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Abstract -

We determine the chiral anomalies in 2n-dimensional
spacetime by a differential geometric method which enables
us to obtain the anomalies without having to calculate
Feynman diagrams. The advantage of this method is that
the construction automatically satisifes the Wess-Zumino
consistency condition, a condition which has direct physical
interpretation. We hope that our analysis sheds light on the
mathematical structure associated with chiral anomalies.
The mathematical analysis is self-contained and a brief
review of differential forms and other mathematical tools is
included.
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I. INTRODUCTION

2

Chiral anomaliesl’ have played a strikingly ubiquitous

3-18 in the development of particle theory ever since their

role
discovery some fifteen years ago. Their central importance in
particle theory could hardly have been anticipated by those who

3 To underline the importance

first calculated the triangle graphs.
of anomalies, we mention neutral pion decay, renormalizability of
gauge theories, correlation between lepton and quark families,
instantons and index theorems, anomaly matching in composité
models, QCD effective Lagrangian and meson-glueball mixing, and
monopole catalysis of proton decay.

Perhaps not surprisingly then, it turns out that chiral
anomalies possess deep mathematical significance. Indeed, the
mathematical underpinning of anomalies has been increasingly

12’19' In this paper, we

appreciated over the last few years.
calculate chiral anomalies in 2n-dimensional spacetime by a dif-
ferential geometric method. This enables us to determine the

structure of the chiral anomalies without ever calculating a

Feynman diagram. We hope that our calculation will illustrate,

clarify, and expose some of the mathematical structures associated
with chiral anomalies.

This paper is mathematically self-contained. It is not nec-
essary to have a prior knowledge of the method we use. A brief
review of differential féfms and other mathematical tools used in
this paper is given in Appendix A.

20

Some time ago, Frampton had discussed chiral anomalies in
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higher dimensional spacetime. Recently, he and Kephart and
ot-.hersZImz4 have carried out an analysis of these anomalies.
Related work has also been done by-Townsend and Sierra.2
We are motivated to calculate chiral anomalies in 2n-
dimensional spacetime partly because the mathematical structure
is so elegant, but also because of growing interest in physical

26,27 We expect that

theories in higher dimensional spacetime.
chiral anomalies should play an important role in the elucidation
of these theories. We also understand that higher dimensional
anomalies are important for the development of superstring
theories.28 In addition, Frampton and Kephartzo-24 have proposed
that the correct physical theory must be such that certain of
these higher-dimensional anomalies vanish. At present, we do not
see any physical reason underlying this very‘interesting supposition.

We will compare our work with the existing literature toward
the end of this Section.

We emphasize that it is perfectly legitimate to talk of
chiral anomalies in higher spacetime even though the relevant
field theories are not renormalizable. For the purpose of this
paper, we take a conservative view and consider the theory of a

Dirac particle interacting with c-number external non-Abelian

gauge fields. The Lagrangian is (in D = 2n dimensions)

L= 9ivMa, - bty (1-1)
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with Ai the generator of the gauge group G in the representation

to whig&lthe fer@ions belong. Here Ai = \fﬁ +(}{i Yps1’ Ypsl =
-in+l m yu. \fﬁ and UQi are, respectively, vector and axial-
vector ;guge fields, while Yp+1 is the counterpart of the usual Yg
in D-dimensions. The gquantum action functional, W[Au],.can be
expressed by the path integral

iw(Aa ]
e H

= Jﬁw 8y ;xp idexi_ . (1-2)

This theory is without gquestion renormalizable. There is no inte-
gration over Au(x) since it is an external field by assumption.

Our calculation is in flat space and the gauge potentials are
introduced explicitly (and not as part of the metric as in the
Kaluza-Klein theories). Since chiral anomalies are a manifestation
of short-distance physics8 we conjecture that our results, insofar
as the gauge fields are concerned, continue to hold in curved
space. We plan to treat the curvature tensor contribution16 to
chiral anomalies and its connection to the Kaluza-Klein program
in a fuﬁure paper.

We recall that there exist two distinct chiral anomalies.

The UA(l) or Abelian anomaly is associated with the noninvariance

of the fermionic path-integral measure in eqg. (I-2) under the

local transformation

i6(x)y
Vix) + e D+l yix) . (I-3)
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 The (anomalous) Ward identities in this case can be derived from

GW[AU]

W = 0 ’ (1—4)

6 (x)=0

which expresses invariance of the quanﬁum action functional under
change of integration variables, eq. (I-3). On the other hand,
the non-Abelian anomaly is associated with the noninvariance

of the quantum action functional under the gauge transformation
of the gauge fields accompanied by the transformation

iei(x) ALy
yi{x) » e i'D+1 Y (x) . (I-5)

The (anomalous) Ward identities can be obtained from

swiad)
__?TJL_ = Gi(x) , (1-6)
8§87 (x) i
87 (x)=0
where Aa is the gauge transformed Au corresponding to eq. (I-5).

Gi(x) is none other than the non-Abelian anomaly.
If we turn to examine the conservation laws, then the UA(l)
anomaly appears in the divergence of the axial U(l) current (to

which no gauge bosons are coupled),

A-—- -
I, = WY vpa v (1-7)

while the non-Abelian anomaly appears in the covariant divergence

of the non-Abelian axial currents,



A —— iy - -
Jui = VY YpyAiv o - (I-8)

In four-dimensional spacetime the UA(l) or Abelian anomaly is

given simply by

auJﬁ = _:_1_2_ eu"“trprm ’ (1-9)
l6n
' : i
(where our convention is such that €0123 = +1, and Fuv = -1Fuvxi),

while the non-Abelian anomaly for, e.g., SU(N) x SU(N) is given by

a rather complicated expression calculated by Bardeen,5

2 4 "uv po 12 Tuvipo

(DuJﬁ)i = - A nveo tr{xi[l V V. +-+2a a
47

+ % BuhVos + Vinlpds = AuVupds! - %;{UﬂVﬂpAOJ} '

(I-10)

where
Yy = '“ifvi T -ixi‘&i
Y = 3, - 8, ¢ (U, V1 (A, A
A, =R, - A R, IV A+ TR

Notice that the covariant divergence appears in eq. (I-10) as re-
quired by gauge covariance.

