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TRANSITION OF A COHERENT CLASSICAL WAVE TO PHASE INCOHERENCE 

ABSTRACT 

Allan N. Kaufman, Steven W. McDonald, and 
El1ezer Rosengaus 

Lawrence Berkeley Laboratory and Physics Department, 
Un1vers1ty of California, Berkeley, California 94720 

A coherent wave may be characterized by a single-valued 
phase functton. As the wave propagates, its rays twist and 
separate, causing 1ts Lagrangian manifold~(~) to develop 
pleats. Thereby the phase becomes multivalued, and the wave may 
be termed incoherent. This process is analyzed by studying the 
local spectral density, which changes fr·om a line spectrum to a 
continuous spectrum. 

The concept of chaos can be applied to classical waves as 
well as to the quantum solutions of the Schrod1nger equation. 
In this paper, the term 11 chaos" will refer to the degree of 
spatial incoherence of the phase of a linear oscillation of a 
nonunifom, but nonrandom, classical medium. 
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The motivation for our study arose in the problem of the 
controlled heating of magnetically confined plasma by 
electromagnetic radiation. Although the radiation 1nc1dent on 
the plasma 1s typically coherent (from an antenna structure or a 
wave guide). 1n the course of propagation through the nonuniform 
plasma the wave phase may become mult1valued, as we show below. 
The resulting incoherence has important consequences for the 
deposition of the radiant energy. i.e •• the heating of the 
plasmd. A coherent wave typically traps particles, while an 
incoherent wave causes diffusion. Nonlinear effects (usually 
undesirable) have a h1gher threshold for incoherent waves. 

The ideas presented here can of course be applied to other 
classical media. and (with reinterpretation) to the quantum 
problem. To a large extent these concepts have been developed 
previously by M. Berry and co-workers [1]. Our contribution to 
the study was an outgrowth of the thesis research of s. W. 
McDonald [2], where several alternative descriptions were 
explored and developed~ 

In this presentation, we shall consider the field as a 
scalar -(x) satisfying a linear homogeneous integral equation: 

J d4 X I D (X I X I ) ~ (X I ) :Ia 0 ( 1) 

This is a simplification of the more correct description [2], 
wherein the kernel D may depend implicitly on fl. and where (1) 

has a (small) inhomogeneous term. representing sources of the 

field. Further. the scalar ~(x) should be replaced by the 
vector electric field, while the kernel becomes a tensor [2]. 

In (1). x. repres-ents position in space-time, whileD is 
(essentially) the two-point 11nedr response function for the 
fteld. whtch is obtained from the underlying dynamics of the 
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system. The description of the latter may be Ham1lton1an (e.g., 
Vlasov or Kl1montov1ch 1n the plasma case) or diss1pat1ve (e.g. 
a Fokker-Planck kinetic equat~on for the part1cle 
distribution). For present purposes. it is considered known. 
Because of causality. D h not symmetric in 1ts arguments (~,t), 

(~'. t •). However. we may often neglect the anthy11111etric part 
to lowest order, reconsidering it later (not her~) as a 
perturbation. 

Thus, if we replace D by its symmetric part (from this point 
on). the integral equation (1) for ~(~) is equivalent to the 
variational principle 6S(~) ~ o. where 

S(;) a }d4x }d4x• D(x,x•);(x')~(~). (2) 

It is convenient to introduce the two-point correlation for the 
field 

-
2 (x',x) "'-(x');(x); (3) 

an averaging may be introduced when needed. Thus the action S 
attains the form of the trace of an inner product: 

S(;) a }d4x}d4x• D(x,x•);2 (x',x). (4) 

For each of the two-point functtons, 0 and ~2 • we introduce 
the local Fourier transfonms: 

O(k,x) ; fd4s exp(-ik·s) D(x+s/2,x-s/2), (5) 

and obtain (ignoring 2. factors) 

S ( - ) "' J d4 
X J d4 

k 0 ( k , X } 62 
( k , X ) • (6) 

(Note that the new functions are denoted by the same symbols as 
the old; their arguments indicate the representation.)_ 

We now cons.ider fields ;(x) expressible in e1konal form: 

-(x) ~ 6(x)exp 1Q(x) + c.c. (7) 
~. 

where the amplitude- and the gradient of the phase Q are slowly 
varying. More explicitly, with ~~(~.t) k~(~,w), we m~ define 
the local wave-vector and frequency: 
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~(!,t),. Vo(! •. t); u(~.t) .. -ag/at. (8) 
The expression ( 7) 1s appropriate for a coherent wave. We 
desire evolution equations for its amplitude and phase. 

We use the "slowly-varying" assumption to evaluate the 
Wigner function (analog of (5)): 

~2 (k,x) ~ 1~1 2 (x,t) 6
3(k- VQ(x,t)) 6(u + ag/at). (9) 

In this approx1mati~n. ~2 1~ singularly concentrated on a 
"Lagrangian manifold," a 4-dimensional surface embedded in the 
8-dimensional phase space (k,x) = (!,u; ~.t). Substitution of 
(9) into (6) now yields 

S(-,g) "'jdtjd3x 0(!_,. vo. w=-ag/at; !•t) 1~1 2 (x,t) (10) 
Th1s has the form of a Lagrangian variational principle. This 
approach has previously been utilized by Whitham (J], and by 
Dewar [4]. 

