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Abstract 

A general method for constructing exactly solvable fermion 

determinants is discussed. A two dimensional determinant is solved 

exactly. A new class of four dimensional fermion models is presented. 

These theories are non-renormalizable yet the fermion determinant can 

be calculated and there is an analogue of the Adler-Bell-Jackiw 

anomaly. 
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I. Introduction 
In this paper we attempt to gain a better understanding of the fermion 

determinant in gauge theories by replacing the Dirac equation in the gauge 
theory with a suitable modification. The criteria for the replacement is that the 
fermion· determinant should be exactly solvable, and that the modified Dirac 
operator sould retain the chiral symmetries of the original theory. 

As a warm up we show that in two dimensions one can define a non
abelian generalization or the Schwinger model which has an exactly solvable 
fermion determinant. The most interesting feature is that the determinant 
consists or two terms. The first is the non-abelian extension of Schwinger's 
mass term. The second term is the two dimensional version of the Wess-Zumino 
anomaly term [1}. Balachandran, Nair and Trahern [2], Novikov [3] and Witten 
[4} have emphasized that the coefficient of such a term must be quantized due 
to global topological configurations. 

Later we discuss the four dimensional analog of the two dimensional. 
non-abelian Schwinger model. We show that the determinant is in principle 
exactly solvable by writing down an ordinary first order differential equation 
which the determinant must satisfy. The fly in the ointment is that one has 
to evaluate the beat kernel {xlexp(-fDnlx) Cor a certain operator Dr at very 
small f. General methods [5] imply that the calculation can be performed in a 
finite number oC steps, but the algebra seems to be intractable. 

After this work was completed we have seen that Polyakov and Wiegman 
{6} have found the same expression for the two dimensional fermion determinant 
as the one found by the present author. The 5-matrix and .8-function questions 
answered by Polyakov and Wiegman were not considered by the present author. 
Previous use or the methods of Wess and Zumino [1} in trying io understand two 
dimensional models may be found in the work or D'Adda, Davis, and DiVecchia 
[7}. 

The method of solution is to exploit the anomalies or the theory. The 
same approach is used in [6), [7} and [8) except that the spirit or the method 
in this paper is different. The methods in this paper can be used to study the 
behavior of the four dimensional rermionic determinant in a gauge theory as a 
function o( the chiral phases [9]. 

This paper is organized as fo11ows. In Sec. II, we discuss a theorem 
about fermion determinants flO] which is the main tool in the analysis. In Sec. 
III we discuss the two dimensional model, and in Sec. IV we discuss the tour 
dimensional model. 
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II. A Theorem About Functional Determinants 

In certain special situations one can show that the determinant of an 
operator is determined by the short distance properties of the theory [10}. We 
discuss a special case of this theorem. For simplicity we will neglect the existence 
of zero modes. It is easily shown that the zero modes lead to a ·determinental 
interaction of the 't Hoeft type [llj. A more complicated version or the theorem 
and the inclusion or the zero modes is discussed in Sec. ill of [12]. 

We will be studying a family of self-adjoint Dirac like operators parametrized 
by a parameter t. The Dt will anticommute with 1~ and therefore for every posi-
tive eigenvalue there is a corresponding negative one. We define the determinant 
ot D, to be 

detDc = [detD;] 112
• 

The latter is regulated by the proper time method: 

ln det D; = Tr ln Dr 

l ood 
=- ...!_ Tr[exp(-sD;)], 

( s 

where f = A - 2 is an ultraviolet cutoff on the proper time integration. 

The operators we will consider have the property that 

• 
De= /Dt +Dtf 

(2.1) 

(2.2) 

(2.3) 

where the dot denotes differentiation with respect to t, and f is a function 
independent of t. By using the cyclicness of the trace one can easily show that 
(2.2) satisfies the following differential equation: 

1
00 d 

= -4 , ds ds Tr[f exp(-s D;)] 

- 4 Tr[f ezp(-fD;)] (2.4) 



-4-

Since I is a function we only need the diagonal part oC the heat kernel for Dr. 
Seeley has shown [5] that there is an asymptotic small E expansion given by 

where d is the dimensionality or space time. 

The insertion of asymptotic expansion (2.5) into (2.4) leads to a differential 
equation for the determinant. 
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ill. The Non-abelian Schwinger Model 
In this section we show how one can modify two dimensional QCD 

in such a way that the fermion determinant is exactly solvable and given by 
an elementary expression. Nielsen, Rothe, and Schroer [8) have developed a 
recursive scheme !or calculating fermion determinants. Our modification ot the 
theory circumvents their scheme. The approach we will employ uses a well 
known way of solving the Schwinger model [13). 