In writing down eq. (I-10) Bardeen has added suitable "counter-

terms" to the action to insure that the vector current



JX = Py v | B (I-11)

is divergenceless, -

D“in =0 . | (I-12)

Nowadays, instead of this procedure, it is more customary to write

the Lagrangian in eq. (I-1l) in terms of left and right handed fields:

- s H -
i-leY (a 1A )"’L

Lu i
T H -3 l _
+ VpiY (3u lARuAi)wR (I-13)
One then treats the left and right handed currents,
. ) _
= L -14
Jui wLYuxle (1 )
and
ui YR'W iR !
symmetrically rather than impose eq. (I-12). The non-Abelian

anomalies are given by

v L _ _ 1 Uvpo .
D Jui = '52;7 € tr{% [a ALvapALo +

1 1
8uAL\)ALpALo -2 ALuSvALpALo + 2 AL ALv p L;]} (I-16)



DuJR. = + 1 euvpo tr{ki[a A_. 3 A +

H1 247 H Rv p Ro
Py -1 1
* 3 APRPRARG T 2 ArpdvPRoPRe t 3 ARUARvapARO]} (I-17)
with ALu = -iA;uAi, ARu = -iA;uAi. (In fact, these equations were

also obtained by Bardeen on his way to eq. (I-10).) Since these
. equations are structurally identical we will only write one of
them henceforth. Indeed, many theories of physical interest are
constructed out of left-handed fields only. Thus, we will.often
only write eq. (I-16) and suppress the subscript L.

The right-hand side of eq. (I-9) is a total divergence,

A 1 tr a¥e (aVaPa% + £ aVaPa% . (I-18)

4n2 HVpO

(WIN]

The right-hand side of eq. (I-16) may also be rewritten as

u _ 1 i Vapa0 , 1 ,v.p,0 _
D J“i = 24n2 trA”o suvpo(A 3"A" + 5 A'ATA ) . (I-19)

As promised, we have suppressed the subscript L. Notice the
numerical coefficient 2/3 in eq. (I-18) and 1/2 in eq. (I-19).

The close resemblance between the two expressions on the
right hand sides of eq. (I-18) and eq. (I-19) may be a potential
source of confusion. It is our impression that, in conversations
at least, some authors sometimes confuse these two expressions
corresponding to the two types of chiral anomalies. The Abelian
anomaly is gauge invariant, while the non-Abelian anomaly is gauge
covariant and given by the covariant divergence of a non-Abelian

current.
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In this paper, we will show that there is an intimate but
rather non-trivial connection between the Abelian and the non-
Abelian anomalies. The non-Abelian anomaly in 2n-dimensional
space may be formally obtained from the Abelian anomaly in (2n+2)-
dimensional space by a series of mathematical manipulations.

The outline of this paper is as follows. In Section II we
briefly review the Wess-Zumino consistency condition for anomalies,
as well as its physical implications, which guides our subsequent
construction of non-Abelian anomalies. In Section III, we use
differential geometric methods to construct both the UA(l) and
non-Abelian chiral anomalies and obtain gquite compact formulas
in the generic 2n-dimensional case. Finally the normalization of
anomalies is discussed in Section IV. Some technical details and
a brief review of differential forms are contained in three
appendiées. -

While the present work overlaps somewhat with refs. 22-25,
it is in some sense orthogonal and complementary to theée papers.
The authors of these papers piace their main emphasis on cal-
culating anomalies by evaluating Feynman diagrams. The message
of this paper is that one can determine all chiral anomalies,

Abelian and non-Abelian, by a differential geometric method with-

out having to evaluate a Feynman diagram. Also, we believe that
we go beyond these existing analyses and that some of our main
results are not contained in refs. 22-25. Furthermore, we dis-
agree with some of the results of these papers.

We now point out the disagreement between'our work and the
existing literature. Our analysis of the Abelian anomaly agrees

in essence with that in refs. 22-25. As explained in Sec. III.1l



_10..
it is simple to determine the structure of the Abelian anomaly.
All authors agree that it‘is proportional to tr F° (eq. III-7
below). A bit more work is involved to show in general that the
Abelian anomaly is a total divergence 3“!(u and to write down the
explicit form for Ku. The explicit form we give below in
eqs. (III-20) and (III-36) disagree with egs. (8) and (11) of
Frampton and Kephart.23 We stress that the disagreement does not
involve merely the numerical coefficients but our expression in
eq. (III-36) contains several more terms than the corresponding

23 (their eq. (11)). One can

expression of Frampton and Kephart
readily check these expressions by explicit differentiation using
the identities in Appendix A. Furthermore, we derive a general

(wgn-l in eq. (III-16) below). As far as we can

ascertain, neither the general formula nor the reasoning which

expression for Ku

leads to it is contained in refs. (22-25).
The analysis of non-Abelian anomalies constitutes the bulk of
our paper and here we disagree substantially with the analysis of

Frampton and Kepha:c‘t.zz.24

These authors simply insert a genera-
tor matrix Ai into their expressions for the Abelian anomaly.

(See the remark after eq. (22) in ref. 22, and before eqs. (4),
(9), and (12) in ref. 23 and the corresponding equations in

ref. 24.) We do not understand why this procedure should be valid
when gauge fields are coupled to non-Abelian chiral currents.

In particular, in four dimensions this procedure yields an expres-
sion (eq. (4) in ref. 23) which disagrees with the well known
result of Bardeen.5 (In other words, the procedure advocated in

refs. 22-24 would allow one to proceed directly from our eq. (I-18)

to an incorrect version of eq. (I-19) with a coefficient 2/3
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instead of 1/2 in front of the A3 term.) For further examples,
the reader may notice, by comparing eq. (III-20) with eq. (III-32)
and eq._(III-36) with eq. (III-37), that the Abelian and non-
Abelian anomalies have characteristically different structure and
contain different numbers of terms. One is not obtained from
the other by the mere insertion of a generator matrix. Instead,
we believe that to obtain the non-Abelian anomalies one has to go
to a space two dimensions higher than the space of interest and
to carry out some non-trivial manipulations involving the Chern-
Simons secondary topological invariant. This will be explained
in Section III.2.

We go beyond the existing literature in deriQing a compact
general expression for the non-Abelian anomaly (egs. (III-30) and
(III-35) below) and in proving that it is a total divergence.

The derivation of these results as exhibited in Appendix B is,
in our opinion, rather non-trivial and relies heavily on the
Wess-Zumino consistency condition.7 Frampton and Kephart mention

23,24

the Wess-Zumino consistency condition but we do not under-

stand their use of this condition.

Our results show that the non-Abelian chiral anomaly.in _
D=2n dimensions contains the group theoretic factor Str All...Aln+l =
symmetrized trace of (n+l) generator matrices. We think that this
fact is not a priori obvious if one merely evaluates the Feynman
diagram for the leading term. For example, in four dimensions,

while it is clear that the triangle graph contains Str Alkjkk, it
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is not completely obvious, from looking at Feynman diagrams alone,
that the square and pentagon graphs also contain this same factor,
rather than the symmetrized trace of four and five éenerator
ratrices respectively. The fact that thevnon-Abelian anomaly

ll ln+1

contains the factor Str A was stated by the authors of

oA
ref. 23 but we are unable to understand the reasoning which led
them to this assertion for chiral gauge theories.

