-TIME command for this facili
ty is PROcedure, the principles of 
which are illustrated in figure 8. 
The only action of the user is to 
type PRO and the codes of the time 
series to be analysed. The system 
replies: 'Type in procedure', to 
which the user has to respond with 
the actual SAS procedures. 

The principles in this command is 
illustrated in figure 7. 11. GRAPHICS 

10. STATISTICAL ANALYSIS 

The powerful facility of DC-TIME is 
that it enables the user to apply SAS 
for carrying out advanced statistical 
analysis on the data in the databank. 

DC-TIME: SAS: 

SAS macro's 
PRO TS4,TS5 MACRO .... 
INTERVAL= 6801,8201 .... 
LINESIZE= 72. 
PAGESIZE= 24 DATA step 
TITLE= ENGLISH DATA 
OUT= LIST .... 

... . 
t~pe In procedure: 

PROC step 
PROC GPLOT; PROC GPLOT; 
... . .... 
... . . ... 

Fig. 8 
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SAS contains a graphical part named 
SAS/GRAPH enabling a user with a 
graphical terminal to obtain the 
output in a graphical form by just 
typing the proper SAS statements. 

12. CONCLUSION 

The system has now been operational 
since April 1982 and used by various 
types of users. The original aim of 
developing a flexible system has 
been fulfilled by the application of 
a command language acting as an in
terface to SAS. Users without pre
ceding experience in programming can 
take advantage of many of the faci
lities in SAS, and the experienced 
user can make full benefit of the 
advanced statistical procedures 
available in SAS . 



A STATISTICAL DATA MANIPULATION LANGUAGE 
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Abstract 

A new Data Model based on a set theoretic approach is proposed here; it is intended to fit 
the statisticians requirements by giving them the ability to describe data in terms of classes of 
objects which are ordered according to users needs. Classes are identified by the handle which is a 
set of attributes; they are gathered in collections. 

Based on that Model a Statistical Data Manipulation Language (SDML) is presented to provide 
tool s for Statistical Manipulations on Collections. Basic classes of operations are Retrieve, 
partition, internal or inter-object arithmetical operations and join of collections. The SDML has 
been designed to be concise, user-friendly and extensible. 

1. INTRODUCTION 

In many cases, the work of the data processing 
statistician consists in extracting data either 
from raw files or more or less classical data 
bases and entering them into a processing system 
which can be either APL, a statistical package or 
ad hoc programs; the results of the processing 
may in turn be reentered in the storage pool. 

This implies, 
greatest part of 
data formatting 
insisting on data 

as stated in (R5), that the 
the work is dedicated to the 

and transfers instead of 
processing itself. 

We therefore propose a new Data Base Management 
System where Data Storage and Data Manipulations 
as needed by statisticians are integrated into 
one unique system. This system called CROSIBASE 
is based on two main components, as far as the 
user interface is concerned: the first one is the 
catalogue which holds all data and processing 
descriptions; this catalogue is described in 
another paper (R6). The second one is the 
Statistical Data Manipulation Language (SDML) 
that we present here. We shall insist in this 
paper on the problems of derivation. In (Rl) 
Adiba gives a good framework for the introduction 
of derived data; however the operations that he 
proposes are still too closely related to the 
Relational Model and are not powerful enough to 
tak,e statistical operations into account. In 
statistics derived data are not only selected or 
projected or joined they are also aggregated by 
some statistical functions, or computed in 
different ways. We assume that it is important to 
the statistician to have these tools at the same 
level of availability as other data management 
tools. 

We do not discuss here the problem of updating 
deri ved data, as it has been done in (R2) and 
(R7); but it is obvious that the problem is even 
more complex in the case of statistical 
derivation.In CROSIBASE we handle that problem by 
giving strong limits to the automatic updating 
process and by storing in the catalogue all 
information concerning both data and derivation 
descriptions. 

Section 2 gives the Data Model we use in 
system and a conceptual specification 
operations. 

our 
of 
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Section 3 presents a detailed description of the 
proposed SDML. 

2.DATA MODEL 

Before describing any Data Manipulation Language 
it is fundamental to give the description of the 
basic features of the data model. 

Recent works on the subject deal with the 
analysis of data Models by considering three 
fundamental and disjoint components 

1) Model data Structure 
2) Type of executable operations on such Data 

(Data Manipulations) 
3) Constraints on Data Structure and type of 

operations 

On the basis of these cri teria of analysis we 
describe the CROSIBASE Data Model presenting the 
Data structure, then the constraints imposed on 
them, then the categories of operations and 
finally the constraints which link operations and 
Data structures. 

2.1 Data Structure 

Definition: The CROSIBASE Data Structure can be 
described by a six-tuple 

A , DOM , LINK , C , ColI , I ) 

where 

A : is a non empty set of names called attributes 

DOM is a function A~T which associates for 
each attribute Ai a set of elementary values 
Ti; Ti is said to be the type of Ai; 
different attributes may have the same type. 

LINK is a function which associates a 
particular attribute and a particulal' value 
giving couples called atoms : 

( Ai , Vj )~ E A, Vj t: Ti 

C : is the name of a collection 

ColI is a function which associates to a 
collection name C a non empty ordered set of 
attributes Y={A .. , ... An3, AiE.A, in which 
each attribute occurs only once. 



According to that definition, we can associate to 
C the following collection structure : 

I is a set of points; each point is a set of 
atoms, each set having the same structure 
defined by Coll. 

An instance I of the collection C as previously 
defined can be the following set of points 

(A '2.. ' a .. ,111.)··' 
(A2.' a) ••• 

'2., ",1. 

(A~, a .... "'''" ), 
(AI\. ' a~. A" ), 

(AI\.' a ""Ar\. )} 

2.2 Constraints on Dats Structure 

Following our schema of structure description, we 
give now the constraints on the previously 
described structures, i.e., identify the possible 
types of points and collections, through the 
semantics which can be attached to attributes or 
collections by the users. This is intended to 
provide a unified view of the concepts of sets of 
points and sets of classes of points. 

Definitions 

point : 
set of atoms i.e couples (attribute, value) in 
which there exists only one occurence of each 
attribute. 

elementary object 
a point divided into two classes of atoms: one 
is called the handle and is supposed to contain 
all identifying atoms of the point; the other 
is called the content and is supposed to hold 
the quantifying or qualifying atoms of the 
point. 

simple object 
set of elementary objects with the same handle 
value; a simple object can be viewed as a class 
of elementary objects, all having the same 
value for the handle attributes. 

simple collection : 
set of simple objects having the same set of 
attributes, handle attributes and content 
attributes. 

elementary collection 
set of elementary objects, having the same set 
of attributes, handle attributes and content 
attri butes. In this case the handle is a ~ 
for the collection. 

One important feature in CROSIBASE is the concept 
of order because statisticians usually produce 
ordered data sets : the order is defined: 

a) 
b) 
c) 

on the set of values defined for each type 
on the handle attributes within an object 
on the objects using the order defined by 
the handle 
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Type of collections : 
What we will usually call collection in 
CROSIBASE is in fact an ordered 
elementarycollection or 'OE-collection' 
(figure a). To simplify the following of the 
paper we will continue to write 'collection' 
instead of 'ordered elementary collection'. 

But we will also have to use ordered simple 
collections which we will call 'OS-collections' 
(figure b), unordered simple collections that 
we will call 'US-collections' (figure c), and 
unordered elementary collection that we will 
call 'UE-collections' (figure d). 

It is important to note that an ordered 
elementary collection can be also viewed as a 
n-dimensional matrix, n being the number of 
handle attributes, each cell holding a record 
composed of the contents values. 

This view will help the user understanding 
vertical operations (see 3.3.3) and also in the 
table lay-out process (see 3.5). 

Notations: For each collection C we have the 
handle set of attributes or handle 

H and the Content Set of attributes or content 
Q; we call form of the collection C the couple 
(H,Q) and we note it 

In terms of attributes the form of a collection 
can be described as 

A~ • A~ •..• M I Av ,A' , ••.• At. 
'1 ~ \'L n.. .. ., \\.+2. + ~ 

If H is composed of 2 subsets, namely HI for 
the f.irst attributes (from left to right) and 
H2 for the last ones, the form of C can be 
written as 

I'\.J C = Hl • H2 I Q 

In the same way it can be written 

~ C = H I Ql , Q2 if Q = Ql , Q2 

The difference of notation between handle and 
content comes from the fact that the sequence 
of handle attributes is used to identify 
objects in an n-dimensional space, which is not 
the case for Content attributes. 

The form is defined in the same way for OS
collections and US-collections and UE
collections. 

Example 

Let us consider the following handle attributes 

A 
B 
C 

Tl 
T2 
T3 

and the following content attributes 

D T4 ( d" , d'2.. ' d~ , d~ ) 
E Integer 



Let us consider one of the possible forms induced 
by these attributes 

A • B • c I D , E 

We may have the following types of collections : 

figure - a: 

A B C I D E 
------------------
a~ b c I d e.., 

1 41 ... 

a bl. C2. 1 d e2. -1 
I ... 

a bl. cl dl. e~ .. :1.1 
a b c I d e 

2- .... "I 'I 'i 

figure - b: 

A B C I D E 
------------------
a .., 

a ..., 

a .. 
a2. 

A 

a .., 

a 
2 

a 
~ 

a ..., 

b c2. 1 d ... 
I 

·1 

b cl. I d .. I 
.. 

b c 3 1 d .. 
I 2. 

b c I d 4 .., 
.... 1 

figure - c: 

B 

b 
·1 

b 
-1 

b 
1 

b .. 

c I D 

'Cl.1 d .. 

c I d L .... I 1 

C I d 
~I 2. 

c I d 
2.1 ..... 

e
1 

e2. 

e
3 

e~ 

E 

e .... 

e 
'1 

ordered elementary collection 

Handle values are different 
for each point; the order of 
the points is defined by the 
order of values in the types 
and the order of attributes 
in the handle 

ordered simple collection 

The first two objects have 
the same handle values; the 
objects are ordered 

unordered simple collection 

The first and the fourth 
objects have the same handle 

. value 

figure - d: unordered elementary collection 

A B c I D E 

a 
-'I 

b .... No two objects with the same 
handle value 

a 
... 

a 

" 

b 
1 

b 
2. 

b2. 

e.., 

2.3 categories of basic operations 

We assume there exists five fundamental 
categories of basic operations needed by 
statisticians to operate on these data: 

1) retrieval operations 

they are monadic operations for retrieval of 
information contained in the collections 
through the use of the 2 modes known in the 
Relational Model: Restriction and Projection. 
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Restriction is the retrieval of the points of a 
collection which satisfy a given 
condi tion .Projection is the retrieval of sub
points of a collection (i. e. subsets of the 
points determined by a subset of attributes). 

2) classification operations 

3) 

these monadic operations are used for the 
constitution of classes on the collections, 
based on the use of generalized equivalence 
relations. There are 2 types of 
classifications: parti tions when disjoint 
classes are needed and distributions for non 
disjoint ones. The result is always a simple 
collection composed of the defined classes. 

arithmetical computation operations 

these monadic operations are of two possible 
types 

3.1 computation on each object of the input 
collection g1vlng a new value of an 
existing content attribute or creating a 
new content atom; this is called 
horizontal computation; it never changes 
the type of a collection but eventually 
extends its form by creating new content 
attributes; 

3.2 computation implying several objects of 
the input collection : the computation is 
performed on one or several content 
attributes giving either a new content 
value of an existing object or a new 
object created by the operation; this is 
called vertical computation; these 
operations are called vertical operations 
because, in the case of creation of new 
objects, they extend vertically the 
tabular representation of collections. 
The process of aggregation is one 
particular type of vertical computation. 
Vertical computation implies no change 
nei ther on the type nor on the form of 
the operand collection. 

4) collection join operations 

these operations are dyadic and allow 3 types 
of join between collections according to 
relational properties defined on subsets of 
type compatible attributes. These operations 
can be viewed as an extension of the relational 
J01n. These operations are authorized only on 
ordered elementary collections and the resul t 
is also an ordered elementary collection. 

5) sort operations 

monadic operation to redefine the order of a 
collection or to put into order an unordered 
one. 

3.Statistical Data Manipulation Language (SDML) 

3.1 Objectives and Concepts for SDML 

SDML is a set of highlevel commands having 
collections as operands. 



They map the functionalities previously described 
into a user's language.We tried to describe a 
Relational-like language because the relational 
approach is widely known and understood, and also 
because collections are in someway equivalent to 
relations in first normal form. 

In order to be more concise, we have grouped the 
executable operations into 3 main categories: 

a) Retrieval operations operator RETRIEVE, 
monadic 

, b) Computation operations operators H-
COMPUTE ,V-COMPUTE ,AGGREGATE , monadic 

c) Connection operations: operators LOWER-JOIN, 
UPPER-JOIN, REDUCED-JOIN dyadic 

As said earlier in the paper the main objectives 
of SDML will be to provide the user with a 
unified view of sets of objects and sets of 
classes of objects. Any collection in the system 
will be able to be considered as a set of objects 
(ordered or not) or as a set of classes of 
objects, the classes being determined by the 
user, according to properties of the objects. 

To achieve these objectives the language has the 
following structure: 
each operation is described by a command; each 
comm~nd is functionally divided into 3 parts: 

1) data input definition 
2) command body or processing body: operator, 

parameters •.. 
3) output data format definition 

The general form is the following 

1 ){lFROM <. collection-name)]'" [WHERE ( condition)] 
[ pre-structuring claus~s J 

2) I < operator) , 
[< operational description)1 

3) [GIVING (collection-name)1 [<.post structuring clause)] 

For each command we introduce, we shall give all 
the functionalities it allows;we can see already 
that the WHERE clause is present in all commands 
which involves that ,all functions will allo~ 
restriction on input data. 

We must say a few words now of the processing 
environment of our SDML: all named collections 
are referenced in the CROSIBASE catalogue. The set 
of SDML commands which creates collection Co1l2 
from collection CollI is called a DERIVATION and 
Co1l2 is said to be a derived collection. The 
deri vation description is itself stored in the 
catalogue. However, for more flexibility one 
derivation can create several collections. ' 
Each command is executed sequentially and can be 
either complete i.e. with input and output 
operands or uncomplete in which case the output 
operand of command i is the input operand of 
command i+1; such commands are' linked by a meta
operator "I". 

Example 

DERIVATION D1 

FROM CollI OP1)OP2/ ••• IOPi GIVING Col12' 
FROM Co1l2 OPr GIVING Co1l3; , 
FROM Co1l2, Co1l3 OP ~ lOP A.. • •• GIVING Co1l4 

END 

This deri vation11 has CollI as input collection 
and creates Col12, Col13 and Col14. 

We limit the use of this facility in' the sense 
that any referenced collection in the catalogue 
must be ordered and elementary; this implies that 
once the na:me of the output collection is gi ven 
in the GIVING clause, the type and order of the 
output collection' are fixed; in absence of the 
GIVING clause the ORDERED and UNIQUE clauses will 
always give the possibility to produce an ordered 
elementary collection. 

In all the following examples we will consider 
Comments colI-input as 

FROM gi ves the name (s) of the input 
collection(s) 

WHERE: gives the restriction to be applied on 
that input 

( pre structuring clause): 
partitioning of the points 
collection into classes. 

< operator) : name of the operator 

for instance 
of the input 

< operational description) for instance list 
of attributes of a join or list of 
elementary statements in a computation. 

GIVING : name of the output collection 

< post structuring clause ) instructions for 
output data structuring; 
for example order of the objects or 
deletion of some objects. 
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A 
B 
C 
D 
E 
F 
G 

T1 
T2 
T3 
T4 
T5 
T6 
T7 

A . B C.D.E.IF,G 

(aA ,a 2) 

(b" ,b2.,b~) 
(c" ,C"1'c3,) 
(d ... ,d2.,d~) 
(e",e ... ) 
(1 to 1000) 
(1 to 50) 



A 

a~ 

a .... 

a 
'" 

a 
'1 

a ... 

a~ 

B 

b 

" 
b ... 

C 

c .., 

c .., 

c", 

cl. 

c~ 

D 

d~ 

d, 

d .., 

d" 

E I F 

e..,1 1 
I 

e~ I 16 
I 

e I 3 
"I 

e1. 1 27 
I 

e" I 1 
I 

e I 32 
'I 

e I 100 
"'I 

e I 15 
... I 

3.2 retrieve operations 

General form 

G 

1 

4 

7 

8 

9 

8 

2 

6 

I [FROM < collection-name>] [ WHERE <: predicate)] 
II RETRIEVE I(attribute-list~J 
III [GIVING < collection-name) [. O~DEREDJ [UNIQUE] 

This statement represents the formalization of 
the functionality of the 2 previously introduced 
operations: RESTRICT and PROJECT. 

Restriction is done through the optional WHERE 
clause, followed by a predicate which the 
selected input objects must satisfy. 

The Projection is done through the attribute list 
which gives the attributes necessary for the 
output collection. The "UNIQUE" clause implies 
that resulting objects having the same handle 
will be reduced automatically to one object, 
which will produce an elementary collection. 

In the case where no output collection is 
specified, the "ORDERED" clause will produce an 
intermediate sorted collection. 

a) The following derivation 

FROM coIl-input WHERE C = cl. AND DE (d..."d?,) 
RETRIEVE A, B , D , F 
GIVING colI-output 

will give the following result 

A B D F 

d 3 1 27 
d I 32 

-11 

b) Projection giving an output collection without 
contents 

FROM col-input WHERE E = e..., 
RETRIEVE A , B 
GIVING colI-output UNIQUE 

result : 
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3.3 

We 

a) 

b) 

c) 

A B 

a b1 
" a 
A b ... 

a.., b 3 
a bl. 2-

Comeute oeerations 

have three types of computations: 

horizontal computation on the basis of object 
by object processing 
aggregation which computes statistical 
aggregates based on classes of objects 
vertical computation which derives new 
objects on the basis of a class by class 
processing 

Remark 

Aggregation is a special case of 
vertical computation but it is so commonly used by 
statisticians that it was important to make it a 
district operation. 

3.3.1 horizontal computaion 

General form 

I [FROM < collection-name::d I WHERE 
II H-COMPUTE < block '> 
III[GIVING(collection-name~[ORDERED 

<" predicate '>J 

by(attribute
list )J 

The block in the processing body, introduced 
by the keyword "H-COMPUTE", is composed of 
statements; each statement is either a simple 
statement or a conditional statement; 
conditional statements have the general form 

IF < predicate> THEN t. statement '> 
ELSE < statement '> 

A simple statement is an assignement of the 
form 

t. attribute-name) ::= (Arithmetical expression '> 

The authorized operators of the arithmetical 
expression are +,-,*,/; operands are content 
attribute names. If the attribute name on the 
left part of the assignment is a new 
attribute and the GIVING clause is omitted, 
the type of this new attribute will result of 
the types of the operands. 

The structure of the output collection is 
determined either by the GIVING clause or by 
the computed content attributes in the 
processing body where new attributes may be 
introduced; the handle of the result is the 
same as that of the input. 

Examples 

a) FROM coIl-input WHERE DE: (d", ,d~ 
H-COMPUTE 

begin 
F1 := F * G 

end 
GIVING colI-output 



resul t of the restriction 'clause "WHERE": 

ABC DE' F G 

a b 
A A 

a b 
'1 A 

c.., 

C .-1 

d 
" 

e' 1 ", 
e I 16 
"I 

e I 3 
"I 
ell 
-11 

e I 32 
2.1 

e I 100 
"I 

1 

4 

7 

9 

8 

2 

result of' the computation 

ABC D E F G F1 

a 
" 

a -1 

a ., 

a 
2. 

b c -1 ., 

b c 
" '1 

d 

" 
d .., 

d 
" 

d ... 

e-1 1 1 
I 

e I 16 
-1, 

e I 3 
~ I 
e' 1 AI 
e2. 1 32 

I 
e I 100 
"'I 

1 1 

4 64 

7 21 

9 9 

8 256 

2 200 

b) FROM coll-input WHERE Dc< (d", ,d.J 
H-COMPUTE 

IF C = c, 
THEN 

F1 .- F * G 
ELSE 

F1 .- F * 5 
GIVING colI-output 

result 

ABC D E,' 

a .., b ... c .., d ., e ., 
a.., b.., c.., d2. e" 

a.., b2. c2. d2. e.., 

a .., 
a .., 

a b 
2. 2. 

c 
" 

c~ 

d e 
.2. " 

d .., 

e 
2. 

e" 

F G F1 

1 1 5 

16 4 80 

3 7 21 

1 9 5 

32 8 256 

100 2 500 

3.3.2 aggregation 

I 

II 
III 

General form : 

{

[FROM collection-name 1 tWHERE ~ predicate;>] 
(GROUPING BY <class-attribute-list:> 1 
(HAVING <predicate>] 

AGGREGATE .: aggregate block> 
l GIVING <collection-name'> 1 

In this 
completed 

case 
by a 

the input defini tion is 
"GROUPING BY" clause which 
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helps the user to define the classes that 
will be reduced to a single object by the 
aggregation process. 
The class-attribute-list is a list of 
items which are' either attributes of the 
input 'collection, or new handle attributes 
derived from the ones of the input collection 
by the Distribution operation. This clause 
can be omitted if there has had a previous 
phase which has produced a simple collection. 

In this case the handle of the input 
collection defines by itself the classes 
necessary for the aggregation. The predicate 
of the HAVING-clause concerns the classes 
defined by the GROUPING BY clause, and not 
the points themselves. 

The processing body of this command contains 
the definitions of the statistical functions 
to be applied to the contents of the objects 
of each class defined by the GROUPING BY in 
the input collection; for instance these 
functions will be COUNT, SUM, 
MEAN, ..• etc ... : for each class determined by 
the GROUPING BY, the contents . will be 
aggregated on the basis of the specified 
functions. 

The resulting collection is always an 
elementary collection ordered according to 
the order of attributes given either by the 
GIVING clause or by the GROUPING BY clause, 
if the GIVING clause is omitted. 

Example 

FROM coll-input WHERE B€" (b ,b ) 
GROUPING BY C, A, ~ 2. 

H DISTRIBUTE D/ /(d~ ,d ), (d ,d ), (d ,d )/ / 
HAVING F ~1 OR F~161. 1. 3 -1 ~ 

AGGREGATE 
G1 SUM G 

GIVING colI-output 

evaluation of the "GROUPING BY" clause 

C A H' F G B D E 

1 1 b
1 

d1 e1. 

16 4 b i dot e" 
16 

1 1 b<! d-i e'i 

c,2. a~ 1 3 ,7h.t,· d~ e1. 

cz. a.f 1 

ci a~ 2 .27 8 b.t d ~ e.<-

c.l. a 1 3 27 

c3 a.(, 1 100 

c 3 a.l. 2 I.. 15 
I 

c3 a~ 3 I 100 
I 

c'3 a ~ 3 I 15 
"'I 

6 b Z d 3 e 1. 

2 b.t d1. e1 

6bt d 3 e'1 



evaluation of the HAVING clause 

C A H I F G B D E 

1 

1 

16 

c1. 16 

3 7 b.t, d.2, e i 

3 

~ a1. 2 15 

c?, a:t 3 15 

C 

c./, 

final result 

A 

a~ 

a-l, 

H 1 G1 

115 
1 

214 
1 

3 1 1 
1 

113 
1 

2 1 15 
1 

318 
1 

21 6 
1 

316 

6 b,l d~ e 1 

6 bZ d:; e:i 

3.3.3 vertical operations 

General form : 

t· l FROM .::collection-name >1 (WHERE ':::predicate;> J 
I GROUPING BY <,attribute-list> 

HAVING (object identification list> 

{

V-COMPUTE [ON .::content-attribute-list > J . 
II .::vertical block> 

EXCEPTION < val ue-l ist > 
III [GIVING <,collection-name» 

In the case of vertical operations, the 
GROUPING BY clause is mandatory because 
vertical operations are allowed only on 
elementary collections; the GROUPING BY 
clause is based on handle attributes of the 
input collection; distribution operations are 
not allowed here for simplification purpose. 

The HAVING clause is also mandatory because 
its aim is to identify objects wi thin each 
class; this identification is done by a 
predicate of the simplified following form 

Ai = vi A Aj = vj A ••• 

where Ai,Aj are handle attributes not used in 
the definition of the classes. The implicit 
constraint linked to that formulation is that 
the union of the set of attributes used 
inthe GROUPING clause and of the set of 
attributes used in the HAVING clause, is 
equal to the set of handle attributes. 
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This constraints 
operations have 
operands. 

garantees 
elementary 

that vertical 
objects as 

Each object identified by this predicate is 
assigned a name which is the name of the 
object within each processed class. The final 
syntax for this part of the language is the 
following: 

<object identification> ::= _ 
< simple predicate";> AS <object-name>lTARGET 1 

So, when we enter the processing body we have 
identified classes and within each class 
objects on which the computation takes 
place. The computation is made on the content 
attributes of these objects; the contents are 
those specified in the ON clause or all of 
them if the clause is omitted. 

The vertical block is a list of statements of 
the same kind as in the horizontal 
operations; however, in this case, the 
variables or operands are the object names 
instead of the attributes names for the 
horizontal operations. 

The EXCEPTION clause gives default values for 
contents in the case some of the objects are 
missing· in the class and the computation 
cannot be performed; default values can be 
replaced by a call to a predefined procedure. 

Example 

FROM coll-input 
GROUPING BY 

HAVING C 

V-COMPUTE 
ON G 

C 

C 

Xl := X2+X3 

A,B 
c1 AND 

E 
ci AND 

c.t AND 

D = dl, AND 
= e:i AS Xl TARGET 
D ~ (dz ,d3 ) AND 

E = e4. AS X2 
D E (d 1 ,d3 ) AND 

E = e z AS X3 

EXCEPTION (X2,3),(X3,6) 
GIVING colI-output 

result 

A B C D E 1 F G 

1 

10 (4+6) 

11 (3+8) 

7 

8 

d,t 17 (9+8) 

d1.. 8 

d", 9 (3+6) 

2 

6 



3.4 JOIN Operations 

In this case we have two operand collections 

collI : HI I Q1 and co1l2 : H2 I Q2 

We assume that HI X U H'l 
H2 = Y U H'2 

where we assume that X and Yare 2 sets of type 
compatible attributes element by element. First 
CollI is projected on X as PROJ1 and Col12 on Y 
as PROJ2; Set-op is a set operator i.e. union, 
intersection, difference. 

We call coprojection the set PR12 defined as 
PR12 = PROJ1 set-op PROJ2. 
For each object X of PR12 we build a new object 
of the form 

X • H'l . H'2 I Q1 , Q2 

where X.H'1IQ1 € CollI, and X.H'2IQ2 € Col12 

If one of the objects is missing in one of the 
two collections, empty values will be provided 
for the relevant attributes. 

General form 

I j FROM <collection-name> [WHERE < predicate~ ) 
LAND <,collection-name> [WHERE, <predicate"> 1 

III <operator> . 
ON <attribute list:> AND <attribute list> 

III [GIVING <collection-name>] 

The two input, collections may be filtered by a 
WHERE clause. 
There are 3 operations corresponding to the 3 
typ~s of operator used in the coprojection: 

LOWER-JOIN for the intersection of the 
projections 
UPPER-JOIN for the union of these projections 
REDUCED-JOIN for the difference 

The two optional attribute lists in the ON clause 
will indicate, if necessary, the attributes which 
have to be matched in the join; the default 
option is that the join is based on attributes 
with the same name. These attributes define the 
projection for each collection. 

Examples 

- co11-input1 - A . B . C I F 

A T1 (a-1' a~) 
B T2 (bi,bL,b~) 
C T3 (c .. ,c,d 
F T4 (1 ~ I ~1000) 

- coll-input2 - B . C • DIG 

B 
C 
D 
G 

T2 
T3 
T5 (d1 ,d~) 
T6 (1~ I~ 50) 

185 

a) 

coll-input1: . 

ABC I F 

c:d 1 
I 

c,t.1 3 
I 

c:/..1 10 
I 

c1.1 20 
I 

Cot I 31 
I 

c ... 1 4 

FROM coll-input1 
LOWER-JOIN 
GIVING colI-output 

coll-input2: 

BCD I G 

AND coll-input2 

B CAD I F G 

b" 

b 
2. 

b2. 

b 
1. 

c~ 

C 
'1 

c 

" 
c2.. 

b2.. c2., 

a~ d-11 
I 

d ... 1 
I 

d I 
~I 

1 

a 
" 

a" 

3 

3 

a d I 20 
2. "I 

a ... 

d I 20 
2..1 

dl.l 10 
I 

d2..' 31 

4 

7 

9 

14 

6 

1 

1 

The join is implicitly 
based on attributes 
having the same name 
i.e. Band Chere 

b) FROM coll-input1 AND Coll-input2 
,LOWER-JOIN 

B 

b .. 
b 

of 

b .. 
b .. 
b ., 
b .. 

b 
'2.. 

b 
2. 

b 
2.. 

ON BAND B 
GIVING coll~output 

A 

a ., 
a .. 
a .. 

a .. 

a ., 
a 
" 

a 
" 

a" 

a 
'2. 

Coli 
C 

c 
"" 

c 
of 

c"" 

c'l. 

c1. 

C 
2.. 

c .. 

c 
" 

Co12. 
C D I F G 

c" 

c 
2. 

c2.. 

c ... 

c2. 

c ., 
c ... 

c'l.. 

c ., 
c 
" 

c ., 
c 
" 

C 
'2.. 

d' 1 4 ", 
d 1.1 7 
"", 

d I 1 9 
1.1 

d' 3 4 ", 
d '3 7 
"", 

d2..' 3 9 
I 

d , 10 14 
"I 

d'l..' 10 6 
I 

d '10 1· 
'LI 

dl2014 
"I 

d I 20 6 
2.1 

d I 20 1· 
'2..1 

d I 31 14 ", 
d 131 6 

2.., 

dz.1 31 1 

in this case 
the base of 
the join is 
limited to 
attribute B 



c) FROM coll-inputl AND 
UPPER-JOIN 
GIVING colI-output 

B 

b .., 
b 

"1 

b 
2.. 

b 
1. 

b 2. 

C 

c 
~ 

c 
2.. 

c,,-

c .., 

c .., 

C 
2. 

A 

a .... 

a 

a 

a 
2. 

a 
1.. 

a ... 
a 

1.. 

al. 

D I F 

d I 1 
"I 

d I 3 
"'1 

dtl 3 
I 

d..,1 20 
I 

d,1 20 
I 

d I 10 
1..1 

d2. 1 31 
I 

~ I 4 

I 

G 

4 

7 

9 

14 

6 

1 

1 

d) FROM coll-input1 
REDUCED'-JOIN 
GIVING colI-output 

A B C D I F G 

AND 

coll-input2 

coll-input2 

It is important to say a few words on the 
presentation facilities available in CROSIBASE 
there are 2 possibilities: DISPLAY and TABLE. 

Any collection referenced in the catalogue may be 
displayed at screen (eventually copied on paper); 
in the case data are stored in a public domain, 
the wordings associated to data description items 
(collection, attributes, values) will be 
automatically displayed. It is possible also to 
store in the catalogue and link to the collection 
a Table lay-out which will be used for any 
display required on that particular collection. 

Moreover as any ordered elementary collection can 
be viewed as an n-dimensional table, n being the 
number of handle attributes, the user may use the 
TABLE command to give a specific table lay-out; 
there exists also the possibility of merging 
several collections to produce a table with 
complex structure, as was the case with the 
previous OSIRIS (*) table generator. 

Note however that the data issued from the 
presentation process is no longer homogenous to 
the concept of collection and thus cannot be re
used for subsequent processing (except through 
the interface with a photocomposer). 

4. CONCLUSION 

We have introduced in this paper 
Manipulation Language to be 
statisticians. 

a new 
used 

Data 
by 

(* ) OSIRIS was developped wi thin EEC and made 
operational since 1976 
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It is based on a Data Model where objects and 
classes of objects have the same representation; 
homogenous sets of objects/classes are grouped 
into collections. The Statistical Data 
Manipulation Language (SDML) has been designed to 
integrate basic statistical Data Manipulation 
tools; the result of each operation can be used 
in turn by a new operation; such a set of 
operations is called a derivation and is stored 
in the catalogue as are data descriptions. 

The basic functional components are restriction, 
projection, classification, sort, aggregation, 
arithmetical computation within objects or within 
classes, and connection. These functions are 
grouped together into three main classes of 
operations : retrieval, computation and join. 

The proposed language is assumed to be user 
friendly and concise. 
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COMPLEX DATA TYPES AND A DATA MANIPULATION LANGUAGE 
FOR SCIENTIFIC AND STATISTICAL DATABASES+ 

v. A. Brown++, S. B. Navathe, and S. Y. W. Su 
Database Systems Research and Development Center 
University of Florida, Gainesville, FL 32611 

Abstract 

A Scientific and Statistical DBMS needs to recognize a greater varie~y of data 
types than those currently supported by conventional DBMSs. Using the concept of 
abstract data types, we propose a set of extended data types (Complex Data 
Types) to be supported directly by the DBMS. The Complex Data Types presently 
recognized include: set, vector, ordered set, matrix, time, time series, text, 
and generalized relation. A data manipulation language designed specifically for 
scientific and statistical data processing is presented using these types as a 
basis. 

1. INTRODUCTION 

Scientific and Statistical Databases (SSDs) 
define a class of databases which are intended 
for statistical analyses. Demographic and 
geographic databases are two common examples of 
SSDs. This class of databases has several 
characteristics with which conventional DBMSs 
and statistical packages cannot cope 
effectively. Facilities for managing data to 
generate statistics as well as for appropriate 
user interfaces for statistical analyses are 
lacking in these DBMSs: 

A. Conventional DBMSs do not provide either 
the necessary tools for complex 
statistical analysis, or provide the 
environment for the analysis process 
[BOR82]. 

B. SSDs consist of sparse data, making the. 
physical design and processing 
requirements quite different from 
conventional DBMSs [TUR79, BAT82]. 

C. The distinction between parameter and 
measured data becomes quite important in 
SSDs [JOH81, SH082 , SU82]; conventional 
DBMSs do not make a distinction between 
these types. 

D. Conventional DBMSs model business or 
corporate databases. However, the data 
found in SSDs do not fit well into this 
"Supplier-Parts paradigm". Data exists not 
as integers and alphanumeric strings but 
in more complex forms such as matrices, 
time series, and sets. 

E. Statistical packages have historically 
been flat file systems geared towards 
number crunching. Such systems have 
little data management capabilities and 
are not oriented towards providing 
processing environments. 

+ This work was supported by the Department of 
Energy under contract DE-ASOS-81ER10977' 

++ Now at American Bell Inc., Lincroft, NJ 
07738 
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The number of data-specific management systems' 
that have resulted from these differences 
demonstrates the need for new techniques. A 
research project was initiated at the University 
of Florida in 1981 to address the areas of 
logical and physical data modeling for SSDs. 
This paper reports the results of some of that 
research. It specifically addresses the need for 
incorporating an extended set of data types into 
a general semantic data model for SSDs. Such 
incorporation offers several advantages: 

1. High-level Interface. The user can 
manipulate data at his' natural level of 
abstraction, rather than decomposing his 
view to accommodate the system. 

2. Representation Independence. By using the 
abstract data typing concepts to represent 
these objects, the user is separated from 
the details of implementation. 

3. System-enforced Integrity. The explicit 
;odeling of CDTs transfers the 
responsibility of ensuring the correct 
implementation of abstract objects and 
operators from the application programmer 
to the DBMS. 

We have developed an extended set of data types 
which we call Complex Data Types (CDTs) for use 
in a generalized DBMS for scientific and 
statistical database management. A CDT is a 
structured generic data type which corresponds 
to an abstract object commonly found in the 
user's view of data. To enable users to 
manipulate the CDTs, one must provide a language 
vehicle. A possible language interface called 
SSDL, which falls somewhere between a query 
language and a procedural language, is 
introduced in this paper. In addi Hon to 
illustrating the usefulness of CDTs, SSDL 
represents the beginning of our work on a 
"statistician-friendly" data manipUlation 
language. 

1. Such as SEEDIS--the Social, Economic, 
Environmental, and Demographic Information 
System--which was developed at the Lawrence 
Berkeley Laboratory to provide SSD ~s7rs 
with an integrated access to a speclflc set 
of databases (MCC81). 

2. For brevity the masculine gender is used as 
a generic pronoun reference. No bias is 
intended. 



2. BACKGROUND 

In programming languages, data abstraction is 
done through data typing. The user views a data 
type simply as a set of values and the 
operations permissible on those values. Details 
of implementation--how the data is stored and 
how operations are performed--are considered 
noise and remain hidden. Abstract data typing, 
which allows users to define their own data 
types, extends this data abstraction capability 
even further. In languages that support 
abstract data typing, such as CLU [LIS74] and 
ADA [WEG80], users have the ability to model the 
language interface, customizing it to fit a 
specific application. 

Previous work on applying abstraction techniques 
to database management has focused on module 
abstraction [ROW78, SMI78, BAR8l]. In the 
module approach, each relationship is modeled as 
a unique "type" bound to its application 
processes. An employee, for example, is of type 
EMPLOYEE, and is bound to its associated 
operators of HIRE and FIRE. Complex data typing 
uses abstraction at a lower level. Using the 
CDT approach, an employee may be modeled as a 
relation with attributes which may be of type 
date, name, money. Our Complex Data Typing is 
not used to define the processes on employee, 
but to create an environment that makes those 
processes easier to specify. 

The CDTs defined in this paper interface both 
with the user and a semantic association model 
for SSDs called SAM* [SU82]. The SAM* model 
defines a database in terms of a set of 
interrelated associations: membership, 
aggregation, generalization, interaction, 
composition, cross-product, and summarization. 
These associations are represented by one or 
more generalized relation (G-Relations). 

, 
A G-Relation provides the distinction between 
the identifying and summary attributes. 
Identifying attributes are attributes that 
qualify what the corresponding data is about. 
Summary attributes are attributes that 
constitute the measurements and needed values. 
For example, 

[~~~~~][~~~~~~~][[~~~~~~~~~~J 
State and County are identifiers while 
population is the summary attribute. A G-
relation can be defined over a set of complex 
domains; a complex domain may h", of the type G
relation itself. 

3. COMPLEX DATA TYPES FOR SSDS 

Operations on a data type may be separated into 
primitive and high-level operators. Primitive 
operators define the meaning of the data type 
and would be included in any implementation of 
the data language. A list of 'primitive operators 
for corresponding CDTs are given in the 
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appendix. High-level operators are derivable 
from primitives. They are defined as those 
operations that would be convenient for the user 
to have, and will differ according to the user 
population. In this section, each of the 
identified CDTs is defined, and examples of 
high-level operators are given. 

G-RELATION: A Generalized or G-Relation is a 
relation defined over a set of simple or 
complex domains. Domains are further 
classified as being either identifying or 
summary domains, as described in [SU82]. 

Operations on a G-Relation are performed at two 
levels. At the lower level, the operators 
correspond to the data type of the domain. At a 
higher level, the G-Relation is simply a set of 
uniform tuples. As such, all set operators 
previously described are applicable. 
Traditional relational operators, such as join, 
select, project, can also be used with some 
modification. For example, the following 
statement selects all experimental data on a 
subject in which the average water retention for 
the first measured parameter is greater than 
five percent. 

IN pilot: 
IF «subject=5547) and 

(water ret(l;ave) .GT •• 05) 
THEN SELEcT * 

SET: A set is a collection of elements, all of 
the same type, in which no duplicates are 
allowed. 

The CDT set corresponds directly to the 
mathematical notion of set. Operators should 
include finding the union, intersection, 
difference between two sets. E.g., 

Given a: «Chicago, Denver, Lincroft» 
b: «Denver, Detroit» 

a CONTAINS 'Chicago' 
a INTERSECT b 

returns <T> 
returns «DENVER» 

ORDERED SET: An ordered set is a set in which 
the elements are ordered and may be 
indexed. 

Elements of a set are related to each other by 
membership only. Members of any ordered set are 
additionally related by order. As such 
precedence operators are added to both set and 
vector operations. 

example: 
fcl: {Davis, Chen, Sandburg, Mondale} 

IN fcl: 'Chen' BEFORE 'Mondale' 
returns <T> 

IN fcl: PREDECESSOR(Sandburg) 
returns {Davis, Chen} 

VECTOR: A vector, V, is a collection of 
homogeneous elements. There is an ordered 
set of indices, I; and a one-to-one 
mapping between I and V associated with a 
vector. Subscripting is defined as the 
mapping of I into V. 



Operations on vector may be either position or 
content dependent. content dependent operators 
include: 

• Information retrieval operations such as 
checking for inclusion or exclusion of a 
single element, or multiple occurrences of 
either; E.g., given: 

a : <-1,2,-3,5,8,9> 
b : <-3,5> 

a INCLUDES b returns the index 
(3) denoting the position from which b is 
included in a. To search for the location 
of a value, the "I" operator is used. 
s:= INDEX(a(?) > 0) returns the 

indexset «2),(4),(5),(6». 
To return the actual values greater than 
zero, this indexset may be used 

a(s) returns the vector <2,5,8,9>. 

• Cleaning a data vector for further analysis 
through replacement or deletion of 
specified components. For example, to 
replace all values less than zero by zero: 

IN a: 
REPLACE aCt) < 0 BY 0 

Position dependent operators utilize 
subscripting to provide flexible access of an 
entire vector, p subvector, or a single 
component. 

a(I,3,4) returns <-1,2,5> 

MATRIX: A matrix is a multidimensional 
collection of elements of the same type. 

The use of a matrix in a traditional DBMS system 
is typically made possible via an application 
program in which all processing is done one cell 
at a time. When a matrix is recognized as a data 
type, operations can be performed on it taking 
multidimensionality into account. The system 
SAS, for example, now has a matrix language 
which provides for non-procedural aggregation 
and linear algebra functions. 

In the following example each null (unknown) 
data element in a matrix is replaced by the 
average of existing values. First, an indexset 
containing the position of each missing element 
is defined as t; next, an indexset of all 
existing elements is defined as u; finally, the 
missing elements in z are redefined as the 
average of all existing values. 

t:=INDEX(z(?;?)=NULL) 
u:=INDEX(z(?;?)=EXISTS) 
z(t):=AVE(z(u) 

TIME: Time is a value representing a point of 
reference. 

Operations on time include: 

1. Accessing by interval: 
DURING Jan 
BETWEEN 10:10 AND 10:15 

2. Accessing by temporal order: 
BEFORE 12/20/82 
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TIME SERIES: A time series is a two-dimensional 
matrix in which rows represent cases 
(measurements), and columns represent 
observations (identifiers), indexed by an 
ordered set of times. 

The CDT time series is modeled as a special case 
of the two-dimensional matrix, so that 
multiseries operations can be included. A'time 
series differs from a matrix in that the 
semantics of the rows and columns are explicitly 
defined. Consider a time series of rainfall for 
1982 by county. 

rainfall(Alachua) returns a single 
series on Alachua county; 

r~:nfall(BETWEEN 3/15/82 AND 9/15/82) 
subsets the series by time. 

Data in a time series is not necessarily 
periodic; however, for statistical analysis, 
periodicity is required. The BY operator is used 
for implicit aggregation or disaggregation. 

monthly_rainfall :=rainfall BY MONTH 

TEXT: A text is a vector of characters. 

Text allows for a free-formatted field in the 
data. Traditional DBMSs require the user to 
implement text through application programming 
using characters and substrings. Realistically, 
this means that unformated fields are not 
included. Comments or descriptions are either 
encoded (e.g., medication:=44 means 
"Arithromycin, 10mg, 5 days") or are recorded 
off-line. 

Common text processing operations to be 
performed include: 

1. The use of variable or fixed length don't 
cares: 

'pollut*' matches 
pollute, pollution, pollutants 

2. Threshold matches: for example, to select 
data in which a' descriptive field contains 
at least 60% (threshold) of the keywords 
described: . 

BY WORD(desc CONTAINS AT LEAST 
.6 OF keywords) 

3. 1 RELATED WORK: STATISTICAL ANALYSIS SYSTEMS 

We surveyed nine statistical analysis packages: 
CONSISTENT (DAW80), GENISYS (DIN80), MINITAB 
(MIN81), P-STAT (BUH79), S (S80), SAS (SAS79), 
SIR (SIR80), TPL (TPL80). and TROLL (TROL79). 
Specifically we were interested in finding out 
how well our notion of complex data types is 
supported in statistical analysis packages. 
Although the packages do not necessary support 
the notion of type, the usefulness of defining 
these complex types and the facility to 
manipulate them directly is recognized. 



Ua Type 

SET 
VECTOR 
ORDERED SET 
MATRIX 
TIME 
'!'IME SERIES 
TEXT 
G-RELATION 

Concept Supported By 

S, MINITAB, TROLL 

SAS, MINITAB, TROLL 
SAS,SIR,TPL,CONSISTENT 

SAS ,MINITAB, TPL 
CONSISTENT 

Figure 1. CDT Concepts Support by Statistical 
Packages 

4. AN SSD LANGUAGE 

In designing an SSD Language (SSDL), we made the 
following design decisions: 

1. The language should operate in an 
environment which allows a user to create 
and save temporary files. A SSD is 
generally static in nature; the average 
user will not be allowed to make 
alterations to the main database. At the 
same time, a user may often want to alter 
the data experimentally, or need to 
massage it into a specific form for future 
analysis. We assume that it is possible to 
define the view (subschema) of the 
database for each user and that users can 
only perform retrievals against local 
views. Updates are authorized to DBA 
only. 

2. SSDL should include tools for descriptive 
analysis and data manipulation, but should 
not duplicate the efforts of complex 
analysis (e.g., mathematical modeling) and 
display packages. It should, instead, 
provide the user with a common interface 
to those packages. This decision may 
cause integration problems for the 

- implementor, but will give the user the 
most advanced tools available without 
reinvention. 

3. "Friendliness" must not get in the way of 
power. A language which does not allow 
the user to perform a large range of 
semantically valid data operations does 
not provide sufficient support for 
exploratory analysis. In SSDL we include 
a complete set of primitives for such 
exploration in addition to the commonly 
used high-level operators for a more 
casual user. 

4. For statisticians, a structured, 
procedural language may be more natural 
than a non-procedural language. We first 
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patterned SSDL after SQL [CHA76]. A 
reaction from statisticians was that 
things were done out of order--that output 
should be specified last, not first as in 
the SELECT statement; that nested commands 
force the user to get all the way into the 
middle of the procedure before he 
understands what is going on. If the user 
is going to proceduralize a language to 
understand it, one might just as well 
begin with a procedural language. 

Preliminary studies by Welty and Stemple 
[WEL81] suggest that performance on 
complex queries is better in a procedural 
language and no worse on simple queries. 

Consider a simple aggregation using the relation 
emp(empno, dno, sal): 

Query: List the departments in which the 
average salary is less than $10,000. 

Figure 2 gives the SQL solution; to the right of 
the query is its architectural structure. 

SELECT dno operation 
FROM emp environment 
GROUP BY dno level 

HAVING AVE(sal) < 10,000 condition 
Figure 2. SQL Version of Query 

What we suggest as a more natural ordering 
is based on CASDAL [SU78J and is shown in Figure 
3. The user specifies first what he is working 
on; second, how he is going to work with it; 
third, any restrictions; and fourth, the 
operation to be performed. 

IN emp: 
FOREACH dno 

IF (AVE(sal) .LT. 10,000) 
THEN OUTPUT (dno) 

ENDEACH 
Figure 3. SSDL Version of Query 

4.1 THE STRUCTURE OF SSDL 

environment 
level 
condition 
operation 

A SSDL program consists of one or more program 
statements. A program statement is composed of 
the following structures. 

1. Environment. Environment specifies the 
context under which operations are going 
to be performed. Conceptually, the 
specification of a G";Relation in the 
environment statement retrieves that table 
of data into the user-'s workspace. 

2. Level. The level specifies the range over 
which the data operations are to be 
performed. Since aggregation over subsets 
6f data is a prevalent operation in SSD 
processing, this structure must be 
straightforward and easy to use. If no 
level is specified, it is assumed to be 
tuple at a time. 



3. Condition. The condition structure 
specifies under what conditions data 
retrieval and manipulations are made. The 
constructs that make up this structure are 
similar to those found in PASCAL. 
Condition statements, the FOR construct, 
and statement blocks are all supported. 
Additionally, a set of boolean system 
operators which apply to all CDTs are 
specified in the language: ANY, ALL, NO, 
EXISTS, NULL. 

4. Operation. The operation structure 
specifies the retrievals and manipulations 
necessary for output or preparation for 
further processing. Operations available 
to the user include: 

• Output a variable, expression, or 
special function. SSDL borrows non
procedural output statements from 
existing statistical packages for 
aggregation (the BY operator); cross 
tabulation, e.g., 
occupation BY education USING 

(MIN(sal), MAX(sal) ); 
and aggregation of quantitative 
variable, e.g., sal BY CUT(age,5). 
• Create temporary variables or new 
views. The user can define variables or 
G-Relations by example. Using the emp 
G-Relation, the user could write: 

IN emp: 
CREATE asal(dept AS dno, ave sal 

AS sal) -

Synonyms are available to simplify a 
given program. Thus, 

LET adp==auto.date purchased 
allows the user to type the shorter 
version for the duration of the 
environment (similar to [DINT80]). 
• Perform a subprogram. A complex query 
often involves the manipulation of a G
relation at different levels of 
processing. The BEGIN-END structure is 
used to specify environment within an 
environment processing. An example of 
this is given in Figure 5. 
• Perform a macro. Upers are given the 
power of procedural abstraction. 
• Call a statistical package for 
performing complex analysis. 

5. EXAMPLES 

Two examples of SSDL programs are given below to 
demonstrate the use of CDTs and the flavor of 
SSDL as a high-level procedural language. 
Numbers to the right of program lines correspond 
to comments following the program. 

The first example involves the G-Relation: 
energy _use(state, countyll pop ,oil_consumption) 

where state and country are identifying 
attributes; pop and oil consumption are summary 
attributes; state, and county are simple string 
variables, pop is an integer, and 
oil_consumption is a single time series. 
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query: List the average monthly per capita oil 
consumption for each state during last 
winter (11/82 - 3/83). 

IN energy use: 
LET oc~=oil_consump 

ADD month woc AS oc(1) [1] 

DO [2] 

oc:=oc(BETWEEN 11/81 AND 3/82) BY MONTH [3] 

month_woc:=AVE(oc) 

END 

OUTPUT(SUM(month_woc)/SUM(pop) BY state) 

Figure 4. Time Series Example 

The bracketed notes [1], [2], [3] are explained 
below. 

1. For the duration of the program, the G
Relation energy use is appended with a 
summary field to hold average monthly oil 
consumption for each county. Note the use 
of "definition-by-example" with the AS 
eonstruct. 

2. The DO-END structure indicates the 
statements to be performed on each tuple 
of the G-Relation. 

3. This statement combines vertical 
sUbsetting. and aggregation. The time 
series 0 c is now periodic by month and 
contains-only data for November through 
March. 

The second example is ta~en from Teitel's volume 
testing paper' [TEI81]. Consider the following 
G-Relation: 

persons(id, birthyr, educ, sex, mo_id, fa_id) 
Each tuple contains information on an 
individual; data on that individual's parents 
(e.g.; birthyr, educ) mayor may not be included 
in the data as a separate entry. 

query: Give a frequency distribution of 
offspring by the educational level of 
each parent. 

IN persons(X): [ 1 ] 

CREATE parents(child AS id, 
mo_ed AS educ, f ed AS educ) 

3. Volume is defined as width: number of 
variables; length: number of cases; and 
depth: query complexity. 



DO 

parents:= parents UNION 
<id,NULL,NULL> 

BEGIN: 

IN persons(Y): 

IF (X.id =Y.mo id) 

THEN parents.mo_ed :=Y.educ 

ELSE 

IF (X.id = y.fa_id) 

THEN parents.fa_ed .= Y.educ 

END 

END 

IN parents: 

OUTPUT(mo ed BY fa ed 

[2] 

[3] 

[4] 

USING COUNT(child_id) [5] 

Figure 5. Embedded program example 

1. The X and Y prefixes distinguishes between 
two scans of the same G-relation. 

2. The G-relation PARENTS is created then 
filled tuple at a time. NULL is a SSDL 
keyword. 

3. For eath tuple the entire G-Relation is 
searched again to find and record parental 
data. The BEGIN-END block indicate a SSDL 
sub-program. 

4. The notion of a currency pointer is 
retained within a subprogram. 

5. The BY ... USING construct fills in cells of 
a table using the specified function COUNT 
[TPL80] . 

6. CONCLUSIONS AND FUTURE WORK 

A user language for SSDs must optimize user 
friendliness while providing power. and 
flexibility. In SSDL this is done by providing 
two levels of processing. For common task's such 
as aggregation or frequency distr{butions, non
procedural operators and built-in functions are 
available. We have integrated the work of 
existing statistical s~stems to provide high
level procedures for descriptive analysis. To 
ensure that users can perform any semantically 
valid operation on CDTs, primitive operators are 
also available. User aids, such as synonyms, 
macros, and definition-by-example, are included 
to make low-level operators easier. to use. 
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Work continues at the University of Florida in 
the area of statistical database languages. Shen 
[SHE83] uses the notion of CDTs and the basic 
SSDL structures in a formal design of a database 
language for statistical and scientific users. 

SSDL is being developed as a data language for 
retrieval and manipulation of SSDs. A data 
definition language (DDL) must also be developed 
to be used in conjunction with SSDL. A DDL to 
support SSDL should include: 

1. Domain Definition: A domain is a CDT in 
which the value set may be further ' 
constrained, either through enumeration or 

'range specification. E.g., 
inches rain: REAL <00 .. 60> 
counties: SET OF «list of counties» 

2. CDT Definition: A parametric approach to 
data definition might be most useful. 

rainfall: TSERIES OF inches rain 
CASE: counties -
SDATE: 1/82 
PERIOD: daily 

3. Function Specification: To perform 
implicit aggregation in SSDL, aggregation 
procedures must be defined in the DDL. 
This includes standard summarization 
(e.g., population BY county) as well as 
specially defined aggregates ( e.g., 
profit BY corporate_quarter.) 

4. Units of Measure: A SSD must be able to 
handle units of measure cleanly. In our 
opinion data typing is not a good 
solution, since the problem cente~s around 
conversion between units rather than 
operations on them. Some work has been 
done in this area (e.g., KAR78 , GEH82), 
but the problem is not yet solved. We 
look upon this as an area for future 
study. 

Complex data typing has been presented as a 
means of supporting .the manipulations necessary 
for SSD processing at the user's level of 
abstraction. We feel that incorporating CDTs 
directly into the DBMS will result in more 
efficient and effective management of SSDs. 
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S. APPENDIX 

Primitive Operations for Complex Data Types: 

SET: sl, s2: set 

ELEMENT(sl) : single element 
INTERSECT(sl,s2): elements common to both 

sl and s2 
UNION(sl,s2): elements in either'set, 

remove duplicates ' ' 
DIFFERENCE(sl,s2): elements in sl that 

are not in s2 
CARDINALITY(sl): number of elements in sl 

VECTOR: vI, v2: vector; p_ex: predicate 
expression; 
i: vector index 

ELEMENT(vl,i): element located at 
position i 

INDEX(vl,p ex): indexset of positiori 
matchIng p ex 

INSERT(vl"e,i):-veetor with element e 
inserted after position i 

DELETE(vl ,i): vector with element located 
at position i deleted 

ORDERED SET: os: ordered set; e: element of os; 
i: index of os 

SET primitives: CARDINALITY; INTERSECT 
VECTOR primi ti ves: ELEMENT; DELETE 
INSERT(os,e,i): ordered set with 

element e 
inserted after position i IF e was 
not a member, of os, ELSE no effect. 

MATRIX: ml,m2: matrix; e: matrix element; 
i: matrix 
index; d: dimension 

ELEMENT(ml,i): element at position i 
INDEX(ml,e): set of indices specifying 

the positions of the element in the 
matrix 

SHAPE(ml): vector containing dimensions 
of ml 

JOIN(ml,m2,d): matrix which is the 
concatenation of ml and m2 over 
dimension d 

DELETE(ml,i): matrix in which the 
element at position i is logically 
deleted. 

REPLACE(ml,i,e): matrix in which element 
at position i is replaced by e 

TIME: tl,t2: time 
TIME: date and time of day 
Component extractor (t1): e.g., YEAR, 

DAY, HOUR 
BEFORE(tl,t2)/AFTER(tl,t2): boolean 

variable 
DIFFERENCE(tl,t2): duration value 

TIME SERIES: sl,s2: time series; agg_fnct: 
built-in 

or user defined function for 
specifying periodicity 

All MATRIX primitives. 
MERGE(sl,s2): time series representing 

the merge of sl and s2 along both 
case and observation indices 

195 

TEXT 

TIME_COLLAPSE(sl,agg_fnct): time series 

which has been either aggregated or 
disaggregated to a form specified by 
the agLfnct 

t:text; i: text index; s: string 
All VECTOR primitives apply to text 
CHARACTER(t, i): ith character in t 
WORD(t,i): ith word in t 

G RELATION: All SET primitives 
RELATIONAL ALGEBRA primitives (e.g., DATS1) 

modified to include the semantics of 
summary and identifying domains. 
These operators, and their 
modifications, are described fully 
in [SU82]. 
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Abstract 

This research investigates data management, data structures, and constraints on data 
s~ructure design in a cross section of programs known as "scientific models". Scien
t~fic mOdels are large programs that use numerical approximation techniques to_ simulate 
physical phenomena for which exact solution is impossible, e.g. weather forecasting 
mo~els. Scientific models, as a class, use remarkably similar data structures. The gen
er~c structures and access patterns in scientific models are the basis for functional 
specification of a data management system tailored to this application class. 

This article is an extended abstract of disserta
tion research about data management in scientific 
simulation .programs. Scientific simulation pro
grams, also called "scientific models", are pro
grams used for prediction of physical phenomena; 
weather prediction, nuclear reaction, and clima
tology simulations are examples of programs in 
this class. Of particular interest are the data 
structures and data structuring principles in such 
programs, especially the content, organization, 
and access patterns for data retrieval. 

The main research activities are a survey of data 
management characteristics and a codification of 
the survey findings. We investigate what struc
tures are used in individual scientific models, 
and whether generic structures are applicable to a 
wide class of models. Generic data structures are 
identified. These structures provide the neces
sary basis for building efficient, general purpose 
data management tools for scientific models. A 
data management tool tailored for scientific 
models is specified in the dissertation. 

The scientific models in the. survey were carefully 
selected to be representative of the entire class. 
Twenty-seven models were investigated in the sur
vey, and eleven of those were the subject of 
extremely detailed analysis. Many previously unk
nown similarities in data management across a wide 
range of scientific disciplines and numerical 
methods were found. 

Factors that influence data structure design 
include characteristics of the physical phenomena, 
the mathematical equations, the numerical approxi
mation and solution methods, and the computer 
environment. Many of these characteristics con
strain choice of data structure, and hence are 
called "constraints". The analysis of constraints 
focuses on application characteristics, rather 
than on computer characteristics. The understand-
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ing of constraints on access patterns and data 
arrangements can therefore be used within dif
ferent computer environments or in the design of 
future computer environments for scientific 
models. 

In summary, the research reported here addresses 
the following questions: 

(1) What data structures are implemented in 
scientific simulation programs? 

(2) What constraints influence the data structure 
design in such programs? 

(3) Can the access patterns in such programs be 
categorized such that a small set of data 
structures integrates the access patterns in 
many such models? 

1. NEED FOR RESEARCH INTO SCIENTIFIC DATA MANAGE-
MENT 

Scientific applications often stress the computer 
environment to its limits, so that in order to do 
the calculation at all, the scientist must make 
optimum use of his resources. Sequential file 
processing predominates, because it minimizes the 
expense and the difficulties of data management 
across memories. Standard database management sys
tems are not used for two reasons: they are highly 
inefficient, and hence too expensive, for scien
tific applications; and, a scientist often views 
his own computing problems as unique, so that no 
general purpose tool would be applicable. 

Because scientists do not use data management sys
tems, there is a natural tendency for data manage
ment researchers to ignore scientific applica
tions. However, it has never been determined 
whether. scientists avoid general purpose tools 
because they are not needed, or because tools that 
fit scientists' needs are not available. Standard 
database management systems are optimized for com-



mercial applications that need interactive 
retrieval of random requests •. Scientific applica
tions, on the other hand, are often batch jobs 
with predefined retrieval patterns. Virtual 
memory is inefficient for the data access patterns 
in large arrays that are typical in scientific 
applications (Mura80J. A few specialized data 
management packages for scientific applications 
have been constructed, but none is widely used. 
Data management in scientific applications must 
thoroughly investigated, in order to understand 
what tools are suitable. 

2. SCIENTIFIC MODELS 

Scientific models are programs used for approxi
mate prediction of physical phenomena, such as 
weather, ocean currents, and nuclear reactor 
dynamics. A large system of partial differential 
equations describe the physical relationships in 
the model. The systems of equations cannot usu
ally be solved exactly, so numerical analysis 
techniques are used to approximate their solution. 
Efficient data management is critical in scien
tific models because they are computationally very 
intensive AND they have a high volume of data. 

The physical domain in a scientific model is 
discretized into a large number of small areas by 
superimposing a grid on the domain (see Figure I
I). The phenomena of interest are predicted for 

,each grid cell, e.g. temperature at some future 
time in each cell is predicted as a function of 
the temperature and humidity in the cell and sur
rounding cells at a previous time. The value of a 
physical quantity for one grid cell may be the 
average value for the entire space in the cell, or 
it, may be the value at a particular point in the 
cell. The values of physical variables across all 
cells in the grid forms the composite prediction 
(e.g. a weather map). 

Figure !-!. Superposition of a three dimensional 
rectangular grid on a spatial area. 
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Some models also track particles (e.g. electrons) 
that _represent a discrete unit of matter across 
the spatial domain. By tracking a large number of 
particles, the model obtains a very accurate pic
ture of ,material movement. In particle models, 
physical properties of both the grid- cells and the 
particles are predicted. 

Time is also discretized, into many small 
.. time steps·' • The state of the physical system is 
recorded for all grid cells and particles at the 
end of each timestep. The predicted values at the 
current and/ or the previous time steps are the 
input to the next prediction (see Figure 1-2). 
The timestep is a basic unit of computation, in 
that the same sequence of calculations is per
formed in each timestep. Within timestep, data 
about grid cells are updated in a fixed sequence. 

The access pattern to individual grid cells, and 
within grid cell to individual variables, is 
almost always totally defined before the program 
,is compiled. 

Figure ~-~. Timesteps in the predictive process: 
example shows the "leapfrog" explicit time 
integration method, in which predictions of new 
grid values are a function of the current and the 
previous predictions. 

In a typical scientific model, data about the grid 
cells comprises the bulk of the stored data. The 
amount of grid data is a function of the grid 
resolution, the number of physical phenomena being 
predicted, and the domain size. In the FTELT 
model, for example, the grid typically contains 
20,000 cells, and 150 variables are stored about 
each cell, for a total of about three million 
numbers of grid data. Those three million 
numbers will ALL be updated in each timestep. 
Dozens of timesteps are made in one model execu
tion, so over one hundred million updates will be 
performed in one simulation. 

The amount_of data precludes its storage in cen
tral memory, but the d'ata is accessed repeatedly 
by the calculations. Under these circumstances, 
efficient data management is a primary performance 
criterion. The structures for data on· the exter
nal storage device mu'st be designed to avoid 



unnecessary block transfers. Partitioning into 
blocks must take into account the calculational 
dependencies; that is, all variables needed to 
update each cell in a block should be in central 
memory at the same time. On the other hand, the 
amount of storage in central memory for buffer 
space, the transfer rates, and other characteris
tics of the computer hardware, must be taken into 
account to determine block size for efficient 
transfer. Storage structure design is constrained 
by the complex interrelationships among these and 
other decision variables. 

3. MAJOR SURVEY FINDINGS 

The dissertation research cuts across subject 
areas and numerical methods to illuminate the 
larger issues in data structure design in a way 
previously obscured by the details of computer 
implementations. Many similarities in data 
structures among scientific models were found. 
For eX&Qple, a major research task was the clas
sification of data structures in scientific 
models. The classification shows that a small set 
of data structures are sufficient for supporting 
the access patterns in a wide range of scientific 
models. This finding is of great significance 
because it permits the building of tools which are 
both generally useful and specifically efficient. 

Many of the results in the dissertation analyze 
constraints on data structure design. For exam
ple, the desirability of using a rectangular grid 
for modeling a variety of physical domains is 
ana1y~ed. The effects of computer environment on 
the details of storage structure design, such as 
block size, stratification into files, etc., are 
presented. The constraints placed by numerical 
method are also presented, particularly order of 
calculations and dependencies in the calculations. 
Understanding the factors that influence the data 
structure design adds to the ability to manage 
data in scientific simulation programs AS A CLASS. 
Such an understanding also contributes to the gen
eralizability of the results to other application 
programs and computer environments. 

The three most significant findings about imple"':" 
mented data structures in scientific models are 
summarized in the following subsections. 

3.1. CLASSIFICATION OF STORAGE STRUCTURES FOR 
DISK FILES 

All programs in the survey used only three types 
of storage structures for organizing disk files 
into blocks: planes, pencils, and sequential 
lists. The majority of scientific models have a 

rectangular three dimensional grid, i.e. a paral
lelepiped whose individual cells are paral-
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lelepipeds. For models with rectangular grids, 
the grid is partitioned into geometric portions, 
either "planes" and "pencils", and each partition
ing defines a class of storage structures. For 
non-rectangular grids and for particle data, 
sequential list storage structures are,used. 

The choice of storage structure is constrained by 
the update dependencies in a scientific model. 
Spatial dependencies predominate in scientific 
models. That is, the calculations to update one 
cell require data simultaneously from some set of 
other cells. The set of cells usually has a 
characteristic geometric shape, and hence is 
called a "stencil". The associations between 
categories of stencils and categories of storage 
structures is explained below. 

3.1.1. Planes 

A plane contains all of the grid cells on a plane 
perpendicular to one of the grid axes (see Figure 
1-3). In the plane storage structure, each block 
holds exactly one plane of the grid. The file 
consists of an ordered list of consecutive planes. 
The blocks are accessed in sequential order in a 
"moving window" sweep across the file, always 
retaini~g a certain number of consecutive planes 
(e.g. 5 planes) in central memory at a given time. 
In a typical sweep through a file, the first 
several higher level I/O operations build up the 
number of planes in central memory, i.e. "Get next 
block AND retain all previous blocks". After the 
requisite number of planes are in memory, the 
higher level I/O operation is "Get next block AND 

replace oldest block". 

There are some variations on these higher level 
operations. For instance, a backwards sweep moves 
through planes from last plane to first. Also, 
there may be minor perturbations in the order of 
access to the first and last planes because of 
special calculations at the edges of the domain. 
However, the variants are classified together 

Figure !-~. Rectangular three dimensional grid 
subdivided into planes: hatched area is one plane. 



because of the characteristic moving window sweep 
through the majority of planes, and the geometric 
partition of cells into disk blocks by planar 
location. 

The plane data structure is used in all computa
tions in which the stencil for updating a particu
lar cell includes a local set of adjacent cells in 
all three dimensions within the grid (e.g., see 
Figure 1-4). In calculations with a local, three 
dimensional stencil, the plane data structure 
minimizes the coupling between blocks because of 
the simple fact that all other geometric subdivi
sions have more sides. That is, all cells on a 
plane are adjacent to cells in only its two adja
cent planes; for any other geometric subdivision, 
cells in one subdivision are adjacent to cells in 
more than two other 
any other partition 
at least some blocks 
cells in the grid. 

subdivisions. Furthermore, 
would require re- reading of 
during the update of all 

Figure 1-4. Stencil for a three dimensional second 
order finite difference calculation: hatched area 
·is the cell to be updated, as a function of data 
about the other cells in the stencil. 

3.1.2. Pencils 

A pencil is a bundle of adjacent lines, where each 
line spans the grid in the dimension of its 
length. The pencil data structure is particularly 
suited to algorithms that have a one dimensional 
stencil. That is, in order to update a particular 
cell, other cells on a line (perhaps the whole 
line) are needed simultaneously, but there is no 
coupling to cells on any other line. 

Scientific models that use the pencil storage 
structure often use a stencil that has been "fac
tored". That is, the stencil may contain cells in 
all three dimensions, but the stencil has been 
broken up into a set of stencils, each. of which 
contains cells in only one dimension. The algo
rithm, then, uses several access patterns within a 
timestep, each of which sweep through the lines in 
the grid in a different dimension. Therefore, 
pencils are further subdivided into "cubes" (not 
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Figure 1-5. Kectangular three dimensional grid 
subdivided into cubes: stack of cubes is one pen
ciL 

necessarily perfectly cubic in shape), where a 
cube is the intersection of pencils in three 
orthogonal dimensions (see Figure 1-5). All of 

'the cubes in a pencil in a particular dimension 
must be in memory when the cells in lines in that 
pencil are being updated, but no other cubes are 
required. 

The pencil storage structure partitions the grid 
into cubes and each cube is stored in one block. 
The file is a three dimensional array of blocks, 
where each block has a linearized index. There is 
one secondary index to cubes within each pencil in 
each dimension. For example, for pencils in the 
"x" dimension, there is a list of the indices of 
cubes in the first pencil in that dimension, a 
list of indices of cubes in the second pencil in 
that dimension, etc. The higher level I/O opera
tion, similar to an indexed sequential access 
primitive, is "Get all the blocks whose indices 
are on this list". 

3.1.3. Sequential lists 

The third storage structure, called an "sequential 
list", is used for particles, for irregularly 
shaped grids, and for other files where there are 
few update dependencies among instances of a sin
gle entity type. For example, no data about any 
other particle is needed when data about a partic
ular particle is updated. Also, the particles can 
be updated iu any order. Thus, no coupling among 
particles must be preserved in the partitioning of 
particle data into blocks. Only one block is 
needed in central memory at one time, since there 
is no coupling between blocks. There is sometimes 
an order to the block~. For example, particles 
may be partially ordered by location to facilitate 
access to cell data. However, the blocks are 
always accessed in sequential order, so the 
appropriate access operation is a simple sequen
tial fetch, Le. "Get next block". 



3.2. SIMPLE USER LEVEL DATA STRUCTURES 

Scientific models store data about only a few 
types of entities: grid cells, other subregions of 
space, particles, and materials. Grid cells are 

the subdivisions of space defined by superimposing 
a grid on the spatial domain. Other subregions 
are aggregations of grid cells based on common 
properties, e.g. all cells in the subregion 

defined by the vessel part of a nuclear reactor. 
Particles are units of material, e.g. neutrons. 
Materials (e.g. steel) and material-particle 
interactions (e.g. neutrons hitting steel) are 
together classified as "handbook" data because 
orily static facts are recorded about these enti
ties; thus, this type of data resembles a compu
terized chemistry handbook. 

The user database is simple in other ways: few 
facts ("attributes") about most entities, few 
types of relationships, and few types of allowable 
operations in the user data structures. The sim
plicity of user data structures implies that full 
generality of data management is not needed. Data 
management tools for scientific simulation pro
grams can be tailored to handle .the specific user 
data structures without loss of applicability. 
For example, each entity type has a characteristic 
form of identifier. Particles have no unique 
identifier, since their individual properties are 
not of interest. Grid cells and other subregions 
have a implied location identifier, usually an 
array index. By knowing the full range of iden
tifier types, the user interface can be greatly 
simplified. 

3.3. PREDEFINED ORDER OF ACCESS 

Order of access to disk files is predefined in 
scientific models; the order in which files are 
read, and the order in which blocks are read 
within file, is totally predetermined before 
compile time. Truly random access, i.e. where the 
decision on what entity to access next depends on 
a updatable value in the data itself, is not used 
in any model in the survey. The dissertation shows 
that random access would introduce inefficiencies 
because of the interaction between the stencil, 
the volume of stored data, and the fact that all 
values of all records are updated in every 
timestep. Other inefficiencies, such as redundant 
data storage, introduced in order to avoid random 
access are also analyzed. The analysis shows that 
random access is the source of greater ineffi
ciency. 

The significance of this discovery 
transfers can be highly optimized 
A data management tool would need 

is that data 
by prefetching. 

some dynamic 
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information 
of transfer 

about timing of transfers, but order 
can be entirely prespecified. In 

sharp contrast, standard database management sys
tems assume that truly random access will be u'sed 
heavily, so they require a much different approach 
to the problem of data transfer. 

4. A DATA MANAGEMENT TOOL FOR SCIENTIFIC MODELS 

The dissertation includes a specification of the 
functional requirements for a "scientific model 
data management system" (SMDMS) from the user per
spective, and also from the perspective of storage 
management. In the proposed tool, the user speci
fies certain parameters of his application, e.g. 
the size and 'shape of his grid, the use of parti

'cle data, etc. In the main part of his program, 
the user specifies one or more sets of calcula
tions, called datapasses, to be performed on each 
instance of an entity type. A datapass retrieves 
all instances, performing the set of calculations 
in the datapass on each instance in its turn. The 
user specifies parameters of the datapass, e.g. 
the order of update and the stencil to be used. 
Based on these user parameters, the appropriate 
storage management and data transfer cOillmands are 
automatically activated by the SMDMS. 
The heart of the data management system specifica
tion is the user interface. The interface is 
tailored for the scientist user by taking into 
account access patterns in scientific models as a 
class. The datapass concept, which specifies a 
set of calculations to be applied to every 
instance of a relation, is equivalent to a series 
of queries and updates in a standard database 
management system. Since the same calculations 
are performed on each instance, the datapass pro
vides a convenient and succinct specification of 
the entire set of queries. Furthermore, it allows 
the data management Syst.e.ill to optimize storage 

organization and disk transfers for the entire 
series of updates. 

5. CONCLUSION 

The most general statement of the original goal of 
this research was to assist physical scientists 
and hardware manufacturers in providing data 
management facilities for large scientific models. 
The first step in the process of tool building is 
to achieve the understanding of functional 
requirements for the tools. To this end, the 
investigation focused on the data structures, both 
user visible and underlying storage structures, 
that support the access and data patterns in 
scientific models. 

Investigation of data structures used in current 
implementations of scientific models, and of con-



straints on their design, formed the main part of 
this dissertation research. The data collected in 
the investigation provided a rich and detailed 
description of all phases of data management in 
scientific models. 

Of special interest in the analysis is data struc
ture at the level of file storage: the partition 
and organization of data into records, blocks, and 
files so that access across memories is efficient 
for individual models. Storage structures for file 
organization into blocks fall into only a few 
categories: planes, pencils, and sequential 
lists. The three categories are well defined by 
both their storage arrangements and higher level 
I/O primitives. 

The dissertation presents a data management tool 
(SMDMS) tailored to the access patterns and data 
content in scientific models. The functional 
requirements for the SMDMS data management system 
are similar to a standard data management system, 
but the characteristic kinds of retrievals and 
updates for scientific models are quite different. 
Efficiency requirements are critical because of 
the very large number of updates in a scientific 
model execution. Efficient implementation is based 
on the categories of storage structures discovered 
in the research. 

c, 
A full database management system can now be 
designed, using the functional specification in 
the dissertation. Implementation of a SMDMS system 
is necessary to test the usability and the practi
cal efficiency of the data structures and data 
management system developed in this dissertation 
research. The final product, i.e. the data manage
ment system system itsel;, will directly benefit 
the computer user communfty,' of scientific 
modelers. In addition, it will, provide data 
management researchers with an interesting tool 
for studying the usefulness and efficiency of spe
cialized data management systems. 
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Abstract 

AN EXTENSION OF RELATIONAL ALGEBRA FOR SUMMARY TABLES* 

z. Meral Ozsoyoglu and Gultekin Ozsoyoglu 

Department of Computer Engineering and Science 
Case western Reserve University 

Cleveland, OH 44106 

A summary table is one of the useful data structures used in statistical 
databases. For an algebraic summary table manipulation language, we first 
extend relational algebra for nested relations and aggregate functions, 
then propose a summary table manipulation language based on the extended 
algebra. A new operator, called aggregation-by-template is introduced, and 
other operators of the relational algebra are modified to apply nested 
relations. A special case of summary tables, called primitive summary 
table, is distinquished since it can be directly represented by a nested 
relation. Primitive summary tables are viewed as building blocks of sum
mary tables. Operators for constructing and manipulating summary tables, 
and their properties are also discussed. 

1. INTRODUCTION 

Tabular representations of summary data; hereafter called summary tables, are 
widely used in various application areas such as management decision making, health 
care, economic planning and census data evaluation. Figure 1 contains an example for a 
summary table. 

DIV: 
SUM-SALARY-OF divl div2 

EMPLOYEES 
DIV: DEPT: I DEPT: 

divl div2 man personnel acct 
AGE: SUM-SAL: SUM-SAL: 

[18,30] 2S0K 290K lOOK lSOK 290K 
[31,40] SOOK 400K 200K 300K 400K 
[41,60] 600K 2S0K 2S0K 3S0K 2S0K 

Figure 1: An example summary table: SUM-SALARY-OF-EMPLOYEES 

The use of summary tables is not restricted to output formatting: they are maintained 
for bookkeeping, compared and evaluated perhaps over a time span. Thus, starting from 
the premise that summary tables are proper logical modeling tools, we need a data 
manipulation language for summary tables. 

Current statistical software packages have only summary table creation capabili
ties, and usually have a list of commands to manipulate only a single flat file. A 
notable exception is the Table Producing Language system (TPL) of the U.S. Bureau of 
Labor Statistics [Uslb 80] that has powerful facilities to produce summary tables. 
However TPL does not manipulate or store summary tables, and is executed as a stand
alone system in batch mode. Therefore, it is not part of an integrated data manipula
tion language. 

This paper extends relational algebra [Codd 72] to handle summary tables. More 
specifically, we allow set-valued columns in relations, and add or modify relational 
algebra operators for manipulating summary data maintained in relations. 

* This research is supported in part by the National Science Foundation under Grant 
MCS-8306616. 

202 



Recently Klug [Klug 82] extended relational algebra by incorporating aggregate 
functions, and proposed a new operator, called aggregate formation. This operator uses 
the concept of partitioning a relation and ~pplie~ an aggregate f~nction to each par
tition. For summary table manipulatiOn; we define another operator, called 
aggregation-by-template, based on the concept of grouping (not partitioning). Jaesche 
and Schek [Jaes 82] define an extension of relational.algebra-for nonfirst normal form 
relations (i.e. a tuple component may be a set or a set of sets, etc.). 

We use nested relations to represent a special case of summary tables which are 
called primitive summary tables. Informally, a nested relation is a relation where 
tuple components for zero or more of its attributes are sets of simple values. Primi
tive summary tables are used as building blocks of summary -tables. That is, a summary 
table can be decomposed into primitive summary tables, and two or more primitive sum
mary tables can,b~ combined into a larger summary table. The relational algebra is 
extended for aggregate functions and nested relations so that it forms a basis for a 
summary table manipulation language. 

In Section 2, we introduce the terminology and definitions. Operators that 
define the algebra of nested relations are given in Section 3. The operations for 
arithmetic on nested relations are discussed in Section 4 as an additional feature of 
the extended algebra. Section 5 discusses operators to construct and to manipulate 
arbitrarily general summary tables. Section 6 is the conclusion. 

2. TERMINOLOGY AND DEFINITIONS 

2.1 Relational Model and Nested Relations 

A relation is a set of n-tuples, for some fixed n>O. Each component of a tuple 
in relation R has a name, which is called an attribute of R. A relation scheme is a 
set of attributes. As a notation we deal with column-ordered relations and refer to 
attributes by column numbers as in [Codd 72, Klug 82, Ullm 82] instead of attribute 
names unless explicitly stated. The attributes of a relation R of degree n (i.e. R 
withn attributes) are identified by integers 1,2, ••• ,n. The set of attributes of R is 
denoted Atr(R). Each attribute of a relation has an associated domain of values. Let U 
be the set of all values regarded as atomic (such as integers, reals, character 
strings, etc.) and a value null denoted .~-~. Let D , ••• ,D be subsets of U. A first 
normal form relation R is a subset of DIx ••. XD wh~re x iQ the cartesian product [Codd 
72] • n 

An attribute is called atomic if its domain is a subset of U. If the domain of an 
attribute is a subset of P(U) (i.e. power set of U) then it is called a nested attri
bute. A nested relation R is a relation whose attributes are either atomic or nested. 

In this paper, we use functional dependencies and embedded join dependencies of 
relational model [Codd 72, Ullman 82]. Functional dependencies are defined for nested 
relations without any change. The projection operator is directly applicable to 
nested relations. For the natural join on nested relations, the join attributes in 
the relations joined are either both nested or both atomic attributes. Thus, the join 
dependency and the embedded join dependency generalize to nested relations straight
forwardly. 

2.2 Summary Tables 

Informally, a summary table scheme isa two dimensional table of cells. Each cell 
can be considered as an element in a two dimensional array. The rows and columns of a 
summary table have some attributes called category attributes which correspond to 
array subscripts in a sense. Category attributes in a row or in a column may be struc
tured as forests of trees whose nodes are attributes. In a summary table, attributes 
which appear in a root-to-leaf path in a row or column category attribute tree are 
called row category attributes or column category attributes, respectively, of a cell. 
In addition to category attributes, a cell also has an attribute called cell attri
bute. The following example illustrates a summary table scheme. 

Example ~.l: There are two cells in the summary table below. The row categorY,attri
bute is AGE for both cells and column category attribute DIV belongs to the f1rst 

. cell, and DIV and DEPT belong to the second cell. The cell attribute, SUM-SAL, is the 
, same for both cells. 
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DIV 
SUM-SALARY-OF-EMPLOYEES DIV DEPT 

AGE SUM-SAL SUM-SAL 

More formally, a summary table scheme is a 4-tuple S(F ,F ,A ,M} where F and F 
are row and column category attribute forests, A is an ord~reS s~t of cell a€tribut~s 
and M is a mapping function. F and F are order~d forests of ordered trees (F or F 
may be empty but not both). Arnonemp~y category attribute forest F is denotedras c 
F=<Tl,.~.,Tk> where each T.=(V. ,E.} is an ordered tree whose vertex set is V. and 
edge set is E .• If m and fi ar~ tne total number of leaves in F and Fc' resp~ctivelY, 
then there ar~ m*n cells in S for m;>10 and n;>10. If m or n is zerO then the number of 
cells is n or m respectively. Each cell in S has a pair of ordered sets of attributes 
as row and column category attributes. The row and column category attributes of a 
cell appear in a root-to-leaf path of a tree in F and F respectively. The function M 
maps a pair of category attribute sets for a cellrinto aH attribute in A , which is 
the cell attribute of the cell. The function M is one-to-one and onto. C~ll attributes 
in Ac are not necessarily distinct, i.e., Ac is an ordered multiset. 