The Euler-Lagrange equation for the variation of S with 
respect to the amplitude yields the Hamilton-Jacobi equation for 
the phase g: 

0(_~ ,. Vg, u,.-ag/at; ~· t) ,. 0. ( 11) 
The field J(!.t) conjugate to the phase g(~.t) is defined in the 
canonical way: 

ao - 2 
J(~.t) = aw 1~1 (~,t). (12) 

in terms of the Lagrangian density. Variation of S with respect -to ~yields the standard amplitude~transport equation: 

a.J/at + V · (J au/a~) "" 0. (13) 
The Poisson structure based on the conjugate fields o, J has 
been explored elsewhere [5]. Here we concentrate on the 
evolution of only the phase Q. 

The standard method of solution of (11) 1s due to Hamilton. 
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The ray equations: 

dx/dT a - aD/a~. 

dt/dT = + aO/aw, 
d~dT "' + aD/a~. 

dw/d't = - aD/at, (14) 
are to be solved, subject to initial conditions, as discussed 

further below. The solution 1s expressed as ~(~,t), ~(~,t); the 
phase 1s then 

G(!,t)- g(~,t0 ) .. f<~-d~- w dt). (15) 
The path of integration 1s arbitrary, since k(x) 1s curl-free, 
i.e •• k ... dg( x) 1 s an exact one- form. 

For purposes of ill ustrat1on of the boundary-value problem, 
we shctll consider a monochromatic wave in a time-independent 
two-dimensional medium: 

~(~,t) :a e-iwot i<x.y) eig(x,y) + c.c; (16a) 

kx • ~g/ax, ky • ag/ay; (l6b) 
D(kx,ky•'.~0 ; x,y) .. 0. (l6c) 

The phase space is 4-d1mensional. but we need portray only the 
three-dimensional (x,y,kx)-space, since ky 1s determined by 
the dispersion relation (16c). Let the phase be specified on 
some spatial curve, say y • 0; knowing G(x,y.Q) determines 

kx::aaG/ax and ky (from (16c)) on the "boundary .. y.Q. 

Consider the single-valued curve kx vs x on the surface y:O 

(fig. 1); from each point of that ~urve, construct the 
corresponding ray, whose initial conditions are known. The 

family of rays emanating from the curve generate a smooth 

s~rfdce (the Lagrangian manifold), which represents the desired 

solution k(x). However, the generic behavior of rays of 
Hdm11 ton1ans w1th two (or more) degrees of freedom 1s e1 ther 

tw1st1ng about each other ("stable") or exponential separation 

("unstable"). Iri either case, the surface develops pleats, 

causing the wave-vector field k(x) to become mult1valued. 
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Fig. 1 y=O 
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When this occur-s, we ·generalize the ei konal representation 
(16a) to a sum over the several phases at (x,y): 

"(x,t) .. e- 1uot ~"j(x,y)e 1 Qj(x,y) + c.c. (17) 

We wish to study the iocal spectral density, going beyond the 
singular approximation (9). L1m1ting ourselves (aga,1n for 
s1mp11c1ty) to a spatial field~(~), not necessarily eikonal, we 
introduce its local Fourier transform: 

"(k,x) .. J e-i_k_·~ ~(x+s) w( s), 
---- §L -- --

utilizing a window function: 

w(_~) = exp - ~ ~ : '!. - 2
/2 

with a chosen for convenience. We define the local spectral 
density: 

I(~.~) '" 1"(~_.~)12; 
1t is the coarse-grained W1gner function, with Gaussian 

(18) 

(19) 

(20) 
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averaging of 42(k,x) in both k and x. Its Fourier transform: 
C(!.~) ,. J~ell:-! !(~.~) - - (21) 

1s the coarse-grained field correlation function. When the 
spectral density changes qualitatively from sharp spectral lines 
(tn ~-space) to a continuous spectrum (Figure 2), then (by 
Fourier's uncertainty principle) the correlation function 
changes qualitatively from spatial coherence to spat1al 
incoherence. 

I I 
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L1m1ting ourselves now to a single teriR in the sum (17), we 
substitute ~(~) ,.. -'(~) exp ig(~) into ( 18), expand g(x+!_) to 

second order 1n !• and ignore the variation of 6. For (20) we 
then obtain 

I(~.~) ~ exp-[~--~(~) ][~-~(~) ]: Re[~ -2 
-i VVQ(~) r 1 (22) 

Thus the spectral density has a Gaussian spread about the 
Lagrangian manifold. k(x). Since the width of the spectral 
density still depend~~" o

2, we minimize it with respect to 
2 2 -

o • The minimizing a is diagonal with respect to the 

;rinc1pal axes of vv;(x); 1ts components are ,o2 • j& 1-1• 
- ~ ~~l 

in tenus of the diagonal elements g of vva. Thus a 
. ~ll 

spectral line has a width of order lv~(~lll/l- (k/L) 112 

where L is the scale-length for variation of~(!)· This is 
indicated in Figure 2a. 
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As pleating occurs more spectral lines appear. The several 
values of~(~) must still satisfy the disper51on relation (11), 
as 1nd1cated on Figure 3. Eventually the 11nes overlap, as 1n 
Figure 2b. The spectrum is then broad, the correlation distance 
1s of the order of the wave length, and the wave ~ be 
considered incoherent. 

Fig. 3 
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