We work in Euclidean space with 7-matrices given by 'Yo = a-:, '11 = 
(7"' 'Ys = a-•• or particular importance is the identity 

(3.1) 

It is also important to remember that the generator or the rotation group is 
o-o1 = 'Ys· The Dirac operator is hermitian and it is given by 

(3.2) 

where c: are the color gauge fields and {t't4} are anti-hermitian generators or 
the color gauge group SU(Nc)· We work in the Lorentz gauge o}'c: = 0. 
There exists !unctions f' such that 

(3.3) 

Inserting (3.3) in {3.2) and using (3.1) one flnds that the Dirac operator may be 
written a.s 

(3.4) 

We will now perform our first modification on (3.4). Consider the differential 
operator D defined by 

(3.5) 

where e. t = Ct". This operator agrees with (3.4) to first order in e. In an 
abelian theory (3.5) and {3.4) would coincide. Using the properties or 7-matrices 
one can rewrite (3.5) in the form 

(3.6) 

Operator D is of the type that we can apply the theorem or Sec. II. 

Before proceeding it is important to emphasize that (3.5) defines a 
non-linear sigma model. This is easily seen by using the Callan, Coleman, Wess, 
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and Zumino formalism I14]. Consider the noncompact group G defined by the 
generators 

T; =it; (3. 7a) 

(3.7b) 

The compact subgroup H generated by the T's is SU(Nc ). The symmetric space 
G/H is a noncompact version of SU(Nc) ® SU(Nc)/SU(Nc)· Equation (3.6) 
describes the coupling of fermions to a nonlinear sigma model with values in 
GfH. 

The noncom pact nature of G / H is related to the fact that we are 
working in Euclidean space where the rotation group is compact. Under a 
rotation (t + ix)-+ e'0 (t + ix) one has 1/J-+ e107:.12 ¢. The exponential factor in 
(3.6) may be viewed as a local chiral transformation. The latter may be defined 
to be noncompact in Euclidean space. The opposite is true in :Minkowski space. 
Under the analytic continuation to :Minkowski space, e - - ie since "1:> is the 
generator of the rotation group. One can verify that the analytic continuation 
or (3.3) requires e - -ie. 

Let gt(x) be defined by 

(3.8) 

The parameter t is the one introduced in Sec. IL Define a vector V! and an 
a:xial vector A! by 

(3.9) 

where V! = V!iT, and A!= A!c:.Xc:.. Under a change of g by a group element 
oCG one bas that V#' transforms as a gauge field with gauge group H, and A#' 
tranforms under the adjoint representation of H. This means that derivatives 
should enter in the gauge covariant way 

(3.10) 

For completeness we note that the covariant derivative or A! and the field 
strength V! are given by 

(3.11) 

(3.12) 
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The integrability condition or (3.9) requires 

D!A!- D!A! = 0, 

V!v + [A~,A!] = 0. 

The Lagrangian corresponding to (3.6) may be written as 

L = 1/Jth~'D!¢ + 1 ·1/Jth~'A!¢. 

(3.134) 

(3.13b) 

(3.14) 

The model under study is a system or fermions coupled to a nonlinear sigma. 
model with an axial vector coupling of unit strength. The differential operator 
of interest is 

(3.15) 

This operator is of the type discussed in Sec. Il. A simple differentiation yields 
the result 

• 
De = e · X Dt + De e ·X • (3.16) 

Also note that Dt anti-commutes with 'Ys· Differential equation (2.4) becomes 

d 2 2 
dtTrlnDe = 4Tr(e·Xexp(-f.De)]. (3.17) 

The operator D~ may be written in the form 

(3.18) 

where 

(3.19) 

(3.20) 

In deriving the above we have used integrability conditions (3.13). It is important 
to note that Ee may be written as 

(3.21) 

where 

(3.22) 
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The short time expansion or the diagonal element or the heat kernel for (3.18) 
is tabulated [15,16]. 

(z!exp(-fD~)Ix} = 2.._[1- fEe+ 0(€2
)}. · 

411"E 

Substituting (3.23) into (3.17) we find that 

_dd TrlnD; = .!_ Tr[e ·X Et}. 
t 11" 

lt is simple to integrate the above equation with the result: 

Tr ln D; = constant - 2._ J d2 z Tr(A!A!) 
211" 

(3.23) 

(3.24) 

->"" f d2
:r: f.' dr Tr (!A;, A:J € ·X"!>) . 

(3.25) 
An explicit expression for A! is 

t = sinh[ad(te ·X)} 0 ( t. X) 
A" ad(te ·X) " t, (3.26) 

where the ad operation on matrices Y and Z is defined by (adY)(Z) = [Y, Z]. 