For notational convenience, we omit the function M and assume that the mapping 
from pairs of category attribute sets to cell attributes is done as follows. Let 
leaves in F and F be numbered from 1 to m and from 1 to n respectively. (Top leaf 
of F and l~ftmostCleaf 0thF are both numbered as l.) Then category attributes in the 
pathrfro~ha root to the i leaf in F and category attributes in the path from a root 
to the j leaf in F map to the (i*(ft-l}+j) th cell attribute in A , where l<i<m, 
l<j<n. Having fixedCthe mapping function M, we use S(F ,F ,A } to Senote a summary 
table scheme. r c c 

A category attribute may be nested or atomic, i.e. its domain is a subset of P(U} 
or U. ~ cell attribute is an atomic attribute. A Summary table instance for 
S(F ,F ,A } is a two dimensional table of cell instances corresponding to cells in S. 
A c~llcin~tance has row and column category attribute values and a cell attribute 
value. Let T=(V,E} be a tree in F or F of S. An instance t of ~ is an ordered tree, 
defined recursively as follows: r c 

If T is null (i.e. V=¢, E=¢) then t is nUll. Otherwise, 
(a) the root of t is a value for the attribute Vo which is the root of T. 
(b) let vl, ... ,Vk be the children of Vo in T and T1, .•• ,Tk be the subtrees of 

T such that V. is Ehe root of T., l<i<k. Then, subtrees of tare instances of 
T., leick, sueh that instances Of T-:-+l follow instances of T., l<i<k. (i.e. 
ofderedT. 1 1 --

Example ~.~: Consider the column category attribute tree T=(V,E) where V={DIV,DEPT}, 

E={(DIV,DEPT}} in the summary table scheme given in Example 2.1. There are two 
instances, say t l , t 2 , of T in the summary table instance shown in Figure 1, where 

tl=(Vl,EI}=({divl,man,personnel}, {(divl,man), (divl,personnel}}), and 

t 2=(V2 ,E 2}=({div2,acct},{(div2,acct}}}. 

An instance of a category attribute forest F is an ordered set of instances of 
the trees in F. An instance for a summary table S(F ,F ,A } has instances of F and F 
as row and column forests respectively. A pair of rOotStoSleaf paths in an instance of 
F and in an instance of F defines a cell instance. Each such cell instance has a 
c~ll attribute value. We wIll use term "cell" (and also the term "summary table") ·to 
denote a scheme or 'an instance interchangeably whenever there is no ambiguity. 

Semantically, each cell in a summary table corresponds to a group of individuals 
in a given population such that category attribute values of the cell define a group 
of individuals and the cell attribute value is the result of an aggregation applied 
over this group. 

2.3 Primitive Summary Tables 

A summary table S(Fr,Fc,Ac } where Fr and Fc each consists of a single chain of 
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attributes (i.e. a tree with one leaf) is called a primitive summary table. In other 
words, a primitive summary table has exact~y one cell. Primitive summary tables are 
basic building blocks of summary tables SInce each cell in a summary table S 
corresponds to a primitive summary table. Figure 2 shows the schema and the instance 
of one of the two primitive summary tables for the summary table given in Figure 1. 

DIV: 
ST2 DIV 

DEPT ST2 divl div2 
DEPT: DEPT: 

AGE SUM-SAL 
man personnel acct 

AGE: SUM-SAL: SUM-SAL: 
[18-30] lOOK l50K 290K 
[31-40] 200K 300K 400K 
[ 41-60] 250K 350K 250K 

Figure 2: One of the primitive summary tables for SUM-SALARY-OF-EMPLOYEES. 

Our approach for defining operations for summary tables is first to define operations 
to construct and manipulate primitive summary tables, then to extend the language to 
deal with arbitrary summary tables in terms of these operations. 

A nested relation can be used to represent a primitive summary table excluding 
the ordering and the type (row or column) of category attributes. Let S(F ,F ,A ) be a 
summary table where X and Yare sets of attributes in F and F respectiv~ly; ~Y=¢, 
and A ={C}. Then a nested relation R where Atr(R)=XUYUC can b~ used to represent S 
such £hat each tuple t in R corresponds to a cell occurrence in S whose row and column 

• category attribute values are tuple components in t[X] and try] respectively and whose 
: cell attribute value is t[C]. Let R be such a relation representing a,primitive sum-
: mary table S. Then the Ld. XY->C holds in R since each cell occurrence in S is 
! uniquely identified by category attribute values. Moreover, the e.j.d. *(X,Y) 'holds 
i in R since there is a cell occurrence in S for every pair of X,Y values. If R is such 
: a nested relation representing a primitive summary table S we say that Rand S are 
, information equivalent. Similarly, given a relation R and a primitive summary table 
: scheme S(F ,F ,A ) where X and Yare sets of attributes in F and F , A ={C} and 
: Atr(R)=X~OC,cancinstance for S can be directly constructed from R !f f:d. XY->C and 
'e.j.d. *(X,Y) hold in R. 

, Consider a nested relation R representing a primitive summary table S. Attributes 
'of R corresponding to cell and category attributes of S should be semantically dis-

.. : tinguished. For example, a relation R~ obtained from R by projecting out some category 
: attributes may not represent a meaningful summary table. That is because changing 
: category attributes effects the underlying populations over which the aggregation is 
!done. For R~ to represent a summary table, its column representing the cell attribute 
: should be changed appropriately whenever columns for category attributes are changed. 

, 2.4 Aggregate Functions 

An aggregate function, given a set of tuples and a column number (attribute) i, 
returns a simple value obtained from the ith components of tuples in the given set. 
The attribute i should be an atomic attribute. In general, the domain of attribute i 
should be compatible with the aggregate function, i.e. the result of the aggregate 
function when applied to column i should not be undefined. When an aggregate function 
is applied over an empty set of tuples, the result is null, denoted by ~-~. The null 
value is an atomic value and is included in the set U of all atomic values. The mean
ing of the null value is ~nonexistent~. When an aggregate function is applied to 
attribute i of a nonempty set of tuples, tuples t with t[i]~null contribute to the 
result, and tuples with t[i]=null are simply ignored. If all tuples, over which the 
aggregate function is applied have t[i]=null then the result is also null, i.e., the 
same as the case when the aggregate function is applied over an empty set of tuples. 
The result of an aggregate function over a nonempty set. of tuples with one or more 
tuples t having t[i]~null is not null. In this paper, we consider only aggregate func
tions MAX,MIN,SUM and COUNT. However, results can be extended with minor modifications 
to include any aggregate function. 

3. AN ALGEBRA OF NESTED RELATIONS 

In this section we first give operators for an extension of relational algebra to 
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nested relations; and then identify the basic set of operators of the extended alge
bra. The operands of the extended algebra are either constant relations or variables 
denoting relations with fixed number of columns. We use the term relation for nested 
relations as well as INF relations. The following notation is used throughout the 
paper. 

Notation: Let t l , t2 be two tuples having components for a set of attributes X. Then 
t l [X]-t

2
[X] denotes t

l
[X.]=t 2 [X.] for each attribute X. in X where ~=~ is simple 

equality if X. is an atomic att~ibute and it is a set ~quality if X. is a nested 
attribute. 1 1 

3.1 Aggregation Operators 

Aggregate Formation: Let R be a relation with attributes Atr(R) and X_Atr(R), Ixl=k. 
Let f be an aggregate function and A be an atomic attribute of R. Then R<X,fA> is a 
~elation with degree k+l and is defined as 

R<X,fA>={t[x]oylttR" y=fA dt' 1t'E.R" t~ [X]=t[X]})} 

where "0" denotes concatenation. 

The aggregate formation operator first partitions tuples of relation R such that 
tuples having the same X component are in the same partition. Then, the function f is 
applied to component A of tuples in each partition, and the X-value and the associated 
value produced by the aggregate function are output for each partition. The aggregate 
formation operator for INF relations is defined by Klug [Klug 82]. The definition 
given above is a straightforward extension of this operator to nested relations. 

Aggregation-~-Template: Let R] and R'2 be two relations with attributes Atr (R,) and 
Atr(R~)=Y£Atr(R ), Z=Atr(R2 ) wnere IYI=lzl~l and each attribute in Z is a nesEed 
attriBute. Let *~tr(Rl) such that if X is nonempty then X and Yare disjoint, and A 
be an atomic attribute of Rl • For notational convenience let Y denote the set (pos
sibly empty) of column numbers (attributes) in Y that are atomi8 in R" and Y =Y-Y • 
Let Z and Z denote those attributes in Z that correspond to Y and Y. TheR a 
RI <X,t,fA>R2

n is a relation with degree Ixl+lyl+l and is definedaas fol~ows. 

Rl <X,Y,fA>R 2 = {toyl (:lt l ) (3t 2) (tlE:Rl " t 2E.R 2 " 

t[X]=tl[X] " t[Z]=t 2 [Z] A 

y=fA ({ t~ I t~E.Rl " t' [X] =t [X]" 

t~[Ya]~t[Za] "t~[Yn]£t[Zn]}»}· 

The aggregation-by-template operator Rl <X,y,fA>R2 groups tuples of Rl as follows: 
Let t be a tuple over the attributes XU Z, where 

t[X]=tl[X] for some tuple tl in Rl , and t[Z]=t2 [Z] for some tuple t2 in R2 • 

Each such tuple t defines a group Gt of tuples of Rl such that a tuple v of Rl is in 
G

t 
if 

v [X] = t [X] , v [Y ] E. t [z ], and v [Y ] c. t [z ]. a a n - n 

Then the aggregation function f is applied on attribute A of tuples of Rl in each 
group. Finally, the X-value, the Z-value, and the associated aggregate value is out
put for each group. Thus the number of tuples in Rl <X,y,fA>R2 is the product of the 
number of tuples in R [X] and the number of tuples in R. In aggregation-by-template, 
tuples of R2 direct t~e grouping (i.e., R, is the "temp~ate"). Consequently, there may 
be some empEy groups. The value returned oy the aggregate function f applied over an 
empty group is null, which is denoted by "_no The treatment of null values is dis
cussed in section 2.3. 

The aggregation-by-template is more convenient than the aggregate formation when 
there are prespecified groupings attached to category attributes. For example, sum 
salary of employees by a specified set of age' groups can be tabulated by a single 
aggregation-by-template. When dealing with summary data it is common to have aggrega
tions over populations defined by prespecified groupings of category attribute values. 
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Furthermore, th~-aggregation-by-template is based on grouping tuples of a relation 
while the aggregate formation is based on partitioning the tuples. 

Example 3.1: As a running example, consider the following relation 

SKIER: NAME RACE- NO-OF- MISSED- NO-OF-RACES 
TYPES INJURIES SEASONS WON 

I.Stenmark tS,GSt 2 _~ 1976)_ 7 
E.Dodge t~l 2 {1973,1976} 6 

E.Halsnes - 4 {1976} 6 

where S,GS and D denote Slalom, Giant-Slalom and Downhill respectively. We may want to 
find the total number of races won by each group of skiers who compete in the same set 
of race types and either 

(a) had 1 or 2 injuries, and missed 1975 or 1976 seasons, or 
(b) had 2 or 3 injuries, and missed 1976 or 1977 seasons. 

The template relation is 

TEMP: NO-OF-INJURIES MISSED-SEASONS 
1975,1976 
1976,1977 

The query is SKIER<{2},{3,4},SUM5 >TEMP, resulting 

RACE-TYPES NO-OF-INJURIES MISSED-SEASONS 

!S,G~} 1,2 1975,1976 
S,GS 2,3 1976,1977 

i~l 1,2 1975,1976 
2,3 1976,1977 

TOTAL 
7 
7 

null 
null 

Note that the tuple for skier I.Stenmark belongs to two partitions whereas the tuples 
for E.Dodge and E.~alsnes do not belong to any partition. 

3.2 Pack, Unpack and Set Formation Operators 

In this section we give operators that change the nesting depth of attributes in 
a relation. 

Pack: Let R be a relation with IAtr(R) I=n, A~Atr(R) and CA=Atr(R)-{A}. For each (n-
I)-tuple g in IIc (R), an n-tuple Wg is defined as follows. . 

A 

{t[A] It~R "t[CA]=g} if A is an atomic attribute 

{x I (3t) (t(R " t rCA] =g 1\ x6t [A]) } 

Then PA(R) = {Wglg IIc (R)}. 
A 

otherwise. 

The pack operator PA(R) maps (packs) sets of tuples in R, whose n-l components 
for attributes in CA are the same, into single tuples. The CA-component of the packed 
tuple is the same as the C -component of those tuples that are packed. The A-value of 
the packed tuple is the se~ of A-values of the corresponding tuples if A is an atomic 
attribute in R. If A is a nested attribute in R then the A-value of the packed tuple 
is the union of A-values of the corresponding tuples. The pack operator is similar to 
one-attribute nest operator described in [Jaes 82]. 

Unpack: Let R be a relation with attributes Atr(R), A Atr(R), and CA=Atr(R)-{A}. For 
each tuple t R, a set of tuples UA({t}) is defined as follows: 
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Then UA(R) =!JRUA({t}). 

If A is a nested attribute, UA(R) maps each tuple t in R into a set of tuples 
such that each element in t[A] becomes the A-value of one of the resulting tuples and 
the tuple components for the attributes C are the same as t[CA]. If A is an atomic 
attribute then UA(R)=R. The unpack operat~r is the same as the unnest operator in 
[Jaes 82]. 

Set Formation: Let R be a relation with attributes Atr(R), A~Atr(R), and CA=Atr(R)
TAT. Then 

[R if A is a nested attribute 

l{ t'" I (?it) (t£R " t'" [A] ={ t [A]}" t'" [CAl =t [CA]) } otherwise. 

This is a trivial operator. If the attribute A is an atomic attribute, for each 
tuple of R, ~ (R) replaces the tuple component for A by its singleton set. If the 
attribute A i~ nested, ~A(R)=R. The set formation is required for other extended alge
bra operations. 

3.3 The Standard Relational Algebra Operators 

The relational algebra operators [Codd 72] include cartesian product, project, 
select, join, set union, set intersection, set difference and quotient. The cartesian 
product (xl and project (n) apply directly to nested relations. For the union (U), the 
intersection (n), the set difference (-), and the quotient (~) the corresponding 
attributes in both relations must have the same nesting depth (i.e. both of the ith 
attributes in the two relations are atomic or both are nested). The selection opera
tor, the natural join and a-join [Codd 70, Ullm 82] of two relations can be extended 
to nested relations with minor modifications [OzsO 83]. Recently a new operator 
called natural join by intersection has been introduced for nonfirst normal form rela
tions [Jaes 82]. This operator also applies to nested relations without any modifica
tion. 

3.4 Basic Set of Extended Algebra Operators 

Basic set of operations of the extended algebra include the five basic operations 
of the relational algebra (union, set difference, cartesian product, selection and 
projection) extended for nested relations, and the operators aggregation-by-template, 
pack and unpack. All other operators can be expressed by the above eight operators 
and the aggregation-by-template in this basic set of operations can be replaced by the 
aggregate formation to obtain another basic set of operations [Ozso 83]. The algebraic 
laws involving the aggregation-by-template and other operators of the extended alge
bra, which are useful in query optimization, along with their proofs can be found in 
[OzsO 83]. 

4. ARITHMETIC CAPABILITIES 

When dealing with summary data, arithmetic operations are frequently used. For 
example, we may want to tabulate the difference in sum salaries of employees by divi
sions and departments with respect to years 1981 and 1982, given the 1981 sum salaries 
and the 1982 sum salaries of those employees. As another example, we may want to tabu
late sum salaries of employees multiplied by a constant for security reasons. For such 
operations, we add arithmetic capabilities to the algebra extended for nested rela
tions. These arithmetic capabilities are limited since we use as operands of arith
metic expressions only components of the same tuple in a given nested relation. Note 
that the query language, SQL [Cham 1976] of System R [Cham 1981] allows arithmetic 
operations in much the same way (i.e. in SELECT clause of SQL) • 

Let R be a relation with Atr(R)~X={Xl' ••• 'X } and Y=Atr(R)-X. 
arithmetic expression involving +, -~ I, * as op~rators and Xi X as 
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Let g be a valid 
operands. Then 



R<g(X» = {t[Y]oylt~R A y=g(t[X])} 

where g(t[X]) denotes g(t[XI ], t[X 2 ] , ••• ,t[X ]). Note that if R is degree n, lyl=k<n 
then the result of R<g (X) > 1S of degree k+l. nA,lso, if t [Xi] is null for some i, I<I<r 
then g(t[X]) is also nUll. 

s. OPERATIONS ON SUMMARY TABLES 

In this section we describe operations involving nested relations, primitive and 
complex summary tables. Basically, these operations facilitate utilization of the 
algebra of nested relations for summary table manipulation. Due to space limitations, 
only brief descriptions are included in this paper. Formal definitions of the opera
tors and examples can be found in [OzsO 83]. 

Primitive Summary Table Formation: This operation produces a primitive summary table 
from a nested relation. Let R be a nested relation, Atr(R)=XUYU{C} where X and Yare 
disjoint sets of attributes, C is an atomic attribute and the f.d. ~Y->C holds in R. 
Then 

ST(T T C)(R) 
r' c' 

produces a primitive summary table whose row and column category attribute trees are 
T =(X,E ) and T =(Y,E ) respectively and whose cell attribute is C. E and E are sets 
of ordered edge~ suchCthat each of T and T is an ordered chain of a£tribut~s in X , r c 
and Y respectively. The primitive summary table formation maps each tuple in R into a 
cell instance in the summary table produced. This mapping is one-to-one. 

Let S=ST (T ,T ,C) (R) where Atr (R) =X Y {C}, 'and vertex sets of Tr and Tc are X and 

Y respectively.r Le€ x and y be ordered sets of values (vertices) in some instances of 
Tr and T in R respectively. If there is a tuple u in R such that u[X]=x and u[Y]=y 
then u[cY is the cell attribute value of the cell instance in S whose category attri
bute values are x and y respectively. If there is no such tuple in R then the cell 
attribute value is null ('-') which stands for "nonexistent". The f.d. XY->C in R 
guarantees that there is at most one cell attribute value in S for each cell. In addi
tion, if the e.j.d. *(X,Y) holds in R then the mapping between tuples of R and cell 
instances of S is one-to-one and onto. That is, there is no cell instance, with' , 

• cell value, in S unless there are tuples in R whose C components are '-' 

· Relation Formation: Let S be a primitive summary table where X and Yare row and 
column category attributes and C is the cell attribute, Xny=¢. Then REL(S) produces a 

• relation R where Atr(R)=XUYU{C} and for each cell in S, there is a tuple t in R such 
,that t[X] and t[Y] are the same as the row and the column category attribute values of 
the cell and t[C] in the cell attribute value of the cell. The mapping between cell 
instances in S and tuples in R is one-to-one and onto. That is, if R=REL(S) then the 
f.d. XY->C and the e.j.d. *(X,Y) hold in R. 

Concatenation of Primitive Summary Tables: Let Sl(FrI,F 1,Al ) and S2(Fr2,Fc2!A2) be 
two summary tables, where F 1 and F 2 are not nUIl. If r l=F 2 and all tree 1nstances 
of F are the same as all €ree ins€ances of F 2 (denotea F rTF ) then a larger sum
maryrtable can be obtained by concatenating Slrand S2 such £~atrthe resulting summary 

,table has F iF ITF 2 as row category attribute forest~ and has column category attri
bute forestrF rwhibn is obtained by concatenating F 1 and F 2. We call this operation 
column-concat~nate summary tables Sl and S2' denoteS as c 

CC (Sl' S2) • 

The column-concatenate CC(Sl,S2) produces a summary table S(F ,F ,A) where F ~F lTF 1 
and F TF 10 F 2 (0 denotes concatenation of ordered sets). InStaHces of Fe ift Srarec 

the s~mecas i5stances of F 1 in Sl and instances of F in S are obtained oy con
catenating instances of F ~ in S1 and instances of F ~ in S2. A is an ordered (multi) 
set of cell attributes ob€ained rrom Al and A2 such €nat for each cell X in S, if X is 
in Sl the cell attribute of X is the same as that in Al , otherwise it is the same as 
that in A2 •. If F 1=Fr2=¢ then Fr =¢. The column concatenate CC(Sl,S2) is undefined if 
Fcl or Fc2 1S nuiI. 

Similarly, if F land F 2 are not null and Fcl~Fc2 then row concatenate summary 
tables Sl and S2' defioted r 
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RC(SI,S2) 

produces a summary table S(F ,F ,A) where F ~F 10F 2' F ~F I~F 2 and A is obtained as 
described above. r c r r r c c c 

Extract Summary 
column category 
be a tree in Fr 

Tables: Let S(F ,F ,A ) be a summary table where F 
attribute forests gndcA is the ordered set of cell 
and T be a tree in F .c Then 

c c 

EX (T T) (S) 
r' c 

and F are row and 
attriButes. Let Tr 

produces a summary table whose row and column category attribute forests are T and T 
respectively, and whose cell attributes and those attributes in A correspondiftg to TC 

and T • Instances of T and T in S are also the instances of theCrow and the column r 
categ8ry trees of in t~e resulting summary table. Every cell in S whose row and column 
category attributes are root-to-Ieaf paths in an instance of T and in an instance of 
T in S is also in the resulting summary table and the cell attribute value is the 
s~me as that of the corresponding cell in S. 

The extract summary table operation is in a sense the inverse of concatenate sum
mary table operation. 

Attribute Splitting: Extended relational algebra operates on nested relations. Given a 
primitive summary table the corresponding nested relation can be obtained by operation 
REL as discussed before. Given a summary table whose row and column category attribute 
forests are ordered sets of chains, its primitive summary tables can be extracted by a 
sequence of extract operations. However, in order to decompose an arbitrary summary 
table into a number of primitive summary tables, operations which will transform row 
and column category forests into sets of chains are required. The following opera
tions,row-split and column split, are defined for this purpose. These operators take 
the.attribute to be splitted and the summary table as arguments, and produce a summary 
table whose row (or column) category attribute tree has the specified attribute split
ted. 

Attribute Merging: Given a nested relation, summary table formation operator produces 
the corresponding primitive summary table. Using concatenate operators, two or more 
primitive summary tables can be combined to obtain larger summary tables. However, 
category attribute forests of such summary ·tables always are some ordered sets of 
chains. In a category attribute forest of a summary table, suppose root attributes in 
two trees have the same instances. It may be desirable to merge these attributes into 
a single attribute. Similarly, when two attributei having the same parent in a tree 
also have the same instances it may be meaningful to merge them into a single attri
bute. ~he two operations, row-merge and column-merge are defined for this purpose. 
These operators take the attributes to be merged and the summary table as arguments, 
and produce a new summary table whose row (or column) attribute tree has the specified 
attributes merged. 

6. CONCLUSION 

In this paper, the relational algebra is extended for nested relations and for 
aggregate functions so that it can be used for summary table manipulation. Nested 
relations are used to represent a special case of summary tables, called primitive 
summary tables. Primitive summary tables are in turn used as building blocks of sum
mary tables in general. A summary table manipulation language, based on the extended 
algebra of nested relations, is discussed. Basically, a query on summary tables is 
expressed in terms of (i)operations to transform summary tables into corresponding 
primitive summary tables, (ii)operations to transform these primitive summary tables 
into nested relations, and (iii)the extended algebra operations on these nested rela
tions. The summary table manipulation language discussed in this paper will be imple
mented underneath another screen oriented, relational calculus-based language, called 
Summary-Table-By-Example [OzsO 82al. Further investigations will be done in the direc
tion of extending the relational calculus for aggregate functions [Klug 82] and nested 
relations, and showing that the extended algebra and the extended calculus of nested 
relations are equivalent in expressive power. 
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Frank Olken 

Computer Science and Mathematics Dept. 
lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 

ABSTRACT 

How elaborate should the functionality, data types, 
and data models of a statistical database management sys
tem be? In this paper we consider several criteria to be 
used in deciding the matter: efficiency, data semantics, 
standardization, integrity , security, and useability. On 
the basis of these criteria we construct a taxonomy of 
proposals for enhanced functionality of statistical data
base management systeDli. 

1. Criteria for ExtensiolL'l 

The first generation of DBMS research was built 
around the relational data model paradigm Recent years 
have seen a growing interest in more elaborate data 
models in many areas, e.g. entity-relationship models, 
aggregation operators, and new data types to support 
CAD/CAM systems. In this paper we are concerned with 
the question of how far designers of statistical database 
management systems (SDBMSs) should proceed in the 
direction of more elaborate (baroque) functions and data 
types in SDBMSs. Six basic types of criteria for judging 
the desirability of such enhancements will be considered: 

(1) efficiency 

(2) data semantics 

(3) standardization 

( 4) integrity preservation. 

(5) security 

(6) useability 

On each of these grounds it appears that substan
tially more elaborate database management systems are 
warranted than presently exist. In a few areas 
simplifications appear possible. 

In certain respects this paper parallels that of 
Shoshani [ShosSl]. However, the papers have different 
purposes. Shoshani's paper was intended as a tutorial, 
this paper is intended primarily as a taxonomy. Whereas 
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Shoshani was heavily concerned with describing the 
characteristics of statistical databases and their prob
lems, we are primarily concerned with constructing a tax
onomy of the many possible enhancements which could 
be included in statistical database management systems 
according to the criteria by which they are justified. We 
have attempted to truncate the discussion of topics 
treated extensively by Shoshani, such as physical organi
zation and security. 

Throughout the paper we generally compare 
SDBMSs to commercial DBMSs (CDBMSs) rather than 
statistical analysis systems. 

2. Efficiency 

One obvious consideration is efficiency of the com
putation. Operations should be .integrated into the 
SDBMS if they can thereby be more efficiently per
formed. There is a cost associated with moving data into 
and out of the SDBMS. Hence it is typically worthwhile 
to move computationally simple operations into the 
SDBMS. 

In general operators which are data intensive, 
rather than computationally intensive, are plausible can
didates for incorporation into the SDBMSs. Thus opera
tors such as sorting or ranking may be appropriate to 
include in a SDBMS, while a computationally intensive 
iterative maximum likelihood procedure such as Cox 
regression would gain little in efficiency by inclusion 
within a SDBMS. Similarly, there seems little to be 
gained in terms of efficiency by including graphics capa
bilities within the SDBMS. 

2.1. Sampling, Subsets and Versions 

Various types of sampling operations (simple ran
dom sampling with and without replacement, stratified 
sampling, etc.) are clear candidates for inclusion into the 
SDBMS. It makes no sense to extract an entire set of 
data from a SDBMS in order to take a 1% sample. 

It has been observed that statistical data analysis 
tends to generate numerous subsets or versions of the 
data as the analyst discards outliers, or focuses attention 
on "interesting" subsets. Decisions must be made as to 
how to store the various versions and subsets of the data. 
Redundant storage offers fast access to subsets at the 
potential cost of increased total storage requirements. 



• 

Some systems (e.g. [Burn83]) have opted for "virtual 
subsets". Finding the useful subsets which might 
accelerate query response has been addressed in 
[Fink82]. 

2.2. Ordering and Aggregation 

Traditionally, arithmetic operators and sorting 
have been provided in conventional database management 
systems (DBMS). The aggregation operators (MIN, 
MAX, SUM, COUNT, AVG) which have been included 
in conventional DBMSs exhibit simple computation struc
tures. These aggregation operators distribute easily over 
set union operations. Thus, for example, the minimum of 
A union B is min(min(A),min(B». Hence these "incr~ 
mental" aggregation operators can be easily moved within 
the query computation strategy and lend themselves to 
parallel evaluation. If the number of groups for which 
aggregations are being computed is small (Le., fits within 
memory) then all of the statistics can be computed in a 
single pass over the unordered raw data set. Other statis
tics (such as median) effectively require that we first sort 
the raw data by group and then process one group at a 
time. Klug [Klug82] has argued, that integrating aggr~ 
gation and output ordering during query evaluation can 
reduce costs. 

Some authors [SwarS3] have suggested that users 
be supplied with a simple programming language rather 
than a set of aggregation operators, citing better flexibil
ity. While such a proposal has merits, we tend to favor 
the provision of at least a library of commonly used 
aggregation operators. One problem with user-written ad 
hoc aggregation operators, is that they may require non
trivial code analyses by the query optimizer to determine: 

( 1) opportuni ties to exploit parallelism or al ternati ve 
orderings of the data. 

(2) opportunities to infer some aggregate statistics 
from other previously computed statistics as in 
[Rowe81]. 

(3) procedures for maintaining integrity of aggregated 
data when underlying data is altered. 

Certainly, some of the these problems can be eased by 
careful design of the user aggregation language. 

2.3. lag and Binning 

Other related candidate operators for inclusion in 
SDBMSs on efficiency grounds include lAG operators 
which return the preceding element of sequences or time 
series, and BIN operators which convert continuous 
domains into discrete domains for histogramming and 
contingency table analyses [Iked81]. 

2.4. Abstract Data Types 

Efficiency considerations may limit the utility of 
abstract data type mechanisms for extending SDBMSs 
[Ston82]. Too much hiding of the internal structure of 
abstract data types may preclude effective query optimi
zation. It may be more useful to think of new data types 
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as views, Le., as constructions which are translated dur
ing query parsing into elementary data management 
operations. 

2.5. Pbysical Organization 

As discussed in [Shos81] and the references cited 
therein, SDBMSs lend themselves to data compression, 
array linearization access methods, and vertical partition
ing of relations. The static nature of many statistical 
databases suggests that it may be practical to keep redun
dant, differently transposed copies of the data to improve 
the efficiency of retrievals. 

2.6. Storage Hierarchy Management 

Typical CDBMSs manage a two level storage 
hierarchy: disk and main memory. DBMS designers 
[Sacc82] have argued that the DBMS should control the 
buffering and caching of disk pages rather the operating 
system. Similarly, in distributed DBMS designs one typ
ically wants the DBMS to have explicit knowledge of the 
locations of various relations (or copies) to facilitate 
query optimization. 

In contrast to CDBMSs which typically manage 
two-level storage hierarchies, SDBMSs will often have 
thr~level storage hierarchies. The tertiary store may be 
comprised of an automatic tape library, a magnetic mass 
store, or an optical disk juke box. We think it likely that 
the SDBMS will want to explicitly manage the movement 
of data between secondary (disk) and tertiary (e.g. tape) 
storage, rather than treating all secondary and tertiary 
storage as a giant black box to be managed by the operat
ing system. We expect that information on the location 
of data within the storage hierarchy may be incorporated 
into the query optimization process in a manner akin to 
that used in distributed DBMS query optimization . 

3. Data Semantics 

Unannotated data is useless. Inadequately anno
tated data may be worse than useless, it may be mislead
ing. Hence the ability of a database management system 
to adequately capture the semantics of the data it con
tains is a fundamental criterion for judging the accepta
bility of database management systems. Thus the 
specification and management of metadata has been a 
major research area in SDBMSs. We contend that such 
metadata should include statistically important semantic 
information. 

3.1. Data Models 

The classical relational data model is concerned 
with sets of records, which are in turn composed of 
fields. Other common data models (hierarchical and net
work) are also concerned with sets of records. These 
models are sometimes inadequate for statisticians, who 
are often concerned with sequences, time series (uni
formly spaced sequences), and bags (i.e., samples which 
may contain multiple instances of the same value). The 
objects which comprise these sequences, time series and 



bags are often vectors or matrices. Sets of records are 
not enough. Some statistical analysis systems (SAS 
[Helw79], EPS [WanS2], S [BeckSI]) have begun to 
provide more elaborate data structures and data types. 
Typically they have weak data management facilities, 
e.g., requirements that the data structures fit into 
memory, weak query languages, and little or no query 
optimization. 

3.2. Summary Data 

Summary (or aggregated) data is commonplace in 
statistical databases [ShosSl] , [GeySI]. A considerable 
amount of work has been done in modelling this kind of 
data [JohnSlb], [KrepS2], etc. Such work has been 
motivated by three reasons. One is simply to adequately 
convey the meaning and inter-relationships of various 
datasets. Modelling summary data can also aid 
efficiency of query answering (as noted above), facilitate 
the framing of queries, and permit automatic mainte
nance of consistent derived data in the presence of 
updates (as discussed below). This has been one of the 
most intensively studied areas of statistical database 
management. 

3.3. Statistical Models 

For some statistical databases much of the data 
will be estimates of the values of parameters of statistical 
models, e.g. regression coefficients, distributional param
eters, etc. For such data to be meaningful it is important 
that the corresponding statistical model be recorded in 
the SDBMS. In contrast to the recent attention given 
summary data (very simple nonparametric statistics), 
much less attention has be given to representing, index
ing, retrieving or manipulating statistical models. An 
exception is EPS [WanS2]. Examples of statistical 
models range from simple fitted probability distributions 
to general nonlinear regression models. The estimated 
parameters of these models are useless without the distri
bution or terms of the regression model to which they 
refer. 

3.4. Samples and Subsets 

Earlier we discussed efficiency considerations of 
sampling and subsetting operations, here we are con
cerned with semantic aspects of specifying samples and 
subsets. 

3.4.1. ~Ie Design 

For some types of statistical analyses it is impor
tant to know whether the data constitutes the entire popu
lation, a simple random sample, or a more complex sam
ple. Administrative records usually include the entire 
population of interest, scientific data are often simple 
random samples, while social science data are frequently 
the product of complex sample designs used to minimize 
the cost and sampling errors of the study. See [Coch77]. 

Some of the sample designs used are: 
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( I) stratified sampling 

(2) inulti-stage clustered sampling 

(3) attribute based sampling 

The sample design affects how certain summary 
statistics are calculated and the estimation of sampling 
errors. Hence the sample design needs to be recorded in 
the metadata in a manner accessible to both humans and 
programs. The PSALMS procedure in the OSIRIS IV 
statistical analysis package [Van79] has provisions for 
describing and analysing complex samples. However, 
OSIRIS does not provide any means of storing the sam
ple design with the data. Few other statistical analysis 
or database management systems have any provisions for 
dealing with sample designs. The HODM system pro
posed in [OzsoS2b] provides for specification that one 
dataset is a sample of another, but it is unclear how one 
goes about specifying the structure of a complex sample. 

3.4.2. Subsets 

Often the analyst will extract subsets of data from 
larger datasets for analysis [ThomSI]. One would like to 
record the fact that one data set is a subset of another, 
and perhaps record the predicate (query) used to select 
the subset. 

3.5. Graphics 

We believe that it will be desirable to be able to 
store the specifications of graphs i!1 the database. One 
reason for doing this is to provide standardized graphics 
to permit comparability. Examples include [OzsoS2b] 
and [RTIS3]. However, we do not believe it is necessary 
to integrate entire graphics packages into the SDBMS. 
They could instead be applications programs which call 
the SDBMS. 

3.6. Level of Measurement 

It is not enough to know that a data i tern is an 
integer. We also need to know the level of measurement 
of the data item, i.e., whether the integer represents a 
nominal (unordered categorical) variable, an ordinal 
(ordered categorical) variable, or an interval (metric) 
variable. The types of statistical operations which make 
sense depend on the level of measurement as well as the 
data type. It makes no more sense to compute the average 
religion of a population, than to compute the average 
name. Yet most data management systems will compute 
the average religion if religion has been coded as an 
integer. This HODM system proposed in [OzsoS2b] 
includes mechanisms for specifying the level of measure
ment. 

3.7. Units of Measurement 

Similarly, it has been recognized that SDBMSs 
should record the units of measurement of the data and 
provide automatic conversion where necessary 
[SparS2], [McCaS2b]. Clearly, if we want to compare 
two measures of length we need to take note whether they 



are recorded in feet or meters. Pure unit conversions 
(e.g. inches to centimeters) convert between different 
measures of the same property. These conversions are 
invariant with respect to context. 

However, the choice of preferred units may vary 
from application to application. In some (nonlinear) sta
tistical models, the choice of units (Le., scaling factors) 
may affect the conclusions, as in the case of multi
dimensional scaling or clustering. Hence it may be 
necessary to specify the units (scaling) for variables in 
statistical models, as well as data in the database. 

Some unit conversions, such as force to mas~ (e.g. 
pounds to kilograms), or volume to density (e.g. bushels 
of wheat to tons of wheat or barrels of oil to tons of oil), 
vary with the context in which they occur. They are 
actually inferences of one property from another. Such 
inferences depend upon other properties of the entity, or 
assumptions about the context in which the conversion 
occurs. Thus converting the volume of oil to mass of oil 
depends on the type of oil, and the temperature of the 
oil. Currency conversions may depend on the time and 
place at which the conversion is presumed to occur. 

Default procedures for such inferential conversions 
might plausibly be specified in the metadata description 
of an entity or perhaps inherited from a more general 
class of which the entity is an instance. Such default 
procedures could be explicitly overridden in the query 
specification if necessary. Conversion procedures might 
include parameters which could be bound during query 
evaluation, such as temperature. 

3.8. Coordinate Systems 

Another common type of data conversion is 
between different coordinate systems (e.g. from polar to 
Cartesian or between different frames of reference). In 
contrast to unit conversions, which are typically scalar 
operations, coordinate transformations are usually opera
tions on vectors. Frames of reference may vary with the 
object referenced or with time. Coordinate conversions 
arise in physics, astronomy, and geodesy. 

3.9. HulD8llly-Interpretable Metadata 

Thus far we have argued for the necessity of 
including machine interpretable metadata to assure that 
only statistically meaningful operations are applied to the 
SOB MS. In addition one will often want to include 
information intended for human interpretation concern
ing the meaning of the data. Such annotations may 
include bibliographic citations concerning experimental 
techniques, the quality of the data, etc. While the 
SOBMS need only know that it should not add apples 
and oranges together, the user may want to know how to 
tell the difference. 

In practical terms, this suggests that although the 
SOBMS will be primarily concerned with numeric data, 
provisions for managing text will be necessary. For 
example, if it is discovered that a particular experimental 
procedure or instrument produces unreliable results, one 
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might wish to determine all of the datasets which use 
that procedure or instrument. Automatic propagation (or 
inheritance) of footnotes will be desirable, so that impor
tant caveats do not get lost during data analysis or aggre
gation. 

4. Standardization 

Statistical databases are often composed of data 
from diverse sources. The diversity of sources often 
results in a diversity of terms, codes, and formats for 
similar or even identical items. Inconsistent codes or 
formats may preclude comparability of data domains. 
Examples include inconsistent formats for specifying 
dates, and different sets of abbreviations for states. 
Hence it is important to provide mechanisms to facilitate 
the standardization of the data and the metadata which 
describes it. 

Code and format conversions, like unit conver
sions, should be provided automatically by the SOBMS. 
Provisions need to be made in the metadata specification 
to specify the base (canonical) type (e.g. states) and 
mappings ("views") between variant and canonical sets 
of codes or formats. Type generalization and inheritance 

, mechanisms [Smit77], [Sat081],[KrepS2] and libraries of 
standard type definitions can be used to facilitate stan
dardization. 

S. Integrity 

Assuring the integrity (Le., correctness or at least 
consistency) of a database is important for both commer
cial and statistical OBMSs. Below we discuss some 
salient SOBMS integrity issues: derived data, con
currency control, and statistical input validation. 

S.l. Derind Data 

Much of the data in a SOBMS may be derived 
data - aggregations, descriptive statistics, model parame
ter estimates, etc. If one wants to maintain the con
sistency of the derived data with the underlying raw data 
across updates, then one will have to tell the SOBMS 
about the relationship of derived data to raw data 
[KoenS I]. Such consistency is a kind of integrity con
str8.int on the database. It seems clear that the responsi
bility of maintaining such consistency should be 
entrusted to the SOBMS, not to some external analysis 
package or to the user. Alternatively one can think of 
derived data as a type of view of the database. Preserv
ing the consistency of the derived data is thus akin to 
updating views, Le., one needs to store both some sort of 
definition of the view and updating procedures. 

A variety of strategies have been proposed, some 
involving complete recomputation of the derived data 
(possibly on demand), and some involving incremental 
updating of derived data [KoenSl]. Whereas integrity 
constraints are customarily specified individually for each 
data domain, it would be very useful if the "view 
specifications" of the derived data written in terms of 
generic statistical operators could be used to infer the 



consistency maintenance procedures. As noted above, 
there has been considerable work on incorporating certain 
simple types of summary statistics into the data models 
(e.g. total sums and counts, averages, min, max). This 
work needs to be extended to encompass more complex 
parametric statistics. Thus, for example, one would want 
the SDBMS to know about covariance operators, and the 
appropriate procedures to update the covariance matrix 
when the underlying dataset was modified 
[KoenS!], [RoweS2]. 

The point is that maintaining the consistency of 
derived data will require that. the SDBMS know about 
statistical operators it would otherwise not need to under
stand. This is a strong argument for inclusion of a fairly 
elaborate statistical analysis capability within the 
SDBMS. Such a library of statistical analysis routines 
has been proposed for the HODM system in [OzsoS2b] to 
permit security analyses of queries. 

5.1. Concurrency Control 

Many statistical databases are fairly static, e.g. 
updates may occur only monthly or more infrequently. 
Most such updates append rather than modify data. 
Furthermore, many statistical queries process a large por
tion of the records for a particular domain. This sug
gests that simpler concurrency control mechanisms which 
lock domains may be more appropriate than the fine 
grained record level locking found in some commercial 
database management systems. 

5.3. Statistical Input Validation 

It is commonplace in CDBMSs to enforce integrity 
constraints on the database by means of input validation 
procedures, which are invoked before updates to the data
base are permitted. Typically such validation procedures 
check that the input data are in allowable ranges, or 
from allowable code sets. Users of SDBMSs may also 
want to specify additional statistical input validation pro
cedures (e.g., outlier detection) to be used on the input 
data. Thus if the data item is more than 2 standard devi
ations from the average for a domain, the data entry 
clerk might be warned. More elaborate statistical con
sistency checks using regression equations might be used 
on entire records to detect improbable combinations of 
height and weight, job and salary, etc. This would 
require some means of specifying such statistical con
straints and maintaining the distributional and regression 
parameters. 

6. Security 

Often one wishes to permit statistical analyses of 
datasets while precluding access to individual records so 
as to protect the privacy of individuals. Common exam
ples include medical and census records. This has been 
an area of intensive investigation. For overviews and 
bibliographies see [DennS3] and [ShosSl]. Security con
cerns may have profound effects on the architecture of 
the data management system. As Ozsoyoglu [OzsoS2b] 
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and others have noted, the data management systems 
require considerable knowledge of the statistical pro
cedures being used in order to prevent insecure infer
ences. 

7. Useability 

Ease of use is the last criterion we will consider 
for assessing SDBMS features. We examine both the 

'user interface and the external interface to other software 
systems. 

7.1. User Interfaces 

Useability requirements for SDBMSs are in some 
ways more severe than for commercial DBMSs. Commer
cial DBMSs are typically used to process a few types of 
transactions by personnel who perform many of the same 
type of transactions daily. Such users tend to be familiar 
with the data and often the transactions can be compiled 
so that the user need only fill out an electronic form. 

In contrast, the user of a SDBMS is often con
fronted by an enormous collection of data items (e.g. the 
U.S. Census) of which he wishes to extract a small por
tion. Just finding the name of the data he wants may be 
a major undertaking. Systems such as SUBJECT 
[ChanSl] and SEEDIS [McCaS2a] have been created to 
facilitate browsing. 

Queries are often ad hoc and frequently involve 
aggregation. A great deal of work 
[KlugSla], [JohnS 1 a], [JohnSlb], [OzsoS2a] has been 
done in providing query languages which support aggre
gation. It has been observed that richer semantic models 
may permit simpler, terser queries. The CABLE language 
[Shos7S] represents an attempt to exploit an entity
relationship model to permit implicit specification of 
some joins. 

The user may be a social scientist who is not 
interested in becoming a computer expert. Systems such 
as GUIDE [WongSl] have been created to provide simple 
ad hoc graphical query interfaces. Forms-based query 
languages for aggregative and summary tables queries 
have been proposed in [KlugSl] and [OzsoS2b]. 

7.1. External Interfaces 

CDBMSs tend to provide a query language, a pro
gramming language interface, and perhaps a report 
writer. Loading and unloading databases and the atten
dant database conversion problems tend to be infrequent 
occurrences performed by professionals. In contrast the 
users of a SDBMS are often loading new databases into 
the SDBMS from a wide variety of sources. They may 
also need to move large amounts of data and the atten
dant metadata to and from statistical analysis, graphics 
or data management systems. SDBMSs need to provide 
tools which easily and efficiently permit users to do this. 
Designers of statistical analysis and graphics packages 
need to design reasonable interfaces. At present it is 
often necessary to convert numeric data to ASCII charac
ter representation to exchange with other systems, a 



fairly expensive operation. Metadata conversion is even 
more clumsy. 

8. Conclusions 

We have proposed several criteria for evaluating 
proposed enhancements of SDBMSs: efficiency, capturing 
data semantics, standardization, integrity preservation, 
security, and useability. We believe that these con
siderations justify substantial expansion in the data 
types, data models, access methods, operators, metadata, 
metadata browsing mechanisms provided by SDMSs over 
those provided by typical present day commercial 
DBMSs. Existing and proposed SDBMSs include some 
of these features, none includes all. 

We are not convinced that SDBMSs need to do 
everything imaginable. We believe that specialized func
tions, such as graphics, may be built as application 
modules which invoke the SDBMS. Furthermore, 
SDBMSs may not require as sophisticated concurrency 
control mechanisms as CDBMSs. 

Much of what seems to distinguish the desired 
SDBMS from present day commercial DBMSs is the 
inclusion of much more intensionsal information (i.e., 
information specified by formula rather than enumera
tion). Examples include unit conversion procedures, 
input validation procedures, statistical models, predicates 
which define subsets, and definitions of derived data as 
aggregations or samples. 
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How Far Should a Database System Go? 
<to Support a Statistical One) 

Don Swartwout 

Bell Laboratories 
Murray Hill, New Jersey 07974 

ABSTRACT 

This note discusses some issues that were addressed in adapting a prototype 
database management system to enable it to supply data to a statistical system. 
The issues include the choice of statistically-oriented features for the database 
system, the "right" way to do aggregate computations, and some side effects of 
decisions that were made in this case. 

In mid-1981 I was working on an experimental 
database management system intended to support 
distributed query processing in the UNIX· operating 
system. The database system, known as Datastream, was 
about six months old and working in rough prototype form, 
but the high-speed network and distributed database 
applications that would have been required to give it a 
serious test had not materialized as expected. However, 
several non-distributed, predominantly statistical 
applications were available, and I decided to try 
Datastream on their data. About the same time I met 
John Chambers, an originator of the S system for data 
analysis [I I. Discussions with him quickly made it clear 
that both systems would benefit from an interface that 
would permit Datastream to extract interesting data sets 
from a large database and pass them to S in a convenient 
way. Details of the physical transfer of data and control 
between the two systems were easily arranged; several 
more-or-Iess equivalent schemes have been implemented 
since then. Datastream's repertoire of functions was not 
adequate to support its new users, though, so a variety of 
enhancements were made. This note outlines the issues 
that had to be addressed as Datastream was modified to 
support statistically-oriented queries. The discussion covers 
two facilities, both present in S, that were added to 
Datastream, and several others that were not. Some 
impressions of what makes·a feature appropriate for use in 
the database system are given. 

A few words of background information on data 
analysis in a UNIX environment are in order. Large scale 
statistical databases seldom exist in such an environment. 
I take "large scale" to mean something like a hundred 
megabytes or more. Data analysts working in UNIX 
systems typically negotiate for data from other sources. A 
common arrangement involves a member of a data 
processing staff, who writes and runs an ad-hoc program to 
extract and re-format a subset of some database. The 
output is put on a magnetic tape, which is read and re
formated again on the UNIX system. If enough data is 

• UNIX is a trademark of Bell Laboratories 
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involved, or if the data is sufficiently complex, it may be 
stored in a UNIX database constructed from scratch to 
support the analysis. The analyst usually has complete 
control of the data after it arrives from the remote source; 
if he or she is not satisfied with the way it is structured, a 
new structure can be tried. The volumes of data involved 
are seldom large enough to seriously impede the analyst's 
ability to restructure it. For example, S normally supports 
data sets of up to a megabyte effectively; Datastream has 
been used to store databases of up to fifteen megabytes. 

Datastream supports a variant of the entity-relationship 
data model [21. The query language is a blend of ideas 
from UNIX programming and relational database 
languages. By comparison with most relational query 
languages, it has a procedural flavor. For example, the 
following Datastream queryt selects certain rows from a 
table of data on telephone customers and prints the values 
of certain attributes. 

get each Customer 
such that num_calls > 17 

print num_calls, mostJecent_bill ; 

The keyword print introduces a list of expressions whose 
values are computed, forma ted appropriately and "printed" 
as a stream of bytes that can be saved in a file, displayed 
on a terminal or line printer, or passed as input to another 
program (S, for example). 

The first change made to support analytical data was 
the introduction of conditional expressions. A conditional 
expression consists of a condition and two e~pressions. If 
the condition is true, then the first expression is evaluated 
and its value becomes the value of the conditional 
expression. If the condition is false, the value of the other 
expression is used. Such expressions have many 
applications in statistical queries. For example, the 
following example converts arbitrarily-designated numbers 
into intelligible strings: 

For simplicity in this note, Datastream syntax will be modified slightly, 
and examples will de&J only with single entities (i.e. flat files). 
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get each Customer 
print if ( sex - 0 ) then "MALE" else "FEMALE" ; 

Datastream is written in C [3], and it uses native 
arithmetic and comparisons. This makes arithmetic fast 
and easy to program, but it exposes the query writer to 
problems such as division by zero. Conditional expressions 
allow the query writer to guard against such operations, 
since only the selected expression is actually evaluated. 
For example, to compute customers' average length of 
telephone calls, in the presence of customers who made no 
calls, one can write: 

get each Customer 
print 

if ( num_calls > 0 ) 
then total_time Inurn_calls 
else 0; 

The second enhancement was on a larger scale: the 
addition of support for aggregate computations. When it 
was conceived as a system for distributed query processing, 
Datastream did not appear to need more than the ability to 
do simple arithmetic on the values in a single record (e.g. 
conversion from English to metric units). However, 
aggregate operations such as sums, counts, and so on 
proved to be necessary to support . statistical applications. 
The principal design decision involved was that Datastream 
would not support specific aggregate functions. Instead, it 
would have a general facility for iterative computations 
that would support the usual aggregate functions and a 
wide variety of others as well. For example, the following 
counts customers and finds the average, maximum, and 
minimum number of calls. 

initialize count = 0, total_calls ~ 0, 
max_calls - 0, min_calls - 0; 

Collect each Customer 
count = count + I, 
total_calls - total_calls + Customer.num_calls, 
max_calls -

if (Customer.num_calls > max_calls or count - 1) 
then Customer.num_calls 
else max_calls, 

min_calls = 

then 

if (Customer.num_calls < min_calls or count = 1) 
then Customer.num_calls 
else min_calls, 

print count, total_calls / count, max_calls, min_calls; 

The first line of the query consists of initializations. It 
is execute<! once. Then the list of assignments between 
collect and tben is executed for each row in the Customer 
table. Finally, the print operation is performed. 

A common impression of this example is that the query 
writer has considerably more to say than he or she would if 
the language supported such expressions as 

count ( Customer), mean (Customer .calls), ... 

Furthermore, the query has a strong programming flavor. 
The user must understand the initialization and the 
programming-language-style assignments, and so on. 

Both of those impressions are true, but it is also true 
that a large percentage of the data analysts Datastream 

221 

supports are experienced (if not always sophisticated) 
programmers. They seldom have trouble with the 
computational portions of the programs they write; 
input/output causes most of the problems for data analysts 
who write programs. That is, the programming aspects of 
writing Datastream queries are mostly limited to a set of 
constructs that analytical users find easy enough to handle. 
Users have not objected to the size of their queries, either; 
I object to voluminous queries more than they do. 
Furthermore, an analysis often involves running a 
succession of queries that differ only in small respects such 
as the values of certain constants or the structure of certain 
conditions. Query sequences like this are usually created 
by writing the first from scratch and then editing a little to 
produce the others. 

The most important advantage of a general facility as 
opposed to built-in functions is that it provides a 
considerable increase in computational power without a 
major increase in the basic constructs of the language. 
Datastream's aggregate computation facility required two 
new types of control flow: initialization statements and the 
collect _ .• tben style of iteration. No new operators, 
expressions, or other notations were required. As it turned 
out, it was necessary to overhaul the system's internal 
mechanism for handling variables, but this was invisible to 
query writers. In the following query, initialization and 
collect ..• tben are used to compute a stratified sum. 

initialize morning_calls = 0, 
afternoon_calls = 0, night_calls = 0; 

collect each Call 
morning_calls = morning_calls 

+ if ( Call.start_time < 1200) then I e.1se 0, 
afternoon _ cails = afternoon _calls 

+ if ( Call.start_time >- 1200 and 
Call.start_time < 1800) then I else 0, 

night_calls - night_calls 
+ if (Call.start_time >= 1800) then I else 0 

then 
print morning_calls, afternoon_calls, night_calls; 

Strictly speaking, both the conditional expressions and 
the collect ... tben feature duplicate facilities available in S. 
The architecture of S at the time made it impossible to use 
the existing software, however. Before S can operate on 
some data, it must first be set up as an S data set (i.e. a 
disk file in a certain format). But this makes it impossible 
to use the computation facilities of S on anything that is 
too big to be reasonably representable as a data set, and 
Datastream databases exist precisely because they are too 
big to be stored as S data sets. 

How far should such duplication of function go before 
it is stopped in the name of cleanliness and modularity? 
Perversely, the duplication I have discussed exists because 
the systems interact across a fairly clean interface. S 
regards Datastream as one of many ways to build a data 
set; Datastream sees S as one of many things that can be 
done with the output of a query. Neither system meddles 
in the other's business. This requires the database system 
to replicate enough of the functions of the statistical system 
to permit users to describe interesting subsets of databases. 
Unless the database and statistical functions are so tightly 
coupled that it is difficult to describe them as separate 



systems, one should expect to find most of the statistical 
system's standard selection facilities duplicated one way or 
another in the database system. From this 'point of view, 
one would not expect to find regression functions in the 
database system; data analysts seldom use regression to 
select a small subset of a larger data set. 

Another S facility not duplicated in Datastream was 
general looping. Datastream's collect construct sets up 
loops based on structures in the database. One can sum 
the val ues of some field in all the records of a certain type, 
but one cannot write a loop of the form 

for i in 1 .. n 
do 

something involving i and 
the fields of a Customer record 

end 

Several types of general loops are available in S, but they 
have not been implemented in Datastream for two primary 
reasons. 

1. Most users do not seem to need them. 

2. If general loops were available, serious users would 
probably need a debugger. 

Data and control flow in Datastream queries are fairly 
transparent. No one has written a query whose behavior 
could not be understood by reasonable "desk checking". A 
general loop facility would probably lead to complex 
queries whose behavior could not be deciphered without a 
debugger. 

Syntax is an area in which little was done but much 
might have been. The first user to explore a database must 
deal with at least two distinct and largely incompatible 
languages: the Datastream query language and the S 
command language. In addition, the program which 
constructs databases has to be given instructions, in yet 
another language. The only thing that makes this 
arrangement palatable is the following hierarchy. 

1. The typical data analyst spends much more time 
working in S than in Datastream. 

2. The typical Datastream user spends much more time 
working with queries than with build instructions. 

Of course, queries written and saved in an appropriate 
place make it possible for exploratory users to protect some 
of those who come later .from dealing directly with the 
database system. 

The modifications I have described were intended to 
make Datastream more useful as a tool for constructing S 
data sets. As it turned out, some users were able to 
accomplish their analysis without using S at all. These 
were not elaborate analyses; rather, they were excursions 
intended to discover what kinds of information could be 
extracted from certain databases. For this type of 
analytical work the principal advantages of Datastream 
were its ability to process queries against large files 
efficiently and its ability to traverse hierarchically
structured data while doing straightforward computations. 

In summary, the following is a (non-exhaustive) list of 
my conclusions from experience adjusting a database 

system to serve statistical users. 

1. Conditional expressions are well worth having. 

2. Aggregate computations including but not limited to 
sums, counts, and extrema are indispensable, but 
they do not have to be offered as "canned" sum, 
count, and extrema functions. A general aggregate 
computation facility is more powerful than a typical 
set of specific functions. It may also be less trouble 
to implement and not much more trouble to use. 

3. A database system's query facilities should not grow 
so powerful that they require a debugger. Database 
queries can be regarded as programs in special
purpose languages; query languages that need 
debuggers have. probably ceased to be special-purpose 
languages. 

4. A uniform interface to both the statistical and 
database facilities sounds wonderful. Unfortunately, 
it may prove too good to be true if one is dealing 
with existing systems. 

5. A database system that can feed useful data to a 
statistical system and stand by itself as well must 
inevitably duplicate some of the basic arithmetic and 
selection functions of the statistical system. When 
this happens, some users may be able to work 
entirely within the database system. 
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AN INTEGRATED MACRO-ECONOMIC DATA MANAGEMENT SYSTEM 
BASED ON MULTI-DI~ffiNSIONAL ARRAYS 

M. GIBBONS and M.DAVID 
OECD, France 

Abstract: The paper describes the system currently being developed 
at the OECD for the management of macro-economic data. The system 
provides a general framework for economists and statisticians to 
structure and manipulate large volumes of data in the form of 
multi-dimensional arrays. The dimensions of the arrays are 
hierarchical lists of elements corresponding to criteria of 
claSSification, TIME typically being one of them. Derivation of 
data can occur either automatically during extraction or explicitly 
through a flexible Data Manipulation Language. The system fully 
incorporates the management of qualitative information associated 
with the data at several levels. A number of interfaces are 
provided including an extension to the Research and Analysis 
Language (RAL). 

1. INTRODUCTION. 

The Organisation for Economic Cooperation and Development (OECD) 
objective to promote policies for sustained economic growth and 
expansion of the world trade entails the collection, on a regular 
basis, of data from its 24 member countries, for analysis by 
statisticians and economists. As a contribution to this on-going 
effort, the Systems Development Division of this Organisation is 
implementing a generalised database management system, designed for the 
computerised storage and manipulation of macro-economic statistical 
data.(I) 

The system has been conceived to meet three equally important 
requirements: 

to provide the producer of statistical information with all the 
tools necessary to process the data from receipt to publication; 
to provide analysts with the means to explore relationships between 
the statistics which surpasses that possible with a purely 
time-series oriented approach to the classification and storage of 
data; 
to incorporate the 
users can be fully 
data. 

management of qualitative information, so that 
aware of the important characteristics of the 

This paper describes the structural concepts, the main features of the 
Data Manipulation Language and the functional implementation of the 
system. Particular emphasis is placed on the facilities for treating 
qualitative information. 

(1) Basic ideas for the system are borrowed from ISIS, developed by the 
Austrian Statistical Office. 
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2. STRUCTURAL CONCEPTS. 

Statistical data are organised as sets of arrays within SECTORS which 
correspond to broad categories of economic interest, such as foreign 
trade or national accounts. 

A set of structurally homogeneous arrays is known as a SEGMENT. Each 
dimension of an array is defined by a CRITERION OF CLASSIFICATION, 
which is a list of ELEMENTS. An element of a criterion may itself be a 
list of elements known as a SUB-CRITERION, providing the possibility of 
tree-structured or COMPLEX criterion. TIME is a special criterion whose 
elements depend upon the frequency of observations. 

Each segment consists of one or more base arrays, depending on the 
existence of complex criteria within the segment definition, and of all 
the arrays implicitly derived from the base arrays by reduction over 
one or more dimensions. For a segment defined with N simple criteria, 
there exists one base array and 

L N! / it, (N-i)! 
i=l •• N 

derived arrays, counting the scalar generated by total reduction. 

In the segment definition, criteria may be PARALLEL where an 
alternative classification of the same statistical item is available, 
or OBLIGATORY when no reduction over the criterion is possible. To 
promote the use of standardised nomenclatures, criteria can be declared 
as GLOBAL and are then available to all sectors for segment definition. 
Global criteria are maintained by the database administrator. 

To clarify these concepts, the following example for foreign trade data 
is given: 

SEGMENT definition: 

FOREIGN-TRADE 1 

Frequency: Annual 
Criteria: OECD, 

PARTNERS, 
UNITS obligatory, 
SITC, 
ISIC parallel to SITC, 
DIRECTION. 

CRITERION definition: 

OECD: Member Countries (GLOBAL). Elements: USA, CANADA, ••• (Size=24) 
PARTNERS: Trade partners. Elements: ••• (Size=200) 
UNITS: Elements: SUS, TONS. (Size=2) 
SITC: Classification of products. Complex with 5 levels. (Size=2665) 
ISIC: Alternative classification of products. (Size=192) 
DIRECTION: Elements: IMPORTS (factor=-l), EXPORTS. (Size=2) 
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3. DATA RETRIEVAL. 

The retrieval of data for display, manipulation or reporting, is based 
on the data-specification construct which, in a concise way, permits 
the selection of the level of data-aggregation desired, the order of 
the dimensions and elements within dimensions. 

Derivation by reduction can occur automatically at extraction time, 
depending on the data-specification entered by the user. If one or more 
criteria are omitted from the data-specification, reduction is 
performed on the corresponding dimensions. During this process, 
pre-specified factors are applied to the elements of the dimension 
being reduced. 

Example: FOREIGN-TRADE UNITS 1 OECD [USA CANADA] PARTNERS 1 TO 100 
ISIC 1 2(1. TO 5 *) TIME 78 TO 83 

where ISIC 1 2(1 TO 5 *) stands for the first product of the ISIC 
classification and then the five first sub-products of the second 
product, followed by their sum. 

This specification corresponds to a 2 X 100 X 7 X 6 array (i.e. a 
logical group of 1400 time-series of 6 observations each). It is 
obtained by reduction over the criterion DIRECTION. With a factor 
of (-1) for IMPORTS and a default factor of (+1) for EXPORTS, the 
reduction yields the trade balance. 

Automatic frequency conversion (e.g. from monthly to yearly data by 
averaging) may also occur during the extraction process, depending on 
the frequency of the data stored and the frequency requested. 

Once extracted, data are available for 'manipulation in what is called 
the current-array. Data from other parts of the database can be further 
extracted and combined with, or appended to, the current data. The 
current-array is itself a component of a broader concept, called the 
current environment. Among the other components of this environment are 
the trees of, identifiers and titles associated with each dimension; 
structural information and documentation; and a set of arrays of 
note-attachments. 

4. QUALITATIVE INFORMATION. 

Two kinds of qualitative information are considered: the structural 
documentation, describing the features of the structures (SECTOR, 
SEGMENT, CRITERION or ELEMENT) and the notes, providing background 
information about the quality of the data. 

Notes are pieces of textual information. They are given an identifier 
and can be attached to, or detached from, data-cells in the database 
(permanent attachments) or in the current-array (temporary 
attachments), at all possible levels (individual. cell, group of cells, 
array or segment). 

225 



In the case of database cells, an extended form of the 
data-specification construct is used to describe the scope of the 
attachment, where an infinite TIME dimension is allowed. In the case of 
current-array cells, a region-specification 
region can be physical, i.e. expressed in 
positions of the cells, or logical, i.e. 
logical condition to be met by the cells. 

is used. A current-array 
terms of the physical 

expressed in terms of a 

Example of physical region: ROWS 1 TO 5 COLS 3 7 9 TO 16 
Example of logical region: (VALUE> 0) AND (ESTIMATED) 

Estimated values, ruptures within time-series and computed totals 
involving missing values are but a few examples of the data 
characteristics which can be highlighted by using the notes facilities. 
At data extraction time, note-attachments are optionally extracted and 
transferred to the current environment where they can be displayed or 
updated with the data-values. 

During computation or derivation of data, new note-attachments can be 
generated according to a default or user-specified logic. Possible 
options are: OR, AND or no-logic. For example, with the OR logic, an 
estimated value combined with a non-estimated value yields an estimated 
value; with the AND logic the result is a non-estimated value; with the 
no-logic option, the note-attachments associated with the operands are 
ignored. 

A few notes are global. Their texts are pre-defined by the Database 
Administrator and can be used by all users of the database. 

s. THE DATA MANIPULATION LANGUAGE (DML). 

Typically, the first task performed by an interactive database user is 
to establish a current environment by extracting both quantitative and 
qualitative information from the database. This can be done by using 
the DML statement GET. The data-specification for the GET always refer 
to a group of data within a single segment of the database. The 
environment can be completed with data from other segments by using the 
EXTEND statement. Extension occurs along one specified dimension of the 
current-array, all the other dimensions being compatible in size with 
the matching dimensions of the extension array. 

The other array-manipulation statements do not involve the database, 
but instead process the current environment directly. DELETE is used to 
remove parts of the array; TRANSPOSE is used to modify the order of the 
dimensions; PERMUTE is used to change the order of elements within the 
dimensions; MAP is used to modify the shape of the current-array by 
combining dimensions, e.g. to transform a 6 X 2 X 4 array into a 6 X 8 
array. During the MAP function, the title trees of two combined 
dimensions are merged by inserting the tree corresponding to the second 
combined dimension at each leaf of the tree for the first combined 
dimension. 
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The DISPLAY and UPDATE statements are used to produce a display on the 
terminal of a portion of the current environment, according to default 
or user-specified format parameters. The data-array is partitionned by 
the system into two-dimensional pages. The user can control at any 
point in time which page will be displayed next by indicating the 
starting element for each dimension. In update mode, the data-values or 
note-attachments can be modified in the current environment. The 
changes become permanent (i.e. they are reflected in the database) if a 
STORE statement is issued subsequently .• 

Computational 
and 'include 

facilities are available through the COMPUTE statement 
simple arithmetic operations and functions such as growth 

rates, moving ave~ages, etc ••• 

Sample D~~ session: 

GET <data-specification) 
EXTEND ROWS <data-specification 2) 
COMPUTE ROW 10 = SUM (ROWS 1 TO 9) 
DELETE ROWS 2 TO 5 
DISPLAY 
ATTACH ANOTE TO (VALUE=MISSING) AND (ROWS 10 TO 15) 
PRINT USING <format) 
( ... ) 

6. FUNCTIONAL I~~LEMENTATION. 

The system is built on top of a CODASYL-type DBMS (Burroughs DMS-II) 
providing efficient storage/retrieval techniques and a first level of 
data compaction and access-right control. Logical views are created via 
the Structure Definition Language (SDL) processor. A unified DML 
interface, in the form of a library of procedures which can be 
dynamically called, handles all requests for data manipulation. It 
establishes a clear boundary between the DBMS structures and the 
logical structures as perceived by the users. 

The interactive Data Manipulation Language processor itself consists of 
a driver and a set of modules. It acts as an interpreter. Commands can 
be issued one at a time or programs can be written in DML and executed 
either directly or from within other DML programs. The modules are 
shown in Table 1. Typically, they process the current environment so 
that they can be chained, each function building up on the previous 
ones. In addition to the facilities discussed above, they include: 

A Report Generator allowing for very flexible table layouts. 
Variable data-value formats are specified by using the region 
specification construct. 
An interface with photo-composition utilities, making the 
production of publications from the database a highly automatic 
process. 
A graphics interface. 
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A facility to produce magnetic tapes for outside clients. The tape 
may include qualitative information, with automatically generated 
note references. 
A link to micro-computer ~oftwsre, in particular a facility to 
generate files compatible with MULTIPLAN (from Microsoft'Corp.). 
A catalogue enabling the user to browse through the database 
logical structures using keywords. 

Table 1. FUNCTIONAL IMPLEMENTATION DIAGRAM. 

The DML processor can be accessed from the Research and Analysis 
Language (RAL) developed by the Federal Reserve BSnk of New-York. 
Control can be switched back and forth from RAL to DML and the transfer 
of data is possible in both directions. As a result, the RAL 
statistical routines are readily available to database users and all 
the DML facilities can be used to process RAL data. 

Apart from the 
user-application 
special-purpose 
input utility, 
point for large 

DML modules, the miL Interface can be called from 
programs, written in ALGOL, FORTRAN or COBOL (e.g. 

simulation or model-solving programs) and from the bulk 
the purpose of which is to provide a generalised entry 

volumes of data originating from other systems. 
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CLASSIFICATION OF METADATA 

Dr. Yvonne M. Bishop and Dr. Stanley R. Freedman 

Office of Statistical Standards, Energy Information Administration 

Department of Energy, washington, D.C. 

Abstract 

The Energy Information Administration (EIA) has developed a search tool, the Data Resources 

Directory, _that tracks the ener·gy info;rmation obtained on source data collection forms. to i·ts 

final publication. The metadata is indexed according to a specially developed hierarchical 

classification scheme. Experience so far has indicated good features of this approach but 

problems still remain to be solved, particularly in determining optimum classification strategies 

for metadata. 

The Department of Energy collects information 

about energy by means of over 200 surveys of 

industry participants. This information is 

disseminated by means of weekly, monthly, 

quarterly and annual periodicals and forms 

the basis for analytic reports which project 

the likely future trend under differing 

scenarios. A Data Resources Directory has 

been developed to keep track of the available 

information. The original plan was to imple-

ment the DRD system by system and eventually 

have a mechanism whereby each data element 

on a form could be traced through all inter

mediate steps to the final publication, and 

its numerical value identified. Some sub

systems of the DRD are in place and experience 

so far has raised a number of issues: 

o 

o 

o 

Hierarchical classification of data 

elements is time consuming and costly. 

The Federal Energy Data Index (FEDEX), 

the publications subsystem currently 

in place, uses an Energy Data Base (EDB) 

thesaurus for indexing, which is 

different from the classification 

scheme used in the DRD. 

An unambiguous vocabulary, such as used 

in the DRD, requires many synonym link

ages if it is to be a useful search tool 

for a specialist in a specific industry. 
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DRD Subsystems in Place 

The subsystems currently in place are derived 

mainly from data collection forms with the notable 

exception of the Public Use Energy Statistics Data 

Base (PUESDB). Others are in the process of being 

implemented. ThQse in place are as follows. 

Forms/Frames Subsystem 

The forms/frames subsystem contains metadata on 

DOE data collection forms and the lists and sur

vey frames that are used to identify respondents 

and draw samples. Seventy-five metadata attri

butes about each form are maintained. They can be 

divided into four categories: identification 

attributes, management attributes, linkage attri

butes, and frame attributes. Identification 

attributes include form number, title, prior 

form numbers, indexing terms used to describe 

the form and an abstract. Management attributes 

include metadata used in EIA's forms clearance 

activities such as average burden per response, 

expiration data, voluntary mandatory reporting 

requirements and similar types of information. 

Sponsoring agency of the data collection, forms 

manager's name and phone number, computer system 

processing the data and publications in which the 

data appear are considered linkage attributes. 

Finally, type of respondent and their SIC code, 

source, size and name of frame, sample methodology 



type and frame update frequency are included 

under the category of frames metadata. 

User oriented products of the form/frames 

subsystem are: 

o 

o 

o 

o 

on line file of data collection forms 

searchable by metadata attribute; 

on line and hardcopy display of forms 

and their attributes; 

Photocomposed EIA Directory of Energy 

Data Collection Forms; and 

Periodic reports for forms clearance 

activities. 

Glossary Subsystem 

The glossary is an inventory of energy terms 

in use by EIA. The major source of input are 

active data collection forms; selected major 

publications such as the Monthly Energy 

Review and existing standard definitions. 

For each technical term' (such as jet fuel, 

lignite coal or average dealer margin) the 

definition, 'and source of the definition are 

identified. The glossary is used in EIA as 

a tool to achieve standardization of energy 

terminology, to eliminate duplicate and 

overlapping terms and to respond to inquiries 

from the public, Outside EIA, the glossary 

is particularly helpful to users for locating 

the precise def inition of an energy statistic. 

Products available through the glossary of 

energy terms include: 

o On line searching and retrieval of 

terms by energy subjects and source; 

o 

o 

On line display of definitions and 

source by subject and source; and 

Hardcopy glossary reports. 
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Data Element Subsystem 

The largest component of the DRD is the data ele

ment subsystem. This subsystem is a description, 

inventory and index to statistical energy data 

elements on active data collection forms. A data 

element is a block or blank on a form. Each data 

element is assigned a unique serial number and 

contains five additional attributes.' These are: 

(1) the form number on which the data element is 

found; (2) the physical location of the data ele

ment on the form; (3) the index terms used to 

catalog the data element; (4) the descript:l.on of 

the data element using actual wording from the 

form; and (5) notes which contain elaboration or 

clarification information about that data element. 

Products from the data element subsystem include: 

o 

o 

o 

o 

On line searching of data elements by sub

ject categories, source and source des

criptions; 

On line display of data elements and their 

descriptions; 

Hardcopy classified catalog of data elements; 

Linkage of data elements to their source. 

As with other DRD components, the data element 

descriptions are linked to the other subsystems 

in an integrated data base. 

Public Use Energy Statistics DataBase (PUESDB) 

Over 450 time series takeb from major publications 

such as the Annual Report to Congress and the 

Monthly Energy Review are contained in the PUESDB. 

These series are accessible through retrieval and 

display screens using the DRD, software. The 

source publication and form number for each 

series is stored as well as its detailed documen

tation. This provides linkages between the time 

series and the metadata subsystems. The PUESDB 

is also available for sale to the public through 

the National Technical InfOrmation Service. 



DRD Software 

The DRD is made up of three software systems: 

online information retrieval and display; 

hardcopy reports; and file maintenance. Each 

of these systems operates on the metadata 

base which is stored in the ADABAS data base 

management system. The online information 

retrieval and display system allows the user 

to search the data base to locate informa

tion, display information retri'eved, and 

scan alphabetically and hierarchically the 

indexing terms in the vocabulary. When 

searching the data base, two subsystems can 

be linked or coupled together. This allows 

the user to first search one subsystem for 

information and then locate related informa

tion in a second sl.lbsystem without formulating 

a new. search query. The metadata base can 

be searched using not only the indexing 

terms, but also the other metadata attributes. 

No special programming knowledge is required 

to use the software. Each of the subsystems 

has associated with it predefined display 

formats that present subsets of metadata in 

logically related groups. One format dis

plays all metadata attributes for each 

subsystem. The online information retrieval 

and display was designed for IBM 3270-type 

intelligent terminals, and operates in a 

full-screen form fill-in mode. Each func

tion -- search, display and scan of the 

indexing term file.-- are presented on one 

screen. The user then provides search or 

display criteria, edits the screen if 

necessary and finally sends that function 

to the computer for processing. Hardcopy 

reports are requested from the DRD online 

and are then processed in batch. There are 

30 reports available to users, most of which 

are used as part of EIA's forms clearance 

activities. These reports provide the user 

some flexibility i~·terms of search criteria 

and satisfy the bulk of user needs. More 
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specialized reports can be generated using the 

NATURAL programming language which was developed 

for use with ADABAS. 

Finally, specialized maintenance software for the 

DRD metadata base has been developed. As with 

the retrieval and display system, the maintenance 

system also operates online with full screen dis

play and text editing. 

Issues Needing Resolution 

All of the data elements, forms and glossary 

terms in the DRD are indexed and described using 

a highly structured, hierarchical vocabulary 

which is organized into eight broad categories 

or facets. These are: 

o 

o 

o 

o 

o 

o 

o 

Energy Source--the subject matter or product 

being measured such as coal, unleaded motor 

gasoline or electricity; 

Source Qualif ier s--terms used to further de

fine energy sources such as sulphur content 

range, imported or finished; 

Energy Function--the stage of the energy 

production life cycle and the management of 

energy firms such as mining, refin~ry pro

cessing, purchases or consumption; 

Assets--~quipment or resources such as drills, 

fields, coke ovens or tankers; 

Participants/Facilities--both the physical 

and corporate facilities and agents such as 

subsidiaries, refineries, suppliers or 

shippers; 

Location--the geographic, administrative, 

political, geological or topological place 

terms used to describe energy data such as 

United States, DOE Region 1, OPEC, basin or 

offshore; 

Frequency--periodicity of the data such as 

monthly, quarterly or daily; and 



o Measu~ement--the physical and accounting 

units that describe the data such as 

barrels, BTUs, short tons, feet or 

dollars. 

This form of indexing using a highly structured 

hierarchical scheme ensures that each data 

element ls uniquely defined. The searcher 

can be assured that all pertinent references 

are obtained from a search. It also has dis

advantages, namely: 

1. 

2. 

It is costly to index all the data 

elements on a form using thisscheme--a 

form of 100 elements takes about 

40 hours at a cost of approximately 

$2000. The current process is for 

the indexer to fill out a form with the 

appropriate facets for indexing each 

item. Metadata from this form are 

entered into the terminal and then a 

batch editing procedure picks up 

illegal terms and other errors which are 

subsequently corrected. Varying degrees 

of interactive indexing have been con

sidered. It seems highly desirable to 

speed up the ,indexing process, but we 

hesitate to invest in the extra pro

gramming necessary without knowing other 

people's experience with such an approach. 

Currently, EIA uses the Energy Data 

Base (~DB) thesaurus ~or indexing our 

publications, in common with other 

agencies, As there is a strong move 

afoot to coordinate all such efforts 

nationally, it seems unreasonable to 

change our mode of indexing publications, 

but there are sufficient differences 

from the DRD classification scheme that 

integrating the two indexing systems 

presents problems. The FEDEX hierarchy 

has multiple routes to the same entry. 

For example, if references to "coal" 

are sought in the EDB thesaurus, there 
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are three routes: (1) materials-~ carbonaceous 

materials-~ coal; (2) fuels-~ fossil fue1s-->coa1; 

or (3) energy sources-~ fossil fuels-~ coal. 

When we get to one lower level of coal in the 

DRD, we have separate entries for anthracite, 

bituminous lignite and peat, whereas in the EDB 

thesaurus the entries for anthracite and bitum

inous coal are subsidiary to the entry "black 

coal" and peat is parallel to coal under fossil 

fuels. In other instances, the DRD is more 

specific than the EDB. It would be feasible to 

relate these structural differences for words 

currently in the DRD, but it would complicate 

the process of adding additional words. 

3. The vocabulary for the DRD was chosen so 

that each word was unambiguous. Current 

efforts are underway to add synonyms and 

cross references t~ assist a specialist in 

a particular meaning in the context of this 

industry. The following are examples in 

the petroleum industry. The term "stocks" 

is cross-referenced to the DRD term "inven

tories (energy sources)," and "shipments" 

is cross-referenced to the DRD term 

"deliveries" as there is a one-to-one corre

spondence in meaning under current usage at 

EIA. We refer to these types of cross-

ref erences as translations.' 

In other instances words used by petroleum 

specialists can have different meanings according 

to their context. An example is "inputs." This 

item can refer to (1) refinery processing in 

general, (2) distillaUon (refining), (3) dis

tillation (natural gas processing), and (4) the 

crude oil and other products that are input into 

a refinery. There are several approaches possible 

for handling this problem, of which the most 

feasible seems to be a translation to the term 

"processing functions." This approach would 

enable the searcher to go to the vocabulary 

BROWSE feature and select the most appropriate 

of the precisely-defined terms available. 



Other translations that have been installed 

are more obviously synonymous or could even be 

thought of as alternate spellings. For 

example, "mix," "mixture," and "mixtures" are 

equivalent when used in such strings as 

"ethene-propane mix." 

CONCLUSION 

Keeping abreast of what information is avail

able is an important function of an agency 

whose purpose is to provide the public with 

energy information. The DRD systems provide 

effective means of searching for information 

to satisfy a variety of needs such as veri

fying that the information requested on a new 

survey form is not already available, or 
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determining where a particular item of inform

ation is published and from whom it is obtained. 

EIA is proceeding to link together many disparate 

subsystems and so increase the search capabilities. 

We are constantly looking for improved strategies 

and would much appreciate learning about other 

experiences in this area. In particular, we 

would like to consider the advantages and 

disadvantages of a highly structured hierarchical 

thesaurus compared with less rigid constructions; 

we would like to know whether tools exist that 

would speed up the lengthy indexing process 

and we would value any insights that can be. 

shed on the problems of indexing terms that 

are used with different meanings in different 

contexts. 
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~Abstract 

In our paper for the first of these Workshops [1] we claimed 

advantages of a new approach to estimation of statistics on a 

databases. We now back up these claims with quantitative 

experimental evidence of the comparative performance of our 

approach versus several simpler alternatives. 

1. Introduction 

We have been constructing a rule-based system for top-down 

estimation of the values of statistics on the contents of databases 

[2,3,1]. Our approach has two parts, a "database abstract" 

consisting of precomputed statistics on a particular database, and a 

set of inference rules for estimating the values of other statistics not 

stored in the abstract. This approach has quite different advantages 

and disadvantages than the main competing technique of random 

sampling. To help understand these advantages and disadvantages a 

quantitative evaluation is helpful. We validate performance here on 

a quite different database than that on which the system was 

This work is part of the Knowledge Base Management Systems originally developed, demonstrating a degree of portability of our 

Project, under contract # N00039-82-G-02S0 from the Defense ideas. 

Advanced Research Projects Agency of the United States 

Department of Defense. The views and conclusions contained in this After an overview in section 2, we explain our method for 

document arc those of the author and should not be interpreted as comparing answers and estimates in section 3. Section 4 introduces 

representative of the official policies of DARPA or the US the four basic control experiments needed to validate performance. 

Government. Section 5 introduces results tables for the medical database. Section 

6 discusses these results in regard to space and accuracy performance, 

and section 7 in regard to time performance. Further experiments 

with this and another (the original) database arc covered in [3]. 

[Current address: l)epartmclll or Computer Science. Code 52. Naval Postgraduate 
School. Monterey, CA 93940 
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2. The evaluation problem 

Our work is in the tradition of many nde-based "expert systems" 

de,Yeloped in the field of artificial intelligence [4], But unlike, say, a 

medical expert system designed to choose the most appropriate 

medical treatment for a patient, there is a quite rigorous way in 

which our statistical estimation expert can be evaluated: comparison 



of estimated numeric values with the actual values of the same 

statistic found by going back to the original data. We can thus 

quantify the disparity, and study the relative effectiveness of the 

estimation for different kinds of statistics, database sets, and 

attributes of those sets. 