For (n+l) even, such as that for the possibly physically
interesting case+ of D=10, the non-Abelian chiral anomaly does
not vanish for»any fermion representation. In the symmeterized
trace, one can take the (n+l) generator matrices to be the same
one, A, and simply diagonalizes A. For spaces with dimension
D=4k, many of the standard theorems9 proved for D=4 continue to
hold. For example, if the fermion representation is real, the
non-Abelian chiral anomaly vanishes. Frampton and Kephart23'24
have evaluated the group theoretic factor in the anomaly for the
totally anti-symmetric representations of SU(N). They have recently
carried out an analysis of this factor and have also studied the

impact of the anomaly on supersymmetric Yang-Mills theory in 6

and 10 dimensions and on superstring theory in 10 dimensions.
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II. CHIRAL ANOMALY AND CONSISTENCY CONDITION

The implication of the non-Abelian anomaly for no -+ 2y 1is
well-known. This corresponds to the first term on the right hand
side of eq. (I-9) or eqg. (I-10). 1In contrast, the physical sig-
nificance of the other terms in eq. (I-10) is perhaps not.as
widely known. They determine the amplitude for the processes
Yy - 371 and 2y + 3w, as was shown by Adler, Lee, Treiman and Zee,6
and by Terentiev.6

Wess and Zumino7 showed that Bardeen's expression, egqg. (I-10),

must satisfy a consistency condition. Following Wess and Zumino,

we define

x [ ; ]
-X, =3 =+ |A x . (II-1)
i u dAui u GAu i

(We use the purely left-handed chiral formalism here instead of
the vector-axial formalism of ref. 7.) The Xi's generate chiral

gauge transformations:

[Xi(X),Xj(y)] = fijkxk(X)G(x-y) . (I1-2)

In terms of Xi' eq. (I-6) can be written as

Xi(x)w = Gi(x) , | (I1-3)
with (as in eq. (I-19))

« i HVaP -
-Gi(A) trAiau(AVBOAp + 3 AvAOAp)E - (I1-4)
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H A E -'AjA-e
ere A iny j |
The Wess-Zumino condition follows simply from applying eq.

(II-2) to W:

xi(x)Gj(y) - Xj(y)Gi(x)'= fijka(x)G(x-y) - (I1-5)

The importance of the consistency condition (eq. II-5) lies in the
fact that since the operator Xi is non-linear in the gauge poten-
tial Au the condition completely determines Gi(A) once the first
term (on the right-hand side of eq. II-4) in Gi(A) is given. In
the vector-axial formalism, éiven the first term in Bardeen's ex-
pression (eq. I-10), s“voptrkaaqu;ac‘U;, which one can perhaps
argue must be present from knowing the Abelian anomaly, one can
determine the Bardeen expression in its entirety. The Wess-Zumino
condition plays a crucial role in our analysis in Section III.

After the Wess-Zumino paper was published, it was realized
that the analysis of Adler et al.6 amounts to, in some sense, the
consistency condition stated in physical terms. Adler et al.
showed that, given the amplitude for no + 2y, one can determine
the amplitudes for vy - 3m and 2y -+ 37 by appealing to gauge and
chiral invariances.

Given Gi’ Wess and Zumino7 showed that one can solve eq.
(II-3) for the action functional W when Goldstone bosons are
present. Recently, Witten14 realized that the Wess-Zumino solution
for W can be written in a remarkably compact form as an integral
with topplogical significance over five dimensional space, and
which is closely related to mathematical objects appearing in our

analysis. (See Appendix A for further discussion.)
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III. DIFFERENTIAL GEOMETRIC CONSTRUCTION OF ANOMALIES

To carry 6ut our differential geométric analysis30 of anoma-
lies, we found it exceedingly convenient to use the language of
differential forms. For our purposes, differential forms offer a
compact index-free notation. The skeptical reader should contem-
plate whét some of our expressions, such as eq. (III-37), would
look like if one were to write out all the indices explicitly.
Everything we will need is explained in Appendix A to which the
reader unfamiliar with this formalism may wish to turn now. We
summarize some basic formulas here.

With A the potential l-form, the gauge field 2-form is given

by

| F=dA+A" (111-1)

Gauge transformations are described by

SVA =- dl,‘U'— fA,‘U’] = —DVU (I11-2)

0

~ZF;"~7] (ITI-3)

ov b

Here v(x) is an infinitesimal O-form taking values in the Lie

algebra G. The Bianchi identity reads

DF = art{AF1=0 (111-4)
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We re-write‘the expression for chiral anomalies in the nota-
tion of forms. The Abelian anomaly reads (cf. egs. (I-9) and

(I-18))

d* Ton o trFr = tr d(AdATSA) s

while the non-Abelian anomaly reads (cf. eqg. (II-4))
Al Y | 43
DrJi =-G:lA)e< '(7«)\«0L(A0(A+'{A) (III-6)

(As explained in Appendix A, we adopt a notational simplification
of not writing the standard wedge product.) Now we turn to the

differential geometric construction of anomalies.

1. UA(l) Anomaly

In D=2n dimensions, the UA(l) anomaly is given by the 2n-form

S (A) = ’t‘» 'Fn = StY Fm’ (I1I-7)

This form is dictated by invariance considerations. The divergence
a“Ji is gauge invariant, has dimension 2n, and is odd under parity
and time-reversal. Str denotes the symmetrized trace of a product

of k matrices,

\gt\'(Bh-‘.)Bh) = '_"i" Z ‘ 'tY(BI\ B‘\1~~-Bl\) (IiI—S)
h‘ Un"'.lh) ' R
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the sum being over all permutations (il,...,ik) of (1,...,k)

(In this subsection k is always n for D=2n.) 1In eq. (III-7), Str

can clearly be replaced by the ordinary trace tr. But it turns

out that the introduction of Str in this equation leads to some
crucial simplifications in our subsequent manipulations. When
some of the entries are the same, we write it in power form.

In mathematics, the object QZn(A) is known as the nth Chern char-

acter. 1Its gauge invariance is easily checked by using egs.

(ITII-3) and
g-u-ﬂ;mun =N Sh(tV:F],Fn.')'—‘ 0 (III-9)

The Chern characters are closed due to the Bianchi identity:

AdS2am= N SH(dF, F)
= n{str(b‘ 3 FV)- S{;Y(iA F3,E0

—_ O (I11-10)

(For properties of symmetrized trace used above, see Appendix A.)

According to Poincaré's lemma, eq. (III-10) implies that the Chern

character can be locally written as exterior differential of a

certain (2n-1)-form:

‘L‘T\.(A) dw?m.—\( ) (IT1-11)

To determine wgn-l , let us vary A:
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A —_y A-’.FA ' (III-12)

Then

F—F+3AA+ATA+ d(3A) G
to first order and

§Qw= 1 St (ASA+5AATASA, F™)
= nty (dGAF+BAAF AT A)
=Nt (dIAT +FALAFIE™?
+SAFAFIF -+ AT 4B)

=N dubYXA -l:%.' (III-14)

In the last step we used the Bianchi identity. One may integrate
eq. (III-14). 1In particular, letting At = tA, Ft = tdAa + t2A2, we

find

Stw=nN A g: dt t" 'tr{ A (OlA’f'tA")%-‘} (III-15)

We thus obtain a general formula for wgn_l(A):
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cozfn—.(A) = 'nglat-t t" St (A, (olA+‘tA1)“ﬁ) (I1I-16)

(Eq. (III-15) defines wgn-l up to a gradient dp, with p an arbi-
trary (2n-2)-form. We define wgn-l as in eq. (III-16). 1In eqgs.
(III-15) and (III-16) dt is an ordinary differential and commutes
with dx.)

