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Abstract 

LBL-16430 

A SEVEN-POINT FINITE DIFFERENCE METHOD FOR IMPROVED 
GRID ORIENTATION PERFORMANCE 

IN PATTERN STEAM FLOODS 

Karsten Pruess and Gudmundur S. Bodvarsson 
Lawrence Berkeley Laboratory, Berkeley, Ca. 94720 

This paper presents a novel seven-point finite difference approximation 

for simulations of adverse mobility ratio displacements. The method is based 

on partitioning of a two-dimensional flow domain into regular or nearly regular 

hexagons. The accuracy of the method for pattern steam floods of heavy oil 

reservoirs is compared to five- and nine-point approximations. For five-spot 

floods, the accuracy of the seven-point method is good and comparable to that 

of the nine-point scheme. For seven-spot floods, the seven-point method 

provides good numerical accuracy at substantially less computational work than 

five- or nine-point methods. For nine~spot floods, only the nine-point method 

is found to give accurate results. 
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Introduction 

It has been demonstrated by several authors that two-dimensional simulations 

of pattern floods with adverse mobility ratio exhibit grid orientation effects 

(e.g. Todd et al., 1972; Coats et al., 1974; Coats, 1982). The conventional 

five-point finite difference approximation gives erroneous results, which 

depend strongly upon the orientation of the computational grid relative to the 

lines connecting production and injection wells. Generally speaking, breakthrough 

of the displacing fluid occurs earlier, and sweep efficiency is reduced, when 

producers and injectors ~re connected by a "parallel'' string of grid blocks, 

with grid lines parallei (and perpendicular) to the main direction of flow. 

The opposite effects occur for "diagonal" grids, which are rotated by 45° in 

comparison to parallel grids. The grid orientation errors intrease dramatically 

·with mobility ratio. In steam floods of highly viscous crudes, the mobility of 

the displacing gas phase can exceed the mobility of the hydrocarbon phase ahead 

of the displacement front by factors of several hundred. For this type of 

problem, steam breakthrough tim~s in five-spot floods were reported to differ 

by more than a factor of 3 between parallel and diagonal grids, when five-point 

differencing was used (Coats and Ramesh, 1982). 

As shown by Yanosik and McCracken (1979), grid orientation effects can be 

alleviated by a nine-point finite difference approximation. The nine-point 

scheme employs a combination of interblock transmissibilities for "paral1el" 

and "diagonal'' rectangular grids. The "parallel" five-point grid considers 

flow betwen a nodal point P and its four neighbors N, E, S, W (Figure 1). The 

corresponding "diagonal" grid involves flow between P and the diagonal neighbors 

NE, SE, SW, NW. The nine-point method employs a linear combination .of the four 

parallel and four diagonal flow terms, to obtain an improved rotation invariance 

for the finite difference representations of differential operators. 

.. 
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A detailed study of grid orientation effects in pattern steam floods 

was presented by Coats and Ramesh (1982). These authors found that in many 

cases grid orientation errors are reduced to acceptable levels by the nine-point 

approximation. However, strong grid orientation effects persist in seven-spot 

floods, and generally in simulations with non-square grid blocks. 

Potempa (~983) developed a discretization technique which uses a mix of 

finite difference and finite element methods. Grid orientation errors fat 

five- and nine-spot patterns were shown to be small. Results for a seven-spot 

flood were presented for only one grid orientation, so that no assessment of 

accuracy was possible in this case. 

I~ this paper we present a novel "seven-point" method, which offers certain 

advantages over both five- or nine-point approximations. 