Evaluation of a statistical estimation system is tricky because there 

is a tllree-way tradeoff between space required, time required, and 

accuracy obtained. Plotted as a tl1fee-dimensional surface (see 

below), it is rollghly a hyperboloid. (We expect this from the 

information-tlleoretic assumption that tlle total information quantity 

transmitted across a channel is constant, that is, SAT = K where 

S=space, A=accuracy,T;"time, and K is some constant.) For a 

fixed level of accuracy, the curve is a hyperbola relating time 

vs. space. For less accuracy, tlle hyperbola moves closer to the 

. vertical axis; moving this way "up" the surface is essentially what our 

system is trying LO do. We would like to parameterize this surface to 

some degree. 

3. Comparing answers and estimates 
To quantify "how close" an estimate is to an actual answer we use 

the number of consecutive high-order bits in common between the 

estimate and the answer, -log2I(est-ans)/ansl. We wish to compare 

space and accuracy, and representing both in bits allows this. We 

could have used other metrics, as for instance an extremum of 

estimation rather than a normative summary of estimation, but we 

felt (1) extrema are harder to compare to space measurements, and 

(2) a good normative measure seems to correspond better to an 

intuitive performance assessment of an estimation system. 

There are three problems with this bit-accuracy formula, however: 

First, tlle actlJaI answer may be zero or negative; we ignored this, 

since much statistical data represents positive sums and counts 

anyway. (To handle this we would need to measure absolute 
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accuracy or something else other than bits in common.) Second, the 

estimate may be exactly equal to the answer, giving an infinite 

number of bits in common; we handle this by putting a maximum on 

all such measures equal to the bit accuracy of the attribute whose 

statistics are being estimated. Third, the estimate may be greater 

than twice the answer, or \ess than half the answer, in which case the 

formula becomes negative; we handle this by arbitrarily rounding all 

negative results to zero. 

We thus tabulate this performance metric on a series of random 

queries to our system. These abrupt changes for very close and very 

far apart values, however, arc somewhat arbitrary, and so we also 

tabulate the breakdown of items in each of three categories (very 

close, reasonable, and very far) for a set of random queries. 

Estimation performance depends on the database abstract as well 

as the inference rules, and so is database-dependent. In particular, it 

, wiII not work well for data with complicated correlations between 

attributes. A nd since statistics on very small sets are not usually very 

meaningful, and subject to large variances, we impose the restriction 

that we only check our system performance on queries ten items or 

more in size. In addition, performance depends on the particular 

statistic queried, the fmm of the query se~ and the query attribute. 

To avoid averaging these factors out over many queries we tabulate 

performance separately for major categories. 

4. Control experiments 

In order to demonstrate that our estimation approach is 

advantageous we must have a standard of comparison, a "control" 

experiment. Matters are complex because there arc at least four such 

controls. We present them in approximate order of increasing 

challenge to our methods. 

1. answering the query from a database abstract without 
using any inference rules (the "null rules" control) 

2. answering the query with a minimal abstract Oust 
statistics on each relation as a whole), but a full set of 
inference rules (the "null abstract" control) 

3. nmning tlle query on tlle full original database, 
calculating tlle exact answer (the "full database" control) 

4. "upwards" inference from a random sample the same 
size as a particular database abstract (the "sampling" 
control) 



Our system must perform at least as wel1 as al1 four of these in order 

for it to be judged a "success". By "at least as well" we mean that if 

any two of the three factors of space, time, and accuracy are held 

constant, performance will be better in regard to the third factor. To 

put it in terms of the hyperboloid. the hyperboloid' representing 

behavior for the experimental scheme must be, "below" the 

hyperboloid representing behavior for the control scheme for a 

reasonable range of parameters. In some cases, only one factor needs 

to be held constant. For instance, for the first and fourth controls 

above, we shal1 show that both time and accuracy are better when 

space is held constant. 

Restrictions that the database, abstract, or sample be of a certain 

size or type, are fair when stated explicitly. Significance can be 

checked by the standard deviation of the bit accuracy and usual 

hypothesis-testing methods. 

5. Some results 

We developed an implementation of our ideas original1y for four 

attributes or a srrial1 subset of the merc~ant shipping database o;/the 

KBMS project at Stanford, doing debugging and preliminary 

evaluation with this data. To demonstrate the generality of our ideas 

more convincingly we needed a different database, and we chose a 

random subset of the database of the RX project at Stanford [5], itself 

a subset of the ARAMIS (American Rheumatology Association 

Medical Information System) database of infomlation about 

rheumatology patients. We chose six attributes to analyze for 28 

patients with a total of 1000 visit records: patient number, sex, 

disease activity level, temperature, measured cholesterol, and 

administered prednisone. (Occasional missing values for the last four 

attributes were fil1ed with values on previous visits.) We created a 

vocabulary of 18 named (or "first-order" sets) whose statistics would 

be stored in the abstract, representing partitions into two parts on 

sex, four parts on disease activity, and three parts for the other four 

attributes. 

(maximum), sigma (standard deviation). median, and modefreq 

(mode frequency). Results for each statistic are tabulated separately, 

and are spaced horizontal1y across the page in six columns, in that 

order. 

Re~ults for each statistic in an experiment are summarized in 

seven numbers presented on three lines, in this format: 

<bit~ of accuracy >( <standard deviation of accuracy» 
<# of exact answers>-< # reasonable estimates>-< # poor estimates> 

<average range narrowing>«standard deviation of narrowing» 

where: 

• <bits of accuracy) is the average number of bits in 
common between the estimate (EST) and the actual 
statistic value, in ten random queries, computed 
according to the formula in section 3. 10 bits is assumed 
the maximum accuracy for al1 these experiments, since it 
is the accuracy of the numeric data. 

• <standard deviation of accuracy) is the standard 
deviation of those numbers for the ten queries 

• <# of exact answers> is tlle number of queries, in the ten, 
that can be answered to at least 10 bits of accuracy, the 
accuracy of the data 

• <# of reasonable estimates> is the number of estimates, 
in the ten, that were not near-exact, but no worse than 
twice the actual answer or half tlle actual answer 

• <# of poor estimates> is the number of estimates, in the 
ten, that were more than twice the actual answer of half 
the actual answer 

• <average range narrowing> is the average ratio, in ten 
random queries, of the range between the bounds on the 
estimate to the possible range of that statistic 

• <standard deviation of the narrowing> is the standard 
deviation of the preceding in ten random queries 

Experiments 1 through 6 show results for statistics on the 

temperature attribute, experiments 7 through 12 prednisone dosage, 

experiments 13 through 16 results for two arithmetic operations 

between attributes, and experiments 17 tllrough 20 result~ for set 

We summarize' our results in tables at the end of this paper. unions. Experiments tested particular query set forms, attributes Of 

Results of thirty different experiments are displayed. Each "fields", and abstracts. The same query sets were tested for each of 

experiment is numbered, and contains three lines of result data. the six statistics. "Exact" means tllat exact rules give a certain value 

Each experiment involved testing of estimation performance for ten for the answer, not an estimate; tllis is implies in our table a 10.0 bits 

random queries on six statistics: count (set size), mean, max ,of accuracy, a 10-0-0 answer breakdown, and .00 range narrowing. 

For set intersections, only those larger than 10 items were used for 
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tests, since statistics on smaller sets fluctuate widely, and the statistics 

are not particularly significant anyway. For set unions, because of 

time constraints, we disenabled the "backwards" reasoning or 

relaxation-style analysis used in all the oth~r tests here; hence results 

are not as good. 

6. Discussion: space and accu racy 

Section 4 gave four separate control experiments we must compare 

performance against. Our experiments do not provide a complete 

comparison to each, in part because of time and space limitations, 

but they do cover most of the issues. (We used about 50 hours of 

CPU time on a DEC-20 at SRI International to perform this 

evaluation, coming close to the space· limitations of single-user 

Interlisp in the process. 90% of the time expended was calculation of 

the database abstract values when needed from the actual data.) The 

basic philosophy of this evaluation is determination of "the value of 

rules" in the style of [6J. 

6.1. Control 1 : Abstract, no rules 

Clearly we can answer many more queries with rules on an 

abstract than without. An abstract can only contain contain a finite 

number of query answers, whereas rules can give statistics on 

arbitrarily large intersections and unions of sets in the abstract. The 

space for the rules is negligible compared to the size of the abstract 

because (a) rules can be coded efficiently since they contain few 

different symbols, and (b) we are interested primarily in large data 

sets where the abstract (as well as the database itself) is likely to be 

considerably larger than the rule storage. 

6.2. Control 2: Rules, no abstract 

We study this by experiment. For "no abstract" we still mean to 

include statistics on entire relations, information which it seems 

reasonable to assume is accessible to a user without the computer 

.- technically, a "null abstratt". These conditions apply to the even' 

numbered rows in our first four tables. As one can see by comparing 

the figures with those for corresponding queries with a first-order 

abstract (experiment 2 with experiment 1, 4 with 3, 6 with 5, etc.), 

performance is usually significantly better. We can quantify the level 

of significance by the standard deviations given in parentheses on the 

first lines of the entries. 
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6.3. Control 3: calculation on full database 

The third control experiment is getting the eXilct answer by 

flmning the query on the full database. The data is 1000 tuples with 

6 attributes, a total of 1000 * 6 * 16 = 96,000 bits. The first-order 

abstract used in the experiments consists of J 9 first'order sets plus 

the universe, with 14 statistics tabulated for numeric attributes and 5 

for nonnumeric, for a total of5*14 + 5 = 75 attributes, each with 10 

bits of accuracy, for a total of 19 * 75 * 10 = 14,250 bits, or about 

14.8% of tile size of the database. (We ignore here the size of the 

program to manipulate the database abstract, as it is fixed in size 

independent of the database and database abstract, and its rules can 

be coded highly efficiently in few bits if desired.) 

The main difference, however, is between the exact answers given 

by full-database querying and the limited accuracy of estimates. The 

tests we have run give average bits of accuracy for particular query 

forms. If multiply this by the number of possible queries of a given 

type, and sum up over all query types, we can get .an estimate of a 

"virtual database size" due to the inclusion of inference rules along 

with the abstract.· Of course there are an infinite number of queries 

since intersections and unions can be embedded arbitrarily deep, but 

one can set reasonable limits on query size (or better yet, weight 

query types as per their frequency of occurrence). As an example. 

consider just our estimates of the intersections of two sets. There are 

about 18 * 15 = 270 such sets, and the six statistics computed on 

thef,c sets in experiments 1 cover 8.24 + 9.09 + 7.23 + 3.41 + 3.22 

+ 8.17 = 39.36 bit~ on the average per set, so there is virtual storage 

for about 270 * 39.36 = 10,600 bits, representing ncar to a doubling 

of the database abstract size. Similar figures can be summed over all 

experiments for all the common query forms. The total sum 

represents how well the rules are extending a given database abstract, 

and may be roughly compared to the size of the original database.· 

6.4. Control 4: Random sampling 

The fourth and last control experiment is to extrapolate from a 

random sample the same size as the database abstract. We studied 

this experimentally by constructing a random sample thi:! same size as 

our first-order (18-set) database abstract, 148 sample items out of 

1000 in this case, and inferring upwards from statistics 011 the sample 

to statistics of the population. Results are contained in experiments 

21 through 30 listed at the end of this paper. Experiments should be 

compared as follows: 



o experiment 21 with experiment 1 

o experiment 22 with experiment 7 

o experiment 23 with experiment 17 

• experiment 24 with experiment 19 

• experiment 25 with experiment 3 

• experiment 26 with experiment 9 .. 

• experiment 27 with experiment 5 

• experiment 28 with experiment 11 

• experiment 29 with experiment 13 

• experiment 30 with experiment 15 

Our rule-based method is about the same or better in most 

comparisons, while at the same time being likely to have much better 

access time in terms of page retrievals for all but very small 

databases, as discussed in [21, and while avoiding the "brittleness" 

mentioned there in regard to sets of related queries. 

7. Discussion: time 

These limited experiments do not well address the tradeoff 

between time and the other factors of space and accuracy, because 

significant advantages do not accrue unless the database is several 

orders of magnitude larger. A primary motivation for the database 

abstract architecture is the improvements in paging performance 

over random sampling and full-database-access methods, and 1000 

sextuples 3hould be easy to fit into most any computer's primary 

memory. But if we pretend that we have very limited primary 

memory and that all large datasets (database abstract and random 

sample as well as full-database tuples) are kept in pages (say 1000 

16-bit words) in secondary storage, we can make the following , 

comparisons for each of the four control experiments. (We assume, 

as with most large databases, that page accesses are the only 

significant time cost.) 

7.1. Control 1: abstract, no rules 

We assume rules can be coded efficiently and kept in core, hence 

they add no paging cost. Hence there is no difference in time. 
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7.2. Control 2: rules, no abstract 

Ti1is alternative docs obviate paging of the abstract, but that is 

only one page (14,250 bits = 890 16-bit words) for these 

experiments. For larger abstracts we assume all statistics on the same 

set are placed on the same page, and so an upper bound on the 

number of page accesses is the number of different sets queried. 

This number is constant for all queries of a given form. For 

intersections of two sets it is three: the first set; the second set, and 

their intersection. For unions it is four: all the preceding plus the 

union of the two sets. For unary and binary operations on simple 

attributes it is one since only the set actually queried need be 

accessed. So the number of page accesses needed to estimate a 

statIstic with the database abstract is a small constant independent of 

the size of the abstract, rule set, or database. 

7.3. Control 3: calculation of answer on full database 

The database is stored on 1000 * 6 /1000 = 6 pages. Even if there 

is an index pointing to every tuple of a given set, unless the sets are 

very small (say, 10 items or less) it is likely that at least one item of 

the set is on every page, except for the rare case where the database is 

clustered with respect to the partitioning that defines the set Hence 

all six pages will need to be fetched nearly all the time, whereas only 

one page in these experiments, or a small constant number of pages 

in general, will need to be fetched to use the database abstract, a clear 

cost savings during query answering. 

The database abstract does require setting up, however, which in 

turn requires accessing these very same six pages. But we only wish 

to usc the database abstract architecture when setup work is small 

compared to query answering, and setup cost can be amortized to 

insignificance over a large number of queries. Setup can be made 

page-efficient, too, by implementation as a single-pass algorithm 

through the database. 

7.4. Control 4: random sampling 

For setup, this has essentially the same paging costs as the use of 

the abstract, since for reasonably-sized samples and more than just a 

few tuples per page, nearly every page must be retrieved for at least 

one tuple. In this particular case, the random sample is 148 items, 

and the odds are very high that each of the six pages will be 

represented. For a larger database with p items per page, and a 

random sample of size m of the database, the number of pages 



looked at will be p(l-e-m/p) from a Poisson model, assuming 

independence of page placement. Since our approach must always 

look at every page during setup, the net.paging advantage of random 

sampling during setup is (l-e-m/p). For m = p, i.e. the number of 

sample points being equal to the number of database pages, this is 

only a savings of e-1=36.8% over our approach, and for most 

databases this represents a very small random sample, too small to be 

useful. 

Once the random sample and the database abstract are created, 

they both fit into the same amount of space, and the same number of 

pages. But answering queries with the sample will likely require 

accessing most pages of it, because even if there is an index (which 

may require additional paging to obtain), one has similar paging 

inefficiencies with random placement of records as with random 

sampling of the full database. Thus as the size of the sample 

increases, the necessary paging to answer queries will increase nearly 

proportionately. At the same time, answering queries with the 

abstract will require a fixed number of page accesses (bounded by 

the total number of pages) depending on the form of the query, as 

discussed in section 7.2. In addition, new random samples usually 

need to be fetched from the database if a user is interested in another 

data sct, whereas the database abstract is general-purpose. In a 

distributed architecture where the database abstract and/or random 

sample are separated from tlle database by a low-bandwidth 

connection, these additional fetches may be intolerable. 

8. Conclusions 
We have shown that our approach, applied to a particular 

database, does as well as random sampling, and in some cases 

Significantly better, for the same amount of storage space. Our 

approach also docs bctter tllal1 tllfCC other control methodologies. 
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count mean max sigma modefreq median 

Experiment/: statistics on the intersection of two first-order sets, with 

respect to the temperature allribute. for afirst-order abstract 

8.24(3.6) 9.09(1.2) 7.23(2.0) 3.41(1.9) 3.22(2.9) 8.17(1.3) 

8-H 1-9-0 0-10-0 0-10-0 1-9-0 0-10-0 

.01(.01) .32(.19) .28(.16) .10(.07) .07(.10) .29(.16) 

Experiment 2: same as experiment # / but for null abstract 

.34(.70) 7.00(1.6) 3.95(1.1) 1.87(2.0) .02(.04) 6.59(1.0) 

0-2-8 0-10-0 0-10-0 0-7-3 0-1-9 0-10-0 

1.0 1.0 1.0 1.0 1.0 1.0 

Experiment 3: statistics on afirst-order set, for the square root of temperature, first-order abstract 

exact 10.0(0) exact 2.59(2.0) exact exact 

10-0-0 0-8-2 

.002(.01) .12(.09) 
Estimation of statistics on patient temperatures 

Experiment 4: same as # 3 but for null abstract 

.50(.90) 8.97(.9) 5.82(1.4) 0(0) .52(1.4) 8.17(1.2) 

0-3-7 1-9-0 0-10-0 0-0-10 0-2-8 0-10-0 

1.0 1.0 1.0 1.0 1.0 1.0 

Experiment 5: statistics on a first-order set, for the square of temperature, first-order abstract 

exact exact exact 7.38(1.7) exact exact 

0-10-0 

.24(.14) 

Experiment 6: same as #5 but for null abstract 

1.21(1.7) 7.26(1.3) 3.93(1.3) 2.33(1.5) .09(.18) 6.33(1.1) 

0-4-6 1-9-0 0-10-0 0-8-2 . 0-3-7 0-10-0 

1.0 1.0 1.0 1.0 1.0 1.0 
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count mean max sigma modefreq median 

Experiment 7: statistics on the intersection of two first-order sets. with 

respect to the prednisone dosage attribute. for afirst-order abstract. 

6.27(3.9) 3.51{1.9) 3.56(3.1) 1.49{1.6) 2.57{3.2) 4.99(3.4) 

5-5-0 0·10-0 0-8-2 0-7-3 1-7-2 3-7-0 

.03{.04) .34{.31) .34{.31) .14{.08) .08(.05) .34{.31) 

Experiment 8: the same as # 7 but for a null abstract 

.73{1.0) 2.20{2.1) 1.90{3.3) 1.40(1.6) .40(.92) 6.25{4.6) 

0-4-6 0-7-3 0-6-4 0-7-3 0-2-8 0-8-2 

1.0 1.0 1.0 1.0 1.0 1.0 

Experiment 9: statistics Oil the square root of prednisone. first-order abstract 

exact 7.77(1.4) 

0-10-0 

.05{.04) 

exact 2.51(3.0) 

0-6-4 

. 13{.05) 

Experiment 10: same as #9 but for a null abstract 

.76{.73) 4.11(2.6) 2.72(3.7) 0(0) 

0-6-4 0·10-0 0-6-4 0-0-10 

1.0 1.0 1.0 1.0 

exact 

.79(1.6) 

0-2-8 

1.0 

Experiment II: statistics on the square of prednisone. first-order abstract 

exact exact exact 1.90(1.1) 

0-10-0 

.07(.06) 

Experiment 12: same as # II butfor a null abstract 

.86(1.4) 1.22(1.5) 2.99(4.6) .16(.5) 

0-3-7 0-7-3 0-3-7 0-1-9 

1.0 1.0 1.0 1.0 

exact 

.54(1.2) 

0-2-8 

1.0 
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exact 

6.59{4.2) 

6-4-0 

1.0 

exact 

6.14(4.7) 

6-3-1 

1.0 

Estimation of statistics on prednisone dosages 



count mean max sigma modcfreq median 

Experiment 13: statistics on afirst-order set. with respect to the sum 

of corresponding values for prednisone alld cholesterol. with first-order abstract 

exact exact 5.59(1.8) 5.52(2.2) .65(.8) 5.97(3.0) 

1-9-0 1-9-0 0-6-4 3-7-0 

.ll(.08) .04(.03) .61(.89) .08(.07) 

Experiment /4: same as # 13 but with null abstract 

.38(1.1) 4.45(1.7) 1.50(2.2) .62(1.2) .39(1.2) 6.46(3.1) 

0-1-9 0-10-0 0-7-3 0-3-7 0-1-9 4-6-0 

1.0 1.0 1.0 1.0 1.0 1.0 

Experiment 15: statistics on afirst-order set. with respect to the product 
Some vinual-attributc statistics 

of corresponding values for prednisone and cholesterol. with first-order abstract 

exact 6.76(2.1) 3.42(3.4) 1.25(1.8) .15(.3) 3.63(3.3) 

2-8-0 2-8-0 0-5-5 0-3-7 2-8-0 

.57(.36) .34(.31) .27(.18) .30(.49) .07(.05) 

Experiment 16: same as # 15 butfor null abstract 

1.11(1.1) 1.99(1.6) .20(.40) .29(.77) .40(.76) 0(0) 

0-6-4 0-8-2 0-2-8 0-2-8 0-2-8 0-0-10 

1.0 1.0 1.0 1.0 1.0 1.0 

Experiment 17: statistics Of! the union of two first-order sets. fOr/he 

temperature attribute. with first-order abstract 

6.84(2.4) 6.56(2.4) exact 3.54(4.3) 7.12(2.5) 6.26(2.1) 

3-7-0 3-7-0 3-3-4 4-6-0 1-9-0 , 
.11(.14) .37(.36) .28(.25) .07(.11) .42(.35) 

; 

Experiment 18: same as # 17 but for null abstract 

.39(.9) 7.29(1.4) 4.45(1.1) .87(1.6) .23(.50) 7.00(1.3) 

0-3-7 0-10-0 0-10-0 0-4-6 0-2-8 0-10-0 

1.0 1.0 1.0 1.0 1.0 1.0 
Results for set unions. without relaxation 

Experiment 19: statistics on the union of two first-order sets. for the 

prednisone allribute, with first-order abstract 

7.91(1.9) 6.59(2.6) exact 6.63(2.5) 6.49(2.8) 2.19(3.3) 

3-7-0 3-7-0 3-7-0 3-7-0 1-6-3 

.05(.09) .01(.02) .. 04(.04) .03(.04) .22(.25) 

Experiment 20: same as # 19 but with null abstract 

1.12(1.4) 3.58(1.9) 5.25(4.8) 3.02(3.2) .92(.95) 0(0) 

0-8-2 0-10-0 0-10-0 0-9-1 0-6-4 0-0-10 

1.0 1.0 1.0 1.0 1.0 1.0 
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count mcan max sigma modcfrcq median 

Experiment 21: statistics on the intersection of two sets and the temperature attribute 

2.00(1.8) 

0-8-2 

8.14(2.9) 

1-8-1 

7.38(3.3) 

5-4-1 

3.07(2.8) 

0-7-3 

2.51(3.8) 

0-7-3 

8.55(3.2) 

8-1-1 

Experiment 22: statistics on the intersection of two sets and the prednisone altribute 

2.30(1.4) 

0-9-1 

4.15(2.6) 

0-9-1 

3.35(4.4) 

3-3-4 

1.80(1.4) 

0-7-3 

2.36(2.1) 

0-7-3 

4.74(4.3) 

4-5-1 

Experiment 23: statistics on the union of two sets and the temperature attribute 

2.60(1.3) 

0-10-0 

9.51(.6) 

0-10-0 

4.73(1.1) 

0-10-0 

2.94(1.5) 

0-10-0 

2.62(2.3) 

0-9-1 

8.96(.7) 

3-7-0 

Experiment 24: statistics on the union of two sets and the prednisone attribute 

3.29(1.8) 

0-10-0 

3.84(2.2) 

0-10-0 

2.50(3.8) 

2-6-2 

3.52(1.5) 

0-10-0 

2.74(1.2) 

0-10-0 

Experiment 25: statistics on ajirst-order set, of the square root of 

the temperature attribute 

2.57(1.5) 

0-9-1 

9.09(1.2) 

0-10-0 

6.78(2.2) 

3-7-0 

1.45(1.4) 

0-7-3 

3.08(1.9) 

0-10·0 

hxperiment 26: statistics on ajirst-order set, of the square root of 

the prednisone attribute 

2.75(1.7) 

0-9·1 

4.59(2.2) 

0-10-0 

3.29(3.4) 

2-7-1 

2.65(1.9) 

0-8-2 

2.38(1.5) 

0-10-0 

Experiment 27:'statistics on ajirst·order set, of the square of the 

temperature attribute 

2.82(1.6) 

0-10-0 

7.95(1.5) 

0-10-0 

6.48(3.0) 

4-6-0 

3.44(2.4) 

0-9-1 

2.59(2.9) 

0-8-2 

Experiment 28: statistics on ajirst-order set, of the square of the 

prednisone attribute 

2.86(1.1) 

0-10-0 

3.28(1.8) 

0-10-0 

6.0(4.9) 

6-0-4 

2.00(1.5) 

0-10-0 

2.71(.6) 

0-10-0 

Experiment 29: statistics on ajirst-order set, of the sum of 

corresponding values for prednisone and cholesterol 

1.75(1.6) 

0-6-4 

4.66(2.8) 

0-8-2 

4.34(3.9) 

3-5-2 

1.33(1.8) 

0-4-6 

1.64(1.8) 

0-7-3 

Experiment 30: statistics on ajirst-order set, of the product of 

corresponding values for prednisone and cholesterol 

2.34(1.6) 

0-9-1 

3.50(2.0) 

0-9-1 

2.69(3.8) 

2-4-4 

2.22(1.6) 

0-8-2 
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1.98(1.5) 

0-7-3 

8.45(3.1) 

8-2-0 

8.80(1.3) 

3-7-0 

8.27(3.5) 

8-2-0 

8.07(1.8) 

4-6-0 

8.28(3.4) 

8-2-0 

5.99(3.8) 

4-4-2 

5.07(3.6) 

3-6-1 

Rcsult~ for cxtrapolation 

from a random samplc. 



Abstract 

The GENISYS Data Definition Facilities 

A. Timothy Maness and Sue M. Dintelman 
University of Utah 

This paper briefly describes the data definition facilities of the Genealogical Information 
System. GENISYS. which include the ability to define and to modify the definitions 
of the various database elements such as files. fields. logical links between files 
and forms to input. display and modify data. The use of a source definition and a 
target definition for data translation is presented. Also included is a list of proposed 
improvements and extensions to the current facilities. 

Keywords - Data definition. data description. data dictionaries. meta-data. 

I. Introduction 

GENISYS. the GENealogical ~nformation 
SYStem was 'developed to meet the needs 
of a mUltidisciplinary research project 
involved in historical demography 
studies and genetic studies of cancer 
and heart disease. The project database 
consists of demographic inf6rmation 
for individuals associated in pedigrees 
and several riles of medical and vital 
statistics data. A detailed discussion 
of the design goals for GENISYS, may 
be found in Maness and Dintelman (1982). 

Because the first goal was to 
improve access to our existing data 
the initial focus of GENISYS development 
was the query language. One of the 
key features of GOL (the GENISYS Ouery 
Language) is the use of defined links 
between files to make complex. multi
file queries easy to formulate (Dintelman 
and Maness. 1982). For example. for 
a database consisting of an Individual 
file and a Household file. where the 
Individual file contains demographic 
information for a set of individuals 
and the Household file contains information 
such as location. type of dwelling. 
etc .• for each household. possible 
links that could be defined are HEAD_
OF HOUSEHOLD. a 1 to1 link from the 
Household file to the Individual file; 
HOUSEHOLD_MEMBERS. a 1 to N link from 
the Household file to the Individual 
file; and 1880_HOUSEHOLD •. a 1 to 1 
link from the Individual file to the 
Household file. In a query these 
links may be used to access information 
in one file based on criteria in another. 
for example: 

SELECT individual_id. birthyear 
WHERE 1880_HOUSEHOLD 
dwelling_type = single 

This query would list the identifiers 
and birth years (both fields from 
the Individual file) for each member 
of a single family type dwelling (a 
characteristic of a household). 
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GOL has provided us a convenient 
mechanism for fo~mulating data access 
requests. Currently we are shifting 
our emphasis to providing more convenient 
ways for users to populate a database 
from both digitized and non-digitized 
sources. to access and modify the 
data dictionary to define new files 
and links and to allow users to inter
actively browse through their data 
and through the data dictionary. 
The next section describes the current 
data definition capab~lities and 
the final section lists some of the 
extensions that are currently being 
added. 

II. Current Data De~inition 
Facilities 

The following example illustrates 
the use of the data definition language 
and GENISYS commands to (1) create 
the definition of a newly acquired 
data set. (2) translate the data 
set into a more compact form. (3) 
generate a form to use to view. modify 
or add to the data and (4) place 
the definition of the file into the 
GENISYS data dictionary where it 
may be accessed by the query language 
and other system utilities. 

Following is a simulation of 
an actual GENISYS session. with explan
atory comments enclosed in braces. 

{The GENISYS user creates a definition 
file and uses a standard system editor 
to input the definition of the newly 
acquired data file. which is a text 
file consisting of a subject identifier. 
the sex of the subject. a single 
data value followed by 4 readings 
with the dates of each reading.} 



CREATE/DEFINITION NEW_RESULTS 
·append 
1 SUBJECT_ID string length 5 
2 SEX string length 1 recode 

("M" "0". "F" "1") 
3 XVALUE string length 5 
4 MONTH1 string length 2 
5 DAY1 string length 2 
6 YEAR1 string length 4 
7 READING1 string length 5 
8 MONTH2 string length 2 
9 DAY2 string length 2 
10 YEAR2 string length 4 
11 READING2 string length 5 
12 MONTH3 string length 2 
13 DAY3 string length 2 
14 YEAR3 string length 4 
15 READING3 string length 5 
16 MONTH4 string length 2 
17 DAY4 string length 2 
18 YEAR4 string length 4 
19 READING4 string length 5 
20 

·bye 

{It is often desirable to translate 
data into a different format for analysis. 
One reason may be to compact the data 
to save space and access time. another 
may be to alter a coding scheme. 
For the purpose of our example the 
user now creates a second definition.} 

.CREATE/DEFINITION LAB4 RESULTS 
*append 
1 INDEX r'IELD 
2 ID label "Subject Number:" integer 

length 5 
3 SECTION 
4 SEX label "Sex:" byte length 

1 recode ("M" 1. "F" 2) 
5 XVALUE real length 5 
6 ENDSECTION 
7 SECTION repeats 4 times 
8 MONTH label "Reading date:" 

byte length 2 range (0 ... 12) 
9 DAY byte length 2 range 

(0 •• 31) 
10 YEAR integer length 4 range 

(0.(>1975 and <1980» 
11 READING real length 5 range 

<>0.0. (100.0) 
12 ENDSECTION 
13 
·bye 

{A detailed explanation of the features 
illustrated in these definitions is 
below. To continue the example. the 
user may now translate the original 
data file into the new format using 
the TRANSLATE command where the arguments 
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are the source definition and the 
target definition.} 

.TRANSLATE NEW_RESULTS LAB4_RESULTS 

{Another command allows a GENISYS 
user to generate a form which can 
be used to display the converted 
data file. add or delete records 
or modify existing records.} 

.GENERATE LAB4 RESULTS 

{When the user is satisfied with 
the definition. the GENISYS DEFINE 
command is used to add the definition 
of the LAB4 RESULTS data set to the 
data dictionary.} 

.DEFINE LAB4~RESULTS 

.BYE 

The two definitions above illustrate 
some of the features of the GENISYS 
data definition language. These 
are discussed below. 

Index Fields. The first section 
of a description is used to designate 
the field or fields to be used as 
a primary key for the file. Indexes 
for other fields may be indicated 
using the INDEX keyword. 

Data Types. GENISYS currently 
allows the following data types: 
bit. byte. integer. integer4. real. 
double precision. string. soundex 
(this is a special coded string used 
in our application). There are trans
lation routines for all the reasonable 
mappings so that the TRANSLATION 
command may be used to translate 
from one type of data to another 
conveniently. Note that the length 
specified using the LENGTH keyword 
applies to the length of the field 
for display purposes. If the data 
type is anything but string the length 
of the stored data is based on the 
da ta ty pe. There are defaul t display 
lengths for all data types. 

Undefined Values. The default 
undefined value is a zero (null) 
value. but the user may specify another 
value using the UNDEFINED VALUE keyword. 
This is useful in instances when 
zero is a valid reponse. 



f) 

Range Checking. Following the 
RANGE keyword a specification of valid 
responses is listed. The example 
above illustrates the type of range 
specifications that are allowed. 
The ranges are checked during the 
initial input of a record whether 
during a oatch operation using TRANSLATE 
or using an input form. Ranges are 
also checked whenever a record is • 
modified. To apply a new consistency 
constraint to an existing file the 
GENISYS command CHECK CONSISTENCY 
will find all records which do not 
meet the range requirements. 

Recoding. The above example 
illustrates two uses of recoding. 
One use is to allow a change from 
one coding scheme to another. In 
the example above male was originally 
coded as 0 and female as 1. In the 
new file male is 1 and female is 2. 
The use of recoding also allows users 
to use an uncoded description of all 
types of descriptive data items such 
as race. religion. household type. 
etc .• when doing data entry and data 
access. Using an uncoded description 
is much more intuitive and results 
in fewer errors due to misuse of coding 
schemes. 

Record Layout. The physical 
layout of the two riles described 
above was determined by the system 
from the relative position and data 
type of each rield description. Specific 
byte (or bit) locations may be given 
using the LOCATION keyword to override 
the default position value. 

Logical Data Structure. The 
SECTION breaks may be used to separate 
logical groups of data items. although 
currently the only use of non-repeating 
sections is to allow the use of the 
NEXT SECTION function key in a form 
generated from the definition. Repeating 
sections (such as the reading information 
in the second definition) and repeating 
fields are common in many of our appli
cations. The internal structure of 
a logical file containing repeating 
information may include multiple physical 
files in order to save storage space. 
For example. a questionnaire may allow 
up to 10 treatment descriptions and 
the average used in the data collected 
to date may be only 2. Considerable 
space savings may be realized by using 
a separate file for the treatment 
descriptions. The translation command 
allows the physical structure to be 
changed as well as the logical structure. 
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i.e. in the example above the readings 
were initially considered to be a 
flat list of 16 data items and in 
the translated file are considered 
to be four repeats of four data items. 
The physical structure of a new file 
may be specified by the user or determined 
by the system. as in the example. 
based on the trade off between the 
length of the repeating information. 
the maximum number of repeats. and 
the length of the system information 
required to implement a separate 
file. 

III. Extensions 

This section describ.s some 
of the features we are currently 
designing and implementing to expand 
the data description and data handling 
capabilities of GENISYS. 

Consistency Constraints 

The definition of consistency 
constraints is important for finding 
inconsistencies in existing data. 
for preventing errors in newly input 
data and preventing modifications 
that would introduce inconsistencies. 
Consistency constraints are parti
cularly important for global files. 
i.e .• data files that are utilized 
by the entire project. It is important 
that updates to global files meet 
the consistency constraints required 
by ~he entire group of users. We 
currently support the range checking 
of a single field and intra-record 
constraints. but are working on adding 
the ability to enforce inter-record 
constraints. As part of the work 
with our large genealogy file we 
have a list of 85 rules which must 
be met before a pedigree is considered 
consistent. We are very interested 
in making the specification of these 
complex constraints more convenient 
by allowing the use of the same link 
names and types of expressions as 
in GQL. 

The consistency constraints 
will be implemented as a rules system 
(Stonebraker 1982). Rules take the 
general form of: 

if <condi tion> 
then <action> 

where <condition> is a list of things 
to watch for and <action> is a list 



of things to do. This same paradigm 
has been used extensively by the AI 
community in the development of expert 
s y s t ems (M Y C I N (D\a vis, 1 97 7 » and 
rules systems have been called "production 
systems, rule based systems, pattern
directed inference systems" (Nilsson, 
1980) . 

An example of a simple rule that 
may be associated with a record for 
an individual is: 

IF (BIRTHYEAR > DEATHYEAR AND 
DEATHYEAR A = 0) 
THEN WARNING ("Birthyear is greater 
than Deathyear") 

If a request to change a record results 
in the condition that an individual's 
birth year becomes greater than his 
death year then a warning is returned 
to the process requesting the change. 
The actions associated with conditions 
may range t"rom warnings, to refusal 
to perform the requested update, notifi
cation of systems personnel, or logging 
the fact that the condition of the 
rule was met for reporting purposes. 
The parsed form of the rules will 
be stored in the data dictionary as 
a hierarchical structure. 

Abstract Date Types 

Use of abstract data types provides 
a convenient way to deal with complex 
data attributes, that is, attributes 
which consist of elementary attributes. 
"Date" is an example of a data type 
which consists of "month", "day" and 
"year" pieces. Users should be able 
to use any of the following equivalent 
representations for a date value: 

01/04/1983, 01-04-83, or January 
4, 1983 

It would also be convenient to specify 
in a query an expression such as 

DEATHDATE > BIRTHDATE + "8 YEARS" 

or 

DATEOFDIAGNOSIS BETWEEN "1/1968" 
AND "12/1974" 

An abstract data type includes 
the definition of the internal repre
sentation of the data type and conversion 
routines to convert from the abstract 
data type to other types, such as 
strings for input or output. Also 

( 
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associated with the data type may 
be definitions of comparison routines, 
arithmetic operators, aggregate functions 
and special functions for the data 
type. 

An additional example of the 
use of an abstract data type is the 
definition of a pedigree data type 
for general use in our project. 
The ability to define abstract data 
types will also make dealing with 
different coding schemes much more 
convenient. For example, death certif
icate records which contain ICD-O 
coding for cause of death use many 
different revisions of the coding 
scheme. In order to ask about a 
specific cause of death it is currently 
necessary to know the cause of death 
(COD) code for each ICD revision 
and ask for: 

lCD_REVISION = 6 AND COD = V1 
OR lCD_REVISION = 7 AND COD = V2 
OR lCD_REVISION = 8 AND COD = V3 

It would be much more convenient 
to define an abstract data type 
"CAUSE_OF DEATH" which includes both 
the revision number and the code 
and conversion routines for causes 
of death that will be used such as 
"CANCER" or "BREAST CANCER". 

Implementing abstract data types 
will require extensions to the data 
dictionary and type checking during 
the parsing phase becomes more complex 
and potentially time consuming. 
Preliminary implementations of abstract 
data types (Overmyer, 1982) indicate 
these are not insurmountable problems. 
Because our queries are currently 
compiled, inclusion of any of the 
functions associated with abstract 
data types present no difficulty. 
These types of functions will be 
included in our plans for a more 
interactive system by implementing 
them as separate processes using 
available interprocess communication 
facilities. 

Ose of Links and Forms. 

The current implementation of 
GENISYS allows us to define forms 
which can be used to display, add 
and modify data in a single logical 
file. We would like to take advantage 
of the features of the currently 
supported system and include the 
ability to display, add and modify 



links between different logical files. 

In order to support these capabilities 
in a general way we will extend the 
data dictionary to contain the definition 
of forms which use path expressions 
to select data to be displayed on 
a form and to allow the definition 
of commands to move between forms. 
These commands will allow a user to 
define several forms and to specify 
the mechanism (usually some key value)· 
to retrieve a new record (or records) 
and the form used to display it (them). 
Our current design of the use of forms 
in GENISYS has been influenced by 
the frames discussed by Catell in 
(Ca tell. 1980) and the forms discussed 
by Rowe in (Rowe. 1982). 

The ability to quickly specify 
a form and use it to display records 
will be a useful companion to the 
use of GQL for preliminary analysis. 
In other words the use of forms will 
not be restricted to input operators. 
but will be useful for researchers 
who. we hope. will be creating their 
own customized rorms. 

Unitied treatment ot data dictionary 
and data 

The importance of integrating 
meta-data facilities with database 
management facilities is discussed 
by several people. for example. see 
(Codd. 1982 and McCarthy. 1982). 
It is our goal to move closer to the 
ideal situation where the data base 
management system manages the data 
dictionary as a database. no different 
than any other. The feature we are 

. missing is th~ ability to have self 
describing files and fields. that 
is. using the value of one field to 
interpret the contents of another 
and the use of a field to determine 
the type of record. Once implementation 
of this feature is complete. we will 
be able to define the data dictionary 
to itself and use GQL to query the 
data dictionary and define forms and 
associated commands to browse through 
the database. This will be useful 
for new researchers or researchers 
investigating new areas as they will 
be able to see what data is available. 
who has run queries or modified the 
data they are interested in. etc. 
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IV. Conclusion 

This has been a very brief des
cription of the type of data definition 
capabilities we currently have as 
part of GENISYS and the type of capability 
we are planning. Our main goal in 
all GENISYS development has been 
to implement tools which will be 
useful to and used directly by the 
researchers who are analyzing the 
data. 
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Abstract 

This paper describes the major research tasks currently being undertaken at the Database 
Systems Research and Development Center of the University of Florida in the area of manage
ment of statistical databases. It presents the progress made to date and accomplishments 
related to the following: 1) the development of a semantic association model and its data 
language for use in statistical/scientific applications, 2} the, study of (a) data mapping 
between a semantic model and the model used by a particular DBMS and between a logical 
model and its physical implementation, and (b) view integration problems in database de
sign, 3) the investigation of data compression techniques and the development of a general 
model of database implementation, and 4) the study of parallel algorithms and database 
machine techniques for the efficient processing of statistical/scientific databases. The 
research project has been supported by the Applied Mathematical Science Program of the 
Department of Energy under contract HDE-ASOS-BlERl0977. 

1. INTRODUCTION 

In our complex, technologically-oriented society, 
the success of many human endeavors relies very 
much on the availability of data relevant to de
cision making. Examples of these endeavors a
bound in energy-related research, operations and 
management. In organizations involved in energy 
production/distribution/management, technical 
staffs and management personnel often need to ac
cess diverse and interdisciplinary statistical 
and scientific databases (SSDs) containing energy, 
census, geographical, environmental, and socio
economic data. These databases have been gathered 
by different governmental agencies and DOE labor
atories and offices. There are several factors 
that make the access to these databases very 
difficult, if not impossible: 

(1) In general, different databases are imple
mented on different hardware using different data 
processing systems. Consequently, there are no 
common conventions for naming, describing, for
matting, representing, and structuring data. Also, 
the languages used for accessing and manipulating 
different databases are also different. Access 
to data in multiple databases is, thus, rendered 
very difficult. 

It is, therefore, necessary to investigate the 
techniques and rules for mapping and interpreting 
data stored under different representations and 
translating queries issued for one system into 
queries suitable for another system. The data 
mapping and query translation problems also exist 
in relating the users' views (external models) to 
the community users' view (conceptual model) and 
to the internal structures (internal model) of a 
database. Furthermore, better language inter
faces should be designed and developed to make it 
easy for the users who lack computer training to 
access the diverse databases. 

(2) It is advantageous to have a generalized 
database management system (DBMS) to facilitate 
the accessing and sharing of valuable data among 

*This project is funded under Department of Energy 
contract HDE-ASOS-BlERl0977. 
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energy-related organizations. Unfortunately, 
the existing relational, hierarchical and net
work models used in business-oriented DBMSs are 
not adequate for defining and processing SSDs. 
Several recently proposed "semantic models" 
[CHE76, SMI77 , HAM7B, NAV7B, COD79, SU79, HAMBl, 
SHIBl, KREB2], though richer in semantics, are 
not designed for SSD applications. SSDs have 
characteristics which are quite different from 
those of business-oriented databases [BIR7B, 
RAP7B, SZC7B, CRAB 1 , SHOB2, BORB2]. They con-
tain a large variety of data types: numeric 
data, such as fixed point, floating point and 
double-precision numbers, bit strings, vectors, 
matrices and arrays, as well as non-numeric data, 
including text, formatted and unformatted char
acter strings. The operators useful for the 
manipulation of these data types are quite differ-' 
ent from those used in the processing of formatted 
business data. For example, the operators for 
matrix manipulation and text processing needed 
for SSDs are generally not available in business
oriented DBMSs. The processing of SSDs often in
volves the use of aggregate functions and statis
tical routines to obtain summary data which pro
vides a proper context for interpretation, extrapo
lation, and prediction. The operations required 
to aggregate and extract data from SSDs are dif
ferent from those available in business DBMSs. 
They are a part of the semantics of SSDs and need 
to be explicitly modeled. Due to these and sever
al other differences, there is a definite need for 
a data model that is tailored for SSD applications. 
The model should not only provide for modeling of 
a variety of high-level data types, aggregate func
tions and statistical summary data, but also allow 
an explicit definition of the semantic properties 
of SSDs so that meaningful operations associated 
with the data may be predefined and carried out by 
a DBMS. The latter property 1) eliminates the 
need for a redundant specification of these oper
ations via users' queries, 2) allows a high-level 
data language to be designed and, thus, 3) simpli
fies the users' tasks in accessing and manipulat
ing the databases. 

(3) Inefficiency of data access and manipulation 
is always a problem in statistical/scientific ap
plications. This is because of the sheer size of 



databases involved and the time-consuming opera
tions required in these applications. There is 
a strong need for the development of implementa
tion techniques which allow (a) an efficient 
processing of SSDs in terms of retrievals, up
dates, aggregations, etc., and (b) facilities 
for handling compressed data, variable-length 
data, data types, which characterize SSDs, etc. 
The implementation techniques should take advan
tage of the special characteristics of physical 
data as well as operations of SSDs to achieve 
the needed efficiency. They should also take 
into consideration the ease of mapping the logi
cal data representation and operations into its 
physical counterparts. It is expected that im
plementation techniques for SSDs will be quite 
different from those for the business-oriented 
databases. 

Software techniques work well but often at the 
expense of generating additional system over
head and other software problems. The indexing 
technique for speeding up data search at the 
expense of ease of updating is an example. It 
is, therefore, important to seek alternative 
hardware solutions to the efficiency problem. 
Hardware architectures or special purpose hard
ware for supporting statistical/scientific 
processing can be expected to be quite differ
ent from the existing database machines de
signed for managing business-oriented databases. 

Under the support of the Division of Engineer
ing, Mathematical and Geosciences, Office of 
Basic Energy Sciences, Department of Energy, 
we have for the past two years (since July 
1981) concentrated on the following research 
tasks in logical and physical modeling and de
sign of SSDs: 

1. The design of a semantic association model 
for the conceptual design of SSDs. 

2. The identification of complex data types 
and their associated operations which are use
ful to the SSD users and are to be used as a 
basis for the design of a high-level, non
procedural data manipulation language. 

3. The development and analysis of two data 
compression techniques: dynamic index en
coding and the vertical elimination of re
peating characters (VERC). 

4. The design of a general model of physical 
databases to describe and define the physical 
structures of existing scientific and statis
tical database management systems. 

5. A preliminary investigation into the map
ping of semantic models into the logical and 
physical structures in a DBHS. 

6. A framework for integrating the user views 
during the "view integration" phase of logical 
database design of SSDs. 

7. Algorithms for sorting and statistical 
aggregations and their implementation in a 
microcomputer network. 

2. OVERVIEW OF CURRENT EFFORTS AND ACCOHPLISH
HENTS 

In this section, we shall give an overview of 
our research effort and accomplishments during 
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the past two years of study under the support of 
the DOE. The results of our research are detailed 
in [BAT82, BR082 , CHE82 , FEI82, NAV82a, SU82a, 
SU82b, SU82c, BAT83a, BAT83b, NAV83 , SU83a, SU83b]. 
The following three areas will be covered: 
a) Semantic Hodeling and Language Design 
b) Database Happing and Integration 
c) Physical Design. 

2.1 SEMANTIC HODELING AND LANGUAGE DESIGN 

The design of a powerful data model is perhaps 
the most important and essential step in statis
tical and scientific database management. This 
is because a model is necessary to define and 
describe the logical views of users (external 
models) as well as the integrated view (concep
tual model) of the user community. It is also 
essential for the development of a generalized 
DBHS for SSDs since the design of a data model 
would determine the data definition language and 
the data manipulation language which are the key 
facilities in a DBMS. The data model used for 
logical database modeling would also affect the 
physical database modeling and design because 
the physical database structure depends on the 
logical database structure and the mapping be
tween logical and physical databases is one of 
the key considerations in efficient design. 

The data models used in the existing commercial 
DBMSs and the current research works on semantic 
models are designed for modeling corporate data
bases rather than scientific/statistical data
bases (SSDs). SSDs have many characteristics 
that are very different from business databases. 
Host notably, SSD applications regularly deal 
with complex data types, such as matrices, time
series, set, vector, variable length text strings, 
date, etc. These are generally not recognized in 
existing DBMSs but are handled by application pro
grams written in high-level programming languages. 
They involve operations such as 1) statistical 
aggregations and disaggregations (e.g., aggregate 
petroleum production by country, by state/province, 
by petroleum type), 2) conversion of data to suit 
statistical packages, 3) modification of data to 
produce the needed periodicity for statistical 
analysis of time series, etc., and 4) the regular 
database management functions, such as retrieval, 
update, insert, and delete. Because of the above 
and many other differences, a different data model 
is needed to adequately define a database. Also, 
new language constructs must augment the associ
ated data language to make it easy for the user 
to manipulate the database. By expanding upon 
the different types of associations in the orig
inal semantic association model - SAM [SU79], we 
have developed a semantic association model SAM* 
which is tailored for SSD applications [SU82a, 
SU83a]. 

In SAM*, an SSD is modeled by a network of atomic 
and non-atomic concepts represented as nodes. 
The interconnections of these nodes (i.e., the 
arcs) specify how concepts are semantically re
lated and are grouped to describe other concepts. 
Seven general grouping strategies called "asso
ciations" are recognized in the model in terms of 
which complex semantic information of a database 
can be explicitly defined. They are 1) member
ship, 2) aggregation, 3) generalization, 4) in
teraction, 5) composition, 6) cross-product, and 



7) summarization associations. The distinctions 
among these seven association types are made 
based on the differences in structural proper
ties, semantic constraints, and operations. The 
conceptual model of a database is graphically 
represented by the recursive use and nested 
structuring of these constructs. A simple exam
ple is given below. Figure 1 models an air pol
lution database which is a part of the air qual
ity data of the South Coast Air Quality Manage
ment District of Los Angeles. As defined, AIR 
POLLUTION_DATA is an entity type formed by an -
Aggregation Association and is explicitly labeled 
as an A node in the graph. It is characterized 
by a pollutant identification code, the locations 
where pollutant measurements are taken, and the 
measurement by hours and by days. POLLUTANT D 
is the unique identifying attribute type (prIma
ry key) and is thus underlined. Attribute types 
are concepts formed by a Membership Association 
and are explicitly specified as M nodes. LOCA
TION is an entity type formed by aggregating 
attribute types LATITUDE, LONGITUDE, STATION ID, 
and CITY. It has an existence dependency rela
tionship with AIR POLLUTION DATA in that the exis
tence of location-data in the database depends on 
the existence of the pollutant entity which the 
location data characterize. Each pollutant type 
is measured in many locations at a given time. 
The times that pollutant measurements are taken 
are defined by the Cross Product of a set of 
hours (the M node HOUR) and a set of dates (the 
M node DATE). Thus, TIME is explicitly labeled 
as an X node (cross-product association). Each 
hour_and-date pair defines a time at which all 
measurements of a pollutant are taken at various 
locations. The attribute MEASURE is a summary 
of these measurements and is connected to TIME 
by HOURLY_MEASURE which represents a Summariza
tion association, thus labeled as an S node in 
the graph. 

In retrieving and updating the database, the 
access paths through the network and operations 
on the data represented by the network nodes are 
guided by the association types at the nodes. 
Thus, the enforcement of semantic constraints 
and the manipulation operations can be made im
plicit and need not appearl as explicit commands 
in the users' application programs or queries. 
This g.reatly increases the power of a DBMS and 
its data language and simplifies the users' task 
in interacting with the database. 

A tabular form for representing the data modeled 
by the association types is introduced in SAM*. 
It is called a Generalized Relation (G-relation) 
which is the mathematical notion of a relation 
defined over a set of attributes belonging to 
different data types, such as integer, real, 
matrix, set, ordered set, vector, time-series, 
text, etc., as well as the type G-relation. Thus, 
a G-relation is recursively defined allowing G
relations to be nested in other G-relations to 
an arbitrary level. Furthermore, two general 
types of attributes are distinguished: identifi
cation attributes and summary attributes. The 
former type identifies or characterizes entities 
or categories of entities .and the latter type 
specifies the summary information over categories 
of entities. An example G-relation is shown in 
Figure 2. It is a tabular representation of the 
AIR_POLLUTION_DATA shown in Figure 1. In the 
figure, AIR POLLUTION DATA, LOCATION, HOURLY 
MEASURE and-TIME are G-relations in a nested
structure. The association types associated with 
the G-relations are specified following their 
names. The summary attribute MEASURE is separat
ed from the identification attribute TIME in G
relation HOURLY_MEASURE by two vertical lines. 

A set of algebraic operators has been defined for 
processing G-relations. These operators are dif-

Figure 1. A Model for Air Quality Database. 
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POLLUTANT ID LOCATION (A) HOURLY MEASURE(S+X) 

LATITUDE LONGITUDE STATION ID CITY TIME (X) MEASURE -
HOUR DATE 

Figure 2. An Example G-Relation. 

ferent from the usual relational operators in 
that they operate on data with complex data 
types and are subject to the semantic restric
tions of complex data types. A number of opera
tors for the statistical aggregation and dis
aggregation are included. They are not availa
ble in the existing relational systems. 

2.1.1 COMPLEX DATA TYPES 

Existing DBMSs support only a few primitive 
data types: simple numerics and character 
strings. For SSDs, which require extensive data 
manipulation, many more data types need to be 
recognized. Currently, an SSD user must perform 
the necessary operations through application pro
grams outside of the DBMS. Not only is this a 
burden to the user, but the system has no con
trol over whether the operations performed are 
semantically valid. A solution to this problem 
is to directly support an extended set of data 
types within the DBMS. 

A complex data type (CDT) is a structured data 
type which corresponds to an abstract object 
commonly found in the user's view of data. We 
propose that a DBMS for SSD processing should 
recognize the following CDTs: set, vector, 
ordered set, 'matrix, date, time, time series, 
and G-relation. They are each defined and 
briefly described below. 

1. Set. A.set is a collection of elements, all 
of the same type, in which no duplicates 
are allowed. Some operations which should 
be included for set are: 
- finding the union, intersection, or dif

ferences of two sets; 
- adding, deleting, or replacing elements 

of a set. 

2. Vector. A vector is a collection of elements, 
all of the same type, which are ordered. 
Since a vector is ordered, operations may 
be either position or content dependent. 
Content dependent operators include infor
mation retrieval operations, such as check
ing for inclusion/exclusion of a single ele
ment, a sequence of elements, or mUltiple 
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occurrences of either. Position depen
dent operators utilize subscripting to 
provide flexible access of an entire 
vector, a subvector, or a single com
ponent. 

3. Ordered Set. An ordered set is a set in 
which the elements are ordered and may 
be indexed. In addition to standard set 
operations, position dependent operations, 
such as retrieving all elements preceed
ing a specified value, are included. 

4. Matrix. A matrix is a multidimensional 
---corlection of elements, all of the same 

type. The operations on matrix include 
those available for vector as well as 
higher level operations which take multi
dimensioning into account. For example: 

- insertion, deletion, or comparison of 
rows or columns of a matrix; 

- checking for the inclusion of a sub
matrix. 

5. Time. Time is a coded value for duration from 
a fixed reference point. Operations avail
able are: accessing by interval or acces
sing by temporal order. 

6. Time Series. A time series is a two-dimen
sional matrix in which rows represent cases, 
and columns represent observations over time. 
Operators include basic matrix manipulations, 
as well as special modification operators, 
such as merging two time series. 

7. Text. A text is a vector of characters. The 
----inclusion of the data type text allows for 

a free-formatted field in the data. Common 
text processing operations include the fol
lowing:recognition of partial matches (e.g., 
text contains at least 5 of the given list 
of words; fixed) and variable length Don't 
Cares (e.g., "match pollut*" should match 
pollutant, pollution, polluting, etc.). 

8. G-relation. Collections of related data are 
represented as a tabular structure called 



a generalized relatien er G-relatien. Un
like the relatienal medel, the G-relatien 
allews attribute demains to. be any CDT, in
cluding anether G-relation. Thus, hierarchi
cal medeling is directly supperted. Opera
tiens en a G-relatien are performed at two. 
levels ef abstraction. At the lew level, 
eperations cerrespend to. the CDT of the at
tribute domain. At a higher level, a collec
tien of attributes forms a uniferm tuple; and 
a G-relation is simply a set of tuples. As 
such, all set eperatiens previously described 
are applicable to a G-relation. Traditienal 
relational operators, such as join, selection, 
prejection, etc., can be used for G-relatiens 
with some medifications. 

A language specifically designed fer SSD preces
sing has beendeveleped [BR082) and is currently 
being revised. This Statistical and Scientific 
~ata ~anguage (SSDL) incorporates the-fellewing 
features: 

1) Complex data types for direct medeling and 
high-level manipulation ef data objects 
which cerrespend to the user's view of data. 

2) A straightforward language structure for 
query specification. This structure, 
modeled after CASDAL [SU78b), allows for 
a natural way of specifying aggregate 
precessing and of decomposing complex 
queries into simpler subqueries. 

3) The integration of high-level procedures 
from existing statistical processing sys
tems fer descriptive analysis. 

Complex data typing is a means ef supporting the 
manipulations necessary for SSD processing at the 
user's level of abstraction. We feel that incor
porating CDTs directly into. the DBMS will result 
in more efficient and effective management of 
scientific and statistical databases. 

2.2 DATABASE MAPPING AND INTEGRATION 

The database mapping problem is related to the 
use ef different data models for different pur
poses in the context ef any database. In particu
lar, the mappings of specific interest to. us are 
the following: 

1) from a semantic mede1 to the model used by 
a particular DBMS 

2) frem a 1egica1 mede1 to its pessib1e physi
cal implementations. 

The first type ef mapping stated above arises 
during any database design after a community view 
of data is formulated in terms ef a high-level 
data mode1,and is to be implemented using a speci
fic database management system. The second type 
ef mapping belongs to the area of "physical de
sign" and will be discussed in section 2.3. 
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A related problem to the above database mappings 
is the problem of "view integration." Navathe, 
in his previeus work [NAV78, YA078 , NAV82b) has 
defined a framework for database design consist
ing of the following phases: 

a) requirements analysis: gathering the gen
eral requirements of users for data and 
applications. 

b) view modeling: modeling of individual 
users/application area's views. 

c) view integration: integration of mUltiple 
users' views into a single global view. 

d) schema analysis and mapping: mapping a 
community view into a 1egica1 database 
schema in the target database management 
system. 

e) physical design: mapping the logical data
base schema into a physical database schema. 

In the present project, it is apparent that we 
are trying to cover phases (b) through (e) ef 
database design mentioned abeve. Requirements 
analysis, or phase (a), is not being explicitly 
addressed in our present scope of work. 

To concretely apply the abeve framework to the 
design ef SSDs weu1d imply the following scenario.. 
Each step in this scenario provides us with a 
research problem: 

A) Individual user's views weu1d be expressed 
in a semantic model. 

B) These views would be integrated into a sin
gle "community view." 

C) The cemmunity view would be mapped into a 
specific DBMS's logical schema. 

D) The logical schema weuld be implemented in 
the form ef a physical (or implementation) 
schema. 

While A) was dealt with in the previous subsection, 
and D) is dealt with in the following subsection, 
here we shall focus eur attentien en problem B), 
view integration, and problem C), schema mapping. 
So far, we have researched these problems in a 
fairly general sense without limiting ourselves 
to. just statistical and scientific databases. 
The general results of our research can be easily 
applied to special cases involving SSDs. 

View Integratien 

Our work on view integratien [NAV82a) takes the 
Navathe and Schkelnick (N-S) data model [NAV78) 
as its basis and discusses how a View Integrator 
weu1d operate if user views in the N-S model were 
input to it for integration. Figure 3 shows a 
schematic diagram ef the view integrator. The 
salient features of the view integration methed-
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Figure 3. A Model for View Integration. 

do logy are as follows: 

a) We allow for assertions or constraints to 
be expressed in an assertion language, 
which is an addition to the definition of 
a view. Both intra-view and inter-view 
constraints are allowed. 

b) There is a notion of "eguivalent views" 
which are views containing the same infor
mation, but having different structures. 

c) In case of equivalent views, we allow for a 
quantification of the preference of a view, 
so that the integrator can process views in 
a decreasing order of preference scores. 

c) In [NAV82a], a general procedure for view 
integration is defined which consists of 
separating views into equivalence classes and 
then performing integration on each class by 
a process of ''matching.'' During view inte
gration, the assertions are modified as views 
change and the designer is supposed to be con
stantly informed or consulted to resolve con
flicts. 

e) The matching process has been analysed in 
detail by considering how two different 
data objects may have a match on the name, 
key attributes and non-key attributes under 
various combinations. 

f) A series of view integration operations have 
been defined to deal with the different con~ 
structs from the N-S model. 

Previous work by researchers (e.g., [ELM79, 
AR082]) has considered the view integration oper
ations without considering conflicts regarding 
naming, identification, etc., which are so common 
in any real application. They also have not tried 
to specify how the view integration should actually 
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be carried out in an interactive semi-automated 
manner as we do. The only other work similar to 
ours that we are aware of in this area is that of 
Batini [BATI82]. 

Our general framework can be made to apply to the 
SAM* model [SU83a] by. providing an assertion lan
guage to describe the intra- and inter-view asser
tions, defining various types of equivalence, etc., 
with respect to that data model. This activity 
will be undertaken during the next phase of our 
project. 

Schema Mapping 

Mapping of database schemas among dissimilar models 
has interested several researchers in the past few 
years. Just the problem of mappings between the 
relational model on one hand, and the network or 
hierarchical model on the other, has been addressed 
by many (e.g., [KLU77, KLU78, KLU81, NAV80, ZAN79a, 
ZAN79b]). In the present context, our interest is 
mainly to address the mappings of a global com
munity view of' data into the logical schema of 
a ~pecific DBMS. Barring a few exceptions [SAK80], 
thlS problem has not been specifically dealt with. 
We, therefore, decided to address this problem 
in a concrete way by assuming that the community 
view is available in a certain well-defined, us
able, and fairly well-accepted semantic data model. 
For the community view, we selected the extended 
entity relationship model [CHE76, SCH80], and as 
the target model we chose the hierarchical data 
model. The methodology for schema mapping in 
this specific context is reported in ICHE82, 
NAV83]. The highlights of this work are summar
ized below. Our effort complements that of the 
Lawrence Berkeley Laboratory group, which is 
also experimenting with an extended entity-rela
tionship model for better user interfaces through 
graphics (e.g., [WON82]). 



a) It is assumed that the community (of 
users) view is modeled in the extended en
tity relationship (E-E-R) model using the en
tities and relationships as originally defined 
by Chen [CHEN76] and incorporating additionally 
three semantic constructs: subset hierarchies, 
generalization hierarchies and relationship of 
relationships [SCH801. 

b) We divide the schema translation process 
into local translation, evaluation of alternate 
structures and global translation. The informa
tion about the E-E-R model input to the schema 
translation comprises: 

- hierarchical dependencies and subsequent 
first order and general hierarchical decom
position as defined by Delobel [DEL78]. 

- quantitative parameters in the E-E-R model, 
such as the number of occurrences of an en
tity, average ratios of members to owners 
in different relationships, etc. 

- transaction specifications in terms of the 
access paths used by each transaction and 
the relative frequency of each transaction. 

- cost information pertaining to storage cost 
factors, relative cost of different types 
of accesses, etc. 

c) Local translation algorithms are constructed 
to map individual constructs from E-E~R into the 
hierarchical model. These algorithms produce a 
unique schema if the given transaction specifica
tion clearly favors one alternative structure over 
all others. Otherwise, several target structures 
are produced and subjected to further evaluation 
of the total cost of processing the given trans
actions by using estimated cost factors. We real
ize that this method of evaluation does not yield 
"the optimal" schema as a result; however, at 
this· stage of database design, one cannot conduct 
a more realistic analysis/evaluation. The result
ing schema may be considered as a preliminary 
design or a guideline. 

d) The target structures in the hierarchical 
model are then subjected to a merging process 
called "global translation." This actually is an 
integration of subschemas and is DBMS specific. 
For example, a system like IMS [IBM751 would use 
"logical' pointers" to model a relationship between 
two segments; whereas, another system like S 2000 
[MRI74] may use redundancy. 

The above work has shown that the schema mapping 
between a semantic model and an implemented data 
model can be dealt with in a comprehensive way 
and optimization of target structures can be 
attempted at the logical level. We have also in
dicated in the'above work how the real benefit of 
such mapping algorithms can be realized in a prac
tical way for users by developing an automated 
schema mapping tool. Similar research may be per
formed on the mapping of semantic models, such as 
SAM*, into existing DBMSs. 
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2.3 PHYSICAL DESIGN 

Our research on physical design has concerned 
investigations of new data compres~ion techniques 
and the development of a general model of data
base implementation. 

Data Compression Technigues 

SSD files are characterized by large quantities 
of numeric and alpha-numeric data. Processing 
these files normally requires an examination of 
every record. Data compression is quite useful 
in this connection, for a reductio.n in storage 
volume is proportional to the increase in speed 
at which a file can be processed. For this 
reason, data compression plays an important role 
in SSD implementation. We have studied two com
pressidn techniques: dynamic index encoding and 
vertical elimination of repeating characters 
(VERC) • 

Index encoding is used to some extend in almost 
all SSDs. The basic idea is to identify the 
set of all distinct values that an attribute as
sumes in a data file. The elements of this set 
are sorted lexically and the index position at 
which an element appears becomes its index code. 
The data file is then encoded by replacing at
tribute values with their corresponding index 
codes. Since the storage requirements of codes 
are less than their data value counterparts, a 
sizable compression often results. 

An important feature of index encoding is the 
identity of the index and lexical order of (code, 
value) pairs. Because of this identity, the 
costly process of translating index codes to data 
values can be eliminated during the data search
ing, sorting, and processing phases of most file 
operations [ALS751; this enables operations ,to 
be performed directly and efficiently on com
pressed data. 

An obvious problem with index encoding is the 
addition of a new data value to an attribute's 
domain; index codes must be recomputed and the 
data file must be recoded. Clearly, if data 
values are added frequently, the overhead of file 
recoding becomes significant. An obvious way a
round this problem is not to assign consecutive 
index codes. For example, if (A,I,O,U) is the 
domain of an attribute, one might assign the codes 
(0,8,16,24) rather than (0,1,2,3). Because codes 
are nondense, new data values can be added to a 
domain and unused index codes can be assigned in 
a way that preserves the lexical and index order
ing identity. Doing so elimiates (or significant
ly reduces) the need to recode. For example, the 
data value 'E' could be added to the above domain 
and assigned index code '4' without altering pre
viously assigned index codes or violating the lex
ical and index order identity. 

The initial assignment of index codes and the 
method by which unused codes are selected and 



assigned to new data values influence the over
all performance of generalized (or "dynamic") 
index encoding algorithms. Several algorithms 
have been analyzed and a practical methodology for 
their application has been proposed [BAT82]. 

Perhaps the most elementary data compression tech
nique is the elimination of repeating characters 
(ERC); a string of five A's "AAAAA" is replaced 
by the two-byte string "SA", where "5" is the re
peat count and "A" is the repeat character. Ver
sions of this technique have appeared in a number 
of significant commercial and specialized DBMSs: 
ADABAS [GES76, SOF77 , KR077], IDMS [KR077, CUL81], 
and RAPID [TUR79, STA81]. Actually, ERC is only 
one of several data compression methods employed 
by these systems. However, experimental evidence 
shows that ERC accounts for 75% or more of the re
duction in storage volume afforded by these DBMSs, 
so ERC is certainly important. 

A survey of the compression techniques in use to
day reveals that they are primarily used to com
press individual records; redundancies which 
might occur across consecutively stored records 
are rarely eliminated. Some exceptions do exist; 
e.g., see [EGG80, EGG81]. The Vertical ERC (VERC) 
was developed to eliminate such redundancies. The 
idea is to place a collection of records in a two
dimensional character array, where each row con
tains a single record. The array is then trans
posed, so that row i contains a single record. 
The array is then transposed, so that row i con
tains the ith character of each record. The ERC 
is then applied to each row, and the compressed 
rows are stored. From empirical studie? at least 
40 records should be compressed in this manner if 
the technique is to be effective. Consequently, 
the VERC may not be well-suited for conventional 
database processing where individual records are 
examined, but it is well-suited for statistical 
and sequential processing where all records are 
examined. 

Experimental results show that there is a sur
prising amount of coherence in consecutive records. 
The VERC was found to have an equivalent or super
ior performance to that of the data compression 
algorithms used in ADABAS and IDMS, and to that 
of a commercially available compression package 
which is based on Huffman encoding [INF78]. More
over, the program that implements the VERC algor
ithm was significantly less complex than those for 
ADABAS and IDMS. For these reasons, it is be
lieved that the VERC technique will be useful in 
future statistical database implementations 
[BAT83a]. 

A General Model of Database Implementation 

In addition to our investigations on data compres
sion, we have also been developing a general model 
of statistical database implementation; the model 
applies to nonstatistical databases as well. There 
is a strong need for such a model. With few ex
ceptions (e.g., [SCH77, SEL79, CAS81]), most of the 

258 

research on physical design does not describe 
how theoretical models have been used to improve 
the performance of real database systems. Instead, 
generic problems of hypothetical databases utiliz
ing gener,ic structures have been studied. Cer
tainly, such research is important, but the re
sults are still remote from practice. In order 
to tie theory to practice, and to address the 
problem of improving the performance of real sys
tems, the underlying structures and operations 
of real databases must be examined. 

Presently, there are no models of physical data
bases that are general enough to account for the 
diversity and variety of structures (and their 
associated algorithms) found in commercial and 
specialized (i.e., statistical) databases. Al
though existing models have been used as starting 
points, considerable effort is needed to adapt 
and extend these models just to describe a single 
DBMS [CAS81]. The difficulty in using existing 
models clearly suggests that fundamental princi
ples of physical database design and implementa
tion are not well-understood and have been inade
quately represented.' Moreover, to improve exist
ing models does not simply involve enlarging the 
spectrum of structures and operations that they 
describe. It requires much more., 

To illustrate the disparity, consider how index 
records of inverted files are described in theory 
and how they are realized in practice. Database 
texts and :research papers define the contents of 
an index record as a data value and an inverted 
list containing a variable number of pointers 
[AND77, KR077]. The implicit structure of an in
dex record is shown in Figure 4 [DAT81]. 

data value kPointers .•.. 
_I • ;t J: j 
123 n 

Figure 4. An Abstract Index Record 

Commercial and specialized database systems rare
ly implement index records directly as in Figure 
4. The reason is that the underlying file struc
tures of most databases require records to have a 
uniform and fixed length; index records of Fig
ure 4 have variable lengths. What Figure 4 real
ly shows is an abstract representation of an in
dex record (henceforth called an abstract index 
record). Actual database systems materialize 
abstract index records in a variety of different 
ways. Here are some examples: 

RAPID [TUR79, STA81] and IMS [DAT81] materialize 
an abstract index record by pairing the data value 
with each pointer in the inverted list. Each 
(data value, pointer) pair defines a "concrete" 
index record, i.e., a record that is actually 
stored (Figure 5). 



• 

data value \ I .. 
I 

data value I .1 .. 
2 

data value\ I » 
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Figure 5. RAPID and IMS Realization of an Abstract Index Record. 

I data 
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Figure 6. SYSTEM 2000 Realization of an Abstract Index Record. 

data value I H ... H,--,--+-_·· ·-+-,JH 1 )' .. Jh:: 
L--_-J....~, J J J -J ~ 11 , f • 
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Figure 7. MRS Realization of an Abstract Index Record. 

SYSTEM 2000 [KR077, CASBI] materializes an 
abstract index record by storing the data 
value in a separate record and the inverted list 
in one or more additional records. A linear 
list chains these records together (Figure 6). 

MRS [KOR79] materializes an abstract index rec
ord similar to SYSTEM 2000, except that the first 
pointer of the inverted list is stored in the 
record containing the data value (Figure 7). 
This was done so that if the data value was an 
identifier, no inverted list records would need 
to be accessed. 

Each of the above materializations are function
ally equivalent. That is, they all realize the 
same concept: an abstract index record. The 
idea of functional equivalence has a much broader 
application .than this simple example suggests. 
In fact, it has been used as the basis of a new 
model of physical databases, called the func
tional equivalence model (FM). The modeling 
approach is to start with the generic logical 
record type that is supported by a statistical 
database system (SDBMS), along with a descrip
tion of the types of fields that can be con
tained within it (e.g., single-valued attributes, 
repeating groups, matrices, etc.). Each logical 
record type is an abstract record whose material
ization is to be determined. The materialization 
can be specified by a derivation involving the 
application of one or more elementary trans
formations, where at least one transformation 
is applied in each step of the derivation. 
Every transformation introduces a certain amount 
of physical detail to an abstract record. The 
product of applying a well defined sequence of 
transformations - the result of a derivation -
is a collection of concrete record ~,. Le., 
the physical record types that are actually 
stored, and their interconnection~. In this way, 
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for example, each of the materializations in 
Figures 5-7 is seen as a result of applying 
a different sequence of transformations to an 
abstract index record (Figure 4). The deriva
tion is completed with the specification of 
the file structures that are used to organize 
the ~rds of each concrete type. 

This approach can handle not only the material
ization of logical record types, but also the 
relationships between types. We start with a 
"generic" logical database diagram of the generic 
types, fields, and relationships actually sup
ported by a statistical DBMS. Transformations 
are then applied to this logical or abstract 
description until its materialization has been 
defined. Thus, our approach embodies the idea 
of logical-to-physical mappings. 

Although it may seem that the number of trans
formations is enormous, only nine distinct trans
formation types have been identified so far. 
These nine types have been sufficient to accurate
ly describe the complex physical structures of 
the RAPID, INQUIRE [INF79], ADABAS, and SYSTEM 
2000 DBMSs. (These DBMSs were selected primarily 
because of the immediate availability of infor
mation on their internal structures; models of 
other SDBMSs, such as ALDS, SYSTEM S, and SEEDIS, 
will be completed once sufficient information on 
their internals is gathered.) Details of the 
model and the physical structures of real SDBMSs 
are given in [BATB3b]. 

2.4 PARALLEL ALGORITHMS AND DATABASE MACHINES 

Our effort on parallel algorithms and dataabse 
machines has been in the design and evaluation 
of sorting algorithms for a microcomputer net
work system called MICRONET [SU7Ba, NICBO, SUB2b, 
SUB3] and in the design and evaluation of a dynam-



ically partitionable network using the concept 
of shared main ~emory modules (SM3) [FEI83, 
BARS3]. 

The work reported in [SU82b] presents a key 
broadcasting algorithm for sorting a distrib
uted file in a local area network, a parallel 
algorithm for finding the global maximal or 
minimal value of a data field or a distributed 
file and parallel algorithms for traditional 
data management operations, such as "join", 
"selection", and "projection". The key broad
casting algorithm was analyzed and compared 
with several other algorithms using the tim-
ing information of the existing MICRONET pro
totype system [NIC82]. Experiments have also 
been conducted using other sets of parameter 
values in an analytic study. The results are 
reported in a forthcoming paper [SU83b]. Our 
work shows that algorithms which are suitable 
for one architecture may not be suitable to 
(or optimal for) another. There is a close 
relationship between algorithm design and 
hardware implementation. Our effort is to find 
the relationship and use the knowledge to design 
better algorithms and hardware for supporting 
statistical/scientific applications. 

Another major thrust is the study of a parti
tionable network system called SM3 which uses 
the concept of shared main memory modules 
[FEI83]. The main idea is to eliminate the net
work data transfer time (one of the main bottle
necks of a network system when large quantities 
of distributed data are to be transferred among 
processors) by transferring data through some 
shared main memory modules. The shared main 
memory modules can be switched electronically to 
a processor for data loading and be switched to 
another for data access, thus reducing the usual 
network transfer time to module switching time. 
The partition of processors into clusters is 
also achieved by setting or resetting switches. 
The clusters can carry out parallel processing 
of multiple database transactions. An analysis 
of the SM3 system has been carried out and will 
be reported in a forthcoming paper [BAR83]. Our 
analysis shows that statistical aggregation oper
ations and common database management operations 
can take advantage of this shared main memory 
feature to gain efficiency. 

2.5 CONCLUSION 

We have highlighted above the problems that we 
have dealt with related to statistical database 
management in the last two years. Our main 
thrust in the past has been in the modeling, 
design, and mapping areas. In the future, we are 
likely to concentrate more on the architectural 
issues. 
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Abstract - In this paper the Authors propose a logical model (called GRASS) for representing both the 
properties of a Statisticai Data Base (S.D.B.) and the tables view, which represent the peculiar rea! 
ity of statistical user. 
The proposed model consists of a marked, labeled, direct, connected, acyclic, partially ordered graph. 
For this graph nodes semantics and connection and branching rules are provided. A cognitive and selec
tive approach to how navigate through category attributes and summary data are given too. 
Finally, some facilities of the model are discussed and a comment is made. 

1. INTRODUCTION 

The term "Statistical Data Base" (S.D.B.) refers, 
in scientific literature, to Database (D.B.) 
that represent statistical or summary informa
tion and are used for statistical analysis. They 
can be described in terms of the type of data 
they contain and their use. 
S.D.B.s contain quantitative information (such 
as County business patterns, population census, 
economical data as production and consuction of 
fuels, etc .•. ) and a combination of descriptive 
information (such as age, sex, race, average in 
come, etc ... ) for each quantitative measure [iT. 
They tipically contain both parameter data and 
measured data for these parameters. 
Parameter data consist, for example, of differ 
ent values for varying conditions in an experi
ment; measured data are the measurements taken 
in an experiment under these varying conditions. 
These data bases are usually organized into 
"flat files" or "tables" [2]. Besides such 
S.D.B.s tend to be static because the stored 
data represent consolidated events. 

We think that the term "S.D.B." is used to de
scribe various situations [3]: a typical situa
tion is to use conventional D.B.s, on which 
mainly transactions of the statistical type are 
effected and on which statistical packages there 
fore operate. But there are various reasons for
the fact that conventional, commercial data 
menagement systems have not been wirely used 
for S.D.B.s, in that they are often inadeguate 
to manage effiCiently these D.B.s. The main rea 
sons are discussed in [4]. 

In this paper the S.D.B. term will refer to a 
particular class of D.B.s which has some charac 
teristics enphasized; e.g., data are numbers, -
often they represent already statistical or sum 
mary information of elementary (disaggregate) -
data, they contain quantitative informations, 
data typology is various (e.g., integer or real 
values, averages, rates, etc .•• ) and they con
tain a variety of data structures (such as ma
trix, vector, set, etc •.• ); they are usually 
large D.B., in which some values may be missing 
and sparse data are very often contained. 

Moreover they exhibit also the following chara£ 
teristics: 
a) attributes can be classified as category at
tributes (usually small) and summary attributes 
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(usually large); 
b) for each summary attribute a "cross product" of 
category attributes is usually required; 
c) it is possible, with proper techniques, to store 
the range values, related to the involved category 
attributes, once and to use known computational techn
iques to find the position of the corresponding sum
mary set values. This obviates the fact that there 
is no reason to change it. Indeed such data represent 
consolidated (i.e. stabilized) events. 

In the Section 2 we describe the type of data so as 
can be thought in a S.D.B.; in the Section 3 we re
port the logic rappresentation of data file by means 
of a graph, so as it is discussed in [5]; in the Sec 
tion 4 we propose a logical model, giving the seman~ 
tic description of the five types of nodes of such 
graph; in the Section 5 we illustre the connection 
rules .for the above mentioned nodes, giving some 
examples; in the Section 6 we give the branching 
rules, discussing some significant cases; finally, 
in the Section 7 we discusse the proposed model and 
the future developments. 

