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Abstract - Recent developments in photothermal spectroscopy and detection are 
reviewed. 

~ - Introduction 

In recent years, the small rise in temperature, associated with the absorption of 
electromagnetic radiation, has provided the basis for a class of spectroscopy which 
can be loosely called photothermal spectroscopy. Until recently, the more familiar 
member of this family has been photoacoustic spectroscopy where the optical heating 
is converted into sound and is detected with a microphone. Using this relatively 
simple technique, ultratrace gas detection achieved impressive sensitivity levels 
/1-6/. In the case of condensed matter samples, the poor coupling between the sam
ple and the microphone has led to the use of piezoelectric transducers in order to 
overcome this limitation /7,8/. Although this approach has proven to be useful 
/8,9/, the ultimate sensitivity of piezoelectric photoacoustics can be limited by 
the scattering of light on the transducer. Furthermore, in the case of experiments 
requiring a wide range of temperatures and pressures, or involving hostile environ
ment, both microphone and piezoelectric photoacoustic detections can not be 
employed. 

ll· Photothermal Deflection Spectroscopy and Detection 

To overcome these limitations, the optical heating was exploited in different ways. 
It is well known that heating causes a corresponding change in the index of refrac
tion of the heated medium. Hence, when an intensity-modulated beam of light (pump 
beam) is absorbed, part or all of the absorbed energy will be converted to thermal 
energy. The heat flows into the surrounding medium causing a corresponding modula
tion of the index of refraction. A second weak beam (probe beam), probing the gra
dient of the time-dependent change in the index of refraction, will experience a 
periodic deflection synchronous with the intensity modulation. The amplitude and 
phase of the periodic deflection can be measured with a position sensor and a dif
ferential ac synchronous detection scheme (see Fig. 1). Thus, by varying the 
wavelength of the pump beam, the deflection of the probe beam is a measure of the 
optical absorption of the material of interest. This type of spectroscopy is known 
as photothermal deflection spectroscopy /10-13/. 
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To quantitatively relate the d~flection signal to the optical absorption, the theory 
/13/ consists of four steps: 

(1) The spatial distribution of the optical field is determined within the sample 
and in the surrounding media. 

(2) The optically-generated heat/unit volume is then determined. The heat energy 
is the source term for the temperature equations which are solved for the sam-
ple and the surrounding media. 

(3) The deflection of the probe beam (caused by the temperature rise, which in turn 
induces a gradient in the index of refraction) is calculated. 

(4) The deflection is related to the voltage output of the position sensor. 

Following these steps, the deflection signal S is given by: 

S - F(1/n ) (dn/dT)L dT(z )/dz 
0 0 

(l) 

where F is the position sensor transduction factor (typically -10 3V/radian), (1/n0 ) 

(dn/dT) is the relative index of refraction change with temperature of the deflect
ing medium, L is the interaction length between the optically heated region and the 
probe beam, T is the amplitude of the ac temperature rise above the average tempera
ture. 

To optimize the sensitivity: 

(1) Care should be taken to insure that the probe beam is probing the maximum gra
dient of the index of refraction change. 

(2) The probe beam should be tightly focussed, with the focal spot of the latter 
being smaller than that of the pump beam. 

{3) Whenever feasible, the deflecting medium should have as large a dn/dT as possi
ble (e.g., immerse solid samples in CC14 ). 

(4) The pointing stability of the probe beam can be the factor limiting the sensi
tivity of the technique. 

We achieved sensitivities of at~1o- 8 for liquids and 10- 7 for gases and solids. In -so terms of temperature rise, for 1 em interaction length, a change of 10 C in air 
and 1o-7oc in liquids can be readily detected. 

It is instructive to write the photothermal deflection signal for a solid, in terms 
of temperature rise T (0), integrated over the heated area. This would provide a 
basis for comparing the sensitivities of photothermal deflection and photoacoustics. 
Eq. (l) can be evaluated to give S - 10 V cm-2 C T (0). In the case of 
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photoacoustic detection, the corresponding factor is - 0.1 V cm- 2 C T (0). Thus, 
photothermal deflection is about 100 times more sensitive than photoacoustics. 

The superiority of photothermal deflection in terms of sensitivity and flexibility 
has been demonstrated in a recent study of the properties of defect states in amor
phous silicon /14/. These weakly absorbing states were not accessible for study by 
conventional absorption or photoacoustic techniques, since the typical films of this 
material are .U ~thick. The defect nature was identified and its energy level and 
density were measured. These results have both fundamental implications to the 
density-of-states of amorphous semiconductors, as well as to technological applica
tions such as factors governing the efficiency of solar cells. 

The advantages of photothermal deflection detection extend beyond condensed matter. 
It has been demonstrated that an ultratrace detection of part per billion can be 
readily achieved in an experimental configuration which obviates the need for sam
pling (see Fig. 1.b). By intersecting the probe and pump beams in space, 1n~. 
real-time measurements can be performed. An interesting possibility using this 
scheme is to do spatial and temporal remote sensing of the atmosphere. A limiting 
factor, in this case, can be atmospheric turbulence and scintillation. However, 
preliminary results in our laboratory show that by modulating probe beam at 1kHz
lMHz, the effects of turbulence are practically eliminated. 