Equation (III-15) says that the UA(l) anomaly can always be
written as the total divergence of a certain current formed out .
of A.

Writing out the indices, we have

MIe = ¢ €TINSl (B, Fapus)

— M
= C 0 K/"’(A) (ITI-17)
where ¢ is an overall coefficient and

K[A(A) - Q—[m,/“y ~~~,up{310r(A4: Flobe .. prtin) 4 ~} I1I-18)

1s a non-gauge-invariant current. In eq. (III-18) one can deter-
mine terms other than the first one from eq. (III-16).
The reader may wish to check eq. (III-16) for the familiar

case D=4 or n=2,
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IA)= 2§ dt t Str(A, dA+tAY)
= St (A, dA)+ =St (A, A)
= tr (AdAT S AY)

(IT1I-19)
It gives the well-known result (eq. I-18 in Section I)
' VaPaT 2 pVAPAT
Kf&(A3= éf*“/f’a‘t”'(A ofA +3 A APA ) (III-19')

For D=6 or n=3 we have

Py =30 dt t Ste(a, (art A
= SUr(A, AN+ = St(A, A dA)
+2 St (A, A% AY)
= tr(A(dA)+3 AdA+TAT)
It corresponds to . .
KilA)= Eunparz Trd AVIFATPAT +

+%AVAFAT'3>\A-C+§:‘AVAPAWAAA-C} (III-20"')

Historically, the fact that the UA(l) anomaly can be written

as a total divergence was realized some years after the discovery
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of the anomaly. Equation (III-10) and eq. (III-11) make it obvious

that this holds in general.

2. Non-Abelian Chiral Anomalies

To determine the non-Abelian anomalies in D=2n dimensions,
our strategy is to find an object Gi(A) which consists of only
gauge fields and satisfies the Wess-Zumino condition. 1In form

notation'the condition (II-5) in the integrated form reads

?uéf('@"\)"qu'(uﬂq) :-_C-‘\-((U.,,Vj) A) (II1-21)

where GV = Idevl(x)Xi(x) generates the gauge transformation (III-1)

with v(x) = vi(x)Ai as the gauge function,
G, A) = § Vit GilA) (11122

Here the integration is over our D-dimensional flat space; it can
be thought of as a D-dimensional sphere sD if we consider only
those gauge fields whose field-strengths vanish at infinity suf-

s Tt
ficiently fast.

14) have found

Recall that Wess and Zumino7 (also see Witten
"an effective action functional for D=4, containing both scalar
fields and gauge fields. They expressed it in terms of a 5-dimen-
sional integral. Here we will repeat this trick, but for pure

gauge theories. Let us go to a space one dimension higher, and

consider in it the (D+l)-form mgn+l(A), which can be obtained
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formally from the (D+2)-th Chern character @ 2(A) by (see eg. III-16)

2n+

St (A) = A Wgney (A) (111-23)

(Ot (A= Gt D 1ot £ Ste(A,(AFEA)  amoazn

(Here we are dealing with Str for n+l entries.) In the (D+1l)-space

Q 2(A), being a (D+2)-form, is actually zero, so that eq. (III-23)

2n+
is formal. wgn+l(A) is called the Chern-Simons secondary topo-
logical invariant.

From tne gauge invariance of Q (eq. (III-4)) we know
0 0
gv(d,wzwﬂ) = d.(ngzwﬂ) =0 (II1I-24)

Thus, locally there must exist a certain 2n-form wén(v,A) such that

¥ CO;%.H (A) = 0(,601,:»\,(17)/4) (III-25)

Here the subscript and superscript of w%n(v,A) indicate that it is

a 2n-form and of first order in v. Now we define

ér(‘U’,A) = g fu'"‘-(x\élr.{(x) = gsbw:;"(v)A) (I1I-26)

where'vi(x)xl = v(xX). To prove that the so constructed Gi(A)
automatically satisfies eq. (III-21), we make the wbrking hypo-
thesis that there is no topological obstruction against extending

smoothly the gauge fields from our D-dimensional space, Sp» to a
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S

(D+1)-dimensional ball, BD+1' which has SD as its boundary.T" Thus'
it is meaningful to consider the following functional

WIA]::SB w??wn(A) | (I111-27)

Dt

From eq. (III-25) we have the gauge variation of W[A] as follows:

T =S, S0ha=f, Oiwa)

Here we have used the Stokes theorem (see eq. (A-16)). Thus from:
' 1
Sugﬁ. Win (VU A) = SULSVWIA] (III-29)
N

it is easy to see that eq. (III-21) is satisfied for G(v,A) defined

by eq. (III-26), since [Gu,GV] = é[u,v] acting on the gauge in-
variant functional W[A]. This reflects the main advantage of our
geometric procedure for constructing anomalies; namely, it gives
directly the solution to the Wess-Zumino consistency condition.

For physical applications we need to know the explicit expression
for w%n(v,A) or Gi(A) as determined by eqs. (III-23') and (III-25).
"After some work, we have found the following general formula for

computing w%n(V'A)’
—WL (v, A) =
= () § dt{ Stelv, FO-t - 0m StA AN S

where F, = tdA + t2A2. The proof will be given in Appendix B.

t
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To check their validity, we find, for D=4 or n=2, from eq.

(III-30),
—~y (v, &)= She(v, da,dA)+ = Str(v, A%, dA)
' +2 St (0 A A+ L8t A, A=AV, i)
+2 St (A, VA=AV, AV)
=t v d(AdAt L A} S
It leads to the well-known anomaly in eq. (I-19) for the chiral

SU(N) gauge theory.

For D=6 or n=3 we have

— (I A) = Str(v, (dAP)+ L2 (v, A% (dAM) +2 SELV,dA, (4)
.+ % Stv(Vv, (A")3)+-&—33-S(7T(A,1TA —Av, (dAY)
+<& St (A, VA=AV, dA, A1+ = St A VA-AV, (AT)
= G Ud{ AldA £ (A4 +dAA%)
+L (A A AdAA) A EATT] e
It corresponds to
-q;A)= é‘,uv,ocr)\‘c )va{ Ax( AVBPA‘BAAH %AVApAwyAT
+E VA A A E A TRAT
+E A AN+ R AAATANAT)F
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We note that the non-Abelian chiral anomalies Gi(A) in both
eqs. (I-19) and III-33) are a total divergence like the UA(l)
anomaly. With the explicit representation of w;n(v,A) derived
in eq. (III-30) we can prove this statement in any even dimension.
The details are given in Appendix B. Introducing the symmetrized

product of n matrices

PO M) = o = N (r11-30)

.« 1 Tl In
* (lo,"'.la)
where the sum is taken over all permutations (il,...,in) of
1 .
(1,...,n), we can express mzn(v,A) in a very compact form

— QL (VA) = Mt t)f: dt (1-t) Givd PA Eem)}

(I11-35)

where Ft = tdA + t2A2.