The Seven-point Approximation 

In the seven-point method, a two-dimensional flow domain is partitioned 

into identical regular hexagons (see Figure 2). Interblock flow can occur 

between each nodal point and its six neighbors, all located at equal distance h, 

and at angles n • 60° (n = 1, ••• , 6). For the two-dimensional Laplacian, 

the seven-point finite difference approximation is written: 

(1) 

To obtain an error estimate,·Taylor series expansions about Pare inserted 

·• into ( 1). This gives 

• 
2 4 

A (7)u -AU l!)_ "2u 12!!_ {" 3u - ~ u<4,2) .11. u<Z,4)- ...l u<6,0)} 
- . + 48 L.\ + 8 • 6 ! L.\ 11 + 11 11 

+ h6 { ••• } (2) 

For harmonic functions (AU= 0), the leading error term is 

( 3) 
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Equation (3) shows that, for Laplace's equation, the accuracy of the seven­

point method is of order h4. This is intermediate in comparison to an 

accuracy for Laplace's equation of order h2 and h6, respectively, for five-

and nine-point methods. It should be emphasized that these error estimates can 

only serve as a rough guide, because the operators appearing in steam flood 

equations differ considerably from Laplace's operator. In general, it ~uld be 

expected that the accuracy of the seven-point method should be intermediate 

between the five- and nine-point schemes. The computational effort associated 

with the seven-point method will also in general be intermediate, because it 

considers six flow connections per grid block, compared to four and eight 

connections, respectively, for five- and nine-point methods. However the 

seven-point method offers special advantages for problems with a favorable 

symmetry, e.g. seven-spot floods (see below). 

Integral Finite Differences 

Implementation pf the seven-point method is most easily made with an 

integral finite difference (IFD) formulation, which avoids any reference to 

a global system of coordinates (Edwards, 1972; Narasimhan and Witherspoon, 

1976). In the IFD-formulation, the complete geometric specifications of a 

simulation problem are provided as input, in the form of a list of grid block 

volumes Vn (n = 1, ••• , N), interface areas Anm' and nodal distances Dnm• 

(For three-dimensional problems, we also require the angle Ynm between the 

line connecing nodes n and m, and the vertical.) This provides for great 
I 

flexibility and convenience, because one-, two-, or three-dimensional systems 

with arbitrary coordinates (e.g., Cartesian, cylindrical, spherical) can be 

treated. Also, five-, seven-, or nine-point finite difference approximations 

are contained within the general IFD-framework as special cases. The various 

.. 

.-

·-
• 
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coordinate systems and differencing schemes can be implemented simply by pro-

viding the appropriate geometrical parameters (Vn' Anm' Dnm) as input, without 

making any programming changes in the simulator itself. 

The IFD-method differs from conventional finite differences in that 

spatial discretization of mass- and energy-balance equations is made directly 

from their integral form, rather than going through an intermediate step of 

writing down partial diffe~ential equations. A typical mass balance equation 

is written: 

where 

NPH 
= q, s s P x< K) 

L a a a 
a:l 

is the mass accumulation term for component K, and 

dK) : NPH 
- k I 

a:1 

(4) 

(5) 

(6) 

is the mass flux vector for component K. Analogous equations can be written 

down for the energy balance. 

Introducing volumetric and areal averages, 

I M(K) dv = v M(K) 
v n n (7) 
n 

J E(K) 
.Q df = I A F(K) 

nm nm ' r m 
(8) 

n 

Equation ( 4) is discretized spatially as 
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d (K) r A F(K)+ v (K) 
dt Vn Mn = q nm nm n n (9) 

m 

The sum over m in equations (8) and (9) extends over all grid blocks Vm which 

have a flow connection with Vn. The discretized mass flux is 

F(K) = k NfH (x(K)) (kapa) [Pa,m - Pa,n - (pa)nm gnm] 
nm nm a ~ D 

1 
nm a nm 

a= nm 

(10) 

Depending upon the problem at hand, one can employ different weighting proce-

dures (harmonic weighting, spatial interpolation, upstream weighting) for the 

various "interface quantities", labeled with subscripts "nm". 

Equations (9) and (10) are in a form which permits immediate implementa-

tion of the seven-point method. All that is required is a list of geometric 

parameters (Vn' Anm' Dmn) appropriate for a partitioning into regular 

hexagons, as shown in Figure 2. 

