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ABSTRACT 

The local-composition concept is examined critically. When a general 
local-composition model is subjected to different constraints, we obtain 
different forms, corresponding to those presented earlier by Wilson3 or 
Renon4 or Abrams5 or Guggenheim.l,2 

For a simple mixture, a physically meaningful constraint gives a one
parameter model whose properties are obtained from the Leonard-Jones 
potential. For this model, the calculated excess Gibbs energy and calculated 
local compositions are in good agreement with results from Monte Carlo data 
and with results from perturbation theory, recently reported by Nakanishi et 
al. 8,9 

These studies indicate that local-composition models, when developed 
with care, can have physical significance as well as engineering utility. 

INTRODUCTION 

The local-composition concept can be traced bacK to the quasi-chemical 
theory of liquid mixtures developed by Guggenheiml,2 in 1935. Thirty years 
later, Wilson,3 Renon,4 Abrams5 and others ~sed Guggenheim's ideas toward 
development of various practical·local-composition models for VLE and LLE 
calculations at moderate pressures. Recently, Whiting6 and Mollerup7 used 
the local-composition concept to develop density-dependent mixing rules in 
the equation of state for mixtures; these rules suggest possible advantages 
for high-pressure VLE calculations. 

To obtain a more fundamental understanding of local· compositions in 
fluid mixtures, Nakanishi and co-workers8,9 published a series of papers 
applying molecular dynamics and Monte Carlo calculations to mixtures of 
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Lennard-Janes molecules. Their calculations show the physical significance 
of local compositions which are different from the overall mole fractions in 
nonideal mixtures. Calculated excess Helmholtz energies for several systems 
are in good agreement with results from pertur~batiort theory. Nakanishi's 
results serve as a useful reference to test any local-composition model. 

Several authors have compared local-composition-model predictions with 
results from molecular dynamics and Monte Carlo calculations. Different 
conclusions have been drawn from these comparisons; FischerlO found that 
UNIQUAC predictions are worse than those from Guggenheim's theory and concluded 
that the physical basis of all equations based on local-composition concept 
seem to be doubtful. However, Lee, Chung, Starling,ll considering the energy 
parameters as the potential of mean force, obtained good results using 
Wilson's equation. 

It is useful to compare molecular dynamics and Monte Carlo results with 
predictions from local-composition models because such comparison can offer 
physical understanding and possibly valuable suggestions toward improvement 
of the model. However, care must be taken in these comparisons. 

In this work, we discuss those basic requirements which a local
composition model must have to compare favorably with results from molecular 
dynamics and from Monte Carlo calculations. 

DERIVATION OF A GENERAL LOCAL-COMPOSITION MODEL 

To derive a local-composition model for the Gibbs energy of a real fluid 
mixture! we use and extend the work of Pierottil2,13 based on scaled-particle 
theory. 4 

We form a real fluid mixture as indicated in Fig. 1. We start with k 
components in the standard state (1 bar., ideal gas) at temperature T (a). 
The pure co~ponents are-mixed and compressed to volume Vm (occupied by the 
real mixture) to form an ideal gas mixture (b) of composition xi • The 
corresponding Gibbs energy change is 

(1) 

In the next step, each molecule (a point) is inflated·into a hard sphere of 
diameter ai to form a hard-sphere mixture (c). For this step, AG is 
given by 

=-
k 
r 

i=l 
x.W . 

1 C1 (2) 

.. 
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where Wei is the work of creating 1 mole of impenetrable cavities of 
component i in the hard-sphere mixture. Finally, (d), the hard spheres are 
charged an appropriate potential with ~G given by 

=- (3) 

where Wri is the work of charging the hard spheres to form 1 mole of real 
mixture. The total change in Gibbs energy is then given by 

~G 
m = l1G(a)-+{d) = 

For an ideal solution, the corresponding Gibbs energy change is 

k 
0 

E x.RTln .(f .xi) 
i=l l. l. 

where fi is the fugacity of pure component i at the temperature and 
pressure of the real mixture. 

From _Eqs. "(4) and (5), the excess Gibbs energy is: 

GE = l1G - l1G id = m m m, 

-
For pure component i , it follows from Eq. (6) that 

(4) 

(5) 

(6) 

(7) 

where for pure component i at the temperature and pressure of the mixture, 
Wei is the work of creating cavities and Wii is the work of charging 
them. 