Physically, D=10:dimensions may be of particular interest.
Using egs. (III-16) and (III-35) we obtain the UA(l) and non-

Abelian anomalies for D=10 as follows:
(e (A) =t AldA) % 5 A (dAY+ 4 dA AT +
+ 7 AGATA™dA + £ 45 (day+ L0 AdAR A
+'-$7:AquAdA+—§A7dA*§§:A7} (II1-36;
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=Wy (A) =t v A A(dA)*+ Z2 (A, AT (447)
+EEP (AL AT (dAT) PO, AT )+ 5 AT

(I11-37)

The reader should realize how long the expression in eq. (III-37)
is if written out explicitly without the P notation. Also, to
appreciate how relatively simple the present derivation is,.the
reader may wish to recall the cohplexity of Bardeen's derivation
of the four-dimensional expression (eq. (I-10)).

From eqs. (III-30) or (III-35) it can be seen that the non-
Abelian anomaly is proportional to the symmetric trace with (n+l)
entfies, Str (Ai PRPSU ), in 2n dimensiops, as discuésed in

1 ln+l
Section 1I.
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IV. NORMALIZATION OF ANOMALY

It is clear from the form of the Wess-Zumino consistency
condition (eq. II-5) that this condition alone can determine the
anomaly only up to an overall constant. For the sake of complete-
ness, we will fix the overall normalization here. We consider two
possible ways: by generalizing Fujikawa's method18 to higher dimen-
sions and by looking at a Feynman diagram. The analysis will be

given in Appendix C. We find that the Abelian anomaly is given by

aN-J'F’P'H = Kn 8/(4'"/%:-»\, StY FP“M’;_.FHM-szn

A (1V-1)

i

with

_ N 2N~} N -
Kn-— 1 /2 7T n! (IV-2)

in D=2n dimensional Minkowski space. The normalization of the
Abelian anomaly fixes the normalization of the non-Abelian anomaly.
(Compare egs. (I-9, I-10, I-16 and I-17). The factor of i? is

merely due to our convention of Fuv' (See eq. (A-10) below.)

The normalization Kn possesses physical significance, as is
well-—known.11 Upon integration of eq. (IV-1) over Euclidean 2n-
space one relates the change in chirality AQS = Jde 8“J5+1 to the

integral of the Chern character. Since the Chern characters are nor-

malized in the mathematical literature so as to give integers when
integrated over compact manifolds, Kn is normalized up to a multi-

plicative integer factor by purely mathematical reasons. A complete
determination of Kn using pure mathematics may be found in ref. (30).
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Note that eg. (IV-1l) is in fact the local version of the
Atiyah-Singer index theorem. Therefore we can say that the
. . . 12 ..
Atiyah-Singer index theorem anticipates the connection between

topology and anomaly in the present case.
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APPENDIX A

Differential forms are discussed in a number of standard

32,33 Nevertheless, for the sake of pedagogical clarity

references.
and completeness,'we will give a brief review here. For our pur-
poses, differential forms simply provide an exceedingly compact

notation which saves us the tedious task of writing out indices

explicitly. It is akin to the introduction of the index notation
for vectors and tensors which supplanted the practice, common in
the physics literéture before the turn of the century, of writing

out all vectors and tensors component by component.

A scalar function f(x) is called a 0-form. We define

d,f 3)(‘“’ Axt* (A-1)

In D—dimensional space the index u runs from 1 to D.

Given a vector function ¢u we construct a l-form ¢,

¢f" Axt (A-2)

We define

df = "gi‘: dx’n dx (A-3)

The wedge product is defined so that
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dxt 4 dXY = = dxVp dx™ (B-4)

Thus, d¢ gives the curl of ¢.

In general, given an antisymmetric tensor with p indices

¢u,...,up we can construct a p-form

¢=—. ¢ e Hp (‘i,'_!‘ dXH'/\ dxﬂll\ ""Adxur) (A-5)

Clearly, in D dimensions, we cannot have p-forms with p > D which

do not vanish identically. We define

d-¢= BV¢H1-~~HP (?'?' deA dx#!/\dxﬂLA- . \AdXMP)

The advantage of writing ¢ and d¢ instead of the expressions in

(A-6)

egs. (A-5) and (A-6) should be clear.
In order to simplify the notation, we omit the wedge product
symbol and simply regard dx" as an anti-commuting Grassmann object.
We can multiply a p-form a and a g-form B together in the |

obvious way:

AB = ooty oo P,'%, A dx P A

= (-1 pa (37

The rule for differentiating a product then reads

0(.(0(@) =(dp()f3+(-l)Po( 0{‘3 (A-8)
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In Yang-Mills theory, the potential is a l-form,
A= A,,.. dX‘u' (A-9)

Here Au = -iAaAj and so A is at the same time a form and a matrix.

In arithmetical manipulations, one must take care to keep this
fact in mind.

The gauge field is

F= dA + Az (A-10)

(Note that our definition of Au and Fuv = éiFgVAJ differs by a

factor of (-i) from the one most often used in the physics litera-
ture. This is designed so that equations such as eq. (A-10) do
not contain factors of i. Our Aj matrices are hermitian and for
su(2) AJ = 13/2. cf. eq. (I-1).)

Writing F out long-hand, we have

F"_' (EI‘LAV'QVA,.J'iA,L,Av;) —2L G(X“LO(XV (A-11)

We illustrate the use of forms by deriving Bianchi's identity.

We compute

AF = dA A-AdA | (A-12)

(A F1=AdA—dAA (A-13)
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Adding, we have

DF = dF+(AF]1=0

(A-14)
As another exercise, we compute
dty F = tr(dFF+FdF) =2t dFF

= -2t (AFIF =0 (a-15)

Note that this holds in any dimension. In four dimensions, the
statement is trivial since ter is already a 4-form.

A p-form ¢ may be integrated over a p-dimensional surface M.

1f ¢ = dR, where B is some (p-l)-form, then Stokes theorem reads
in the language of forms

fu? = S

oM denotes the boundary of M.
F = dA.

(A-16)

For example, in electromagnetism,

Integrating over M with M a two-dimensional surface we
find

Y F =G, T Fuy dx¥ax

oo Apdxts = §o A

A form a is said to be closed if

dd =0

(A-16)
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It is said to be exact if

o = OLP | / (A-17)

An exact form is obviously closed. 1Is a closed form exact? Poin-
caré's lemma states that a closed form is always locallz‘exact.
However, it may not be exact globally.