The nine-point approximation to Eqs. (9, 10) is obtained by forming a 

suitable linear combination of five-point "parallel" and "diagonal" interblock 

flow expressions. The five-point parallel and diagonal Laplacians are, respec-

tively (see Figure 1) 

~(5) u = 
par 

~(5) u = 
dia 

The nine-point formula is (Forsythe and Wasow, 1960) 

~( 9 )u- l ~( 5 ) u + 1 ~( 5 ) u 
- 3 par 3 dia 

( 11) 

( 12) 

(13) 

•• 

~~ 

.. 

... 
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To obtain the proper linear combination of the "parallel" and "diagonal" form 

of Equation (9), corresponding to the nine-point formula Equation (13), note 

that the volume of the "diagonal" grid blocks is twice that of the "parallel" grid 

blocks, V d. = 2 • V Therefore, the proper linear combination, which n, 1a n,par 

will yield the nine-point approximation to the Laplacian (Equation 13) is 2/3 

the "parallel" version of Equation (9) plus 1/6 the "diagonal" versio':l· This 

can be shown in.detail by considering idealized flux terms corresponding to the 

full Laplace operator. Ignoring gravity effects and spatial variations in 

mobility, the simplified flux terms are 

F = C nm 

p - p 
m n 

0nm 

Noting that Anm,pa/Vn,par = 1/h; Anm,di/Vn,dia = 1/h ff, 

we obtain 

( 14). 

C 6~2 {4[PN + PE + PS + PW] + PNE + PSE + PSW + PNW- 20 Pn} = C ~(9)p 
(15) 

where the nine point accumulation term is given by 

M( K) = ..!. (2M( K) + M( K). ) 
n 3 n,par n,d1a 

To summarize this discussion, the implementation of the nine-point 

approximation in the IFD-method is made as follows: 

(i) generate a ~ist of geometric parameters Vn, Anm' Dnm appropriate 

·• for the conventional five-point method (solid flow lines in 

Figure 1); 

• (ii) reduce all interface areas in the "parallel" grid by a factor 2/3; 

(iii) append a list of "diagonal" connections (Anm' Dnm), with 

all interface areas reduced by ~ factor 1/6 from their actual 

values. 
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The same procedure is followed in the gene'ral case, when the flux expressions 

on the right hand side of Equation (4) do not add up to a full Laplacian. 

Simulation of Pattern Steam Floods 

We have simulated five-, seven-, and nine-spot steam floods of heavy 

oil reservoirs with and without volatile hydrocarbons. In each case, runs 

were made using five-, seven-, and nine-point finite difference approximations, 

with "parallel" and "diagonal" grids, so that accuracy and efficiency of the 

different methods could be compared. A brief technical description of our 

steam flood simulator is given in the appendix. Here we summarize the 

specification of re-servoir parameters and computational grids. 

The fluid and rock properties'are identical to t~ose adopted by Coats 

(1978). Table. 1 gives the more important parameters; for full details the 

reader is referred to Table 5 of Coats' original paper. Specifications of the 

steam flood problems simulated in the present work are given in Table 2. 

Problem parameters are similar to those employed by Coats and Ramesh ( 1982). 

All rates are· reported for the full patterns, even when only part of a pattern 

needs to be simulated due to symmetry (see Table 2). In the five- and seven-

spot problems the oil contains a 30% mole fraction of distillable components, 

whereas in the nine-spot problem the oil is assumed non-volatile. In all 

calculations we employ grids consisting o'f equilateral or approximately equila­

teral blocks (see Figures 3 through 6, and Table 2). Slightly irregular blocks 

were necessary for modeling five- or nine-spot patterns with hexagonal grid 
. 

blocks, and for modeling a seven-spot pattern with rectangular grid blocks (see aspec~ 

ratios in Table 2). Computational grids were chosen such as to minimize devia-

tions from equilateral blocks, and to obtain approximately equal block volumes 

for different. grids used. on the same problem. 
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Figure 3 shows the 8 x 8 "diagonal" and 11 x 6 "parallel" grid used for 

modeling 1/8 of a five- or nine-spot, with either five- or nine-point differ­

encing. (Five- and nine-point calculations always use the same basic grid.) 

