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ABSTRACT 

Consequences of the conserved isospin quantum number T are developed 

for compound nucleus reactions with particular emphasis on statistical cross 

section fluctuations. The formalism is based on the Hauser-Feshbach and 

Ericson theories. The appropriate autocorrelation function in case of levels 

of two different isospin values in the compound nucleus contains an interference 

term between two Lorentzian functions that are associated with the two isospins. 

The formalism is applied to the statistical reactions 54cr(p,p) and 54cr(p,a) 

where the coherence width in the proton- and a-channels are markedly different. 

This is attributed to the decay properties of states with different isospin in 
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55 the compound nucleus Mn. The formalism developed for the isospin quantum 

number T can be extended to other quantum numbers. For the case of angular 

momentum and parity Jn interesting consequences with respect to heavy ion 

reactions are discussed. 

. .... 



. \ .. ; .·' "-.;- .. ) 

-1- LBL-1643 

I. INTRODUCTION 

The consequences of isospin conservation are not always explicit in 

current formulations of the theory of nuclear reactions and are rarely taken 

into account in the interpretation of experiments. Noticeable exceptions, are 

of course the theories of isobaric analogue resonances1 and a few investiga

tions of isospin in direct transfer reactions. 2 An outline of the role of 

isospin in direct and compound nuclear reactions is given in Refs. 3 and 4. 

In the present paper we want to develop the consequences of the isospin 

quantum number for compound reactions with particular emphasis on statistical 

cross section fluctuations. In Sec. II the necessary formalism is ·presented 

which is based on the Hauser-Feshbach5 and Ericson6 theories. A difference 

between our results for fluctuation phenomena and the results of Ref. 4 is 

discussed. Section III contains the application of this formalism to the 

statistical reactions 54cr(p,p) and 54cr(p,a). The data of Refs. 1 and 8 

show a difference between the coherence widths measured in the proton and 

a-channels, respectively. This can now be attributed to the decay properties 

of states with different isospin in the compound nucleus 55Mn. The results 

of Sec. III are discussed in Sec. IV. Finally, in Sec. V we conclude with 

general remarks about the effect of conserved quantum numbers on correlation 

functions. 
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II. _FORMALISM OF COMPOUND NUCLEUS REACTIONS WITH CONSERVED ISOSPIN 

A. Average Cross Sections 

Let us begin this section by comparing the theory when the isospin T 

is strictly a good quantum number with the theory when T is ignored (as is 

the case in the standard Hauser-Feshbach theory). 

The compound or fluctuating cross section is believed to arise from 

an S-matrix given by a Breit-Wigner expansion 

(c* c') (2.1) 

and in Hauser-Feshbach theory one considers the gAc' gAc' to have random phases 

and be statistically distributed about zero mean for each total angular momentum 

and parity. The channel index c as usual represents a vector coupled partial 

wave of definite total angular momentum J and parity n. For simplicity of pre-

sentation we suppress all angular momentum recoupling coefficients which arise 

in cross section formulas. In this case, the simplest form of the statistical 

compound nucleus theory, the energy averaged fluctuation cross section is given 

by 

( lifn !2} = 
cc' 

2n ( 
DJn 

(2.2) 

wherein the factor W , is the width correlation factor and the brackets ( ) cc 

denote averages over the energy, unless otherwise specified. In terms of 

transmission coefficients the above expression becomes (we drop the Jn notation 

for convenience) 



! \ ,,/ ' :fJ 1 •. J ~J ~ y 

-3- LBL-1643 

( I S 12 ) = ;J c ;]c I 

cc
1 L :J 

c" c" 

w cc 1 (2.3) 

with w I ~ 1 for r « D (few 
cc 

channels) and w I ~ 1 + 6 I for r >> D (many 
cc cc 

channels), where rand Dare the mean level width and mean level spacing, 

respectively. The ~ are usually calculated from the conventional optical 
c 

potential in channel c i.e. 

