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The two-meter-diameter superconducting solenoid for the Time 
Projection Chamber (TPC) experiment is protected by an active quench 
protection system which discharges a capacitor into the center tap of the 
magnet. The energy stored in the capacitor is discharged between the two 
layers of the superconducting coil to drive it normal. Thus the magnet 
energy is deposited in the coil and its secondary circuits more uniformly. 
This paper describes the quench-protection method as used on the TPC 
magnet. 

*This work was supported by the Director, Office of Energy Research, Office of 
High Energy and Nuclear Physics, Division of High Energy Physics of the 
U.S. Department of Energy under Contract No. DE-AC03-76SF00098. 
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I. Introduction 

The 1.5 T superconducting solenoid magnet for the Time Projection 
Chamber (TPC) particle detector at PEP is about 2.2 meters in diameter by 
3.3 meters long, and stores 10 ~J of magnetic energy. The coil operates 
at 2260 A with a current density of 600 A/mm2 in the wire. The wire 
consists of Nb-Ti filaments in a rectangular copper matrix. 

To prevent burnout during a quench, active quench protection is 
employed. A quench-detector, constantly monitoring the operating magnet 
detects that a small amount of superconducting wire has turned resistive, 
and triggers the protection system which injects a high current pulse into 
the center-tap of the coil causing enough heating to turn much of the 
solenoid normal. The protection system works by spreading the resistive 
region throughout the coil. The current is quickly reduced because the 
magnet also employs "shorted-secondary" windings. The stored energy is 
dissipated as heat within the cryostat. 

An advantage of this system is that high voltages exist only during 
the time when the vacuum is cryogenically pumped (and, therefore, 
electrical breakdown in gases cannot easily occur) because the protection 
pulse lasts ·less than 20 milliseconds. This technique contrasts with 
systems which switch the magnet current into an external resistor and have 
high terminal voltages for longer times. 

II. Hagnet Characteristics 

The center tap quench protection system is aided by the following 
special characteristics built into the coil. See Fig. 1. 

1) The superconducting coil is wound in two layers, each with the 
same number of turns. The center-tap connection is made where the 
superconductor changes layers. Close inductive coupling results between 
the halves of the superconducting coil, which maximizes the current 
obtained from the pulser for a given voltage, and increases the heating so 
the superconductor will easily turn normal. 

2) The high current density in the wire of the magnet reduces the 
heat capacity of the superconductor and, therefore, decreases the pulse 
current required to turn the coil normal. 

3) Close inductive coupling to a shorted, low resistance pure copper 
winding (UPC) helps reduce the superconductor current after the protection 
pulse and m~n~m~zes the energy which must be dissipated in the 
superconducting coil after it turns normal. 

4) The coil-form 
it will absorb most 
It has enough heat 
exceeding 200 K. 

is a "shorted 
of the energy 
capacity to 

turn" of low resistivity aluminum and 
after the superconductor turns normal. 
prevent its final temperature from 

5) The TPC magnet operates in vacuum instead of a liquid helium bath. 
It is cooled by heat conduction to a heat exchanger tube carrying two 
phase helium. Therefore, the superconductuctor can be heated easily by 
the center-tap pulse. 
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6) Electrical. insulation between all the layers provides sufficient 
spacing to withstand the voltage of the center tap pulse at cryogenic 
temperature even if the insulation is cracked. 

III. Protection Circuit 

Figure 2 shows schematically the essential features of the center-tap 
quench-protection system. An auxiliary power supply charges the capacitor 
bank (C) via a resistor (R) which protects the power supply during the 
pulse. The return connection is through the superconducting winding. 

When the quench detector determines that some of the superconductor 
has turned resistive, it fires the SCR which discharges the capacitor's 
energy via diodes to both magnet leads delivering a negative 800-volt 
pulse to the center tap. If the protection circuit is fired when no 
current is flowing in the coil, the protection current is approximately 
equally (1. 2 to 1 ratio) divided between the two layers. If current is 
flowing in the coil, the protection pulse increases the current in one 
layer and decreases it in the other. The net effect is a large change in 
magnetic field between the windings and virtually no change in the 
magnetic field anywhere else. The field change heats the superconductor 
and the copper matrix of the superconducting wire. 

There is 800 V on the electrolytic capacitor bank. The capacitor 
bank consists of 360 capacitors in groups of four capacitors in 
series-forward polarity so they operate at only 200 V each but charge 
backward during the last half of the pulse. The sustained very low 
polarizing voltage is predicted to enhance their lifetime and the brief 
reverse charging is not harmful. 1 The final rating of the entire 
capacitor bank would then be 36 mf (measured 43 mf) at 1800 V. The air 
core inductor L in Fig. 2, together with the total resistance of the 
circuit, limits the rate of increase of current to 33 A/us and the ptak 
current to 8000 A, the ratings for the SCR. There is also an SCR limit 
for !i2 dt in the SCR < 265000 A2 s. 

Finally, it is necessary to protect the magnet from fast voltage 
transients that might otherwise produce large turn-to-turn voltages. The 
two r-c filters between the center tap and the coil-end connections smooth 
the initial firing pulse. Other small capacitors across the coil 
terminals intercept higher frequency components that cannot be stopped by 
the r-c filters which, because of their size, are too far away. 

IV. Results of the Coil Test Without Iron 

During the first testing phase of the TPC solenoid, the coil was 
operated with the protection circuit of Fig. 2. The quench protection did 
not trigger when the coil was powered at full current but a spurious 
triggering of the quench-protection system at 97% of design current 
(without an actual quench) gave us the data for Figs. 3-5. 

Figure 3 shows the current pulse from the center tap lasting less 
than 20 ms. The peak current is only 2300 A and the fi 2 dt is 28700 A

2
s. 

Figure 4 shows that the negative pulse to the coil center-tap (with 
normal magnet polarity) increases the current through the inner layer of 
the coil. The inner layer turns normal before its current reaches the 
critical current. It remains normal because of joule heating of the wire 
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by the magnet current. The outer layer turns partially normal by 
eddy-current heating, and later entirely normal by heat conduction from 
the inner layer. When the superconductor turns normal, the total magnet 
flux drops slightly, inducing currents in the UPC and the coil-form. Just 
after the pulse, the UPC ampere-turns increase most because the UPC L/R 
time-constant is longest. Later, when the UPC warms up, its resistance 
rises causing a decrease in UPC current and an increase in the coil-form 
current. 

Figure 5 shows where the energy is deposited throughout the various 
windings of the coil package. The hottest possible spot in the 
superconductor can be no warmer than 200 K because the fi 2 dt from 20 ms 
before the time of firing of the protection system to time of zero current 
was only 0.9 x 10 6 A2 s • The extra 20 ms is included to simulate the time 
required for quench detection to occur.2 

Essential parts of the active quench protection system, not covered 
by this report, include the quench detector, non-interruptable power for 
the quench-detection/protection systems, and safety interlocks for 
personnel protection. 
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Fig. 2 

Fig. 3 
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FIGURE CAPTIONS 

Cross-section view of the TPC Magnet coil package showing 
its construction. 

Power circuit and quench protection circuit for the TPC 
magnet. 

The current pulse 
quench protection 

and ~2 
dt of that pulse for the TPC magnet 

system. 

The distribution of the magnet current in the superconducting 
coil, the ultra pure copper circuit (UPC), and the bore tube 
as a function of time after the quench protection system fires 
(starting magnet current io = 2197 A). 

The energy distribution within the superconducting coil, 
the ultra pure copper circuit (UPC) and the bore tube as a 
function of time after the start of the quench (io = 2197 A). 
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