2. CATEGORIES AND SUMMARY ATTRIBUTES 

Most S.D.B.s can be thought of as having two types 
of data: measured or quantitative data and parameter 
or descriptive data [6]. 
The first quantitative data have referred to numeric 
attributes on which statistical analysis is per
formed. 
The second qualitative data have referred to as 
selection category attributes describe the measured 
data. 
Therefore attributes for parameter data are referred 
to as "category" attributes (into which the numeric 
attributes are classified), since they contain cate
gories for the measured data. 
The attributes for the measured data are referred to 
as "summary" attributes, since they contain on which 
statistical summaries and analysis are applied. 
In a S.D.B. there is usually a combination of cate
gory .values for each summary value. 
The measured data are usually "numbers", while cate
gory attributes (being more descriptive in nature) 
tend to be "character". 
Often category attributes ranges are grouped together 
(such as using "age range;, rather than "age,,) to form 
new category values. 
Category attributes represent a aross-product of a 
n-dimentional space, since each combination corre-



SUMM/,RV TAI:l.E. ,. - - _ ... - . 
-~========:==:=========~~---~==~============:================================================ 

COUIH RI'= IT ilL Y. U~IITS=MT(JE • 
----------------------------
COIISUMPli (1~1 
-----------

1978 1979 1980 1981 1911:? 1983 1984 1985 1986 1987 1988 1989 1990 

SOLID FUELS ~IA 10.5 12.9 14.0 14.9 ' 15. b 16.6 17.4 18.6 20.1 21.0 ~~.7 24.b tIAT. GAS IIA 23.1 23.1 n.6 24.1 24.3 25.5 26.3 27. 2 28.1 29.1 30.0 30.9 OIL IIA 102.2 98.3 94.6 92.7 91 •• 5 98.6 101.0 102.6 '103.2 103.6 105.1 106.7 IIUCLEAR IIA 0.5 0.5 0.5 1.2 1.7 1.7 1.7 1.7 2.6 4.1 4.1 4.1 HYO. GEOTH. 1111 10.0 11.3 10.8 10.4 10.8 10.8 10.8 10.8 10.9 10.9 11.0 11.2 

TOTAL NA 146.3 146.0 142.5 143.3 147.0 153.2 157.2 H.0.9 165.0 168.7 172.9 117.5 

PERCENT CHANGES 
---------------

1978 1979 1980 1'181 1'182 1'183 1'184 1'185 1986 1'187 1'188 1989 1'190 

SOLID FUELS IIA NA 23.0 8.2 6.3 5.2 6.2 5.0 6.8 8.2 4.2 7.9 8.5 NAT. GAS ~IA NA -0.2 -2.2 6.9 0.9 4.8 3.1 3.4 3.5 3.5 3.1 3.1 OIL IIA IIA -3.8 -3.7 -2.0 2.0 4.3 2.5 1.6 0.5 0.4 1.5 1;4 NUCLEAR NA NA -9.1 3.5 142.9 37.0 -0.6 1.2 1.2 51.8 56.4 -0.3 -0.1 HYO. GEOTH. NA NA 12.5 -4.1 -3.7 4.1 -0.4 -0.1 0.0 0.9 0.6 0.6 2.2 

TOTAL IIA NA -0.2 -2.4 0.6 2.6 4.2 2.7 2.3 2.5 2.3 '2.5 2.7 

SHARES OF TOTAL CONSUMPTION 
---------------------------

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 '1990 

SOLID FUELS IIA 7.2 B.8 9.8 10.4 10.6 10.8 11.1 11.6 12.2 12.4 13.1 13.8 NAT. GAS IIA 15.8 15.8 15.8 16.8 16.5 16.6 16.7 16.9 17 .1 17.3 17.4 17.4 OIL NA 69.8 67.3 66.4 64.7 64.3 64.4 64.2 63.8 62.5 61.4 60.8 60.1 NUCLEAR Nfl 0.4 0.3 0.4 0.9 1.2 1.1 LI 1.1 1.6 2.4 2.4 2.3 IWO. GEOTII. IIA 6.8 7.7 7.6 7.3 7.4 7.0 6.8 6.7 6.6 6.5 6.4 6.3 

;( DEGREE OF SELF SUFFICIENCY 
----------------------------

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 

SOLID FUELS tJA 3.5 3.7 3.6 3.4 3.4 3.3 3.1 3.0 3.2 3.2 3.5 4.1 IIAT. GAS NA 48.6 45.3 52.3 51.3 49.9 46.0 43.0 39.6 36.5 33.7 31.2 '28.7 OIL tlA 1.7 1.9 1.5 1.7 1.7 1.6 1.6 1.6 1.6 1.6 1.6 1.6 

TOTI\L tlA lb.3 H.8 17.6 18.2 18.2 17.2 16.5 15.8 15.8 16.1 15.6 15.2 

==~r==~~~~=~::=======================================c======c===c====a~c=cc=cc=c====occac==cBaaac==== 

sponds to one summary value [5]. 
The n-tuple of category attributes that se
lects the numeric attributes can als0 be 
seen as primary key of a ~th relation in a 
relational data base (with m > n). 

We consider, for example, the summary table 
of Fig. 1, achieved from the Data Resourches 
Inc. Database [7]. This database reportes 
economical data on energetical sector, re
garding production and consuction of fuels 
and energetic budget (prices, import-export, 
etc ••• ); in particular this table shows data 
related to percent changes, shared of total 
consuptionand degree of self sufficiency 
(in percent) in Italy from 1978 to 1990. 
Data supply is OCSE and AlE. 

If we consider, for semplicity, that part of 
table related to "shared of total consup
tion", such table is represented by the rela 

Fig. 1 
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tion (in the relationai model) <shared Of total 
consuption>, that has the following attributes: 
country, type Of energy, year, percent change. 
The classic representation of such relation is the 
table of Fig. 2. 

<Shared of total consuption> 

Countr:L T:Q2e of en. Year Percent change 

Italy solid fuel 1978 --...: 

Italy solid fuel 1979 7,2 

Italy solid fuel 1980 8,8 

I I~~~y 
..... .. .... ... 

nat. gas 1981 15,8 
...... . ... . ... 

I Italy hyd geoth. 1990 6,3 

Fig. 2 



\~e note that no distinction is made between 
parameter data and measured data (both of 
them described in terms of the attributes). 
The distinction between category attributes 
and summary attributes can be made only co~ 
sidering the category attributes as rela
tion keys. 
In this case the keys are country, type of 
energy and year. Besides, a very large re
dundance is introduced in those coloumns 
which are "parameter data" (country, type of 
energy and year). We will see, in following 
sections, how such a redundancy is reduced 
using the proposed logical model. 

3. GRAPH RAPPRESENTATION 

One possibility to represent the semantic 
concepts mentioned above is described in [5]. 
SUBJECT is a system that represents such 
semantic concepts internally as a graph, so 
that they are invisible to user. In addition 
the concepts of "cross product nodes" (X
nodes) and "cluster nodes" (C-nodes) are as
sociated to the onesof subject nodes, file 
nodes, data nodes and terminal nodes. 
Cross-product abstraction refers to the 
multi-dimentional nature of the category at
tributes of a S.D.B.1 it corresponds to logi 
cally divide the set of attributes into a -
set of n-dimentional spaces of data and can 
be used as a tool to represent more concise
ly multiple events of cluster abstractions. 
Cluster abstraction is an organization mech~ 
nism at several levels in order to select 
category attributes and to reduce the com
plexity of a large cross-product. 
Subject nodes (which belong to the class of 
cluster nodes) are used to describe subJect 
categories of files in the system. File 
nodes (which belong to the class of cross
product nodes) represent the physical or 
virtual files present in the D.B .. 
Data nodes (which can be either cross-prod
uct or cluster nodes) represent the selec
tion categories for statistical data. Termi 
nal nodes (which belong to neither of the
two above mentioned classes) represent the 
assumable instances for data nodes. 

In order to access the summary values, a 
logical rappresentation of data file is 
achieved by using cross product and cluster. 
nodes to describe the actual structure of a 
file. 
The above mentioned type of nodes can be 
connected by edges to form a direct acyclic 
graph. 
Both subject nodes and data nodes can be 
organized into multiple levels1 all nodes 
can be shared, except the root node. 

As example we consider a way of organizing 
data in a table form as shown in Fig. 3. The 
relative SUBJECT-graph is given in Fig. 4. 

266 

lYear. = 1982 

Sex Age Number of N. of pass. N. of pass. 
passengers of railw; of ship 
of plane 

male 1 1,500 
2 1,621 

35 163,438 

100 .. .. 

lFemale 1 ... . 
2 . ... 
. 

100 ... . 

Variables 

RailwaY~L 

.... 

.... 

... . 

.... 

.... 

... . 

I .... 

Fig. 3 

C? 
Statistical 
Data on 
Transport 

. ... 

. ... 

.... 

.... 

. ... 

.... 

. ... 

M F 1. .. 100 

Fig. 4 

As it may be seen, the C-node with label "statisti 
cal data on transport" is a subject node1 the X
node with label "number of passengers" is a file 
node .. All the nodes, except the leaf nodes under 
such file node, are data nodes. The leaf nodes are 
"terminal nodes". 

In [5] the· semantics of "abstraction nodes" (cross 
product and cluster node) and the main functions 
available in that system are given. 
This system has also made some important first 
steps in the problem of navigating through the 
"metadata". Metadata and their management is a 
non-trivial problem. Since an S.D.B. may consist 
of several thousand tables (each one with many 
attributes), just understanding the logical struc 
ture of such a D.B. is a complex task [8], [9]. -



4. THE GRASS LOGICAL MODEL 

Also the GRASS (GRaphical Approach for Stat 
istical Summaries) model proposed [3] in this 
paper is based on the concepts of category 
and summary attributes. The GRASS model en
dowes to the user a tool to know in what man 
ner the S.D.B. is logically organized. 
In the classic approach to design a D.B. it 
passes from the phase of "requirements ana~ 
ysis" to the logical and phisical project. 
The tools for the description of the reality 
are data models [10]. 
But for the analysts and the statisticians 
the reality is usually formed by tables. 
They are the objects that must be described 
by logical model. Such a description bases 
itself just on the concepts of category and 
summary attributes. It introduces five new 
types of nodes that represent their meaning 
to the user (from the semantic point of view, 
with regard to the above mentioned concepts). 
These nodes are marked (to distinguish the 
type) and labeled (to identify each node). 
The edges are oriented, being the graph a 
direct, acyclic, partially ordered, con
nected graph. Such orientation is drawn by 
means of an arrow. This one is necessary to 
avoid ambiguity in the graph. 

We give now the semantic description of the 
fi ve types of nodes. ' 

S-node: it represents the indicator of tables 
Selection paths; therefore it defines the 

meaning of tables combination of which it is 
the root and from which statistical data 
(selected by means of selection category at
tributes) will be subsequently obtained. 
This means that it does not contribute (like 
the selection category attributes) to select 
numeric data, neither it does represent data 
that are phisically present in the D.B •• 
The root node of a graph that represents a 
"statistical view,,' of data is always as S
node. 

T-node: it represents logically the informa-
tion (i.e. the statistical Tables) physi

cally present in the D.B.; it is the only 
node of the graph able to represent the 
stored data. 

C-node: it represents the single selection 
Category attribute for the statistical 

tables. A set I of instances, for example 
the domain of assumable values, is associ
ated to it. 
C-nodes can be organized at various levels 
of abstraction (and then they also represent 
aggregations of selection categories). 
Let C be a generic node representative of a 
selection category and let I be the associ
ated set of assumable instances, this node 
is equivalent to a C'-node, having as its 
branches nodes C1,C2"",Ck (with respective 
~ets of assumable instances T1,If,·.· , It.) , 
~f: 
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(1) 

(2) Ii nIt. = r6 with ilk 

It follows that (see Fig. 5): 

card (1) = Ik. card (I') 
11.- 1 

(3) 

1 •.••• n ---II 

1 •.••. m ------1. 
~ 

1 ••.•• n+m+ ... 

~ 
I 

Fig. 5 

A-node: it represents another selection category 
attribute for statistical tables, that Aggre

gates other category attributes in a determinate 
manner; also this node can be organized at various 
levels of abstraction. 
Let A be a generic node, representative of a selec 
tion category, and let C1;C2,' ..• Ck be the branch
nodes (with respective sets of assumable instanges 
I 1.I2 •... ,Ik)' the set I of instances that this 
node assumes is given by the cartesian product of 
the sets of instances associated to the branch 
nodes, i.e.: 

(4) 

(5) 

I = I1 x I2 x ••• x Ik 

card (I) = rrk~ card (I.) 
1" 1.-

Node A, therefore, differs conceptually from node 
C in that this one represents merely a way of ag
gregating among them various selection category 
attributes. In fact we note that, although the two 
graphs of Fig. 6 are equivalent/the drawing of the 
graph without the use of A-nodes would produce an 

a) 

Fig. 6 

1. .. n 1x n2 1. .. n3xn4 

b) 



excessive number of tn nodes. 

In Fig. 6a) we see that the number of termi
nal nodes is nl +n2 +n3 +n4 , while if Fig. 
6b) it is seen how the elimination of the 
A-nodes leads the number of tn nodes to: 

(n1 x n2) + (n 3 xn4). 

!n-node: it represents the instance of the 
C-node at the more low level of abstrac

tion. The Terminal ~odes (leaves) of a graph 
are only ~ nodes. For semplicity of drawing 
such instances are given directly in the 
graph. 

5. CONNECTION RULES 

The connection rules for the nodes of the 
GRASS model are now described. 
Given a graph G, representing an S.D.B., we 
have: 

Rule ]: a minimum graph G' is composed of 
the following chain: 

S -+ T -+ C -+ tn 

Rule 2: an S-node has as its branches S-r.odes 
or T-nodes. 

Rule 3: a T-node has as its branches C-nodes 
and/or A-nodes. 

Rule 4: an A-node has as its branches A-nodes 
or/and C-nodes. 

Rule 5: a C-node has as its branches C-nodes 
and/or A-nodes or only ~-nodes. 

Resuming the example of the summary table of 
Fig. 2, we can represent this situation by 
means of the GRASS-graph of Fig. 7. 

ECONOMICAL DATA ON ENERGETICAL 
SECTOR FROM 1978 to 1990 

Italy 

~ 

!?f.~~';f 

78 90 Solid Nat. 
fuel Gas 

Fig. 7 

, , 

We now consider another example (shown in 
Fig. 8) relative to the situation of the 
psychiatric hospitals in the city of Rome 
and to the years from 1978 to 1980 [11]. 

In this figure the available statistical ta
bles, relative to the two T-nodes of the 
graph, are shown. These data give the number 

268 

of hospitalizations by year and by Hospital, and 
the number of patients by sex, age-range and dis
trict of residence. 

Under 
Age 

14 18 19 

Psychiatric 
Hospitals Data. 
Years 1978-1980 

Data on 
Hospitalizations 

Personal 
Data 

BYear 

7~ ~\O 
Sex 

M F PubliRc 
C Full 

Age ... 

NEURO S.MARlA 
99 PlETA' 

Fig. 8 

MARY 
ADA CLlN. 

CLlN. 

These tables can easily be identified by means of 
the root S-node, which represents the "name" of 
the S.D.B., and of the successive S-nodes, accord 
ing to a cognitive approach, that identifies the
table(s) (arid both the related category attri
butes and the terminal nodes used to select the 
table (s» object of the search. 
In particular, in Fig. 8 the information regard
ing data on patients can be obtained through the 
selection category attributes "sex", "age-range" 
and "district of residence". 
It may be noted that the first two category attri 
butes are organized at a higher level of abstrac~ 
tion by means of the A-node "personal data". At 
the same manner, the information related to the 
"number of hospitalizations" can be obtained by 
means of the "year" and "hospital" selection cate 
gory attributes. -
The last category attribute is a generalization 
of the other two category attributes "public" and 
"private", while the category attribute "personal 
data" is the aggregation of "sex" and "age-range" 
category attributes [12]. 

6. BRANCHING RULES 

We examine now some rules regarding the braching 
of subgraphs from the original graph. 
Every time a statistical query is made, it ident
ifies a subgraph branchable from the original 
graph (if data are available in the D.B.). 



The rules to obtain this subgraph from logi
cal schema are the foLlowing: 

Rule 1: to select an S-node means to report 
the whole subgraph of which the S
node is the root. 

Rule 2: the category attributes directly con 
nected with a T-node must be reported 
in the subgraph with all their 
"terminals", if they are not ex
pressed. 

Rule 3: if a category attribute is part of a 
"hierarchy of generalization" and 
has not been expressed, it is not 
reported in the subgraph. 

Rule 4: the nodes connected with an A-node 
which have not been expressed, must 
be reported in the subgraph with all 
their terminals. 

Rule 5: if a C-node is selected and if only 
some branch nodes are mentioned, 
only they must be reported in the 
subgraph. 

For example, we examine the graph of Fig. 9, 
in which data relating to railway transport 
are shown. ' 

Wishing to obtain statistical information 
.concerning the "number of passengers that 
have utilized railway transport", under par 
ticular requirements, the chain of S-nodes
which leads to the involved T-node 'from the 
root node will be selected. 
For example, if the statistical query is the 
following: 
"I wish to know the nurriber of passengers, of 
male sex, belonging to age range = 1E and 
that have travellesin 1st class.", the sub 
graph (obtained by applying the branching -
rules)is shown in Fig. 10. 

The following observations may be made: 

a) the "type" category attribute (which is 
not mentioned in the statistical query) is 
considered in the branched subgraph, with 
all its terminal nodes; 
b) the category attributes relating to age 
range = 2E, ••• ,6E (which are not mentioned 
too) are not considered in branched sub- .
graph. 

When a statistical query does not mention a 
category attribute, two alternative situa
tions can be happen: 

1) all the selected data'are showed in out
put; 

2) output is the result of summarization of 
selected data. 

For example, we consider the Fig. 11. 
A statistical query of the type: "I wish to 
know the nurriber Of passengers that have 
travelled by train in the 1st class" selects 
the first three rows and all the columns of 
the table of Fig. 11. 

«50 

Fig. 9 

Fig. 10 
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Age
Range 
6E 



SC 

2 3 
I I 

1/sc I I I 
- -0- -0--0 

I I I 

l/NC - -I:> --0- -6 

100 

I 
I 
I 

Age 

I I 

I o~~f~~. 
2/SBl-_-____ ~ __ -__ -_-__ -__ -__ -__ -_-__ -___ -____ ~ _ ass. 

Charact. 
of coach 

Fig. 11 

The significant datum is obtained by "sum
marizing" (Le. adding) the selected data 
to one another. It is not always true that 
summarization is achieved by means of a su~ 
but such a function will depend on the par
ticular type of data [13]. 

When the user expresses a statistical query, 
he does not know a priori if it is 'satis
fiable. That can happen because: 
a) data are missing in the D. B. ; 
b) classes (or groups) of category attri
butes (with regard to respective t n ) cannot 
be mutually exclusive, for which, if a 
"total" are required, it can turn out as 
impossible; 
c) a query requests a "summarization" of 
data that is not possible to perform. 
As simple example [14] we consider the case 
shown in Fig. 12. Here category attributes 
are "race" and "sex" and summary attribute 
is "average income". Table is referred to 
TEXAS state. 
It a user is interested only in population 
average income broken down by race but not 
by sex, such query has not answer, because 
"count data" are not available. 
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Texas 

TEXAS 

race 

b 

b 

w 

w 

I 
I 

Average 

\ '"":ilY 
,c~o1~ ... radeci'U"' 

Race r,ex 
b w M F 

sex average 
income 

m 24,000 

f 21,000 

m 28,000 

f 25,000 

Fig. 12 

7. DISCUSSION AND FUTURE DEVELOPMENT 

During the design process (from requirements anal 
ysis to phisical implementation) of S.D.B. it is 
necessary to keep in mind the particular typology 
of users. These users are not "casual", also if 
they are not expert in computer science (rather 
in economical or epidemiological or other science) 
and accustomed "to see" reality described i"l terms 
of tables. 
It follows that the mapping process is not the 
classic process of management D.B. [3], but it 
will consider this "reality". 

The GRASS model offers a clear and compact view of 
the table that form the S.D.B •• 
The clarity refers mainly to different type of 
nodes (and to their semantic meaning): in fact, 
e.g., summary data (i.e. the tables) can be rep
resented by means of a T-node and a T-node can 
represent only summary data. 
The compactness is evident if we compare the GRASS 
graph of Fig. 7 with the relational model of Fig. 
2; both of them represent the table of Fig. 1. 
We note that to know in the GRASS model all the 
values of the definition domains of the k selec
tion category attributes, n terminal nodes are 
necessary, with 

(6) n=Ikidim(C.) 
1 ~ 

(being dim(Ci ) the cardinality of definition 
domain of Ci category), while m tuples of rela-



tional model are necessary, with 

(7) n = If. dim(C.) 
1~ ~ 

Moreover, with regard to relational model, 
the GRASS model put in evidence the category 
attributes involved, without applying to the 
concept of "key". Another advantage is the 
r.laior semplicity to occur when we will carry 
out a simple manipulation (with regard to a 
value of a category definition set). 
For instance, the insertion of a new value 
requires the addition of only one ~ node, 
while the update requires only to modify a 
label. A further advantage of the proposal 
model is that it is used to describe meta
data that refer tables of an S.D.B. [15]. 
Moreover it allows a hierarchic description 
of the category attributes, for which user 
can see the whished detail level. Besides 
the navigation in the GRASS graph allows to 
explore data present in the S.D.B •. 
It is possible to navigate through the GRASS 
graph according to two approaches: 
a) cognitive approach, in which user runs 
the graph from an S-node (the root or an 
S-node of another lower level) to one (or 
more) node(s); such an approach allows to 
know which attributes define a fixed table 
(or a fixed group of tables). 
b) seLective approach, in which user runs 
the graph from a tn node to a T-node; such 
an approach allows to know which tables (and, 
than, which users view) are defined by fixed 
attributes. 

We consider now the graph of Fig. 13, where 
the sets of terminal nodes (related to the 
ci-nodes, with i = 1,2, ••• ,k, which is con
nected to the A-node) are indicated with 
1 1 , ••• ,Ik • 

,,{.tL.C"l· .. ·jK 
1 i ,n 
~ ~k,m 

~ 
T 

Fig. 13 

Let Z;; be the set of the "real" terminal 
nodes of the A-node, it coincides with the 
cartesian product of sets Ii (with i = 1,2, 
••• ,k), that is: 

(8) Z;; = 11 x 12 x ••••• x Ik 
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Therefore, every instance of selection category is 
a k-tuple (i 1,i, ••• ,ik ,j); rows or columns of st~ 
tis tical tables may correspond to each of these 
k-tuples. When no numeric attributes correspond 
to one or more instances of selection category, no 
distinction is made between unavailable values 
(not taked off) and inadmissible values. In both 
cases we will refer to them as nuLL vaLues. 
Let us now suppose that only one subset, Z;;' CZ;;, is 
significant for the statistical query. 
Then the cardinali ty of the terminal nodes set Z;;' 
will be less than card (Z;;), that is: 

(9) card(Z;;') < card(z;;) = card(I 1) x card(I
2

) x 

••• x ••• x card(Ik ) 

otherwise some "integrity constraints" would be 
violated. 
This means that there are k-tuples of T (t1,i' ••• 
••• ,tk,h) that are not admitted. 
For example, we consider again the graf of Fig. 10. 
Let us suppose that, with regard to the A-node 
"convoys", the pair of instances "2nd" of the 
C-node "class" and "Sleeper choach" of the C-node 
"type" is not admitted. The cardinality of A-node 
"convoys" then changes from 6 to 5. 
Hence, such part of the graph will be changed as 
Fig. 14. 

2 

Fig. 14 

Normal 
Coach 

Sleep. 
Berth 

We note as this solution is not the only one. 
In fact, we can choose also the solution of Fig.15. 
That does not mean ambiguity but fLexibiLity Of 
the modeL, in that is the user that can choose the 
more satisfactory solution for him. 

The search developed has permitted to identify the 
following points (object of work in progress) as 
aims of future searches: 
a) definition (and implementation) of a Data Defi 
nition Language [16] and of the related Data Dict 
ionary, for the GRASS model; 
b) formal definition of such D.D.L. and D.O.; 
c) integration of user views (with the consequent 



treatment of problems, as inconsistencies 
and conflicts); 
d) definition of the primitives of a lan
guages for the handling of the schemes by 
statistical users. 
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Abstract 

'This paper sununarizes current research on statistical 
database management issues at the Lawrence Berkeley 
Laboratory. 'This research includes development of proto
type systellL'l as well as analytic work on user interfaces, 
physical organization, hardware architecture, and data
base modeling. 

1. Introduction 

Lawrence Berkeley Laboratory's data management 
research program deals with the topic of "scientific and 
statistical databases" [SSDB's]. Databases created and 
collected for scientific, socio-economic, and other types of 
statistical analysis, have requirements that cannot be 
easily supported by existing commercial data manage
ment systems. Such data are prevalent in government 
(e.g., energy, census, pollution) and in scientific environ
ments (e.g., seismic data, experimental data), but they 
also exist in industry (e.g., clinical trials, economic time 
series) . 

SSDB's have characteristics and usage patterns that 
require special data managemerit techniques. SSDB's 
typically contain descriptive information measured data 
values. SSDB's tend to be large, both in volume and in 
their number of distinct data elements (entities, attri
butes). The measured data may contain a large number 
of nulls (missing data), thus, requiring special tech
niques for sparse data (such as compression). Repetitive 
descriptive information and widely varying magnitudes of 
data values present further compression possibilities. 

For large SDB's, users often extract subsets or summaries 
of the data or summaries over the data for their analytic 
purposes. Furthermore, data analysis involves many itera
tions of examining samples, refining the data, and com
parison of multiple subsets. This tends to generate a 
large number of smaller data sets which need to be 
managed. There is need for techniques to associate sub
sets of data with the original data, to keep track of their 
history, and to maintain consistent naming conventions. 
The large number Of data elements presents problems for 
users. There is too much to remember in terms of data 
element names, acronyms, codes for data values, permis
sible data formats, and syntax for data retrieval. Thus, 
it is necessary to develop user interfaces that can 
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alleviate these problems. Information about the data and 
its support is referred to as "meta-data management." 

The data management research program has four major 
components that address the specialized problems of 
SSDB's. In the "user interface" area we are exploring 
several approaches suitable to users with different needs. 
The "physical organization" area is concerned with 
compressing data and accessing them efficiently, as well 
as managing files on secondary storage. The "hardware 
architecture" area deals with specialized hardware for 
SSDB's. The "modeling" area bridges the user interface 
for physical organization and hardware architecture 
areas, by dealing with models of both logical and physi
cal data structures. These models allow multiple user 
interfaces, physical data structures, and access tech
niques to ro-exist in a single system, and they provide 
the basis for query optimization and processing. The fol
lowing four sections describe our work in these areas. 

2. User Interfaces 

Several different projects at LBL concern different 
aspects of and approaches to user interfaces. The first 
three subsections below describe prototype user interfaces 
that eliminate the need for users to remember names, 
acronyms, formats, and complex syntax rules. The first 
subsection discusses our work on a graphical user inter
face for data exploration (GUIDE). The second subsec
tion describes a system (SUBJECn which is based on 
the representation of statistical databases as logical 
graphs. The third describes the user interface for 
SEEDIS, which uses an "on-line codebook" approach. 
The fourth subsection describes research on application 
of graphic design principles to user interfaces. The fifth 
subsection summarizes a more procedural interface for 
expert users and system integrators, which is based on 
self-describing data files and "software tools" that mani
pulate such files. 

2.1. User Interfaces for Data Exploration 

The purpose of this research is the organization of infor
mation associated with large databases for presentation to 
users who are not computer experts. It is based on the 
premise that guided exploration of this information using 
rich and flexible graphics tools will lead to an effective, 
easy-to-use user interface for finding and displaying data. 

The research focuses on the problem of dealing with 
databases that are not necessarily large in size, but 
rather have a large number of data elements and complex 



semantic relationships. It has been applied to the area of 
statistical databases, since they provide good examples of 
this complexity. 

The research is motivated by technological developments 
with respect to networks and work stations. Large data
bases are often centralized resources with non-expert 
users attempting to access them via work stations. In 
addition, recent developments in the database modeling 
area lend themselves to the use of graphics for represen
tation of the semantics of data. 

The graphical user interface under development is called 
GUIDE (Graphical User Interface for Database Explora
tion). There are three major differences between existing 
work in the area and the GUIDE approach: the GUIDE 
approach uses a rich underlying model that can be 
displayed graphically; it supports partial queries, thus 
enabling the user to issue progressively more complex 
queries rather than specifying a long complex query in a 
single step; and it explicitly represents the description of 
the data, called meta-data. 

Meta-data is especially important for the management 
and exploration of complex databases because these data
bases often contain hundreds of data element types. 
Users, even experienced users, cannot remember all the 
names and descriptions of these data elements. The 
approach taken in GUIDE is to expressly present the 
meta-data in graphical form so the user can explore the 
database without needing extensive knowledge of the 
structure and types of the data. 

2.2. The SUBJECf System 

SUBJECf is a continuing project whose purpose is to 
provide users with simple but effective means of access
ing statistical databases. This is achieved by using a spe
cially designed graph structure to represent the logical 
content of statistical databases. A novice user can 
browse through the graph for descriptive information 
about databases, select a database to explore, and con
tinue on to express queries. The user interface represents 
data in a menu format, thus eliminating the need to 
remember names, values and formats of data elements. 

An alternative to the browsing capability is provided for 
experienced users, who can search for a data file by keys. 
They may quickly locate a desired data file, and then 
proceed to express query conditions in the usual fashion 
(i.e., by moving around the directed graph). The system 
also provides access to documentation associated with 
nodes in the graph. 

An important concept of the graph representation is that 
of "node sharing," which permits more than one arc to 
point to the same node, thus forming directed acyclic 
graphs. Node sharing allows for attribute domains to be 
shared between different files, providing several advan
tages: eliminating duplicate data values; consistency of 
naming (where items that are the same, but reside in 
different files, are forced to have the same name); and 
allowing the specification of join domains between files, 
permitting multiple physical files or fractions of these 

files to be viewed jointly as a single logical entity. 

The system provides an interactive facility for specifying 
the structure of a SUBJECT graph, including the 
specification of shared nodes. This facility is integrated 
with the browsing facility to let users browse existing 
portions of the graph. In addition to supporting the con
struction of multiple levels, it is possible to connect to a 
substructure of an existing graph. This provides a con
venient way to join files. 

Another facility is the "data editor" which allows 
interactive data entry and modification of data values. 
The editor prompts the user with the combination of 
parameters (category values) for which a data value has 
to be entered. 

2.3. On-Hne Dictionaries in SEEDIS 

Recent research on user interface design suggests that 
novice users find it easier to use systems which simulate 
or employ analogies to more familiar non-computer 
objects (e.g., desk tops, filing cabinets, folders, etc.). 
Data item selection in SEEDIS employs a similar 
approach, which has proved quite popular and successful 
with users. 

To select data items, SEEDIS users browse through an 
on-line data dictionary which resembles a printed code
book, complete with page numbers, table of contents, 
indexes, and footnotes. In addition to data item informa
tion, SEEDIS dictionaries contain documentation on data 
sources, how data were collected and installed, persons to 
contact for help, etc. Users can browse data dictionaries 
in any order, using the carriage return key to move ahead 
page by page, a page number to skip back and forth, and 
line letters to choose data items during the course of 
browsing. Users select data by typing single letter codes 
corresponding to line identifiers on the current screen of 
information. Software translates these temporary line 
identifiers into database and data item codes. Users can 
thus select data items from a number of different data
bases, and the retrieval software automatically takes care 
of combining them into a single working dataset. 

2.4. User Interface Design Principles 

Many user interfaces for computer systems contain unin
tended oversights and errors in visual communication, 
such as confused composition, poor typographic hierar
chies, and color combinations that inhibit legibility. 
Application of graphic design principles to the visible 
language of an interface (i.e., typography, symbolism, 
spatial organization, sequencing, and color) can improve 
communication of information to users. As part of the 
SEEDIS project, professional graphic designers with 
experience in computer techniques have sought to apply 
graphic design principles from print and film media to 
computer output on video display terminals and hard 
copy devices. This research has identified goals for user 
interface design (e.g., to aid learning of complex infor
mation, to facilitate memorization of key procedures, to 
encourage accurate decision-making, to build a clear 
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conceptual image of the system), as well as general 
guidelines to meet those goals. The set of guidelines 
being developed are based on the modern Swiss utili
tarian (programmic) design tradition, a grid-oriented 
approach eminently suited to information display in 
which many complex relationships must be distinguished 
clearly and carefully. 

User interface design involves selection of symbols and 
formats for the standard functional components of a sys
tem: menus, prompts, help messages, status reviews, etc. 
It also involves detailed specification of standards at a 
lower level: determination of a layout grid; selection of 
typographic styles, sizing, spacing, and means of 
emphasis; standard treatment for continuous prose ('e.g., 
help messages), interrupted prose (error messages, system 
status reports, etc.), and tables/lists (menus, data dic
tionaries, etc.). 

Unlike conventional prose texts, user interfaces have 
many components and corresponding layouts. These 
include tables, indices, lists, numbered items, diagram
matic presentations, explanatory notes, and pictorial 
images. The user interface is not intended for continu
ous reading as for prose text, but rather is a framework 
for complex movement with constant shifts in levels of 
instruction to the viewer and frequent distractions to the 
viewer's attention. 

These design considerations are more than just "cosmet
ics." By carefully considering not only what to show, but 
also when, how, and why to show it, a better understand
ing of the functionality of the system emerges in the 
minds of the builders, the users and the viewers of a sys
tem and its information. 

2.5. Codata Tools for Expert Users 

Another aspect of the SEEDIS project has been research 
on tools for expert users of statistical databases. This 
research has explored the application of user interface 
ideas from' UNIX and the Software Tools to self
describing data files. 

The Codata Tools are a set Of programs which read, 
write, and restructure self-describing Codata (common 
data format) files. These tools manipulate both data and 
data description, so that the the output of any operation 
is itself a Codata file. Semantics of results and descrip
tions of derived Codata files are inherited from descrip
tions of input Codata files. Following the Software Tools 
philosophy, the Codata tools are modular - each tool per
forms a specific limited task. They follow the UNIX and 
Software Tools conventions of standard input and output. 
The output of any module can automatically serve as the 
input of another, and they can be HpipelinedH or 
HchainedH together. 

Codata tools can be used to extract specified rows and/or 
columns from a file, to sort a file, to perform relational 
joins, to perform tabulations by aggregating on common 
key values, and to perform other operations. The Codata 
tools are written in RATFOR (a transportable FOR
TRAN preprocessor), and can be easily adapted to run on 
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any computer where the Software Tools have been imple
mented. Work is currently under way on substantial 
enhancements to the Codata file format and the Codata 
tools to provide for more efficient physical storage for
mats, more complex data structures, and more extensive, 
open-ended data description. 

3. Database Modeling 

Three areas of database modeling are discussed below. 
The first area described in the section entitled HSemantic 
Core ModelH is concerned with the representation of con
ceptual entities and their relationships. The second area 
described in the section entitled Hphysical modeling,H is 
concerned with the representation of physical database 
structures and their characterization. The third area 
described in the section entitled Hmeta-data manage
mentH is concerned with representation of data about 
data, or meta-data. 

3.1. Semantic Core Model 

Scientific and statistical database (SSDB) applications 
present formidable modeling requirements that tax the 
power of conventional record-oriented database models 
(such as the relational or CODASYL models). Since 
data are viewed in terms of the structures in which they 
are defined and the operations performed on them, the 
available model exerts a powerful influence on the ability 
of applications to deal naturally with the data. At issue 
is the size of the gap between a naturalistic model and 
the database system-imposed model. 

In SSDB's many entities of interest are actually inferred 
or derived from data pertaining to other more concrete or 
measurable entities in the world. The boundaries of such 
abstract entities often cannot be well defined. 

Our own experience with statistical applications (mostly 
socio-economic, environmental, and demographic data) 
and with scientific applications (seismic data) confirms 
this observation. For example, information about seismic 
events is generally not gathered directly at the source. It 
is derived by an elaborate process of analysis from 
ground motion signal data measured at numerous sensor 
sites remote from the seismic source. Furthermore, this 
analysis can be a multi-stage iterative process. First the 
sample (time-series) data streaming from the sensors are 
analyzed to abstract inferences about the arrival of pro
pagated signals at the sensor stations. These HarrivalsH 

are then collectively analyzed together with a model of 
waveform propagation through regions of the earth to 
determine the existence and approximate parameters of 
an hypothesized seismic event. The hypothesized event 
parameters can be used to iteratively refine the set of 
arrivals, which are then used to further refine event 
parameters, and so on. Because steps in this process are 
so computationally intensive, there is a need to preserve 
computed values and intermediate results whose relation
ship to the raw data must be maintained. 

SSDB's are also often the product of heterogeneous data 
sources requiring integration and assimilation. It is 



often not possible or practical to force all data into a 
common format. It may also be a requirement to 
preserve (or recover) the original view of the data. Thus, 
integration may be best implemented via some virtual 
interface mechanism where data is mapped into one or 
another view as appropriate. 

Based on our observations of SSDB's in practice and as 
reported, we have concluded that conventional data 
models and database systems provide inadequate 
representational tools for these applications. These and 
other considerations have led us to develop a new model 
for representing SSDB's which we call the Semantic Core 
Model (SCM). This model is based largely on the 
semantic data abstraction models found in the literature. 
However, none of the extant models address all of the 
issues raised earlier regarding SSDB's. 

A data definition syntax for most of the constructs pro
posed in the SCM has been developed through several 
iterations. These constructs have been used to experi
mentally model several applications of SSDB's. 

3.2. Physical Database Modeling 

This work is intended to support implementation of the 
semantic core model. There are four phases to physical 
database modeling: descriptive, analytic, queryoptimiza
tion, and database synthesis. 

The descriptive phase consists of constructing a 
parameterized taxonomy of physical data structures used 
to implement the database. The descriptions must specify 
both the structure of physical data structures and their 
placement, since the placement can affect also the cost of 
i/o which needs to be done. While there has been con
siderable work done on the structural specifications of 
physical database structures in the literature, placement 
specifications have received much less attention. 

The analytic phase consists of constructing formulas to . 
estimate the cost of processing a specific query, using a 
known computational strategy, against a particular set of 
data structures. 

The query optimization phase is concerned with searching 
the space of query computation strategies to find the 
cheapest one. In addition to models of query computa
tion and cost, the query optimizer requires a search stra
tegy. 

The final phase of physical database modeling is con
cerned with the physical design of databases. 

Work in this area is only in initial stages. We will first 
concentrate on the descriptive and analytic areas. In par
ticular, the descriptive work will consist of extending the 
semantic core model specification language to include 
specifications of the structure and placement of physical 
data structures. We are particularly concerned with 
describing "clustered transposed files" and compressed 
array linearization storage structures (these structures 
are described in the section below on Physical Organiza
tion). 
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Our analytic work will build on the existing extensive 
literature. Different data structures and query operators 
for statistical applications will require attention to issues 
often neglected in conventional analyses. The analytic 
model will include decompression, recompression, and 
tuple assembly costs, aggregation operators, and output 
reordering. 

3.3. Meta-Data Management 

Statistical databases frequently contain .hundreds of dis
tinct attributes or variables. Many new variables are 
created during the course of data exploration, manipula
tion, and analysis. Users and software need many 
different kinds of data description or meta-data (e.g., 
data type specifications, missing data codes, attribute 
names, category value labels, etc.) in order to deal 
effectively with statistical data. Since this meta-data can 
be quite voluminous and since it differs considerably 
from statistical data in terms of content and structure, 
meta-data management presents a number of important 
questions. 

LBL research in this area is concerned with content, phy
sical characteristics, operations, and users of meta-data. 
It seeks to identify different types of meta-data, particu
larly those used in statistical analysis. It analyzes 
different ways that meta-data are used by people and pro
grams -- end users, database administrators, database 
management software, and application programs. It 
explores the logical and· physical structure of meta-data, 
which spans a whole range of data types including 
numbers, text, mathematical equations, etc. It also stu
dies types of operations which are especially important 
for meta-data in general and statistical meta-data in par
ticular (e.g., keyword indexing, category set mapping, 
attribute inheritance). 

The SEEDIS Project has provided an opportunity to test 
various meta-data management ideas. A prototype exten
sible data definition language has recently been imple
mented in SEEDIS to provide a standardized, unified 
source for program information (e.g., data types, physi
cal storage locations, and missing data specifications), 
user documentation (on-line and printed data dic
tionaries) and data labeling (e.g., variable names, data 
value labels). Programs for data loading, compression, 
extraction, manipulation, report generation, and code
book creation all make use of the same basic data 
definition language. SEEDIS has also demonstrated the 
importance and utility for statistical databases of self
describing data files and software tools to manipulate 
such files, as described above under "User Interfaces." 

4. Physical Organization 

The following sections describe work in compression and 
file management. The first section discusses continuing 
work on compression for statistical databases. It is con
cerned with achieving high level of compression while 
providing fast access to the compressed data. The second 
section deals with algorithms to rearrange database attri
butes in order to maximize the compression factor. The 



third section discussion file management issues, including 
tuple partitioning, data caching, and distributed file 
management. The fourth section describes automatic file 
migration replacement policies for moving files from 
secondary to tertiary storage devices and vica-versa. 

4.1. Compression for Statistical Databases 

The stotage and transmission of very large databases 
often constitutes a significant portion of the cost of 
managing. them. Compression of data becomes increas
ingly important as the volume of data grows. Numerous 
techniques have been devised which are capable of 
compressing a variety of databases to varying extents. 

The compression techniques originally developed for 
SEEDIS (described elsewhere in this Proceedings) com
bine a form of run-length encoding with a computer
independent, variable-length representation of data 
values. These techniques permit SEEDIS to reduce the 
amount of disk or tape storage required for statistical 
data files, such as those from the U.S. Census Bureau, to 
from 20 to 50 percent of their original volume. Parti
tioning and indexing of SEEDIS compressed data files is 
based upon geographic areas to which the data pertain, so 
retrieval is efficient for geographic selection criteria. 

However, if selection criteria pertain to attributes which 
are not indexed, most compression techniques, including 
those currently used in SEEDIS, require that a database 
be serially decoded before being searched, a process 
which requires linear time. In order to overcome this lim
itation, techniques have been developed which achieve 
compression ratios comparable to linear time algorithms 
but in which the access time required for searching non
indexed values is logarithmic. 

The new compression scheme, called header compression, 
has the capability of both eliminating multiple types of 
constants from the database and compressing each stored 
value to its minimal byte length. The scheme is a varia
tion of run-length encoding, in which modified run
lengths are extracted from the data stream and stored in 
a header. The header is used to form the base level of a 
B-tree index into the database. The run-lengths are 
cumulative, and therefore a logarithmic search algorithm 
can be used to obtain an access time which is logarithmic 
in the size of the header. Two versions of the header 
compression scheme have been implemented, called the 
basic and general versions. The basic version compresses 
only a single type of constant (e.g., zero), while the gen
eral version compresses both multiple types of constants 
and stored data to their minimum byte length. These 
particular versions of header compression were chosen 
because they represent the extreme cases in the tradeoff 
between functional capability and degree of compression 
and access time, and because they have the widest appli
cability. 

An integrated design of the two versions of header 
compression takes advantage of many overlapping func
tions. As a resul t, about 60% of the code is shared 
between both versions. The implementation includes 
modules for loading the data and building the 

corresponding system catalogues and B-trees, for access
ing the B-trees and partitions of the data, and for refor
matting of the data and storage allocation for the output. 

Future plans include benchmarking of the compression 
scheme against the current SEEDIS compression scheme 
and others. 

4.2. Rearranging Data to Enhance Data Compression 
Efficiency 

In the course of the work on data compression, we 
noticed that vertical partitioning of the data (Le., storing 
each domain (or column) in a separate file) markedly 
increased the effectiveness of run-length type data 
compression schemes such as header compression. If one 
thinks of the data as an array indexed by tuple-id and 
domain-id then one can think of vertical partitioning as a 
transposition operation. These observations led us to 
consider the impact of other rearrangements of the data 
upon the efficiency of data compression. For example, if 
we are storing population counts in an array indexed by 
race, sex, age, and county then it would be reasonable to 
assign adjacent codes to the least populous races and 
counties, because it tends to maximize the probability of 
consecutive zero counts. The header compression scheme 
mentioned above,can then be used to compress the con
secutive zero counts more efficiently. Furthermore, race 
or county would be plausible variables for the least 
rapidly varying index and sex for the most rapidly vary
ing array index. 

There are two subproblems involved. One is the assign
ment of ordering to category values, (i.e., reordering 
rows or columns of the matrix). The second is the order
ing of the category attributes within the indexing func
tion (i.e., transposing the matrix). Thus far we have 
only made progress on the first problem. 

For the sake of tractability we have turned to probabilis
tic models of the data instead of exact deterministic 
models. We were able to obtain two analytical results 
for the value ordering problem. Both results, which are 

. achieved under different assumptions, show that the value 
ordering should be according to the familiar "pipe organ" 
assignment, or a variation of it. 

We were not able to achieve analytical results for the 
attribute ordering problem. We plan to use simulation 
techniques for this problem. 

4.3. File Management 

Because statistical databases are frequently large, and 
because they sometimes must be partitioned into separate 
physical files, at different locations, distributed file 
management is another important research area at LBL 

Statistical data often are organized in nested hierarchies 
of entities (such as geographic areas, or types of 
patients). These hierarchies provide a natural way of 
partitioning data using simple naming conventions within 
a standard hierarchical file system. SEEDIS incorporates 
a hierarchical file system as part of its over- all data 
model. This hierarchical file organization also extends to 
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files stored on tape; tapes contained tables of contents 
which permit retrieval of files or entire directories by log
ical pathname rather than sequential file number. 

In order to extend the hierarchical file model to a multi
site system, SEEDIS has been enhanced to provide 
automatic access and disk caching of tape files from a 
remote automatic tape library as well as distributed data 
elsewhere on the network. Each SEEDIS node on the 
network is independent. System managers at each site 
can decide where to put their own physical files and 
which files should be shared with users at other nodes. 
Databases dictionaries and file location tables are 
automatically distributed to other sites periodically. Sys
tem logs are kept to provide information on data request 
file migration, cache purging, etc,; these will help pro
vide empirical evidence to test analytic results regarding 
optimal file migration strategies. 

4.4. Automatic File Migration 

This work is concerned with modeling and managing the 
automatic movement of files between secondary (disk) 
and tertiary (tape) storage. We assume that files are 
brought into the disk cache from tape when they are 
referenced, i.e., demand fetch. A replacement policy is 
used to choose files to be evicted from the cache so that 
there will be sufficient room for incoming files. 

This work is based upon a replacement policy STO
CHOPT originally proposed by AJ. Smith. In Smith's 
model one assumes a fixed rental charge per unit of disk 
space and a charge to fetch a file from tape. Smith also 
assumes that the time intervals between successive refer
ences to the same file are characterized by known proba
bility distributions, referred to as inter-reference time 
(IRn distributions. The STOCHOPT policy chooses the 
time to hold the file in the cache so as to minimize the 
expected cost of the next reference (i.e., the storage ren
tal charge for holding the file in the cache until refer
enced or evicted, plus the tape fetch cost if the file is 
referenced after it has been evicted). Smith constructed 
empirical distributions for various classes of files and 
performed the minimization numerically. 

In our work we have shown that for a certain classes of 
inter-reference distributions one can analytically deter
mine the optimal cache holding time for STOCHOPT for 
a particular file. Furthermore we have shown that this 
result holds even for improper inter-reference time distri
butions (i.e., those for which there is a nonzero probabil
ity that the file will never be referenced again). 

The hazard rate of the IRT distribution at time t is the 
conditional access rate, i.e., the probability (rate) that 
the file is referenced at time t since last reference given 
that it has not been referenced again up to time t. In 
reliability theory the hazard rate is often referred to as 
the failure rate because it denotes the rate at which com
ponents which survive t time units fail. 

Our analysis indicates that if the hazard rate is monoton
ically decreasing, then the optimal holding time can be 
characterized in terms of a scaled hazard rate (i.e., the 
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hazard rate divided by the file size). Files should be 
held in the disk cache as long as the scaled hazard rate 
exceeds the unit storage rental charge. Empirical studies 
by Smith suggest that the assumption of monotonically 
decreasing hazard rates is reasonable, i.e., the longer the 
time since last reference to file the lower the rate at 
which it is referenced. This HOPT replacement policy 
has fixed space analogue HMIN which simply evicts the 
file with the smallest hazard rate whenever it needs some 
space. HMIN reduces to LRU if all files have the same 
size and IRT distribution. 

5. Hardware for Statistical Databases 

The Microprocessor Assist System (MAS) is a research 
database machine that is especially designed for statisti
cal data management. The MAS consists of (one or 
more) trees of microprocessors that are at the bottom 
level connected one to each disk (the leaf microproces
sors) and at the highest level (the root microprocessor) 
connected to the front-end computer. A single root 
microprocessor directs the activities of, and receives data 
from, its child processors. The tree can be more than 
two levels, and there may be more than one tree con
nected to the same front-end. However, for simplicity, in 
its initial implementation, a two level single tree design 
is used. The front-end system is assumed to be a mini
computer with equivalent functionality of a DEC V AX' 
11/780. 

The major functionality of the microprocessors is to 
implement compression and attribute partitioning tech
niques for the statistical data management system (SDS) 
running in the front-end computer. We are exploring the 
use of multiple microprocessors in a database machine to 
handle two I/O related functions: 
compression/decompression and attribute 
assembly/disassembly. 

The MAS obtains its performance benefits from the 
parallel operation of multiple microprocessors. The leaf 
microprocessors schedule the disk reads, read the 
required blocks, decompress the data, and send the 
required data up to the level above; the higher-level 
microprocessor assembles attributes that are spread across 
multiple disks (hence multiple microprocessors). Fully 
assembled tuples are sent from the root microprocessor to 
the main computer. The fundamental function provided 
by the MAS is to make compression and partitioned attri
butes invisible to the front-end system. 

Software for the MAS has been designed. It is a rela
tional data management system, where the functions per
formed at the disk-level microprocessors are simple res
trictions, attribute assembly and decompression (for 
retrieval); disassembly and compression (for storage). 
Two possible prototype applications are being explored: 
time-series, instrumental physical data from the Time 
Projection Chamber (TPC), and mixed textual and 
numeric data, from the Particle Data Group. It is 
expected that one, or both, applications will be brought 
up in prototype form on the MAS. 



Hardware for the MAS has been partially defined. The 
microprocessors will be M68000's; the decision of which 
68000 systems to use depends on results of modeling the 
system, and on the potential vendors actually delivering 
promised systems to customers. It is our purpose to 
develop generally useful methodologies for building and 
using multi-microprocessor systems, so we are not 
interested in one-of-a-kind systems; hence, we will use 
commercial, well functioning hardware. 

6. Conclusion 

The area of SSDBs offers interesting and challenging 
opportunities in data management research. Most of the 
traditional issues in data management still apply here, 
but because of the nature and characteristics of SSDBs, 
different (sometimes drastically) techniques are required 
in data modelling, user interfaces, physical structures, as 
well as in hardware. 
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A Statistical Database Component of a Data Analysis and Modelling 
System: Lessons from eight years of user experience. 

John C. Klensin 
Laboratory of Architecture and Planning 

Massachusetts Institute of Technology 

When development of the Consistent System, a large-scale data analysis and modelling system 
for the social, policy, and behavioral sciences, began, it was determined that database 
management facilities would be necessary to handle the variety of complex data that were 
anticipated. The primary data base management component of that system, called Janus, has 
been in use, in two prototypes and then in production form, at several sites and by a variety 
of users, since about 1975. This paper reviews some of the original design considerations 
about Janus (including its relationship to the rest of the Consistent System) and reflects on 
them in the light of user experiences and comments in the subsequent years. 

In 1969, MIT started a major effort to consider issues in 
the design of tools and environment for social and 
behavioral scientists. That effort was very active for 
about eight years, and also involved researchers from 
several other institutions, especially Harvard, and a variety 
of disciplines. A summer study held in 1970 produced a 
menu of recommendations about the facilities that systems 
would require in the future. Among the more important 
of those conclusions was that there was a need for 
serious facilities to manage the types of data that would 
eventually be processed statistically - facilities that, to 
different researchers, meant 

• Processing of "waves" of surveys 

• Management and retrieval of very large bodies 
of information 

• Making inferences and doing analysis from data 
bases containing data at multiple levels of 
aggregation, moving back and forth among 
aggregation levels (rather than simply looking at 
the top or bottom level of a hierarchy). 

• Dealing with missing values in ways that remained 
consistent across different datasets and sources 
of information. 

• Handling data of different types - nominal, 
multiple-response nominal, integer, real, dates 
and times, and text 

• . Handling aggregate data types and variable 
number of responses per subject in all the 
usual modes: statistical summaries, counting, 
adding, taking the first (or the last) and so 
forth. 

• Being able to make arbitrarily structured queries, 
retrieving on any attribute, or combination of 
attributes, in the database. 

• And, being able to take any data, or combination 
of data, and subject them to a full range of 
transformations and statistical analysis techniques. 

The author would like to acknowledge the helpful critical 
comments of several colleagues, especially Ree Dawson, 
and users of the Consistent System, without which the 
paper would have been less complete and less clear. The 
inferences drawn remain the author's responsibility. 
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A data management system, known as "Janus" was 
developed to meet these goals as a "data management 
front end" for a more comprehensive analysis and 
modelling environment that is now known as the "Consistent 
System" (Dawson, Klensin, and Yntema 1980). Janus went 
through two complete prototyping periods with user and 
technical review before work on the present system 
began. The present version went into active use in about 
1976 and has now survived all of its original designers 
and developers. 

The author of this paper and his current colleagues in 
maintaining and developing the Consistent System were 
not among the designers or developers. although they were 
associated with the project during that period. We were 
not and, indeed are not, very happy about several aspects 
of the design. We find ourselves today in the somewhat 
uncomfortable position of writing the history, not by 
being the victors, but by having more staying power for 
reasons that are perhaps artificial. 

In any event, we· have now accumulated several years of 
experience with a variety of users of statistical databases 
- students, academic and private researchers, governmental 
and commercial analysts, and even some users of commercial 
databases - and a variety of databases ranging from 
simple surveys to personnel files and from records of 
municipal employment and finance to records of medical 
incidents to records of radio listening and international 
crises. We have learned which facilities are heavily used 
and which lightly, which capabilities are important and 
which ones are absent or clumsy, and where the major 
problems lie. 

In this paper, we intend to look through the design of 
Janus as it has evolved from the original criteria. We 
will focus on those aspects of the design that relate 
directly to the manipulation of data, e.g,. operations on 
datasets and how the data are made available for 
statistical analysis. As we examine a feature in this area, 
we will discuss the reasons for it and the degree to 

which it appears to us to have succeeded or failed. 

We do not intend to spend much time on the internal 
organization of Janus or of the Consistent System more 

broadly. The former topic was discussed in some length 
in a preliminary paper on Janus by the designers, some 
time ago (Stamen and Wallace 1974). While the terminology 
now in use has evolved from that in the paper, and some 
of the features discussed were not implemented initially 
(a few never have been), the paper gives a reasonable 
overview of the internal operation of the system. Indeed, 
we still use a marked up copy of that paper to introduce 
newly-hired maintainers to the system. 



A few characteristics of the system's style and design may 
be . helpful in understandihg our perspective. First of all, 
and most important, Janus is command-driven rather than 
a host language system. It has the ability to be caJIed 
from a host language, but thoSe capabilities were added 
very late in the implementation, are less pow~rful than 
the command-level capabilities. and have been ltttIe-used. 
Not only are queries, reports, and construction o~ . ~ew 
data elements done with commands, but database defmltlon 
and creation are also. Second, the designers were convinced, 
based on prior experience, that use of a statistical 
database was characterized primarily by two types of 

• operations. both of which were less common in commercial 
databases: creating a new variable in an existing dataset 
as a transformation or combination of existing variables 
and retrieving (for either analysis, computation, or display) 
aJI or most of the values of a few variables (compared 
to the total number in the database) rather than aJI or 
most of the values of a few records (compared to the 
total number in the database). (1) Third, while ~e 
system utilizes some unusual terminology and operation 
forms in deference to its audience and the preferences of 
its designers, it is essentiaJIy relational in nature. -
another one of those "relational, but" and "relatIOnal 
plus" systems. The "but" here is the absence of either 
host language capability or tools for tile DB~,. and some 
peculiar terminology. The "plus" is the abtltty to use 
some unnormalized forms explicitly and the presence of 
some operators and functions from the statis:ical, ~ath~r 
than database domain. The first of these bnngs Wtth It 
the attendant need to be able to name the mappings 
between relations where more than one mapping can exist 
between a pair of relations. In addition, for a variety. of 
reasons, it is often convenient to treat the mappmgs 
themselves as objects. We will come back to the user 
appearance of these features later. (2) 

The User's View 

The user of data with simple structure sees a single 
dataset that looks very much like a rectangular data 
matrix. When things are displayed, the entities look like 
subjects and the attributes look like columns of that 
traditional matrix. The underlying relational scheme, when 
contrasted with experience with traditional statistical systems, 
causes two related surprises that some users have found 
disconcerting: there is no assumption of either ordering 
in the attributes (a "next to" relationship) nor in the 
entities (an "after" relationship). The former leads to the 
desire to talk about "variables 10 through 30", for which 
Janus has no equivalent concept (3) The latter leads to 
two things: Users want to talk about entities 35 through 
40, which is only rarely substantively meaningful. (4) 
More important, users keep perceiving the need to sort a 
dataset prior to making an analysis involving a selection 
or subset of cases. This is never actuaJIy necessary in 
conventional analysis and, since it requires creating a new 
relation (dataset), is fairly costly compared to just 
selecting the appropriate entities. But, when people have 
learned for years that this sort of operation is necessary, 
we have a great deal of trouble with ingrained habits. 

The cells of the data matrix or relation may themselves 
be drawn from the domains of vectors or matrices of 
values. This feature has been important in several 
applications, but is not heavily used. It would have been 
more heavily used, we believe today, had the vectors been 
able to carry enough label and periodicity information to 
make effective representations of time series of moderate 
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length. By use of lower bounds on . vectors that ar.e oth~r 
than one, that capability has been Simulated effectively m 
a few databases, but never satisfactorily. 

In addition, the ceJIs may contain variable":'length lists of 
values (an unnormalized form with aJI of the associated 
.problems). Those lists can be used to represent variable 
numbers of responses per subject. They also come into 
being as a result of some Janus operations, as discussed 
below. They have, as one might reasonably predict from 
the relational database literature, caused a great deal of 
trouble for both users and implementers. A complete and 
satisfactory set of operations is extremely difficult to 
define for them. At the same time, they have provided 
some capability, such as the ability to use the system 
efficiently for information retrieval queries by keywords 
and one model for handling multiple-response data, that 
is of great value. 

The operations and commands 

We could have accommodated multiple types of data 
representations . -- scalars, vectors, and lists, nominal, 
integer, real, text, and date-time values - without the 
considerable investment required to build a DBMS. Some 
of the variability and heterogeneity of types are a 
nuisance in a conventional statistical system, but it is 
possible to incorporate provision for. t.hem, as some 
statistical systems have started to do wlthm the last .f~w 
years. The project specified a stronger databas:e capab~ltty 
because its participants saw a need to deal .Wlth ~ultlple 
datasets at the same time: datasets at potentially different 
levels of aggregation, or drawn from differe~t sources,. or 
requiring substantive, rather than mechantcal, mergmg 
processes. Codd's work on the relational algeb!a (Codd 
1971) was just becoming known, and the designers of 
Janus drew on one of the early relational experiments 
(Goldstein and Strnad 1971) as weJI as the successes and 
problems of three systems with which they had had 
extensive experience: Data-Text (Armor 1969), ADM~NS 
(McIntosh and Griffel 1970), and DATANAL (MtJIer 
1967 Miller 1968). One of the principal difficulties with 
thos~ systems was precisely the inability to deal with 
multiple datasets simultaneously. This, was .a ,~eed. ~at 
kept arising no matter what sorts of 'mergmg facllttles 
were designed for these systems. 

Janus's real capabilities arise when a second dataset 
(relation) is introduced. The second, and subsequent, 
datasets, can be introduced in any of three ways: 

- As additional externally-produced values to be merged 
with those in an existing dataset on (substantially) 
an entity-by-entity basis. 

As additional externally-produced values collected at 
a different level of aggregation from those in 
existing datasets. 

- As a derivative of existing datasets. 

These operations ~nd their implementation in Janus are 
discussed in the next few sections. 

Adding groups of new values 

In the original implementation, new cases. were ad:ded by 
the use of basic dataset creation operations (takmg the 
union of the two existing relations with respect to one or 



more attributes). Users requested that we add specialized 
commands for the purpose in order to reduce typing and 
cognitive aggreviation. The resulting commands permit 
specification of sets of attribute values to be appended 
(other values are set to' missing), while the union 
operation copies only those attributes involved in the set 
operation; other attributes had to be copied fndividually 
by separate commands. 

More specifically, when values are to be added· to a 
Jan~ database that represent some or all of the existing 
attnbutes for a new set of subjects, a new· dataset is 
created ~from the raw data) representing thqse subjects 
and attnbutes and then appended to the existing dataset 
for the existing subjects. If the new dataset does not 
contain some of the attributes in the existing one, the 
values for those attributes are automatically set to missing 
in the appending process. . Users have had no difficulties 
with this feature, although the fact that the appending 
proc~ is not sensitive to the order and column positions 
In WhICh raw data appear continues to astonish some of 
them for a long time. 

Merging and updating information 

Janus deviates from the traditional statistical package 
model in its approach to merging data. When values 
from two sources, but representing the same subjects, are 
to be merged or updated, separate datasets are again 
created, each on~ representing one of the sources and 
each one containing subject identification information. 
(5) A mapping is then established between the two 
datasets and the attributes of one copied or updated from 
the other. This operation is approximately equivalent to a 
traditional "join", but has seemed more sensible· to the 
casual user-analyst. Since relations are stored transposed 
(by attribute), there is no performance penalty. If any 
subjects do not appear in the new (update) dataset who 
do appear in the source one (the one to which attributes 
are being added or updated), the values of the attributes 
for those entities are set to missing, It is possible 10 
query the database and display entities in either dataset 
that do not participate in the mapping (that WOUld, 
therefore, lead to either miSSing values or lost information). 
It is also possible to form new relations as the intersection 
or difference between a pair of existing datasets as a 
means of detecting these problems. The query, display, 
and inspect capability is used by almost all users involved 
in updating and merging operations; the intersection and 
differencing operations have, to our surprise, been little 
used. 

Again, these are relatively recent facilities. Prior to their 
addition, users went through a series of steps to locate 
and update values. Based on complaints from users before 
the aggregate commands were added, designers of future 
systems should probably include similar capabilities. This 
appears to be true even though only the more primitive 
ability to infer individual attributes from one relation is 
logically necessary. 

None of these facilities should be confused with those 
for simply editing individual data values, or sets of values 
with common characteristics, by specifying a replacement 

value. Simple editing facilities of that sort have existed 
in Janus from the first prototype and are important for 
many purposes, especially in an interactive system. -They 
cannot be used to. substitute for the dataset-merging 
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facilitieS discussed above, nor can the dataset-merging 
facilities be reasonably used as substitutes for simple 
editing. 

Changing the level of aggregation 

Statistical data are typically updated less frequently than 
data .managed for commercial purposes and the operations 
descnbed above are of less importance to traditional 
statistical applications than to commercial or mixed 
approac~es. M~re crucial to the needs of the analyst 
faced WIth multIple sets of data from different sources is 
tJ.te ability to r~ncile dif~er~nt levels of aggregation 
e~ther between relatIons or WIthIn a single relation. These 
dIfferent levels are often the traditional strict hierarchies 

people, in buildings, in city blocks, in cities, in states 
-- b~t ma~ also represent much more complex (and 
non-h~erarchIcaI) relationships. For example, we have 
been Involved recently in the creation of a database of 
all international crises since approximately the end of the 
~ond world war (Farris et. al. 1980). That database 
mcludes a relation whose entities are crises and one 
who~ entities are phases of the crises (a strict hierarchy). 
But It also requires, for analysis, a relation whose entities 
are actors -- parties to, or participants in, the crises -
and that relatIOn has many-to-many characteristics with 
respect to information about crises and phases of crises. 
Janus handles the mappings that reflect relationships 
among rel~tions in an ~xplicit fashion, permitting naming 
~ese ma~ngs a~d treatm~ them as objects. The map-form
mg. operatIon IS, essentIally, a matching one between 
attnbutes or tuples in different relations. The principal 
user so far of the database described above found it 
surprisingly easy to use, given the intrinsic complexity of 
the data, but often has trouble figuring out what to map 
o~to what. It is not terribly unusual to have several 
dIfferent maps between a pair of relations in the effort 
to isolate specific information. 

Once a map or maps are formed, the user determines the 
leve! of aggregation at which analysis is to be performed. 
Askmg questions in a relation whose entities are households 
is likely to yield information about households; asking the 
same type of questions in a relation whose entities are 
communities will probably yield information about 
commu.nities. To reduce the user confusion that might 
otherWIse result, Janus utilizes the notion of what we 
might consider a reference relation -- a "default dataset" 
relative to which operations are being performed. While 
operations mapping between existing relations, and operations 
that create new ones are, of course, exceptions, the user 
thinks of himself as operating "in" one relation at a 
time. We have noticed that this seems less confusing than 
the usual situation iIi systems based more closely on the 
relational algebra. (6) 

An example may help clarify this level of aggregiltion 
situation. Assume that a database contains information on 
cities, information on households (including what city each 
is included in), and information on persons (including the 
income of each and what household each is associated 
with). By fairly conventional joining and tallying operations, 
we can determine how many people are in each household. 
what the aggregate (and average) household income are, 
and the same information for each city. The average 
per-capita city income (a question we would want to 
address in the relation whose entities are cities) is going 
to be quite different from the average per-capita household 
income (a Question for the relation whose entities are 



households). Assuming that the necessary mappings exist 
(they can be created or composed easily), it is feasible to 
ask either question, but they have different substantive 
meanings. 

In this example, we are moving information and aggregating 
along a many-one mapping. There are two sets of 
possible complications here. If we permit an individual to 
be listed in more than one household (consider the 
answer to the question "where were you yesterday?"), we 
mayor may not want him counted twice in averaging 
incomes. To avoid double-counting, we must reduce the 
relation of individuals (i.e., person-household pairs) to 
one that contains only unique people. Assuming that 
relation ends up with fewer entities than the 
person-household one, we must choose how to treat the 
other information on the subject before mapping them 
into the new relation of individuals. In the original 
design, Janus permitted adding the information up, taking. 
the mean of the values being mapped onto each entity, 
and taking the maximum and minimum of those values. 
We have found it necessary to add two new choice 
functions -- one arbitrary and one that selects a value 
(such the income for a subject) only if all candidate 
incomes are the same. These permit dealing with the 
problem that arises when several entities in one relation 
map onto an entity of another relation and we wish 
neither to aggregate nor to end up with a list of values. 

We have spoken about the use of these facilities strictly 
in the direction of transferring information "down" 
many-one mappings, which we have found to be the 
most common case, (or when I discussed merging. and 
updating information, transferring information "across" 
one-one mappings). The need periodically arises to move 
information "up" a many-one mapping, or "across" a 
many-many one. The first of these two operations 
involves disaggregating or "spreading" information from 
one relation onto the subgroups of another relation to 
which that information applies. In the election example 
that I will discuss later, it was necessary to spread 
biographic information on candidates onto the relation of 
votes (where most candidates appeared multiple times) 
because the information level of the vote values proved 
useful in looking at that information. 

More important, we sometimes do not wish to aggregate 
or disaggregate as we move up or down a many-one 
mapping. If we were interested in the number. of 
hOuse'lOlds containing at least one person over 65, we 
could take the' maximum age of the people who mapped 
into each household and then count the number of 
households in which the maximum age was greater than 
65. If, however, we wanted to know how many households 
contained someone named "Fred" we would have two 
choices: we could create an attribute in the relation of 
people whose value was, say, one if the person's name 
was Fred and zero otherwise, add this up (or take its 
maximum) through the mapping, and then proceed as if 
Fred-ness were age. Or, we could copy into each entity 
of the household relation the first name of all of the 
people in that household. That would give us a 
variable-length list of names for each entity, the pr~blematic 
nasty unnormalized form mentioned earlier. Are the two 
approaches equivalent? This depends on what you intend 
to do next. We have observed that, for the social 
scientists and statistical analysts who make up much of 
our user community, "tell me about those households that 

283 

contain a 'Fred'" is immediately followed by "tell me 
about those households that contain a 'Tom''', and that is 
followed immediately by queries about "Dick" and "Harry". 
Creating all of the attributes needed for the first 
approach is, at best, tedious. The use of these lists 
instead permits the user to ask the questions in a more 
direct way without moving back and forth repeatedly 
between the two relations. 

As mentioned before, there are problems with a scheme 
that permits the results of inferring through mappings to 
be stored explicitly in· the relation. They are problems to 
which, at various times, we have thought we understood 
the SQlutions but were lacking in the resources to 
implement them, or thought we had the resources but 
were lacking in ideas to which we could not immediately 
find objections. Often, we have had neither resources nor 
reasonable ideas. It seems to us today that problems that 
arise when we start with, to continue with the example 
above, a list of names and want 

- to find out how many distinct names appear in our 
population, and how many times each appears; 

- to form a mapping, USing the names, between two 
relations containing lists of names; 

- to form a mapping, using the names, between one 
relation containing the list of names and another 
containing not more than one name per entity; 

- to create a new relation whose entities are unique 
names (assuming that such a dataset did not exist 
already). 

The need for these operations illustrates the difficulties 
here and lays out the requirements for an acceptable 
solution. 

Multiple mappings among relations 

The requirement for multiple mappings in a statistical 
database does not arise very often but, when it does, it 
proves extremely helpful. It could perhaps be replicated 
by several joins and subsets, but at greater (logical) cost 
and complexity to the user. An example from one of the 
first major political science research efforts with the 
system may be more helpful than an abstract presentation. 

In a voting study, the user (Deber 1977). had a collection 
of data containing candidate names, party affiliation, 
districts, election years" and votes for a particular set of 
congressional districts. The data were not identified with 
who had won each election, much less vote percentages 
and other information useful for trend analysis. It was 
ultimately necessary to aggregate and compare the informa
tion in a variety of ways, and to connect vote information 
with candidate biographic and personal electoral and party 
history information, but it was first necessary to identify 
the elections and winners from these data. 

We first formed a new relation, using uniqueness of the 
date-district tuple as the creating condition. We inferred 
into that relation the maximum value (for each contributing 
entity) of the vote, and the sums of the votes. That gave 
us, in the new relation, four attributes: the year and 
district, the total votes cast, and the vote for the winner. 
Completing the winner's percentage of vote (in that 
relation also) is trivial. But our goal was to identify the 



winners. To do this, we built anomer mappIng oetween 
the original and new relations that associated matching 
triples of district, year, and vote with district, year, and 
(maximum) vote. The entities of the original relation for 
which this mapping exists are "winners", other entities 
represent non-winners. (7) 

This example is, of course, fairly trivial but it does 
illustrate the problem. 

Other derived relations 

Finally, we often see a need to create new relations from 
existing ones. To our surprise, the facilities of Janus for 
doing operations within a single relation are apparently 
powerful enough that this requirement arises much more 
often in statistical uses than in commercial ones. The 
reasons are similar to the uses of a hierarchical set in 
the examples above: a means of aggregating information 
in ways that accumulate information for a selected 
grouping rule on the entities. The most common of these 
is the creation of a new relation whose entities are the 
unique values of an attribute or tuple in some other 
relation. Janus also supports creation of new relations by 
union, intersection, and difference of sets of others, but 
these more complex operations have, as mentioned above, 
received very little use in the community of analysts of 
statistical and quasi-statistical databases. 

The statistical interface 

Janus does not contain any serious statistical facilities, 
although it can be used to perform simple summaries -
means, standard deviations, and the like -- and data 
transformations -- logs, sines, cosines, and so forth. The 
reasons why it does not are partially philosophical and 
tied up with the mechanisms used in the Consistent 
System to keep its components from becoming complex to 
the point of unmaintainability. (8) The technical reasons 
are more important to the statistical database question. 
One of our primary motivations with the Consistent 
System was to insure that the outputs of operations would 
be self -describing files that could be manipulated by the 
system: reformatted, passed to further analysis routines, 
and the like. That requirement implied that the outputs 
of statistical procedures embedded in Janus WOUld, of 
necessity, be either values that could be embedded in 
existing relations (9) or in new relations. The value plan 
works fairly well for the sorts of simple summaries 
mentioned earlier -- we can easily. store the mean of a 
set of attribute values. (10) However, assume that we 
are computing a regression on some of the attributes in a 
relation. The results of that regression are represented in 
several differently-shaped objects (e.g., regression coeffi
cients, partial correlations, analysis of variance information), 
few of which bear any particular relationship to the 
number of attributes or entities of the original relation. 
Only the residuals lend themselves naturally to being 
stored back as additional attributes in that relation. We 
could create new relations for each of the outputs but 
there would be no obvious way to create mappings to the 
existing relations. 

A crosstabulation that produces a multidimensional table is 
another excellent example. Recall that we are committed 
to producing that table as a file, not just printing it, and 
that we are committed to actually producing the contingency 
table, not just statistics about what is going on inside it 
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For a variety of reasons, the best form for that file 
(again, in most cases) is as a multidimensional array with 
one dimension per variable, and the extents along each 
dimension matching the number of codes. That form 
cannot be represented in Janus at all if the number of 
dimensions (variables) exceed four and cannot reasonably 
be represented if the number exceeds two (Janus cannot 
associate labels with the rows and columns of the cells of 
matrix-valued attributes). 

So, we push the results of regressions and tabulations off 
into the numeric array files used by the rest of the 
Consistent System, unless the user only wants the results 
printed and discarded. 

To reduce inconvenience to people doing simple and 
obvious things, there is a connection in Janus to the 
language form used in the rest of the Consistent System 
for numerical and statistical computations. It will convert 
values automatically and invisibly as needed, and will, on 
request, print results. If the resulting values can reasonably 
be represented in Janus and the user wishes, it can 
convert the results and add them to the current working 
relation. In more complex cases, the user uses Janus 
commands to put the desired values into system-standard 
fil~, and then invokes the desired commands directly 
(USIng, however, the same linguistic constructions). These 
commands may be issued by "escaping" from Janus, or by 
terminating the Janus session and returning to Consistent 
System command level; the choice depends on the 
preferences of the user. 

Relationship to commercial uses 

Janus was designed specifically to manage statistical databases. 
Its data storage schemes, ways of presenting information, 
and, most important, lack of locking strategies, tools for 
frequent updates, detailed audit trails, and transaction 
facilities, are consequences of that goal. There have been 
several attempts to use it in more conventional commercial 
data base applications. Depending oil how one looks at 
the world, those attempts have either been extremely 
successful, considering the circumstances, or rather unfortu
nate. The commands that have been added to Janus to 
support merging and updating of information have never 
worked as well or as cleanly as those that perform more 
conventional statistical manipulations. We have an ongoing 
internal technical discussion about whether it is really 
practical to develop record-level locking in a database 
system in which most information is stored transposed 
and this author, at least, is deeply skeptical. If it is 
possible to develop a single system that will serve, and 
serve equally well, both the needs of the statistical 
database user and those of the conventional/commercial 
user, especially on the same databases, we have not 
invented it 



Notes 

1 This argument, which leads to the suggestion that 
information in statistical databases be stored in 
transposed form, has apparently risen up .as the 
conventional wisdom in many places at d1fferent 
times. Important examples include PICKLE (Baker 
1976) SCSS (Nie 1977), and RAPID (Turner 1980). 
Ther~ is some experimental evidence that supports it 
See, for example, Tjoa and Wagner (1980) or Batory 
(1978). 

2 At the risk of confusing any casual Janus user who 
encounters this paper, we are going to try to stay 
with conventional terminology in this discussion except 
in the Janus language examples. The terminology used 
in Janus documentation uses "dataset" (the common 
term among data analysts) instead of "relation" or 
"table" and the term "relation" to describe the 
mapping among a pair (or more) of relations ("datasets") 
"Entities" and "attributes" have their usual meanings. 
There are conceptually several types of functions: 
those that create new relations ("datasets"), those that 
define new mappings ("relations"), those that are used 
in forming new values for each entity in a relation 
(e.g., log10, uppeccase), those that aggregate values 
within a relation ("dataset") (e.g., mean or sum), and 
those that move or infer information from one 
relation to another which information was not involved 
as arguments to the relation-creating function. The 
style of the language and documentation have permitted 
the notion of a "tuple", and analogous terms, to be 
avoided entirely. 

3 It is possible to get around this in some circumstances, 
but doing so often leads to more confusion. 

4 This is, however, easy and convenient since Janus 
maintains a sequential entity number as a key that 
can be used in selection expressions. 

5 In the rare case in which subjects are identified by 
order alone, the entity sequence numbers, mentioned 
above, are coerced into subject identifiers. 

6 Other commentators have also assumed 'that this sort 
of convention is necessary. See, for example, Teitel 
(1981). 

7 A complication could, in principle, arise if two cases 
had exactly the same vote in the same election. It 
was easy to test for and did not, empirically, occur 
-- these were, after all, election results and someone 
was elected in all cases. 

8 A non-technical discussion of the modular organization 
of the Consistent System and the intellectual motivation 
for it appears in another paper (Klensin and Yntema 
1981). Time and space do not permit replicating that 
discussion here. 

9 Janus provides the capability of representing so-called 
dataset-level values that logically represent all of the 
entities of a relation, rather than being different for 
each entity. Such values as the mean or standard 
deviation of an attribute fall into this category. The 
alternative, dictated by a strict, relational model, 
would have been to create a new relation representing 
the appropriate aggregation of cases and compute 
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summary values USing that aggregation. While that 
facility exists in Janus, and is heavily used when 
aggregate summaries are needed for several subsets of 
the entities in a ri:Iation, being able to store values 
that are conceptually scalars associated with a given 
relation with that relation is intellectually easier in 
many cases. 

10 If the attributes are vector- or matrix-valued, there 
is an additional small problem of selecting the 
correct value: whether the mean (or whatever) is to 
be of all of the values, or is itself is to be a 
matrix, or some collapse of that matrix, or whether 
the mean is wanted for each entity, for the values 
of that entity. Functions such as "mean" take 
additional syntax when applied to matrix-valued attri
butes to select among these possibilities. That arrange
ment is not available when values are being projected 
or aggregated across relations; something we frequently 
regret. 

Bibliography 

Armor 1969 
Armor, David J., et. aI., The Data-Text System, 
Preliminary Manual, Department of Social Relations, 
Harvard University, 1969. 

Baker '1976 
Baker, M., "User's Guide to the Berkeley Transposed 
File Statistical System: PICKLE", Survey Research 
Center, University of California, 1976. 

Batory 1978 
Batory, D.S., "On Searching Transposed Files", Fourth 
I nternational Conference on Very Large Databases, 
1978. 

Codd 1971 
Codd, E. F., "A Data Base Sublanguage founded on 
the Relational Calculus", Proceedings of the 1971 
ACM-SIGFIDET Workshop on Data Description, 
Access, and Control, San Diego, Calif., 1971. . 

Dawson, Klensin, and Yntema 1980 
Dawson, Ree, John C. Klensin, and Douwe B. 
Yntema, "The Consistent System", The American 
Statistician, 35, 3 (August 1980), pp. 169-176. 

Deber 1977 
Deber, Raisa, Who runs: Congress and realignment 
sequences, unpublished Ph.D. dissertation, Department 
of Political Science, Massachusetts Institute of 
Technology, 1977. 

Farris et. aI. 1980 
Farris, Lee, H. R. Alker, Jr., Kathleen Carley, and 
Frank L. Sherman, "Phase/actor disaggregated 
ButterWorth-Scranton codebook", Project working paper 
13, project on Reflective Logics for Resolving Insecurity 
Dilemmas, Center for International Studies, MIT, 
1980. " 

Goldstein and Strnad 1971 
Goldstein, Robert C. and Alois J. Strnad, "The 
MacAIMS Data Management System", MIT Project 



MAC technical memorandum MAC-TM-24, April 
1971. 

Klensin and Yntema 1981 
Klensin, John C. and Douwe B. Yntema, "Beyond 
the package: A new approach to behavioral science 
computing", Social Science Information, 20, 4/5 
(1981), pp. 787-815. 

McIntosh and Griffel 1970 
McIntosh, Stuart D. and David M. Griffel, "Admins 
Mark III - The user's manual", MIT Center for 
International Studies, March 1970. 

Miller 1967 
Miller, James R. III, "Datanal: An interpretive 
language for on-line analysis of empirical data", MIT 
Sloan School working paper 275-67, August 1967. 

Miller 1%8 
Miller, James R. III, "On-line analysis for social 
scientists", Social Science Information, April 1968. 

Nie 1977 
Nie, Norman H. and C. Hadlai Hull, SCSS: SPSS 
Conversational Statistical System, Chicago: SPSS, 
Inc., 1977. 

Stamen and Wallace 1974 
Stamen, Jeffery and Robert Wallace, "Social Science 
Goes Online", Computer Decisions, April 1974. 

Teitel 1981 
Teitel, Robert, "User Interface with a Relational 
Model of Data", SIGSOC Bulletin, 13, 2-3 (January 
1982). 

Tjoa and Wagner 1980 
Tjoa, A. M. and R. R. Wagner, "A general concept 
for the simulation of interaction on statistical databases" 
in Barritt, M. M. and D. Wishart, ed.s., COMPST AT 
80: Proceedings in Computational Statistics, Vienna: 
Physica-Verlag, 1980, pp. 115-121. 

Turner 1980 
Turner, M. J., R. Hammond, P. Cotton, "RAPID: A 
DBMS for Large Statistical Databases," Statistics Canada, 
1980. 

286 



• 

• 

SYSTEM/K: A KNOWLEDGE BASE MANAGEMENT SYSTEM 

Mauro MAIER, Claudio CIRILLI 

IBM Scientific Center, Via S.Maria 67, 56100 Pisa 

Abstract 

System/K is a Knowledge Base Management System designed to offer a set 
of facilities for knowledge representation and usage at the conceptual 
level by means of three descriptive mechanisms ("Aggregate", "Derive" 
and "Collect"). 
Two specific object-types (Assertions and Sets) are defined to represent 
the "part-of", "is-a" and "member-of" relationships. 
An "object-oriented" cross-reference logic is defined, that saves users 
from having to be constantly aware of "keys". 
System/K refers to SQL/DS (a relational DBMS) to maintain information 
concerning both the conceptual relationships (meta-database) and the 
description of the entities in the real world (database). 
A logic is defined to generate the appropriate relation schemes starting 
from the conceptual definitions. 

1. - Introduction 

This paper describes the basic concepts of 
System/K, a research prototype for know
ledge representation and usage at the 
conceptual level, developed by the IBM 
Scientific Center at Pisa, in the frame
work of a research project on Territory 
Information Systems (TIS project) [7]. 
The terms "knowledge representation", 
"knowledge base" and "semantics" are 
usually referred to with different mean
ings, depending on the topics and the 
research communities which use them (arti
ficial intelligence, linguistics, database 
systems, programming languages) [6] [4]. 
Although the exchange between these commu
nities has been growing over the last few 
years, it may be worthwhile to define, at 
least informally, how these terms are used 
here. 

In the context of complex information 
systems "knowledge representation" means 
that designers and users are provided with 
adequate and integrated tools, in order to 
describe and manage what they know about 
the real world concerned, with special 
reference to the high level of description 
and to the basic requirement that the 
knowledge inserted be understandable both 
for the whole community of users and for 
the system itself (that is, an adequate 
and sufficiently precise notation is need
ed) [13]. 

In addition to this, a high degree of 
"semantic capacity" (as a measure of the 
correspondence between the representation 
and the meanings of the real world) is 
required, both for static (data) and 
dynamic (process) aspects which must be 
representable by taking into account mech-
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anisms that human beings naturally use to 
organize their knowledge (such as classi
fication, aggregation and generalization) 
[13] [20] [16] [17]. 

To fulfil these requirements "semantic 
models" (DB corresponding to what is 
usually referred to in AI as "represen
tation schemes") [3] [5] [10] can be used 
as basic tools of "structured knowledge 
representation": the application of a 
given model to a slice of reality gives 
the relevant "knowledge base". 
Thus a knowledge base includes both 
"abstract knowledge" (information on 
general concepts, types, descriptors etc.) 
and "concrete knowledge" (information on 
individual facts) [13]. 
In terms of stored data, the knowledge 
base is split up into two subsets: the 
database, in its usual meaning, and the 
"meta-database", that is the structured 
collection of data which materialize the 
abstract knowledge, together with control 
information (data dictionaries, database 
schemes etc.) [11]. 