The symbols I, P, N denote injector, (far) producer, and near producer, respec­

tively. In the seven-point method the flow domain is discretized into (approxi-

·• mately) regular hexagon$~ The minimum symmetry element which can be modeled is 

1/4 pattern (Figure 4). 

·• 

For seven-spot floods the seven-point grid has the proper symmetry, so 

that perfectly regular hexagons can be used, while five-and nine-point grids 

require slightly non-square grid blocks. Also, the favorable symmetry makes it 

possible to model a 6 times smaller symmetry element in the seven-point method 

than in the five- or nine-point methods, thereby giving substantial computational 

savings. Figure 5 shows diagonal and parallel grids for 1/12 of a seven-spot. 

The rectangular five- or nine-point grid for 1/2 of the se~en-spot is shown in 

Figure 6. 

For each of the grids chosen, the detailed geometric specifications (Vn, 

Anm' Dnm) needed as input to the simulator were generated b'y computer. 

Results 

Simulation results are given in Figures 7 through 10, and Table 3. 

The following observations can be made. 

Five-Spot 

Strong grid orientation effects are noted for the five-point method. 

·• Steam breakthrough in the "parallel" mesh occurs almost twice as rapidly as 

in the "diagonal" mesh (Table 3), and the two .meshes produce rather different 

production rates and oil recovery curves (Figures 7 and 8). In the nine-point 

method, grid orientation effects are negligibly small. These findings agree 

with the results previously obtained by Coats and Ramesh (1982), and they 
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demonstrate that our implementation of the nine-point method by means of 

integral finite differences is correct (see the discussion following Eq. 16, 

above). The seven-point method produces excellent results. Steam breakthrough 

is slightly slower than in the nine-point method, but the discrepancy is not 

larger than the discrepancy among the "parallel" and "diagonal" nine-point 

predictions themselves. Overall agreement of seven- and nine-point recovery 

curves is excellent. 

Seven-spot 

Steam breakthrough in the "parallel" seven-point grid occurs somewhat 

more rapidly than in the "diagonal" seven-point grid (Figure 9). This indicates 

that the seven-point method tends to overpredict transmissibility in the 

"parallel" direction, while underpredicting in the "diagonal" direction. 

However, the differences are not large. Except for a rather brief period at 

times close to steam breakthrough, the "parallel" and "diagonal" recovery 

curves agree well (Figure 9). By comparison, Coats and Ramesh reported large 

. differences (factors of 3 or more) for steam breakthrough time and cumul alive 

oil recovery in seven-spot floods when comparing "parallel" and "diagonal" 

nine-point grids. It appears that these strong grid orientation effects are 

caused by the non-square grid blocks used by these authors. Our nine-point 

calculation for the seven-spot flood employs n~arly square grid blocks, and the 

oil recovery predictions are always intermediate between those for the "parallel" 

and "diagonal" seven-point grids (Figure 9). Actually, the nine-point results 

are almost -identical to ~hose obtained with the "parallel" seven-point grid. 

This provides evidence that the nine-point results are very accurate (rather 

free of grid orientation errors) even for seven-spot floods. It should be 

noted that, due to the symmetry of the problem, the seven-point method offers 

substantial savings in computing time. If nearly equilateral grid blocks are 

•• 

··-

•• 
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to be used, the nine-point method requires 1/2 of the full pattern to be 

simulated, whereas the seven-point method can simulate 1/12 of the pattern. 

Therefore, if grid blocks of equal volume are employed, the seven-point method 

requires only 1/6 the number of blocks needed in five- or nine-point grids. 

Figure 9 shows that the five-point method gives large errors for steam break­

through and oil recovery in seven-spot floods. 

Nine-spot 

In agreement with the'results of Coats and Ramesh (1982), we find that 

for nine-spot floods, five-point grid orientation errors are very large 

(Figure 10). Steam breakthrough times differ by factors in excess of 5 

between parallel and diagonal grids (see Table 3), and in the "parallel" five­

point mesh, steam breaks through at the far well earlier than at the near well. 