Acco;ding to eq. (A-15), trF2 is closed. Therefore, there

must exist locally a 3-form y so that

tr F":"—' oY (A-18)

Topological quantization always involves a closed form which

is not globally exact. Let g(x) be elements of a simple group G.

1

Consider the l-form v = g “dg. Then tr VN is trivially closed on

a N-dimensional manifold since it is already a N-form. Consider
' N
Q= g ™ v (A-19)
N

where SN denotes the N-dimensional sphere. 1If tr vN is globally

exact, i.e., tr vN==dy with some (N-l)-form'y, then, by Stokes'

theorem,

oSw
since BSN = the boundary of SN = 0. On the other hand, if tr v

is not globally exact, the above reasoning fails and Q may or may

N

not be zero. In many cases, particularly when G = SU(N), Q is
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recognizably just the integral describing the mapping of Sn onto

the group G defined by x + g(x) for x a point on S Thus, when-

NO
ever tr vN is globally exact, the homotopy group nN(G) is trivial.
As an example, G = U(l) we have v = auedx“ which is exact locally
but not globally. Choosing 6 to go from 0 to 2w, v fails to be

exact at 6 = 0 = 271, and so

‘( ﬁdx = 27T (A-21)

This fact leads to the physical phenomenon of flux quantization.

For N=3, Q is just the Skyrme34

charge, up to an overall nor-
malization factor. In particular, n3(SU(3)) = n3(s3) = Z corre-
sponds to the mapping of S3 - S3 and implies the existence of
instantons.

In a recent paper,14 Witten showed that the action of the

nonlinear sigma model contains the term

S 'ty 'vr (A-22)

Mr-

where M° is a S5-dimensional manifold whose boundary IM° is 4-

dimensional spacetime. The fact that tr v5 is not globally exact

shows that the coefficient of this term is topologically quantized.
The preceding makes clear the topological significance of the

Abelian anomaly. According to eqg. (III-11) the Chern characters

0
Tt T = d (W (A-22)
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If the gauge potential A goes to a pure gauge at spatial infinity
A — q-l
— V' = § dF (A-23)
then

dA —> —A*= V> 324

and so according to eq. (III-16)

w:‘n-l —"[(-'l)ﬂ-"n,{ ("L").’/(zn-/)_/]-(;rvzn"

If E2n denotes 2n-dimensional Euclidean space, then by Stokes'

theorem

- Tl —_— 0 Z—n—'
geln -C( t’ - g’aez.n ('O')m.-l eC g\ et -th (A-25)

Thus the integral of trF? over E2n is associated with the homotopy
group n2n_l(G). The case in which n=2 and G = SU(2) corresponds
to the instanton.

In the text, we encounter current divergence. To write this
in form language, we need to introduce the dual * operation. If ¢
is a p-form constructed of a rank-p totally antisymmetric tensor
in D-dimensional space, ¢U1Uz---up’ then *¢ ii the (D_E)-form

D-p+1°°° D.

constructed from the tensor ¢ ¢
Lll...uD_p-..]JD

the * operation refers explicitly to the dimensionality D. (It

Notice
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' requires the space to be equipped with a metric which can be used
to lift the indices.)
Let J be a 1-form. Then the operation d* evaluates the diver-

gence:

AdxJ = d ( YT T Z‘;{T)—’ dx“’n.o{xl“w)

(‘ak :TA) —Bl.[_ EH""H—:D dXM“wolX“’

(A-26)
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APPENDIX B

We will present the proof of eqs. (III-30) and (III-35) in
detail. Before doing this we first give some useful formulas when
we deal with symmetrized trace or product of a number of matrix
forms.

Recall the definitions of the symmetrized trace and product

of n matrices A 'An belonging to the Lie algebra

1rece

St (MM, )\m)——L- 2. 't/r(/\.‘}\“-- ) (B-1)

oG [

P(?\.‘,A\.I"’)\‘n =-l_— 2‘) X\\A‘ ~“A'l"v\ (B-é)

VoG

where the sum is over all permutations (il'iZ""’in) of (1,2,...,n).

Suppose g is an element of the Lie group. Then

Sb*'(%ll%.', %7113"', I ahnﬁ’ﬂ) = ST (A, ) (B-3)
P( ?rhu?", ?Al&-‘»'“; }A’\?" Y= %P, A, AN 3‘—‘ (B-4)

If g is very close to the identity g = 146, where 6 takes values

in the Lie algebra SU(N), then we have

Stf(k;,'“,[e,x;] ,“‘,7\w) = 0 (B-5)
P(A {047, A0 = (6, P a0l (e

Mz vMs

’
\
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Now we suppose Ai = a; ) Ai are matrix forms (ai'being forms of

degree d.;). Then
Ste(Mu -, A) = Q-0 @ Str(, s An) 30
P(A'r"‘r/\“) = a4, An® PN, 3 2A0) (B-8)

If we want tb have an expansion of Str(Al,...,An) or P(Al,...,An)
like eq. (B-1l) or (B-2), we have to introduce an extra sign in

each term arising from the commutative properties of Ai as forms.
In trying to generalize egs. (B-5) and (B-6) to hatrix forms, it
is better to introduce the notation [A,B] for two matrix forms A

and B as follows:
(ABl=48B- (")dAdBBA = 2,@® (M)A} (-9

where A = a; ® Al, B = a, (3] Az and dA’dB are degrees of the form
A (or al) and B (or a2) respectively. When we discuss the Lie
algebraic properties of [A,B], they are very similar to [Al,AZ].
Now let us suppose C) is a d-form, then from egs. (B-5) and (B-6)
we have

2%\ (—l)(d&“*d;-‘)d@ Stf(/\l,.“,[®,/\i1,"', A'n) =0

\ -
a=l

(B-10)

24 @A)
= i@, P(/\\,““, Ay\)l (B-11)
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The extra sign in each term accounts for the exchange of C) with

A

A In particular, if C) is the potential l-form A and

l L I N i-1.
the covariant derivative of the form Ai is defined as

..D/\,‘=0L/\;+£A,/\;]_=_ 0(//\;+A/\;"'(‘l)d“/\;A -~ (B-12)

then we have

d,StY(A\:'“)A“‘) =
=§ (_I)e(a+--.+d4-| s'bf(/\l;°“)]>/|“;“'l/‘“) (B-13)

D P(A\;'“)A‘V\) =

e ~ee -
_ ;—:) (_l)ot-f .+o(. P(A,~~DA; - Aw) (B-14)

1

' Having been equipped with these formulas we turn to consider

the nth Chern character,
St =T F = St T (B-15)

where F = dA + A2

is the field strength 2-form. 1In order to find
a (2n-1)-form Wyn-q (A) such that @, = dw, _,, we use the following
trick: introduce the following one-parameter family of potentials

and strengths, (0<t<1)

At" tA y Ft = d.At’fAt1= tO(A'*' _th'?- (B-16)