(2.4) 

Let us now suppose that there are levels of two different isospin 

values T called T> and T<, that Tis strictly conserved inS and that there 

are two level distributions appropriate to each T-value. This corresponds 

to the case where a target nucleus with isospin T * 0 is bombarded with protons 
0 

so that T> = T + 1/2 and T < = T - 1/2. In this event 
0 0 

T< T< T> T> 

s = I: 
g\)C g\)C I 

+ I: gwc gwc' 
(2.5) 

cc 1 T< T< T> T> 
\) E -E-if /2 E -E-if /2 

\) \) w w 

We now calculate (cr 1 ) and obtain (assuming tvo uncorrelated random distributions) 
cc 

(a ' ) ci:: 27T 
cc T < 

D 

T T 
< I <1 2 

> < I < 12 
> g\)C \) g\)C I \) T < 

--~~--~----~~--~ w 
T cc 1 

< r < > 
\) \) 

(2.6) 

= 
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For convenience, we introduce the obvious short ha.Yld notation 

(2.7) 

In this extreme limit we obtain significant differences from the usual 

Hauser-Feshbach theory. These are as follows: 

1) Since the total transmission in channel c is given by unitarity as 
T< .. T> 

Jc = ~c + "':fc, we see by equating eqs. (2.3) and (2.7) that conservation of 

isospin leads to a width correlation factor W 1 different from those convencc 

tionally used. This is not surprising because c and c 1 are correlated by the 

requirement that the channels couple to the same T~state. More explicitly 

(2.8) 

T< T> 
which is not typically unity because of terms like~ ~ 1 occurring in the 

c c 

denominator but not in the numerator. 

2) The isospin dependent width correlation factors WT will in the case of cc 1 

charge exchange (i.e. is?spin "elastic" scattering) be equal to two (when 

r >> D) as in the familiar case of compound-elastic scattering. 

3) Transmission coefficients ~T are to be calculated from an isospin optical . Jc 

potential for a given total T. In the limit of pure isospin the proton and its 

associated charge exchange neutron channel are isobarically equivalent so that 

a total isospin channel basis cT can be conveniently adopted. The corresponding 

transmission coefficients are then obtainable from an isospin conserving nuclear 

potential V(T) using the relation: 

i 

-1 

i 
·~ 
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(2.9) 

where (clcT) is an isospin vector coupling coefficient in channel c and cT is 

the resulting "isospin-channel". The quantity Sopt is the optical model 
cT 

S-matrix element for a nucleon in the isospin conserving potential.
1° For 

T < T> 
target nuclei with neutron excess, one cannot have in general ':1 = J so that 

c c 

the conventional Hauser-Feshbach theory is really restricted to situations 

where T is single-valued. Even then, Eq. (2.3) need not be correct if there 

are any channels open which have dual isospin since the denominator should 

express the decay into all channels of the appropriate isospin only. The 

foregoing is true in the case of strict isospin conservation but can be 

properly extended3 to include isospin mixing in the compound nucleus states. 

B. Cross Section Fluctuations 

As in the previous subsection we compare the theory when isospin T 

is strictly conserved with the theory when T is ignored (as is the case in the 

standard theory of Ericson fluctuations). 

The two central quantities in fluctuation theory are the variance of 

cross sections· and the mean level width of the compound nucleus. Both quantities 

are obtained from the autocorrelation function 

c(E) = < a(E+e:)a(E) > 

< a(E) > 
2 - 1 (2.10) 

The normalized variance is equal to C(e:=O). In order to evaluate C(e:) we intro

duce following Brink and Stephen11 the correlation function c(e:) between the 
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:.:;..:.matrix elements by 

< s , (E+E:)s·* 1 (E) > = c(E:) < Is 1 (E) I > 
2 

cc ' cc cc 

From the particular form of the S-matrix (Eq. 2.1) follows 

c(E:) = r 
f-it: 

(2.11) 

(2.12) 

E ( ) ( 2 ) h j . t l d. t . b t . 11 
qs. 2.10 - 2.1 and a general t eorem on o1n norma 1s r1 u 1ons 

yield the Lorentzian shape of the autocorrelation function 

C(t:) = (2.13) 

Note, that C(O) = l, which is true for the case that the number Neff of statis

tically independent channels12 ' 13 is equal to one. In general the right hand 

side of Eq. (2.13) would have to be multiplied by 1/Neff' 

Now we suppose that there are compound nucleus levels with two different 

isospin values denoted as in the previous subsection as T> and T<. In general 

the number of open decay channels will be different for the T> and T< states. 