The nine-point method gives good results. For the near well, steam breakthrough 

is slightly faster in the diagonal grid. This diminishes somewhat the sweep 

towards the far well, so that a later breakthrough is predicted than in the 

parallel grid. The sensitivity of the problem can be seen by noting that a 

difference of less than 5 days in predicted breakthrough time for the near well 

impacts on the sweep process in such a way that far well breakthrough times 

differ by almost 90 days (see Table 3). However, none of these discrepancies 

are "large", and predicted cumulative oil recoveries agree well for "parallel" 

and "diagonal" nine-point grids (Figure 10). The seven-point method performs 

·• much better than the five-point method, but not nearly as well as the nine-point 

method in this case. Due to the 60° symmetry of th~ hexagonal grid blocks, the 

• two kinds of near wells. respond differently. Well N' is connected with the 

injector by a "parallel" flow path, giving much more rapid steam breakthrough 

at that well than for the "diagonally" connected well N (Figure 4 and Table 

3). In this par~icular problem it was assumed that there were no volatil~ 
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hydrocarbons present, so that oil viscosity, mobility ratios, and grid orienta­

tion effects are larger than in the case with volatile hydrocarbons. Cumulative 

oil recovery is generally lower, due to the absence of a distillable component. 

Conclusions 

The results of this study can be· summarized as follows. 

(1) A novel seven-point method has been developed, which for five- and 

nine-spot floods is intermediate between five- and nine~point 

methods both in grid orientation accuracy and computational effort. 

(2) For five-spot patterns, the seven-point method is virtually as accurate 

as the nine-point method, while the latter has a distinct advantage 

for nine-spots. 

(3) Seven-spot floods offer a particularly favorable geometry for appli­

cation of the seven-point method, so that good numerical accuracy 

can be obtained simultaneously with a substantial reduction in com­

putational work. 

(4) The nine-point method gives accurate results for seven-spot floods 

when nearly square grid blocks are used. Large grid orientation 

errors reported in the literature for nine-point simulations of 

seven-spot patterns appear to be caused by the use of non-square grid 

blocks. 

(5) Five-, seven-, and nine-point differencing methods can be convenient-

ly implemented by means of an integral finite difference formulation •· 

(IFD). All geometrical parameters of the grid are provided as input 

data in the IFD-method, and no programming changes are necessary when 

changing the differencing method. 

• 
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Nomenclature 

Anm interface area between grid blocks n and m (m2) 

C proportionality constant in Eq. 14 (kg/m·Pa·s) 

D nodal distance between grid blocks n and m (m) nm 

F mass or energy flux (kg/m2 
• s or 

g gravitational acceleration (m/s2 ) 

h grid spacing (m) 

I injection well 

k permeability (m2 ); also: time step index 

relative permeability for phase a 

M accumulation term in mass or energy balance equations (kg/m3 or J/m3 ) 

average of accumulation term in grid block Vn 

N,N' "near" production well 

NPH number of phases 

n inward normal vector 

p pressure (Pa)r also: production well 

pressure in phase a (Pa) 

sink or source rate (kg/m3 • s or W/m3) 

residual for component K-equation in grid block n 

5 saturation 

t time (s) 

U general solution to partial differential equation 

v 

= (at/axt)(ak;ayk)u 

volume (m3) 

3 volume'of grid block n (m) 

mass fraction 
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Subscripts 

dia diagonal 

E east 

g gas 

N north 

NE northeast 

NW northwest 

n,m index of grid blocks 

0 oil 

p nodal point 

par parallel 

5 south 

SE ·southeast 

sw southwest 

w west 

w water 

Greek 

a phase (o: oil' g: gas, w: water) 

b. Laplace operator 

r surface area (m2) 

K component index •• 
~ viscosity (Pa 0 s) 

p density (kg/m3). 