-40-

and consider, as in the text,

i _ﬂw(At) %%{ v =3 Ftw}‘
= n $t{ AA+2tAT, F{M} =nStri DA R -“‘}

(B-17)

where DtA = dA + [At,A] is the covariant derivative with respect

g Since the Bianchi identity gives DtFt = 0, we obtain from
eqg. (B-17)

to A

-\
A Pl = 1 A Ste{A, Y 510
upon using eq. (B-13). Integrating from t=0 to t=1 we get

$anlA) = AWz (A)
w:‘V\.ﬂ(A) = ’Y\.g:d,{ StY(A, (td.A+.t1Az)n-l)

(B-19)

Under the gauge transformation (with v O-form valued in the Lie

algebra)

dwA=-Dv= ‘O(U'iA,'U'] , Owl =—[F,1)‘] (B-20)

the nth Chern character is gauge invariant by eq. (B-10):
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B‘Vﬂv\(/ﬂ =7LS{JY‘([‘V, F],F‘“—‘) =0 ‘(B—21)

Therefore from eq. (B-19) it follows that
_ 0 o '
de‘wz -1 (A =d 5—;7 Wyn- (A) = 0 , (B-22)

Poincaré's lemma leads to the conclusion that there exists locally

a (2n-2)-form w%n_z(v,A) such that

0 1
Oy Wam— (A) = A Wy (V, A) (B-23)
To find the expression for wén_z(v,A) we use

3, dA=—(dA I+ (A, dv] e2t)

'0.th. =‘iFt,V]”'t(t")[A,0LV] (B-25)

Then from eq. (II-19)

B Wit (7 A) = N b ftie (3, FO )+t Stela B8 )
_.._'n,g dtf St (dv, Fe -t E-1) 6 A LA, dv3F FOt
-ngodt{S‘(;r([A,VJ,Ft o0 S (A, LFe VI FEI}

(B-26)
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Upon using eq. (B-10) we see that the second integral, namely the

term proportional to v, vanishes. Since according to eq. (B-23)

0
v¥2n-1

eq. (B-26) we can immediately take the d operation outside the

$ is locally exact we argue that in the first integral in

integral and obtain

Wina (VA) =
=-n( dt{ b (U E Ho-)tE-0S6AA A ET)] 7

—’hg'd‘f fr 'U'{ M-H‘M)f(f")[/?,P(A,Em)]}) (B-27")

We can also conclude that the form in the curved bracket in eq.
(B=27') is closed (as the action of d on it gives zero). Exploit-
ing the latter statement, we can give a more compact formula for

w;n 2(v A) as follows: 1in fact, we have

(L=t 2 (™) Pl o

M|

=2 (%) g PLEA™ ()Y

(B-28)

(v §1dt e LA, P (AL EY]
_F oo (""") A, PU, (AT )

=0

n-1

a—,

k=0 (7"'7‘) (n’rh)(‘n*thﬂ)

——
— —

[A P(A, A K2 (A

(B-29)
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By the formula (B-11) and [A,A%] = 0, we have

(A, P(A,[dAY*2 (A =
= 2 (AT A )+ n-R-2)P (A, A ()3 (4%

(B-29"'")

Using

(W)= 5550

(B-30)

the sum of the (k+l)-th term in eq. (B-28) and the k-th term in

eq. (B-29) gives us

(wfk)(mh D ( H sul -2) PA™ (4) kﬁ)

~GnkD P(A, dA, (AR, (d4)"*3)] =

_ m-k-2 (
T (ntR kD) | Ry

) 0([7( tx/%‘nrk~3 '42)k+{)

(B-31)

Therefore, the sum of egs. (B-28) and (B-29) can be written as
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S ey wekel ke k
2 (75 st 4 A

M-

= (n~1) E::—:o (%.1

nR-L , ,\R
k) (mtk)(n +k-—|)dP(A (dA) (A))

- N2

() d G dt (1-t) P(AF™)

{

(B-32)

or

Wi @A) =-n (n—:)j:dt ("-t)'ty‘{ vdP(A, th-z)} (B-33)
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APPENDIX C

1. PFujikawa's Path Integral Method

We assume the reader is familiar with Fujikawa's derivation of

18

chiral anomaly. His analysis may be generalized immediately to

D = 2n dimensional space. Fujikawa observed that under the trans-

formation
1 609 Y3
o) — Vo0 = ey
f 1600 % -
Y — ¥ = e8P e
while the Dirac Lagrangian transforms (for infinitesimal 6) as

SC/=SC~3#9"T’X#3§+¢'\L"ZM’{' 9";)5&:"7& (C-2)

There is also a Jacobian factor J for the transformation of the

path-intesesl messure
T=exp{-24 (% 00 ZE 0 % 4.0] e

joxe the basic functions 3, () satisty
DY (uth) B = A

fd)X ?S:()‘) ¢m(x) = S'n'm (C-5)
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The analysis is in compactified Euclidean space. Regularizing the
large eigenvalues by the factor exp(-ki/Mz) and changing to plane
wave basis we evaluate the sum in the exponent in eq. (C-3) as

follows:

'A(x) L 6,100 Yo P = 1 ml ¢+0<)%»; O /M)%(X)
, Akx -@/M)‘ - Akx
= I;va -T}- 'E;;;;‘X;*’fz e €
—- d]’k 2 Yy
Moo § () QP{W 'g‘tAf‘ +L 2 ['/‘“’)}

h
= [im Tr Y‘Ml{ ZY v '”7“"’ )p (P}L)’
M=>00

, gf_k_ bk

o)’

i
3’
-1

N

L Moy T _
(47T) ™! 2 G P P iy (€9

0

Note that in Euclidean space we have Yp+1 = (-i)nYle"'YD_lYD

(D=2n). The anomalous Ward identifies can be represented by

EWXAH;Q]
D6 6x)=0

= 0 (C-7)

where W[Au,ol is the chirally rotated W. Combining egs. (C-1),

(C-6) and (C-7) we obtain the anomalous divergence for J(D+l)'
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2. Feynman Diagrammatic Method

We evaluate the Abelian anomaly in a U(l) gauge theory. 1In

35

our approach (which is of course not new ~) we insist that we deal

at all times with well-defined finite quantities. We avdid
manipulating potentially ill-defined (either in the ultra-violet
or in the infra-red) Feynman integrals and talking of surface
terms which appear upon subtracting one integral from another.
Furthermore, the arithmetic turns out to be rather simple in this
approach and we can evaluate the anomaly at once for D = 2n
dimensional space. (Here, as elsewhere in the paper, we use the

convention of Bjorken-Drell. 1In particular ¢ = +1.)