From Eqs. (6) and (7), 

k 
E x.(-W .+W

0
.-W

1
.+W

0
Ii+RTlnV 

1
) - RTlnV 

i=l l. Cl. Cl. . l. m m (8) 
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~-To evaluate Wei , we use the results of the scaled-particle theory for 
mixtures developed by Lebowitz et al.l5: 

where 

1 k xiN n 
tn = - n l: -V 0 i 6 · i=l m 

18t
2 (a 2 · } . 2 ) ·...!) .. _ !_ ...!_ p(Oi)3 ( 9) 

2 2· 3 kT 2 
(l-t3) . 

(10) 

and N is Avogadro's number. 

Due to the different types of m~lecular interactions, the charging 
process is accompanied by changes in local composition in the surroundings of 
the molecule being charged. The work of charging hard spheres can be 
expressed by 

-.6G 
I 

(11) 

For a binary mixture, and assuming pairwise additivity, .6UI is given 
byl7 

where gij(r) 
energy of"the 

is the radial distribution function, ~ij 

i-j pair, and p is the numper density. 
is the interaction 

Since little is known about gij . in a real mixture, we use an approximate 
model based on the assumption of short-range order and long-range randomness.l6 
The environment surrounding molecule i is approximated by a first coordination 
shell with a local composition xii • The radius r of the shell is 
calculated, e.g., from a face-centered lattice. In the region beyond the 
first coordination shell, molecules are randomly distributed as indicated 
in Fig. 2; these molecules beyond the first shell, also contribute to the 

• 
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· totai.energy of the system. Fig. 3 compares our approximate radial distribution 
·function, g(r) , and potential energy, &(r) , with the corresponding 
real functions. 

With these assumptions, Eq. (12) can be rewritten 

(13) 

(14) 

1 ·2 2 ],00 2 
~ui,LR = 2 N t xi t ._ pj&ji(r)4nr dr 

i=l j.=l 2 r 

(15) 

where subscripts "SR" and "LR" stand for short-range and long-range 
respectively, and z1 and z2 are the coordination numbers. The radius of 
the first coordination shell, r , is estimated from a relation corresponding 
to a face-centered lattice: 

r = (V /2/N)l/) 
m 

The lower limit of integration in Eq~ (15) is l2r, the distance of the 
second coordination shell. 

(16) 

As a result of the charging process, there are composition changes in 
the first coordination shell. The resulting change in entropy is 

(17) 

For a stable configuration, the composition changes during the constant 
volume charging process must satisfy the minimum Helmholtz energy criterion, 

d(~) = 0 (18) 



·We now show that the relation between local composition and bulk 
. composition depend on what constraints are applied to Eq. (18). 

Case 1: 
- .__.t.. 

If we adopt a one-fluid model for a real mixture, the following 
constraints21,22 must be satisfied: · 

XII + xzl a Xl2 + X22 - 1 

6 

(19) 

(20) 

Eq. (19) is a consequence of normalization. Eq. (20) implies that the number 
of 1-2 pairs calculated for component 1 must be the same as those 
calculated for component 2 • With these constraints, there is only one 
independent variable. Equation (18) can be rewritten 

Substituting Eqs. (11, 13, 14, 15, 17) with £21(r) = £12(r) into 
Eq. (21), we obtain 

where 

(21) 

(22) 

(23) 

Eq. (22) with z1 = zt = z is the result obtained from Guggenheim's 
quasichemical theory-. 2 This form of local composition has been recently 
extended to the local-surface area fraction by Panayietou and Vera.l8,19 
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Case· .2: 

If we adopt a hypothetical two-liquid model 1 we need to keep only 
Eq. (19). In this case, as discussed by Maurer2~ and by Kemeny and 
Rasmussen,20 the two hypothetical fluids 1 and- 2 are independent. 
There are two independent variables, x21 and· x12 which are not 
related through Eq. (20). ' 

Eq. (18) can then be rewritten, 

7 

(24) 

(25) 

Substitution of Eqs. (11, 13, i4, 15, 17) into the last two equations gives 

(26) 

(27 

These equations are the local-composition expressions developed by Wilson,3 
Renon4 and Abrams,5 although with some modifications. 

This form of local composition has been questioned by Flemr21 and 
McDermott and Ashton,22 because they do not satisfy to Eq. (20). 