Hence the ratios f>/D> and f<iD<will be different for the two isospins. The 

meaning of the subscripts at the mean level width and the mean level spacing 

is obvious. In order to apply fluctuation theory we have to require9' 15 

(2.14) 

Since not or.ly the f/D ratios but also the level densities are different for 

the two isospins the mean level widths r <and r> will not be the same, in 

general. 
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In order to derive the appropriate correlation function in this case 

we obtain from Eq. (2.5) using the definitions (2.7) the modified version of 

Eq. ( 2. ll ) , i. e . , 

* ( s I ( E+ €) s I ( E ) ) = 
cc cc r -iE: < 

( (J ) + 
< 

Inserting Eq. (2.15) into Eq. (2.10) then leads to 

+ 

< > 2 ( r2 + 2) 
(J I > E: cc 

2 <a<> <a> > r l > ( r l > + E:
2

) 

< accl > 2 (r~ + E:2) (r; + E:2) 

(2.15) 

(2.16) 

We notice in Eq. (2.16) the existence o.f an "interference term" between 

the two Lorentzian functions that are associated with the two isospins. This 

te.rm guarantees that the variance C(O) remains unity whatever values the 

quan~ities a<, a>, r< and r> take. This result is contrary to Eq. (5.13) of 

Ref. 4, which would predict a damping of the fluctuations (i.e. C(O) < l) 

due to isospin conservation. This seems to be physically inconsistent since 

isospin T is summed coher~ntly and should therefore be treated very much like 

the other coherently summed conserved quantum numbers J and 'IT. In the latter 

case it is knmm that the variance is not decreasing with increasing numbers 

1T 
of J values unless the cross section is integrated over angle so that the 

sum over J'IT becomes incoherent. The sum over T is coherent even if the cross 

section is integrated over angle; an incoherent sum is obtained only when a 

sum over projectile charge states is performed. 



-8- LBL-1643 

Using the above method, correlation functions involving correlations 

between different channels and angles can be calculated as well. It is also 

possible to generalize these results to the case of isospin mixing (Ref. 3). 

III. 
54 4 REANALYSIS OF Cr(p,p) AND S Cr(p,a) FLUCTUATION EXPERIMENTS 

A. General Remarks 

In the present section we want to reanalyze the statistical fluctua

tions observed in the reactions 54cr(p,p) (Ref. 7) and 54cr(p,a) 51v (Refs. 

7 and 8). The target nucleus 54cr has isospin T = 3 so that in the compound 
0 

nucleus 55Mn states with isospin T < = 5/2 and T> = 7/2 are formed. Both types 

of states can decay through proton emission while due to the isospin zero of 

the a-particle only the T < states can decay to low lying states in 51v. This 

simple picture is of course justified only under neglect of isospin mixing. 

For medium mass compound nuclei there is some evidence that supports this 

assumption16. Among other, the most relevant information with respect to 

the problems discussed in Sec. II is that the mean coherence width f determined 
p 

from the proton decay channels is significantly larger than the width r ' 
a 

found from the a-decay channel. This points to an isospin dependence of the 

reaction where r> > r<. 

In part B of this section, the experimental results are summarized. 

We then, in subsection C, determine the quantities f< and D< from the (p,a)

experiment. In subsection D we derive the ratio f>/D> as well as cr> and cr< 

from the compound nucleus cross sections in the (p,p)-experiment. Finally, 

in subsection E the coherence width r> is derived by application of Eq. (2.16). 
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.B. Experimental Results 

54 54 . 
In the reactions Cr(p,p) and Cr(p,a) the mean excitation energy 

in the compound nucleus 55Mn was E = ll.6 MeV .. The mean coherence width 
X 

was found to be r = 13.9 ± 0.7 keV. Note that in Table 11 of Ref. 7 the 
p 

results from the Fourier analysis of the excitation functions are quoted. 

Here, we rather refer to the results obtained from the autocorrelation function 

which are given in Tables 5a and 5b of Ref. 7. No errors are quoted there. 

We estimated the!l_l using the formula given under "FRD errors of correlation 

functions" in Table 2 ·of Ref. 7. Some results of the 54cr(p,a) 51v reaction 

are reported in Ref. 7. An extensive investigation of this reaction is 

published in Ref. 8. In Ref. 7 the mean coherence width was found to be 

r 8.9 ± 0.8 MeV (see Table 5c of Ref. 7 and the above remarks concerning a 

r ). This.is in fair agreement with Ref. 8, where after linear extrapolation p 

to the mean excitation energy of 17.6 MeV in 55Mn we obtain the value of 

r = 8.2 ± 0.6 keV. (Again there is no error given in Ref. 4. We estimated a 

it as above . ) In the following, we adopt the value f = 8.2 ± 0.6 keV of a 

Ref. 8 since it is the more complete investigation of this reaction. 