In the following we describe a proposal 
for a Knowledge Base Management System. 
In section 2, an overview of System/K is 
presented. 
In section 3, the basic concepts of 
System/K are presented with special empha
sys on the three description mechanisms 
("Aggregate", "Derive" and "Collect"), 
that make it possible to compose 
descriptions of elementary facts of know
ledge (called "Assertions") to build the 
descriptions of complex entities. 
In section 4, some implementative aspects 
are illustrated such as the categories of 
objects the system manages, the logic the 



system follows to navigate through the 
database, the relation schemes the system 
adopts to materialize the meta-database 
(the set of descriptive structures) and 
the logic the system uses to automatically 
build the relation schemes to materialize 
and maintain the descriptions of the 
specific objects. 
In the conclusive section, an attempt is 
made to emphasize the advantages offered 
by a conceptual interface to the database 
in terms of semantic capacity and ease of 
use. 

2. - System/K General Overview 

System/K is a Knowledge Base Management 
System designed to offer a set of facili
ties for knowledge representation and 
usage at the conceptual level. It is 
based on an "object-oriented" approach, 
i.e. it deals with objects, addressing 
them by means of system identifiers which 
are completely transparent to the user. 
In this sense, System/K enables the user 
to refer to certain properties of an enti
ty (e.g. the personal code of an employee) 
to find the required entity (the required 
employee); from that moment on, the system 
uses the appropriate identifier to present 
the concerned entity in its entirety (the 
employee with all his/her properties). 

System/K is the basic component of a 
system for Territory Administration and 
planning, developed in the framework of 
the TIS project. 
The gross architecture of this 
macro-system is to be found in Fig.1. 

+----------------------------------------+ 
I +------------------------------------+ 

I Territory Administration Interface 1 
+--------------------------------~---+ +---+ +-----+ +-----+ +-----+ 
! I 

S 
Y USL AQL CDA 
s 
t 1 e +-----+ +-----+ +-----+ 

. . . 
m +--------------------------------+ 

1 / K Conceptual Interface 1 
1------------------------------------1 

System / K 

1------------------------------------1 
System/K Database Interface 

+------------------------------------+ +----------------------------------------+ 
Fig.1 - Architecture of a System 

for 
Territory Administration 

The facilities offered by System/K are 
presented to the user by means of the 
System/K Conceptual Interface (KCI). 
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Certain specific languages and components 
can be located on top of this basic inter
face, such as USL (User Specialty 
Language) [14], developed at the IBM 
Heidelberg Scientific Center, to offer 
System/K facilities through a 
quasi-natural language; AQL (APL Query 
Language) [2], developed at the IBM Rome 
Scientific Center, to offer System/K 
facilities in the APL environment; Concep
tual Design Aid, to be developed at the 
IBM Pis a Scientific center, to offer a 
specific set of administration facilities, 
especially for database optimization 
purposes. 
All these languages and components will be 
presented to the final user through a 
general purpose interface, based mainly on 
menus. A Database Interface (KDI) is used 
by System/K to map assertion values into 
specific DBMS structures, files and 
libraries. At the moment, KDI refers to 
SQL/DS [19] and to core-image libraries, 
as far as data management and program 
management are concerned respectively. 

3. - Basic Concepts 

System/K is based on the assumption that a 
significant' portion of the knowledge, 
acquired on the real world, is represent
able in a computer by means of elementary 
statements. These elementary facts of 
knowledge can be combined, then, by means 
of appropriate mechanisms to represent 
more complex concepts and entities. 

3.1 - Assertions 

System/K is based on the assumption that 
representable knowledge is made up of 
elementary facts, each describing a 
specific characteristic of an entity by 
means of another associated entity. 
Elementary facts are, then, described 
according to a protostructure which 
consists of three components: the 
described entity, the descriptive role (or 
property) and the describing entity. 
Instances of this protostructure will 
hereafter be called "assertions", and will 
represent single elementary facts of know
ledge. 
The set of all the assertions known by the 
system will be called the "Knowledge 
Base". 

Examples of assertions are: 

(1) "a character string is the name of a 
person" ; 

(2) "an integer is the population of a 
city" ; 

(3) "Mauro Maier is the name of a specific 
person" ; 

(4) "92000 is the population of the city 
named Fidenza". 
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It may be noted that some assertions look 
like "variables" (refer to (1), (2) in the 
examples above) with a set of possible 
values (domain) associated. to them, while 
others look like "constants" (refer to 
(3), (4) in the examples above). 
Moreover, constant assertions are often 
obtained selecting precise values from the 
domain of the appropriate variable 
assertions. Variable assertions capture 
the modalities of representing analogous 
elementary facts, while, constant 
assertions represent specific facts exist
ing in the real world. 

3.2 - Descriptive Mechanisms 

Three descriptive mechanisms ("Aggregate", 
"Derive", and "Collect") are defined, to 
capture, represent and use knowledge in 
System/K on the basis of certain abstract 
concepts and relationships [5]. 

The "Aggregate" Mechanism 

The "Aggregate" mechanism makes it possi
ble to represent an entity in terms of 
other entities, each of which describes a 
property of the former one. The "Aggre
gate" mechanism makes it possible to 
represent an entity of the real world as a 
group of assertions, which describe how 
other entities concur in this represen
tation with specific descriptime roles. 
The "Aggregate" mechanism groups variable 
assertions to build the descriptive 
formats (structures) of classes of enti
ties, and constant assertions to build the 
description of specific entities (as 
instances of the appropriate structures, 
in general). The "Aggregate" mechanism is 
related to the abstraction mechanism 
"Aggregation", as defined in [17] [13] [5] 
[1], and makes it possible to materialize 
"part-of" relationships [5]. 
The groups of assertions produced by the 
"Aggregate" mechanism are called "objects" 
in System/K. 

An example of the use of the "Aggregate" 
mechanism to define a structure is: 

DEFINE Person:: 
name:: surname: Character: 

first-name: Character:: 
birthdate: Date: 
age: Age(birthdate): 
actimity: Character:: 

The "Derive" Mechanism 

The "Derive" mechanism makes it possible 
to define new structures as views or, 
together with the "Aggregate" mechanism, 
as "specializations" and "extensions" of 
others, already defined in the knowledge 
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base. The "Derive" mechanism is related 
to the abstraction mechanism "Generaliza
tion", as defined in [17] [13] [5] [1], 
and makes it possible to materialize 
"is-a" relationships [5]. 
An example of the use of the "Derive" 
mechanism to define a new structure is: 

DERIVE Employee FROM Person 
WITH activity = 'employee' 
AND::code: Integer: 

job: Character: 
salary: Money:: 

As far as the concept of "view" is 
concerned, the "Derive" mechanism makes it 
possible to define structures derived from 
others, for the sole purpose of describing 
the same object in a different way or 
presenting other assertions with 
different, but equivalent, describing 
components. 
In order to make it possible to use the 
same name, views must be defined inside a 
different user environment from the one 
containing the originating structure. 
Several views can be grouped into "con
texts" so as to· supply overall 
personalized views of the knowledge base 
and authorization schemes as far as access 
to, and handling of, information is 
concerned. 

The "Collect" Mechanism 

The "Collect" mechanism makes it possible 
the definition of objects as sets of other 
objects in the knowledge base. A 
"set-object" (more simply, a "set") is 
defined by a "collection criterion" which 
determines whether or not an object 
belongs to the set in question. An object 
of the knowledge base belongs to a set if 
and only if it complies with the relevant 
collection criterion. Each object in a 
set plays solely the role of being a 
member of that set, without any other 
specific meaning. In this sense, the 
"Collect" mechanism is related to the 
abstraction mechanism "Association" (or 
"Collection"), as defined in [5] [1], and 
makes it possible to materialize 
"member-of" relationships [5]. 

In the part above on the "Aggregate" mech
anism, the concept of class was used to 
refer to all the entities described in 
terms of the same group of properties (the 
same descriptive format). The concept of 
class, in System/K, is a special case of 
the more general concept of "set" as 
produced by the "Collect" mechanism, the 
relevant collection criterion being: "all 
the Objects produced as instances of the 
same structure". The following are exam
ples of sets that are not classes: an 
exam~n~ng board, an agricultural 
community, a football team, etc. 



3.3 - Basic Structures 

Two specific structures ("Assertion" and 
"Set") are defined in System/K in order to 
materialize the conceptual relationships 
("part-of", "is-a" and "member-of") on the 
basis of which information about the real 
world is acquired, represented and main
tained in the "Knowledge Base". 

Assertions 
System/K. 

are the basic elements 
They are defined as follows: 

DEFINE Assertion:: 
role: Word~ 
target: Class~ 
domain: Object~ 
type: Character 

( 'owned' 
'inherited' 
'explicit' 
'unique' 
'constant' 

default: Object 

'derived' , 
'restricted', 
'implicit', 
'multiple' , 
'variable' ) ~ 

in domain~ ~ 

of 

Many types of assertions may take place~ 
the meaning of all these types will be the 
subject of a future document, together 
with a detailed description of all the 
ass ~tions in the above structure. Among 
the others, the types "owned", "derived", 
"inherited" and "restricted" will be 
considered now. 
We call "owned" those assertions owned by 
the object under definition, while we call 
"derived" those assertions acquired by the 
object in question from a more general 
object. To make an example, consider the 
entity "employee" defined as a specializa
tion of "person" (an employee is a person 
in any case). If the entity "person" has 
the property "name" described by the 
assertion "the name of a person is a char;" 
acter string", also the entity "employee" 
will have the property "name" described by 
the assertion "the name of an employee is 
a character string". In this example, the 
assertion concerning the property "name" 
is owned by the object "person", but is 
acquired by the object "employee". 
The types "inherited" and "restricted" 
concern the wayan assertion is derived 
from another. The example above concerns 
an "inherited" assertion: the rules to 
form the name of an employee are exactly 
the same as those to form the name of a 
person (both of them are represented by a 
character string). A "restricted" 
assertion is derived from an existing 
assertion with an additional restriction 
on the domain (the describing component). 
An example of restricted assertion can be 
the definition of the property "children" 
of a person with the distinction between 
daughters and sons. In this case three 
asse %tions take place: (1) "the children 
of a person are persons"~ (2) "the daugh
ters of a person are children of this 
person with female sex"~ (3) "the sons of 
a person are children of this person with 
male sex". 
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Sets are the basic tool of System/K for 
organizing knowledge. There are two main 
types of sets: "Classes" and "Groups". 
With class we refer to a set containing 
objects generated on the basis of the same 
structure, while groups are all the sets 
produced by the "Collect" mechanism on the 
basis ofa defined criterion (enumeration 
included). Sets represent "member-of" 
relationships and are defined by the 
following structure: 

DEFINE Set:: 
name: Word~ 
criterion: Predicate~ 
type: Character 

('homogeneous' 'heterogeneous', 
'independent' 'characteristic', 
'structured' 'unstructured', 
'class' 'collection' , 
'base' 'derived', 
'view' 1 'specialization')~ 

preconditions: (Operator, Predicate) 
postconditions: (Operator, Predicate) ~ 
domain-operators: Operator ~~ 

As well as for 
description of 
sets and of all 
a set will be 
document. 

the assertions, a detailed 
all the possible types of 
the assertions describing 

the subject of a future 

4. - Implementative Considerations 

System/K is a knowledge base management 
system realized on top of SQL/DS database 
management system [19]. The implementa
tion of System/K is based on: 

- a certain number of categories 
objects the system is expected 
provide~ 

of 
to 

- a logic to navigate through the know
ledge base following the paths stated by 
the descriptive mechanisms~ 

- a logic to automatically map the objects 
of the knowledge base into relation 
schemes and relations~ 

- a logic to modify the relation schemes 
and the relevant relations (for opti
mization purposes), preserving the 
congruence of the database with the 
conceptual scheme. 

4.1 - Categories of Objects 

The objects of the knowledge base are 
classified in two main categories: 
"Unstructured" and "Structured". 
The unstructured objects are then subdi
vided into "Elementary" and "Special", 
while the structured objects are divided 
into "Independent'" and "Characteristic". 
For the construction of an object of any 
category, the starting point is the 



concept of "symbol", that is something 
with no meaning in itself, except for its 
"mnemonic" value for the human beings. 
Symbols are represented by means of 
bit-strings and are used as the target of 
the knowledge mapping functions. Opera
tors are provided to compare bit-strings 
and to transform bit-strings into other 
bit-strings. In this sense, "symbols", 
together with their operators, constitute 
the "primitive objects" for knowledge 
representation and usage. 
The first step towards capturing the mean
ings of the real world is the definition 
of elementary and special objects in terms 
of symbols. These objects never exist in 
their own right, but only in order to 
describe other objects (for this reason, 
they may have multiple occurrences in the 
database, each occurrence being completely 
independent from the others). Elementary 
objects aim at defining classes of primi
tive concepts (like numbers, characters, 
etc.), in order to establish the rules for 
mapping those concepts into symbols and 
for associating appropriate sets of opera
tors with those classes. 
Elementary objects are described by means 
of a structure consisting of a singleas
sertion (for this reason, elementary 
objects, together with the special 
objects, are called "unstructured") with 
"symbol" as the domain. The following are 
examples of elementary objects: 

DEFINE ELEMENTARY Character:: 
val ue : Symbol ~ ~ 

DEFINE ELEMENTARY Real:: 
value: Symbol~~ 

DEFINE ELEMENTARY Module:: 
value: Symbol~~ 

Special objects are defined to represent 
singular concepts: 

UNKNOWN: to represent the fact that the 
value of a property is not known at 
the moment and that it may, then, 
correspond to anyone of the possible 
objects; 

NULL/EMPTY: to represent the fact that the 
value of a property does not corre
spond to any object in the knowledge 
base, but to a non-existent object 
which has the same properties as 
"ZERO", or as the "EMPTY SET", in 
relation to the "SUM" and "PRODUCT" 
operators; 

NON-SENSE: to represent the fact that a 
property is not applicable, i.e. its 
value corre$ ~nds to an object which 
attributes a lack of meaning to the 
assertion in which it appears as the 
describing component. 

Structured objects are distinguished from 
the unstructured objects mainly because 
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they are not related to certain instru
ments used by human beings to acquire and 
represent knowledge about the real world, 
but constitute a "structured" organization 
of that knowledge. 
A distinction is made between 
"Independent" and "Characteristic" objects 
in the sense that: independent objects 
are those objects existing in their own 
right, while characteristic objects (as 
well as elementary and special objects) 
exist only in order to describe other 
objects [15]. 
Independent objects will have one occur
rence alone in the database, and refer
ences to them are made by means of system 
identifiers, as explained below. 
Characteristic objects will have as many 
occurrences in the database as necessary 
(i.e., the same number as the number of 
objects in whose description they concur). 
The following are examples of character
istic objects: 

DEFINE CHARACTERISTIC Name:: 
first name: Word; 
second name: Word; 
family name: Word~; 

DEFINE CHARACTERISTIC Address:: 
street: Word~ 
city: Word; 
ZIP-code: Integer;; 

4.2 - System/K Navigation Logic 

System/K, as an "object-oriented" system, 
deals with objects, addressing them by 
means of system identifiers which are 
totally transparent for the user. In this 
sense, the user refers to certain proper
ties of an entity (e.g. the personal code 
af an employee) in order to find the 
required object (the required employee). 
From that moment on, the system uses the 
appropriate identifier to present the 
object to the user in its entirety (the 
employee with all his/her properties). 

The structure and the logic of using 
system identifiers make up the "System/K 
Navigation Logic" (KNL), that addresses 
all the objects in the knowledge base 
(assertions and sets included) by means of 
bit-strings called KNLIDs. The appropri
ate KNLID is used every time a reference 
is needed to any object in the knowledge 
base. A KNLID can include the addressed 
object or give the access path to reach 
it: in the first case we talk about 
"Immediate References", while in the 
second case we talk about "Pointers". 

Immediate references may address "Special" 
or "Elementary" objects, the distinction 
being made by-the target type. Pointers 
refer to single objects or to a multiplic
ity of objects. A "Single" pointer makes 
it possible to reach all the properties of 
the object addressed. Sets are treated as 



objects and their members are not select
able. A "Multiple" pointer makes it 
possible to reach all the properties of 
the objects addressed, but sets are treat
ed as collections of objects, thereby 
allowing the selection of specific 
members. 

Pointers consists of a couple of system 
identifiers: the "class identifier" and 
the "object identifier". The first iden
tifier addresses the (base or derived) 
class to which the concerned object 
belongs, while the second one identifies 
that object inside its "base" class (the 
class origin of the IS-A hierarchy to 
which the above mentioned class pertains). 
The identifiers are generated by counters 
(one for each class) wothout reusing 
values previously assigned to deleted 
objects; this is made to avoid problems 
arising from not deleted references (but 
invalid after the deletion of the 
addressed object), A procedure of refer
ence validation and redefinition is 
provided to solve the deadlock due to the 
exhaustion of a counter. 

Classes are considered at any rate as 
objects of the knowledge base belonging to 
the class "Sets", then they have the value 
"zero" as class identifier and a generic. 
value as object identifier (the class 
"Sets" has the value "zero" both as class 
identifier and as object identifier). 
The object identifier of a class become 
the class identifier in any pointer 
addressing an object belonging to that 
class. 
In this way KNL makes it possible to 
address any object in the knowledge base 
following the same logic, independently 
for the fact that it be a "Set" (group or 
class) or an "Object" (in the strict sense 
of member of a class), the distinction 
being made by the value ("zero" vs 
"not-zero") of the class identifier. 

Every time a new independent object is 
added to the knowledge base, an identifier 
is automatically chosen and assigned to 
it, in such a way that the sarne symbol 
(the value of the identifier), used for an 
object, cannot be assigned to another 
object even if the first owner has been 
cancelled from the system. This choice 
prevents any possible misxse due to refer
ences not being cleared at cancel time, 
but, on the other side, it implies a 
finite life-cycle of the system: when 
identifiers are exhausted, a check of all 
the references in the system is made, in 
order to clear out those which are 
invalid, and a new life-cycle is set up 
with usable identigiers available. 

4.3 - Meta-database and Database 

The term "meta-database" refers to the 
structured collection of information about 
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both the abstract knowledge that comes 
from a conceptual representation of the 
real world (e.g. classes of objects), and 
the description of the objects used by the 
system itself. 
The two basic structures of the system 
(assertions and sets defined above) define 
two classes of objects, and their 
instances are a portion of the stored data 
that materialize the meta-database, which 
in turn "describes" the relevant concrete 
objects stored in the database. 
Every class of objects from the real world 
is thus represented in the meta-database 
by a specific set, and by as many 
assertions as there are relevant proper
ties, according to the description 
inserted by means of the conceptual 
language. 

The actual management of any kind of 
stored data (meta-database included) is 
performed by means of the underlying rela
tional DBMS (SQL/DS), while the nucleus of 
the system takes care of any distinction 
between abstract and concrete knowledge, 
together with the management and control 
of the conceptual aspects of the 
meta-database (e.g. property inheritance 
coming from IS-A relationships). 

In terms of stored data, the ultimate 
representation, for the meta-database too, 
is by means of relations, but it is worth
while noting that these are completely 
transparent to the users, who deal only 
with objects and their properties: the 
system uses appropriate internal identifi
ers to create and manage the relevant 
references (both in the database and the 
meta-database) and to return the objects 
in their entirety. 

The relation schemes are automatically 
generated starting from the structures 
defined by the user (or predefined into 
the system) and can be changed by the 
Knowledge Base Administrator by means of a 
set of administration facilities. 
As a starting point we assume that all the 
objects of the sarne base class are materi
alized by means of a unique SQL/DS 
relation scheme and by the relevant 
relation. 
Objects of the same derived class are 
materialized by a unique additional 
relation scheme (and by the relevant 
relation), as far as additional properties 
(owned assertions) are concerned. This 
relation scheme is created as an extension 
of the relation scheme of the class from 
which the concerned class is derived. 

A relation scheme R for System/K consists 
of an attribute for the system identifier 
and of as many attributes as are necessary 
to represent the owned assertions in the 
structure generating the relevant class. 

A relation scheme R, 
owned assertions of a 
decomposed vertically 

materializing 
structure, can 
into a set 

the 
be 
of 



relation schemes S = R1, R2, .,. , Rn , 
on the assumption that each scheme Ri of S 
is a projection of R, necessarily contain
ing the attribute for the KNLID. 

Horizontal decomposition can be achieved 
by decomposing a class, at the conceptual 
level, into a number of derived classes, 
according to distinct selection criteria, 
and presenting the original class as the 
union of the new ones. The user of the 
knowledge base may ignore this decompos
ition, even if it is represented at the 
conceptual level. 

Horizontal and vertical decompositions are 
reversible, and, then, original relations 
can be reconstructed. 
Moreover, vertical compositions can be 
operated, cOmbining several relation 
schemes into one whose attributes are the 
union of the attributes of the combined 
schemes. 
The relation produced will have 
"NON-SENSE" values in those columns mate
rializing properties that are "inapplica
ble" for the corresponding object. On 
this basis, owned assertirns of a derived 
class can be materialized by adding new 
attributes to the relation scheme owned by 
the originating class. 

There are certain exceptions to the crite
ria for automatically generating relation 
schemes from th (conceptual definitions. 
These exceptions are related to the char
acteristic objects, which exist only in 
order to describe other objects and, then, 
may have multiple occurrences in the data
base, and to the multimalued assertions, 
which originate repeating groups of 
values. These exceptions will be analyzed 
in a technical note (to appear) specific 
on the implementation of the database 
interface. 

5. - Conclusions 

System/K has been presented as a knowledge 
base management system running on top of a 

'relational DBMS (SQL/DS [19] ) • Its 
purpose is to offer a set of facilities to 
the user for knowledge representation and 
use at the conceptual level. This means 
that the user of System/K is not required 
to know the structures into which data are 
logically and physically organized by the 
DBMS, but is able to dedicate his/her 
efforts to the conceptual description of 
the real world of interest. 

The user may then define conceptual 
relationships between the entities of the 
real world to capture more semantics than 
with the traditional DB systems. 

The conceptual description produced can be 
appropriately formalized to represent a 
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basic instrument for integrating knowledge 
coming from different applicative sectors. 
Such a description has a great adaptabili
ty to changes, being highly independent of 
the specific applicative sectors and of 
the database into which it is automat
ically mapped. 

Moreover, it seems less difficult and more 
systematic to approach quasi-natural 
interfaces (languages) on top of a concep
tual representation of knowledge [12], 
rather than traditional data structures 
(hierarchic, network or relational models 
[9] [18]). Natural languages are one of 
the most important requirements to gain 
the favour of casual users (especially in 
the public administration environment). 

On the side of the DB systems, the avail
ability of a knowledge base management 
system will offer a great clearness of 
roles. The existence of a system offering 
appropriate facilities for representing 
complex relationships at a higher level, 
with respect to data, will better focus 
the requirements to be satisfied by the 
database system: flexibility, logic and 
performance. In this sense, the relation
al approach seems to be the more quoted. 
Its flexibility (ease of use of the 
relation schemes) and logic (the power of 
the relational algebra) are getting appre
ciated more and more. 
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Computer-Independent Data Compression for Large Statistical Databases 

Fredric Gey. John L. McCarthy. Deane Merrill. Harvard Holmes 

Computer Science and Mathematics Department 
Lawrence Berkeley Laboratory 

Berkeley. CA 94720 

Abstract 

This paper describes a dictionary-driven. 
hardware-independent data compression 
scheme for archival storage of large statisti
cal databases. It discusses motivations for 
this development. storage format require
ments. implementation details. access con
siderations. and possible extensions of the 
technique. It also analyzes the degree of 
compression achieved for different types of 
statistical data files. 

1. Introduction and Motivation 

SEEDIS is a research and development project 
on Social, Economic, Environmental. and 
Demographic Information Systems [MCCA82C], 
[GEY 81]' The project was initiated in the 
early 1970's to provide quick, low cost access 
to databases including the 1-9"ffl-U. S. -C-ensus --
1.6 billion individual data values for some 
400,000 geographic areas. Over the past 
decade, SEEDIS has evolved from a batch
processing system on Control Data Corpora
tion (CDC) computers to an interactive system 
on a distributed network of Digital Equipment 
Corporation VAX. 111780 computers running 
the DECNET communic~tion system. 

By 1977, SEEDIS databases contained nearly 
25 billion characters of information, primarily 
1970 census data for numerous geographic 
summary levels, including states, counties, 
census tracts, enumeration districts, and oth
ers. Data were stored in a variety of physical 
formats, usually a different format for each 
major data set. Some had been converted to 
binary representation on the CDC 6000-7000 
computers at Lawrence Berkeley Laboratory 
(LBL). Others had been converted to the CDC 
display code character set (a 64 character 
alphabet, with ten six-bit characters per com-

This work was supported by the Office of Health 
and Environmental Research and the Office of Basic 
Energy Sciences of the U.S. Department of Energy 
under Contract DE-AC03-763F00098; and the Depart
-ffi€fit~ ~, ~ymeffi ~ 'r-r.ffiffifig Mmifffir 
tration under Interagency Agreement No. 06-2063-
36. 
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puter word). 

Data were stored, for the most part; on an 
unusual mass storage device, the IBM 1360 
photodigital chip store [GEY 75]. In 1977, IBM 
announced it would no longer maintain this 
storage device after October 1, 1979, and LBL 
undertook to search for a replacement. The 
LBL Computer Center eventually settled on a 
Cal Comp automatic tape library (ATL), with a 
3300 tape reel capacity, robot-assisted tape 
retrieval, and mounting without operator 
intervention. 

The SEEDIS project was faced with re
archiving its entire database on the new mass 
storage device~ The actual conversion effort 
consumed 2.5 staff years over a period of 20 
months. Given the magnitude of this conver
sion effort for existing archived data, the pro
ject -deciEled -t-<) -develop ~ st~-<l -ar-chWal 
format in order to minimize the cost of 
current and future reconversions which might 
be necessary: 

2. Storage Format Requirements 

As the project reviewed its long-term archival 
storage requirements, several common 
characteristics of statistical databases helped 
narrow the storage format design goals. First, 
SEEDIS databases were archival rather than 
transactional; updates were infrequent and 
limited in scope. Second, large new databases 
were continually being added, thus requiring 
ever~increasing amounts of storage space. 
Given these basic parameters, several basic 
design goals were developed, as follows: 

Computer-independent, binary physical 
storage format for multiple data types 

• Dictionary-driven data definition files for 
data specification and access 

Data compression for efficient storage, 
retrieval. and transmission 

2.1. Computer-lndependent Data Formals 

For large archival databases such as those in 
SEEDIS, the data may have a much longer life 
-than. the bar.dwar..e .and sofi.:wa.r..e .used .to.stor.e 
and manage them. Si.nce conversi.on i.s an 
expensive and time-consuming process, data 
need to be stored in formats that do not have 



to be changed as hardware and software 
change over time. 

Unfortunately, most simple standard formats 
(e.g., fixed length ASCII records) are too 
inefficient for large numeric databases. Fixed 
length records require more storage space, 
more disk accesses for retrieval, and more 
overhead for data transmission. Furthermore, 
numeric data represented as characters must 
be converted to binary before t.he data can be 
used in calculations. 

In order to provide a format that was simple, 
efficient, and computer-independent, SEEDIS 
staff developed a binary storage scheme based 
on a "virtual machine" for portability of data 
[HEAL 78]. The commonality of characteristics 
whi<.:h <.:onstitute this "virtual machine" are as 
follows: 

• storage is divided into 8-bit byte segments 

• character (or string) data are stored with 
ASCII encoding 

2.2. Dictionary-Driven Data Definition 

Machine-readable data require data 
specifications that retrieval and applications 
programs can use. They also require code
books that human beings can read. The 
S.F.EDIS project decided to meet both these 
requirements simultaneously, by developing a 
data definition language that could be used to 
describe both compressed data files and their 
uncompressed, fixed-length ASCII equivalents. 

The basic approach is similar to that of data 
dictionaries in other database systems and 
statistical packages. Each self-describing 
dataset consists of two logical components -- a 
data definition fHe (DDF) and a data file (OF). 
The logical data view is that of a table (or fiat 
file) with a fixed number of rows and columns. 
Data are arranged so each row of the table 
contains all the attributes (data elements or 
columns) of a named entity (e.g., Alameda 
County), as well as a row label or stub plus any 
keys necessary for data access and matching. 
The number of rows is equal to the number of 
entities in the data file, and the number of 
columns is eq)lal to the number of data ele
ments in each row, 

The basic structure of meta-data elements in 
the DDF is: 

<keyword> = <value(s» 

with one "keyword=value" pair per unit record 
(line). Keywords occurring before the fust 
data element definition have global effect. 
That is, they hold for aU data elements, unless 
specifically overridden by keyword definitions 
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within the local environment of a data ele
ment definition. 

SEEDIS COMPRESSED files, which will be 
described in Section 3, separate data aI].d 
description into two distinct physical files. 
The data file (DF) is in a binary format, while 
the data definition file (DDF) is in human
readable ASCII representation. One DDF can 
describe an unlimited number of compressed 
data files. 

Another similar data format known as CODATA 
(COmmon DATA Format) was also developed by 
SEEDlS staff [MERR81], [MERR82]. CODATA 
files contain both data definition and an 
uncompressed, fixed-length, ASCII representa
tion of the data in a single physical file These 
self-describing CODATA files are used to com
municate between various independent 
modules within the SEEmS system (retrieval, 
analysis, data entry, graphic display, data 
export). A software library is available to 
translate COMPRESSED datasets to CODATA 
files and vice versa, as well as to extract par
ticular pieces of meta-data information from 
data definition files, 

2.3. Data Compression 

Since the volume of SEEDIS databases was 
quite large (over 25 billion characters of infor
mation in 1977 and growing), it was clear that 
compression techniques were required to 
minimize costs of data storage, retrieval, and 
transmission. Initial experimentation 
revolved around a modified form of packed
decimal format, a data compression technique 
commonly used by COBOL programmers. This 
technique, however, was soon rejected 
because it would save only a fixed amount of 
space (apprOximately 50%) for each numeric 
data item. 

Drawing on previous experience with the data, 
project staff surmised that more substantial 
compression could be achieved by exploiting 
several characteristics common to many of 
the databases in SEEmS: 

• although fixed data fields on source tapes 
allow enough space for the maximum possible 
values, most data values require only one or 
two digits 

• many values (particularly zero and missing 
data codes) are repeated in sequence 

The project staff therefore undertook to 
develop a format which takes maximum 
advantage of these characteristics, and yet 
retains the basic objective of hardware 
independence. The details of this format are 
described in the following section. 



3. Compressed Format Specifications 

The SEEDIS. compressed format which was 
developed to satisfy the preceding require
ments is basically a binary coding scheme 
with variable length records. Each data value 
is stored as a variable-length sequence of 8-bit 
bytes, preceded by an initial byte containing a 
4-bit type code and a 4-bit length count. The 
formal currently provides for three basic 
types of data: integers, floating point 
numbers, and character strings. Specific for
mats for each are described in the subsec
tions below. 

3.1. Integer and Fixed Decimal Numbers 

Both integers and fixed point decimal data 
values are handled by a single compressed 
data storage format. The only difference is in 
the data definition file, where the "type" for a 
data element (field) may be defined as either 
decimal or integer, and a scale factor may be 
included for decimal data. If a scale factor is 
indicated, that constant value is multiplied by 
the stored data value at retrieval time. Scale 
factors may have any positive or negative 
value; they may be used to convert units (for 
example feet to meters) at the time data are 
retrieved from archived files. 

For integer and fixed point decimal data 
values (type = i), the first four bits of lhe ini
tial byte contain a code indicating type "i," 
and the second four bits specify a "length 
count," the number of bytes required to store 
the integer in its signed binary representa
tion. The initial byte is followed by the "length 
count" number of bytes containing t.he signed 
binary represenlation of the integer data 
value. The integer value 0 (zero) is stored in a 
special way in the initial byte itself, with a 
"length count" of zero. Exhibit 1 presents a 
schematic representation of this compression 
scheme for integers and values of zero, In 
this schemat.ic represent.ation, the initial byte 
is shown as byte position "I", while the vari
able number of succeeding bytes are labeled 
"1" through 'IN". Thus the tolal number of 
bytes required for a non zero integer data 
value is N + 1, while a zero value requires only 
a single byte of storage. 
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Exhibit 1: Integer Compression 

II 1 2 3 ... NI 
--+--+--+- -+ ... +--+ 
iNI integer value I 
--+- -+- -+- -+ ... +--+ 

byte position 

contents 

I I zero value requires only initial byte 
--+ 
iO I zero stored in length cou.nt 
--+ 

Since many computers cannot handle integers 
larger than can be stored in 32 bits, integers 
larger than that are automatically stored in 
ASCII character string form. The DDF plus the 
access software can automatically translate 
such data to floating point values on retrieval. 

3.2. Floating Point Decimal Numbers 

Floating poinl numbers are stored as two suc
cessive integers representing the exponent 
and mantissa. The first four bits of the initial 
byte of the exponent contain a code type indi
cating "e," and the second four bits contain a 
"length count," the number of bytes required 
to store the exponent in its signed integer 
binary representation. The initial exponent 
byte is followed by "length count" bytes' con
taining the value of the exponent. These are 
followed by the initial byte of the mantissa, 
with four bits indicating type "m" and four 
bits for the "length count" of the mantissa. 
Finally, there are the "length count" bytes 
containing the value of the mantissa itself. 
Exhibit 2 summarizes the compression 
scheme for floating point numbers in 
schematic form. 

Exhibit 2: Floating Point Compression 

I 1 ... PI I 1 2... QI byte position 
--+- -+ ... +- -+- -+- -+- -+ ... +--+ 
ePl exponent IIrQI rmntissa I contents 
- -+- -+ ... +--+--+--+- -+ ... +--+ 

As the schematic representation shows, the 
amount of storage required for floating point 
numbers is 2 + P + Q, where P and Q are the 
number of bytes required to store the 
integers representing the exponent and 
mantissa, respectively. The values of P and Q, 
in turn, are N + 1 and M + 1, respectively, 
where N -is the -the number -of byt-es -required 
to represent the signed integer value of the 
exponent, and M is the number of bytes 
required to represent the signed integer value 



of the mantissa. 

This compressed format for floating point 
numbers is, in general, less efficient than 
standard 32-bit binary representations. It 
requires a minimum of four bytes (32 bits), 
and frequently may require five or six bytes. 
On the other hand, it provides a single 
representation for decimal numbers of virtu
ally unlimited precision. Because of different 
formats and precision limits for single and 
double precision on 32, 60, and 64 bit 
machines, and because most S.EEDIS data are 
integers or fixed decimal numbers, the staff 
decided to trade compression efficiency for 
computer hardware independence. Depending 
upon the data and applications, if large 
amounts of floating point data became the 
rule rather than the exception, it might be 
desirable to add more data types to achieve 
greater compression at the expense of preci
sion. 

Scale factors may be used with the floating 
point decimal format just as with the fixed 
decimal format. 

3.3. Character Strings 

For character string data values (type = a), 
the first four bits of the initial byte contain a 
code indicating type "a," and the second four 
bits contain a "length count," the number of 
bytes required lo store the binary integer 
representation of the length of the character 
string. The initial byte is followed by "length 
count" bytes containing a binary integer, "S," 
and then S bytes containing an ASCII 
representation of the character string itself. 
Character strings are further compressed by 
removing trailing blanks. 

For example, if we wish to store a 30-byte 
character field which contains 6 trailing 
blanks, the initial byte will contain a code for 
type "a" and a value of 1, indicating that the 
length of the character string will be stored in 
the next 1 byte. The second byte will contain 
a binary integer representation of the value 
"24," and that will be followed by 24 bytes of 
the actual character string, represented in 
ASCII. Exhibit 3 shows a schematic represen
tation of the SEEDIS compressed format for 
character strings. 
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Exhibit 3: Character String Compression 

I I 1 2... RI 1 2 ... S I byte position 
- -+- -+- -+ ... +- -+- -+- -+ ... +--+ 
aRl integer "S" I string value I contents 
- -+- -+- -+ ... +- -+--+- -+ ... +--+ 

3.4. Repetition of Data Values 

The' SEEDIS compression scheme is rounded 
out by a fourth data "type" which specifies a 
repeat count (type = r) of the data value 
which follows it. Repetition of data values is 
an extremely important consideration in sta
tistical summary data, which often consist of 
multi-dimensional cross tabulations of micro
data files. For example, 1970 Fourth Count 
census data for each geographic area consist 
of 1178 data items for each of five race 
categories (total. white, black, hispanic-origin, 
other). For a large number of geographic 
areas, all data for the latter three race groups 
are zero or suppressed. Thus, for those three 
racial categories, groups of 1178 data values 
can be replaced by six bytes of actual storage, 
assuming the appropriate arrangement has 
been made for physical contiguity of the data 
(which sometimes requires transposition of 
the data matrix). Exhibit 4 presents a 
schematic representation of the repeat data 
type, using zero as an example of the 
repeated value. The first four bits of the ini
tial byte contain a code indicating typle "r," 
and the second four bits contain a "length 
count," the number of bytes required to store 
the binary integer representation of the 
repeat count W (the number of times the data 
value is repeated). 

Exhibit 4: Repetitive Value Compression 

I I 1 2 3... WI I I byte position 
- -+- -+- -+- -+. .. +- -+--+ 
!WI repeat count I iOl contents 
- -+- -+- -+- -+ ... +- -+--+ 

Since repeated values of zeros and missing 
data codes occur frequently in scientific and 
statistical databases, this type of compression 
is particularly effective. The repeated value 
need not be zero, of course. It can be any of 
the currently recognized data types -- integer, 
floating point, or character string. 



4. A Simple Example 
Using the basic building blocks outlined 
above, we illustrate in this section a brief 
example using fragments of the data 
definition file and a single abbreviated data 
record from the 1980 Census Summary Tape 
File 1 (STF1). 

Exhibit 5 shows a slightly simplified version of 
the global portion of a data definition file plus 
definitions for several individual tabulations. 
This data definition file contains information 
for both the compressed data file and its fixed 
field ASCII equivalent. The various meta-data 
elements appearing in Exhibit 5 are fully 
defined in [MCCA82A]. The meta-data element 
"POSITION" gives the sequential field position 
of the data element within each compressed 
data record, while the corresponding lISTARTlI 

and "LENGTH" meta-data elements give the 
physical position and field length in the 
corresponding fixed-length ASCII CODATA file. 

Exhibit 5: Example Data Definition File 

])\~ = 1980 Census STFl Fragrent 
NIE = 17 
m'AS = 4 
mIIiD..llNi-1H = 40 
TYPE = A 
IE = FIPS. STATE 

STARr = 1 
I.ENTIH = 2 
FOSITICN = 1 

IE = FIPS. CIINIY80 
STARr = 4 
rENrlR = 3 
fDSITHN = 2 

IE = SIUB. Gill 
STARr = 8 
LENrlH,= 33 
FOSITICN = 3 

IE = TAm(1) 
TYFE = I 
STARr = 42 
LENrlH = 9 
FOSITICN = 4 
UNIVERSE = lOO-Percent Count of Persons 
HEIDR =#100-Percent Count of PersonS# 

IE = TAB74 
TYfE = D 
STARr = 52 
LENrlH = 9 
RlSITICN = 5 
SCALE = 0.001 
lNIVER:E = Fani lies 
.HFAJ:}R =#M'rl i an F.a:ni Iy .lncm:E In 1fJ79II 
fiE'A['ER =!K in thousands of dollars)# 

/ 
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IE = TAB12 
STIU:IlRE = NBAY 
DMN3ICN = RACE(12) 
'IYFE = I 
STARr = 61 
Ifl\GIH = 10 
REITICN = 6 
lNIVER)E = Persons 

C'ATErXRf...5EI' = RACE( 12) 
C'A'IEIIRY = Whi te 
CA.'IEIl.EY = Black 
CA'IEIIRY = !trericanJIrlian 
CA'IEIIRY = Eskirrn 
CA'IEIIRY = Aleut 
CA1EURY = Japanese 
C'A'IEIIRY = Chinese 
CA'IF.IIRY = Fi I ipino 
CA'I'Er.IRY = KOrean 
CA'IEIIRY = AsianJndian 
C'A'IEIIRY = Vi etmrrese 
CA.'IEIl.EY = tbwai ian 

EN) illF 

There are 17 data elements in Exhibit 5, 
namely FIPS.STATE, FIPS.COUNTYBO, 
TAB74, and the 12 elements of TAB 12. Note 
that the last DE entry, TAB 12, is a vector (or 
one-dimensional matrix) rather than a simple 
single-valued field. This fact is denoted by the 
meta-data information "STRUCTURE = 
ARRAY." Information about the 12 components 
of TAB12 is located in the category set 
"RACE(12)" named in the "DIMENSION" state
ment. This notation considerably simplifies 
specification of multi-dimensional arrays, 
which frequently occur in scientific and sta
tistical data. It also saves space and process
ing time in handling large data definition files. 
For such array data elements, the "POSITION" 
given is the position of the first cell in the 
array. Each element of an array is stored 
exactly as a simple data element. Retrieval 
software computes the linearized position 
number of other cells from a standard array 
notation such as "TAB51(3, 12,4)". Similarly, 
the "START" for such data elements gives the 
starting location of the first cell, while 
"LENGTH" gives the length of each successive 
cell in the array. 

Exhibit 6 shows a fixed format ASCII represen
tation of a single data record as defined by 
the DDF in exhibit 5. As implied by the 
"RECORD...LENGTH" global meta-data item of 
the DDF, each logical record is comprised of 
five 40-character physical records (lines), with 
20 characters of padding at the end of the last 
line. This is the type of format that consti
tutes the data portion of a CODATA file, and it 
typifies formats used for data export by many 
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agencies such as the U.S. Census Bureau. 
Note how fields are allocated to accommodate 
the largest possible value that might occur in 
that field -- even though most of the actual 
values are much smaller. The indication 
ISCALE=O.OOl" under IDE=TAB74" specifices 
that the stored value (17240), when multiplied 
by the scale factor (0.001) will yield the 
median family income in thousands of dollars 
(17.240). 

Exhibit 6: Flxed-length ASCII Data Record 

byte position in physical record 
10 20 30 40 

++++ 1 ++++ 1 ++++1 ++++ 1 ++++ 1 ++++1 ++++ 1 ++++ 1 
06 003 CA ALPINE 

1097 17240 912 0 
169 0 0 0 

o 0 0 0 
o 5 

Exhibit 7 presents a schematic representation 
of the compressed form of the data record 
from E:xhibit 6. It shows how 200 bytes of ori
ginal data compresses to 38 bytes of output 
data, or 19 percent of the original record size. 

Exhibit 7: Compressed Data Record 

byte position 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ID 

--+- -+--+--+- -+--+--+--+--+--+- -+--+--+- -+--+--+- -+--+--+--+ 
a1206a13003a19CA ALPINE 
--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 

byte position (continued) 
m~~a~~~~~~~~~M~~~~ 

~-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ 
i2 1007 i2 l7:?AO i2 912 iO i2 100 rl 8 iO il 5 
--+- -+--+--+- -+--+--+- -+--+--+- -+--+--+- -+--+--+- -+--+ 

A close comparison of Exhibits 6 and 7 shows 
that space savings occur in four major ways: 
(1) truncation of the area name by removing 
trailing blanks; (2) binary encoding of integer 
and fixed point decimal data (e.g. one byte will 
now hold numbers from -127 to +127, two 
bytes will now hold numbers from -32,767 to 
+32,767, and these can be scaled by an arbi
trary constant in the data definition file for 
decimal fields); (3) run-length encoding of 
repeated values; and (4) elimination of pad
ding at the end of the last physical record. 
The largest single savings comes from the 
repetition of 8 successive zeros, which 
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originally occupied 80 bytes, but takes only 
three bytes in compressed form (byte posi
tions 34-36). 

The next section provides more extensive 
empirical data about the degree of compres
sion achieved over large numbers of records 
for some actual SEEDIS datasets. 

5. Analysis of Compression in SEFDIS 

Previous sections have described SEEDIS 
compression methods and an example of how 
these compression techniques work for a sin
gle data record. This section analyzes the 
results of compression on entire data files and 
data bases. In general, data from public agen
cies such as the U. S. Census Bureau are for
matted into fixed-size records for each file, 
regardless of the contents of the data. Thus, 
for each data base, a single constant number 
of bytes is associated with each record as 
received by LBL. Of interest, therefore, are: 

• The distribution of sizes of output records 
after compression 

• The ratio of compressed record size to origi
nal record size for different databases 

• The cumulative percentage of all records in 
a data base whose compressed size is less 
than some percent of the original size 

• Whether compression correlates with any 
particular data item contained within the data 
record 

Exhibit 8 shows the distribution of records for 
a single data base (1980 Census Summary 
Tape File 3 (STF3) , county records) whose 
compressed size is expressed as a percentage 
of the original size. For this database (and 
level of geography) the median compressed 
record was 25 percent of the size of the origi
nal record. 

Exhibit 9 summarizes these distributions over 
several data bases, showing the cumulative 
percentage of records with compressed size 
less than some fraction of original size. The 
best compression is achieved on the 1980 
Census Equal Employment Opportunity (EEO) 
data file, which contains counts of labor force 
for 514 detailed occupational categories. The 
high degree of compression is due to the large 
number of repeating data values of zero in 
this file. The worst cases are the air quality 
and mortality datasets, which contain a high 
proportion of floating point data. 

Finally, we conjectured that the compression 
might be related to the total population of the 
geographic area corresponding to the data 
record, since the proportion 'of data with 
values of zero or suppression (missing data) 



codes increases for smaller areas. Exhibit 10 
is a scatter plot of compressed record size 
versus the logarithm (base 10) of 1980 total 
population for the STF3 data base. 

A straight-line fit is a remarkably good one, 
which is especially significant because it sug
gests that one can sometimes make quantita
tive estimates of storage requirements for 
each record or set of records based upon a 
single value conlained within the dala. 

Our quantitative exploration of compression 
results is continuing and we hope to use these 
results in developing further analytic models 
of compression. 

Exhibit 8: Size of Compressed Records 

Exhibit 9: Compression in Selected Data Files 

C\UILulat've Percent 0 Count Level Records 
Fraction of 

Onl!inal EEO STFS COB STFI ~ MOR 
a to 0% 06 0 0 0 -a 0 
o to 10% 93 0 0 0 0 0 
10to 10% .98 0 0 0 0 0 
10 to 2O? 100 3 1 0 0 0 
20 to 25? ~OO ~ 5 -.l 2 0 
25to 3D? 100 92 94 18 7 0 
30 to 35? 100 100 100 87 20 1 
30 to 4O? 100 100 100 100 35 3 
40 to 45? 100 100 100 100 46 8 

35 to 00? 100 100 100 100 59 15 
00 to 55? 100 100 100 100 73 28 
00 to 60? 100 100 100 100 81 49 
60 to 60? 100 100 100 100 88 64 
65to 70? 100 100 100 100 92 75 
70 to 75? 100 100 100 100 95 85 
75 to BO? 100 100 100 100 96 92 
BO to B5? 100 100 100 100 99 97 
65 to 90? 100 100 100 100 99 100 
90 to 95? 100 100 100 100 100 100 
95 to 100? 100 100 100 100 100 100 
Mean? 5 25 27 32 47 61 

EEO - 1960 Census Equal Employment Opportunity 
STF3 -.19BO Census Summary Tape File 3 
CDB - i94D-1977 City County Data Book 
STF1 - 1980 Census Swrunary Tape File 1 
AQ - 1974-1976 Air Quality 
MOR - 1966-1972 Age-Adjusted Mortality 

Exhibit 10: Compressed Size ft. Population 

...... r 0' 8u\H 
oa "". STr3 Coopro ..... 

Rocorel 

1.8 

+ 

2.' 3.' 4.8 s .• 6.' 
log (baa. 181 0' 19S8 \0\.1 popula"10ft 
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7.' 



6. Access Methods for Compressed Data 

In the simplest case, a SEEDIS compressed 
dataset consists of four physical files. A 
dataset known as MYFILE, for example, might 
consist of files having the following names: 

MYFILE.DAT: Compressed binary data file (DF) 

MYFILE.NDX: Index file containing pointers to 
individual records (entities) in MYFILE.DAT 

MYFILE.DDF: ASCII data definition file (DDF) 
describing individual named attributes (data 
elements) in the DF 

MYFILE.DDX: Index file containing pointers 
(sequence numbers) corresponding to each 
data elemenl in lhe DDF. 

The multi-file scheme permits considerable 
flexibility in the way data are stored and 
accessed. For example, large county-level 
data sets are normally stored with one DAT 
and its corresponding NDX file for each state, 
e.g.: 

S01.DAT: Alabama DF 
S01.NDX: Index for S01.DAT 
S02.DAT: Alaska DF 
S02.NDX: Index for S02.DAT 
MYFILE.DDF: Same as before 
MYFILE.DDX: Same as before 

Corrections, if necessary, can be easily made 
to one state at a time. Furthermore, not all 
states need to be stored on the same disk 
pack or even on the same node (host com
puter). Aulomatic schemes in SEEDIS 
[MERR83] provide for selective caching of only 
those files actually required by the user. 
Because the meta-data (DDF and DnX) are 
physically separate from the data files (DAT 
and NDX), meta-data elements (for example 
data element labels or scale factors) can be 
conveniently changed without the need to 
recompress the data. 

6.1. Record Access Mechanisms 

As stated above, the NDX file provides pointers 
to the individual records (entities) of the 
compressed SEEDIS data file (DAT file). In the 
example above, the file SO l.NDX is itself a sim
ple CODATA file containing four dala elements 
for each county in Alabama: the FIPS (Federal 
Information Processing System) state code, 
the FIPS county code, the size in bytes of the 
compressed record for that county, and the 
physical block location of the start of that 
county in the file SO 1. DAT. Now suppose that 
at some future date the F'IPS county number
ing scheme for Alabama is changed to 
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accommodate the splitting of a county or the 
combination of two present counties. Without 
modifying the file S01.DAT, one can easily 
modify S01.NDX so that the existing data can 
be retrieved via the revised county codes. 
New county codes not corresponding to exist
ing data are simply omitted from the new NDX 
file, resulting in a missing data indication 
when data are extracted. Because the NDX 
files are much smaller than the compressed 
DAT files, multiple sets of NDX files 
corresponding to various county definitions 
can easily be created, all pointing into a single 
set of large DAT files. Entities (counties) not 
in the original DAT files can be left missing, or 
can be created by aggregation or disaggrega
tion and appended to the original DAT file. 
Each set of NDX files provides pointers to a 
complete and non-oyerJapping set of entities, 
for example 1960 FIPS counties, 1980 FIPS 
counties, etc., with only a small increase in 
stored data. 

6.2. Intra-Record Access 

When retrieving a particular data value from a 
particular record, the access software must 
search from the beginning of the record to 
the particular data value. Thus, although 
some time can be saved by computing intra
record positions over repeated data items, 
access time is generally linear, with the last 
data item in a record requiring the maximum 
access time. This has not posed severe prob
lems for SEEDIS data records containing up to 
1000 data it.ems but it could for much larger 
data records. The 1980 Census EEO (Equal 
Employment Opportunity) database, for 
example, contains over 12,000 items per 
record. Access time for some data elements 
will be slow if the current scheme is nol 
enhanced. 

Recognition of t.he limitations of linear access 
has provided impetus for additional research 
on compression methods. This research has 
lead to a variety of general results [EGGE 81]' 
In the modified approach, which has yet to be 
incorporated in SEEDIS, all counts are 
removed from the data file and stored in a 
separate header. The counts are cumulative, 
allowing the header to be searched in loga
rithmic time. The header is used to form the 
base level of a B-tree index into the data 
record, which further improves the access 
time by increasing the rate of the logarithmic 
search. 

An even simpler scheme involving less storage 
overhead would be to include in the NDX file 
not only the starting block location of data 
element 1 in the DAT file record, but also (for 



example) the starting block location of data 
element number 1001, data elemeJ).t number 
2001, etc. Considerable time would be saved 
in retrieving from large files like the 1980 
Census EEO file. 

6.3. Other Access Considerations 

A minor problem which arose during software 
implementation 'V!as the fact that most 
machines store data in contiguous byte 
sequential format, but DEC equipment (PDP-
11 and VAX) stores numeric data in inverted 
order within each word of the machine. This 
fact has been noted in articles on portable 
software [NEAL 78]. Thus the VAX implemen
tation of the access software had to be slightly 
different from what it might be on IBM or 
other hardware. 

One other compromise to portability was 
made within the data records themselves. In 
order to efficiently use the FORTRAN language 
for accessing variable-length data records ·on 
CDC machines, the beginning of each record 
contains the CDC word count as well as the 
total length of the record in bytes. 

7. Current and Future Developments 

During the past two years a major develop
ment effor~ in SEEDIS has been the design of 
extensions to meta-data structures for more 
efficient processing of large summary data
bases lMCCA82A, MCCA82B]. These enhance~ 
ments include: 

• matrix data elements 

• category set specifications 

• comprehensive handling of missing data 

We are currently designing an enhanced 
compressed interchange file wherein meta
data as well as data will be stored in the same 
binary compressed format. Compressed files 
will replace CODATA files as the standard for
mat for internal interchange of data between 
SEEDIS modules, in order to provide for more 
efficient data transfer and conversion. This 
will be an upwardly compatible enhancement 
to the original compressed data format, 
adding new compressed data types for 
specification of arrays, recursive hierarchical 
structures, multiply occurring data values, 
multi-valued missing data codes, etc. 

8. Conclusions 

With minor modifications and compromises, 
the computer-independent compressed data 
storage format described above has remained 
the SEEDIS standard format for six years. We 

are currently adding the 1980 Census to the 
archive, bringing it from 3 to 6 billion data 
values within a three-year period. We are able 
to access and decompress on VAX computers 
data which were archived on tape by CDC com
puters in 1977. 

These compression methods have been very 
successful from the standpoint of reduction in 

. storage space. Most SEEDIS files occupy from 
twenty to fifty percent of their original space. 
Compression of integer and fixed decimal 
fields to variable-length sequences of bytes, 
and run-length encoding of repeated values, 
have accounted for the majority of space 
saved. 

Although the methods currently used to 
access SEEDIS· compressed data files have 
been adequate for retrieval of data for 
specified geographic areas, they are not 
efficient for queries based on data values. 
Analysis indicates that changes in access 
methods as well as changes in the compres
sion scheme itself could considerably improve 
performance for such queries. 

Work is currently under way to implement 
additional compression techniques, different 
access methods, and compressed data types 
to accommodate meta-data (e.g., data 
description files) as well as data. The SEEDIS 
project plans to use the compressed data for
mat as a medium for internal exchange as well 
as for archival storage, in order to improve 
data transmission efficiency between applica-
tion modules. . 
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ABSTRACT 

Index encoding is a compression technique that involves the substitution of numeric codes for data values. Current 
methods of index encoding are suited only for attributes whose underlying domains are small or static. In this paper, 
general methods to encode dynamic domains are proposed and analyzed. A practical methodology for their applica
tion is presented. We also compare and contrast our methods with another that is now being used in a commercial file 
management system. 

1. INTRODUCTION 
Scientific and Statistical Databases (SDDs) is a 

generic name given to databases that are routinely subjected 
to statistical analyses. SDDs are prevalent in scientific, socio
economic, and business applications. Examples are geologic 
measurements and observations recorded over a period of 
time, demographic databases such as the U.S. census, and 
husiness ledgers. 

SDDs differ from 'corporate' or nonstatistical databases 
in a number of different ways [HaRi77), ITHC79), [Brag81), 
[Gey81], [ChSh81J, [BBD82J, [Sh082j. SDDs usually have a 
significant numerical content with tens or hundreds of at
tributes per file. Queries tend to be ad hoc and statistical in 
nature, requiring the examination, sorting, and summariza
tion of selected attribute data of all records in a file. Record 
deletions and modifications are relatively infrequent, so SDDs 
tend to be either static or growing. Because of these 
peculiarities, special techniques are often used to store and 
process SDDs. Index encoding is one of them. 

Index encoding is a data compression technique that is 
used to some extent in almost all SDDs. Commercial and 
specialized database management systems, such as RAPID 
[THC79J, IRIS [Alsb75j, and CREATABASE [NDX8Ij, have 
facilities to support it. Index encoding involves the use of 
numeric codes to represent data values. The idea is to iden
tify the set of all distinct \"alues that an attribute assumes in 
a data file. The elements of this set are sorted lexically and 
the index position at which an element appears becomes its 
index code. The data file is encoded by replacing attribute 
values with their corresponding index codes. Since the 
storage requirements of codes are less than their data value 
counterparts, a sizable compression often results. In general, 
if an attribute assumes D distinct values, the minimum num
ber of bits needed to represent an index code is rlog2D 1. 

A dictionary is maintained for each attribute in order 
to translate between index codes and data values. For ex
ample, a dict,ionary for the attribute STATE is shown in 
Table L This dictionary enables the 14 byte string "North 
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Carolina" (or any other state name) to be encoded into 
pog2

501 = 6 bits. 

o Alabama 25 Montana 
1 Alaska 26 Nebraska 
2 Arizona 27 Nevada 
3 Arkansas 28 Nev Hampshire 
4 California 29 Nev Jersey 
5 Colorado 30 Nev Mexico 
6 Connecticut 31 Nev York 
7 Dclavare 32 North Carolina 
8 Florida 33 North Dakota 
9 Georgia 34 Ohio 

10 Hawaii 35 Oklahoma 
11 Idaho 36 Oregon 
12 IllinOis 37 Pennsylvania 
13 Indiana 38 Rhode Island 
14 lova 39 South Carolina 
15 Kansas 40 South Dakota 
16 Kentucky 41 Tennessee 
17 Louisiana 42 Texas 
18 Maine 43 Utah 
19 l1aryland 44 Vermont 
20 Massachusetts 45 Virginia 
21 Michigan 46 Washington 
22 Minnesota 47 West Virginia 
23 Mississippi 48 Wisconsin 
24 Missouri 49 Wyoming 

Table 1. A Dictionary for STATE 

An important feature of index encoding is the identity 
of the index order and lexical order of (index code, data 
value) pairs. Because of this identity, the costly process of 
translating index codes to data values can be eliminated 
during the data searching, sorting, and processing phases of 
most file operations; this enables operations to be performed 
directly and efficiently on compressed data [Alsb75j. 

As an example, suppose a compressed file is to be 
sorted lexically on STATE names. One way to do this would 
be to expand the STATE field Cor each compressed record, 
and th~n sort the expanded file. A more efficient way would 
be to sort the compressed file on compressed STATE codes, 
and then refer to the dictionary in Table 1 Cor expansion. 

An obvious problem arises with index encoding when a 
new data value is added to an attribute's domain; index 
codes must be reassigned and the data file must be recoded. 



Clearly, if data values are added frequently, the cost over
head of recoding becomes significant. An obvious remedy to' 
this probkm is not to assign consecutive index codes to at
tribute values. For example, if (A, E, R, Z) is the domain of 
an attribute, one might assign the codes (0, 4, 8, 12) rather 
than (0, 1, 2, 3). Because the codes are nonconsecutive, new 
data values can be added to the domain and be assigned 
unused index codes in a way that preserves the lexical and 
index ordering identity. The data value 'C', for example, 
could be added to the above domain and assigned index code 
'2' without altering previously assigned index codes or in
validating the lexical and index ordering identity. The in
tended benefit of this scheme is achieved; a limited number 
of domain insertions can be accommodated before the dic
tionary and data file must be recoded. The penalty that is 
paid for a reduced recoding frequency is slightly longer index 
codes. 

The initial assignment of index codes and the method 
by which unused codes are selected and assigned to new data 
values influences the overall performance of generalized index 
encoding schemes. In this paper, we will present and analyze 
two algorithms that index encode dynamic domains. A prac
tical methodology for their application is proposed. We will 
also compare and contrast our methods with another method 
that is presently in use. 

2. ALGORITHMS TO INDEX 
ENCODE DyNAMIC DOMAINS 

Suppose a domain has D data values initially. Let AD ... 
AD.1 be the lexically ordered sequence of these values, where 
the lowest value is Ao and the highest is AD•l

3 It is expected 
that subsequent record insertions and modifications will 
cause new data values to be added to the domain. 

Index codes can be assigned to Ao ... AD-l in the fol

lowing way. Data value Ai is given the index code i . 2k, 

where k is a nonnegative integer. 2k is a scaling factor which 
allows data values to be assigned nonconsecutive . (but 
uniformly spaced) index codes. For example, the codes for 

Ao, AI' '" AD.1 would be 0, 8, ... (D-1) . 23 if k=3. Whenever 
k>O, unused index codes will be present. These codes will be 
given to subsequent domain insertions. By assigning codes in 
this manner, the number of bits needed to represent an index 
code is pog2Dl + k. 

We will consider two algorithms for assigning unused 
index codes to domain insertions. The simplest is the true 
order algorithm. It works by assigning a new domain value 
an unused index code whose numerical value is the rounded 
average of the index codes of the data value's lexical 
predecessor and successor. 

More formally, let V be a new domain value. Let V' 
and V" be data values in the dictionary which are the lexical 
predecessor and suecessor of V. Let C' and C· be their index 
codes. The index code given to V is C = HC'+C")/2]. Nor-

307 

mally C is an unused code, but there is one exception. If 
C=C·, which occurs when C"=C'+ 1, there is no unused 
code that can be assigned to V that preserves the lexical and 
index order identity or dictionary entries. In this case, the 
dictionary and data file must be recoded in order to accom
modate V. 

Figure 1 illustrates the true order algorithm from the 
time a dictionary was created to the time at which it needs 
to be recoded. In this Figure, D=4 and k=2. 

OA OA OA OA 
4 E 4 E 4 E 4 E recode 
8 R 6 M 5 H 5 H 

12 Z 8 R 6 M 6 M is 
12 Z 8 R 8 R 

12 Z 10 W triggered 
12 Z 

la. lb. lc. Id. 
Initial . Insert Insert Insert 

Dictionary --M- !! -r 
Note: Index codes are stored as 4-bit 

numbers 

le. 
Insert 
--L-

Domain values are single characters 

Figure 1. Dictionary Insertions Using 
the True Order Algorithm 

As a general rule, the true order algorithm only allows 
a certain number of domain insertions to be made before a 
recoding is triggered. Another algorithm, called the interval 
order' algorithm, causes recoding to be delayed to the latest 
possible time. However, it is more complicated. To under
stand how it works, again let Ao ... AD_1 be the sorted se
quence of values that define a domain initially. Observe that 
each pair of consecutive initial values defines an interval of 
domain values. That is, pair (Ai' Ai+l ) defines the value in
terval starting with Ai and ending with Ai+l . These inter
vals are fixed and do not change with subsequent domain in
sertions. Once index codes a.re assigned to Ao ... AD•1, a dis
tinct interval of unused index codes can be identified with 
each value interval. For example, if (A, E, R, Z) are the in
itial values of a domain and (0, 8, 16, 24) are their assigned 
index codes, value interval (A, E) is identified with the cod~ 
interval (0, 8). When a domain value is to be inserted, the 
interval order algorithm finds the corresponding value inter
val and. assigns the new domain value the first unused index 
code in the corresponding code interval. In general, the lex
ical and index order of dictionary entries is not preserved. 

More formally, let Gi be the number of domain inser
tions whose values fall in the interval (Ai' Ai+l ). Ci is the 
index code for Ai' A new value V which satisfies Ai < V < 
Ai+! is assigned the index code C = Ci + Gi + 1. Normally 
C is an unused index code, but there is olle exception. If C 
= CHI' which occurs when 2k_l values have already been 
inserted into the interval, there is no unused code that can 
be assigned to V. In this case, the dictionary and data file 
must be recoded in order to accommodate V.· 

Figure 2 illustrates the interval order algorithm from 



the time a dictionary was created to the time at which it> 
needs to be recoded. In this Figure, D=4 and K=2. Because 
of the special role of the initial domain values, they are in
dicated by stars '.'. 

o A* 0 A* 0 A* 
4 E* 4 E* 4 E* 
8 R* 5 M 5 M 

12 Z* 8 R* 6 H 
12 Z* 8 R* 

12 Z* 

2a. 2b. 
InITial Insert 

Dictionary ~ 

0 A* 0 A* 
4 E* 4 E* 
5 M 5 M 
6 H 6 H 
8 R* 7 L 
9 W 8 R 

12 Z* 9 W 
12 Z* 

2d. 2e. 
Insert Insert 
--W- --L-

2c. 
Insert 
--H-

recode 

is 

triggered 

2f. 
Insert 
--G-

Note: Index codes are stored as 4-bit 
numbers 
Domain values are single characters 
Original domain values are indica
ted by stars '*' 

Figure 2. Dictionary Insertions Using 
the Interval Order Algorithm 

As mentioned before, the interval order algorithm does 
not preserve the index and lexical order identity of dictionary 
entries. It does, however, preserve a ranking of domain 
values by their assignment to value intervals. That is, all 
domain values in the interval (Ai' Ai+1) have index codes 

that are strictly less than the index codes assigned to domain 
values in an interval (Ai' Aj+l) where i < j. (Hence, data 

values are ranked according to an "interval order.") Only 
within the same interval does the index order differ from the 
lexical order. 

Whenever a difference exists between the index and 
lexical order, dictionary references will need to be made in 
order to process certain comparison and sorting operations 
on compressed files. Such additional complications, however, 
can be kept to a minimum. In processing an inequality of 
the form (Attribute > V), for example, only the dictionary 
entries of other values that belong to the same interval as V 
need be kept in main memory; all other comparisons can be 
made using index codes. The number of such entries that are 
needed at anyone time is 2k. As we will see in the following 
section, typical values of k will range from 2 to 8, so the 
storage requirements for these entries is minimal. Similar 
minor alterations would be needed to handle other opera
tions. 

The oyerall performance of the true order and interval 
'"der algorithms depends, in part, on the value k. In the (01-
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lowing section, we analyze these algorithms. The results of 
the analysis provide a guideline for selecting an appropriate 
value for k. 

3. ALGORITHM ANALYSIS 
The length of an index code assigned by the true order 

and interval order algorithms is [log2D1 + k bits. We will 

refer to the most significant [log2D 1 bits as the baBe of an 

index code; the least significant k bits will be called the 
extension. The objective of our analysis is to determine an 
appropriate value for k. 

Consider any value interval. Let T k(l) be the 

probability that I values can be ~nserted into the interval 
without triggering a recode, given that index codes have k
bit extensions. For the interval order algorithm, T k(I) has a 
particularly simple form: 

-- { 0

1 
Tt(I) 

if 0 ~ I < 21.: 
(1) 

otherwise 

T k(l) for the true order algorithm is more complicated. Each 

time a new value is inserted, the true order algorithm 
generates an unused code by taking the midpoint of an inter
val of index codes. The history of interval splitting caused by 
a sequence of insertions can be modeled by the binary tree 
that results from these insertions (see Figure 3). The height 
of this tree is related to the function T k(l) in the following 
way. When a new code is generated, the minimum number of 
bits that are necessary to represent its extension is precisely 
one more than that which is needed to represent t,he exten
'sions of the index codes from which it was derived. This 
means that the number of levels in a binary tree resulting 
from a: sequence of insertions equals the minimum number of 
e:",tension bits that are needed to encode this sequence. 
Figure 3 illustrates these relationships.s 

Accordingly, T k(l) for the true order algorithm can be 

int~rpreted as the probability that a binary tree of I nodes 
'has k or fewer levels. Assuming that all possible domain 
values are equally likely to be inserted, the following well
studied recurrence relation defines T k(I): 

1 1-1 
Tt(I) = E Tt - 1 (j) . Tt - 1 (I-1-j) 

I j=O 

{

if I = 0 or 
T 1 (I) = 

o otherwise 

(2) 

No closed. fO,rm solution to eqn. (2) is known (see IBKRi2J, 
IFLOd81]). However, this does not present a problem since 
values of T k(l) can be obtained easily by iteration. (As we 

will see shortly, practical values for k do not exceed 8.) 

Suppose a dictionary initially contains D distinct 
values. Let Rk(D,I) be the probability that the dictionary will 

be able to accommodate I domain insertions without trigger
ing a ,recode, given that index codes have k-bit extensions. 

• 



Level 1 

IN 
0 
\0 Level 2 

Level 3 

Level 4 

Binary tree resulting from the Binary Index Code Minimum fI of 
insertion sequence T.E.S.C.W.I I-bit 4-bit 
into interval (A.Z). data value base extension 

A 0 0000 
Z 1 0000 

~ T 0 1000 

~ E 0 0100 
W 0 1100 

C 0 0010 
S 0 0110 

I 0 0101 

Figure 3. Correspondence of the Levels of a Binary Tree and the 

Minimum Number of Extension Bits per Index Code 

Extens ion bi ts 
per Index Code 

0 
0 

1 

2 
2 

3 
3 

4 



Clearly, when a dictionary contains only the lowest and 
highest possible domain values: 

(3a) 

To determine Rk for D > 2, let Ao ... AD-l be the or
dered sequence that defines the initial domain values of a 
dictionary. Without loss of generality, suppose D is odd 
where D = 2N + 1 for some integer N. Let H(D,I,j) be the 
probability that j of I insertions will have values which fall 
within the interval (Ao ... AN)' i.e., the first half of the 
dictionary.6 Assuming domain insertions have values that are 
randomly chosen without replacement from a large and 
static, but not necessarily lexicographically uniform, collec
tion of values, H(D,I,j) is found to be:7 

2N-2 I 
(2N -1) . ( ) . ( ) 

N-l 
H(D,I,j) = ---------------------------

2N-2+I 
(2N - 1 + I) . ( 

N-l+j 

where (~) is a binomial coefficient and, again, D = 2N + 1. 

A derivation of H(D,I,j) is given in the Appendix. 

Doubling a dictionary in size and considering all pos
sible sequences of I insertions yields a general recurrence rela
tion for Rk : 

I 
Rk (2D-l.I) = E Rk(D.j) . RIt(D.I-j) . H(2D-l.I.j) 

j=O 
(3b) 

The term 2D-l arises since each 'half' of a dictionary of 2D-l ' 
values contains D values, and one value (namely the Dth 
value) is found in both halves. 

The probability P k(D ,I) that a recode will occur orl'the 
ith insertion into a dictionary is: . 

Pk(D.I) = (4) 
{ 

0 if I= 0 

. Rk(D.I) - Rk (D.I+1), otherwise 

The expected number oC insertions a dictionary can accom- . 
mod ate before a recode Ek(D), and the standard deviation of 
this quantity Sk(D) follow from eqn. (4): 

Ek(D) = E I' Pt(D.I) 
PO 

SkCD) = E I 2 . PtCD.I) - EiCD) )1/2 

I>O 

No closed form solution to eqn. (4) is known. Values 
for Rk(D,I) can be obtained in a straightforward manner by 
iterating equation (3b). This, as it turns out, is practical only 
if I is small. For large I, values of Rk can be approximated 
by calculating Rk(D,i) only for selected values of i; all other 
values are obtained by linear interpolation. Because Rk is a 
smooth and slowly changing cumulative probability function, 
this approach to approximating Rk was found to work well. 
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The results of selected computations are listed in 
Tables 2 and 3. The entries of these tables are indexed by 
D, the initial size of the dictionary, and k, the number of ex
tension bits per index code. The values listed in the tables 
are the expected growth and standard deviation expressed as 
a percentage of the initial dictionary size: 

~CP)/D 

%St(D) = 100' St(D)/P 

Note that values for some entries could not be determined 
because the time required for' their computation was exces
sive. 

A number of conclusions can be drawn from these 
tables. It is not difficult to see that the expected dictionary 
growth before recodin'g (%E) 'for the interval order algorithm 
is uniformly better than that for the true order algorithm. 
This in itself is not surprising, for only in the best possible 
circumstances (i.e., for certain input sequences) will the true 
order algorithm be able to :accommodate dictionary growth 
as the interval order algorithm. What is important is that 
the performance of the interval order algorithm provides a 
theoretical upper bound on the expected case performance of 
any algorithm which maintains the index order and lexical 
order identity of dictionary entries.s For example, if inser
tions to a domain were I?atched (which can occur if record 
insertions are batched), it is possible to order these insertions 
so that each could be assigned an index code with the min
imum number of extension bits. While such optimization 

.. ~ould significantly complicate an insertion algorithm, the 
resulting gain in performance would never surpass that of the 
interval order algorithm. 

•. The primary objective of introducing extension bits to 
index codes is to reduce the frequency of recoding. Providing 
that domain insertions are random, it is clear in Tables 2 
and 3, t~at allocating just aCew bits achieves this objective. 
For example, if a dictionary initially contains 8193 values 
,and 2-bit extensions are used, the dictionary would be ex
pected to grow by 5.3% if the true order algorithm is used, 
or. by 10.5% if the interval order algorithm is used. This ef-

.' fectively reduces the expected frequency of recoding to every 
434 and 860 insertions, respectively. (The corresponding 
standard deviations of 2% and 3.3% indicate that the ex
pected growth rates are not g\laranteed; a rather wide range 
of possible growth rates centered about these means should 
be expected.) Except for highly dynamic domains, recoding 
at these rates should not pose a significant problem. Even 
higher percentage growth rates can be expected for larger 
k. If four extension bits were allocated, for example, the cor
responding increases in expected dictionary growth are 27% 

. and 114.1%. 



k=2 !=1 k=2 k=4 

D %E %s %E %s !2 %E %s %E %s 

2 233.3 47.1 653.3 183.1 2 300.0 0.0 1500.0 0.0 
3 156.3 51.6 437.3 147.9 3 203.8 53.8 1034.4 223.2 
5 109.0 41.5 307.5 110.7 5 144.6 .;";'" .3 753.8 197.9 
9 78.1 31.4 224.8 81.5 9 105.9 37.2 574.0 157.7 

17 57.2 23.4 169.4 60.3 17 79.5 28.5 453.9 122.8 
33 42.5 17.4 130.8 45.1 33 60.8 21.7 367.8 95.5 
65 31.9 13.0 103.1 34.3 65 47.3 '16.1 305.9 74.9 

129 24.3 9.7 82.6 26.4 129 37.2 12.8 259.4 59.2 
257 18.6 7.4 67.1 20.7 257 29.6 10.0 222.9 49.2 
513 14.3 5.6 55.2 16.4 513 23.8 7.8 194.0 41.3 

1025 11.1 4.3 46.8 13.0 1025 19.3 6.2 170.1 36.0 
2049 8.7 3.3 38.2 10.7 2049 15.7 5.0 149.7 33.0 
4097 6.8 2.6 32.0 8.9 4097 12.8 .4.0 131.4 32.1 
8193 5.3 2.0 27.0 7.4 8193 10.5 3.3 114.1 32.8 

16386 4.1 1.6 22.7 6.4 16385 8.6 2.7 96.5 34.4 
32769 3.2 1.2 19.1 5.6 32769 7.1 2.3 77.5 35.5 
65537 2.5 1.0 16.0 6.1 65537 5.7 2.0 57.3 33.8 

131073 2.0 0.8 13.1 4.8 

E.§. k=8 
k=6 k=8 

D %E %s %E %s 
D %E %s %E %s 

2 6300.0 0.0 25600.0 0.0 
2 1401.9 452.2 2713.1 957.0 3 4361.2 894.7 17669.6 3579.1 
3 933.7 333.0 1796.5 673.5 5 3199.7 793.6 12985.3 3174.4 
6 655.6 239.4 1255.9 472.5 9 2460.2 632.6 10012.3 2504.9 
9 480.4 172.5 918.0 335.2 17 1965.0 490.8 7999.9 1977.4 

17 364.5 126.0 695.9 242.1 33 1618.6 378.0 6556.7 1637.9 
33 284.4 93.6 643.6 178.4 66 1367.4 286.4 6475.6 1400.6 
65 227.2 70.9 435.1 134.2 129 1167.6 256.7 4600.1 1284.3 

129 184.9 64.7 355.4 102.9 257 1011 .5 226.7 3828.5 1256.7 
267 162.8 42.9 295.0 79.8 513 880.4 212.7 3087.1 1262.8 
513 127.9 34.0 247.0 66.1 1025 761.4 213.7 2333.8 1225.1 

1025 107.7 28.6 208.7 65.7 2049 644.1 223.8 1697.1 1066.4 
2049 91.3 24.2 177.0 48.6 4097 519.9 232.6 
4097 77.6 21.1 149.6 44.4 8193 386.2 225.5 
8193 66.7 19.1 124.8 42.3 16386 

16385 66.0 18.0 101.0 41.1 32769 
32769 44.9 17.4 77.7 39.3 65537 
65537 35.1 16.7 64.-9 34.9 

131073 25.6 16.2 

Legend: D initial number of entries in Legend: D initial number of entries in 
dictionary dictionary 

k number of extension bits per k number of extensibn bits per 
index code index code 

%E expected growth of dictionary %E expected. growth of dictionary 
before recoding given as a before recoding given as a 
percentage of D percentage of D 

%s standard deviation of expected %s standard deviation of expected 
growth as a percentage of D growth as a percentage of D 

Table 2. Performance Measures of the Table 3. Performance Measures of the 
True Order Algorithm Interval Order Algorithm 
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As a suggested guideline Cor choosing a value for k, two 
to four bit extensions should be adequate for most purposes 
(again provided that domain insertions are random). Exten
sions oC these lengths can be obtained easily by rounding the 
number oC bits in the base oC an index code to the nearest 
byte or half byte boundary. (Doing so allows one to take 
advantage of a CPU's byte addressing capability.) More than 
four bits may be allocated per extension. However, Tables 2 

and 3 suggest that eight bits is a practical upper. 

Our analysis has been based on the assumption that in
sertions were random. In real files, domain insertions need 
not be random. Nonrandom insertions would make the 
predictions in Tables 2 and 3 optimistic; clustered domain in
sertions would likely cause recodes to be triggered more fre
quently. To test the effect of possible clustering, some experi
ments on real files were conducted. It was observed that a 
minimal amount of clustering does occur naturally, but the 
observed deviation oC measured values from theoretical 
predictions was only a few percent. For this reason, it is 
believed that Tables 2 and 3 provide reasonable guidelines 

. for the selection of k. 

A final observation concerns an unexpected trend in 
Tables 2 and 3. Namely, the expected Cactor by which large 
dictionaries grow beCore t·hey need to be recoded is less than 
that for smaller dictionaries, i.e., %E declines with increasing 
D. To explain this trend, it is shown in the Appendix that 
the probability Q(D,I,j) that a value interval will receive j of 
I insertions given that D values were in the dictionary in
itially is: 

I 
(D - 2) . ( 

Q(D~I,j) = -----------------------
D - 2 + I 

(j + 1) . ( 
+ 1 

Although it is difficult to prove analytically, it is easy to 
show by example that the value oC Q is essentially constant 
for all dictionaries that have grown by the same Cactor (i.e., 
the same liD ratio): 

Q ! i Q(D,I,l) Q(10D,10I,l) Q(100D,100I,U 

256 50 4 .00056 .00059 .00060 
256 300 4 .03935 .03906 .03903 
512 256 7 .00030 .00030 .00030 
512 1024 7 .01959 .01952 .01951 

2048 512 5 .00025 .00026 .00026 
2048 8192 5 .06556 .06554 .06554 

From the above rule it is reasonable to define a growth fac
tor r and a function Q'(r,j) such that Q'(r,j) ~ Q(D,I,j) and r 

= liD. 

The relationship between %E and D can now be under
stood. As a general rule, if an interval experiences a large 
number oC insertions, the probability that a rec,?de will be 
triggered is large. The expected number oC intervals with j 
insertions is (D-I) . Q '( r ,j). As D increases, there is a greater 
expectation that one or more intervals with j values will ap-
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pear. Consequently, the expected Cactor by which large dic
tionaries will grow before they need to be recoded is less than 
that for smaller dictionaries, i.e., %E declines with increasing 
D. 

4. COMPARISON WITH ANOTHER 
METHOD 

An alternative approach to index encoding dynamic 
domains is employed by CREATABASE [NDX811. [BrT076J. 
The basic idea (not necessarily an exact description) is to as
sign index codes incrementally, ignoring the lexical and index 
ordering identity oC dictionary entries. That is, if there are N 
values in a domain, the next domain insertion will be as
signed index code N. Initially an attribute wiII have D 
domain values; pog201 bits are allocated per index code. 
Domain recoding occurs only aCter I insertions, where the 
number of bits needed to represent D-t I distinct index codes 
exceeds rlog201 bits. This does not happen very often. 

CREAT ABASE performs operations directly on com
pressed files. Some operations, such as file sorting and 
processing range queries, require the identity oC the lexical 
order and index order oC (data value, index code) pairs. In 
such cases, a surrogate index code is assigned to each data 
value. This surrogate coding supports the lexical and index 
ordering identity. As compressed records are processed, sur
rogate .codes are substituted Cor the index codes that were 
originally assigned. (Note: the compressed Cile is not updated 
with surrogate codes; substitution occurs only during record 
processing and is temporary.) In this way, CREATABASE 
index encodes dynamic domains. 

This method does have its limitations. As long as the 
dictionaries are small enough to be main memory resident, 
this scheme works very well. The constant dictionary 
references that are needed for surrogate substitution can be 
done quickly with little overhead. However, if a domain con
tains many data values, which happens when an attribute is 
an identiCier or primary key, it does not work as well. The 
dictionary references caused by surrogate substitution would 
create an enormous overhead. (CREATABASE, in fact, does 
not encode such domains Cor this reason.) 

Our method of index encoding should exhibit a com
parable perCormance when dictionaries are main memory 
resident. It might be less efCicient because oC longer index 
codes; it might be more eCCicient because code substitutions 
are unnecessary. However, it is primarily Cor this latter 
reason that our method should be more eCficient when large 
domains are encoded. Another reason is given below. 

When a dictionary is large, it must be organized on 
secondary storage by a file structure. An appropriate and 
practical Cile structure Cor eCCiciently maintaining and query
ing dynamic directories has been proposed by Eggers, Olken, 
and Shoshani [EOS81J. This is a slightly modified B+ tree 
structure which accommodates dictionary growth by node 
splitting and allows records (i.e:, dictionary entries) to be ac-



cessed efficiently given either their data values or index 
codes. (This is possible because of the coincidence of the in
dex and lexical orderings.) Thus, a single and simple direc
tory structure suffices. If the index encoding method of 
CREAT ABASE were to be applied to a large domain, several 
directory structures would probably need to be maintained. 
One would be needed t.o quickly translate index codes into 
data values, another for translating data values into index 
codes, and possibly a third to support surrogate codes. 