As discussed here, the local~composition expressions are density
dependent, since radius r in £(f') is closely related to the volume. 
The thermodynamic consistency of our basic ·assumptions is discussed in the 
Appendix • 

A Local-composition Model for Lennard-Jones Mixture 

To compare predictions from case 1 and case 2 with Nakanishi's 
calculations for Lennard-Janes mixtures, we use: 

(28) 
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o;. - (),4= <T.u, = 
0 

3.4-os A (29) 

. 1/~ 

( €11 t.z~ > I k ·= uq. e K (30) 

C= fl~ /€,, D= c.z~ /€-,, 
(31) 

' . -~- . 

Using for £12 , 

€,7.. =-~, ez~ ll ( 1- k.z) ·- (32) 

we obtain 

kz = l- C//D (33) 

Table 1 shows various combinations of C and D used in our calculations. 
The nomenclature, the value of pa3 (0.75) and the temperature (120 K) , 
are the same as those used by Nakanishi et al. 

In all calculations z was arbitrarily set equal to 10 , and in case 
1 we adopt Guggenheim's approximation, i.e., z1 = z 2 = z • Figures 4 and 5 
compare molar excess Gibbs energies for mixtures A-2 , LB-2 , S-2 , LB-3 , 
LB-4 (as'defined in Table 1) calculated for case 1 and for case 2 with 
Nakanishi's results. Figure 6 shows the local-composition values for Lennard
Janes mixtures for mixture D = 2 , at equimolar concentration, as a function 
of parameter C , -which is a measure of the strength of unlike interaction. 

These figures show that case 2 gives poor prediction for 
local composition. This is a consequence of the pseudonature 

A 

E Gm and 
of local 

compositions of case 2, since it is a two fluid model. Its energy and size 
parameters are not necessarily the same as the true Lennard-Janes parameters. 

Predictions from case 1 with Guggen~m's approximation are closer to 
the machine data but are still unsatisfactory. 

However, the results of Fig. 6 showing that "experimental" local 
composition values lie between results of case 1 (with Guggenheim's 
approximation) and case 2, lead us to introduce an empirical correction 
to our model. 

,. 

.. 
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If we modify the constraints of case 2, namely that its local-composition 
expressions must satisfy Eq. (20), i.e., z1x1x21 • z1x2x12 , (as in case 1), 
coordination numbers z1 and z2 must be given by 

z,- z [x,expc-c,/kT>+x-~exp(-E.a,/kT)J (34) 

Z.t = z f :x, expc-t,.z. /kT)-rx.z. expc-E-«-/kTJ] 
(35) 

where z is the coordination number before charging. 

Now we suggest the introduction of an empirical factor a which lies 
somewhere between zero and unity: 

Z, = z [X, expC-d.E, /kT) -r X:a. exp (- ~c.:.e /kT) J " (36) 

When a = 0 and z1 = z2 = z , we obtain case 1 with Guggenheim's 
approximation. When a • 1 , we have local compositions, just like in 
case 2 although the physical pict~re is as in case 1 because Eq. (20) is 
still valid. Fig. -7 shows the effect of a on local composition. 
Figure 8 shows the marked influence of parameter a on excess Gibbs energy 
for the LB-2 mixture~ In Eqs. (36) and (37) z was not set equal to 10 
(as is u;ually assumed for liquids) but instead we considered z to be 
slightly dependent on a , according to 

z = lOexp(-a) (38) 

We found that when a= 0.05, Nakanishi's Monte Carlo.data can be fitted 
well, as shown in Figs. 4 and 5. 

Table 2 compares the excess Gibbs energy (with a = 0.1 and a = 0.05) 
for all ten equimolar mixtures with perturbation theory and with Monte Carlo 
predictions. When a =.0.1 , the predictions of the proposed model are almost 
coincident with those of perturbation theory. 
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·Figures 6 and 7 show that when a is in the range between 0.05 and 
0.1 , the local-composition predictions are close to Monte Carlo data. 
However, we must point out that the local composition defined by Nakanishi is 
not exactly the same as that used here. In Nakanishi's work, local 
composition calculations are truncated after r •-1.35a • In our model, 
contributions of all molecules are added to those from the first coordination 
shell. 

Fig. 9 shows the temperature dependence of local composition for the 
LB-2 mixture •. Again, the trend is close to that from Monte Carlo results. 