The total level density p = 1/D from the (p,a) experiment of Ref. 8 

has also to be reduced to the excitation energy E ='17.6 MeV. We can do this 
X 

by estimating dp/dE from Fig. 9 of Ref. 8. . X 

p(E = 17.6 MeV) = 4.06 x 105 MeV-l 
X 

The result is 

+ 100% 

,... 20% 

The high upper limit of the error is somewhat arbitrary, but has been intro-

duced because in Ref. 8 there is no determination of the direct reaction con-

tribution to the fluctuating cross sections. However, Table 5c of Ref. 7 
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indicates that there is some direct (p,a) reaction competing with the fluctu

ating one. ·This is in agreement with similar findings in the 45sc(p,a) 

reaction17 . The lower error limit on p results from the uncertainties in 

the absolute (p,a) cross section and the mean level width of Ref. 8. 

From the total level density p we have to calculate the density of 

spin 1/2 levels p
112 

in order to make the comparison with the results of 

Ref. 7 possible. Using the usual spin dependence of nuclear level densities 

(see e.g. Ref. 18) we may write 

p = (l/2)p112 exp (3/(8a~)) L (2J+l) exp (-J(J+l)/2a~). (3.1) 

J 

Here a is the spin cut off factor of the compound nucleus. The sum in Eq. (3.1) 
c 

may be approximated by 

'2:(2J+l) exp (-J(J+l)/2a~} == 20~ 
J 

so that 

- 2 2 p = p112 exp (3/(8ac))ac 

With a2 = 20 from Ref. 8 it follows that c 

4 -1 - 2.0 x 10 MeV 
+100% 

- 20% 

(3. 2) 

(3.3) 

c. Mean Level Width f < and Mean Level Spacin~ D < from the (p ,a)-Experiment 

The autocorrelation fUnction in the (p,a)-experiment determines 

fa - f <since the second .and the third terms in Eq. (2.16) vanish. 



\ 

'LJ '. .) ;) ..,) <J ;.) ,:,..,. ; 
·) •• 4 

:..,,.. 

"'~ 

-11- LBL-1643 

The mean level distance n112 , < of the states with isospin T < is, 

however, not equal to the quantity n
112 

from the previous subsection. 

. derive n
112

,< from the averaged fluctuating (p,a) cross sections which 

according to Eq. (2.6) can be written as 

. T< T< 

<a } 
1.p 1a 

= 
pa L: T< 

c" ':1 c" 

We 

(3.4) 

where we have made use of the facts that 

the isospin T < states and that the width 
T< 

the reaction proceeds only through 
T< 

correlation factor W is unity. pa 

The transmission coefficients Yp can be expressed as (Eq. (2.9)) 

We have 

(T , 1/2, T , -l/2IT -1/2, T -1/2) 2 
0 0 0 0 = 

2T 
0 

2T +1 
0 

In the a-channel, the vector coupling coefficient is unity, hence 

Substituting as usua119 

2n r< 
L: T< 

= c" D< c" 

we obtain from Eq. (3.4) 

2T D< T< T< <a } 0 = T T pa 2T +1 21Tf< p a 
0 

where 

( 3. 5) 

(3.6) 

(3.7) 

(3.8) 



T 
T = c 

..-12-. 

(3.10) 

is the transmission coefficient calculated in the usual way from optical model 

phase shifts. T We assume that T does not explicitly depend on the isospin T, 
c 

but only on geometry and channel energy, a fact which is true e.g. in the 

framework of the sharp cut-off model~ (For a more detailed treatment, see, 
. ' 

however, the discussion following Eq. (2.9)). We shall therefore drop the 

superscript on T that refers to the isospin. Expression (3~6) is of course 

schematic in that it does not exhibit angular momentum conservation. The 

full formula may be found in Refs. 8, 20, and 21 by help of which the expression 

aHF in the following equation is defined pa 

<a > = pa (3.11) 

HF The quantity a· is apart from D/f the usual Hauser-Feshbach cross section. pa 

Actually there is a slight difference between the analyses of Refs. 7 and 8 

in that the former allows for a dependence of r on total angular momentum J 

while the latter does not. Because the effect is small in proton induced 

reactions we disregard this difference here (see Subsection IV. C). We note, 

however, that the factor 2T /(2T +1) does of course not appear in the expressions 
0 0 

of Refs. 7, 8, 20 and 21, because they do not exhibit isospin conservation. 