0l...2n

Denote by T (kl'kZ""’kn) the Green's function

HiM2.«eHpA

corresponding to <0|T V - i 10
o g | pl(xl) Vun(xn)AA(O)[O (where vu and AU

denote the vector and axial current U nd ¥ " -
VYuw and VY, Yp4 ¥ respec

tively). Let the (incoming) momentum "carried" by Vu-(xi) be
i

denoted by ki' The anomalous Ward identity reads

( % ki)/\ T/"i”‘ﬁ‘n)\z Z’CM P/J,~-~/un+ C-n | lel T ‘27\ Hnl

(C-8)
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We find it useful to introduce the notation

b P"‘"Pﬂl = ity opim 7 A (c-9)

’ : Vv, Via .
kl“’!“ : hm#’\l = 81/! p(’-u‘_’,(f..-l/nyn k, Peen h'n A (C-10)

and so forth. 1In our approach we restore the fermion mass m.

Thus, P is the Fourier transform <0|T Vi, (%) ...V

x )P[0>
ulo.oun n( n) l

u
where P is the pseudoscalar operator $YD+iw. The term with co-
efficient <, in eq. (C-8) indicates the presence of the Abelian
chiral anomaly. The form of this term can be determined by general
considerations.3®

Our strategy involves expanding eq. (C-8) in powers of the
external momenta kj. Notiné that the anomaly is 0(k") we need
only expand eq. (C-8) to 0(k") in order to determine c_

We write TU1°"UnA as a sum of Lorentz covariants. There are
two possible types of covariants:

lH'“.M)\ h“l ha-\.‘“ho-n-!

= KHV“/‘“\)\ (C-11)

and

l“!“'“)‘-!fih\"'lun)\ k.k“\ ha’f‘j - L‘:“""“"‘)‘ (C-12)

(There are many distinct invariants corresponding to each type, of

course. In eg. (C-11l) the (n-1l) distinct momenta kaj are taken
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from the set of n external momenta kl,...,kn.) We denote generi—'
cally the Lorentz scalar functions associated with Ku Loy as A
1 e oo n
. v
. = = <+ .
and with Lul...unk as B (Thus, for D=2, Tux Aeuk Beuvk kA )

By power counting, the functions B are perfectly convergent
and finite by two powers of momentum. On the other hand, the
functions A appear to be logarithmically divergent. However,

conservation of vector current requires that
) =
R T!“""Mj"'{‘(“)\ Y (C-13)

This tells us that any of the A functions are determined in terms

of the B functions. Thus, T is perfectly finite.

]Jl...un)\
The nice feature of this approach is that we can now forget

about T Consider expanding eg. (C-8) in powers of k. We

Hi1...HUpA®

can safely Taylor expand TUl-o-UnA and PU1---un in powers of k.

Since the fermion mass m # 0 there is no potential infrared dif-
ficulty. The preceding analysis indicates that TU1---Un1 has a
Taylor expansion with the first term of O(kn+l). Thus the left-
hand side of eqg. (C-8) is of O(kn+2) and is irrelevant for deter-
mining the coefficient Che

This entire discussion is to show that to calculate the
anomaly we need only expand the perfectly convergent and finite
guantity PU1---un to O(kn), which is in fact the order of its

leading term. The quantity P is represented by the Feynman

integral
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Pl = 5 )m( parme [ gy L

+ (Mh=1) other Torms (»/ Fe/vwi:»tfms

-

If we define pj S i kir we have the denominator
i=1

D= () I {rpyem]
and the numerator

Nigiepin = T (Bt M) V= (R Pt MWt (£490) %ot

Here

(4p) = Yy (L2

In our convention,

?(]»l - "'f{.wHYOY"“b/z‘n-' — X‘D+)+

T
}(1,_,,=+1

(C-14)

(C-15)

(C-16)

(C-17)

(C-18)

By a simple chirality argument N has to be proportional to m.

Taking a factor of m out, performing the trace, we find that N

collapses to
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Nf'(l"’,“m,= 2%(-'{3“' ’Pu(uh‘ “P,H,' m

s Nt

=2™ (=A) lh.}in“‘hn{inl'm’ | (C-19)

Thus N can be taken out of the integral and the resulting integral

may be interpreted as a loop graph with a boson running around it.
2 n+l

To the required order we can replace D by (&% - m2) with
n . Nt 4
"2 A=) |

(L=m+A€) n!lm (C-20)

We obtain
nti M
n= - n-1
2" n! 257 " n!

(C-21)

The coefficient Kn is defined so that the divergence equation may

be written as

el N b - = Man~ Man
L =2m1kzg,*,'4«{r!<n Eptyerepiyy, F - Flomaflen

We emphasize the remarkable arithmetical brevity of this
calculation. In particular, we feel that it is rather less

tedious than the calculation in refs. 22 and 24.
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This calculation is closely related to a calculation using
Pauli-vVillars regularization. Suppose we regularize the one-loop

diagram representing Tu by a Pauli-Villars field with mass

1...unx

M. Then the regularized T satisfies the "normal" Ward

Hioe..HpA
identity (compare with eq. (C-8))

= 1 \\ : )
(2‘ k«) T{“‘t“‘ﬂn)\ = 24Mm Pf"""/"n-z't‘M P:“t’"l“’\(M)

A=l (C-23)

As M » =, the second term on the right-hand side of eq. (C-23)
reproduces the anomaly. The calculation is equivalent to that

leading to eqg. (C-22) since upon expanding, we have

M Pf"""l“n(M) ~ 1\4‘1{# l kl“'-"b"‘y"‘

/
+W0(k%ﬂ)+ ‘}’ (C-24)

We personally prefer the Pauli-Villars approach to chiral
anomaly since the method particularly emphasizes the physical
origin of the anomaly.

Our calculation was performed in an Abelian gauge theory. 1In
a non-Abelian gauge theory we simply replace in eq. (C-22) Fuv >
-ir.F3
J By

For completeness we mention that other methods for calculating

and take the symmetrized trace Str.

anomalies, such as Schwinger's split point technique3 or Crewther's
short distance operator product expansion approach,8 should all be

generalizable to higher dimensional spaces.
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FOOTNOTES

+We thank J. Schwarz for an instructive conversation

on superstrings and l10-dimensional supersymmetric Yang-Mills
theories.

++Take the standard instanton discussion as an'example. In

the physics literature, one notes that the finiteness of the
Euclidean action requires that Au goes to a pure gauge g—l(x)aug(x)
and thus defines a mapping of the sphere "at infinity" S3 = aE4
into the group G. In the mathematical literature, S3 is taken to
be a large but finite sphere. Tﬁe portion of E4 inside this

~ sphere is identified as a disk D, = the northern hemisphere of S,
with 38

= S, = the equator. The portion of E, outside the sphere

4 3
S3 is identified with the southern hemisphere of S4 = 54. Thus,
E, is compactified to Sy In other words, the mathematician iden-
tifies what the physicist loosely refers to as "infinity" as the

southern hemisphere 54.

" .?. .'.
"""We know that this hypothesis is true in many cases, e.g.,31

G = SU(N) with N > D/2 as nD(SU(N)) = 0. 1In the cases when it is
'not true, we can directly check the consistency condition in

differential form, eq. (II-5). However, the integrated form has
the advantage of avoiding é§-functions which may give rise to some

subtleties while checking it.
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