<P porosity 
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Appendix: Steamflood Simulator 

The calculations reported in this paper were carried out with our fully 

implicit numerical model STMFLD1*, which simultaneously solves for the transport 

of three phases (gaseous, aqueous, hydrocarbon), and heat. The mathematical 

and numerical methods used in our steam flood simulator are similar to the 

geothermal reservoir simulators SHAFT79 and MULKOM (Pruess and Schroeder 1980; ~ 

Pruess and Narasimhan, 1982; Pruess, 1983). The reservoir fluid is approximated 

as having 3 (pseudo-)components: (l) "light" (volatile) hydrocarbons, (2) 

"heavy" (non-volatile) hydrocarbons, and (3) water. Space discretization of 

mass- and energy-balance equations is made with the integral finite difference 

method, resulting in equations of the form (9) and (10) (analogous for heat 

balance). Time is discretized fully implicitly as a first order finite difference. 

The treatment of PVT-properties is the same as that of Coats (1976, 1978)~ All 

thermophysical properties of the multiphase fluids are generated as functions 

of a set of four independent primary variables in an "equation-of-state module" 

(EOS). The EOS contains logic to recognize the appearance and disappearance of 

phases, and to properly "switch" primary variables in phase transitions. Con-

straints such as Sg + Sw + S
0 

= 1 are embedded in the EOS-module. The dis­

cretized balance equations are written in residual form (compare Equation (9)) 

M(K),k+l_ M (K),k_ ~t 
- n n V 

n m 

(K = 1, ••• , 4; n = 1, ••• , N) 

where k is the time step index. The 4•N coupled non-linear equations 

(A-1) for a system with N grid blocks are solved completely simultaneously, 

using Newton-Raphson iteration. The derivatives with respect to primary 

*STMFLD1 is an improved version of a code which was jointly developed by 
K. Pruess, G.S. Bodvarsson, and Energy Resources Co. 

( A-1) 
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variables needed for the Jacobian matrix are directly evaluated for the 

residuals R~K), using numerical differentiation, with all required 

incremented thermophysical parameters provided by the EOS module. Iteration is 

continued until the residuals are reduced to less than a specified fraction e 

of the accumulation terms. The linear equations arising at each iteration step 

are solved directly, using Gaussian elimination and sparse storage techniques. 

The linear algebra is performed with the Harwell subroutine package ''MA28", 

which efficiently handles non-symmetric matrices with random sparsity structure 

(Duff, 1977). This feature permits exploitation of the geometric flexibility 

of the integral finite difference method to the fullest extent. Flow connec-

tions between grid blocks can be specified in any way desired, without any 

limitations as to band width or dimensionality of the problem. The simulator 

permits a flexible treatment of wells, with constant or time-dependent rates, 

and provides a deliverability option with gravity correction for flowing 

wellbore pressure. Automatic time-stepping can be specified, with time steps 

increasing or decreasing in dependence upon the number of iterations needed for 

convergence. Boundary conditions are treated by introducing appropriate 

boundary elements (Dirichlet type) and/or appropriate sinks or sources (Neumann 

type). Heat loss to cap and base rocks can be modeled either numerically, or 

with the semi-analytical method of Vinsome and Westerveld (1980). 



Oil Properties 

viscosity 

compressibility 

expansivity 

heat capacity 

molecular weight 

Formation Properties 

permeability 

porosity 

compressibility 

heat capacity 
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Table 1. Fluid and rock properties 

1.38 Pa·s at 37.8°C 
.0025 Pa·s at 260°C 

7.25 x 10-lO Pa-l 

1.38 x I0-4;oc 

volatile oil 
non-volatile oil 

38% 

2.9 x lo-10 Pa-1 

2.35 x 106 J/m3°C 

120 
300 

(: 1380 cp at 100°F) 
(= 2.5 cp at 500°F) 

(= 5 x 10-6 psi-l) 

(: 4.1 X 10-4/°F) 

(:0.5 Btu/lb 0 F) 

(:4000 md) 