The A"A" term is the nonabelian extension or Schwinger's result. 
It originates in the integration of the [)"Ap. term in Ee.. The second term of 
(3.25) is a Chern-Simons secondary characteristic class term [17,18]. This term 
is the two dimensional analogue ot the Wess-Zumino anomaly (1]. To better 
understand this term let us analytically continue G/H such that it becomes the 
compact symmetric space SU(Nc) ® SU(Nc)/SU(Nc). This is simply done by 
choosing the X's to be the anti-hermitian matrices 

(3.27) 

In the case of compact GjH, the authors of [2,3,4} have emphasized that 
the coefficient ot the Chern-Simons term must be quantized because of global 
topological considerations. The theory with such an interaction can only be 
defined in a space such that its third cohomology class is the integers. This 
is true in the present example tor Nc > 2. Note that the trace in (3.25) is 
proportional to the number of flavors, this is a consequence ot the quantization 
ot the coefficient of the Chern-Simons term. There is an additional result that 
follows from the structure of Dr. The coefficient of the A 2 term is also quantized 
since the term is inextricably tied to the [A", A"] term in (3.20) due to (3.21). 
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IV. The Four Dimensional Model 
In this section we construct a four dimensional model with an exactly 

solvable fermion determinant. This model respects the flavor chiral symmetries 
but it has a different renormalizability structure. These models are a new class 
ot theories based on anti-symmetric tensor fields with values in the Lie algebra 
of SU(N,:). 

\Ve motivate the model by modifying the Dirac operator in the presence 
of a gauge. For simplicity we consider an abelian gauge theory and afterwards 
discuss the non-abelian generalization. Unlike two dimensions, the abelian 
model already involves a major modification of the original theory. The com
plications are due to the non-abelian nature of the rotation group 50(4). Consider 
the Dirac operator in the presence ot an abelian gauge field Cp.: 

(4.1) 

in the gauge Op. Cp. = 0. There exists an an anti-symmetric tensor field Wp.v 

such that 

Cp. = OvWvp. (4.2) 

For our purposes it is convenient to introduce wJI.v, the dual ot Wp.v by 

(4.3) 

Using the ')'-matrices identity 

'lv'/p"'ftZ = Ovp"'ftZ _: OvtZ"'fp + OptZ"'fv- fvptZr'7r'7:> , (4.4) 

and the definition "'fp."'fv = 614, + iu14,, one can show that 

(4.5) 

There is a gauge invariance or Wv"' which leaves Cp. invariant: Wpa _., Wpa + 
Op'T/tZ- OaTfp tor any vector field Tfp· One can use this gauge transformation to 
require 8vw117 = 0. We reach the exact result 

'1 Jl. c Jl. = ~ h p (a p w Jl.&l )u Jl.ll • 

The Dirac operator (4.1) may be written as 

(4.6) 

(4.7) 

'! 

" 
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This equation is the analogue of (3.4). The first modification is to replace the 
above by 

(4.8) 

.where w • <7 = WJAv<7JAv· This is anaiogous to the passage from (3.4) to (3.5}. 
Equations (4.7) and (4.8) agree to first order in w. Unfortunately equation (4.8) 
is not suitable for the theorem or Sec. II and one has to do a further modification. 
We will be interested in the operator D defined by 

(4.9) 

This operator is o! the type that we can apply the theorem of Sec. II. Unfortunately, 
(4.9) is not equal to ( 4.8) since the <7JAv 's do not anti-commute with the '/'A's. In 
two dimensions we had that (3.6) was equal to (3.5). The difficulty is due 
to the nonabelian nature or 80(4). In tact (7JAV = EJAv'l:;, in two dimen
sions. If one identifies { With WJAv Via WJAv = { fSAv then one Sees that ( 4. 9) 
is the four dimensional analogue or the two dimensional model (3.6). 

There are several precautionary remarks one should make about (4.9). 
\Ve will make the remarks on the nonabelian version SU(Ne) version or (4.9). 
Define Dt by 

(4.10) 

where 

(4.11) 

One now has an WvJA !or each generator or the "color" group. The operator (4.10) 
does not agree with the Dirac operator (4.7) to first order in w. The ultraviolet 
structure o! the theory defined by Dt is different from the Dirac Yang-Mills 
case. At high energies the behavior of Dt is governed by ge i"'TSAUt alA while the 
Yang-Mills case is governed by i'jp.o11 • 

The key to the analysis that follows is the asymptotic expansion for 
the heat kernel associated with Dr. 

(4.12) 

The coefficients al(x) have not been tabulated !or the operator in question. 
Work is currently taking place in attempting to tabulate the above. The 
above expansion can actually be used to prove some general theorems about 
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the determinant without knowledge of the coefficients in (4.12). The differential 
equation for the determinan~ is 

! TrlnD~ = 2Tr[w · O'ezp(-!D~)] . 