Hence, the level spacing n
112

, which we derived'in Sec. III. B from the total 

level density p given in Ref. 8 is connected with n112 ,<via the relation 

2T 
0 

2T +1 
0 

.. 

Using the result for p
112 

from Sec. III. B we obtain 

(3.12) 
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+30% 
D1 / 2 , < = O. 058 keV 

-50% 

From r 112 , < and n112 , < results 

+100% 
r 112 , < ;n112 , < = 141 

- 20% 

D. Ratio of f )D> and the Cross Sections (a) /(a<} 

From Eq. (2.6) and the discussion in Sec. III. C follows that the 

average compound nucleus (p,p)-cross section can be written in the form of 

Eq. ( 3.11), namely 

<a } =[(2::~ij Dl/22< T< l DlL22> T>] HF w + w a 
PP rl/2,< pp ( 2T +l )2 rl/2,> PP PP , 

0 

(3.13) 

= (a ) + (a> ) 
< 

In analogy to Eq. (3.11), this last equation defines the quantity aHF 
PP 

In Eq. 

(3.13) we have made use of the fact that 

(T , l/2, T , -l/2jT +l/2, T -l/2) 2 
0 0 0 0 

l 
2T +l 

0 

(3.14) 

Both width correlation factors are equal to 2 for elastic scattering and equal 

to l for inelastic scattering. We therefore drop the superscript of W pp 

referring to the isospin. It might look like a> is very small compared to a< 

because of the factor (2T )
2 = 36 and thus practically impossible to determine 

0 

from the last equations. This is, however, not true, since 2nf/D is related to 

the number of open decay channels, which is much larger for the T levels than 
< 

for the T> levels of the compound nucleus (see Sub sec. IV. D). Hence, D>/f > >> D</f <' 
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We derive the quantity ( cr } /(W crHF) from Eq. (3.13) as an average 
. PP PP PP _ 

over the results from 10 excitation functions in Tables .5a and 5b of Ref. 7. 

The weighted average over the last columns of these tables is 

< cr > 
w ~P (e) = (0.037 ± 0.017) mb/sr 

PP PP · 

where the error is taken to be the rms deviation of the results of Ref. 7. 

Unfortunately, the quantity H (e) of Ref. 7 is not the same as crHF defined 
PP PP 

here. Both quantities, however, are related by 

2 .· 2 
~ exp (-3/(Bcrc)) H (e) p pp 

with ~ being the wavelength in the proton channel. From this follows p 

< cr > 
PP = o.-017 ± o.ooB 

w crHF 
pp pp 

(3.15) 

D . 
Inserting this result and l/2 ,< from Sec. III. C into Eq .• (3.13) we obtain the 

rl/2,< 
result 

From Eq. 

rlL22> 

Dl/2,> 

(3.13) 

<cr > > <a;> = 

+ 4.6 
= 1.7 

- o.B 

also follows the ratio 

+ 6.3 
2.3 

1.7 
The fact that this ratio is of order unity confirms that the number of 

open decey channels is smaller for the T> states than for the T < states. As 
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discussed above, this effect counteracts the weighing factors resulting from 

isospin coupling. We need the ratio (a> ) /(a<) to calculate r > from the 

autocorrelation function. 

E. Coherence Width f> 

The mean coherence width r has been obtained from an analysis of the 
p 

excitation functions in the reaction· 54cr(p,p) in terms of a single Lorentzian 

for the autocorrelation function. In order to decompose f into its components 
p 

r< and r> we first derive a re~ation between the autocorrelation function with 

the single Lorentzian and· the proper correlation function of Eq. (2.16), which 

contains two Lorentzian 's associated with the two isospins T< and T and an ' > 

interference term. Equation (2.16) can be rewritten into the form 

c( £) = 
r2 + 2 
. < £ 

where 

~> [
< a > r + < a > r J-2 < < > > 

<a<) +<a>) 

and C<(£) and C>(£) are the autocorrelation functions for each isospin by 

themselves. Iff<~ f> one has the following inequalities for all£ 

~ c (£) 
> 

and 

~ M ~ r < > > 

ac < 0 
d£ 

(3.16) 

(3.17) 
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A conventional analysis uses an effective width defined in analogy to Eq. (2.13) 

via 

= 2 2 
rEFF+E 

< 0 (3.18) 

and hence yields a width rEFF at CEFF(E=fEFF) = 1/2. Since in our experiment 

rp=rEFF we obtain r> by introducing
22 

Eq. (2.16) or (3.16) into the equation 

C(E=f ) = 1/2 
p 

with the known quanti ties r <, ( o <) and ( o> ) • The result is 

+ 38 
= 19.1 keV 

- 1. 7 

where the errors come mainly from the uncertainty in. the ratio of ( o> ) /( o <) 

derived in the previous subsection. 