5. CONCLD.SIONS 
Practical techniques to index encode attributes with 

dynamic domains have been proposed and analyzed. The 
goal of these techniql)es is to reduce the frequency of recod
ing whenever new data values are added to an attribute's 
domain. Under the conditions that domain insertions are ran
dom, recoding frequencies have been shown to be reduced 
significantly simply by enlarging the length oC an index code 
by a few extra bits. Experimental results on real data sup
port our findings. 

It is believed ·that the index encoding techniques 
presented here are practical alternatives to those used in spe
cialized and commercial DBMSs today. 

Acknowledgements. I grateCully acknowledge 
the help of Ignacio Casas, Arie Shoshani, and 
Won Kim for their constructive comments on an 
earlier draft of this paper. I also thank J. Stevens, 
D. Carter, R Hammond, M. Conlon, S. Su, 
S. Navathe, and S. Kundu for their contributions 
to the development and clarification of the ideas 
in this paper. 

REFERENCES 

[Alsb75] Alsberg, P. A., "Space and Time Savings 
Through Large Database Compression and 
Dynamic Restructuring,· Froc. IEEE Vol. 63 #8 
(Aug. 1975), pp. 1114-1122. 

[BatS2] Batory, D. S., "Optimal File Designs and Reor
ganization Points," ACM Trans. Database Syst. 
Vol. 7 #1 (Mar. 19S2), pp. 60-S1. 

[BBDS2] Bates, D., Boral, H., DeWitt, D. J., "A 
Framework for Research in Database Manage
ment Cor Statistical Analysis," Froc. SIGMOD 
1982, pp. 69-7S. 

[BKR72] de Bruijn, N., Knuth, D., and Rice, 0., "The 
Average Height oC Phinted Plane Trees," in 
Graph Theory and Computing, R-C. Read, 
Editor, Academic Press, New York, 1972, pp. 
15-22. 

[BragSl] Brag, A. W., "Data Manipulation Languages for 
Statistical Databases-The Statistical Analysis 
System (SAS),· Proc. LBL Workshop on Sta,tis
tical Database Afa,nagement 1981, pp. 147-150. 

313 

[BrT076] Brill, R C., and Tolkin, S. E., ·Subset Selection 
by Boolean Calculation,' 1!l76. 

[ChS081] Chan, P. and Shoshani, A., "SUBJECT: A Direc
tory Driven System for Organizing and Accessing 
Large Statistical Databases," Froc. VLDB 1981, 
pp. 553-563. 

[EOSSll Eggers, S., Olken, F., and Shoshani, A., "A Com-
pression Technique Cor Large Statistical 
Databases," Froc. VLDB 1981, pp. 424-431. 

[FIOdSl] Flajolet, P. and Odlyzko, A., "The Average 
Height of Binary Trees and other Simple Trees," 
INRIA Research Report #56, Feb. 1981. 

[FNPS79] Fagin, R, Nievergelt, J., Pippenger, N., and 
Strong, H. R, "Extendible Hashing-A Fast Ac
cess Method for Dynamic Files," ACM Trans. 
Database Syst. Vol. 4 #3 (Sept. 1979), pp. 
315-344. 

[GeySl] Gey, F. G., "Data Definition for Statistical Sum
mary Data or Appearance, can be Deceiving," 
Froc. LBL Workshop on Statistical Database 
Management 1981, pp. 3-18. 

[HaRi771 Hampel, V. and Ries, D., "Hequirements for the 
Design oC a Scientific Database Management 
System,· working paper, Lawrence Livermore 
Laboratory, Berkeley, CA, 1977. 

[Lar7SI Larson, P., "Dynamic Hashing,' BIT 18 (197S), 
pp. 184-201. 

[Lit7SI Litwin, W., 'Virtual Hashing: A Dynamically 
Changing Hashing,·' Proc. VLDE 1978, pp. 
517-523. 

[NDX811 NDX Retrieval Systems, Inc., ·CREATABASE: 
Performance Manual,· NDX Retrieval Systems, 
Houston, TX, 1981. 

[Sh0821 Shoshani, A., "Statistical Databases: Charac
teristics, Problems, and Some Solutions,· Proc. 
VLDE 1982. 

[THC791 Turner, M. J., Hammond, R, and Cotton, P., "A 
DBMS Cor Large Statistical Data Bases," Proc. 
VLDB 1979, pp. 319-327. 

APPENDIX. DERIVATION OF H(D,I,j) 
AND Q(D,I,j) 

The ordered sequence oC all possible domain values can 
be modeled by the real number interval [0 .. 1[. Let A * = (Ao 

AD_l ) be the ordered sequence that defines the initial 
values of a dictionary. A * consists of the endpoints 0, 1 and 
D-2 random points in (0 .. 1). Without loss of generality, sup
pose D is odd so that D = 2N + 1. 

Let f(w) be the probability density function that the 
value interval (Ao ... AN) has length w. f(w) ~s obtained by 



observing that 1 point is at [0,0] with probability 1, N-I 
points are in (O,w) with prohability wN-1, 1 point is at 
[w,w+dw] with probability dw, N-I points are in (w+dw,I) 
with probability (l_w)N-I, and 1 point is at [1,11 with 
probability 1. The probability of all events occurring simul
taneously is proportional to the product of their individual 
probabilities. Integrating this product from 0 to 1 and nor
malizing yields: 

2N - 2 
fCw)=(2N - 1) . ( ) . WN- 1 • (1 - .... )N-1 

N - 1 

where (~) is a binomial coefficient and 

2N - 2 
(?N - 1) . ( ) 

N -

is the normalization constant. 

Arter the insertion of I values, the probability b(I,j,w) 
that the interval (Ao ... AN) with a length of w will contain j 
additional values is binomially distributed: 

I 
) . lJ1 . (1 - lJ)I-1 

It follows that the probability H(D,I,j) that j of I insertions 
will have values which fall within the interval (Ao ... AN)' 
i.e., the first half of the dictionary, is: 

H(D,I,j) = f& b(I,j,lJ) . f(w) . dlJ 

2N - 2 I 
(2N - 1) . ( ) . ( ) 

N - 1 
= 

2N - 2 + I 
(2N - 1 + 1) . ( 

N - + j 

Q(D,I,j) is derived in a similar manner. Let g(w) be the 
probability density function that a value interval has length 
w. g(w) is obtained by observing that 1 point is at [0,01 with 
probability 1, 1 point is at [w,w+dwl with probability dw, 
D-3 points are in (w+dw,l) with probability (l_w)D-3, and 1 
point is at [1,1] with probability 1. Taking the product of 
these probabilities, integrating from 0 to 1, and normalizing 
yields: 

g(w) = (D - 2) . (1 - lJ)D-3 

The probability Q(D,I,j) that an interval will receive j of I 
insertions is: 

Q(D,I,j) = f& b(I,j,lJ) . g(w) . dlJ 

I 
(D - 2) . ( 

= ----------------------
D - 2 + I 

(j + 1) . ( ) 
+ 1 
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NOTES 

IThis work was supported by the U.S. Department 
of Energy under contract DE-A505-81ERI0977. 

2Author's current address: Department of Com
puter Sciences, The University of Texas at Aus
tin, Austin, Texas 78712. 

3 Ao and AD_1 should be the lexically lowest and 
highest possible values that can occur in the 
domain. If these values are not present when the 
file is first examined, they are added to the 
domain prior to index encoding. 

4As an implementation note, it is unnecessary to 
maintain an array of Gj's. Instead, an unused 
code within a particular code interval can be 
found easily by searching the directory. 

5Readers may note a strong similarity between the 
true order algorithm and its conditions for dic
tionary recoding, and the node splitting al
gorithm and its conditions for directory reor
ganization in dynamic hash-based files [Lar78J, 
[Lit78], [FNPS79]. In spite of this similarity, the 
analyses which model their behaviors are quite 
different. Explanations of these differences, too 
long to be included here, can be found in [Bat82, 
pp.65-66J. 

6By symmetry, H(D,I,j) is also the probability that 
I-j of I insertions will fall within the interval (AN 
... AD-I)' i.e., the last half of the dictionary. • 

7This assumption is identical to that used to 
derive eqn. (2). 

8 A second possible qualification is tha't the al
gorithm does not recode subsections of a diction
ary to delay the complete recoding'of the diction
ary. While this extra qualification may be needed 
to further specify when the performance of the 
interval order algorithm provides a theoretic 
bound, the idea of partial recoding may not be 
practical. Preliminary investigations suggest that 
complete recoding is not much more expensive 
than partial recoding, and complete recoding oc
curs less frequently. 



AN OVERVIEW OF CANTOR - A NEW SYSTEM FOR DATA ANALYSIS 

Ilkka Karasalo and Per Svensson 
Swedish National Defense Research Institute, Stockholm, Sweden 

ABSTRACT J'; .1 

A transportable system for the analysis of large sets. of data~ for
ming complex information structures, is being develop~d at the Swe
dish National Defense Research Institute, with financial support 
also from some civilian Swedish government agencies. The system is 
based on a relational data base handler of new design, permitting 
efficient data storage and fast evaluation of complex, spontaneous 
queries. A query language, based on set algebra and oriented towards 
scientist users, was developed for the system. To this kernel will 
be added subsystems for interactive sublanguage definition and user 
communication, data loading, tabular and graphic data presentation, 
statistical analyses, and data base backup and recovery. The paper 
presents an overview of the system version now completed. 

1. INTRODUCTION 

Techniques and tools for the analysis of data have developed rapid
ly during the last decade. Much of this development effort has been 
directed towards developing large libraries of statistical analysis 
procedures and integrating them into user-controlled statistical 

systems. In recent years, several of these systems (e.g., SAS 1
» 

have been supplied with data management and data presentation capa
bilities, turning them into quite powerful general-purpose data 
analysis tools. Users of statistical systems seem to be quite satis
fied with the facilities provided. So why bother to develop yet 
another system, which in this light seems to stand a small chance 
of becoming commercially accepted? 

Existing statistical systems serve their purpose well, as long as 
the data bases to be processed have a Simple, static logical struc
ture and are not too large, and moreover, stay that way during the 
course of the analysis. In many scientific fields, however, the 
steps in an analysis involve the creation of complex data structu
res and large data sets. Typically, such situations arise when look
ing for interactions between several separately monitored classes 
of phenomena, for example the incidence rate of a disease and vari
ous environmental factors. If the kind of interaction is unknown a 
priori, the data space in which to look rapidly becomes unmanageable. 

The last decade's developments in the theory and technology of data 
base management systems have led to new possibilities for the design 
of general-purpose software useful for the detection and analysis 
of unknown kinds of interaction between loosely related classes of 
data. 

The system to be described below was designed with the goal of 
being able to analyze in depth large and complex data bases, with
out recourse to problem-specific programming in a general purpose 
programming language. 

The system contains a user language based on an algebra of rela
tions. In this language, a wide class of data transformations may 
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be expressed and stored as virtual data extensions, or "views", in 
the data base itself. The evaluation of views is carried out in the 
framework of a relational data base management system, designed for 
efficient storage and access of data in a user environment where 
the "queries" are statistical, i.e., whose results depend on large 
subsets of the data. The few commercially available data base sys
tems which have enough functional power for this task are optimized 
for queries, whose answers depend on small subsets of the data base. 

2. PROJECT OBJECTIVES 

The following design goals were formulated after an analysis of 
the requirements on a data analysis support system in a scientific, 

large data base environment2): 

i) To allow the scientist users to work directly with their data, 
the system must be highly automatic. In particul~r, it must not 
require any tuning or extensive maintenance during its use. 

ii) The system had to contain a very high level user language (query 
language) suitable for the succinct expression and gradual accu
mUlation of complex data transformations. On the other hand, it 
was considered reasonable to expect from the scientist user an 
ability and willingness to express these transformations in a 
formal language. 

iii) Complex transformations easily lead to unacceptable execution 
times unless efficient methods of query optimization are found, 
not least when expressed in a very high level, "non-procedural" 
language. Certain classes of queries are inherently impossible 
to evaluate efficiently. Query classes which could be efficient
ly evaluated would have to be defined and appropriate algorithms 

developed 3,4) • 

iv) The typical user was envisaged as member of a small group of ana
lysts, working either with a dedicated, comparatively small com
puter system, or with a large, time-shared central computer. The 
system should allow for easy sharing of results within the group. 
To access data not originating within the group, conventional copying 
and loading was considered adequate. Requirements for simultaneous 
reading and updating of data would therefore exist but did not 
impose stringent restrictions on the system design. 

v) Within the user community many different types of computer 
would exist. To allow ~he system to be used on different 
computer types without unacceptable conversion costs, it 
would have to be transportable, i.e., written mainly in a high 
level language subset acceptable by most compilers for the 
chosen language. 

vi) Economy of data base storage space was found important both 
directly, to reduce storage space costs for large data sets, 
and indirectly, as a means of reducing the processing time 
of a query. The more compactly data can be stored, the less 
data transportation between primary and secondary storage will 
obviously be required. 

vii) A set of general-purpose application functions should be in
cluded in the basic system. Requirements for subsystems for 
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descriptive statistics, basic statistical analysis, data pre
sentation, and bulk data test, input, and transfer were formu
lated. 

viii) A programming user must be able to add new application func
tions, written in some commonly used programming language, 
to the system. Such additions always require additions to the user 
language as well. To support a controlled language growth,a language 
definition subsystem allowing the incremental addition of new gramma
tical rules was found highly desirable. Language and function exten
sibility were thus required. 

ix) To enable adequate documentation and retrieval of data and views, 
a meta-data subsystem would have to contain both system-created and 
user-provided information about the elements of the data base. 

3. SYSTEM STATUS AND ENVIRONMENT 

The system, previously called Datalao but for trade-mark reasons 
renamed.to Cantor in this paper, is in its present form a single
user, interactive relational dbms with an unusually powerful query 
language and storage and access performance characteristics design
ed to fit the intended application area. 

A few facilities remain to be implemented in order to bring the 

database management system to the intended level of usefulness5) • 
Subsystems for descriptive statistics, statistical analysis, and 
data presentation also remain to be designed and implemented. We 
will describe here mainly t:u,se functions which are already more 
or less in their final form. 

Cantor is designed to run under a time-sharing operating system 
(or, obviously, on a single-user computer). All details of terminal 
interfacing~ transaction queueing, and communication network manage
ment are assumed to be handled by the host operating system, as are 
the allocation to different users of common resources, such as pri
mary memory and processor time. 

It is intended to eventually allow several simultaneous users to 
share data in its data bases. A user who wants to update a copy of 
a data (relation) table can do so, as long as he is authorized by 
the operating system to access the data base which contains it. An 
update of a nonprivate data table must wait, however, until the 
user has been granted exclusive access to it by the Cantor system. 
In this way, a crude but in our opinion sufficient multiple user 
facility is planned for later versions of the system. 

The existing system consists of almost 70 000 lines of Pascal code 
and 3 500 lines of Assembly language code, comments included. 

At present, the system runs only on the Dec-l0 computer under the 
operating system Tops-l0. The system is being transported to Tops-20 
and Vax/VMS. An implementation for a powerful personal computer 
("workstation") is planned. 

An independent evaluation of Cantor was recently completed by the 

Swedish Bureau of Statistics6). Allowing for the fact that some 
parts of the system are still provisional, the evaluation report 
states that the system permits very complex queries to be formula-
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ted and evaluated without difficulty. Also, the report recognizes 
that although no system tuning is necessary or possible (without 
recompiling the system), data storage and subset selection are very 
efficient. 

Plans have now been made for a second development phase, with the 
goal of making the system a marketable product. System security, 
language facilities, and performance will be improved. Subsystems 
for data presentation and descriptive statistics will be added. The 
system will be priced, documented, and maintained so as to allow 
widespread distribution. 

4. DATA TYPES AND DATA OBJECTS 

Objects recognized by the system have unique names and a well
defined although not always explicitly declared type •. They are either 
flat objects viz. scalars or tuples or set objects. Sets of tuples 
of a common type are called relations. 

Each kind of data object can have two modes: value and view. A va
lue consists of explicitly stored data. A view is an expression 
which can be evaluated, ultimately in terms of stored values, to 
form a new value. Views may have parameters. 

Scalar types are predefined: integer, float (optionally with rest
ricted precision or constant exponent), logical,·literal (used for 
names of objects), and text, all extended by the special value 
UNDEFINED. An unordered set of pairs (attribute name: scalar type) 
determine a tuple type. A tuple value is an instance of its type, 
i.e., a set of pairs (attribute name: scalar value). In the same 
way, a set type is defined as the set of sets of values of a given 
flat type. A relation is a special case of a set, namely a set for
med on a tuple type (even if this tuple type has only one attribu
te) • 

Associated with each data base in the system is a meta database, 
which contains all information required by the system to keep track 
of stored data and its properties. The meta database {~ organised 
as three relations, maintained automatically by the system. Views 
may be defined whose value depend on the meta database relations. 

5. BASIC COMMANDS 

The terminal user language is planned to consist of a standard part 
used for predefined operations and a variable set of private exten
sions to this language. In the existing version of Cantor, only the 
standard language is recognized. It contains commands for declaring 
the name, attributes, and key of a base relation, defining a view, 
evaluating a parameter less view and storing its value, inserting, 
removing, and updating tuples of a base relation, adding and dele
ting non-key attributes of a relation, loading and printing data 
objects, etc. 

6. THE QUERY LANGUAGE SAL 

The view concept in Cantor is a natural generalization of the con
cept of a function procedure (subroutine) in conventional program-

318 



5 

ming languages. A view may have a number of parameters of arbitrary 
type. 

Recursive view references. which significantly extend the expressi

ve power of relational languages1•8) are not allowed in the present 
version of the system. 

Views are formulated in SAL9), the query language of Cantor. It was 
developed under explicit assumptions about the users' educational 
background. A user with a basic mathematical education at universi
ty level should be able to use the language with fairly little trai
ning. because all its important concepts are already in his reper
toire. In the requirements definition phase of our project a number 
of existing query languages were studied, but for various reasons 

no one was considered suitable5) • 

The SAL language was designed according to the following basic ob
jectives: 

i) It is only used to compute new data from existing data. For 
example. no input-output statements are part of the language. 

ii) The query language is not intended as a general-purpose computing 
facility. Many kinds of computation will have to be done by spe
cial programs interfaced to the dbms. A user should not be misled 
to use the query language for purposes where conventional program
ming is the only adequate technique. Control and data structures 
proper to algorithmic languages were therefore excluded. 

iii) A simple and formal structure was desired rather than simila
rity with natural language. with its many subtle ambiguities. 

iv) The intended users should be familiar with the formalisms of 
elementary algebra and set theory. The language should not intro
duce concepts outside of this domain unless necessary. 

v) Data transformations are usually derived using the same step-
wise abstraction process found indispensable when solving non
trivial problems in other domains. such as programming or elementary 
calculus. The view definition mechanism is suitable for this pur
pose and was therefore made central to the language. 

The language has been successfully used in several pilot applica
tions. Among these are a cancer epidemiology study and a geographi
cal database application. With very few exceptions. the computatio
nal problems involved in these applications have been solved within 
the language. The queries in a test set defined by M. Lacroix and 

A. Pirotte'O)have also been expressed and evaluated without diffi
culty. 
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Operators are functions from operand values to result values, and 
the result type is uniquely determined by the operator and the ope
rand type(s). If the result can not be computed, the result is 
UNDEFINED of the appropriate type. 

Any syntactically correct non-recursive expression will also have a 
semantic interpretation provided that referred objects are defined 
at execution time and provide appropriate argument types for all 
operators involved. ' 

Unary operators are NOT, ISUNDEF, ROUND, TRUNC, CARDINAL, and 
the arithmetic functions ABS, SQR, SIN, COS~ EXP, LN, SQRT, 
ARCTAN. They are written in functional notation, e.g., NOT (a). 

The binary operators +, -, *, I, DIV, MOD, =, <>, >, <~ >=, <=, OR, 
AND have their usual meaning. They are valid for the appropriate sca
lar type, except = and <>, which are valid for tuple types as well. 
Binary operators acting on sets are EQUALS, CONTAINS, CONTAINEDIN, 
UNION, INTERSECTION, DIFFERENCE, and MEMBER with the conventional 
set algebra interpretation. Binary operators have fixed priorities 
and association rules. To override these rules, parentheses may be 
used. 

To operate on tuples, the identification (:), catenation (.(,',», 
and extraction (.) operators exist, as well as the relational ope
rators (=, <» already mentioned. The purpose of the first three 
operators is to provide adequate facilities for naming attributes 
which occur as intermediate or final results of a sequence of ope
rations on relations. 

There are three kinds of operators acting on relations, namely func
tional form operators, the cartesian product operator, and the par
titioning operator. 

Functional form operators are binary operators with a relation ex
pression as left argument and a flat expression, whose type depends 
on the operator, as right argument. The right argument must be en
closed in brackets [ J. They are: 

restriction 
generalized projection 
selection 
aggregation 

- WHERE 
- no keyword 
- SELECT, SELECTMAX, SELECTMIN 
- COMPUTE, SUM, PRODUCT, MAX, MIN, AVERAGE, 

EXISTS, ALL, COUNT, CARDINAL. 

Restriction and projection produce results of relation or set type. 
Selection and aggregation produce results of tuple or scalar type. 

The cartesian product operator *(,',) takes one or more relations 
(factors) as argument and produces a result relation, whose attributes 
are the union of the sets of attributes of the factors, provided 
that all attribute names of the factors are different. If necessary, 
the identification operator is used to achieve this. The set of tuples 
of the cartesian product is the set of all catenations of tuples of 
the factors. 

The partitioning operator BY has a special form: R BY [e) agop[s] 
where e is a tuple expression, s a scalar expression and agop 
stands for any aggregation operator. R BY [e) may be viewed as a 
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functional form operator with a set of relations as r.esult, which 
is however not an allowed object type. Aggregation over each of the 
relations in the set is needed to obtain a result or'set type. 

7. SYSTEM DESIGN ASPECTS 

The system currently consists of five main subsystems: storage and 
access, search and sort, g~ammatical analysis, evaluator, and com
mand handl~r. 

The storage structure of Cantor is a development of the concept of 

a fully transposed file"). Additional principles that have been emp

loyed are ordering, dynamic data compression, and B-list structure5), 
i.e., an adaptation of the B-tree principle to linear lists of vary
ing length data. 

Since transposed files are not well suited for fast random access 
to single tuples, a special "cache" buffer is kept for the meta 
database. A record in this buffer corresponds to a meta database 
tuple. 

The tuples of a base relation are ordered according to a sort order 
implied by the relation key given by the user in the BASER ELATION 
command. While storing a relation, the system applies a data com
pression algorithm to fixed-length segments of each attribute. This 
algorithm reduces the number of bits,used for each object, and sup
presses the storage of repeating values within an attribute subfile 
("run length compression"). The combined ef~ect of sorting and run
length compression provides for compact storage of relation tables 
with multidimensional keys. Other desirable properties of the cho
sen storage structure are fast sequential and direct read access 
and ability to update, insert, and delete values with good effi
ciency and without the accumulation of garbage. 

The performance of a prototype system was measured and compared 

with a commercially available data base system of good quality'2). 
The results showed that very significant performance gains could be 
achieved by combining transposed, file storage and data compression 
techniques. 

Batory") showed that search algorithms designed for use with 
transposed files could outperform commonly used techniques such as 

the use of inverted files (indexes). In '3), one of us presented 
theoretical and empirical results showing that a certain class of 
associative queries, called conjunctive queries, may often be eva
luated even more efficiently if the transposed file structure is 
combined with sorting and run-length data compression. These re
sults led to the design decision not to implement indexes in Can
tor, although there exist special cases where the availability of 
an index would have improved search performance. 

321 



8 

The search and sort subsystem of Cantor was designed to take advan
tage of these observations as far as possible. It contains algo
rithms for internal and external sorting, duplicate tuple detection, 
conjunctive query search ("box search"), key lookup, equijoin, set 
union, difference, and intersection, all designed to work one (or a 
few) attribute(s) at a time, to match the transposed file principle. 
Only the conjunctive search algorithm has yet been critically eva
luated. 

This subsystem performs syntactic and semantic analysis of command 
language and query language syntax. When evoked by a STORE q state
ment, where q is the name of a parameterless view, it produces 
either error messages or a syntax tree where all references to sto
red data, to attributes of relations in enclosing expressions (simi
lar to the referencing of non-local identifiers in a block structu
red language), and to views have been resolved. The types of each 
partial result are calculated, checked for consistency, and stored 
in the nodes of the tree. 

In the case of a reference to an unevaluated view, its syntax tree 
is generated and connected to the result tree. Reference to a pre
viously evaluated view is resolved as a reference to stored data 
rather than to an expression, providing the user with a degree of 
control which can be used to avoid the generation of very large 
syntax trees through repeated view substitutions. 

The evaluator subsystem performs optimization, "dataflow net gene
ration" and "dataflow net interpretation". 

The optimizer works by transforming the syntax tree into a logical
ly equivalent one, corresponding to a different (more efficient) 
query formulation, and with special-case information added to cer
tain nodes. 

Two important special cases of expression, corresponding to box and 
equijoin search are detected. Restrictions on factors and subpro
ducts of a cartesian product are analysed and when possible moved 
so as to become evaluated before the full product is formed, thus 
avoiding the formation of unnecessarily large cartesian products 
The optimizer detects such common subtrees of the syntax tree which 
need to be evaluated only once, using a fast hashing technique. 

The optimizer will be extended with certain rewriting rules which 
reduce the nesting depth of certain functional form operator expres
sions , enabling faster evaluation of important query classes. The
se rules are similar to, but more general than, those proposed by 

Kim 15) for use with IBM:s query language SQL. 

Using the possibly optimized syntax tree as input, the dataflow 
net generator builds a hierarchy of static dataflow graphs. These 
graphs, in which adjacent operator nodes are separated by buffer 
nodes, describe the order in which the different operators are to 
be executed. An operator node is either a simple operator node 
representing other than functional form operators of SAL, or a com
posite operator node, i. e. a subgraph representing a functional 

322 



9 

form operator. Each edge in the net signifies a dataflow for one 
attribute or temporary data stream. The dataflow net generator 
generates edges only for attributes which are part of an expression 
and thus are needed to produce the required result. 

Cantor uses an interpretation, technique which is analogous to the 

operation of a vectorized dataflow computer'6) except of course 
that only one processor is available. In a multiprocessor environ
ment, several operators could execute concurrently, since the order 
of execution of operators is not rigidly determined. The use of 
vector operators distributes interpretation overhead over many ele-o 
mentary operations, invalidating the "folklore theorem" which sta
tes that interpretation of query language expressions is fundamen
tally inefficient. 

The interpretation program has two main tasks. When initializing a 
composite operator, it assigns space to its buffers. Then, it calls 
the component operators of this operator in some order until all 
its input has been consumed. 

The system contains a large number (about 10) of operators, catego
rized as constant, scalar, tuple, set, relation, aggregation, and 
transfer operators. Transfer operators move data between stream 
buffers and B-lists. Scalar operators perform unary and binary ope
rations, cf. sec. 6, on (streams of) scalars. Set and relation ope
rators are used where the stream technique is inadequate, i.e., 
for operations which require the entire set as input. Dependent on 
metadata about their operands, such as cardinality, sort order, 
relation key, and extreme values for attributes, several of these 
operators dynamically select which algorithm to use, usually by 
calling different procedures in the search and sort subsystem. 
Also, if the optimizer has detected that a restriction, or a part 
of it, has the special property of a box search, or that a restric
tion of a cartesian product has components of equijoin type, special 
relation operators will perform the required function. 

As an example, the projection operator in general sorts its input 
and removes non-unique tuples. However, analysis of relation key 
information is done in the projection operator, which may thus de
tect that sorting and duplicate removal are not necessary. 

8. SUMMARY AND CONCLUSIONS 

A relational data base management system, designed for the analysis 
of complex statistical data was presented. The system shows several 
unusual design features, motivated by the intended application area 
which in many respects poses different problems from more conventio
nal dbms applicationsw 

The system has a powerful, formal query language whose concepts 
closely follow those of elementary set algebra. Its design is strong
ly oriented towards fast evaluation of complex queries. Basic de
sign decisions of the storage, search, and query evaluation subsys
tems were made to this end. The use of ordered transposed files and 
data compression techniques provide both economic utilization of 
available storage and fast data access through mechanisms discussed 
in this paper. Query optimization is performed in several levels of 
the system. 
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Abstract 

In this paper, we describe working sta
tistical database systems in Japan. Most 
are special purpose systems. In 1983, a 
comprehensive statistical database 
research project MUSE began in academic 
societies. In conjunction with it, EPA 
is going on an SDB development project 
(CAS SDB project). CAS SDB plans to han
dle a large amount of statistical summary 
data and to support a variety of social 
scientific uses. We describe statistical 
meta-data problems and a current design 
for a statistical meta database. We also 
describe a current implementation of CAS 
SDB. It was implemented on,a relational 
DBMS and has an interface with SAS. We 
are now testing the capabilities of CAS 
SDB in real statistical applications. 

1. Introduction: Large Statistical Data
bases in Japan 

There are a number of large statistical 
databases and database systems in Japan. 
Many government organizations, such as 
the Economic Planning Agency, Ministry of 
International Trade and Industry, Bureau 
of Statistics, National Land Agency, 
etc., are interested in developing sta
tistical databases. 
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Most current working large statistical 
database systems in Japan are special 
purpose, e.g., SDB of PPIS (Pollcy Plan
ning Information System: MITI) [FUJI83] 
for industry and trade data, ISLAND (NLA) 
system for regional grid data. HSDB (Hi
roshima University) [IKED82] is another 
type of statistical database system 
des igned for the management of summary 
data which is consistent with micro data. 
However, there are few statistical data
base systems constructed for 
multi-purpose statistical use. 

The comprehensive statistical database 
research project MUSE (Multi-Use 
Socio-Economic Statistical Data Bank) 
began in academic societies in 1983 
[SHIS83]. The center of the MUSE project 
is the University of Tsukuba. In conjunc
tion with the MUSE project, the Economic 
Planning Agency has begun to develop a 
new statistical database management sys
tem, named CAS SDB, which would be the 
core software of EPA. This project is 
going on with the help of the University 
of Tsukuba,' Mitsui Knowledge Industry, 
and Tokyo Scientific Center (IBM Japan). 

In the Japanese environment, large sta
tistical databases are usually databases 
of statistical summary data because gov-' 
ernmental statistics in micro data form 
are not open to public use. Our first 
object is to be able to handle large vol
umes of statistical summary tables in an 
easy way. 
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2. The MUSE Project 

The MUSE project includes the 
components and corresponding 
groups: 

following 
research 

1. Databqse management research group 

2. Distributed database and econometric 
modelling software research group 

3. Database construction and research 
on multiple uses of MUSE SDB 

• 

• 

• 

SNA (System of 
Accounts) and micro 
research group 

National 
data set 

Multi-sector economic 
research group 

Social and political 
research group 

data 

data 

• Regional economic data research 
group 

• Econometric data research group 

The database construction group plans to 
collect most Japanese machine-readable 
statistics. 

The MUSE project is intended to support 
social science research. MUSE SDB will 
handle a variety of summary statistics 
from heterogeneous sources collected by 
many different organizations. It will 
support a variety of different research 
and planning uses. We have a difficult 
task to describe, store and utilize many 
kinds of published statistics. 

Hereinafter, we shall explain our treat
ment of these problems in the CAS SDB 
which is developed with the cooperation 
of the MUSE database management research 
group. 
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3. Meta Database Problems of CAS Statis
tical Databa§e 

In a statistical database unlike most 
conventional business databases, the 
amount of information concerning an 
object database often is too large for 
users to comprehend for the following 
reasons: 

• Abstract entities may consist of many 
entities 

• 

• 

• 

There may be a large number of entity 
types, attributes,. domains, and 
relations 

Many candidate schemata for the same 
information are possible [KENT62, 
HOTA63] 

The amount of descriptive or 
meta-data information may itself be 
.very large. 

As a result, statistical database systems 
need to be able to handle many files, 
meta-data information (the code: book 
problem) and also to handle many alterna
tive representations. Few database sys
tems can. provide ·such an environment. 

, For example, it is difficult to transform 
a set of time' -series data to a 
tross-sectiona1form where the set of 
series are compounded according to the 
same attribute, TIME. In fact, a set of 
income time series for prefectures can be 
regarded as cross sectional income data 
categorized by time by prefecture. Con
vers'e1y, a cross-sectional statistical 
data designed for a single survey, such 
as population census data, is difficult 
to treat as a set of time series. For 
example, in order to retrieve time series 
population data for Hiroshima ,Prefecture 
from 1961 to 1960,' we need to access 20 
files and select '- Hiroshima Prefecture 
from each; then to combine 20 results of 
the selection. This is a very complex and 
cumbersome task for the user. As a 
result, we need a database system which 
can handle both time series and 
cross-sectional data. 
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CAS SDB plans to allow users to have many 
kinds of external views. Thus we must 
take special account of how to represent 
and manage complex meta-data 
information. In order to do this, we 
must first describe the meta-data in a 
schematic manner and to give precise 
descriptions of statistical data proc
essing operations that may be expected. 

4. Design of Meta Database 

Although record-based representations of 
data have some limitations [KREP83] , they 
are still an easy-to-understand repre-

sentation for statisticians. Statisti
cians terms 'samples' and 'items', 
naturally correspond to 'entities' and 
'attributes' , in terms of database 
researchers. 

We think that the -best way to deal with 
statistical data is not to abandon the 
record-based representation of data but 
to add statistical meta-data to it. 