( -6 . -1) = 2 x 10 ps.1 

(= 35 Btu/cu ft -°F) 
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Table 2. Parameters of steam flood problems 

pattern area 

reservoir thickness 

bottomhole flowing 
pressure 

injection rate 

steam quality 

productivity index 

initial reservoir 
temperature 

initial reservoir 
pressure 

initial water 
saturation 

initial mole frac­
tion of volatile 
hydrocarbons 

minimal symmetry 
element 8 

number of grid 
blocks 

"parallel" 
grid block( 

volume 
"diagonal" 

aspect ratio b 

8 for nearly equilateral 

five- or nine-spot 

2 9604 m (=2.37 acres) 

15 m (=49.2 ft) 

0.517 MPa (:75 psi) 

0.4 kg/s (: 217.8 BPD-CWE) 

80% at 205°C (:40l°F) 

1.6 x 10-lO m3 

(:599.5 RB·cp/0/psi) 

38°C (: 100.4°F). 

0.7 MPa (=101.5 psi) 

30% 

30% (0 for nine-spot) 

five- or nine seven-point point 

1/8 1/4 

36 68 

720.29 m3 

I 643.1 m3 

735.0 m3 

1.0 1.023 

grid blocks 

bratio of longer to shorter side of grid block 

seven-spot 

11317 m2 (= 2.80 acres) 

10.9728 m (:36.0 ft) 

0.4137 MPa (:60 psi) 

0.24 kg/s (: 130.7 BPD-CWE) 

70% at 195°C (: 383°F) 

2.4 x 10-lO m3 

(:899.2 RB•cp/D/psi) 

32.2°C (: 90.0°F) 

0.5171 MPa (= 75 psi) 

30% 

30% 

five- or nine seven-point point 

1/2 1/12 

104 27 

511 • 1 m3 

739.2 m3 

551.9 m3 

1.010 1.0 
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Table 3. Steam breakthrough times (in days) 

five-spot a . tb n1ne-spo seven-spot a 
p N N' 

• 
five-point parallel 267.8 313.7 822.5 822.5 326.2 diagonal 515.3 2178.0 153.8 153.8 

nine._point parallel 386.8 1784.5 317.0 317.0 533.0 
diagonal 395.6 1872.7 312.2 312.2 

seven-point parallel 403.6 289.7 697.1 512.5 
diagonal 594.3 

a with volatile hydrocarbons 

b no volatile hydrocarbons 
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Figure 1: Five- and nine-point finite difference approximations. 
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XBL 836-1863 

Figure 2: Computational grid of regular hexagons for seven-point finite 
differences. 
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Figure 3: Grids with square blocks for modeling 1/8 of a five- or nine-spot. 
(a- diagonal, b- p~rallel)~ 
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Figure 4: Hexagonal grid for l/4 of a five- or nine-spot. 
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Figure 5: Hexagonal grids for 1/12 of a seven-spat (a- diagonal, b- paiallel). 
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Figure 6: Grid with approximately square blocks for 1/2 of 

a seven-spot. 
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Figure 7: Liquid phase oil production rate for five-spot steam flood. 



-30-

---- five - point, parallel 
-- -five- point, diagonal -~ 15 --nine-point, parallel 
........... nine -point, diagonal 
-·-·-seven- point 

------..,..-1.0 
0 

>-.... 
Q) 
> 
0 
u 
Q) .... 
·a 
Q) 

> -· _g 
::3 

E 
::3 
u 

10 

5 "' / 
I 

I 
I 
I 
I 

I 
I 

"' "' 

/ 
/ 

/ 

I .· "" I ... ...- .,., .... 
.··t··· .,.,"" .·· ., .. 

" 

o~--~~~~----~----~--~----~----~--~----~----~--~o 
0 100 200 300 400 500 600 700 800 900 1000 1100 

Time (days) 
XBL837- 2141 • 

Figure 8: Cumulative oil recovery for five-spot. 
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Figure 9: Cumulative oil recovery for seven-spot. 
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Figure 10: Cumulative oil recovery for nine-spot. 
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