Conclusion 

We conclude that the predictions of the proposed model for Lennard-Jones 
fluids are in good agreement with the available Monte Carlo and perturbation 
theory data. Our model has a universal constant, a and one adjustable 
parameter, C or k12 • The wide range of mdxtures tested ( £22/£11 
from 2 to 4 , k12 from 0.293 to -0.414) indicate that this model 
gives a good deecription of both macroscopic thermodynamic properties, such 
as excess Gibbs energy, and mdcroscopic structure, as expressed by local 
compositions for Lennard-Jones mixtures. 

It is likely that for systems exhibiting ~olecular interaction~ other 
than those of the Lennard-Jones type, the proposed model is not adequate, but 
may serve as a first basis for the construction of a more general model. 

This work was supported by the U~S~ Department of Energy under Contract 
Number DE-AC03-76SF00098. 
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Appendix 

Since AUt and AS1 in the derivation presented are defined 
independently, the thermodynamic consistency can be put in doubt, e.g., 
whether the GibbsHelmholtz equation is satisfied. 

A 
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Let us take case 1 for example. Substitution of Eqs. (11, 13, 14, 15, 
17) into the Gibbs-Helmholtz equation, 

gives 

.&u = o(.dAr /T) 
z. o( ' IT) 

L1U1 c.aJ, = LlU.r -rfN[x,z, (6..-E,. > -t-x.zz.= (E,~-e:.~ > x,z,/x~z.z.- 1\Ta 
, (A-2) 

(x.z, (1,. XX :a. -t-ln xx. +-I ) + x~zz ( ln x')(,- I -in xx~ + 1) 'X,Z,/x:a.z. )](~X"..:.t ) 
~· u •~ ~ o 1/T 

Fr~m Eqs. (21) we obtain 

( aL1Ax) The bracketed term in Eq. (A-2) is precisely oX • 
Conseque11tly, ~~ T.Y.x, 

L]u 1 = .LlUz I,C4Je 

(A-3) 

(A-4) 

However, we must point out that this is true only if the energy and 
size parameters of the energy function £(r) and.the ~oordination numbers 
z1 and z2 are temperature independen~ o.r only slightly temperature dependent. 
Should these parameters be temperature dependent, this.model has to be 
considered as a Gibbs energy model, not an internal energy and entropy model. 
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Formation of a real mixture 
Short-range order and long-range -randomness in a real mixture 
Approximate and real radial distribution function and potential 
energy function 
Comparison of excess Gibbs energies for mixtures A-2, LB-2 and 
S-2 at T = l20K and pa3 = 0.75 
Comparison of excess Gibbs energies for mixtures LB-3 and 
LB-4 at T = 120K arid pa3 • 0.75 
Comparison of local composition ·.(x ;.. o.-5) of Lennard-Janes mixtures 
with · D=2 
Variation. of local composition with a 
Excess Gibbs energy of LB-2 mixtures for a a 0 , 0.1 and 1.0 
Temperature dependence of local composition for LB-2 mixture at 
pa3 = 0.75 
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Table 1 

Types of Mixtures and Their. Parameters 

Mixture D c kl2 

A-2 2 1 0.293 
0.85LB-2 2 .. o.s5fi 0.15 
0.9LB-2 2 . 0.912 0.1 
0.95LB-2 2 0.45/f o.os 
LB-2 2 12 0 
1.2LB-2 2 1.212 -0.2 
S-2 2 2 -0.414 
LB-3 3 13 0 
0.9LB-4 4 1.a· 0.1 
LB-4 4 2 0 

-
Table 2 

Comparison of Excess Gibbs Energy Calculated from the 
Proposed Model with those from Monte Carlo 

(MC) and Perturbation Theory (PT) at 
120K, pa3 = 0.75 and x = 0.5 

This work This work 
cE /'~J ·'fnd' 1 MC PT a = 0.05 a =0.1 
m 

A-2 0.894 0.925 0.897 0.928 
0.85LB-2 - 0.568 0.552 0.576 
0.9LB-2 - 0.441 0.427 0.448 
0.95LB-2 - 0.314 0.299 0.317 
LB-2 0.174 0.187 0.171 0.186 
1.2LB-2 - -0.328 -0.369 -0.369 
S-2 -0.944 -0.884 -0.988 -1.007 
LB-3 0.438 0.476 0.432 0.474 
0.9LB-4 - 1.023 0.937 1.019 
LB-4 0.767 0.769 0.694 0.768 
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