Inserting ( 4.12) into the above leads to the expression 

Tr lnD~- Tr lnD~ 

(4.13) 

. (4.14) 

The above expression has terms that diverge as A 4 and as A 2 • There is no 
logarithmic divergent term in the above. This does not mean that there is no 
logarithmic divergence. In fact, one can substitute (4.12) into (2.2} and extract 
the divergent pieces of the determinant. One finds 

+ln f Tr a~(x) +(finite as f-+ 0)] • 

Comparing (4.15) and (4.14) we learn some important relations: 

! J cr z Tr a~(z) = -4 J d4 z Tr(w ·.,. a~(z)] 

! f crz Tra\(z) = -2 f crz Tr[w • ua\(z)] 

(4.15) 

(4.16a) 

(4.16b) 

(4.16c) 

Note that a possible candidate for a~ is a constant times exp(-4tw · cr). This 
term has the correct scaling .behavior. Another possible candidate is a~ = 1. 
Of particular interest is the a~ term. According to (4.16c), 

(4.17) 
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is independent or t; in other words, it is independent w. Such a term could 
be a topological invariant. In two dimensions one finds that the logarithmic 
divergence in curved space time is given by the Euler characteristic, see for 
example [12}. In the two dimensional example or Section 3, the logarithmically 
divergent term vanishes. We will see that when we prove an index theorem [19J 
!or the axial current, the terni that enters involves a~. The index theorem term 
could possibly be a topological invariant. 

In this theory the logarithmicaly divergent term does not affect the 
dynamics o! the w field. This is very different from the Yang-rvfills case where 
the logarithmic divergence contributes a screening correction to the Yang-Mills 
Lagrangian. 

There are several very desirable features or De. The most important 
are the chiral symmetries or the model defined by the Lagrangian 

L = ,pt De,P . (4.18) 

It there are Nt flavors then at the classical level there is a U(N, )@ U(NJ) flavor 
symmetry. We show that the U(l) axial vector current has a potential anomaly. 
According to the classical equations or motion the axial current 

J~ = ,pt gc"'fp."f~gc,P (4.19) 

is conserved. Quantum effects can modify the conservation. Let { ¢o} be the 
complete orthonormal set o! eigenfunctions for De with respective eigenvalues 
{>-o }. We now take the zero modes into account. Since De anticommutes with 
"15 we have that it <Po is an eigenfunction with eigenvalue Ao :;1= 0 then /5</Jo 
has eigenvalue ->.a and it is orthogonal to <Pa· 

The regulated induced current is given by 

J~J ( ) __ ""'' <Pl(x) gc"fp/~ gt <Po(x) -d.! 
S,reg X - ~ , e 

·"a 
(4.20) 

Cl 

The prime in the summation symbol denotes the omission or the zero modes in 
the sum. The divergence or the above is given by 

(4.21) 
a 

Remember that ¢o is orthogonal to "15 <Po it Ao :;/= o, therefore, the integral or 
the right hand side of (4.21) is zero. 

0 = / d'x 2:' ~~~(z)"Y, ll~(x) .-•>! 
0 
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2 . = Tr["l:s exp(-eDt)J- Tr[P7:s}, (4.22) 

where P is the projector onto the space of zero modes. Tr(PJ':s) = n+- n
is the difference in the number of right handed zero modes n+ and the number 
ot left handed zero modes n-. Equation (4.22) may be written as 

T I -cD 2
] n+ - n- = r "{:s e ' . (4.23) 

The answer must be independent ot e therefore 

(4.24a) 

(4.24b) 

(4.24c) 

The precise form or Dt, see ( 4.10), tell us that n+ and n_ should be independent 
oft even th9ugh the eigenfunctions do depend on t. In particular we have deriYed 
an integrated anomaly equation, ( 4.24a), whic-h tell us that the divergence of 
the axial current could possibly be given by a local expression just as the Adler
Bell-Jackiw anomaly. 

What makes De attractive is that the determinant is explicitly cal
culable once asymptotic expansion (4.12) is known. In particular the flavor 
anomalies are very similar in structure to the gauge theory case and these models 
could provide a way of better understanding chiral symmetries. 

The geometrical setting for the model described by Lagrangian ( 4.18) 
is not understood. To get the algebra spanned by C!~'v ® ta. to close one also has 
to include iC!~'v ® t~a, iC!~'v ® 1, C!I'V ® 1, i1 ® ta., 1 ® ta.. This leads to the group 
SL(2Nc) ® SL(2Nc). The Ut live on a submanifold of one of the coset spaces 
associated with SL(2Nc) ® SL(2Nc)· I do not have a candidate Lagrangian 
for the w fields. It would be very interesting if someone could provide a better 
understanding of these toy models. 
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