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ABSTRACT 

The dimer problem is solved exactly for a hexagonal lattice with 

general hexagonal boundary using a known generating function from the 

theory of partitions. It is shown that the leading term in the entropy 

depends on the boundary. 

* This work was supported by, the Director, Office or Energy Research, Office of High 
Energy and Nuclear Physics, Division of High Energy Physics of the U. S. Department 
or Energy under Contract DE-AC03-76SF00098. 

2 

The statistical mechanics of dimers adsorbed on a crystal surface 

has been the subject of much theoretical work but has thus far defied 

solution except for the exceptional case ofmaximum dimer density. For 

the square lattice, Fisher and Temperley1 and independently Kasteleyn2 

obtained the entropy per dimer, 

2 1 1 1 
-(1- - + -- - + .. ·) 
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using techniques involving the Pfaffian. In this note, the pure dimer 

problem on the hexagonal lattice will be shown to be equivalent to enumerat­

ing the "plane partitions" 3 for which a solution is already known. 

Figure 1 shows a typical dimer configuration. The dimers are 

placed along the edges of the lattice and are represented by double bonds. 

Since the maximum dimer density corresponds to each site being the 

endpoint of exactly one double bond, the resulting configurations are 

equivalent to the possible Kekule structures of carbon-carbon bonds in 

graphite. 

Consider now a description in terms of the dual triangular lat­

tice. The hexagonal lattice sites are mapped into the centers of triangles; 

the double bonds now joining adjacent triangles in the triangular lat­

tice. Since every triangle is joined to exactly one adjacent triangle, the 

dimer configuration is equivalent to a tiling of the triangular lattice with 

"triangular dominoes", or rhombi (see Fig. 2). 

The tiling description will now be mapped into a three-dimensional 

structure. The three orientations of rhombi can be generated by projecting 

fac~s of a cube into a plane perpendicular to the cube's main diagonal. 

Figure 3 depicts a collection of unit cubes arranged in one octant of a three­

dimensional coordinate system (portions of the planes x = 0, y = 0 and 

z = 0 are shown as well). By projecting only the "non-hidden" surfaces of 



Fig. 3 into the (111) plane, we produce the tiling pattern of Fig.2. The 

arrangement of unit cubes at integer points of the coordinate system 

follows uniquely from the tiling pattern. We proceed by building up 

layers of cubes. The dashed line from A to A' in Fig.2 instructs us 

how to build up the layer for 0 < y < 1 . It consists of stacks of 

3, 2 and 1 cubes in the z-direction as we proceed in the positive x­

direction. The dashed line AA' is found by connecting opposite sides of the 

rhombi. Similarily, the layer 1 < y < 2 is generated by following line 

BB', etc.. It is easy to see that the stacks of cubes always have non­

increasing height as we proceed in the positive x-direction. If instead 

we had analyzed the configuration in terms of layers of constant x (by 

proceeding from C to C', etc.) we would have found that the heights of 

the stacks of cubes are also non-increasing in the positive y-direction. 

Figure 4 shows the heights of the stacks of cubes in the x-y plane. We 

have just shown that dimer configurations of the original hexagonal lat­

tice correspond uniquely to the assignment of integers 0, 1, 2 or 3 to a 

3 x 4 table such that both rows and columns form non-increasing se­

quences. 

The general problem described above, of counting the number of 

sets of k X l integers { Zij} satisfying, 

O~Zij~m 

Zij~Zi+1j 

Zij~ Zij+1 

is the problem of plane partitions treated extensively by MacMahon3 . 

From the three-dimensional representation of Fig.3 it is clear that the 

counting of configurations is completely symmetric with res-pect to per­

muting k, l and m. In our case, k, l and m measure the sides of the 

3 
4 

hexagon shown in Fig.2. Moreover, the number of dimers belonging to 

the three different orientations are simply k ·I, l · m and m · k. MacMahon 

discovered the generating function for plane partitions: 

kim 
Gktm(x) = I: PNXN 

N=O 

_ Fk+t+m(x)Fk(x)F,(x)Fm(x) 

- Fk+t(x)Ft+m(X)Fm+k(X) 

Fn(x) = (1- x)n-1(1- x2)n-2. ··(I- xn-1) 

Here PN is the number of configurations subject to the constraint, 

For example, 

2: Zij = N 
1<i<k 
15/~1 

G222(x) = 1 + x + 3x2 + 3x3 + 4x4 + 3x5 + 3x6 + x1 + x8 

G222(l) = 20 

We will evaluate Gktm for x = 1 when k, land m are all large. 

Setting x = e-t we have, 

n-1 

log Fn = I: (n- p) log( I- e-Pt) 
p=1 

In the limit t-+0 for n large but fixed, 

1 1nt 
logFn,....., 2 (nt- u)log(l- cu)du 

t 0 

1 
,.....,-n2 log nt 

2 

t 
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Substituting into the expression for Gktm we find, 

Sktm = logGktm(1) 

1 ,...., 2n2 [ x2 log x + y2 log y + z2 log z 

-(1- xflog(1- x) _,. (1- y)21og(1- y)- (1- z)2 log(1- z)] 

n = k+l+m, 
( 

k X=-, 
n 

I 
y=n' 

m 
z=­

n 

If a bulk limit of the entropy had existed we would have obtained a 

constant multiple of kl + lm + mk. 

Unlike the square lattice problem (with similar boundary condi­

tions) here the bqundary determines the orientational distribution of the 

dimers. However, once we consider the general monomer-dimer system 

with non-zero monomer density p, this constraint no longer applies. Thus, 

whereas a bulk limit of the entropy does not exist for the case p = 0, such 

a limit may exist for the case p-+0. 
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