Schematic representation of a meta data
base is shown in Figure 1. In order to 
manipulate meta-data information and the 
data itself in a similar manner, we made 
a meta database and its object database, 
both of which have the same structure. 

~~~~------~-------------IProcess definition I 

IDomainl 

tablel 

tablel 

ICross-section tablel 

ITime-series table I 

ICategory value list I 

table/ 

\ ~IDerived attribute I 
IAttribute I 

ICategory attribute I 

- ISummary attributel 

A-+-7)B B is sub-type of A. 

entity type 

Figure 1. Schematic representation of meta database 
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The main entity types of the meta data
base are 'table', 'attribute', and 'do
main'. 'Category value list' is a table 
of values of a category domain. 'Conver
sion table' describes the correspond
ences between the values of two category 
domains, e. g., a reclassification rule 
from minor categories to major 
categories. The 'table' and 'attribute' 
files describe the current status of the 
obj ect database. The domain file 
describes the range of domain values 
and/or the name of the 'category value 
list' table. 

In a statistical database, there is some
times confusion between two types of 
abstraction: value levels and type 
levels. For example, when we think of a 
certain category, such as 'California' as 
a state in the U. S., we recognize that 
'California' is an entity or an entity 
value. On the other hand, when we think 
of 'California' as a set of counties in 
California State, we recognize 'Califor
nia' is an entity type or an set of 
entities. 

We need to distinguish between an entity 
value and an entity type, but statisti
cians always recognize this difference by 
means of direct mentioning or from con
text. We plan to have the database system 
recognize this difference in a similar 
way. 

~ User I 
f /1 I '\ 

Query 

\II 

Retrieval from 
Meta DB~ Meta DB 

'-
Meta information 

"'\ 

./ 

In'/iddition, enumeration of domain values 
is Illot sufficient to distinguish real 
values and missing value codes. Many 
kinds of exceptional values are required 
,in statistics and statisticians always 
need to distingui~h different types of 
exceptional values (such as impossible, 
secret, lack of continuity, tentative 
values). For example, UN energy' statis
tics includes "impossible" and "missing" 
values in different codes. A statistical 
database system should support these dif
ferent missing data codes. In CAS SDD, 
such differences can be described in the 
'domain' file of the meta database. 

5. Current Implementation of CAS SDB and 
Future Plan 

A preliminary version of the experimental 
CAS statistical da~abase management sys
tem was implementeq at EPA. It supports 
some meta database facilities, and it was 
implemented on a relational DBMS. It has 
an interface with SAS [SAS79]. We are now 
testing the capabilities of CAS SDB for 
real statistical applications. 

Meta information -, 
'\ / 

\V 
Retrieval and 

Object DB-----7 Manipulation "-

" of Object DB Results 

Figure 2. Schematic Representation of Operations of CAS SDB 
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The preliminary version also supports 
restriction, projection, reclassifica
tion of categories using conversion 
tables, and automatic aggregation. But 
it does not yet support view realization, 
automatic join or automatic aggregation 
directly inferred from meta information 
(directory driven). 

The user interface of our test version 
DBMS is a full screen menu interface like 
IBM's SPF (System Productivity 
Facility). Its operation is similar to 
SPF member list operations. First, the 
user retrieves or browses meta informa
tion from the meta database and sele'cts a 
desired table from the table list or the 
attribute list displayed on the screen. 
Next, the user specifies operations on 
the table. In such a manner, he can 
manipulate the object database itself. 
Information once entered never has to be 
re-entered. As shown in Figure 2, a user 
does not need to enter table names or 
attribute names in the meta database. The 
user does not need to look through a code 
book but only to browse a certain domain 
value list. 

The above consideration is highly neces
sary in Japan, because to input Japanese 
characters is still cumbersome even using 
computers. So to decrease input is more 
important in the Japanese environment 
than in the U. S .. 

Alphabetic or English expression of 
information is not sufficient for Japa
nese users. Japanese users need precise 
definitions of meta objects of statis
tical data in Japanese. Alphabetic or 
English expressions only play the role of 
aliases. 

For the next implementation of CAS SDB. 
self-descriptive database management 
facilities are planned. We plan not only 
to manage' the meta database (dictionary), 
but also to support operations on statis
tical data which is abstract and has 
special semantics. 

/ 
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6. Cone luding Remarks 

CAS SDB is a computer system for oper
ations. such as searching statistical 
tables. joining and transforming the 
tables, and preparing data for statis
tical analyses or modelling. 

However. meta database facilities which 
are the core of CAS SDB, require the 
users to input additional information. 
Probably they feel CAS SDn is cumbersome. 
Hence we have to pay closer attention to 
the user interface, in order to simplify 
its use. The most urgent issue for us is 
to devise an interface with which users 
can do their complex jobs with the least 
effort or less effort than in a conven
tional way. 

Another important problem for us is what 
can be a conceptual schema for'a statis
tical database. A conceptual schema lets 
users know what ihformation is in the 
databas,e. and what kinds of views may be 
allowed. 

We are now studyin8 a type of conceptual 
schema which willj:>ermit us to describe 
heterogeneous statistical data in an 
integrated manner, 'and in which alterna
tive representations of equivalent 
information can be treated as synonymous. 
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A STRATEGY FOR IMPLEMENTATING A COMPUTER EFFICIENT DATABASE MANAGEMENT SYSTEM PRELIMINARY RESEARCH REPORT 

John Dixie, Philip Wake 

THE OFFICE OF POPULATION CENSUSES AND SURVEYS, TITCHFIELD, FAREHAM, HANTS UNITED KINGDOM 

Abstract 
The United Kingdom census office has a need to improve access to large data sets such as the population 
census, registrations of births, marriages, deaths and diseases, and major social surveys. In general 
terms the need is to access a small number of data fields from a large number of records (with or without 
filtering) for applications in which the data volume is encormous but stable (say 100Mb or greater). A 
DBMS with transposed file structure (like RAPID) would appear to be ideal for this • 

A strategy is proposed for implementing such a system on ICL 2900 range computers. Questions are raised 
conerning enhanceability, programming languages, data packing and file structure, storage of meta-data, 
and the use of the operating system. A recently implemented secondary (macro) data TDF (Transposed 
Datastore File) is described and the possibility of using the same structure for primary (micro) data is 
discussed. 

1. OPCS' REQUIREMENT wrong, and it is not known for more than one of 

the datastreams to have to be accessed for one 

1.1 The Office of Population Censuses and Surveys table. Last minute adhoc tabulations are a 

(OPCS) is one of the main collectors of data for particular problem, and ther is a tendency to 

statistical anal:ysis in the UK. It has design the datastreams to contain more data 

responsibility for conducting the population fields than they should in an attempt to avoid 

census, for processing registration data on later problems. There is no doubt that if an 

births, marriages, deaths and diseases, and for economic system could be developed to avoid the 

government social surveys. necessity for creating data streams (or make it 

possible for datastreams to be created less far 

1.2 A need for better access to data has been in advance where the data has to be sorted) many 

identified in three main areas: census data users would more than pleased. 

CENSUS DATA: The 1981 census of population REGISTRATION AND MEDICAL DATA: Data for a single 

primary data comprises some 8,OOOMb (albeit with dataset, eg births for a single year, is 

some duplication under our current system of relatively manageable. But there is a need to be 

processing). The next census may possibly be held able to make links between data sets, for example 

in 1986, but more likely in 1991, and it is to analyse and tabulate deaths data over a ten 

necessary to begin planning the overall strategy year period (the life of a particular version of 

now. The problem to be solved is the ICD). Even for a single dataset (around 100Mb) a 

inflexibility of the current datastrearn approach transposed file storage system which would make 

in which supposedly small selections of data it feasible for ad hoc tabulations to be run at 

fields are serially extracted on to magnetic tape the terminal in a few minutes would be more than 

for the purpose of tabulating a series of related welcomed by OPCS statisticians, who currently 

tables. These datastreams have to be planned well find that a 10% sample is all they can manage on 

in advance for the efficiency of the approach to their assigned computer budgets. We also have a 

be realised. In practice this planning can go major longitudinal analysis project which 
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involves following the progress of a 1% sample of 

population over time starting from the 1971 

Census. This data will amount to some 750Mb, 

from the 1971 and 1981 Censuses and the 

intervening events, and will continue to grow. 

DATA COLLECTED BY SOCIAL SURVEYS: The larger 

surveys, such as the Continuous Manpower Survey 

and the General 

substantial volumes 

Household 

of data 

Survey, 

and 

involve 

computer 

efficiency is a consideration. The ad hoc surveys 

are much smaller, and do not present the same 

problems (but might benefit from a system 

developed for the above applications). 

1.3 Our research indicated that a relational 

database system using a 

structure, such as RAPID, 

transposed' 

would be 

file 

most 

appropr1ate for our needs. However, as we do not 

operate IBM equipment, the option to use RAPID is 

not open to us. We therefore studied 

commerically available software in order to see 

if any of it could provide an acceptable degree 

of efficiency. During 1982 we carried out a full 

trial of the most promising relational database 

management system, called RAPPORT. 

We found that the relational structure was well 

suited to our work and that relational databases 

seem to be relatively easy to, understand and 

design. But we found that processing costs for 

statistical work were exceedingly high. 
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1.4 Finally we made a preliminary study of the 

problem of implementing RAPID on ICL 2900 

computers. The task was seen to be daunting, to 

say the least, but we noticed that much of the 

package was concerned with updating the database 

with new data (rather than just amending current 

data). It seemed that this concern with updating 

created much complexity in the package, as also 

did the concern with packing data down to the 

smallest number of BITS by recoding. It occurred 

to us that if we assumed the data was totally 

stable (a fair assumption considering the way we 

process our data at the moment) and that packing 

below the BYTE level was too heavy on mill time 

to make the data storage savings worthwhile, we 

could build a new system from scratch in a 

reasonable period of time. As far as data 

packing is concerned we felt that if recoding to 

a sequential code is to be done, it should be 

done visibly and logically by the user (as if 

deriving a new variable) because then our TAU 

tabulation package could take advantage of the 

recoding by using direct table look-ups. 

1.5 From this study evolved the stategy for 

implementation described in this report. As one 

might expect at this stage in the project we have 

rather more questions than answers, but the 

position looks hopeful. 



2. A POSSIBLE STRATEGY 

2.1 OUr proposed strategy for implementing a 

statistical database management system is 

strongly influenced by our circumstances. We need 

to obtain as early a return as possible on our 

investment, and to limit our rate of investment 

to what c'an be provided in the current economic 

climate. This implies starting with a simple 

system, but one which has been designed so that 

more advanced facilities can be added as 

resources become available. We propose therefore 

to implement first a system to hold static edited 

microdata. We can then develop by adding 

utilities for expanding or contracting the data 

set, querying and altering ad hoc records, 

extracting subsets and PERHAPS interfacing to our 

editing systems. The facility to join two ordered 

relations to the form of a simple hierarchy (as 

used for census data) will certainly be an early 

enhancement to the software. We feel very 

strongly at the moment that the system will Nor 

be enhanced later to directly add new records to 

a datastore in amongst current records (either 

physically or logically). But there will be a 

facility to amend current data or create a new 

relation (these do not cause file design 

problems) • 

2.2 The overall concept will be one of loading 

data into the database format from whatever data 

collection and editing system is currently used 

and using the data store software to access the 
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data 'efficiently. Of course there would be 

nothing to stop the user reserving space for 

derived data fields and computing and storing 

these in the datastore for the period during 

which they were required. We would expect users 

to work in this way. 

2.3 For ease and speed of first implementation, 

we propose to use a high level language. This may 

sound illogical when the ultimate aim is high 

computer efficiency, but we hope to be able to 

contain the key processes within a limited set of 

modules, which can subsequently be rewritten in a 

low level language if absolutely necessary (a 

full system in the high level language would 

always be maintained for both maintainability and 

forward compatibility). 

* What languages should we consider in our design 

experiments for the first implementation? 

* In particular, is there any facility which 

would limit the choice to those languages that 

have it? 

There is another reason for beginning in a high 

level language. That is to ensure the 

portability of the system. In the UK the 

statistical function is not centralised in the 

sam way as in many other countries, and we expect 

a variety of machines to come into use. The use 

of common software is a major issue at the 

present time, and in our view a worthwhile cause. 



2.4 The use of a high level language would appear 

to allow packing only to the byte, rather than 

bit, level in the initial implementation. 

* Is packing to the type level adequate for the 

envisaged production systems? 

* Should we deviate from a fully transposed 

structure to allow grouping of short codelist 

data fields in order to minimise storage, and if 

so how should they be grouped? 

* Should data-recoding to facilitate reduction to 

te minimum number of bytes be part of the system, 

or should we just load the data given? 

(Certainly the latter in the first version, but 

should allowance be made for that kind of 

enhancement?) 

2.5 It might be advantageous for various reasons 

(statistical,- managerial and economic) to link 

the database system to our data dictionary 

system, which has been developed specifically for 

statistical work. We would certainly aim to make 

the loaded TDF version of data invisible to the 

user. 

* Can we avoid the need to store meta-data along 

with the data in the database? 

* What would be the disadvantages of doing this? 

* What are the implications of separating the 
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data from the meta-data for privacy protection? 

The latter is of prime importance to us, 

particularly for the census and the longitudinal 

study. 

2.6 We would like to use the operating system as 

little as possible, or at least contain its use 

to within specific parts of the system, in order 

to minimise the problems of portability. 

* Is there a conflict between this and the 

facilities needed for a TDF system? 

3. A DESIGN BASIS FOR INITIAL DEVELOPMENT 

3.1 The initial development of this TDF 

(Transposed Datastore File) system for primary 

data will be based on the experience gained on 

the secondary data TDF system which has been 

successfully used with the OPCS mapping system 

STATMAP. The data storage element was the word 

(instead of the byte) and each data element 

occupied precisely one word (instead of a 

variable number of bytes) but it is believed that 

the same simple technique is applicable in the 

more complex world of primary data fields by: 

- using VME to ensure efficiency at the byte 

(instead of word) level 

- not packing data below the byte level 

- making the data element the byte to correspond 

with the data storage element 

- let the software worry about which bytes need 



retrieving to make up a requested data field 

(ie the TDF structure should admit nothing 

about groups of bytes) 

3. 2 It is thought to be worthwhile to make the 

above 'adjustments' to contrive a TDF system for 

primary data which is as single and uncluttered 

with complications as is the secondary data TDF· 

system because of the results a,chieved. In the 

mapping TDF we have stored (in a 100Mb file) 188 

SAS (Small Area Statistics) 1981 Census derived 

variables for each of 130,000 EDs (Enumeration 

Districts) in Great Britain. For most mapping 

purposes the user needs to extract 4 variables 

for all the EDs in a chosen window of CB. The 

process of extracting 4 variables for the whole 

GB window takes between 36 and 108 elapsed 

seconds. The amount of mill time used is less 

than 10% of the average elapsed time (important 

if elapsed time estimates are to be meaningful in 

the context of a busy multi-program computer). 

3.3 If the same simplici ty (and therefore 

efficiency) can be attained, the access speeds 

achievable, in applications where such speed is 

USEFUL, are illustrated by the following 

examples: (What is meant by USEFUL is explained 

after the examples.) 

A census tabuation of 4 variables (data fields) 

might involve accessing only 4 bytes per person. 

The 100,000 blocks of data (assuming 2Kb per 

block, there would be 25,000 segments in a census 
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TDF) would be accessed in 60 to 180 minutes 

elapsed time (12 mill mins). That's less than 3 

minutes (12 mill secs) per county. Where 

filtering is required, only the variable to be 

fil tered need be accessed at first, the other 

variables only being accessed when the filter 

test is positive. 

A single year's deaths tabulations. involving 

similar variables would require the access of 

1000 2Kb blocks in 36 to 108 seconds (7 mill 

secs) • Accessing ten year's worth of deaths at 

the terminal becomes a feasible proposition when 

the elapsed time reduces to 6 to 18 minutes. 

* What does USEFUL (above) mean? 

The measure used (elapsed time) does not 

necessarily mean that the intention is to make 

access to data quick in a While-you-wait fashion. 

Where there is no need for terminal access to 

data, the facility for short access times has two 

main beneficial effects: The effective work-

capacity of the computer is increased because 

more access runs can be done in a day, and the 

need for dump-and-restart is reduced because of 

the lesser risk of the computer going down during 

a particular run. 

3.4 We will now describe how the secondary data 

TDF system works and then show how a primary data 

TDF system might be designed to take advantage of 

the simple structure and superb efficiency 

offered. 



4. TDF FILE STRUCTURE CONSIDERATIONS 

(The mapping TDF is a file set up for the OPeS 

STATMAP thematic mapping system currently being 

used to produce point maps of 1981 census data) 

4.1 The mapping TDF is designed as follows: 

A 100Mb file on an EDS 200 is divided into 261 

segments. Each segment is precisely one cylinder 

containing 188 2Kb blocks. Each block contains 

the data for variable (a single SAS derived 

count) for 500 consecutive records (Enumeration 

Districts). The 500 four-byte integer counts in 

a block represent the smallest unit of data 

transfer between computer memory and disc. All 

the blocks in a particular segment contain the 

counts for the same 500 areas, but represent 

different variables. Thus up to 188 variables 

for each of 130,500 EDs are held in the TDF 

(block 89 in segment 2 contains the data for 

variable 89 for the 501th to the 1000th ED). 

This partially transposed structure has the 

advantage that any number of variables for 500 

consecutive recordS can be accessed without disc 

read-head movement. It also has the advantage 

that the data loading process is perfectly serial 

and needs a program data core size of only 

188*2Kb. Conversely, entire-record access (eg 

for editting) is also achievable in a serial 

fashion, again involving a program data core size 

of only 188*2Kb. 
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Unlike the completely transposed and non-aligned 

( conventional) -structure, the partially 

transposed and - -aligned structure enables the 

fastest possible access speeds to be achieved and 

enables entire-record access to be achieved 

without loss of efficiency compared with using 

the original serial file from which the datastore 

was loaded. 

4.2 For a primary TDF: 

Precisely the same datastore structure could be 

used to hold 522,000 primary records with 188 

bytes per record. Each block would contain the 

data for one part-variable for 2000 consecutive 

records. A sequence of blocks would hold the 

data for a whole variable, the number of blocks 

being the same as the number of bytes needed to 

hold the variable block for a byte 

variable, 2 blocks for a 2 byte variable, and so 

on. Only the software needs to know which blocks 

represent which parts of which variable. 

The objective would be for the user to deal with 

the same Cobol-like record layout that he would 

normally deal with for accessing his data. The 

only difference would be that if the data is TDF 

loaded only the parts of the record layout being 

used would be • filled in' by the software each 

time the read-next-record subroutine is called. 

An initialising subroutine would have to be 

called to set the scene. 



It is envisaged that the TDF access and update 

subroutines would be used in the TAU tabulation 

package. A separate utility P10gram will be 

needed to load data into TDF format, given its 

meta-data and an appropriate disc file. 

4.3 The initial development will involve the 

loading qf a specific set of data into TDF format 

(yet to be chosen, but 1 years, worth' of deaths 

data is' a likely candidate). An ad hoc facility 

will be put into TAU to enable the TDF to be 

accessed for nominated variables, and the 

facility tried out on interested users, and 

empirical data collected to assist further 

development. 
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Abstract 

This paper describes an efficient character encoding method based on practically observed 
properties of character occurrences within files. The method is specially designed for 
the encoding of files containing both numeric and alphabetic fields. It is therefore 
particularly attractive for the storage of many large database files, encountered in 
practice, which are amenable to statistical analysis. The technique of using m-grams is 
also incorporated to enhance the compression efficiency. Numerical tests have given 
favorable results for the proposed method. 

Index Terms: encoding techniques, 
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I. INTRODUCTION 

Many encoding methods have been 

developed in the literature [1-9 ] for 

representing data with fewer bits than are 

required by a conventional fixed-length 

character representation. These methods, 

usually called data compression techniques, 

have wide applications in information pro

cessing systems, where character represen

tation has a considerable effect on the 

effiCiency of file storage on magnetic 

media and its transmission down tele-

communication channels. 

One of the popular data compression 

techniques is that developed by Huffman 

[3 ] who took advantage of the fact that 

characters do not occur with equal fre

quency. Accordingly the most frequent 

characters are assigned to the shortest 

codes and all larger codes are constructed 

so that shorter codes do not appear as pre

fixes. Simply, the Huffman's method is to 

build a decode tree (i.e., a binary tree 

in which external nodes represent 

characters) having minimal external path 
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length. If p(i) is the expected relative 

frequency (or the weight) of the ith character 

and d(i) is the distance of the external node 

for the ith character from the root node, then 

the Huffman's decode tree minimizes the quantity 

N 
L p(i)*d(i) 

i=l 

where N is the size of the character set. A 

recent implementation of Huffman's method along 

with compression statistics are reported in [6 J. 

Another observed property of character 

occurrence within files is the arbitrary alter

nation of alphabetic, numeric data, and spaces 

within predefined fields of one or more char

acters. The record layout of ~ost commercial 

files is designed such that the majority of 

fields are dedicated to contain a sequence of 

numeric or alphabetical data consisting of 

several characters in each field. In turn, the 

numeric field may be zero filled, while the 



alphabetic field may contain a succession 

of blanks. Consequently, the majority of 

characters within each field are limited to 

a subset of the global character set (we 

call this subset a locality set). Such 

locality of character reference behavior 

may extend over two or more adjacent 

fields. A recent compression technique 

[2 ] that makes use of the distributional 

as well as the correlational character

istics of character reference has been pro

posed by the authors of this paper. The 

technique is a two-level hierarchy of 

Huffman's type binary trees. The trees in 

the first level (called the local trees) 

are identified and constructed based on 

the divisions (groups) of characters as 

induced by the property of locality of 

character reference. The trees in the 

second level (called the failure trees) are 

used to indicate the transition from one 

group to another when there is a change of 

the locality set. 

In addition to the variability in 

frequency and the locality of reference, it 

has been also observed that certain se

quences of characters occur more frequently 

than others. One approach to data com

pression is to replace high-frequency 

variable-length fragments of words by 

fixed-length codesPbint1ng to a-'com

pression table containing these high

frequency fragments. Mulford and Ridell 

[ 5] , Ruth and Kreutzer [ 8J , and 

Schwartz and Kleiboemer [9: ] have used 

Huffman's encoding with frequently occur

ring bigrams (sequences of two characters) 

or m-grams (sequences of m,characters) 

added to the character set. This technique 

achieves tighter compression, but there is 

a tractability problem in finding the 

optimal m-grams for a given text. 

In the following sections, we de-
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scribe an encoding technique that combines the 

advantages of the techniques mentioned above. 

The method, which uses one level of Huffman's 

type trees, will be explained in stages, then a 

formal decoding algorithm is presented. Next, 

results of the numerical tests are reported. 

2. UTILIZATION OF CHARACTER REFERENCE LOCALITY 

For simplicity, we shall use a restricted 

character set to illustrate the technique. 

Assume that we have a set of 6 characters con

sisting of 3 alphabets and 3 digits. Table I 

gives the relative frequencies of these charac

ters along with the binary code obtained from 

applying the Huffman's method on these statis

tics as shown ,in Figure 1 (the value inside each 

node represents the relative frequency of all 

leaf nodes in the subtree whose root is this 

node). 

Table I 

Character Relative Huffman's 
Frequency Code 

A 9 01 
B 6 101 
C 5 111 
1 9 00 
2 6 100 
3 5 110 

1 

Figure 1. Huffman tree for the character 

set of Table I 



Now let us assume that in addition to 

the statistics of Table I, we also know 

that adjacent characters within text tend 

to fall within one of two groups (locality 

sets): alphabets or digits. Let us de-

fine the average sequential-run length of 

a group to be the expected number of con

secutive characters of this group before a 

character from a different group appears 

in the text. The reciprocal of the 

average sequential-run length of a group 

indicates the frequency of character 

switching (i.e., change of locality) from 

this group. 

For the example of Table I, let us 

assume that the average sequential-run 

length of both the alphabet and the digit 

group is 5, i.e., on the average 5 char

acters of the same group will appear con

secutively before a character from the 

other group interrupts the current local

ity. To make use of this alternating 

behavior, we construct two Huffman's type 

decode trees: the alphabet tree and the 

digit tree. In each tree, we introduce 

an extra imaginary character, $, called 

the switch indicator, which is merely used 

to indicate that the next character is from 

a different group and thus the other decode 

tree must be consulted. 

Figure 2 shows the alphabet and digit trees 

constructed using the statistics of Table I 

and an average sequential~run length of 5 

as explained above. The relative fre

quency of the switch indicator $ within the 

alphabet tree is given by (9+6+5)/5 = 4, 

Le., every 20 alphabet characters will 

contain on the average 4 switches to the 

digit group. Note that in general the 

relative frequency of $ within the two 

trees can be different. 
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alphabet tree 

digit tree 

Figure 2. Alphabet and digit trees for 
the character set of Table I 

As an example, the string ABAACll123AABCB 

will be decoded in 31 bits (assuming we start 

from the alphabet tree) as follows: 

o 10 
A B 

o 0 
A A 

110 
C 

III 
$ 

o 
1 

o 
1 

110 III 0 0 10 110 10 
3 $ A ABC B 

o 
1 

10 
2 

The Huffman's scheme (Figure 1) requires 37 bits 

for the same string. It is easy to show (assum

ing the statistics of Table I and the average 

sequential-run length reflect the true figures 

found in practice} that the average number of 

bits per character for the Huffman's method is 

2.55, while that of the scheme of Figure 2 is 

2.4. This means that the sayings achieved by 

using shorter representation (as a result of 



locality) exceeds the overhead introduced 

by the switch. indicator. 

3. OVERLAPPING LOCALITY SETS 

In general, the locality sets do not 

have to be mutually disjoint, i.e., a 

given character can belong to more than 

one locality set. As an example, let us 

add an extra character, the blank char

acter ~, to the set of Table I and assume 

that it has a relative frequency of 10. 

Furthermore, assume that the blank char

acter has equal probability to occur in 

any group. Figure 3 shows the Huffman's 

tree for this set and Figure 4 gives the 

alphabet and digit trees using an average 

sequential-run length of 10 in both trees 

(Note that the relative frequency of $ is 

2.5 in this case). 

Figure 3. Huffman's tree for the 
modified set 
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alphabet tree 

digit tree 

Figure 4. Locality trees for the 
modified set 

For example the string ~B~Cll~2l~ is repre

sented by 28 bits as follows 

11 11 01 00 01 100 
A A ~ B ~ C 

11 00 01 
1 ~ 2 

11 00 
1 ~ 

101 11 
$ 1 

Note that we deliberately made the code for the 

blank character be different in the two trees to 

emphasize that no ambiguity is introduced as a 

result of having the same character in more than 

one locality set. This is because only one 

locality tree is used at a time to control the 

decoding process, with control being transferred 

to the other tree whenever the code of the switch 

indicator is encountered. Using straightforward 

calculation it is easy to show that the average 



number of bits per character for the 

Huffman's scheme (Figure 3) is 140/50 

2.8, while that of the scheme· of Figure 4 

is 125/50 = 2.5. 

4. MULTIPLE LOCALITY SETS 

So far, we have dealt with only t\;"C 

locality sets. In practice, it migh.t he 

preferable to have more than two locality 

sets.. A general scheme could use four 

locality sets: alphabets, digits, suc

cessive blanks, and the special characters. 

Assume that the character set is 

divided into n locality sets (pot neces

sarily disjoint). In the locality tree of 

the ith group, there will be a switch 

indicator leaf node, $ (i,j)., to indicate a 

switch from group i to group j, i~j, and 

l=>i,j=>n. The relative frequency of $(i,j) 

within the ith tree is obtained by collect

ing statistics about the average sequential .. 

run length and transition frequency from 

group i to group j. 

As an example, suppose that we would 

like to divide the character set of Figure 

3 into 3 groups such that the blank char

acter is in a separate group. Figure 5 

shows the three locality trees: the 

alphabet, the digit, and the blank tree, 

using appropriate relative frequencies for 

the switch indicator nodes. 
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$(1,2) $(1,3) 
alphabet tree 

$ (2,1) 

digit tree 

$ (3,1) $ (3,2) 

blank tree 

Figure 5. Three locality trees 

'Note that the saving obtained from shorter rep

resentation of characters and the clustering of 

characters of the same type in adjacent positions 

of the input text outweighs the extra space due. 



to the less frequent occurring switch 

indicators. 

5. USE OF LOOK-AHEAD 

The idea of using bigrams Cor m-gramsl. 

can be easily incorporated into the 

previous technique if a look-ahead capa

bility is added to the encoding process. 

For example, if in the alphabet tree of 

Figure '2, we know that the bigram 'BC' 

occurs frequently, e.g., 50% of the occur

rences of the character B are followed by 

the character C. Then we can add a leaf 

node for the bigram BC as shown in Figure 

6. Whenever the character B is encoun

tered in the text, the next character is 

also examined to see if the code of the 

bigram BC can be used to encode the two 

consecutive input characters. It is easy 

to see that the use of the scheme of 

Figure 6, rather than that of Figure 2, 

will save an average of 0.5 bit for each 

occurrence of the character B. 

I 

Figure 6. An alphabet tree with 
a bigram leaf 

Another application of look-ahead is 

when a separate locality set is used for 

the blank character, yet the blank char

acter is also included in the alphahet tree 

in order to handle the occurrence of a 
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single blank he tween two alphabet words. When

ever a blank character is encountered after an 

alphabet, the next few characters are examined. 

If this blank is a member of a succession of 

blanks, control is transferred to the b.lank tree 

using the appropriate switch indicator. Other

wise, the local code of the blank character in 

the alphabet tree is used. 

6. THE COMPRESSION SUBSYSTEM 

A typical compression subsystem, based on 

our proposed scheme, would consist of three 

principal components; the statistics gathering 

function, the data compression function, and the 

data expansion (decoding). function. 

The Statistical Gathering Function: A statis

tically significant portion of the file is pro

cessed .and pertinent statistical information is 

collected (e.g., f·requencies of characters, 

transition .frequencies among locality groups, 

frequency of bigrams, etc.t 

The Data Compression Function; This function 

builds the decode trees using the statistics 

obtained by the statistical gathering function, 

The Data Expansion Function: This function re

stores the original text from the compressed 

data. The following is the decoding algorithm 

used by this function. We assume that the 

pointer R is initialized to point to the root of 

one of the locality trees. 



Decoding Algorithm: 

P + R 
/* R points to the root of current tree*/ 
/* P points to current node */ 

LOOP 
IF node P is not a leaf THEN 

CASE 
:input=o 
:input=l 
ENDCASE; 

P + rightchild(~) 
P + leftchild(Fl 

ELSE /* P is a leaf node *1 
IF node P is a switch indicator 
THEN R=P + DATA(~) 

/*New root */ 

ELSEDO; 
Print output character 
or m-gram of node P; 
P + R 
/* Start from the root */ 

ENDIF; 
ENDIF; 

UNTIL end of compressed data; 

7. NUMERICAL TESTS 

Two separate implementations (one on 

an IBM 370/3033 machine and the other on a 

VAX 11/780 machine) have been used to com

pare our proposed scheme and the Huffman's 

method. The extensive tests performed so 

far have shown a consistent superiority 

over the Huffman's method and an improve

ment over the results reported in [2] • 

The average improvement in compression over 

Huffman's method is 24%. The processing 

time during the decoding phase for the pro

posed scheme was 9% smaller (on the aver

age) than that of the Huffman's method (due 

to shorter search path, i.e., less number 

of bits in the compressed text). The files 

under consideration were files containing 

both numeric fields (thus they are amenable 

to statistical analysis) and alphabetic 

fields (e.g., names, addresses, etc.). 

These files are common in business, 

academic, as well as some research environ

ments. The implementation of m-grams has 

been limited to few (statically defined) 

bigrams. A dynamic (more sophisticated) 
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gathering statistics component, i.e., one in 

which the decision about the number of locality 

groups and their character members will be based 

on the statistics collected, is being planned. 
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AUTOMATED CELL SUPPRESSION TO PRESERVE CONFIDENTIALITY OF BUSINESS STATISTICS. 

G. Sande, Structural Analysis Division, Statistics Canada 
Ottawa, Ontario, KIA OT6 Canada 

Abstract 
A Statistical Agency must balance the competing requirements of preserving the 
confidentiality of the data obtained from respondents and of publishing 
statistical summaries of the data obtained from respondents. This note will 
describe the components of an experimental suite of software which seeks to 
resolve this conflict in the case of economic censuses. The components 
described will be those which identify sensitive statistics, determine 
complementary suppressions and audit the suppressed publications. These 
components are supported by an infrastructure of utility programmes. Experience 
with the software on various economic censuses and opportunities for further 
work will be discussed. 

Introduction 

A Statistical Agency must balance the 

competing requirements of preserving 

the confidentiality of the data 

obtained from respondents and of 

publishing statistical summaries of 

the data obtained from respondents(2). 

This note will describe the components 

of an experimental suite of software 

which seeks to resolve this conflict 

in the case of economic censuses. The 

components described will be those 

which identify sensitive statistics, 

determine complementary suppressions 

and' audit the suppressed publications. 

These components are supported by an 

infrastructure of utility programmes. 

Experience with the software on 

various economic censuses and 

opportunities for further work will be 

discussed. 

Basic Data 

The foundation for all of the 

activities is the data supplied by the 

respondents. For business respondents 

we assume that the existence of the 

economic activity is known and that 

any interested observer can make a 

reasonable guess as to the amount of 

the economic activity. In precise 

terms, this means that the geographic 

location (SGC or Standard Geographical 

Code), the type of business (SIC or 

Standard Industrial Classification) 

and the owners identity (IDN or 

Identifier Number) are all known with 

certainty. The value of the economic 

activity ~ay be reasonably guessed and 

we will assume that an approximation 

of between 50 and 150 percent of the 

true value may be readily obtained. 

The details of whether the 

approximation should be 50 to 150 

percent or 60 to 140 percent do not 

much matter as only various ratios are 

important. The 50 to 150 percent 

assumption yields various coefficients 

of 1/2 which will arise later. 

The most striking feature of this data 

is the great diversity of sizes of the 

economic units. There are many units 

such as "Sam's Corner Store" with 

activity of $10,000 and a few units 

such as "Multinational Manufacturing, 

Inc." with activity of $500,000,000. 

A published total of these two would 

for all practical purposes be the 

value of the larger unit. An 

aggregation would require many more 

units before it is no longer just a 

minor perturbation of this large unit. 

*presented to Conference of European StaL1sticians, Working Party on Electronic 

Data Processing, March 21-25, 1983, Geneva 
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Identifying Sensitive Statistics 

The data supplied by the respondents 

is used to determine many related 

statistics. Examples would include 

total shipments of furniture 

manufactures in Saskatchewan, all 

manufactures in Saskatchewan, 

furniture m~nufactures in Canada or 

These all manufactures in Canada. 

illustrate various levels of 

aggregation (Saskatchewan and Canada 

or furniture manufacturing and all 

manufacturing) in both the geographi~ 

and industrial classifications. 

Standard rolling up schemes would 

allow the calculation of the various 

totals to be carried out. 

The problem is more involved as we 

would like to identify the large units 

in each of the totals we form. 

seek to aggregate 

10 50 60 

Tom Sue Dick 

with 

5 45 75 

Harry Sue Joe 

we get 

5 10 60 75 95 

Harry Tom Dick Joe Sue 

If we 

120 

Total 

125 

Total 

245 

Total 

The six separate units become five 

under aggregation as "Sue" is common 

and the size ordering under 

aggregation is quite unstable. The 

size ordered list of unique 
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respondents is used to determine which 

totals are sensitive. The respondents \ 

contributions to a particular total 

are identified directly, unduplicated 

for ownership arid then sorted to 

produce the desired list with no 

attempt made to roll up aggregations 

because of the difficulty illustrated 

above. Determining the respondents 

for a particular total is an example 

of a "range query" and may be 

processed efficiently with an 

appropriate data structure such as a 

k-d tree<l>. 

A typical rule to identify sensitive 

totals is if the three largest 

respondents contribute more that 75 

percent of the total then the total is 

sensitive. Dick, Joe and Sue, above, 

with combined value of 230 contribute 

more than 75% of the total of 245 so 

the example aggregation is sensitive. 

We would write this as 

x (1) + x(2) + x (3) > 

3/4fx(1) + x(2) + x(3) + x(4+)} 

where x (1) is the largest unit, and 

x(4+) is the sum of the fourth and 

smaller units. 

s'(x) = 1/4{x(1) + x(2) + x(3)} 

- 3/4 x(4+) > 0 

is the same formulae where s'(x) > 0 

has become the rule fo~ identifying 

sensitive totals. We prefer to have 

the coefficient of x(4+) be -1 so we 

have the equivalent rule 

s(x) = 1/3(X(1) + x(2) + x(3)} 

- x(4+) > 0 



We may demonstrate that 

s(x+y) ~ sex) + s(y) 

s(x+y) ~ sex) - t(y) (2 ) 

where x+y is the aggregation of two 

separate totals and t(.) is the total 

displayed in the same notation<3>. 

Equation (1) indicates that s(.), 

which we will call the sensitivity 

criterion, is subadditive and 

expresses precisely the intuitive 

notion that aggregation provides 

protection of the confidentiality of 

the respondents' data. Equation (2) 

shows that small totals cannot provide 

protection for very sensitive totals. 

Th e - 1 co e f f i c i e n t 0 f t ( .) in (2) is a 

result of our choice of -1 as the 

coefficient for x(4+) in s(.). We are 

more interested in the upper tolerance 

u(x) = t(x) + 1/2 sex) U) 

for the identification of the 

complementary suppressions. The 1/2 

is a reflection of the 50 to 150 

percent approximation assumption made 

earlier. 

In practice the sensitivity criterion 

in use will have other percentage 

thresholds and numbers'of units 

although the algebra will be formally 

the same. The d'etails of the 

sensitivity criterion are often held 

to be as sensitive as the data it is 

used to pro tect . 

Determining Complementary Suppressi~ns 

The identification of sensitive totals 
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gives us a cleanly stated problem 

which can now be solved. We do this 

by changing a sensitive total, 

temporarily,to its upper tolerance 

(3) and seeking to rebalance the 

table. 

Suppose 

2 2 4 

2 10 12 

4 12 16 

is a table with the upper tolerance 

1 1 for the sensitive cell with value 

10. We would get 

2 2 4 

2 10+1 12 

4 12 16 

which doesn't add up but the table 

2+1 2-1 

2-1 10+1 
f 

4 12 

4 

12 

16 

of 

does add up. Mathematical programming 

is designed to maintain' the equations 

which indicate that the total is the 

sum af its pa~ts. From this modified 

table we conclude that the three 

additional totals should be suppressed 

as complementary suppressions. The 

amount of change permitted in the 

totals of value 2 would be from 1 to 3 

by our 50 to 150 percent assumption. 

When' the examples are larger there are 

many alternate patterns which will do 

the job so we must specify how ~o 

choose between the many alternatives. 

We rate each pattern by summing the 



product of the size of the total being 

changed and the amount of change. 

This yields a linear objective 

function for the mathematical 

programming problem. This "size rule" 

tends to favour the suppression of 

small totals in order to preserve 

large totals. The mathematical 

programming obtains the best pattern, 

under the objective functio~, without 

having to examine all possible 

patterns. 

An objective function which summed the 

size of the totals being suppressed, 

without regard to the amount of 

change, would yield a discrete 

optimization problem well known to be 

much more difficult to solve. The 

solution algorithm in use applies the 

temporary modification to the most 

sensitive total first, and then to the 

second most sensitive to~al not 

protected with the previous 

complements used with no cost in the 

objective function. This is repeated 

until all sensitive totals have been 

protected'. The result is a simple 

sequential heuristic which works 

surprisingly well and which can be 

enhanced with minor manual 

intervention. 

The resulting operation may be 

described as the completion of the 

pattern of complementary suppressions. 

The smallest initial pattern of 

suppressions would be the sensitive 

totals with no presupplied 

complementary suppressions and leads 

to a completely automatic 

determination of all required 

complementary suppressions. Many 
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presupplied complementary suppression 

may result in the sensitive cells 

being already protected with no new 

complementary suppressions would be 

required. An example of this would be 

the use of the January suppression 

pattern for the February data of a 

monthly business survey. 

Auditing Suppressed Publications 

The results of the automated 

calculation of a suppression pattern 

are, of course, correct. To increase 

our confidence in the correctness or 

to examine a pattern prepared 

elsewhere we would like to audit the 

pattern for correctness. The 

aggregation structure of the table can 

be represented as a system of 

equations which can be used as 

constraints in a mathematical 

programming problem. 

The table 

x x 

x x 

4 12 

4 

12 

16 

yields the equivalent table 

0-4 0-4 4 

0-4 8-12 12 

4 12 16 

The ranges for the individual totals 

cannot be usefully added in general as 

illustrated by the first row has a 

total of 4 but has the ranges adding 

to the range 0-8. 

The ranges provide no information that 



is not already present in the table 

and could well be constructed by any 

user of the table. Providing this 

information may render the table more 

useful to the users who do not want to 

become well versed in the techniques 

of using suppressed tables. 

The exampl e 

x x 2 

x x x 

2 2 x 

2 2 x 

16 8 8 

is equivalent to 

8-12 0-4 2 

0-4 0-4 2-2 

2 2 0-4 

2 2 0-4 

16 8 8 

2 

2 

x 

x 

16 

2 

2 

0-4 

8-12 

16 

16 

8 

8 

16 

48 

16 

8 

8 

16 

48 

The range 2-2 is an example of what 

we want to avoid. This example 

illustrates that the rule of two 

suppressions in every row and columne 

is not enough to prevent residual 

disclosures. Such tables are not 

produced by the automated techniques 

discussed above as they are based on a 

muah stronger analysis of the problem. 

Support Utilities 

The three substantial components 

discussed above are supported by a 

collection of ten utility programmes. 

The rest of this section is a brief 

description of this infrastructure and 

illustrates the additional support 

required to extend the substantial 

components to a functional suite of 

software. All of the programmes use a 
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self describing free format file for 

both input and output so they may be 

run in any order which makes sense in 

terms of the operations performed. 

Occasionally, some very unforeseen 

execution sequences have made sense. 

The tabulation program which 

identifies sensitive totals, called 

~, has a limit of 35,000 

micro-records because it keeps the 

data in main memory. When this is a 

restriction, a utility program, ~, 

allows separate segments of the data 

to be tabulated and the results 

combined so that the 35,000 limit 

becomes a nuisance rather than a 

severe limitation. 

There are four variations on update 

utilities with Merge also having some 

update functions. The main update 

utility, ~, allows the 

specification of publish or suppressed 

status for individual totals as well 

as modification, including deletion, 

of upper tolerances when waivers from 

respondents allow changes in the 

apparent sensitivity status of totals. 

A bulk update, ~, allows transfer 

of a suppression pattern from one 

tabulation to another related 

tabulation such as the January to 

February transfer for monthly surveys. 

Another bulk update, ~, allows 

repetitive specification of publish or 

suppressed status as might be done to 

suppress all four digit SIC detail in 

a very small province. Segments of a 

tabulation may be extracted with a 

utility, Sbset, to break the 

computation into subproblems for large 

tabulations. / 



There are three variations on reformat' 

utilities. Most of the components 

deal with a tabulation having totals 

with a status code while others, most 

importantly the audit component ~, 

use a tabulation with totals present 

or absent. The conversion utility, 

~, that does this transformation 

is said to release the tabulation as 

the ouput ~ontains no sensitive 

information. The conversion of the 

files from the self describing fr~e 

format to a fixed format record is 

done by ~, with the ouput serving 

as a control file for the regular 

publication system. Transfer of files 

between the two classification 

variable suite and the three 

classification variable suite is done 

by the utility Face with the output 

typically serving as a bulk update for 

the transfer utility. 

Externally prepared tabulations often 

have empty totals omitted. The 

pattern is completed, by ~, so 

that empty totals are explicitly 

represented wi t.h a val ue of zero. The 

resulting table may not exactly add 

and must be adjusted, by ~, to 

correct for independent rounding or 

other errors before it may be audited. 

This adjustment is done by 

mathematical programming which is 

internally similar to the Suors 

component which calculates the 

complementary suppressions. The 

adjustment facility, which hardly 

deserves to be classified as a support 

uti lit Y , i s 0 f use in its 0 wn rig h t to 

adjust independent rounding and works 

even when there are suppressed totals. 
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Useage Experience 

The major benefit of the software is 

the discipline imposed in proceeding 

from various notions expressed in 

terms of convex spaces<5> to 

functioning software. The same 

discipline also applies to the 

preparation of tables from economic 

census takers for use with the 

software. 

An early problem was the geography 

where an economic region contains 

several counties which contain several 

municipalities as well as the economic 

region containing a metropolitan area 

containing several municipalities. 

The counties and metropolitan areas 

are equally valid disaggregations of 

the economic region and are built up 

from the same municipalities but in 

different groupings. The two 

classification variable suite 

addresses this problem with little 

external, but moderate internal, 

complication. In applications, it is 

easy to forget the metropolitan area 

implicitly defined by the remainder of 

the economic region after the regular 

metropolitan region is defined. (The 

first sentence of this paragraph 

illustrates how natural this mistake 

is.) Similar problems occasionally 

arise in the industry codes with 

non-standard aggregations. Included 

subtotals of some tables must be 

explicitly represented in the 

classification hierarchy. 

Live problems are much larger than the 

illustrations that are included in 

exposi tory notes. A typical economic 



census will have a geographic 

structure of 12 provinces or 

territories and 4 regional or national 

groups for a total of 16 geographic 

codes. The industrial classification 

structure may have 200 industrial 

codes which are 4 digit codes 

(industries), 3 digit codes (industry 

groups), 2 digits codes (major 

industry groups) or the grand total. 

These two classifications yield 3000 

totals organized into 200 tables at 

varying levels of aggregation. The 

tabulation of 30,000 manufacturing 

records to identify which of the 3006 

totals are sensitive takes around 2 

minutes. The calculation of 

complementary suppressions takes about 

20 minutes and the auditing takes 

about 3 minutes. The operation is as 

smooth as anything involving 200 pages 

of output can be reasonably expected 

to be. For 60,000 employment records, 

the tabulation is done in two 

segments, followed by a merge, with 

the similar overall timings. For 

360,000 financial records, the 

breaking of the tabulation into 15 

segments becomes annoying with the 

other timings as before. For 20,000 

food service records classified by 

three variables for 1000 totals, the 

overall timings totalled 10 minutes 

and was successfully completed on its 

first attempt. The census of 

agriculture was a problem in 

controlling the operation as 25 

different agricultural attributes; 

mostly crops, were processed for each 

of the 10 provinces in several weeks. 

Very large problems which must be 

broken into pieces are not smooth 
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operations. The manufacturing records 

classified additionally by country of 

control yield about 12,000 totals or 

by destination of shipments yield more 

than 50,000 totals. The labour 

records classified down to the city 

and county level yield more than 

50,000 totals. These very large 

problems have a high proportion of 

zero totals. A typical scheme is to 

determine the suppression pattern for 

the labour records classified to the 

province only and then to disaggregate 

each province in turn. 

Future Work 

The purpose of the suite of software 

was to provide a testbed for research 

into automated cell suppression 

techniques. It has demonstrated 

working techniques and the range of 

support required of a full collection 

of software. One train of development 

would be to reimplement the facility 

but with a stronger production 

orientation. For example, the 

existing software prints tables with 

labels of numeric codes only while a 

production oriented system would use 

descriptive text stubs. Various 

changes could be made in the existing 

software to reduce operational 

annoyances. For example, the status 

flagging mechanism should be able to 

indicate that a subtotal introduced 

for convenience purposes and not 

intended for inclusion in any 

publication may have its value 

determined exactly without drawing 

residual disclosure error messages as 

it does in the current system. A new 

implementation of Build to process 



more that 35,000 records without the 

help of Merge would relieve much 

annoyance. 

The real opportunities for future work 

are in enhancements in understanding, 

facility and capability. Use of 

degeneracy exploiting linear 

programming inplace of the existing 

steepest descent linear programming 

may make smooth operation possible for 

larger problems. Perhaps the 3000 

totals boundary may become 4500 with 

this internal tuning. A better 

segmentation scheme may make the very 

large problems more like smooth 

operations. An experimental version 

of the complementary suppression , 
calculator which uses ranges, such as 

might be used to represent error 

estimates, on all totals has been 

tested with encouraging results 

although elaboration on how to publish 

its results are required. A good 

understanding to the relevant matrix 

theory is only available for single 

two variable tables<4>. A 

corresponding understanding for 

hierarchies of tables and for three 

variable tables would provide insight 

into the pragmatic success of the 

methods and may lead to improved 

algorithms. Some interesting but 

isolated matrix theory facts have been 

discovered by exhaustive machine aided 

searching. 

Conclusion 

A suite of ~oftware has been 

implemented to carry out the automated 

cell suppressed required to protect 

the confidentiality of respondent data 
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in economic censuses. The original 

notions arose in the context of convex 

spaces. The result is a functioning 

suite of software which has been used 

by-sever~l users, some of whom 

stretched the limits beyond the 

development intentions. The very 

brief description here only 

illustrates the major notion of the 

main components. For the foreign 

control breakout of the census of 

manufactures, the user reports an 

increase of timeliness of ten months, 

in a biennial program, concurrent with 

a five-fold increase in the number of 

totals processed. Considerable 

opportunity exists for extending 

understanding and capability in what 

is already a successful development. 
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An Information Theoretic Approach to 
Statistical Databases and their Security: 

Abstract 

A Preliminary Report 

Mary McLeish 
University of Guelph 

This paper considers a statistical database model used by J. Kam and J. Ullman in [5J to 
study database security. Results for the transmitter-receiver problem studied in informa
tion theory are applied to the database model .to provide a measure of the information in 
the query-record system. A slightly different information theoretic approach is then used 
to provide a more effective model for the security problem. Results are obtained which 
give the conditions on queries necessary to minimize the information gained by making a 
query. Minimizing this information function corresponds to increasing the chance of a 
security breach. Statistical methods can then be used to determine if a series of queries 
are being used which have properties significantly close to those required to endanger the 
security. 

INTRODUCTION 

A statistical database is a collection 
of records about which primarily summ
ary data, such as means, medians, 
standard deviations etc., is required. 
Information about a particular individ
ual is to be protected and the security 
problem consists of preventing such 
information from being deduced from 
collections of summary data. Several 
researchers, [ 2,5,6 ] have considered 
this problem under a variety of circum
stances. In this paper, the model used 
by J. Kam and J. Ullman [5] is fUrther 
investigated and information theory is 
used to provide guidelines for restric
ting queries to reduce the likelihood of 
breaking the security. 

1.1 The Database model: 

In their model, a statistical database 
is a function 6 from strings of k bits 
to the positive and negative integers. 
The keys become the domain of 6. The 
range of 6 is usually considered to be 
finite. An (~,k) query is a sequence 
of length k consisting of O's, l's and 
'~'s with exactly ~ O's and l's. (If k 
is known, this is simply called an ~
query.) The symbol ,', stands for "don't 
care", in the sense that it matches 
either 0 or 1. Thus, the query *010* 
matches the keys 00100, 00101, 10100, 
10101. An (~,k) query matches 2k-~ 
keys, forming a cube of dimension k-~ 
in the Boolean k-cube. The result of a 
query q on a statistical database 6 is 

then l: 6 (l) As an example, 
q matches 

key ). 

consider a database of hotel worke~s 
salaries in a city. The key could 
consist of 10 bits xxxxxyyyzz as follows: 

i) xxxx is a code for the hotel 

ii) yy is a code for the type of 
employee~ e,g. lQU is the 
~anager, OOU is a bell-hop~ OUI 
1S the ball tender etc. . 
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iiil zz is a code representing which chain 
the hotel is part of, and is 00 if 
the hotel is part of no chain. 

Then 1000100001 would represent the sum of 
all bell-hops salaries at hotel 10001 of 
chain 01 and ,~*,b''''llOOOl would be the sum of 
all the managers' salaries in chain 01. 

If one can deduce the value of 6().) for some 
l; by knowing the result of a set of ~-queries 
the database is said to be compromisable by 
.&-queries. 

Using this model, several security results 
are obtained in [5]. Finite and infinite 
rangeS are considered separately. Further 
results involving sparse database (~nes in 
which many keys might have no records 
associated with them) have been proven by 
Chin in [2 J • 

1.2 Some Basic De'f:j:ni'tiorlS'in Information 
Theory: 

In this study, an attempt is made to measure 
the information received when querie,s are 
made. 

Let X be a random variable with sample space 
n. Suppose n is partitioned into a finite 
number o.f mutually exclusive events Ek with 
associated probabilites Pk' 
Then l(Ek) = -logPk (usually to base 2) is 
called the amount of sel.f-information 
associ~ted with t~e event Ek• A bi~of in
format1on =-log~ 18 the amount or-+nform
ation associated with the selection of 
one of two equiprobable events. The average 
amount of information or'erltropy associated 
with the random variable X and the events Ek 

is H(X) This then 

represents the expected value of the uncer
tainty associated with the probability 
scheme. The function H considered asa 
function of the Pk has certain well-known 
properties, such as continuity, additivity, 
symmetry etc., which will be recalled if . 
needed. 



This measure of information can be 
extended to a two-dimensional scheme 
with two finite discrete sample 

. n. 
spaces. If {x.}.=l represents the 

.(. .(. . 

possible values of the random vari~ 

able X and {y.}~=l those of another 
.(..(. 

rqndom variable Y, then the five 
quantities of interest are: 

(i) 
m· n. 

H(XIY1=-L L p{y.}p{xkly.}logp{xkly·}, 
j=l k= 1 j j j 

where p(xkIYJ) is the conditional 

probabili ty of x
k 

given y. and P (y .) 
j j 

.( or ( )(k» represent marginal probabi-

lities. 
n. 

(ii) H(X) =- L p{Xk}logp{x
k

}, 
k=l 

(iii) 
k=n. k=m 

H(X,Y)=- L L p{xk,y.}logp{xk,y.}, 
k= 1 j= 1 j j 

where p(Xk'Yj) is the joint probabi

lity of the pair (Xk'Yj)' 

(iv) 
H(X) 

H(Y), defined similarly to 
and finally, 

(v) H(YIX), as for H(XIY) with xk 
and y. and the order of summation 

j . 

interchanged. 

Another useful concept is that of 
mutual information, l(x.,y.) or the 

.(. j 
information about the event x. by 

.(. 

the occurrence of the event y .• This 
j 

is. defined to be log P {x.[, Y j}. It 
p{x.[} 

can be shown that l(x.,y.)=l(y.,x.), 
.(. j j.(. 

whence the word mutual. If x.=y., 
.(. j 

one obtains -log p(x.) or the 
.(. 

earlier self-information of theevent 
x.. l(X,Y) stands for the average 

.(. 

mutual information and is the expect 
-ed value of l(x.,y.). It can be 

.(. j 
shown that 
I (X, Y) =H (X) -H(XI Y) orH(X) +H(YJ-H(X, Y) or 

H(Y)-H(YIX). When the system under 
consideration is that of a source 
and receiver connected by a channel, 
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with {X 1' ••• XN} and {Yl""YM} the sets 

of possible inputs and outputs to the 
channel, C=max l(X,Y) is called the 
Channel capacity. This is the maximum 
taken over all possible sets of input 
probabilities and it can be shown to 
exist. (c.6. 1,3,6 for further details.) 

§2 Measuring Information for a 
Statistical Database System 

Consider again the concept of a trans
mitter and a receiver, both with given 
finite alphabets. Let our individual 
records be strings of independent binary 
bits which are receiving queries. If we 
look at one bit position at a time and 
assume the probability of a * in that 
position is P and that the a's and l's 
are equally probable, then the probabili
ty of a match is ~. 

2 

We could then assume a model like that 
for a binary symmetric channel o'f the 
form: (.c;,; 6.J) 

x p(ylx) 

1 1 

a G-__ ~~ ______ ~ a 

The value of £ will be 1- (1 ;p) or l;P. 

Here we have the query on the left, re
presented by x, but the possibility of 
obtaining a * is incorporated into the 
conditional probability of a match. On 
the right is the record, y. Here 
P (l)=P (o)=p (l)=P (0) are all taken to 

x x y Y 1+ 
be~. But P(l 11) is now ~ or 1-£ and 

similarly for (010) and (all). This is 
assuming that in fact the pair (1,1) can 
be obtained either by having (1,1), whose 

probability is (l;p x ~) or by having 

(*,1), whose probability is %. 
Th us P (1 , 1) , is 1 ~ P and 

P(lll) - P(l,l) - ~ 
- P x 0) - 2' 

In this scheme, the conditional entropy 
H(YIX) = -((1-£) log (1-£) +£log£). 

I (X,Y)=H( Y) -H(Y!X) =H(Y) + (l-£)log(l-E)+£1ogE). 

But f{ f Y) = -~log~-~log~ = 1. Th us the 
mutual information is then . 
l+(l-£)log(l-£)+£log£, which is also in 



fact the channel capacity. The de
rivative of H or 1 with respect to 

E is 0 when log ---IE. = 0, giving E=~ -e: 
or p=O. This would correspond to a 
completely noisy channel. In other 
words, input and output are statis
tically independent. In our situa
tion, there are no *'s and the value 
of P(x,y) is always~. The mutual 
information is 0 in this case. At 
the other extreme, when p=l or e:=0, 
the channel is noiseless or the 
query specifies the record with 
certainty and the mutual information 
is 1. 

Wi tn th;is model,. the extreme values 
occur when p is either 0 or 1. We 
actually wish,. for security purposes, 
to increase-the probability of a 
match .. : This means the sum of the 
6(i) over the matched records includ
es more terms and there is a smaller 
chance of determining a single6(i), 
with this or subsequent queries. 
This corresponds to keeping the value 
of the mutual information high. A 
series· of experiments would help to 
determine an optimal value of the 
mutual information or conditional 
entropy function for a specific 
application. An investiga1:;ionof the 
effect of subsequent, not necessari
ly independent, queries on the total. 
entropy in order to bound it appro
priately" is be;ing made., In section 
2.2,,9- slightly different model will 
be presented from which a cut-off 
point can be found directly. How
ever, if the security problem is not 
of primary concern, model 2.1 does 
provide a convenient measure of the 
information contained in a query
record system, when extended to se
quences of bits. This extension is 
purely additive for a memoryless 
system (no dependence between suc
cessive bits) 'and the extremal 
results possess the same character
istics. 

§3 A Revised Model for the 
Security Problem 

3.1 Definition of the Mutual 
Information Function: 

Consider our system as consisting 
of one query at a time being made 
against a set of n records. Let the 
probability p(x) of a match be 

simply ~; i.e. all the records are 

equiprobable. Then the entropy 
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function or the average self-information 
of the syst,em 
= E {-log p(x)} (the expected value) 

=_E p(x) log p(il 
)(. 

= log n. 

Now each query partitions the record space 
into two parts: S, the set of records 
matching the query and Se, the complement 
of S. In actual fact, usually the total 
sum of. the 6(i) for all records is known 
or can be easily found by querying with 
all *'s. 

Thus, when a query is made, not only is. 
information gained about the records in S, 
but also about the set se, by subtracting 
from the total sum for all the records. 
Suppose the number of records in S is n1 , 
then log nand log(n-n ) represent the 
self-infor~ation posses~ed by a record 
lying in S ,and Se respectively. The 
security is more easily violated the 
smaller the amount of information return
ed by a query. Therefore, the appropri
ate quantity to consider here is 
min. {logn 1 , log(n-nl~}. Then the infor
matlon galned by maKlng a qUery becomes 
log n-min (log n

1
, log n-n

1
) or 

log (n.· ( ) ) • (If Y represents the 
_ mln n 1, n-n 1 

query and X an individual record, this 
quantity is really I(X,Y)=H(X)-H(XIY).or 
the mutual information function.) This 
function will be bounded at the extremes by 
I1l or log n. Thus, if a query with no 1¢' S 

matches no record, I(X,Y) will be 
:simply 0 and if n 1 = n the function will be 
equal to log n.' That is, the mutual 
information will not be allowed to e,xceed 
the original self-information of X. 

Formally, we have the following defini tion: 

Definition 3.1.1. 

Given a statistical database as described 
in Section 1.1, containing n records and 
upon which a single query is made, the 
information gained by making the query 
is defined to be: . 

{

log {n. ( )} Where. n 1 =the number mln n 1,n-n 1 of records matched 
. by the query, pro..,. 

. vided.nl~n or 0; 
log n ; J.:f n l =n; 0 otherwlse. 

3.2 Determination of the Ex ected Mutual 
In ormatlon or a Random uery 

Assume that the variable n 1 is uniformly 
distributed on the set {a, 1, ... n}(e.6.4). 
If n is odd = 2m+l for some integer m, 



then log n. ( n-n) has expected 
mln n I' - I 

2 m 1 
value logn - n+1 ~ logj - n+1 logn 

J=l 
=log{n 2 1In+1} 

(nm! ) 
In the even case, if n=2m, one obtains: 

m-1 2 . 1 1 
logn-E ""+llog-<.- --=i=1 logn- -=i=1 logm 

.i.=1 n n n 
, n 
=log{ 11 +1}' 

( nm! ( m-1 ) ! L _~ ___ _ 

In both cases, the bounds log (n+
1

) 
n m 

<E(log . ( n n » $ log n may be mln n l , - I 

established. One wishes to investi
gate si tuations ~in which the values 
produced by queries are regularly 
falling below the expected value or 
its lower bound. This could corre
spond to a user attempting to break 
the security. Whether the regularity 
is statistically significant can be 
tested to further determine the like
lihood of this being tried. 

Now consider the above expected value 
when we are specifically in the situ
ation of queries being k-bit strings 
of O's,l's or *'s. Let us also 
assume that the distribution of the 
number of *' s in a query is binomial. 
Let p be the probability, p(*), of a 
* occurring in qny given bit position. 
That is, p(n

l
=2 J ) = 

k' 1<. • 
(7) pJ O-p) -J, j=0,1,2, ... k is the 

probability of j stars, which we will 
call p(j). Also suppose the full 
record set is available. Therefore 
- k n=2. Then we may prove the follow-

ing theorem: 

Theorem 3.2.1 

The expected value of the information 
gained by making a query of length k 
to a statistical database of 2k re
cords is minimized when 

1 11k-1 P = (~) , when k>l. 
Proof: Now the possible values of 
mln (n,n-n

l
) are all the powers of 

2 d · 1 d' 2k- 1 . up to an lnc u lng , wlth 
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respective probabilities p(j). Thus the 
expected value sought is 

n n) p(o) log (ii) +, pO) log(21 + 

p(k-1) log ~ + p(k) logn. 
2 f'-.I-

This equals log2 {~ p(.i)( k-.i.) +k p( k)}, 
.i.=O 

=E(k-X)+k p(k), where X is a binomial 
random variable 

=kO-p) + k l. 
Now the derivative of this last express-
ion with respect to p is 1 

k k 2 k-I . 1 f=T 
+ p , WhlCh equals a when p=(-) . 

k 
The second derivative is k 2(k_1)pk-2 
which is greater than 0, as long as the 
strings are at least of length 2. (If 
k=l, the expected value is constant with 
value 1 bit, regardless of p.) 0 

The minimum expected value becomes 
1 1 

k-(k-l)(f)R-1 This will be less than k 

except when k=l. When p=O or 1, we have 
the maximum value of k bits. 

Again, one would wish to observe the 
empirical value of p from a sequence of 
queries and determine if it was signifi
cantly close to the minimization value 
given here. The information function 
given by Definition 3.1.1 could be eval
uated for each individual query and its 
deviation from the minimum value just 
given, studied. 

§4 Concluding Remarks 

Some of the areas requiring further inves
tigation are: 

(i) Studying distributions other than 
the uniform distribution for the model of 
section 3. 

(ii) Constructing a test for the inde
pendence of successive queries. 

(iii) Measuring the information gain 
after a sequence of possibly dependent 
queries. 

(iv) Finding the distribution of the 
number of queries required to be made 
until a fixed amount of information is 
obtained. Also, determining the proba
bility of obtaining more than a certain 
amount of information in a fixed number 
of queries. 

(v) Other moments of the information 
function could give further knowledge of 
the behaviour of the information function. 



(vi) Finally, simulation experiments 
should be run to help substantiate 
the ideas given in the theory. 
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ABSTRACT 

In order to create a sound and meaningful sampling plan for estimating measures of database 

integrity, a statistician must first have appropriate theoretiCal tools 

(j) for understanding the nature of databases and their integrity constraints, 

(ji) for developing reasonable numerical measures of database integrity, and 

(iii) for determining the sampling unit and its relationship to the integrity measures. 

This paper uses database theory, mathematical logic, and sampling theory to provide such tools. 

1. Introduction 

The practicing statistician can use the theory presented in 

this paper to define measures of database integrity and to 

develop sampling plans to estimate them. 

Section 2. presents a way to understand databases that 

fosters the selection of both appropriate integrity measures and 

appropriate sampling units. 

Section 3 defines integrity constraints to be assertions 

describing some database that one would like to have be true. 

Symbolic logic can be used to partially formalize integrity con

straints so that their new structure easily suggests meaningful 

numerical measures for measuring their proximity to truth. 

These measures form a family of database integrity meas

ures called the V criterion family which is the subject of Sec

tion 4. The first step in creating a V criterion is to use the 

structure of logic-formalized integrity constraints to "decom

pose" them into collections of simpler assertions called test 

assertions; this is done in such a way that any original integrity 

constraint is true if and only if all of its test assertions are 

true. Then, for atomic test assertions, one possible V criterion 

is a positive weighted average of the 0-1 numerical truth values 

of the given test assertions. In its simplest form, a V criterion 

is that fraction of a group of atomic test assertions which are 

true. 

The last section of this paper discusses the application of 

sampling theory to the estimation of V criteria. Part of this 

discussion is concerned with delineating the relationship 

between the sampling unit and the chosen integrity measure. 

The role of ratio estimation and cluster sampling in estimating 

V criteria is briefly mentioned. 
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While most of this paper lies squarely in the realm of 

computer science, the author believes that it nonetheless 

comprises essential knowledge for the statistician practicing in 

this area. It is the responsibility of the statistician to know 

enough about an application in order to ensure that the 

statistical methods he or she chooses will yield meaningful 

results. In particular, in the case of database integrity, it is 

the responsibility of the statistician to make sure that 

appropriate database integrity measures are selected since it is 

pointless to develop a sampling plan for estimating meaningless 

parameters. 

Although this paper is introductory in character, it does 

assume some familiarity with mathematical logic for Sections 3 

and 4 (see Mendelson [3]) as well as some familiarity with 

sampling for Section 5 (see Cochran [I]). Some familiarity 

with database theory is assumed; see Date [2) for more about 

this topic. Due to space limitations, points are sometimes 

sketched and other relevant points are not discussed at all. 

2. The Nature Of Databases 

A database can be thought of as having three 

components: assertions, symbols, and implementations. The 

assertions of a database are the meanings of its principal 

symbols; they are the information content of the database. The 

symbol s are merely abstractions that represent or stand for 

the assertions whereas the implementations of the 

symbols are those constructs which model the way the symbols 

are stored in some machine (or in some other medium). 

In the way of examples, a commonly used database symbol 

is that of a segment which is a sequence of values for a 

corresponding sequence of fields. A segment's field sequence is 

called its format. Suppose segments are the principal 

• 

• 



symbols of a database and that the format for parent segments 

is (MOTHER, AGE_OF_MOTHER, FATHER, 

AGE_OF]ATHER). Then the assertion represented by the 

segment ( Joanna, 32, Arthur, 35 ) is "The mother of a family 

is Joanna who is 32 years old and the father of this family is 

Arthur who is 35 years old". A computer implementation of a 

parent segment might be a record; here a record is defined 

to be a sequence of groups of bytes (corresponding to the 

sequence of fields) where each byte consists of a pattern of 

eight O's and l's that represents some character like "1". 

In contrast to the previous definition, the most common 

conception of a database considers it to be only the 

implementation of a collection of segments which themselves 

mayor may not be linked together in some fashion indicating 

their inter-relationships. This common database conception will 

probably also specify the access path pointers among the 

segment implementations that the machine uses in' order to 

retrieve them. In addition, it will probably confuse these 

pointers with the relationship links. 

Note that this paper's database definition is not given in 

terms of implementations alone. Instead, it emphasizes that 

the assertions do exist and are, in fact, the raison d'ctre for the 

symbols and their implementations. Furthermore, it 

distinguishes between the symbols and their implementations. 

The usual database definition fails to recognize that symbols 

and implementations are merely convenient tools for working 

with assertions; it considers them to be fundamental in 

character and thereby takes them too seriously. 

These distinctions among assertions, symbols, and 

implementations are useful ones to make and will be 

consistently made here. In particular, relative to database 

integrity, thinking solely in terms of the implementations of 

symbols can lead to two specific problems. The first is that it 

is likely that one's integrity measures will be based on the 

assumption that the validity of particular implementations can 

be determined. This is often much easier said than done. This 

problem does not arise for the integrity measures defined in 

this paper since they are defined to be direct functions of 

integrity constraints, not of symbols or implementations. 

Secondly, another good reason not to think in terms of 

implementations alone is that it may very well be that the best 

sampling unit for a good integrity measure is not some portion 

of an implementation. 

As for terminology, the symbol (component of a) 

database is the database's collection of symbols and 

similarly for the assertion database and the 

implementa~ion database. 
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-- an example database --

A discussion of a hypothetical family database will serve to 

illustrate the preceding philosophy concerning the nature of 

databases. Suppose it is desired to structure, represent, and 

store age and relationship information on a number of 

biological families. '(A biological family consists of a mother, a 

father, and the children they produce.) 

There are a number of symbolic systems that can be used 

to represent such information. Other than natural languages, 

these include the hierarchical, network, and relational database 

models. Since the main production database systems in use 

today are based on the hierarchical model, this model will be 

used to provide the symbols for the family symbol database. 

The structure of each symbol in a hierarchical database 

model is that of a tree obtained by linking segments together in 

a hierarchical fashion. 

Figure I shows the structure of the segment trees used 

here in the family symbol database to represent age and 

relationship information on biological families. The first level 

of one of these two level trees consists of a single segment 

which, as the format indicates, has seven field values, one for 

each of the fields SEG_TYPE, SEG_ID, MOTHER, 

AGE_OF_MOTHER, FATHER, AGE_OF]ATHER, and 

NBR_OF _CHILDREN. Figure 2 portrays this paper's family 

symbol database. (This symbol database does contain errors.) 

By definition, the root segment's value for the SEG_TYPE field 

is P. This root segment is linked to a list of segments, all of 

which have the indicated format for C type segments. 

So far, only the structure of these segment trees has been 

discussed, not what they might mean. Their meaning is 

specified by stating (j) what each segment in a given tree 

means and (ij) what it means for a segment of one type to be 

linked to a list of segments of another type. 

In general, each segment is taken to represent an assertion 

about the attribute values or characteristics of an entity. (An 

attribute is a function mapping entities to their properties 

or characteristics.} Each of the non-SEG_TYPE, non-SEG_ID 

fields in the format is taken to be an attribute of the entity 

being described. In the family example, the P format is used 

for the creation of assertions which describe the parents of a 

family. By virtue of giving values for the appropriate 

attributes (i.e., fields), each P type segment in a family symbol 

database represents an assertion about a family's parents: this 

assertion states the mother, mother's age, father, father's age, 

and the number of children associated with the given parents 

entity. SEG_TYPE and SEG_ID will be discussed in a 

moment. A C type segment represents an assertion about a 



FIGURE I: THE FIELD CONFIGURATION FOR SEGMENT 
TREES IN THE FAMILY SYMBOL DATABASE 

FIGURE 2: THE FAMILY SYMBOL DATABASE IN 
PICTORIAL FORM 
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child entity that states the child and its age. 

In general, linking a segment of one type to a list of 

segments of another type is taken to mean an assertion that the 

entity described by the first segment is in some specified 

relationship to each of the entities described by the segments in 

the list. The nature of this relationship is required to be 

determinable from the SEG_TYPE and SEG ID values 

occurring in the segments involved. 

Relative to a tree of segments from the family symbol 

database, the linking of a P segment to a list of C segments 

represents an assertion that the parents being described by the 

P segment are, in fact, the parents of the children being 

described by the C segments in the list. 

In more detail, the SEG _TYPE value for a segment has 

two functions. First, it tells. how to decode the sequence of 

values' in the segment by indicating that the appropriate 

sequence of fields is the one that corresponds to that type. 

Second, it helps to identify the role that the associated entity 

plays in the relationship indicated by any linkings. 

The SEG_ID fieid value for a segment gives an identifier 

for that segment and serves to mark the involvement of that 

segment's entity in the indicated relationship, regardless of 

what other relationships that entity is involved in. 

Possible implementations of the family symbolic database 

will not be discussed here. 

3. The Nature Of Integrity Constraints 

An integrity constraint is an assertion about 

a database that one would like to have be true. As such, it 

may refer to any of the three components of a database. This 

section is concerned with categorizing integrity constraints and 

with discussing how to use symbolic logic to formalize their 

expression and to reveal their structure. 

Integrity constraints can be dichotomized into internal and 

external constraints. Internal integrity 

constraints assert the internal consistency of a database 

component whereas external integrity 

constraints assert that a database component is accurate 

in that it agrees with reality. Due to space limitations, only 

internal integrity constraints will be dealt with at length in this 

paper. As it turns out, it is possible to view external 

constraints as internal constraints and therefore to treat them 

both with the same methods. 

As an example of an internal constraint for an assertion 

database, consider the following one for the family assertion 

database: "The assertions in the family assertion database are 

such that the stated ages of the children are less than the 



stated ages of their parents." 

The analog for the family symbol database of the 

preceding family assertion database constraint is: "For each 

segment tree in the family symbol database, the values for the 

AGE_OF_CHILD field for the C type segments in the tree are 

each less than the values for the AGE_OF_MOTHER and 

AGE_OF]ATHER fields in the corresponding P type 

segment." Note the difference in character: the family symbol 

database constraint is asserting something about database 

symbols, not about the assertions they represent. The family 

assertion database constraint, on the other hand, is an assertion 

about the assertions in the family assertion database: it is 

totally oblivious to any symbolic system for represe~ting family 

information as well as to any physical system (paper or 

computer) that may be used for storing such symbols. 

The implementation database analog of the preceding 

family assertion and symbol' database age constraints makes 

reference to following various record pointer chains in such a 

way as to verify that the bit patterns of various fields are in 

the proper relationships. The details are omitted. 

This brings up an interesting observation. Database 

integrity issues typically arise when people are concerned about 

the integrity of an implementation database. But observe that 

when people express their constraints in natural language, they 

are often found to be stating assertion or symbol database 

constraints. The reason is clear: it is' a real nuisance to 

mention all of the intricate implementation details necessarily 

involved in the complete specification of an implementation 

database constraint. Consequently, it is often convenient to 

state instead a truth-value equivalent assertion or' symbol 

database constraint. 

As an example of an internal family implementation 

database integrity constraint that 'has no assertion or symbol 

database equivalent, consider: "Beginning at the first record tree 

in the family implementation database and (by following the P 

pointer chain) continuing through each succeeding record. tree, 

the chain of C type records in each record tree is accessed in 

order of increasing value of the bit patterns implementing the 

values of the AGE_OF_CHILD field." 

As an example of an external family assertion database 

integrity constraint, consider: "The parent-child relationships 

asserted by the family assertion database are consistent with 

what can be independently verified about the actual families." 

-- integrity constraints expressed in logic 

Integrity constraints can be expressed in a number <if 

languages. It will now be shown how a simple language based 

on first order logic can be used to illumine the structure of 
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constraints, to achieve a certain precIsion in their expression, 

and ultimately, to formally suggest measures of database 

. integrity and sampling units. 

The basic building blocks of the logic language used here 

consist of (j) sets of entities called domains, (ij) variables 

which range over domains and whose names begin with "v _", 

and (iii) predicates which are either domains or subsets 

of Cartesian products of domains. The atomic declarative 

statements in the language are the membership claims 

which assert that domain entities or vectors of domain entities 

are in predicates. Other statements are generated from the 

membership claims by using universal and existential 

quantification and the usual connectives such as "not", "and", 

"if ... then ... ", etc. 

The following logic language statement AGE is equivalent 

to the preceding English family symbol database parent-child 

age integrity constraint (an explanation of the symbols follows): 

for e~ch value of v _P )D, v_age _ mom, v_age _dad ( 

if P_SEG_ID( v_P_ID ) 

and SEG:AGE_OF_MOTHER( v_P_ID, v_age_mom ) 

and SEG:AGE_OF_FATHER( vY_ID, v_age_dad ) 

then for each value of v_C_ID, v_age_kid'( 

if C_SEG_ID( v_CJD ) 

and LINKED~TO( vY_ID, v_C_ID ) 

and SEG:AGE_OF_CHILD( v_C_ID, v_age_kid ) 

then v_age_kid < v_age_mom 

,and v_age_kid < v_age_dad» 

Here P_SEG_ID is a domain consisting of all segment ID's 

for P type segments in the family symbol database. The 

membership claim "P _ SEG _10 ( v _P _10 )" in the constraint is 

an assertion that the value of the variable v _P _ID is in the 

domain P _SEG_ID. The membership claim 

"SEG:AGE_OF_MOTHER( v_P_ID, v_age_mo~ )" is an 

assertion that the value of v_age_mom is the value of the 

AGE_OF _MOTHER field for the P type segment whose 

SEG _ID value is the value of v _P _ID,.' The membership claim 

"LINKED _ TO( v _P _10, v _ C _10 )" is an assertion that the 

segment whose ID is v _P _ID's value is in the same relationship 

chain as the one whose ID is v _ C _ID's value. 

There are, other 10gicaJly and model equivalent ways ·to 

write this constraint,in logic. 

By using the formula manipulation theorems of symbolic 

logic, one can often transform logic language integrity 

constraints into logically equivalent constraints that are of a 

particular form. This form is called un i ve r sal 

implication form and is that of 



for each value of vI' ...• Vn 

( if Ul vI' ...• vn ] then 11 vI' ...• vn ] ) 

Here "Ul vI' ...• vn ]" represents a logic language 

statement whose free variables are exactly vI' ...• vn and 

"11 VI' ...• vn ]" represents a logic language statement whose 

free variables are among vI' ...• vn. 

Define the jurisdiction J (C) of a constraint C 

having this form to be the set of all n-tuples ( e l •...• en ) of 

domain entities such that Ul el!vl •...• e/vn ] is a true 

statement. (This latter statement is formed from Ul VI' ...• vn ] 

by replacing all free occurrences of vk with ~ for I ~ k ~ 
n.) 

11 e/v i •...• e/vn ] is a test assertion for 

constraint C if and only if ( el' ...• en ) is in J(C). 

The age constraint above is already in this form. Relative 

to the family symbol database. J(AGE) equals ( ( #501. 32. 

35 ). ( #502. 54. 57 ) }. where the ordering of the free 

variables is as in ( v_P_ID. v_age_mom. v_age_dad). The 

(false) test assertion for jurisdiction element ( #501. 32. 35 ) 

is: 

for each value of v_C_ID. v_age_kid( 

if C_SEG_ID( v_C_ID) 

and LlNKED_TO( #501. v_C_ID ) 

and SEG:AGE_OF_CHILD( v_C_ID. v_age_kid) 

then v_age_kid < 32 

and v_age_kid < 35 ) 

As a final comment. observe that the integrity constraints 

for a database actually form an assertion database themselves 

for which one corresponding symbol database consists of the 

associated logic language sentences. The corresponding 

implementation database is very likely the way one would write 

or type the sentences. Thus the "integrity constraints" for a 

database can be seen to be a database in their own right; one 

wants the original database to be such that its integrity 

constraint database accurately describes it. 

4. The Design Of Database Integrity Measures 

A common way to define a database integrity measure is 

to define it as· a function mapping databases to numerical 

indices of their integrity. This paper takes a somewhat 

different approach. The guiding idea is this: Suppose there is a 

function 7r which maps statements to numbers between 0 and I 

which indicate the proximity of those statements to being true. 

Then in order to measure the integrity of a database. it suffices 

to apply 7r to the one big assertion one would like to have be 

true for the database. namely the conjunction of all of the 
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basic integrity constraints for that database.. Call this 

conjunction the database's meta-constraint. 

Consequently. a measure of database integrity 

is just a 7r-type function which is evaluated primarily on 

database integrity constraints. As will be seen. the highly 

structured. recursive form of integrity constraints expressed in 

the logic· language virtually automates the definition of 

measureS of database integrity. 

The first step in the recursive definition of a truth 

proximity measure 7r is to specify the values that 7r takes on 

the membership claims associated with various predicates. 

Here it will suffice to consider only those 7r such that. for all 

membership claims M. 7r(M) I if M is true and 7r(M) = 0 

if M is false. 

The next step is to extend 7r to the measurement of 

compound logic language statements which 

are those that are formed from one or more membership claims 

by the use of connectives and quantification. In general. 7r 

measures of compound statements will be functions not only of 

the 7r measures of their constituent statements but also of 

positive weights that have been assigned to these constituent 

statements. 

Like 7r. the weight function w will be recursively defined. 

For each membership claim M. w( M ) is defined to be some 

positive number. possibly solely dependent on the predicate 

involved in the claim. In the equi-weighting 

scheme. w( M ) is a constant (say. 1) for all membership 

claims M. 

The most predictable extensions for 7r and ware to define 

for statements S. 7r( not S ) to be I - 7r( S ) and w( not S ) 

to be w( S ). 

Letting w( SI ) and w( S2 ) be the positive weights 

associated with statements SI and S2' here is the weighted 

average definition for 7r( SI and S2 ): 

(weighted average) 
W(SI )7r(SI) + w(S2)7r(S2) 

W(SI) + w(S2) 

In support of this definition. observe that 7r( SI and S2 ) = I 

if and only if both 7r( SI ) and 7r( S2 ) are 1. Also. as 

7r( SI ) increases (decreases). so also does 7r( SI and S2 ). 

w( SI and S2 ) is defined to be w( SI ) + w( S2 ). 

Since a statement in universal implication form with non

empty jurisdiction is true if and only if all of its test assertions 

are true. the 7r value of such a statement with a finite 

jurisdiction is defined to be the 7r-value of the conjunction of 

all of its test assertions. In the special case that the 



jurisdiction is empty, the 1r-value is defined to be 1. The w 

value of a statement in universal implication form with finite 

jurisdiction is 1 if the jurisdiction is empty and is the w value 

of the conjunction of the test assertions if otherwise. 

For example, if conjunctions are measured by averages 

under the equi-weighting scheme, then (by applying 11' 

recursively), 1r( AGE) = 7/8 (not 112). 

-- V criteria --

A Vcr i t e r i on measure of database integrity is a 

1r-type truth proximity measure which measures conjunctions 

with weighted averages and which is used to measure 

constraints for databases all of whose basic constraints are in 

universal implication form. Hence, the V criterion maps the 

meta-constraint for a database to a weighted average of the 

values it takes on the test assertions associated with all of the 

basic integrity constraints. (The "V" is for "validity".) In 

symbols, for basic constraints C\, ... ,Cm and designated 

weight function, vec] and ... and Cm) = 

m 

i =] ~ E HC) 

m 

i -] ~ E HC) 

where e is a vector of domain entities and ~ is an appropriate 

vector of variables. 1r( AGE) above is a V criterion value. 

It is worthwhile examining how V's value on a conjunction 

of m statements is determined by its value on a conjunction of 

two statements. In this regard, note that V's value on the 

meta-constraint is not an average of V's values on the basic 

constraints. Finally, observe that, under. the equi .. weighting ....... 

scheme, if each test assertion is a membership claim, then the 

value of the V criterion is that fraction of all the test assertions 

which are true. 

-- the U criterion --

The nature of the V criterion is illumined by contrasting it 

with what is probably the most widely used measure of 

database integrity, namely a measure here called the U (for 

unreliability) criterion. U criteria are typically defined for 

record-based implementation databases. In its simplest form, a 

U c r i t e r i on for such a database is determined by 

decomposing that database's records and/or pointers into pieces 

and then computing that fraction of those pieces which are in 

error (or, alternatively, which are unreliable in some sense). In 

the case of a hierarchical implementation database, such pieces 

may be record trees or records or sub-record byte groups or 
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" access-path pointers. 

The essential difficulty with the U criterion is not that it 

doesn't measure something of some interest but rather that in 

general, it is very hard to compute. The computation of the U 

criterion presupposes that it is possible to identify exactly 

which implementation pieces are incorrect when a test assertion 

is false. This is frequently impossible if two or more such 

pieces refer to values from a single jurisdiction tuple generating 

a false test assertion. For example, suppose a test assertion for 

AGE fails: one doesn't necessarily know if it failed because the 

AGE_OF_CHILD value is incorrect or because the 

AGE_OF _MOTHER (or AGE_OF _FATHER) value is 

incorrect." 'What is even more insidious here is that the 

incorrect implementation pieces may be the ones referring to 

values from the jurisdiction tuple that do not appear in the test 

assertion. After all, the values that appear in the test assertion 

are not the only ones being tested: if the other ones are 

incorrect, then one may be making test assertions that one 

shouldn't be making and conversely. 

Anyway, if the implementation pieces are field value 

implementations, then which is to be marked wrong? The U 

criterion demands an answer; the V criterion doesn't care since 

it is only concerned with whether or not a test assertion is true. 

Furthermore, if for some reason the pieces are records or 

record trees and even if one can decide which piece is at fault, 

then is it really fair to denigrate every field value 

implementation in the piece in the event that only one such 

byte group is involved in the test assertion? 

In short, the V criterion is concerned with determining the 

truth or falsity of assertions about a database component (such 

being integrity constraints) whereas the U criterion is 

concerned with determining the correctness or incorrectness of 

the symbol implementations themselves. As it turns out, the 

former is easier to do than the latter. The U criterion is the 

"result of paying too much attention to symbols and their 

implementations. The V criterion is the more successful 

because it works directly with the integrity constraints 

themselves, not with database symbols and implementations. 

5. Sampling To Estimate Database Integrity 

Statisticians can use the material of the preceding sections 

to help design appropriate measures of database integrity. 

Once this has been done, they can begin to decide how to 

estimate these measures. The first step is to decide what is to 

be the sampling unit. 

As with implementation, anything true to the purpose at 

hand is fair in the selection of a sampling unit. The best 

choice for a sampling unit is one which is feasible, one which 



yields valid estimates for the parameter, and one which yields 

the optimal combination of efficient sampling and small 

variance. 

One possible choice for the sample universe is the set of 

all test assertions over all basic constraints. This is inadequate 

however since two elements from the same jurisdiction can 

generate the same test assertion. So consider instead a sample 

universe which is the union of all the jurisdictions of the basic 

constraints. Observe though that this is not well-defined since, 

given a tuple, one does not necessarily know which test 

assertion to generate from it. Some form of constraint 

identification is necessary. To tag a basic constraint 

jurisdiction is to map that jurisdiction to a set of ordered pairs 

such that each jurisdiction tuple is mapped to a pair whose 

first component is an identifier for the constraint and whose 

second component is the tuple. The result is that the union of 

all tagged basic constraint jurisdictions is a legitimate 

candidate for the sample universe. 

In this case, V can be re-written to explicitly indicate its 

relationship to this particular sample universe. If UJ = 

{ (i, ~ : 1 ~ i ~ m and ~ E J ( C i ) }, then 

V(C1 and . and Cm) = 

~ w(Ti[~ / ~]) . V(Ti[~ / ~]) 
G, ~ E UJ 

~ w(Ti[~ / ~]) 
G, ~ E UJ 

As can be seen for this choice of sample universe, the V 

criterion value for the meta-constraint is a ratio which can be 

estimated by using standard ratio estimation techniques. If in 

addition, all test assertions have equal weight, then this V 

criterion value is a mean which can be estimated by standard 
mean estimation techniques. 

-- root tagged jurisdictions 

In other situations, the basic constraints may be such that 

some tagged basic constraint jurisdictions can serve as roots for 

others. For example, consider the situation where the 

constraints form a list such that the jurisdiction of each 

constraint after the first is that portion of the jurisdiction of its 

predecessor which has true predecessor test assertions. In this 

case, the first tagged jurisdiction is considered to be the root of 

the others since each subsequent tagged jurisdiction l' k for 

k~2 can be determined from the previous one in the sequence 

1'k-l by applying a known algorithm to each element of 1'k-l' 

namely, (k, ~ is in J'k if and only if (k - 1, ~ is in J'k-l 
and ~ generates a true test assertion for the (k - I)th 
constraint. 
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In a more general setting, tagged jurisdiction A is a 

. root of tagged jurisdiction B if a reach function has been 

defined r from A to' B. The function r is a reach 

function' from tagged jurisdiction A to tagged, jurisdiction 

B if and only if (j) there is a known algorithm for computing 

its values, (ij) for each w in A, r(w) is a (possibly empty) 

subset of B,and. (iii) ( r(w) : w E A ) is a partition of B. A 

tagged jurisdiction element z is reachable from w if there 

'is a reach function r such that z E r(w). So, tagged 

jurisdiction A is a root of tagged jurisdiction 8 if and only if 

(j) for each element w of A, one can determine whether or not 

elements of B are reachable from wand if so, which ones and 

(ij) each element of B is reachable from exactly one element of 

A. Every root tagged jurisdiction is considered to' reach itself 

by virtue of the w - {w} reach function. 

Now, in'the event 'that no root tagged jurisdiction is the 

root of another one distinct from itself and no tagged 

jurisdiction has more' than one root, it may well be convenient 

to let the sample universe be the union of the root tagged 

jurisdictions. In order to write the V criterion in terms of 

measurements on these sampling units, it is necessary to define 

two measurement functions, say, x and y. The x value on a 

sampling unit is the sum of the test assertion weights of the 

tagged jurisdiction .elements reachable from that unit and the y 

value is the weighted sum of V's values on the associated test 

assertions. The corresponding V criterion value is the ratio of 

.the sum of the universe y values to the sum of the universe x 

values. When sampling to estimate this V criterion value, one 

is cluster sampling to estimate a ratio. 

Some symbols may aid the reader's understanding of the 

previous paragraph. Suppose that the first k tagged basic 

constraint jurisdictions are the roots of all the others. Then 

the formula for the V criterion may be rewritten to explicitly 

indicate its relationship to these sampling units and to the x 

and y measurement functions: 

k 

~ ~ ~ wi(~) 'V/~) 
(k,!V E J'( Ct ) G, ~ E R«k, !V) 

k 

~ ~ ~. wi(~) 

(k,!V E J'(Ck ) G, ~ E R«k, !V) 



k 

~ ~ y«k, ~) 
(k,!!) E ]'( Ck ) 

k 

~ ~ x«k, ~) 
(k,!!) E J'(Ck ) 

where J'(Ck) is {k} x l(Ck) , R( (k, ~) is the set of 

tagged jurisdiction elements reachable from (k, ~, wi = 

w 0 Ti [ . /yl and similarly for Vi' Note that x and yare 

operating on tagged tuples. 

It should be noted that in the preceding two situations, the 

sampling units may very well not be in one-to-one 

correspondence with any decomposition of the symbols (or 

implementations) in the symbol (or implementation) database. 

For example, observe that the jurisdiction of AGE is not in 

one-to-one correspondence with the set of segment trees, with 

the set of segments, with the set of segment field values, with 

the set of segment field 'values for AGE_OF_MOTHER, 

AGE_OF_FATHER, and AGE_OF_CHlLD, or with the set of 

relationship linkings. If; in fact, the tagged jurisdiction of a 

constraint like AGE is the best choice for a sample universe 

(as indeed it was for the author in a Bell System application), 

then those .who are thinking only in terms of symbolic sampling 

units will be at a loss to make the best choice. 

-- symbolic sampling units --

However, while there are situations when no symbolic (or 

implementation) sampling unit is acceptable, there are also 

situations where symbolic sampling units are the most 

convenient. What must be done in these cases is to define at . . 

least implicitly a function tJ; which maps elemerts of the union 

of tagged jurisdictions onto an exhaustive set of symbol pieces 

(such as the set of all segment trees or the set of all segments 

in the symbol database). One of the better ways to define tJ; is 

to map a tagged jurisdiction tuple to that symbol piece which 

contains within it at least some of the values in the tuple. 

Then to define V, define two measurement functions, say x and 

y, on the sample universe as follows: the value that x bikes on 

a sampling unit is the total test assertion weight of the tagged 

jurisdiction elements that tJ; maps to that unit and the value 

that y takes on that unit is the weighted sum of V's values on 

the test assertions associated with those tagged jurisdiction 

elements. Here again as well, when sampling to estimate such 

a V criterion value, one is using cluster sampling to estimate a 

ratio. 

As before, in symbols, if S is the set of symbol pieces, 

then the V criterion can be re-written as a function of the 

sampling unit as follows: V(C) and .,. and Cm) = 
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Often, one is not only interested in the V criterion value 

for the meta-constraint; the V criterion values for the 

individual basic constraints may also be of interest. Such a 

group of V criterion values form a trivial V criterion hierarchy. 

Non-trivial V criterion hierarchies also exist. In one of the 

author's Bell System applications, it was necessary to estimate 

a four level V criterion hierarchy. by using one level of 

subsampling and two levels of stratification. The details of this 

application of sampling to estimating database integrity are left 

to subsequent papers. 

By way of summary, an awareness of the assertion, 

symbol, and implementation components of a database serves to 

focus appropriate attention on each and to explain the nature 

of various kinds of .integrity constraints. Symbolic logic can be 

.used to reveal the structure of integrity constraints as well as 

to create a vocabulary for talking about them. Furthermore, 

the structure of constraints expressed in logic can be used to 

formally suggest meaningful measures of database integrity. In 

order to use sampling to estimate these measures of database 

integrity, a suitable sampling unit must be identified. A theory 

for the selection of appropriate sampling units is made possible 

by an understanding of both the nature of databases and the 

role that symbolic logic can play in formalizing the expression 

of integrity constraints .. 
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A Security Model for the Statistical Database Problem 

Dorothy E. Denning 1 

Abstract. A security model for addressing the statistical inference problem in 
online query processing systems is described. The set of all statistics computed 
over groups of records having common characteristics arc structured as a 
lattice of logical tables. The lattice model provides a mathematical basis for 
studying the inference problem, and a framework for evaluating and comparing 
different controls. Although the lattice model has been used by census agencies 
to protect statistical tables published oITline, it has only recently been used to 
develop infel'ence controls for genera.l purpose query processing systems. 

1. Introduction 
With the rapid proliferation of online database systems containing valuable 

or confidential information, computer scientists became concerned with the 
problem of protecting this data 'from unauthorized disclosure or modification. 
This concern led to the development of access controls, which ensure that all 
retrieval, update, insert, and delete operations are performed only by 
authorized individuals. 

Although access controls solve much of the database security problem, they 
do not completely solve it. One area they do not address is the inference 
problem or statistical database problem. The problem here is to provide certain 
users with statistical access to sensitive data, while ensuring that the sensitive 
dala cannot be inferred from released statistics. 

Over the years, census agencies in the United States, Canada, and Sweden 
have developed many techniques for ensuring the confidentiality of statistical 
data published offline in tabular form [1. 2. 3, 4, 5, 6, 7]. These techniques have 
been developed within the framework of a publication hierarchy [8], which is a 
lattice structure of statistical tables. The table structures are analyzed prior to 
publication, and table entries (cells) are suppressed or perturbed where needed 
to protect sensitive data. 

In the 1970's, the computer science communily began to study the 
statistical database problem in general purpose online query proceSSing 
systems, where arbitrary sets of records can be formulated in high-level 
languages. Because many online databases are continually evolving, efficient 
controls thal can be applied during query processing time are desirable. 

The early results of our research were discouraging. A user wilh the ability 
to formulate queries for statistics over e8sentially arbitrary groups could, 
circumvent many controls wilh just a few queries. To quote a statement made 
by this author at the 1977 Symposium on the Interface, "With few exceptions, 
most of the proposed controls are either easy to circumvent or impractical to 
implement" [9]. 

Recent research done in collaboration with Jan Schlarer at the Univ'crsity of 
Ulm, W. Germany has become much more encouraging. An important insight 

1. Author's uddress until May W: Computer Sciences Dept., Purdue Univ., W. Lafayette, IN 
47907; After Muy 18: sm {nt.emutional, 33:3 l~avcIlswood Ave., Menlo Park. CA 94025. Research 
supported in part by NSF Grant MCSUO-154U4. 
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came when we began to transform our relational view of the data into a lattice of 
statistical tables. Although we did not consciously plan to use the census model. 
this is precisely where we landed. In the process. we have come toa better 
understanding of the problem. and are beginning to find a collection of controls 
that can provide a high level of security at reasonable cost. Not surprisingly. 
many of these controls are adaptations of techniques developed by census 
agencies. 

The purpose of this paper is to describe the lattice model. and to show why 
it is a useful security model for the inference problem in online query 
processing systems. If a database is described by some other data model. such 
as the relational model. then this model can be mapped onto the lattice for the 
purpose of developing security controls. We will show how this can be done for 
the relational model and for one statistical database model. 

2. The Lattice Model 

For security purposes. a statistical database can be viewed as a lattice of 
logical tables defined by the attributes of the database. There are M primary or 
atomic attributes A l •. ..• AM' Each primary attribute At gives rise to a 

k . . 
hierarchical structure of attributes Atl < ... <Ai'. where ~l = Ai and. for k, > r. 
~2 •...• ~t are secondary or clustering attributes. The relation AI < A{+l 

means that A!+l is a clustering or aggregation of values in the domain of A/; 
conversely. AI is a refinement or disaggregation of A/+l. Since Ail is atomic. it 
cannot be further refined. If a primary attribute has no secondary attributes. 
the superscript "1" may be omitted. In the degenerate case where none of the 
attributes has secondary attributes: the model corresponds to that described in 
[10]; if in addition each attribute is binary. lhe model is equivalent to the bit 
string model of Kam and Ullman r 11] (their model can also be interpreted as 
attribute hierarchies formed by bisection). 

Example 1. Cities are aggregated by state. giving the attribute hierarchy: 

A = A 1 = City < A2 = State. 

Each value in the domain of State names an aggregate of values in the 
domain City (e.g ... California' names a group of cities that includes 'San 
Francisco'. ·Berkeley·. ·Carmel'. etc.). 

Example 2. In a university. departments are grouped by school. giving the 
hierarchy 

A == A 1 = Department < A2 = School. 

Example 3. Ages may be aggregated at several levels: 

Al = 11. 2. 3. 4 ...... 100. >1001. 
A2 = 1[1-10]. [11-20] ..... [91-100]. [101-H. 
AS = 1[1-20]; [21-40]. [41-60]. [61-80]. [81-100]. [101-]1. 
A4 = 1[1-40J. [41-80]. [81-100]. [101-]1. 

All primary and secondary attributes can be used to select subsets of 
records in the database. The database may have additional quantitative 
(summary) attributes that 'are used in statistical' calculations but cannot be 
used in subset selection. 369 '. 
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. There is a functional dependency from an attribute Ai in a hierarchy to Ai+l 
(j = 1, .... k -1). For example. Oity in Example 1 determines State; Department 
in Example 2 determines School; each age group in Example 3 determines the 
next age group. In some cases. this dependency may not be immediately 
apparent if the same name is used to denote different entities. For example. the 
name "Rochester" refers to a city in New York. Michigan. and Minnesota (and 
probably several other states as well). We will assume this apparent confiict is 
somehow resolved by using unique names to denote different entities (e.g .. 
qualifying city names with state names). 

Although an attribute Aj~l is a refinement of a higher-level attribute Ai (for 
j > 1). sarno values in the domain of Ai may not be disaggregated in Ai-I. For 
example. the age group [81-100] in A4 of Example 3 appears in AS. The ot.her age 
groups in A4. however. are disaggregated in AS; for example. the group [1-40] is 
disaggregated into the two groups [1-20] and [21-40]. In general. some values in 
a domain may be carried through several levels in a hierarchy; e.g .. the age 
group [101-] in Example 3. 

Given m ~ 0 primary or secondary attributes A{I . ...• A~m. an elementary 
m-set over these attributes is an m -set specified by a conjunctive formula: 

E=(A{1 =al)& ... &(A~m=am). (1) 

where ai 'is a value in the domain of Aii . The set of all possible elementary m
sets over the attributes defines an m -dimensional logical table. or m-table for 

short. The size of the table is given by sm = n I Ali I. where I Ali I is the size of 
. i=l· 

domain Ai;. . Eachm-table partitions the complete d~tabase into Sm elementary 
sets. For m = O. there is a single elementary set, denoted ALL, which is an 
aggregate of all records in the database. 

Given attributes AI' .... Am' there is an m-table for each combination of 
attributes in the hierarchies for AI . .... Am. Since each attribute Ai has k i 
atomic and clustering attributes in its hierarchy. the lotal number of m-tables 

Tl~ 

over attributes AI' .... Am is n k i · 
i=l 

The set of all tables forms a lattice with partial ordering relation "<", where 
T2 < Tl means that each elementary set in Tl is a union of elementary sets in 

M 
T2 . The total number of tables in the lattice is given by n (k i + 1). For the 

. i=l 
special case where there are no secondary attributes. this is 2M. The top table 
in the lattice. denoted 7ALL • corresponds to the O-set containing all records in 
the database. The bottom table partitions the database according to all atomic 
attributes Al . .... AO. None of the tables in the lattice need exist as physiCal 
structures of the databases. The lattice is a logical structure. 

Let T 1 be defined by the attributes A{ 1 •...• A~m. and let T 2 be a table 