III. Photothermal Displacement Spectroscopy 

There exists a class of experimental conditions for which both photoacoustic and 
photothermal deflection would be unsuitable for studying optical and thermal proper
ties of matter. Examples of such experiments are those which require ultrahigh 
vacuum and/or cryogenic temperatures. Such are the conditions encountered in the 
study of adsorbates and of surface and interface states of solids. Similar require
ments exist for the task of in ~ and in real-time characterization, of thin 
films. A major problem associated with the use of conventional reflection and 
transmission measurements is the uncertainty associated with separating the large 
background due to bulk (substrate) absorption from that due to the surface (thin 
film). In principle, the modulation frequency dependence of photothermal techniques 
provides a unique tool of "depth profiling" the source of the photothermal signal. 
This ability, combined with the high sensitivity of photothermal spectroscopy, 
motivated the exploitation of optical heating in a manner which overcomes the limi
tations of photothermal deflection and photoacoustics. Optical heating of solids 
should result in the buckling and displacement of the illuminated surface. A meas
ure of the displacement is a means for determining the optical and thermal proper
ties of the sample /15-19/. To determine the optimum method of detecting this dis
placement, its magnitude and shape are calculated. The steps of the calculation are 
/19/: 

(1) Solve the three-dimensional heat equation for a source of exponentially 
ing Gaussian beam. 

decay-. 

(2) solve the Navier-Stokes equation, with the condition of no normal component to 
the stress at the boundary of the slab • 

An approximate solution for the height of the displacement h is given by 

{2) 

where ath is the thermal expansion coefficient, 8 is the fraction of absorbed power, 
P is the incident power, A is the heated area, Pis the density, and C is the heat 
capacity. 

A numerical estimate of the displacement height is in order: Consider a 1 mW 
beam, focussed to 75 ~radius and modulated at 300 Hz, being fully absorbed by 
em thick silicon crystal. The calculated h is - 10-2 A and the corresponding 
is - 10 -a. 

laser 
a 0.3 
slope 
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This small displacement can be detected in a variety of ways: 

(1) The most obvious is to use interferometric techniques. As shown in Fig. (2), 
the sample serves as one arm of a conventional Michelson interferometer. The 
mirror on the other arm is mounted on a peizoelectric transducer for signal 
stabilization. Detection limits of 10- 3 A/1Hz are readily achieved. 

(2) As shown in Fig. (3), the displacement can be measured in an attenuated total 
reflection scheme. A transparent prism is placed in proximity to the sample 
surface. Since the evanescent field of an internally totally reflected beam • 
decays exponentially, in the gap d, as exp(-d), small changes in the gap result 
in large changes in the int~nsity of the reflected probe beam. Again displace-
ments on the order of 10- 3 A/ Hz can be detected. ~ 
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(3) The simplest and most versatile method of detecting the displacement is the 
beam deflection scheme shown in Fig. (4). The probe beam, which is reflected 
from the sample surface, is deflected by the slope of the surface displacement. 
The deflection is measured by a position sensor whose output is amplified by a 
phase-sensitive lock-in amplifier. In addition to optical information, thermal 
information is obtained by measuring the shape and phase of the displacement as 
a function of the modulation frequency. A slope of l0-9/IHz is easily meas
ured. The effect of the relative position of the probe and pump beams is shown 
in Fig. (5}. 

While the sensitivities of all three schemes is comparable (ai~lo- 6; signal 
tion does not occur until ai~7; minimum absorbed power ~ W), clearly, 
deflection method is the most attractive because of its simplicity and 
implementation. 

satura
the beam 
ease of 

To optimize the displacement signal, both the pump and probe beams should be tightly 
focussed, with the probe focal spot being smaller than that of the pump. an 
increase in the distance between the sample and the detector enhances the sensi
tivity. In our experience, the pointing stability of the probe beam is a factor 
limiting the achieved sensitivity. 
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Given the fact that the deflection scheme relies on the reflection of the probe beam 
from the sample surface, the question arises as to the required surface quality of 
the surface. As a good rule of thumb, the ratio of the average variation over the 
wavefront to the dimension of the surface roughness should be smaller than the posi
tion sensor aperture (- 10-2 radians). In most cases this condition is met without 
the need to polish the surface. As to any contribution of thermal lensing to the 
signal, for bulk absorptions, or for samples with high thermal expansion coeffi
cients, this contribution is completely negligible. Otherwise, a small correction 
might be necessary. 

The spectroscopic applications of the displacement technique, its suitability for 
investigations requiring vacuum, and its ability to distinguish between surface 
(thin films) and bulk (substrate) are reported elsewhere in this colloque. 

IV. Concluding Remarks 

The ultimate significance of any new technique lies in its ability to provide the 
1 tools necessary for unraveling ~ science. Given the auspicious and productive 

beginning of the deflection and displacement techniques, it appears that they will 
satisfy this criterion. 
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