Combining the results for r> and f>/D> one gets 

+ 9.0 
= 11.2 keV 

- 2.0 

where we have taken into account that the errors in f >and f>/D> are completely 

correlated. 

A. 

IV. DISCUSSION 

Angular Momentum Dependence of Coherence Widths r and r a 

One objection may be raised against the foregoing analysis in that the 

difference between rp and ra might not only be due to isospin but also to 

angular momentum effects. According to Fig. 8b of Ref. 8, the angular momentum 

dependence of' the coherence width rJ is negligibly small, however, the results 
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in Fig. 20 of Ref. 7 indicate a 25% decrease of rJ when the spin of the compound 

nucleus ~ncreases from J = 1/2 to J = 9/2. The experimental quantities r and 
p 

ra are weighted averages of the quantities rJ with weighing factors given e.g. 

in Refs. 23 and 24. For the reaction 54cr(p,a) 51v these angle-integrated weighing 

factors are displayed on Fig. 8a of Ref. 8. We have reproduced these results 

and have also calculated the appropriate weighing factors as a function of angle 

for both reactions 54cr(p,a) and 54cr(p,p). The weighing factors center around 

J ~ 5/2 and the center changes by no more than 1 h as a function of both, angle 

and exit channel. Even the rather strong J-dependence of the coherence width 

given in Ref. 7 would then allow only for a 7% difference between f and r . P a 

Hence, the experimental difference between r and r must be explained as due to 
P a 

isospin effects. 

B. Density of T> - States 

In Subsec. III. Ewe obtain the mean distance Di;2 ,> of the T> states 

or equivalently their level density 

= 1/Dl/2,> = 89 
+ 20 -1 

MeV 
30 

The T> levels in 55Mn are the isobaric analogs of states in 55cr. The first 

T> level in 55Mn is at the excitation energy 

E (6T = 1) = M( 55cr) + 6E - 6 - M( 55Mn) (4.1) 
X C . 

where M designates ground state masses, 6E is the Coulomb energy displacement 
c 

and 6 the neutron-proton mass difference~ Evaluating 6E with the formula in 
c 

Ref. 25 we find. Ex(6T = 1) = 9.96 MeV. The isobaric analogs of the T> states 
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in 55Mn(E =17.6 MeV) are found at the excitation energy U=E -E (~T=l) = 7.64 
X · · X X --~---

26 
MeV. Our result can be compared to that of Farrel & al who studj,ed s-wave 

neutron resonance scattering on 54cr and found 1 resonance per 47 keV between 

0 and 400 keV incident energy, corresponding to the range of U = 6.25 to 

U = 6.65 MeV in 55cr, so that 

-1 
P1 ; 2 (U = 6.45 MeV)= 2/0.047 = 43 MeV 

where the factor of 2 has been included, because in Ref. 26 only positive parity 

states were detected. Scaling this result to our excitation energy U = 7. 64 

MeV with the help of a level density formula and the parameters given in 

Eqs'. ( 3) and ( 4) and Fig. 9 of Ref. 8 yields 

p
112

(u = 7.64) ~ 128 Mev-1 _ 

This is in satisfactory agreement with our result for P1; 2 ,>. 

C. Applicability of Fluctuation Theory 

We should note that ourresult of r112 ,/D1; 2 ,> is at the limit of the 

applicability of fluctuation theory. Indeed, Moldauer (Ref. 27) and Dallimore 

and Hall (Ref. 15) have shown, that f/D must not be smaller than 2. As noted 

in Sec; IV. A, however, the most probable compound nucleus spin formed is 

J = 5/2 and r 512 ,> /D5/ 2 ,> is larger than r112 ,> /D1 / 2 ,> by a factor of 2 as 

can be verified by the respective angular momentum dependence of r and D. 

D. Modification of the Formula for the Coherence Width 

Equation (3.8) is the basis of calculations of the coherence width. 