directly beneath Tl in the lattice. T2 refines Tl in one of two ways: 

1. T 2 is an m + i-table ovcr the attributes of T 1 plus an additional primary 
attribute A~+l; that is. T2 is defined by the attributes A{I . .... A~m. ArA+l' 
Then each elementary set. P, = (/l{1 = (11) & .. , & (A~m = am) i.n Tl 
corresponds to a union of elementary sels in T2 as follows: 

E= u 

The number of possibilities for T2 by this method is M - m. 
370 
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2. T2 takes one of the secondary attributes of T1• say A/i. and refines it by 
taking it down one level in the hierarchy; that is. T2 is defined by 
Ail Aii-l Aim TJ h 1 1 t ' •• I fli I··' 'm· .len eac e ementary set E = 
(A{l = al) & ... & (A:: = u.m) in Tl is given by the union 

( i I) ii -1) i E = U Al = al & '" & (Ai = rli' & ... & (Amm = am) • (3) 
Clt,'EA/C

l 

"i· ... "i 

where ai' -+ ~ means that ai' determines ai' Thus. the union is taken over 
all values ai' in A!i- 1 

that disaggregate at in A/.1.. The number of possibilities 
for T2 by this method is n.. where n:::; m is the number of secondary 
attributes among A; I •••.• A~m. 

Thus the total number of direct descendents of T 1 is (M - m) + n :::; M. 

Figures 1 and 2 illustrate two simple lattice st.ructures. Figure 1 
corresponds to the lattice in [8], where attribute A is the hierarchy 

Al = City (within County) 
A2 = County 
A3 = State. 

and attribute B is the hierarchy 

BI = 6-digit industry code 
B2 = 4-digit industry code 
B3 = 3-digit industry code 
B4 = 2-digit industry code. 

Figure 3 shows a more detailed view of a lattice over two attributes A and 
B. where B is hierarchically structured: B = Bl < B2. The entries inside the 
tables are counts of the number of records belonging to each set. Note that 
~ach table partitions the 102 records of the database into disjoint sets. 

Statistics, such as the counts in Figure 3. are computed over subsets of 
records having common attribute values. A set of records is specified by a 
characteristic formula F'. which, informally. is any logical formula over the 
values of the primary or secondary attributes using the logical operators OR (+), 
AND (&). and NOT( ...... ), plus the relational operators. If a formula is expressed 
solely in terms of logical AND and equality, then it is a conjunctive formula of the 
form (1) specifying an elementary set. The set of records whose values match a 
characteristic formula P is called the query set of P. 

We will concentrate mainly on additive statistics [10]. Letting q denote a 
statistical function, q is additive if and only if 

q (PI + F 2) = q (FI ) + q (P2) (4) 

when FI and F2 are disjoint query sets. Counts, sums, and higher order 
moments [12] are additive. 

Additive statistics have the important property that the st;:o:tistics in the 
tables of the lattice are lincarly relaled. In particular, if T2 < T I • then the 
statistics in TI are marginal sums of those in T2 . This mcans that the statistics 
in Tl can be computed from those in any descendent of T \ in the l~.ttice. To 
make this precise, let T 1 be an m-lable over the attributes A;l, ... ,A~m, and let 
T2 . be a lable directly below T 1 in the lattice. Let 
E = (A{l = at) & '" & (~m = am) be an elementary set in T t. Then q (E) is 
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Figure 1. Lattice of tables over a.ttributes A = A 1 < A2 < A3 and 
B = B 1 < B2 < B3 < B4. 
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Fir,ure 2. Latt.ice 0)' to.blc:: ewer :riJxibuLes 11, JJ I o.nd C; jJ is hierarchically 
::::Lruclm'ccl ns JJ ::; jJl < jJ;~ < jJ'J < l/'c. 
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computed from T2 in one of two ways, depending on whether T2 refines Tl by 
adding an extra attribute (dimension) A,A+l or by disaggregaUng one of the 
attributes Aj : 

1. If T 2 is an Tn + l-table over the attributes A{t, ... ,A~m, Mt +1' then 

q (E) = (5) 

The counts in tables TA and TEl of Figure 3, for example, are the marginal 
sums of TAB1 : the counts in TB2 are the marginal sums of T AD2: and the 
counts in TALL are marginals of both TA and T B2 . 

2. If T 2 is an m -table defined by A{ 1, ... ,Afi. -1, ... i A~m, then 

q(E).= 2: q((A{l=al)& ... &(Afi-l=~,)& ... &(A~m=am».(6) 
j -1 

"i.'EAi i 

"i.'->"i 

The counts in TAB2 of Figure 3 are obtained by addi,ng groups of columns in 
TABt . 

Additivity implies that statistics in the bottom table of the lattice, namely the 
table over all M atomic attributcsAl, ... ,AA}, is a basis for computing all other 
tables in the lattice. 

Additivity has another important property as well: statistics for 
nonelementary query sets (Le., those sets that cannot be defined without using 
logical OR, NOT, or the relational operators other than equality) can be 
computed from those in the tables. Ji'or example, count ((A", (3) & (B = b 2» 
can be computed by adding the statistics in column 2 of table TABI of Figure 3, 
omitting the statistic in row 3. This property implies that an m-table of 
statistics over attributes A{l, ... ,A!n,m serves as a basis for computing all 
statistics of a given type for query sets over these attributes. Moreover, the 
bottom table of the lattice serves as a basis for computing all possible statistics 
of a given type. 

Additivity has important implications for both security and freedom of 
information: we can restrict the syntax of queries to conjunctive formulas 
without causing any information loss. Indeed, we could conceivably withhold all 
statistics in the database except for those in the bottom table of the lattice 
without causing any loss. Of course, this does not solve the security problem 
because the low-level tables, in particular the bottom table, usually contain 
sensitive data that must be withheld to ensure privacy. But, as discussed later, 
restricting the syntax is a useful tcchnique for thwarting many attacks. 

Eqs. (5) and (6) show how statistics of a given type (e.g., all counts or all 
sums over a given attribute) are related in the lattice. Statistics of different 
types may also be related. For examplc, let T 1 be an m -table over attributes 
A{l, ... ,A~m, and suppose Tl contains sums over attribute Am + 1• If Am+! can be 
used to select subsets of records, then the sums: in Tl are linearly related to 
counts in Tl'S descendent overA{I, ... ,A~m,ArA+l as follows: 

sum((A{l = ( 1) & ... & (A!n,m = am» == (7) 

L: [count ((A{t :::: ( 1 ) & ... & (A~m = am) & (A,A+l = am + 1» ., ~+l] . 

um + t EAJi+l 

Nonadditive statistics are related to additive statistics through counts and other 
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higher-order statistics. For example, mean (F) = sum (F)I count (F) for any 
formula F. (See also [13].) 

Users often want complete tables of statistics (e.g., total salaries of 
employees in a 2-table broken down by sex and age) or cross sections of tables. 
Such queries can be expressed by allowing "*" for an attribute value in the 
formula, where (Aft = "') generates the set of all values in the domain of Ali 
[14,5]. Looking at Figure 3, the query q ((A = "') & (Bl = "')), for example, 
returns the entire 2-table of statistics TAB I in Figure 3; the query 
q ((A = "') & (Bl = b s)) returns the statistics in column 3 of TABI ; and q (Bl = b s) 
returns the column sum, which is a cell in the l-lable 7BI . 

The table structures of the lattice model are closely tied to the publication 
format of statistical applications, including census data, where the marginal 
sums in the higher-level (lower-dimensional) tables are usually displayed with 
the lower-level tables from which they are derived. Figure 4 illustrates a single
table presentation of the statistics in all six tables of Figure 3. 

3. The Security Problem 

The problem is to prevent the inference of sensitive statistics. A statistic is 
sensitive if confidential data could be deduced from the statistic alone. A 
statistic computed from confidential information for a group of size 1 is usually 
considered to be sensitive. Thus, the count for (A = as) & (B = b 2 ) in table JABI 
of Figure 3 is sensitive. A statistic computed from a group of size 2 may also be 
classified as sensitive because a user with supplementary knowledge about one 
of the values can deduce the other from the statistic. The exact criterion for 
sensitivity is determined by the policies of the system. One criterion used by 
the U.S. Census Bureau for economic data is the "n-respondent, k %-dominance" 
criterion, which defines a sensitive statistic to be one where n or fewer records 
comprise more than k% of the total [8,1]; n p.nd k are. parameters of the 
database, usually kept secret. The disclosure. risk, or identification risk, of a 
table is given by the numbcr (or percent) of sensitive cells in the table. 

Personal disclosure (compromise) occurs when the user can infer a 
previously unknown sensitive statistic about an identifiable individual [15,16]' 
Disclosure may be either exact or approximate, positive or negative 
[17,18,15,5,6]' Releasing counts for query sets of size 0 always leads to 
negative. disclosure because one can deduce that a particular individual does not 
have the associat~d properties. 

Clearly, all sensitive statistics must be restricted (i.e., not permitted). In 
addition, we must restricl nonsensitive statistics that could lead to disclosure of 
sensitive ones. Such disclosures arise mainly from the linear relationships in 
thc lattice structure, as defined by Eqs. (5)~(,(). Given all of the statistics in one 
of these equations but one (which is sensitive), the missing statistic is easily 
computed. For example, using Eq. (5), the sensitive count for 
(A = as) & (B = b 2) in TAB I of Figure 3 can be computed by subtracting the 
other entries in column 2 of the table from the column sum in TBI . 

In general, a sensitive cell in a lable T cannot be inferred from tables above 
T in the lattice; it is usually necessary to obtain other cells in T (or at least 
sl::lListics computed over Lhe allributes defining '1'). There are exceptions, for 
example, when Lhere are "magical zeros" [5,10], or when the counts 
disaggregated by attribute 11711 +1 in an m+l-table are determined by the sum 
over Am+1 in the parent m-table as defined by Eq. ('7) [19]. For example, if the 
domain of Am+l = {11, 1'(1. then the only integral solution to the sum 
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Total 

13 7 20 0 3 9 12 14 46 

0 5 5 11 12 1 24 6 35 

7 1 8 3 0 10 13 7 28 

24 19 43 6 8 18 32 7 92 

44 32 76 20 23 38 81 44 201 

Figure 4. Publication format for counts of Figure 3. 
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50 = n 1'11 + n2'17 

is n 1 = 3, n2 = 1. Because this method of attack requires exact answers, 
perturbation techniques (see Section 4.3) are a good countermeasure. 

To prove that information in an m + 1-table cannot be inferred exactly from 
parent tables, one can show that the database is m-transformable [20,21]. 
Unfortunately, this is not usually practical. 

The lattice model is a powerful and effective tool for modeling the security 
problem. It provides a simple structure for relating different statistics through 
linear equations (or more complex equations for nonadditive statistics). This is 
important for understanding the rules of inference used by an adversary to 
compute a sensitive statistic from nonsensitive ones, and for proving that a 
particular countermeasure makes such inferences impossible or unlikely. With 
this framework, it becomes immediately obvious why certain controls are 
ineffective or undesirable. For example, neither a query set size control [22] 
nor an overlap control [23] foil "trackers" [24,25,26,16,27] and other inference 
techniques that exploit the linear relationships [18]. Moreover, an overlap 
control is readily seen to be undesirable, as it rules .out releasing many 
statistics for aggregates, which are vital to most statistical applications. 

4. Security Mechanisms 
The lattice model provides a framework for evaluating, and comparing 

different controls in terms of their security and information loss. Security is 
measured by the relative number of sensitive statistics that can be inferred by 
circumventing the control. by the difficulty (computational complexity) of doing 
so, and by the probability of success. Information loss is measured by the 
number of nonsensitive statistics or tables of statistics that are unnecessarily 
restricted by the control. and by the amount of noise injected in permitted 
statistics. 

There are two general techniques for enforcing security: res'triction and 
perturbation. Restriction techniques aim to prevent infercnce of sensitive 
statistics by withholding additional nonsensitive ones. In [28], we survey various 
strategies, classifying them according lo whether they restrict at the table level 
or cell level in the lattice. The conlrols are also classified according to whether 
they are a priori (precompule which statistics to release),audit based (decide 
whether to release a statistic by consulting a log of previously released 
statistics), or memoryless (use heuristics at query processing time). 

4.1. Table-Level Hestriction Techniques 
Table-level controls restrict complete m-tables of statistics, including all 

statistics for query sels defined by lh('~ associated attributes. Security is 
measured in part by the number of tables that are falsely permitted; i.e., are 
permitted despite having sensitive cells. Information loss is measured by the 
number of tables lhaL are falsely resLricLed; i.e., are restricted even though 
lhere are no sensitive cells. 

We have used tbe lattice model to describe and evaluate several 
mcmoryless Lable resLriclion criterion [10]. Two attractive criterion are 
relative table size and expliciL l'isk estimation; both are heuristics. The relative 
lable ~,j:;:c (suJ N) criLc~rioll reslricLs an Tn.-lable of eounls when iLs size Sm 
relative to the number N of records in the dalabase exceeds a threshold 1/ k. 
The control is applied to a query q (P) by taking the product of the domain sizes 
for the attributes named in F, therebyobLaining lhe size of the corresponding 
logical table in the lattice. For k = 10 and the database of F'igure 3, all counts 
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over attributes A and Bl would be restricted since the relative size of table TABt 

is 24/201 = .12 > .10; all other counts would be permitted. Thus,. the sensitive 
cells in the restricted table TAnt are protected. The results of experiments 
reported in [10,29] show that relative table size can predict the disclosure risk 
of a table. Explicit risk estimation uses frequency distributions of the data to 
obtain even closer estimates of table risk, but at the price of increased 
computation [10,29]' Table level controls can also be used with statistics other 
than counts, e.g., sums; higher thresholds are generally needed, however, 
because higher-order statistics contain more information [10]. 

Clustering attributes can enhance security while reducing information loss. 
For example, if the 2-table TABI is restricted, statistics over attributes A and B 
can still be released through the clustering attribute B2, because table TABZ 
does not contain sensitive cells. Schlarer [30] studies the security aspects of 
clustering, showing that clustering attributes must form hierarchies as in the 
lattice model. The inclusion of clustering attributes to enhance security is also 
called "grouping" or "rolling up" [3,4,5]. . 

4.2. Cell-Level Restriction Techniques 
Cell-level controls aim to restrict only the sensitive cells of an m -table, and 

just enough nonsensitive statistics over the assvciated attributes to prevent 
inference. Security is measured by the number of sensitive cells that can be 
inferred; information loss by the number of nonsensitive cells that are 
restricted. Although cell level controls can be applied to queries for single cells 
(or cell unions), they are belter suited to queries for complete tables or cross 
sections of tables. This is because they must examine more lhan one cell of a 
table to determine whether a particular cell can be securely released. 

An example of a cell-level control is cell suppression, which is an a priori 
control used by census agencies to protect data published in tabular form. The 
linear relationships among all cells of a table and the marginal sums in the 
parent tables are analyzed to determine whether sensitive cells can be deduced 
(exactly or approximately) from those that are released; additional cells, called 
complementary suppressions, are suppressed until this is no longer possible 
[E?, 1. 5, 6, '7]. To prevenl inferences using Eqs. (5)-('7), the suppressed cells must 
fall into (possibly overlapping) hypercubes of size 2m , where m is the size of the 
table; that is, 2 cells in each row (column, etc.) are suppressed. In addition, if 
any attribute is aggregated into clusters at a higher level in the lattice, then the 
hypercubes musl be contained within clusters. Figure 5(a) illustrates how cell 
suppression could be applied to table TAB 1 of Figure 3. Three cubes are 
suppressed, where the cells of each cube are marked X, y, and Z respectively. 
(cubes Y and Z overlap on one cell). Figure 5(b) shows an alternative 
suppression that is not secure because hypercube Z is nol conlained within a 
cluster. The sensitive cell in rew 2, column 5, for example, can be deduced by 
subtracting the cells in columns 3 and 4 from the marginal in TAUZ for the row 2 
cluster Ib s,b 4 ,b 51. 

Because cell suppression can be expensive, it is used as an a priori control 
rather than on a pcr qucry basis. A memoryless heuristic based on lhe principle 
of restricting hypercubes of slatistics has been proposed as a less expensive 
alternative [or online query processing system::; with conjunctive queries [10]. 

By providing sLatistics for aggregates, clustering atlributes can reduce the 
information loss caused by suppressing nonsensitive cells. For example, the 
query count.([(A = as) &' (iJ I = b l )] + [(A = as) & (BI = b 2)]) would not be 
allowed because the formula is Lhe disjunction of restricted cells. This statistic 
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13 7 Y Y 9 14 

x x 11 z Z 6 

x x y y/z z 7 

24 19 6 8 18 7 

a) Secure suppression 

13 7 Y Y 9 14 

x x 11 12 Z Z 

x x y y z Z 

24 19 6 8 18 7 

b) Insecure suppression (hypercube Z crosses partitions) • 

Figure 5. Cell suppression applied to T 1 of Figure 3. 
AB 
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can be obtained, however, through the clustering attribute B2 with the query 
count ((A = as) & (B2 = Ib l ,b 2 l). 

4.3. Perturbation Techniques 
Perturbation techniques add noise to statistics. These techniques are 

usually used with some form of restriction technique, applied at either the table 
or cell level. Perturbation techniques are judged not only by their security and 
information loss, but by their bias, which should be zero or at least negligible, 
and by their consistency. Inconsistencies arise when, for example, repetitions of 
the same query yield different results, or when the statistics in a row (column, 
etc.) of a table do not add up to their marginal sum. Unfortunately, the goals of 
consistency and statistical quality of perturbed statistics can be conflicting 
[31, 4, 6, 32, 33], so that perfect consistency is probably unrealizable. 

We also survey perturbation techniques in [28], classifying them according 
to whether are record (input) based or output based. Given a query q (F), 
record based techniques perturb the input to the statistical function for q. An 
example of a record based technique is random sample queries [34,18], which 
uses random samples of the records in a query set to compute a statistic. One 
of the difficulties encountered with this strategy is maintaining consistency. If a 
statistic can be requested in many different ways, and each query returns a 
different response, then a better estimate of the true statistic can be obtained 
by averaging the responses. To see how Lhis might be done, suppose sampling is 
applied to queries for nonsensitive statistics over attributes A and B I of TABI in 
Figure 3 (queries for sensitive statistics would be suppressed). Then the query 
count ((A = as) & (BI = b I» for the 'nonsensitive statistic in row 3, column 1 
would return a count computed from a sample of the records in the query set, 
where the variance of the perturbed count is great 'enough that the "1" in row 3, 
column 2 cannot be accurately inferred (using the marginal in T ABa). But 
additional estimates of the perturbed count might be obtained by formulating 
the query in different ways, for example: 

count ((A = as) & (BI < b 2» 
count ((A > a2) & (A < a4) & (8 1 < b 2» 
count([(A = as) & (BI= b l )] + [(A = as) & (BI < b2)]) 

By taking the average of many such estimates, a better estimate of the true 
count can be obtained, 

To protect against averaging attacks, equivaient queries should always 
return the same response. One way of doing this is by restricting the syntax of 
queries to conjunctive qu.eries, which allows easy reduction to a normal form. 
The reduced normal form would then functionally determine which records are 
selected for the sample, A less restrictive, but somewhat more costly, way is to 
make the sample dependent on the composilionof the query set., This could be 
done by first making a preliminary pass over the query set to compute a 
checksum over the record id's; the checksum would ,then functionally determine 
which records are selected for the sample [34,18]' 

Unfortunately, guaranteeing a constant response for equivalent queries is 
not suITicient. If table ''1~lJl has d descenclc~nts in the lattice, Lhen estimates of 
Lhc cell in row 3, column 1 can be obtained from these descendents, Let E = 
(/1 = (13) & (JJ 1 = l> J, and suppose Lhc synLax of queries is unresLricted (wiLh Lhe 
checksum scheme used Lo ensure consLancy for sLaListics computed over the 
same query set). There is an exponential number of ways of estimating 
count (E) from each deseendenL of T ABl in the laLLice, For example, suppose 
TABle is a descendent of TAnl , where C is the ordered domain C = Ic I, . " . ,Ct}· 
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Because there are Zt-l-1 ways of partitioning the domain of C into two 
nonempty subsets, there are zt -1-1 ways of expressing count (E) using just two 
queries; e.g., 

count(E & (C = c 1» + co'Unt(E & (C > c 1» 
count(E & (C::: C2» + count(E & (C > C2»' 

Because different query sets are used in each estimate, the checksum scheme 
does, not detect equivalence among the pairs of queries. If Zt-l-1 > 
151 E 1 (1 - p)/ p, where 1 E 1 is the size of the query set and p is the expected 
fraction of records retained in the sample, then the set of all sl.!-ch estimates 

. gives enough information to estimate count (E) to within one record with a 95% 
confidence interval when 1 E 1 is around 30 or so [34]. For 1 E I = 30 and p = .75, 
for exampl/3' a domain size t of just 8 gives enough estimates .. If the syntax of 
queries is restricted to conjunctive /ormulas, . then only one estimate of 

count(E) can be obtained, namely I:co'Unt(E & (C = Ci», .so an averaging 
i=1 

attack is not likely to succeed. 

The checksum scheme has another potentially serious security flaw. 
Suppose it is known that a formula F uniquely identifies some indivtdual in the 
database, but it is not known whether that individual has attribute A = (1 l' 

Because the size of the query set F & (A = a 1) is 0 or 1. the database would 
withhold the statistic count (F & (A = (11»' It is, however. possible to deduce 
whether this count is 0 or 1 from two queries. q (F + P) and 
q{F &(A =.(11) + P). where P is a tracker [Z4,25,26.16]; that is. a,formula 
disjoint from F that pads F with enough extra records that the queries are 
answerable [35]. If both queries return exactly the same answer, one can infer 
Lhatboth have the. same query sets (otherwise the samples, and therefore 
responses. would be diiIerent with high probability). whence the individual has 
the attribute A = (11 with high probability. This security flaw in the checksum 
scheme is not unique to random sample queries; it arises with any perturbation 
scheme (e.g., random rounding), where Lhe perturbation is functionaliy 
determined by the composition of the query set .. ' 

In practice, it may be easy to prevent users fr0m obtaining estimates of 
cells in TAB 1 using descendenLs of T AB1 in the lattice. Because the descendents 
are further down in the lattice, they will contain more sensitive cells than TAB1 . 

, Therefore, lattice based restriction techniques ca.n restrict statistics in these 
tables, and perturbation techniques can introduce larger errors so that 
statistics in lower-level Lables cannot be used to estimate those higher up. 

Output based techniques perturb a result q (Ji') after it has been correctly 
computed, typically by systematic or random rounding [36,4,37. 38.33J. or by 
controlled rounding [39.2.10,11.42]. Systematic and random rounding can 
introduce inconsistencies. Controlled rounding forces consistencies for additive 
statistics by making· the marginal slJms of rounded statistics equal their 
rounded sum. Since this can be expensive, it is presently used only as an a priori 
control for offline publi(~at.ion of tables. Handom rounding. which has the 
a.dvantage of being unbiased, is vulncrn.ble to averaging attacks in the same way 
as random sample quorio:;,· Tbe sol uLion is al so the same: resLricL Lhe syntax to 
conjunctive formulas. and leL Lhe reduced normal form functionally determine 
wheLher Lo round tIP or down. 

Two observations arc worth noting. f'irst. the attilcks formulated in terms 
of "key-specified queries" I: 18}, including the linear system attacks on sums 
[23,43] and mediiln attacks [4-4,4·5. 46J. may not be as serious as originally 
thought. Indeed, it seems unlikely that any of these attacks could succeed in a 
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system with security controls developed in the lattice model, t.hough further 
research is needed to substantiate this. To see why, consider the following linear 
attack, which determines the value x7 in: 5 queries, where Xi is the value of some 
numeric attribute in record i, and qj denotes the statistical sum returned in the 
jth query: . 

Obtain these statistics: 

Ql=X I +X2+ X 3 

q2 = X4 + X5 + Xe 
Q3 = Xl + X 4 + x7 

q4 = X2 + X5 + x7 

q5 = X3 + Xe + X7 

Now, to perform this attack, a user must be able to formulate characteristic 
formulas for the query sets in the, attack (users with statistics-only access 
should not be permitted to request statistics "for groups of named individuals). 
This means that the pser must have enough supplementary knowledge about the 
individuals in the database that precisely controlled groups of individuals can be 
identified through characteristic formulas: for many applications, this 
information will not be available. But even if it is, the formulas defining these 
groups must use enough attributes to isolate single individuals, whence the 
query sets will correspond to sets (or set unions) defined over tables containing 
sensitive cells. ' Table-level and cell-level controls can prevent their release, or 
add enough noise that estimates of sensitive cells. cannot be obtained. 

The second observation is that there is a case for restricting the syntax of 
queries to conjunctive formulas. There is a paradoxical tradeoff between the 
power of the query language and the amount of obtainable information [33]. If 
the syntax of the query language is restricted to conjunctive formulas, then the 
only statistics released are those corresponding to table cells in the lattice: 
statistics for query sets defined by logical OR and NOT are not released. But 
restricting the syntax reduces considerably the number of possible attacks, so 
that the database can release more table cells, and more accurate statistics for 
these cells. Because additive statistics for arbitrary formulas can be computed 
from the table cells, more information may be effectively released than with a 

. free syntax, where controls must be tighter. 
This tradeoff arises with random sample queries and random' rounding, 

where restricting the syntax to conjunctive formulas allows easy reduction to a 
normal form, and reduces exponentially the number of ways of expressing a 
particular query set. The tradeoff also arises with memoryless cell restriction 
techniques, where using conjunctive queries can permit the release of partial 
tables through a heuristic based on withholding.hypercubes [10]. With a free 
syntax, complete tables of statistics mllst be withheld to ensure s('!curity. We 
also observe that the Swedish National Bureau of Statistics has adopted a 
partially restricted syntax [fl, 6]. 

5. Data Models 

We began our research on Lhe statistical inference problem with a 
relational [47] view of the data. We modeled a statistical database as a single 
relation (also called universal relation [4UJ) of N records (tuples), where each 
record contains values for the M atomic attributes AI" .. ,AM, plus any 
quantitative attributes used in statistical calculations, but not for specifying 
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query sets. 

We chose tq.is model over the publication hierarchy because we "\V"anted to 
study the problem as it arises in general purpose online query processing 
systems, such as relation~l database systems, where arbitrary query sets can be 
formulated in high-level languages, and where some users may be allowed direct 
access to the data. Because many online databases are dynamic, we wanted to 
find efficient inference controls that could be applied at query processing time. 
This ruled out many techniques used by census agencies, including cell 
suppression, which are applied a priori to the one-time publication of tables. 

The results of our research led us to the lattice model. This is not 
incompatible with our earlier objective of studying relational databases. A 
relation over M primary attributes is easily mapped onto a lattice structure for 
the purpose of studying security. Clustering attributes can be added uS an aid 
for releasing more information without jeopardizing security. Because the 
tables of the lattice are logical rather than physical structures, the lattice 
serves only as a tool for estimating disclosure risks and developing security 
controls. 

Recently, 'efforts have been made to develop a data model for statistical 
databases that models the semantic cOliceptsof statistic'al applications, namely 
clustering attributes and table structures. An example' is SUBJECT [49,50], 
which represents the attributes and tables of the lattice with a graph, A graph 
has two types of nodes: "clustering" hodes (labeled "C") for attributes (primary 
or secondary), and "dross product" nodes (labeled "x") for tables over multiple 
attributes, In addition, special cluster nodes, called "subject nodes", group 
attributes, tables, arid other subject nodes. Figure 6 shows a SUBJECT graph for 
the database depicted by the lattice of Figure 3, Attributes A and Bare 
represented by clustering nodes: the 2-dimensional tables over A and B by a 
cross-product node. The SUBJECTgrilph has the advantage of. showing the 
hierarchical dependency relationships between clusters and values in an 
attribute hierarchy. 

A SUBJECT graph can be mapped into the lattice model for the purpose of 
developing security controls. Consider the SUBJECT graph in Figure 7, which 
corresponds to that in }i'igure 4 of [1,9] minus the quantitative a'ttributes 
(variables). The lattice for this graph is equivalent to that in Figure 2,where the 
attributes are interpreted as follows: 

A = States, (atomic attribute) 
B = Industrial Classes (attribute hierarchy with 4 levels) 
C = Employment Size (atomiC attribute) . 

The database contains one quantitative attribute, Reporting Units, which is 
broken down by aU three attributes, The raw data for this attribute is 
associated with table T

IIl
]4C in the lattice, and aggregations of the data are 

associated with the higher-level tables, The database also has two quantitative 
attributes, Number of Employees and Taxable Level, which are broken down by 
attributes A and B only. The raw data for these attributes' is associated with 
table TAB4 , and aggregations of the data are associated with the ancestors of 7~B4 
in the lattice. 

u. Conclusions 

The lattice model provides a'maLhematical basis for studying Lhe iuference 
problem and iLs solution. IL hilS provided a framework for estimating disclosure 
risk, and for evalualing and comparing difIerent controls, It has suggested ways 
of adapting techniques used by cenSllS agencies' to online query processing 
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Figure 6. SUBJECT graph for lattice of Figure 3. 
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Industry x State x Employment size 

Industry x 
size 

Industry Code 
4-7 .•. 

1381 1382 1389 

Figure 7. SUBJECT graph of industrial data. 
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systems, and has suggested new controls. 

Although considerable progress has been made towards solving the 
statistical database problem in general purpose systems, further research is 
needed to determine more precisely the security and information loss of 
parLicular controls. Experimental studies along the lines initiated by Jan 
Schlarer at the University of Ulm are needed to confirm or refute the 
effectiveness of these controls on actual databases. Guidelines are needed for 
selecting the best controls for a particular application, for setting table 
restriction thresholds, and for selecting perturbation amounts. Additional 
research is also needed to understand the security problems associated with 
database updates [51. 52]' 
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Abstract. 

In this paper we deal with the problem of security of statistical databases, i.e. file systems. 

l'le propose a model of a statistical database in which to investigate the properties of statis

tical databases and we de~cribe a query language connected with such a database. We discuss the 

problem of denendencies between attributes and we consider the case when database contains in

complete information. In the case of incom1)lete information the problems arrive with the inter

pretation of the query language, mainly for statistical terms. The need fora precise semantic 

is here evident. 

1. INTRODUCTION 

There are a number of fundamental distinctions 

between data bases and file systems. In parti

cular a data base has more structural complex

ity, different access methods and contains 

intrarecord relationships. The term "data base" 

usually refers to both file systems and data 

bases, for example a statistical database is 

a file system containing records for some num

ber of individuals. A user generally has access 

to an external database, which is a view of 

part of the conceptual database. Such a view 

is often simply collection of records, e.g. 

one relation scheme, and may be seen as a file 

system. For example, with a database containing 

information about flights and passengers, a 

clerk may need to know about flight numbers 

but not about the assignment of pilots to 

flights. The dispatcher may need to know about , 
flights and aircraft, but does not need to know 

about personnel salaries (cf. [5lJ). 

This paper is connected with the problem of 

inference control. The problem of inference 

control in statistical databases has been of 

growing concern in recent years; several stu

dies have been reported (cf. [11, (3-7J , [1l1 , 

[13-l4J, [16J , [18-23J , [30] , [37-431, [45-50] , [55J ) 

involving different models and different allow

able statistical queries. Inference controls 

protect statistical databases by preventing 

questioners from deducing confidential infor-
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mation by posing carefully designed sequences of 

statistical queries and correlating the responses. 

In general all protection policies impose some 

restrictions on the database system. A "good" pro

tectionpolicy should be effective (it should pro

vide security to a reasonable extent), feasible 

(there should exist a way to enforce restrictions) 

and efficient and at the same time maintain the 

richness of the information revealed to users of 

the database (cf. [4J). 

There are two main restrictions connected with the 

previous studies. Almost all previous studies con

sidered static databases (except [4J,[42-43J, [55}) 

in order to simplify the problem. On the other 

hand the inference control in statistical databa

ses should also be investigated for dynamic data

bases. The second restriction is more serious: all 

researchers (as far as the author is aware) studied 

the case of a statistical database which contain 

"complete" information, it is, for every object 

and every attribute (property) there exist a unique 

value which correspondes to them. Note that the 

situation when data are incomplete is quite common 

mainly in statistical databases which should con

tain a lot of information about large groups of 

population. 

Now we propose and investigate a model for statis

tical database. For this purpose we use the model 

prooosed by Lipski [32]; in the next section we 

summarize the basic notions used in this model. 



2. A MODEL OF A STATISTICAL DATABASE 

We give below a mathematical model of a sta~: 

tistical database. The model will then be used 

in the rest of the paper. 

Def.l. 

A statistical database is a quadruple 

S where 

x is a finite set of objects, 

A is a finite set of attributes, 

Qa is a nonempty set called the domain of 

attribute a, 

U is a function U : Q -> IP (X) , 

(where Q denotes the "disjoint union" of attri-

bute domains: Q !<a,q) : a€A and q€QaJ, and 

[['(X) denotes the set of all subsets of X) , 

such that for every a€A: 

(1) ll{u(a,q) : q€Qal = X. 

The function U associates with any a€A and 

q€Q a set of objects U(a,q)~X. 

Let us consider the following example. Suppose 

that a statistical database contains the fol

lowing information: the age of the object x 

is 30, the age of the object y is 28, 29 or 30 

and the age of object z is 30 or 31. Now we 

want to list all objects which age is 30 (it 

is, we want to list all objects which age is 

30 in reality). Note that the answer may be 

{xl, ~x,Y3, 1x,zl or lx,y,z}. Of course, the 

information contained in the system is not 

sufficient to exactly determine this set. 

However, for any query we may consider the 

following two bounds of interpretation of the 

query: 

(2) the set of objects for which we can con

clude from the information available in 

the system, that they must satisfy condi

tion expressed by the query, 

(3) the set of objects for which we cannot 

rule out the possibility of satisfying 

condition expressed by the query. 

In other words, (2) and (3) are the best pos

sible bounds of the interpretation of the 

query, logically derivable from the system. 

In our example the answer under the first 

interpretation is 1xJ and under the second 

interpretation is lx,y,z~. 
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Now we turn to the function U .• Intentionally, U(a,q) 

is the set of objects for which attribute a possibly 

takes value q. From the function U we can determine 

the set, denoted by u(a,q), of all the objects for 

which the value of attribute a is known to be q: 

(4) u(a,q) = x'UtU(a,s) : s€Qa and s 4' qJ. 

The intuition connected with the above rule is that 

we know that a takes value q exactly when we know, 

that it is not possible for it to take any other value 

S€Qa'{ql. From (1) and (4) we may easily obtain the 

following two intuitively evident facts: 

(5) u(a,q)!: U(a,q) 

(6) u(a,q)~U(a,s) = ¢ for all q t s, q,S€Qa. 

According to the interpretation of function U, we 

may determine, for every x€X and every a€A, the set 

(7) ~a(x) = ~q€Qa: x€U(a,q)J 

of all possible values attribute a can take for 

object x. Converselly, U can be obtained from fun

ctions ~ (aeA) by the formula: 
a 

(8) U(a,q) = ~X€X : q€~a(x)J. 

We shall call (~a)a€A the classification associated 

with system S = < x, A, (Qa) a€A' U>. 
3. A QUERY LANGUAGE 

Below we describe the main characteristic of a que

ry language. 

By a query we shall mean a term. A term can be 

descriptive, numerical or statistical. A descrip

tive term is built up from certain elementary parts 

called descriptors and symbols for Boolean opera

tions 0, ], ~, " +. The set T of descriptive terms 

is defined to be the least set Tl with the following 

two properties: 

(i) ~,] and all descriptors are in Tl , 

(ii) -t, (t·s), (t+s) are in Tl whenever t,s€Tl . 

Every descriptor is of the form (a,B>, where a is 

an attribute and B is the subset of attribute do

main 0 . Descriptor (a,B>' denotes the set of ob-
"a -

jects for which the value of attribute a is in B. 

We treat descriptors as indecomposable elements 

without any internal structure. 

For every descriptive term t, a numerical term #t 

can be constructed (cf. [29], (33]). It denotes the 

number of objects with the property expressed by t. 



The set of numerical terms T# is defined as 

A statistical term is given by the triple 

(Y,f,a), where Y is subset of X, f indicates 

a "statistical" function which associates a 

real number with any finite collection (with 

repetition allowed) of reals, and a is an 

attribute (not always arbitrary). A statis

tical term (Y,f,a) is intended to denote 

either the specific value from the set 

f~a(x) : X€yl with repetitions allowed, when 

f is maximum, minimum or medium, or a value 

computed using the values ~a(x), x€Y. 

Note that the set of attributes can be parti~ 

tioned in to two groups, A = D v W, where a€W 

if QaSR and a€D otherwise (R denote the set 

of real numbers). It means that we may arith

metically add the values Ql,Q2eQa only in the 

case when a€W. In many cases in modern sta

tistical databases (cf. [3J, [13J, [lSJ , [17J , 

[30) the set of attributes A is divided onto 

two subsets A = C v V, where C is the set of 

categories and V - the set of data. These 

sets need not be disjoint. Categories are 

used to distinguish the subsets of objects 

having common characteristic (the values of 

attributes), and data keep their numerical 

val ues. Of course V ~ W, ie. for all a€V : 

Qa ~ R. Since categories describe characteris

tics of objects, the descriptors, which are 

used to build the descriptive terms are of 

the form (a,B>, where a€C (and consequently 

B S:Q). On the other hand the requirement for 

statistical terms <Y,f,a) is a€V. 

Now we give a definition related to descrip

tive terms. 

Def. 2. 

(i) A descriptive term is primitive if it 

is of the form 

where ajtak for j~k 

for all j€J 

n(a.,B.) 
j€J J J 

and ¢"I= Bj~Qa. 
J 
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(ii) A descriptive term is in additive normal form 

if it is of the form 

where all tk's are primitive 

(iii) A descriptive term is coprimitive if it is of 

the form 

2:<a.,B.> 
j€J J ) 

where ajtak for j~k 

all j€J 

and for 

(iv) A descriptive term is in mUltiplicative normal 

form if it is of the form 

where all tk's are coprimitive 

ITt 
k€K k 

(v) A descriptive (primitive) term is simple if it 

is of the form 

n<a,YQaP 
a€C 

(vi) A descriptive term is in standard form if it 

is of the form 

L't 
k€K k 

where all tk's are simple. 

4. STATISTICAL DATABASE - COMPLETE INFORMATION 

We say that a statistical database contains comple

te information if and only if u = U. Note that 

this condition is equivalent to "J3
a

(x) consists of 

a single element of Q
a

, for all a€Aand x€X". In a 

complete system we know exactly the unique value 

attribute a takes for object x for any a€A and x€X. 

Although the semantic connected with complete sys

tem is intuitively evident and is "the only natural 

one", nevertheless we give below a formal defini

tion of the interpretation of (ie. the response to) 

a query. 

Def.3. 

The value of a query q in system S is denoted by 

IlqHs (or \lql\) and defined inductively as follows: 

(i) 

(H) 

\1<»1\ = ¢' 
lI(a,B)1I 

PI! = X, 

U U(a,q), 
q€B 



(iii) II-t \I = X'lItH, 

(iv) IIt·sll = IItlll'lllsll, 
(v) 1\ t + s II = \I t II v Ii s \I , 

(vi) \I#t II = card( U tn ), 

(vii) \1<Y,f,a>1I = f(f!a(xl)""'''a(xm», 

where Y = txl, ••• ,xml. 

Note that the set Y in (vii) may be given as 

a value I\tll for some descriptive term t; 

than Y is the set of objects satisfying pro

perty expressed by t. In that case such a 

statistical term we denote by (t,f,a). 

Example 1. A statistical database containing 

information on employees. 

Objects Cat ego r i e s 
Sex Dept. Position 

1.Adams M Math 

2.Baker M BioI 

3.Cook M BioI 

4.Dodd F Psy 

5.Engel F Math 

6.Flood M Math 

7.Grady F Psy 

8.Hayes M Math 

9.Iron M BioI 

10.Jones 

Il.Knapp 

12.Lord 

M Math 

F BioI 

F BioI 

Prof 

Prof 

Stu 

Asist 

Stu 

Prof 

Stu 

Prof 

Stu 

Asist 

Asist 

Asist 

D a t a 
#Ch.Li.d. Salary 

o 
4 

1 

1 

1 

2 

3 

3 

3 

o 
2 

2 

24000 

24000 

5000 

17000 

16000 

22000 

9000 

21000 

10000 

16000 

17000 

15000 

In the above statistical database we have 12 

objects (X = ~Adams, Baker, ..• ,Lord}), which 

are described by 5 attributes (A = iSex,Dept., 

position, #Child., SalaryJ). The categories 

describe characteristics of the objects (sex, 

position, department), where Qsex= {F,MJ, 

QDept.= ~Math, BioI, psyl, and Qposition= 

tprof, Asist, Stu};- whereas data (number of 

children and salary) specify numerical values 

for these objects. Below we give three simple 

queries and responses for them. 

ql= (Sex, ~Ml>'<Dept,IMath!)+(Posit, iStul), 

IIql ll = ~Adams, Cook, Engel, Flood, Grady, 

Hayes, Iron, Jones}, 
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q2= # (Sex,{M}>.<Dept,{Math1)+(Posit, {Stu}» , 

IIq2" = 8, 

q3= «Dept ,I Math J) ,MAX , Salary), 

IIq311 = 24000. 

Now we give a definition and a theorem which will 

be important in the following text. 

Def.4. 

Two descriptive terms t, seT are equivalent (t ~ s) 

if for all systems S: II til S = II s II S (the phrase 

"for all systems" refers to all systems with fixed 

Theorem 1. 

(a) For each descriptive term t there is a term s 

in normal addi ti ve form such that t ~ s . 

(b) For each descriptive term t there is a term s 

in standard form such that t ~ s. _ 

(c) For each descriptive term t there is a term s 

in multiplicative form such that tZs. 

For the proof the reader is refered to (32J. 

We say that a compromise occurs when a user deduces, 

from responses to one or more queries, confidential 

information of which he was previously unaware (in 

such case we say that a database is compromisable). 

A database is secure, if it is not compromisable. 

In general, a user is not allowed to know some'va

lues in the database. Thus interpretation of a query 

for a user is usually different from interpretation 

for the administrator of the system. During the last 

years there has been a great effort to find a secu

re interpretation, under which a database is secure. 

There have been two main approaches to this provision 

of security. First, the administrator of the system 

may restrict the class of admissible queries. This 

restriction may be done in a syntactic way, for 

example an admissible query may use only a primiti

ve terms (Def.2(i», cf. [3),[181,(30], or a user 

must not use particular attributes. Alternatively, 

the restrictions may be done in a semantic way, for 

example the answer to a query may depend on the 

number of objects involved in this query, cf. [16J. 

The second method of providing database security 

is by giving an "inprecise" answer to a query (cf. 



• 

• 

(11 , (14] , [IS) , (20]) . 

One of the most promising is the concept of 

defining "statistical information". This cor

respondes to the definition of sets of popu

lation (cf.[4]). We may apply this idea by 

using our model. Suppose that in our model 

there are p category attributes and that the 

i-th category attribute can 

vil, ... ,vin .' We may form N 
3. 

take n. 
p 3. 

=n n. 
i=l 3. 

values 

elemen-

tary conjunctions, each of them being a con-

junction of a different combination of cate-
, , 

gory values. Each elementary conjunction 

correspondes to some simple term (see Def.2(v». 

Example 3. Consider the database shown in 

Example 1. It contains 12 records 

and the set of elementary conjunctions (simple 

terms) having II t \I t ¢ is ttl' .• ·; tsl' where 

t l = <Sex,~M3)' (Dept, {Math!>' <Posit, lProfJ> 

t 2= (Sex, tM})' (Dept. ~Math 1> • (Posit, tAsistl> 

t3= <Sex, tM}>' (Dept, {BioI}>' <Posit,lprof I> 
t 4= <Sex, tM}>' (Dept, ~ BioI}>' "Posi t, 1 Stu J> 
ts= (Sex, ~F!>' (Dept, lMathJ>' <Posit, istu l> 
t6= (Sex,lFl> • <Dept, 1 BioI}>' <Posit, iAsistl> 

t7= <Sex. tF!>' (Dept,lPsyl>' (Posit, ~ Asist}> 

ts=<sex, ~Fl>' <Dept,~PsyJ> • {Posit, \Stu}> 

Under the assumption, that the cardinalities 

of domains for attributes Sex, Dept. and Po-. 
sition are 2, 3 and 3 respectively, the total 

number of elementary conjunctions is' IS. 

Def.s. 

We say that Y ~ X is describable in S if there 

is a descriptive term t such that Y is the set 

of all objects satisfying the property ex

pressed by t (y = litH). 

If we restrict the set of allowable queries 

to queries specified by descriptive terms., a 

user is allowed to ask for properties of any 

describable set (not every possible combina

tion of records can be requested). However, 

such a restriction alone is still ineffective' 

(cf.[16]). So the task of the administrator 

of the database is to partition records into 
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disjoint groups, which define atomic populations. 

Note that every atomic population should be one of 

the describable sets, so the set of atomic popula

tions may be given as a set of descriptive terms. 

Def.6. 

We say that the set {yl, .•. ,Yrl of describable sets 

form the set of atomic pbpulations,'if for arbitrary 

itj: Y./,\Y.='¢ arid 
3. J 

r 
Uy. = ,X; 
i=l 3. 

Example 4. Taking into account the previous example 

the administrator may define the following atomic 

populations as a set of descriptive terms: 

sl <Dept,fMathJ>.<sex,fF~> 

s2 (Dept, ~MathJ>'<Sex, {Ml> 

s3 <Dept,~Bio13>'<Posit,fAsistJ> 
s4 <Dept,~Bio11>'(Posit'1Stu,profJ> 

ss (Dept,tpsyJ> 

Def.7. 

Let lYl, ••• ,Y
r

} be the set ~f atomic populations. 

A set Y will form a population over tYl' •.. 'Y ~, if 
r , 

it is a union of a certain number of atomic popula-

tions from !Yl, ..• ,yr }. 

Note that the set of atomic populations implies 

the set of populations. A user is only allowed to 

learn about populations. For example, a user may 

learn about the maximum salary of all objects, 

which satisfy the following condition: 

<Dept,tMathJ>.<sex,~MJ> + <Dept,~Bio13>· 

'«Posit, {Asist'!> = s2 + s3 (see Example 4). 

A formal definition of the interpretation for a 

user is: 

Def.S. 

Let tYl •••. 'yr} be the set of atomic populations, 

fixed for a given database S. 

(a) The value of a numerical term #t for a user is: 

II #t 1\ = card (Y). where Y is the least population 

over [Yl,.' •. ,yr } such that ntll~ Y. 

(b) The value: of a statistical term <:t,f,a) for a 

user is\l(t.f.a)1I = U(Y,f,a>U " where Y is the 

least popu~ation over 1 Y l' .•. , YJ such that II t II ~ Y. 

This protection policy may be easily implemented. 

Each query, numerical or statistical term is speci

fied by a descriptive term, which has an equivalent 



standard form (Theorem 1). Each atomic popu

lation may be described by a descriptive 

term in the standard form. An algorithm to 

transfer an arbitrary descriptive term t into 

an equivalent standard form is given [32]. 

To maintain the richness of the information-

revealed to users. the administrator may fix 

different atomic populations for different 

attributes a€V. For every statistical term 

(t.f.a) we must take into account the set of 

atomic populations which correspondes to 

attribute a. However the administrator of 

the· database must be aware that there may be 

some relationships between the attributes 

from the set V. More precisely: 

Def.9. 

Let S = (x. A. (Qa)a€A' U> be a statistical 

database (A=C~V). Then a is a binary relation 

defined by x a y if ~a(x) = ~a(Y). 

It is easily seen that a is equivalence rela

tion. Let a.b € V be two attributes. Attribu

te b is dependent on a (a-> b) if 'i ~ r,i 
a and b are equivalent (a~b) if a = ki. 

For example. there may be some relationship 

between attributes "Tax" and "Salary" (ie. 

J3Sal (x) < J3sal (y) implies ~Tax (x) < 13Tax (y) ; 

moreover. the opposite implication is also 

true). In that case the attributes "Tax" and 

"Salary" are equivalent. 

Let us denote "'" B 0-a. 
]. 

(B =V). where 0 is 

a.€B 
]. 

a product of partitions (equivalence relations) 

a. defined in a usual way. Obviously. B is 
]. 

equivalence relation. 

Now we give two definitions (cf. [44J): 

Def.lO. 

The set V of attributes in S is called inde-

pendent in S if for every V 1 ~ V: V 2V· 
1 

If there is a subset Vl~V such that =-
VI 

then the set of attributes V will be called 

dependent in s. 

V 

396 

Def.lI. 

The smallest set Vl~ V such that VI is independent 

in S = (X. A. (Qa)a€A' U) (A=C"V) will be called 

reduct of V and the corresponding database 

Sl = <X. AI' (Qa)a€A • U1> (Al=C"Vl ) - reduced 
1 

database (U
l 

is the restriction of the function U 

to the set AI) • 

Under the above definition it is clear that the 

administrator should fix atomic populations for 

reduced database. ie. for all attributes which be

long to the reduct of V. The set of atomic popula

tions for the attributes from the reduct of V 

imply the other sets of atomic populations for 

other attributes. 

If a-->b for some a.b€V and {yl ••••• yrJ is the set 

of atomic populations for attribute a. then for eve-

ry atomic population Z for attribute b: 

where J ~ ~l, ...• rJ. 

Z = Uy .. 
i€J ]. 

Therefore equivalent attributes should have the same 

sets of atomic populations. For example. having 

Tax ~ Salary, the set of atomic populations for 

attributes Tax and Salary should be the same. 

5. STATISTICAL DATABASES - INCOMPLETE INFORMATION 

As we point out in the previous section, the seman

tic connected with the query language for formu~a

ting queries to a statistical database with comple

te information is intuitively evident and is "the 

only natural one". It is no longer so when the in

formation is incomplete. To give a precise notation 

of interpretation of a query language, we introduce 

the following definition (cf.[32): 

Def.12. 

Let Sl= <X, A. (0 ) Ul ' and "a a€A' / 
S2= (x, A. (Qa)a€A' U2) be two statistical 

databases. We say that Sl is an extent ion of S2 

(and denote S2' Sl) if Ul(a.q)~U2(a,q) for all 

a€A and q€Qa. 

It is obvious that , is a partial order on the set 

of all systems with fixed X and (Qa)a€A. This par

tial order has the least element (ie. where U(a,q)= 

=X for all a€A and q€Qa). Such a database contains 



no information at all, except for the mere 

fact what attributes refer to the objects. 

Using the above definition we may define a 

complete statistical database as a maximal 

element in the order' , ie. if it has no 

extentions S ~ Sl except for S = Sl' A statis

tical database is called incomplete if it is 

not complete. 

Now we are ready to turn to interpretation 

of a query language in incomplete statistical 

databases. Taking into account the conside

rations in Section 2, we give two bounds of 

interpretation of a query. Note that objects 

in incomplete database S are in reality des

cribed by a completion of S (we do not know 

by which one). So we may conclude that x has 

in reality property t only if x has property 

t in every completion of S. This leads in 

natural way to the following definition: 

Def.l3. 

(i) The lower value of 

t in S is \I t II *S 

a descriptive term 

n \\tlls 
S'SI 1 

Sl complete 

(ii) The upper value of a descriptive term 

t in S is II t II; = V \\t\\s 
S~ Sl 1 

Sl complete 

In other words, the lower value of a descrip

tive term t in S is a subset Y of X such 

that x€Y iff for every completion Sl of S: 

x€ 1\ t 1\ S . The upper value of descriptive 

term t i~ S is a subset Y of X such that 

x€Y iff for some completion Sl of S: x€ IItUs . 
1 

Sometimes, when S is clear from the context, 

we write simply \I t 1\ * or \I t \I * instead of 

11 t i\ *s or II t 1\ ;. 

The following theorem gives the basic pro

perties of II • 1\ * and \I. \I * • 

Theorem 2. 

In any statistical database 

S = <X, A, (Qa) a€A' u) we have 

* (i) /Ie) \I * = \I (!I \I = ¢ 
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(ii) 

(iii) 

(iv) 

II] \I * = 

U<a,B>II * 

\I(a,B) II * 

* IIDII =X 

X" UU(a,q) 
q€Qa' B 

UU(a,q) 
q€B 

* (v) lI",tll*=x'lIt!l 

(vi) 1\ ~ t ~ * = X' II til * 
(vii) lit + sll* 2 Iltll*vllsll* 

(viii) \I t + s II * = 1\ t II * v \I s 1\ * 

(ix) IIt·s 1\ * lit 11*,,11 s n * 

(x) lit· s II * 1\ t 1\ *" II s 1\ * 

For the proof the reader is refered to (321. 

Note that the inclusion (vii) cannot be replaced by 

equality, since lit + 511* may contain objects 

know to have property t or property s (and it is not 

known which one). 

However, two basic kinds of queries to a statisti

cal database are numerical and statistical terms. 

We may extend easily the interpretation of query 

language to capture numerical terms: 

Def.14. 

(i) The lower value of a numerical term #t in S is 

II #t II * = card II t II * 

(ii) The upper value of a numerical term #t in S is 

II #t \I * = card \I t II * 

In [291 the authors describe some propreties of 

* 11 • 1\ * and 1\. II for numerical terms; for more 

details the reader is refered to this work. 

More serious problems arrive with statistical terms. 

Recall that the set of attributes is usually divi

ded into two (not necessarly disjoint) sets named 

categories and data. Both categories and data may 

contain incomplete information. The need for a 

precise semantic is hehe evident. For instance, 

what should be the response to the qu~ry "give sum 

of salaries of all objects which age is 30"? 

Should we take into account only the objects which 

are known to be to be 30 and have the unique value 

for attribute "Salary"? Can we rule out all objects 

for which there is a possibility to be 30? What 

about objects for which age is 30 and the value 

of attribute "Salary" is unknown or, at least, 

given in some range? Below we propose the inter-



pretation for the statistical term: 

Def.15. 

(i) The lower value of a statistical term 

(t,f,a) in S is a range 

lI(t,f,a>lI* = [p,r], such that 

p f(inf(f!a(x1»,···,inf(lIa (xk ») 

r = f(sup(lIa (x1», ... ,sup(}3a(xk») 
where IItll* = lx1 , ... ,Xk}, 

(ii) ,The upper value of a statistical term 

<t,f,a> in S is a range 

U(t,f,a)U* = [p,r], such that p and r 

have the same mean~ng as in (i) and 

II t \I * = t xl' .•. , xkl· 

Note that there exist several other possible 

interpretations of a statistical term. For 

example the query (t, sum, salary) may be in

terpreted as a sum of salaries of all objects 

which are known to satisfy the property 

expressed by t and, in the same time, have 

a unique value for attribute "Salary", 

increased by a sum of an average salaries 

of all objects which are known to satisfy 

the property t and have not a unique value 

for attribute "Salary" (similarly for all 

objects for which the possibility of satis

fying property t cannot be ruled out) • 

We choose a range as an interpretation of a 

statistical term, since it provides the user 

with bounds for the true values. The true 

value (perhaps unknown in the database) can 

be trusted to lie between these bounds. 

Example 5. Let us consider the same set of 

objects and attributes as in Example 1. 

We assume that 

J3sex (Cook) = }3sex(Enge1) = iF,MJ, 

~Dept(Baker) = lBio1, PSyJ, 

~DePt(Hayes) = iMath, Bio11, 

~S 1 (Baker) = 122000,23000,24000,250001, a ary 
}3sa1ary(Iron) = {8000,9000,10000,11000}, 

and the rest of values remain the same as 

in Example 1. 

Then for the query: 

t = <Dept,~Bio13>, we have 
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lit II * = ~Baker,cook, Hayes, IrOn,Knapp,Lord}, 

whereas 

II t 1\ * = ~ Cook, Iron, Knapp, Lordj • 

For a numerical term #q = #(Dept,iBio11>, we have 

II #q II * = 6 and II #q \I * = 4, 

and for statistical term s= (Dept,~Bio13 ,SUM, Sal) 

we have 

\I s 1\ * 

II sll * 
[88000,94000}, 

[45000,48000J. 

The output of ranges to protect confidential in

formation released as statistics about groups of 

individuals was proposed previously (cf. [431, 

[49]). However .the meaning of those ranges is quite 

different to these proposed in this paper. The 

reason is that all previous studies deal with 

complete information and the range (as the answer 

for the query) contains the true value. In the case 

of incomplete information the range has the follo

wing meaning: "in every completion of system S, 

the true value (answer for the query) is in the 

given range". The one point is common: the admini

strator of a database should fix the interpreta

tion of a query language such that users may 

obtain valuable (meaningful) information and in 

the same time cannot infer about confidential 

va1ue(s). Below we give one of the several possible 

interpretation of a query language for a user .. 

Def.16. 

(i) The value of a numerical term #t for a user 

is the range II #t II = ( \I #t II *, II #t II *], 

(ii) The value of a statistical term <t,f,a) for 

a user is the range U<t,f,a}1I = [p,r], where 

l\(t,f,a>lI* = [P1,r11, 
* \I (t,f,a)1I = (P2,r2J, and 

p = minfp1,r1,P2,r2!' r = maxtP1,r1,P2,r2J' 

Example 6. The value for the statistical term 

s = <Dept,~Bio1J ,SUM,Sa1ary) for the user is 

\I sll = (45000,94000], where the database contains 

the same values as in Example 5. 

The important point connected with above defini

tion is that users are allowed to obtain in some 

sense "true" values, that is for every completion 

of the system S, the true value (true answer for 



• 

a query) is in the given range. On the other 

hand, having the range [p,r] as the answer 

for the query (t,f,a), a user is uncertain 

whether interesting for him (her) object x 

is an element of the set 1\ til * and whether 

~ (x) is one-element set. For more details 
a 

connected with inference controls in statis-

tical databases with incomplete information, 

the reader is refered to [40J. 

In a statistical databases with complete in

formation there is a serious threat of 

inferring confidential value, when an object 

is inserted or deleted (cf. [4],[43]), simply 

by querying just before and after a change. 

In our proposed model there are two different 

kinds of updates. The first is when the 

information about the objects increases, 

while the objects themselves remain invariant. 

The second possibility of update is to insert 

(delete) some object(s) (the modification 

of a value for existing object we may treat 

as a sequence of of delete-insert operations) • 

To improve security in our system we may 

assume that every inserted object x has 

"large" sets 13a (x) for all attributes aeA 

(even if the values of this object for some 

attributes are known to the administrator) 

and then, gradually, the administrator increase 

information about this object. There is no 

more need to process changes in pairs (cf. [41). 

We may consider similar approach when the 

object x is to be deleted. Before this ope

ration we may enlarge the sets ~a(x) (for a€A) 

and then delete object x "safely". Thus sta

tistical databases with incomplete information 

handle with updates much easier then wQen 

information is complete. 

6. CONCLUSIONS 

As we have mentioned in Introduction, the 

model of a statistical database with incom~ 

plete information was taken from [32J. In 

that paper the author distinguish t\-l0 diffe

rent ways of int.erpreting a query - the 
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ex':ernal one and the internal one. The external 

jntE!rpretation.J;'efers the queries directly to the 

real world modelled (in incomplete way) by the 

system, whereas under the internal interpretation 

the queries refer to the systems's information 

about this world rather than to the world itself. 

In this paper we.consider only external interpreta

tion as a tool of preventing a user to infer con

fidential value(s). 

This approach was based on the partial information 

on the value of an attribute. Note that in the 

other possible approach to incomplete information 

based on null values, we are restricted to the two 

extremal cases when either everithing is known 

about the value of an attribute, or nothing is 

known about the value of an attribute. 

We may consider also more general description of 

a statistical term (t,f,N), where W is a subset of 

the set of data Vi for example 

in the case of complete information (where 

fXl, ••• ,~1 is the set of objects satisfying pro

perty expressed by t).The theory presented in this 

paper can be extended to the language involving 

such statistical terms. 

Another extention is to allow "binary descriptors" 

of the form (a,R,b), a,b€A, R!;;:Qa" Qb' where 

\l<a,R,b;>\!= \x€X: fJa (x)-J3b (x) € R\, in the case 

of complete information. Examples of such descrip

tors are <Expenses ~ Salary), etc. 

Presented model is appropriate also for modelling 

supplementary knowledge of a user. We may think 

that Sl ~ S for a given database S. In particular, 

when a user has not any supplementary knowledge, 

Sl correspondes to the least element in the 

partial order , on the set of all systems with 

fixed X and (Qa)a€A' This knowledge is only about 

what attributes refer to the objects and what 

domain particular attribute has, and is essential 

to formulate queries. However, not every informa

tion is representable in a such model. 
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PERFORMANCE PREDICTION METHODS FOR 
EVALUATING PDE ALGORITHMS ON MIMD MACHINES* 

Simon K. Fok, John R. Wilson, Harry G. Heard. Joseph A. Parker 

Technology Development of California. Inc. 
3990 Freedom Circle. Santa Clara. California 95054 

Abstract 

In this paper • .a variety of current performance measures for SIMD machines are 
extended to MIMD machines. The concept of cost-effectiveness is elaborated and used 
to obtain an ~ posteriori estimate of the optimal number of processors to be used for 
a particular problem. Using both probability modeling and simulation, performance 
prediction methods are developed to evaluate the performance of the Large Eddy 
Code [7] of NASA-Ames on a tightly-coupled system such as the CRAY X-MP. 

1. INTRODUCTION 

Currently. many performance measures have been 
developed for SIMD machines; straightforward 
extensions of these to MIMD machines are not 
sati sfactory. as key features of MIMD machines 
are not adequately reflected. Considerable care 
has been taken in generalizing these SIMD 
concepts of performance measures to MIMD 
machines. To obtain an a posteriori estimate 
for the optimal number of processors to be used 
on a multiprocessor system. the concept of 
cost-effectiveness is applicable. However. to 
predict performance of an algorithm on a MIMD 
machine accurately, either simulation or 
probability and queuing models have to be used 
to deal with important problems such as 
synchronization. memory contention, and 
interprocessor communication. In this paper. we 
will examine algorithm performance in a 
tightly-coupled system such as the CRAY X-MP and 
use performance prediction methods based on , 
analytical modeling and simulation to evaluate 
some fluid flow codes. 

*Funds for the support of this study have been allocated by the NASA Ames 

Research Center, Moffett Field, California under Contract No. NAS 2-11065. 
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2. PERFORMANCE MEASURES FOR MIMD MACHINES 

2.1 Measure Extension. 

Performance measures have become an essential 
tool in the development of new computer 
architectures and new computational methods. 
The basic notions of execution time serve as the 
foundation for the derivation of other useful 
measures such as the speedup. the efficiency. 
and the utilization for SIMD machines. 

The objective of measure extension is to clearly 
separate architectural and algorithmic elements 
of the measures where possible, so that the 
suitability of each element to the task at hand 
can be clearly evaluated. 

Following Siegel [1]. the fundamental measure of 
performance is the execution time TN(M) 
involved in performing the algorithm for a 
problem of size M on a system having N Processing 
Elements (PE's). Other useful measures can be 
derived from TN easily. see Figure 2.1. TN(M) 
can be expressed as the sum of two components: 



CN(M), the time spent by PE's performing 
computations which are actually part of the task 
being performed; and 0N(M), which is the, 
"overhead" time spent "managing" the 
parallelism. To extend this measure, it is 
possible to decompose CN(M) and 0N(M) into 
various timings which contribute to each 
component. 

Speed 

VH(M) • M/TN(") 

speedup Efficiency 

SH(M) • T 1 (H)/T,.(11) EN(H). SN(M)/N 

Execution time overhead Ratio 

TN(M) • CN(M) + 0N(M) OVN(H)' 0N(H)/TN(M) 

Note: 
it • I of" sequential operation steps 

tx • time to perform step x 

Px • # of PE active for step x 

Fig. 2.1 SIHD Algorithm Performance Measures 

We have chosen to extend the execution time 
measure by first observing that the computational 
element of the execution time has, in general, 
two contributing elements: CN(M) = SEQN(MJ + 
PN(M) where SEQN(M) is th~ time required by, the 
system to compute serial portions of the 
algorithm,and PN(M) is the time spent in 
computing in parallel according to the 
algorithm. All algorithms (depending on the 
granularity with which one views them) are 
mixtures of inherently serial and parallel 
sequences, and this division merely formalizes 
what must be done in estimating algorithm 
performance in any case. This division into 
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serial and parallel components is fundamentally 
algorithmic in orientation, although it could 
also find origin, perhaps, in the execution 
strategies of particul ar architectures •. While 
possible this is rather unlikely, and so the 
utility of this first division is of primary 
value in algorithm assessment. 

The "overhead" represents another candidate for 
extension. In general, we feel that a useful 
decomposition of this element would be: 
0N(M) = SYNN(M) + DN(M) + RN(M) where SYNN(M) is 
the delay attributable to PE synchronization 
requirements; DN(M) is the delay associated with 
the internal transfer of data within the machine, 
fundamentally interprocessor communication 
delays; and, RN(M) is the residual delay, 
basically attributable to operating system 
actions. These elements have architectural 
and/or algorithmic origins 'which can be 
separated in each case of interest. 

Finally, in order to estimate the optimal number 
of PEs to. be used in performing the algorithm, 
for a problem of size M on a system having N 
PEs, the speedup SN(M) must necessarily be 
balanced by the 'cost' of the system of PEs. 
This concept is used in the development of the 
effectiveness measure in the next section. 

2.2 The Effectiveness Measure 

The two most commonly used measures iii the 
performance evaluation of SIMD/MIMD 
machines are speedup SN(M) and efficiency EN(M). 
Unfortunately for a typical problem of, fixed 
size M, SN increases asymptotically to a finite 
limitSoo as N -I- 00, while EN decreases to ° as 
N -I- 00, this results in the dilemma of choosing 
between better speedup or better effici~ncy. 
Hence, the determination of an 'optimal' number 
of processors N is impossible until a balance is 
struck between speedup and efficiency. 



To attain this balance, the notion of 
performance must be approached from the cost
effectiveness side. In other words, the speedup 
must be balanced with the basic cost of using N 
processors. The 'space-time' cost of an 
algorithm is defined as: 

CON(M) = N T N(M) • 

The effectiveness of an algorithm is then given 
by: 

This can be simp 1 ifi ed to a more familiar form: 

SN SN SNEN 
FN(M) =-= =-- < 1 NTN TN Tl 

NT Tl 
1 

Therefore, for a given algorithm (T1 is 
fixed), an effective algorithm is one which 
maximizes the product of speedup and efficiency 
(Kuck [2]). 

Example 

This example illustrates the usefulness of the 
concept of effectiveness based on a simulation 
run of the fluid code SIMPLE at LLNL (Axelrod et 
al [3]) using their MPSIM simulator. Their 
results are tabulated in the first four columns 
of the following table: 

N Mflops SN EN SN*EN 

1 9.04 1.00 1.00 1.00 
2 16.00 1.77 .89 1.99 
4 26.45 2.93 .73 2.14 
6 32.17 3.56 .59 2.10 
8 34.70 3.84 .48 1.84 

The measure of effectiveness is calculated in 
the fifth column. Axelrod et al arrived 
intuitively at the conclusion that the optimal 
number of processors should be 4. Using the 
effectiveness concept, however, this can be 
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easily seen. The effectiveness is maximum 
around N = 4; moreover, one is better off using 
2 processors than 8 in this case. This is 
clearly illustrated by Figure 2.2. 

4 

3 

2 

o 

o Shllllation results of a LLNL flow code on the S-1 
• Hand computed results 

SPEEDUP CURVE 

. .round 4 PROCESSORS, . / ""'"'" """IV"'" 

EFFECT! VEIIESS CURVE 

EFFICIENCY CURVE 

2 4 6 8 

I of PROCESSORS 

F1g. 2.2 Appllcat10n of the Effectiveness Heasure 

3. PERFORMANCE PREDICTION METHODS 

In Section 2, the disjoint components of both 
the computational time CN(M) and overhead 0N(M) 
were extended for algorithmic evaluations on MIMD 
machines. An approach for determining the 
optimal number of processors to be used for an 
algorithm of fixed size based on the cost
effectiveness idea was developed and shown to be 
useful in giving an ~ posteriori estimate. 
However, in order to predict performance of an 
algorithm on a specific MIMD machine, each 
component of the extended MIMD versions of CN(M) 
and 0N(M) has to be computed. There are 
basically two approaches: (1) Hand compute each 



component based on some probability 'or queuing 
mode ls and (2) S imul ati on. ,:; 

Simulation, though more accurate than hand·' 

computation, m~ be very time consuming, 
espec i ally when many sets of parameters are:':' 
required to assess global performance behavior. 
Furthermore, tailoring the algorithm for 

simulation, requiring code segmentation for 
parallel calculations, is both non-trivial arid' 
sensitive; slightly different segmentation can 
produce drastically different results. On the'" 
other hand, hand computation, although 
simplistic, provides a quick way to gain 

valuable insights into the performance of.·an 
algorithm within' a'nMlr.D machine. Finally; 'in 

order to obtain reliable performance prediction, 
'perhaps the best approach is to cross-correlate 

the results obtained from hand calculations and 
simul at ions. 

3.1 Performance Prediction Via Modeling' 

In order to isolate each component of 0N(M) a'nd' 
CN(M) and obtain approximate results based on 
some modeling techniques, the types of 

algorithms and MIMD architectures of interest 
have to be put in focus. First, the numerical 
method to be evaluated, the Large Eddy Code 
(NASA AMES), is primarily of the synchronized 
iterative type. Second, a, type of MIMD 
architecture of interest is the CRAY X-MP, and 
it will be modeled as a tightly-coupled system, 
see Fi gure 3.1 

Fig. 3.1 Tightly-Coupled (Shared Memory) System 
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" . ~ .' 

From Secti on 2,.1, the overhead 

0N(M) = SYNN(M) + 0N(M) + RN(M). 
. ~ . 

, First, the ·residual delay RN(M), due basically 
to oper~ting system actions will be neglected. 

The effects of synchronization will be drawn ' 

from order statistics. Finally, since the MIMO 
machine under consideration is tightly-coupled, 
the dominant factor due to delay associated 
with' the internal transfer of data within the 
machine willprimarily'arise from memory 
coritentions and not frominterprocessor 
corrmi-lli i cati on de 1 ays. 

Based on the above Simplification, the strategy 
for computing'the performance measure 
util iZation' for a tightly-coupled system is 
clearly depicted in Figure 3.2. 

",N 

H - ',of memory modules 
N - , of PE's . 
ljI -, memory, cycles/ac~1Ye cycles 
m ,02 - mean & variance of 

o a active cycles . 
m, 0',· mean & variance of total 

, of cycles 
U • utilization 

Fi,g, 3.2 Strategy for Computing Utilization. ' 

The set 01' input parameters necessary for 
computing the utilization for a shared memory 
system (tight ly':coup 1 ed system) . is defi ned in 
Figure3.2~ 'tt is nontrivial in some 2ases to 
obtain'numerical values for some of the input 
parameters. 

M, N are architectural design dependent so the 

values are directly available. 1/1 represents 



the instruction mix of the raw code. This 
value is very difficult to obtain, because it 
will involve counting memory access cycles and 
active cycles line by line in the parallel 
portion of the code. A more viable approach is 
toestimC!-te roughly this ratio and compute 
uti 1 i z at i on based on a range of IjJ centered at 
this estimated value. 

mo' . 0' ~ can be computed byperformi ng a flop 
count for each allocated task of a processor in 
the multiprocessor system. An easier way is to 
run the sections of the code corresponding. to 
each allocated task and compute mo'O'~ 
directly based on the timings obtained. Note 
that if all the allocated tasks are the same, 
then 0'0 is zero; however, because of memory 
contention, the variance of total cycles 
involved, 0' , is non-zero, as seen in 
Equation 3.6. 

3.1.1 Memory Contention Models in Synchronous 
Multiprocessor Systems 

Cons i der a synchronou s mu.lti processor system 
with N processors and M memories with a basic 
time unit of 1 memory cycle. The N processors 
are assumed to be independent and their requests 
are distributed uniformly among the memories. 
At the beginning of a memory cycle, the 
processors present their requests. If more than 
one simultaneous request is made to a particular 
memory, access confl ict occurs. On ly one 
request of a conflicting set is accepted while 
the others are rejected. All the accepted 
requests are served simultaneously during the 
cycle, while processors with rejected requests 
are blocked during that cycle. These blocked 
processors will resubmit their requests to the 
same memories in the next cycle. 
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The following parameters are crucial to the 
characterization for modeling memory contention: 

1/J = programned request rate of the processor 
(or the density of the memory requesting 
part of a T-cycle trace), 

a = dynamic request rate of the processor (or 
the density of the memory requesting part 
of the T'-cycle trace), 

PA = probability that a request is accepted. 

Since those cycles in which the processor is 
doing internal computation with no generated 
memory request are the same in the two traces 

(3.1) or 

T(1-1jJ)= T' (1-a) 

T 1- a 
f = T' = 'f:li' 

Here f is known as the performance degradation 
factor. Also, the expected number of rejections 
(blocked cycles) plus the one accept cycle per 
request is ~, therefore 

A 

( 3.2) 
1/J/P

A a = ---"'-'--
1 - 1/J + 1/J/P

A 

= -,--_~1_~_ 
1 + P A (I/1/J - 1) 

[ . N] 
The bandwi dth BW = NaP A = M 1 - (1 - aIM) so 

(3.3) 

Equations (3.2) and (3.3) constitute a pair of 
simultaneous equations where PAand a can be 
solved for in terms of M, N, 1/J. 



Yen et al [4] developed a new model which gave 
better values for BW since the above approach 
would cause an overestimation of the bandwidth. 

Their results can be sumnarized as follows: 

BW Nf1jl 

, (3.4) M 1 -(1 fMW) , 

l 1 - { 1 I Mf)")" 
M 

(3.4) can be solved for f by iteration using 

Newton's method; a reasonable initial guess for 

f is 1. 

P A and (l can then be so lved for in terms M; N; I/J 
via (3.3) and (3.1) respectively. 

3.1.2 Law of Total Probability 

Let mo and 0 ~ be the mean and variance of ", the 
random number of active cycles n ' in a task. o 
(Active cycles are execution cycles and memory 

access cycles which are not rejected.) We need 
to evaluate the mean (m) and the variance (0 2) 

of the total number of cycles (n) in a process. 
This is done via the 1 aw of total probabil ity, 
i.e. , 

, 2' m . 

where E and Eo designate the expected values 
taken over D and no respectively. Consequently, 
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E[nln o] = (1 - I/J)n o + I/Jno/P A ' 

E[ n2 Ino
] = E[(n-E[n])2] + E2[nlno]' 

1 - P A 
= I/Jno p'2 

A 

+ 

Then applying (3.5), 

(3.6) 

m = mo + mol/J(l - PA)/PA 
0 2 = 0 2 + m 1/J(1 _ P )/p 2 

o 0 A A 
+ cr~(1- PA)/PA 
·1/J(2 +:1/1(1 ~ PA)JP~) 

In (3.6) the effect of me~ry,conflicts appear 

as additional terms in the value of mean and 

vari ance of a process time. In the next 
section, the 'factor of synchroniHtion ~i 11 be 

" . ",I"' 

a~co,unted for, through ,u,se of ord~r statistics; 
the util,ization will then be computed. 

3.1. 3 Synchron 1zat'i o~ and Util i zat ion 

Dubois and Briggs [5J modei the factor of 
synchronization through order statistics. 

Let 0j:N be the mean of the jth order statistics 
among N samples drawn from the processing time 
distribution with mean 0 and variance 1. Then 

if mI is the mean iteration time, 

(3.7) 

Here 0N:Ndepend~ only on the distribution of, 
the ,normalized processing time. 

m m 1 
Th~ utilization is U = .J? = 0 = -1 + A 

'" mI m + ON : Ncr ' LI 



1 - P 
t.. = 1/1 A + 

°N:N PA 

with VC~ (C 1- 1/1) + L )2+ L 1 - PA 
P
A 

. m 
0 p2 

A 

_ Go 
where Co mo and PA comes from Yen's model, 
Equation (3.4). 

In the following sections, this model will be 
further developed and compared with the results 
from simulation runs of the Large Eddy Code. 

3.1.4 The Large Eddy Code 

A study and analysis of mapping the Large Eddy 
Code [7] from a sequential machine to an MIMD 
machine can be found in Greenberg & Stevens [6]. 

A high level structure of the code representing 
the division between serial and parallel 
portions of the code is displayed below: 

Iteration 

loop 

Fig. 3.3 High level Structure of the large Eddy Code 

The fundamental approach for arriving at the 
algorithmic concurrency is based on decomposing 
mathematically the existing 3-D spatial operator 
into a sequence of orthogonal one-dimensional 
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operators. As a result, when applying one of the 
operators to the 3-D cube, all lines of data may 
be updated concurrently since they are totally 
independent. The two concurrent porti ons shown 
in Figure 3.3 represent allocation among N PE's 
of the 3-D cube divided into N slabs in each of 
Y and Z directional groups. In particular, if a 
2 processor MIMD architecture was used, each 
processor wou 1 d take two of the Y and Z slabs. 
In such a case, each task assigned to a PE is 
almost identical, i.e., 0 0

2 = O. However, based 
on the analytic model developed the variance of 
the total number of cycles M is non-zero; in fact, 
the mean and variance from Equations 3.6 are: 

m=m l+ljJ __ A 
( 

1 - P ) 
o PA ' 

The utilization is U = ~ where t.. is now 
.L +t.. 

expressed as 

t.. = 1jJ 1 - PA + 0 ... /L 1 - PA 
PA N:Nl mo P 2 

A 

However, as noted by Dubois and Briggs [5], for 
mo > 10 4 cycles, the dependence of t.. on mo is 
negligible. 

where PA depends on a given memory contention 
model. 

In the following, we will apply the two models 
developed to the Large Eddy Code using the 
hardware configuration of the Cray X-MP. First, 
the i nstructi on mix 1jJ of the Large Eddy Code is 
based on the simple assumption that in the 
iteration loop, there are two memory fetches to 
one floating point operation, i.e., 1jJ= j. 



Second, for the Cray X-MP, which is a dual 
processor machine N = 2, while the number of 
memory modules M is either 16 or 32. Applying 
the first model based on the rate adjusted 
probabilistic approach and Yen's model of memory 
contention, the following table can be derived. 

In 

TABLE 3.1. UTILITIZATIONS AND LOCAL SPEEDUP 
RATIOS 

Model A - Rate Adjusted Probabilistic Approach 

M 

16 
32 

M 

16 
32 

.981 

.990 

Model 

PA 

.9975 

.990 

.013 

.0067 

B - Yen's 

I:l 

.0154 

.0067 

U 

.987 

.993 

Model 

U 

.984 

.993 

1.974 
1. 986 

SN 

1.968 
1.986 

Section 4.1, these results will be correlated 
with the simulation results of the Large Eddy 
Code which we now discuss. 

3.1.5 Simulation Results of the Large Eddy Code 

Following is a summary of the simulated perfor
mance of the Large Eddy Code on the CRAY X-MP: 

TABLE 3.2. AVERAGED SPEEDUP RATIOS 

Number of 
Iterations 

5 
100 

5 
100 

Grid or 
Mesh Size 

163 

163 

323 

323 

1.68 
1.977 
1. 74 
1.99 
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Basic data for these results are obtained by 
running the Large Eddy Code on the CRAY IS at 
NASA Ames [6].· Timings thereby obtained are 
then extrapo 1 ated for a CRAY IS with two 
processors, assuming that the parallel portions 
of code are divided evenly among the two 
processors. The speedup obtained is then assumed 
to be the same for the CRAY X-MP. There are 
four cases with different values for grid size 
and number of iterations. Note that for a 
problem with fixed mesh size, as the number of 
iterations increases, the speedup ratio increases 
also. This can be easily explained. For a 
problem with fixed mesh size, the timing for the 
sequential part is constant, so SEQ is constant, 
while the timing for the parallel part increases 
as the number of iterations increase, so PN 
increases. But from Equation 4.3, dSN/dPN > 0, 
so the speedup ratio SN increases also. 

4. CORRELATIONS BETWEEN PERFORMANCE 
PREDICTIONS VIA MODELING AND SIMULATION 

In order to compare results from modeling and 
simulation, the relationship between the 
measures speedup and utilization must be clearly 
drawn. 

There is a basic difference between the speedup 
measure and the utilization measure. Normally, 
the speedup measure is calculated based on the 
overall execution time of the code which will 
include the sequential, as well as parallel 
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portion of the code. On the other hand, by 
definition, utilization is a measure based 
solely on the parallel portion of the code. 
Therefore, speedup measures the global· behavior 
of the code, while utilization is directed 
specifically towards the parallel portion. 
However, if one restricts the definition of 
speedup so lely to the parallel section of the 
code, 



(4.1) 
N.mo 

SN = -mr- = N.UN ' 

(4.2) and EN = UN" 

Therefore, the utilization me'asure is nothing 
more than the efficiency measure restricted to 
the parallel portion of the code. In 
particular, in an ideal situation where 

mo = mI , SN = N and UN = EN = 1 as expected. 

4.1 Comparisons Between the Analytical Model 
and Simulation 

The results obtained for the Large Eddy Code via 
analytical modeling and simulation are presented 
in tables 3.1 and 3.2 respectively. As pointed 
out in the beginning of this section, the 
speedup ratios of the analytical model measure 
only the concurrent portion of the code while 
speedup ratios from simulation runs assess the 
global performance of the code. However, as the 
number of iterat ions increases (to '" 100) so 
that the timings for the concurrent portion 
become dominant, the speedup ratio obtained by 
simulation is between 1.977 and 1.99, which is 
almost identical to that obtained via analytical 
modeling, see table 3.1. It is interesting to 
note, however, that even if the parallel portion 
of the code is 100% efficient,the speedup 
ratio, according to the simulation methodology 
used in [6 J, can never reach 1. O! More 
interestingly, for a problem of fixed size, 
using more processors increases the gap from the 
ideal speedup. This puzzling phenomenon will be 
discussed in the next section. 

4.2 Proper Interpretation and Extension of the 
Speedup Measure 

For simplicity, assume the overhead 0N(M) is 
zero, so the speedup can be written as: 
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(4.3) 
, T 1 (M) 

SN(M) = SEQN(M) + PN(M) 

where as before, SEQN represents timing of the 
sequential part of the code and PN the parallel 
part. 

To be specific, consider a problem of fixed size. 
In many tases, the sequential time is independent 
of N, therefore, for ideal speedup of the N PE's 

(4.4) 
SEQ + PI 

SN = SEQ + P
1

/N < N for N > 1. 

In fact if N increases, N - SN increases. This 
result does not seem reasonable, because ideal 
speedup has been attained by the N PE's of the 
system; if there is any justice at all, SN should 
equal N. Moreover, why should performance of a 
multiprocessor system be penalized for using 
more PE's just because a portion of the code 
involves constant sequenti al 'execution time? 
Therefore, in order to reflect correctly the 
performance of the N PE's in this particular 
case, SEQ should be eliminate from the 
evaluation of the speedup SN. Otherwise, the 
degree of concurrency attained by the 
multiprocessors system will be camouflaged! 

In other words, when comparing the performance 
of two MIMD architectures using a fixed 
algorithm, the 'concurrent' speedup measure is 
much better suited than the'conventional speedup 
measure, because the conventional one typically 
disperses the focus on the concurrent portion of 
the algor ithm. 

5. CONCLUSIONS 

(1) Correlations were made between the 
simUlation results and that of analytic modeling 
in Section 4. The analytic models calculate the 
utilization of the multiprocessors per iteration 
loop and hence assess only the local performance 



of the code. whereas simulation models the 
global performance. Some simulation calculations 
are based on straightforward extrapolations and 
are not concerned with memory contention and 
processor synchronization. Improved tools would 
come from simulations incorporating analytical 
models. such as the LLNL MPSIM. 

(2) Extensions of performance measures from 
SIMD to MIMD machines are fundamental in 
architectural evaluations. The proper extension 
is important. because the concept of 
optimization rests entirely on a chosen 
norm/measure. Therefore. only correct choices 
can lead to correct optimal performance 
predictions. We have identified and extended 
the measures essential to MIMD machine 
evaluation in Sections 2 and 4. 

(3) The development of a methodology for the 
optimal and orderly mapping of numerical 
algorithms onto a MIMD machine is entirely 
lacking today. The present strategy is very 
primitive and usually done at a very low level 
of the software -- dividing up a DO-loop evenly 
among 'the PE's is typical. as in the case of the 
Large Eddy Code. The concept of optimization 
has never been thoroughly investigated in such 
instances. The creation of taxonomies for both 
fluid flow codes and MIMD machines aids in 
bringing the essential elements of both software 
and hardware into proper focus. so that the 
domain and range of the mapping can be clearly 
identified. However. further work in the area 
of multi-task scheduling is still urgently 
required to maximize overlapping of the software 
tasking into complex MIMD machines to obtain 
optimal utilization. 
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USING STATISTICAL SOFTWARE WITH A DATABASE MANAGEMENT DATA THEORY 

Robert J. Muller 
Oracle Corporation 

ABSTRACT 

This paper analyzes several statistical computing environments in 
the relationship between formal database management theory and 
environment as an integral part of data analysis. 

an effort to show 
the computational 

The oaper uses Entity-Relationship theory as a data theory to compar~ the 
flex1b i ·.ty, representation, and problem-solving difficulties of the analyst ~n the 
Minitab, BMDP, SPSS, SAS, OSIRIS, SIR, and the consistent/System. computing 
environments. It shows that none make full use of database managem~nt 
capabilities; it also shows that even those capabilities are not capable of deal~ng 
with all problems confronting the statistically oriented data analyst. 

IRTRODUCTION-

A data analyst uses a data theory to 
represent information within a software 
enVironment, producing analysis. This 
simple model--analyst, theory, 
environment--is treated in more detail 
elseWhere [1]. 

As in all socially constructed 
realities, there is a tendency for the 
conceptual to seem real. Thus I say 
that a particular software environment 
implements a particular data theory. 
The reader ~hould bear in mind, however, 
that the ~ata theory may not resemble 
the physical architecture of the 
computer in any respect. The software 
which comprises the environment is the 
only "real" thing which the analyst 
sees, and even that software is a 
relatively high-level abstraction. 

Database management theory is a useful 
tool for representing data. The purpose 
of any data theory is to allow an 
analyst to interpret observations to 

*The interpretations and opinions 
presented in this paper are those of the 
author, and Oracle Corporation bears no 
responsibility for them. A longer 
version of this paper is available from 
the author and in reference [1]. 
CoPyright (C) 1983 Robert J. Muller. 
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give 
world 

them 
under 

meaning relative to the real 
study--that is, to make 
into data. A true data obse rva tions 

,theory is a set--ofaxioms and 
definitions that specify the basic 
structures of observations [2'. 

There are many variants of database 
management theory [3, 4,51. I have 
chosen to use one such theory, 
entity-relationship (ER) theory, because 
it is compatible with most of the other 
theories and represents the meaning of 
data well without incurring the 
complexity of more specialized 
theories [6,71. This is not to say 
that all meaning is captured; for 
example, data relating to procedural 
entities su~h as scripts, reCipes, or 
other procedural constructs cannot be 
represented. 

Briefly, the entity-relationship (ER) 
data theory conists of structures, 
operations, and constraints. The 
structures include entities, attributes 
of entities, relationships, and 
attributes of relationships. The 
operations include query and nonquery 
operations. Query operations retrieve 
data by specification of a predicate on 
the structures. Nonquery operations 
manipulate data, also by specification 
of a predicate; these include insertion, 
deletion, and structure definition 
operations. Finally, constraints 
restrict the possible states of the 
database under the available structures 
and operations, again by specification 
of a predicate. Major types of 
constraints include key, domain, 
dependency, and existence constra~nts. 



A database is a series of tables that, 
represent sets of entities associated j 
with properties. These tables are! 
connected to each other by i 
relationships, which are tables relating' 
entities to entities but which also 
contain properties of the relationship. 
Constraints on these tables--entity and 
relationship tables--restrict the states 
of the database under the available set 
of ope ra tions. 

The implications of this data theory are 
numerous, as are the potential problems; 
too numerous to deal with in a short, 
paper. I have dealt with some of these 
issues elsewhere [11, as have many 
authors in the database management 
literature. In this paper, I will take' 
for granted the basic data theory 
presented above, using it as a basis for 
comparing the several software 
environments. 

Flexibility is the manner in which the 
software environment is able to allow 
'novel uses of the environment. A 
flexible system is one which an analyst 
~an use to solve a wide variety of 
~roblems, at least some of which had not 
occurred to the system designers. 
Modern software system designers may 
take flexibility into account in at 
least two ways--command configuration 
and extension facilities. 

Command configuration is the 
relationship between commands and 
problem solutions. By Q~~and, I mean a, 
single procedure or operation that takes 
some input and produces some output. 
There are at least two aspects to 
command configuration: modularity and 
intercommunication. Modularity is the 
degree to which an environment breaks up 
functional elements. Intercommunication 
is the degree to which the output of one 
command may act as input to another 
command. Modularity varies from highly 
modular to monolithic. For example, a 
system that has one command for each 
calculation involved in solving a 
problem is a highly modular system; a 
system that solves the entire problem in 
one large command, pirforming all 
subsidiary calculations as part of the 
command, is a monolithic system. 
Intercommunication varies from strong to 
weak. For example, an extremely strong 
system would be able to transmit results 
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:from each command to each other command, 
,at least insofar as the receiving 
lcommand could sensibly use the 
:communicated data. A weak system would 
(be unable to transmit results. 

Extension facilities are software tools 
that allow analysts to extend the 
system. That is, these tools allow 
analysts to produce new commands or 
novel combinations of old commands. 
There are at least three methods for 
providing this sort of facility: an 
environmental procedural capability, an 
external procedural capability, and a 
macro facility [8J. 

An environmental procedural capability 
allows 'the analyst to compose a new 
command that is used like the other 

'commands of the environment. Usually, 
this involves writing a program in the 
language in which the system is written, 
integrating this new command with the 
others by means of standardized 
subcommands and protocols for input an~ 

output of data. This sort of facility 
allows the analyst the full flexibility 
of the programming language to create 
new commands. 

There are really two factors involved in 
judging the difficulty of integrating a 
new command into an environment. Given 
proper access to the source code and 
sufficient programming sophistication, 
new environmental commands can be added 
to anything. Most social scientific 
analysts do not have, and do not want to 
have, such programming sophistication. 
Effectively, an environment~l procedural 

,capability is a part of the software 
environment that allows more-or-less 
competent--not just sophisticated--
programmers to add commands to the 
environment. 

An external procedural capability is an 
interface between the software 
environment and some external 
envir6nmerit in which a command is 
available. Typically, this sort of 
capability consists of either the 
ability to run a previsouly written 
subroutine in the general computer 
environment from the software 
environment in which the analyst works 
or the ability t<> send data from the 
system to another software 
envi~onment (another statistical 
package, for example) by means of some 
protocol, such as a system file or 



da~aset readable by the external 
environment. The facility always 
provides some kind of standardized 
input/output protocol for communicating 
with the external command. 

A macro facility is, in a special sense, 
an abbreviation facility. There is an 
enormous variety of macro facilities. 
One common type is pure abbreviation; a 
macro consists of a sequence of 
instructions issued whenever the macro 
name is issued. More sophisticated 
types have procedural control arguments 
such as if-then structures, looping 
capabilities, and the ability to pass 
parameterized arguments to the macro-
qualities making the macro facility a 
high-level programming language. 

Flexibility is determined by a quite 
complex combination of these tools in a 
given software environment. A 
monolithic system, for example, has less 
need for strong intercommunication than 
a modular system. Still, provision for 
intercommunication can make even a 
monolithic system more flexible, since 
many analytic procedures use very 
similar sorts of input and output. It 
is certainly much easier to create novel 
applications in a modular system, 
however; such a system is designed to be 
flexible in combining commands. And a 
modular system comoined with a macro 
facility can be extremely flexible, 
while a monolithic system can't take 
much advantage of macros; such a system 
would depend mainly on environmental 
procedural extensions. 

The data model is a combination of 
structures, operations, and constraints; 
representation is the ability of the 
software environment to represent the 
data model desired by the analyst. For 
the purposes of comparison, a somewhat 
more general approach ~ust be taken. I 
will describe the general capabilities 
of each system in each category of the 
data model. After this general 
exposition, I will compare the 
capabilities to the entity-relationship 
data model. I will also mention the 
extensional capabilities of the 
environmen t, the exten t to which the 
analyst can extend the data model in 
novel ways. 
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There are many different aspects to this 
problem area; it defies easy 
categorization. I will limit myself to 
several very important aspects of the 
software environment that have an impact 
on problem~solving difficulties: 
processing mode, command style, 
procedurality, error messages and 
processing, editing capabilities, and 
documentation and help facilities. 

'Processing mode is the way in which the 
,environment proceeds. An environment 
can be interactive, batch, or both (but 
not both at the same time). An 
.interactive system is one in which the 
analyst communicates directly with the 
computer before and after each' command. 
A batch system is one in which the 
analyst submits a batch of commands, 
complete in itself, and gets back output 
afte r the compute r executes the 
commands. An environment may have both 
capabilities; it may be able to run 
interactively, but it may also be able 
to execute batches of commands with no. 
intervention from the anlayst. 
Interactive processing is extremely 
useful for exploratory analysiS; batch 
processing is useful for jobs that 
require large amounts of computation 
with little intervention. Highly 
modular systems tend to be interactive; 
monolithic systems then to be batch. 

There are two command styles, command
driven environments and prompting 
environments. A command-driven 
environment is one in which the analyst 
issues commands containing all the 
options necesary for the command to 
proceed. The choice of which commands 
are appropriate at any given time is 
left totally to the analyst. A 
prompting environment is more 
structured; the environment prompts the 
analyst with structured prompts that 
guide the choice of the analyst either 
with respect to options or to commands. 
Prompts may be brief, conversational, or 
menu (several commands or options 
displayed at once, allowing the analyst 
to quickly specify choices). An 
environment can have both styles. 

The relationship between command style 
and problem-solving difficulty has to do 
with the way the analyst works. A 
computer-naive analyst, or an analyst 
~ith little software or analysis 



experience, may strongly prefer to be· 
~rompted for commands or options. But a 
sophisticated analyst, who knows 
computers and the software environment, 
is likely to be annoyed by constant 
prompting and structuring. In addition, 
highly structured systems may be 
difficul~to adapt to novel 
analyses [9]. 

Procedurality is the extent to which 
operations in the sy~tem are proc~dural. 
In particular, the presence or absence 
of control structures, combinations of, 
statements that conditionally execute 
commands, determines the extent of 
procedurality. There are two aspects to 
the impact of procedurality in a 
software environment, both relating to 
the difficulty of proceeding. First, 
for simple problems it is faster to 
specify a result rather than to tell the 
computer just how to achieve that result 
in terms of control operations on the 
data [10J. But, second, for many 
complicated problems, if there is no 
straightforward way of specifying the 
result, the procedural solution may be 
less complex. There is some 
experimental evidence that procedural· 
environments are better for complex' 
problems than nonprocedural 
environments [11J, but this evidence 
isn't very conclusive and doesn't really 
apply to the sort of environments which 
I discuss. Complexity, in this case, 
depends on the operations available to 
the system and on the extensibility of 
the system. 

~rror messages and handling are the ways 
in which the computer responds to the 
analyst when a mistake, either by the 
analyst or by the command, occurs. Some 
systems provide extensive error 
messages, though most err toward 
brevity. Although extensive error 
messages can be useful, most errors are 
typographical. To print an extensive 
message detailing all the ways in which 
the command as given is wrong is likely 
to be annoying to the person who just 
typed the wrong letter and realized the 
mistake immediately [9]. On the other 
hand, just printing error numbers or 
meaningless system messages is annoying 
and difficult to interpret. 

Even more important than 
is error handling, what 
does on the occurrence 
Some systems have 
capabilities, essentially 

error messages 
the environment. 
of an error. 
virtually no' 
destroying the 
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environment when an error occurs. Other 
systems have extensive error facilities 
giving the analyst a great deal of 
control over what happens when an error 
occurs. Other systems assign an 
interpretation to the problem and 
continue processing. 

Most systems have the ability to change 
data known to be invalid. Editors come 
in many colors, minimal and fancy. Two 
basic types are editors that work by 
specifying the location of the entity to 
be changed and editors that specify the 
logical characteristics of the entity 
with a predicate. 

The main resource for an analyst 
confronted with a complex software 
environment is the documentation for 
that system, either in printed form or 
as an on-line help facility. 
Documentation of either sort comes in at 
least four levels: (1) the primer or 
introduction to the system; (2) the 
middle-level summary of commands; 
(3) the guide to particular 
applications; and (4) the complete 
reference to the system. Most on-line 
help facilities are limited to middle
level summaries telling the analyst the 
syntax and usage of commands. 

All of these aspects of the software 
environment have some impact on problem
solving difficulties. The overall 
environment is a subtle and complex 
conjunction of these and other 
components of the software system. Each 
environment is different; each must be 
evaluated for a particular analyst's 

.needs and experience. 

Table summarizes the three problem 
areas and the specific aspects of the 
software environment relative to each. 

I selected the several systems I discuss 
below from those available on the basis 
of the popularity of the system followed 
by my own access to the system. I have 
used all of the systems aside from 
OSIRIS and SIR, both of which I des~ribe 

.from the documentation. I make no 
sampling claims; this is basically a 
series of case studies rather than a 
sampling of available systems. A~ well, 
I haven't the space to go into much 
detail about each system; the reader is 
urged to use the system before forming 
strong concl~sions about the system's 
suitability for any purpose. 



Table 1: Aspects of the 
Software Environment 

Flexibility 

Modularity 
Intercommunication 
Extensibility 

Representation 

Structures 
Operations 
Constraints 
Extensibility 

Problem-Solving Difficulties 

Processing Mode 
Command Style 
Procedurality 
Error Messages and Processing 
Editing Facilities 
Documentation and Help Facilities 

In order to better compare these 
software environments, I will solve two 
problems as examples for each 
environment. I assume a database 
concerning criminal victimization with a 
hierarchical structure of three tables, 
household information, personal 
information, and incident information. 
The first problem, a problem in 
tabulation, is designed to show how the 
environment deals with conceptually 
simple but structurally complex 
problems. The problem: tabulate the 
number of criminal incidents by family 
income and type of crime. This 
tabulation would show how the affluence 
of the victim affects the various rates 
for different types of crime. I limit 
the example to counts; percentages or 
rates in the general population would 
complicate the issue, since that would 
involve estimating the relevant 
population or using the weights assigned 
by the sampling strategy. 

The second problem illustrates the 
flexibility and power of the 
environment. The problem is to 
calculate a special sort of matching 
similarity measure for incidents, then 
to use the measure in a straightforward 
hierarchical clustering porcedure, then 
to interpret the results using median 
polishing [1J. 
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This example also illustrates the 
tension between database and analysis. 
environments. The similarity operation 
should probably be an internal 
procedure. To attempt to implement this 
complex a procedure in regular database 
operations is (1) unlikely to work or 
(2) likely to be computationally 
inefficient or dangerous. Some systems 
designers (Janus, for example) would 
discourage the attempt; others (SAS, for 
example) would encourage it. The latter 
see their systems as all-purpose 
systems; the former as instruments 
designed for relatively special purposes 
as components of a more general system. 

Table 2 shows how the software 
environments considered rate in each of 
the various categories considered. 
Combined with the above discussion, 
Table 2 should give the reader a clear 
idea of the nature of these 
environments. The following sections 
examine each environment to see how the 
two example problems might be solved and 
how well the environment is capable of 
representing the Entity-Relationship 
data theory. 

MINITAB 

Minitab cannot be used to implement the 
ER data model. The folylowing command, 
given properly structured input, could 
do the required tabulation. 

TABLE COL1 COL2 

The clustering problem could not be done 
in Minitab. 

BMDP 

BMDP cannot be used to implement the ER 
data model. The following job does the 
tabulation. 

IIRJMX JOB RJM, 
II PROFILE=(DEFER,M8MORY=25fiO), 
II TIME=20 
II EXEC BIMEDT,PROG=BMDP4F,PRINT=PRINT, 
II TIME=20 
IITRANSF DD • 

.<here would be the appropriate 
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I-' 
\0 

Aspect of 
System 

Flexibility 

Modularity 

Intercommuni
cation 

Extens I bill ty 

ER 
Representation 

Structures 

Operations 

Constraints 

Extenslbll tty 

~-SolvlnQ 
Difficulties 

Processing 
Mode 

Command Style 

Procedurallty 

Mlnltab 

more or less 
modular 

some 

simple macro 

rectangular 
data matrix 
with limited 
Information 

limited 

none 

none 

BMDP 

monolithic 

some 

environmental 
procedure 

rectangular 
data matrix 

limited 

value 

none 

Table 2 
Comparison of Software Environments 

SPSS 

monolithic 

none 

none 

rectangular 
data matrix 

limited 

value 

none 

SAS 

monolithic 

extensive 

enVironmental, 
external pro
cedures; macro 

rectangular 
data matrix 

moderate 

value 

none 

OSIRIS IV 

monol Ithlc 

some 

env I ronmenta I , 
external pro
cedures 

rectangular 
data matrix, 
I Inked tables 
limited to 
hierarchical 
structure 

moderate 

key, condi
tional depen
dency, exis
tence 

none 

SIR 

monolithic 

none 

environmental 
procedures 

I Inked tables 

moderate 

key, value 

none 

ConSistent 
System 

modular 

extensive 

environmental, 
external pro
cedures, mac
ros 

multidimen
Sional data 
matrix; I inked 
tables 

extensive 

value, condi
tional depen
dency 

none 

Interactive, batch batch batch, Inter- batch batch, Inter- Interactive 
batch active acttve 

command driven command driven command driven command driven command driven command drtven command driven 

nonprocedural nonprocedural nonprocedural procedural, nonprocedural procedural nonprocedural 
nonprocedural 
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Table 2 (continued). 

Aspect of 
System 

Error Messages 
and Hand 1 I ng 

Editing 

Documentation 

Minltab 

brief. Infor
mative errorll; 
returns con
trol to ana
lyst most of 
the time 

POSition edi
tor 

BMDP 

extensive. 
uninformative 
errors; stops 
running on 
error 

position. con
d it i ona 1 ed i -
tor 

primer. referc reference 
ence. On-line 
help 

SPSS 

extensive. 
uninformative 
errors; stops 
running on 
error 

conditional 
edi tor 

primer. refer
ence 

SAS 

brief. infor-
mative errors; 
stops current 
step; some-
times aborts 
environment 

line. full-
screen posi-
tion; condi -
tional edl tor 

primer. refer-
ence. appl Ica~ 
tlons guides 

OSIRIS IV SIR Consistent 
System 

1; returns 7 brief. infor-
control to mative errors; 
analyst returns con-

trol to ana-
lyst; infre-
quently aborts 
environment 

conditional conditional pos i ti onal . 
edi tor editor conditional 

edi tors 

reference re.ference primer. refer-
ence. appl ica-
tlons guides 



FORTRAN subroutine> 
IIGO.FT10FOOl DD DSN=NCS,VO~=SER=002035, 
II UNIT=T6250,LABEL=(1,SL), 
II DISP=(OLD,KEEP) 
IIGO.SYSIN DD , 
IPROBLEM TITLE IS 'INCIDENT, FAMILY 

INCOME VERSUS CRIME TYPE.' 
IINPUT VARIABLES ARE O. 

CASES ARE 13368. 
UNIT IS 10. 

IVARIABLE ADD = 2. 
NAMES ARE INCOME, TYPE. 

ICATEGORY CODE (1) ARE 1, 2, 3, 4, 5, ~" 
7, 8, 9, 10, 11, 12, 13, 14, 
lS, 16, 17, 18, 19, 20, 21, 
22, 23, 24, 25, 26, 27, 28, 
29, 30, 31, 32, 33, 34, 35, 
36. . 
CODES (2) ARE 1, 2, 3, 4, 5, 
6, 7, 8, 9, 10, 11, 12, 13. 

ITABLE COLUMN IS TYPE. 
ROW IS INCOME. 

lEND' 
I' 

The only way to do the clustering' 
problem would be to deSign a BMDP 
envirori~ental prodedu~e complete with, 
similarity judgment, clustering, and: 
median polish, since none of these are 
present elsewhere in BMDP. 

SPSS 

SPSS can't be used to represent the ER 
model. The job . to produce the 
tabulation follws. 

RUN NAME 

VARIABLE LIST 
INPUT MEDIUM 
N OF CASES 
MISSING VALUES 

INPUT FORMAT 
VALUE LABELS 

INCIDENTS, FAMILY INCOME. 
VERSUS CRIME TYPE 
INCOME, TYPE 
CARD 
13368 
INCOME (14,15,15)/TYPE 
( 0) 
FIXED (2F2.0) 
INCOME (1) UNDER $1000 
(2) $1000-$1999 (3) 
$2000-$2999 (4) 
$3000-$3999(5) 
$4000-$4999 (6) 
$5000-$5999 (7) 
$6000-$7499(8) 
$7500-$9999 (10) 
$12000-$14999 (11) 
$15000-$19999 (12) 
$20000-$24999 (13) 
$25000 AND OVERI TYPE 
( 1) RAPE TfiEFT (2) , AT : 
RAPE THEFT" (3) ASSAULT· 
WEAPON THEFT (4) ASSAULT 
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NO WEAP THEFT (5) MIN 
ASS THEFT (6) RAPE NO 
THEFT (7) ATT RAPE NO 
THEFT (8) ASS WEAP NO 
THEFT (9) ASS NO WEAP NO 
THEFT (10) MIN ASS NO 
THEFT (11) ATT ASS WEAP 
~O THFT (12) AT AS NO 
WEAP NO THF (13) ROBBERY 
WEAPON (14) ROBBERY NO, 
WEAPON (15) ATT ROB 
WEAPON (16) ATT ROB NO 
WEAPON (17) PURSE SNATCH 
(18) ATT PURSE SNATCH 
(19) POCKET PICKING (20) 
BURG FORC NO STL DAM 
(21) B Fe NO STL NO DAM 
(22) BURG FORCE (23) BUR 
NO FORC (24) BURG ATT 
FORCE (25) LARC < 10 
(26) LARC 10-24 (27) 
LARC 25-49 (28) LARC 
50-99 (29) LARC 100-249 
(30) LARC > 250 (31) 
LARC NA AMOUNT (32) ATT 
LARCENY (33) CAR THEFT 
(34) OT.HER VEHICLE THEFT 
(35) ATT CAR THEFT (36) 
ATT OTHER VEH THEFT 

CROSSTABS VARIABLES = INCOME (1, 
13) TYPE (1, 36)/TABLES 
= INCOME BY TYPE 

READ INPUT DATA 
<data here> 
FINISH 

The clustering example can't be done in 
ispss at all. 

SAS 

iSAS can't be used with the 
;theory. The following SAS 
'produce the required table of 

ER data 
job will 
incident 
type of frequencies tablulated by 

crime (TYPE) and family income (INCOME). 

IIRMX JOB RJM, 
II PROFILE='DEFER,MEMEORY=1000', 
II TIME=20 
IIEXEC SAS,PRINT=PRINT,TIME=20 
IIIN Dti DSN~RM.SAS.LIBRARy,DISP=OLD 
PROC SORt DATA=IN.PERSON; I'SORT DATA *1 

BY PKEY; I'PREPARING FOR THE MERGE'I 
PROC SORT DATA = IN.INCIDENT;I' SORT 'I 

BY PKEY; I'PREPARING FOR THE MERGE'I 
DATA A; I'CONSTRUCT INCIDENT LEVEL 'I 

MERGE IN.PERSON IN. INCIDENT; "MERGE'I 
BY PKEY; I'ASSOCIATE PERSON VARS 

WITH INCIDENT VARS 'I 
KEEP IKEY PKEY HKEY TYPE; I' KEEP ONLY 

THESE *1 



PROC SORT; 1* PREP FOR MERGE WI 
BY HKEY; 

PRoe SORT DATA~IN.HSEHOLD;I*PREP MERGE*I 
BY IiKEYj 

DATA Bj I*CREATE INCIDENT LEVEL DATA WI 
MERGE IN.HOUSEHOLD Aj I*MERGE*I 

BY HKEYj 
KEEP TYPE INCOME; I*KEEP THESE *1 

PROC FREQj I*PRODUCE THE TABLE wI 
TABLE TYPE*INCOME; 

1* 

It would be possible, if difficult, for 
a sophisticated programmer to write an 
internal procedure to do the clustering 
problem. 

OSIRIS IV 

OSIRIS can represent more, but not all, 
of the structures, opera tions, and 
constraints of the ER model. The 
following example assumes a structured 
OSIRIS file and produces the appropriate 
tabulations. 

&ENTRY 
ENTRY = 1 
UNIT = 3 
G 1 + G3 
GNUM = 1 
GNUM = 3 

&TABLES DICTIN=<dict file> 
DATAIN=<data file> 

TABLE OF INCIDENTS, FAMILY 
INCOME BY CRIME 

ENTRY = 1 
VAR=V~081 STRATA=Vl024 

&END 

OSIRIS can't do the similarities at .all. 

SIR 

SIR does not have the full range of, 
operations and constraints necessary to 
the ER model. The following retrieval 
would produce an SPSS file which could 
be input to the SPSS job above to 
produce the appropriate table. 

RETRIEVAL 
PROCESS CASES 
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, . 

PROCESS REC 2 
MOVE VAR INCOME 
PROCESS REC 4 

MOVE VAR TYPE 
PERFORM PROCS 

END PROCESS REC 
END PROCESS REC 

END PROCESS CASES 
SPSS SAVE FILE FILENAME = 

'END RETRIEVAL 
XTABFILE 

SIR probably can't perform the retrieval 
necesssary to enabling SPSS to do the 
clustering. 

CONSISTENT SYSTEM 

Janus, ~he database management system of 
the Consistent System, has almost the 
full ER model capabilities. The 
following series of commands yields the 
tabulation. 

create relation MEMBER VICTIMIZED IN := 
, comp~se (POPULATED_BY, VICTIMIZED_IN); 
create attribute family income in 

incident := infer (family income 
thru MEMBER_VICTIMIZED_IN)j 

change_default_dataset incident; 
eval xtab (family income, 

type_of _crime); 

The similaritylclustering problem could 
be most easily done in the CS by 
altering an already existing pro~ram to 
do the similarities and feeding the 
output into a clustering program. This 
requires moderate" '. programming 
sophistication. 

SUMMARY 

None of the software environments 
examined proved completely satisfactory 
from the analyst's perspective. Some 
environments were, however, better tHan 
others. Some, such as Minitab, could 
not handle complex data at all. Others, 
such as BMDP, proved very unwieldy. 
Three general conclusions can be drawn 
from the evaluative effort. 

First, most software environments 
oriented toward data analysis are not 
very friendly to the analyst. Most lack 



basic facilities such as help files or 
extensibility; others are unwieldy and' 
difficult to use, such as the batch 
systems. 

\ 

Second, most such software environments 
cannot deal with complex data 
structures. Most rely on the 
rectangular data matrix. Most do not 
have the capacity to represent the basic 
structures of the ER model, itself not a 
particularly strong representational 
system from the viewpoint of theoretical 
social science [11. 

Third, most environments lack 
necessary to doing 

Even if the system 
sophisticated 

the 
data 

has 
da ta 

can't 
novel 

flexibili ty 
analysis. 
moderately 
representation, 
be easily 
applications. 

the system usually 
extended to 

Data analysis, because it is done by 
people who don't know much about 
computers but who have sophisticated 
scientific problems to solve in creative 
~ays, has some special needs for a 
software environment. Such an 
environment must be able to represent 
data to the satisfaction of the analyst. 
It must be flexible ~nough to allow the 
analyst to do what he or she wants. And 
last but not least, the environment must 
be easy to use. 

1 • 
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