More explicit formulations (without inclusion of isospin conservation, however) 

can, e.g., be found in Refs. 28, 29 and 30. The present paper shows, how isospin 

, I 
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effects can be built into the formulae of these references. We note the following 

points: 

i) The transmission coefficients and, hence, the partial decay widths r of ov 

Ref. 29 (we refer to this paper only as an example) have to be multiplied by the 

appropriate vector-coupling coefficients according to Eq. (2.9). 

ii) 
31 

The level densities pv of Ref. 29 are now isospin dependent since they 

refer to only those levels to which isospin allowed decay is possible. For 

instance, the T<- levels can decay via neutron emission to the low-lying states 

of the residual nucleus, while the T>- levels cannot. In our example, the density 

pn(T<) - occuring in the neutron partial width of r < - is that of the states 

in 54Mn. The neutron partial width of r>' however, requires the density pn(T>) 

of T = 3 states in 54Mn since the isospin allowed neutron decay of the T> states 

goes to the analog states of the target. The threshold of this nA - channel, 

as it is usually called in the theory of isobaric analog resonances~ is here 

at the excitation energy of 17 MeV in the compound nucleus 55Mn: It is, there-· 

fore, practically closed in the present experiment. This explains why there 

are many more open decay channels for the T< than for the T> - states as 

mentioned in subsection III. D. 

iii) Densities of levels with isospin one unit greater than that of the ground 

state (e.g. the above mentioned pn(T ) in 54Mn) can be equated to the level 
> 

density in the appropriate parent nucleus ( 54er in our example). The same is 

true for the nuclear temperatures and spin distribution parameters that occur 

in Eq. (14a) of Ref. 29. 
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V. CONSEQUENCES OF OTHER CONSERVED QUANTUM NUMBERS ON CORRELATION FUNCTIONS 

Fluctuation theory in its existing form assumes that there is no 

dependence of the coherence width r on conserved quantum numbers - an assump-

tion we know to be invalid. It is hence worthwhile noting that the formalism 

developed in the previous sections for the isospin quantum number T could be 

extended to other quantum nUmbers as well. For the case of the conserved 

quantum numbers angular momentum and parity Jrr we have similar to Eqs. (2.11), 

(2.12) and (2.15) the correlation function c(£) defined via 

with 

<a > c ( £) = L < aJ7T 'T > 

J7T,T 

< a > = L < aJ7T 'T > 

J7T ,T 

rJ7T,T 

r J7T ,T . 
-l.E 

Then the autocorrelation function C(E) is 

(5.1) 

(5.2) 

The analysis of experimental excitation functions in terms of Eqs. (5.1)-(5.3) 

allows us to understand why and how fEFF defined in Eq~ (3.18) for different 

T-distributions and now extended to include J7T as well, can be different in 

different reactions via the "same" compound system not only because of T but 

also because of different J7T dist~ibutions of ( aJ7T ,T } for the different 

reactions. For the reactions (p,p'), (p,a) involving mainly projectiles and 

ejectiles with small mass numbers the effect was found small relative to the 

T-dependence effect in subsection IV. C. However, the effect of different 

J7T distributions clearly is significant in reactions involving heavy ions. 

./' 
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A typical example is the behaviour of fluctuating cross sections and 

correlation functions for reactions like 32 

--....;> 

versus 33 

27Al + p ---> 28· * Si 

---> 

---> 

24Mg + a 

(5.4) 

which may be described quantitatively in terms of the formalism discussed in 

the present paper. Noticeably, not only are the effective coherence widths 

different in the 16o + 
12c and in the 27Al + p reaction, respectively, but 

does the effective coherence width vary slightly with scattering angle in 

the heavy ion reaction, because the weighing factors ( cr3 7f 'T ) in Eq. ( 5 .1) 

vary with angle. We expect high angular momenta J to contribute relatively 

stronger to 0° and 180° scattering than to 90° scattering: The classical 

argument that the orbital angular momentum be perpendicular to the reaction 

plane (which leads to the well known anisotropy of Hauser-Feshbach cross 

sections) is more stringent for high than for low angular momenta. The two 

different coherence widths rEFF from the reactions (5.4) can be understood 

in terms of a mode1.
30 

A further example, where the effect of different JTI 

d . "b t" · b · are the · 31P( )28s· d 16o( 16o )28s· lstrl u lons lS o vlous, reactlons p,a l an ,a l 

which has just appeared in the literature. 34 More experimental heavy ion 

data, particularly data with small finite range of data uncertainties, would 

be enlightening. 
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