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ABSTRACT· 

A new radiation beamline configuration for stereotactic heavy-ion Bragg 

peak radiosurgery of patients with intracranial deep arteriovenous malforma-

tions, including carotid-cavernous fistulas, has been developed using the 230 

MeV/u helium-ion beam at the 184-inch Synchrocyclotron at the University of 

California, Berkeley. The modified beam has five characteristics: (1) a 

uniform field between 1 em and 4 em in diameter; (2) a variable depth of 

penetration between 4 em and 14 em; (3) a stopping region for primary ions that 

can be broadened up to 4 em; (4) sharply defined lateral and distal borders; 

and (5) a dose-rate greater than 2 Gy/min. It is adapted to the ISAH 
. 

(Isocentric Stereota~ic Apparatus for Humans) at the Synchrocyclotron and is 

designed to reach all intracranial targets. It has proven suitable for all 

patients with intracranial vascular disorders treated with stereotactic 

radiosurgery at our laboratory. 



2 

INTRODUCTION 

The introduction of the experimental treatment of intracranial vascular 

disorders, primarily inaccessible and inoperable deep arteriovenous malforma

tions (AVM), including carotid-cavernous fistulas (CCF), eusing stereotactically

directed heavy charged particle or gamma beam focal irradiation in the brain 

is ne~ and holds significant promise for'alleviating the risks of morbidity 

and of"mortality in selected neurological patients (1-5) •. The intracranial 

deep AVMs have three important features. (l) They have a significant incidence 

of spontaneous intracranial hemorrhage that leads to either severe morbidity 

or to mortality. (~) Even in the absence of serious hemorrhage~ neve~the~ess, 

due to progressive cerebral ischemia, patients develop progressive and 

irreversible neurological deficits, including motor and sensory dysfunctions, 

mental deterioration, and blindness. (~) The abnonnal intracerebral blood flow 

dynamics, mass effect, and brain i~chemia frequently induce seizures, which are 

refractory to medication because of the chronic venous ·hypertension in the 

brain. The present report describes the development of a charged-particle 

helium-ion beam for stereotactically-directed Bragg peak*.irradiation of brain 

disorders in patients at the Donner Laboratory, and particularly for 

application to treatment of deep AVMs. 

* Named for W. G. Bragg, who first observed that monoenergetic alpha particles 

have a well-defined range in air and ionize most heavily near the end of 

their path (6). 
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BACKGROUND 

The physical properties of heavy charged-particle beams offer some unique 

advantages in neuroscience research. The beams have Bragg ionization peaks 

with release of energy at the end of their range, minimal scattering, finite 

~ range and small range straggling (7). Investigations using proton, deuteron 

and helium-ion beams have shown that these beams can be used effectively in 

brain research in animals and in treatment of selected human brain disorders 

(5,8-11). The 184-inch Synchrocyclotron at the Lawrence Berkeley Laboratory 

was first used for biological studies in 1948 (B) and for the treatment of 

patients in 1954 (9) using proton or deuteron beams. The helium-ion beam from 

the 184-inch Synchrocyclotron (Fig. 1) has been used since 1958 for 

stereotactic irradiation of the pituitary gland in patients with endocrine and 

metabolic disorders; here the plateau portion of the Bragg curve has been 

utilized (12,14). In addition, other sites in selected neurological or cancer 

patients have been irradiated using the high-energy plateau portion (15) or the 

Bragg peak (12,16,17), of the helium beam. In 1975, following modifications 

to produce a beam for large-field cancer radiotherapy (18), a heavy particle 

cancer radiotherapy program was initiated (17,19). For cancer therapy, in this 

configuration, field sizes as large as 30 em circles are used with residual 

ranges as great as 26 em. The capability for treating eye tumors (ocular 

melanomas) was later added to the readily available beam conditions (20). 

This therapy setup is for beam diameters less than 2.5 em and residual ranges 

less than 3 em. 

In 1980, we began investigations on stereotactic radiosurgery (1,4,21) in 

the central nervous system using the Bragg peak of the helium-ion beam at the 

184-inch Synchrocyclotron, primarily for intracranial vascular disorders (22). 
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The use of stereotactically-directed focal radiation beams for the treatment 

of inoperable intracranial deep arterioveneous malformations, including 

carotid-cavernous fistulas, ryas been appl.ied by Leksell and his colleagues 

(1,2) using multiple cobalt-60 gamma beams at the Karolinska Sjukhuset in 

Stockholm, by Kjellberg and his colleagues (3) using the proton beam at the· 

Harvard cyclotron, a~d by Barcia-Salorio (23) at the University of Valencia, 

Spain, using a conventional cobalt·therapy unit (24). 

To perform intracranial stereotactic radiosurgery with the Bragg peak, it 

was necessary to develop a specially-designed small field beamline configura

tion at the 184-inch Synchrocyclotron, since the existing stereotactic 

irradiation facility uied for pituitary irradiation of patients (25) was not 

optimized for use with the Bragg peak. The major requirements for a helium-ion 

beam for stereotactic radiosurgery were to develop a beam with five 

characteristics: (1) a uniform field between 1 em up and 4 em in diameter; 

(2) a variable depth of penetration variable between 4 em and 14 em; (3) a 

stopping region for the primary ions that coul.d be broadened up to 4 em; 

(4) sharply defined lateral and distal borders; and (5) a dose-rate greater 

than 2 Gy/min. 

METHODS AND MATERIALS 

The range in water of the 230-MeV/u helium-ion beam at the 184-inch 

Synchrocyclotron is approximately 32 em. This range is greater than that 

needed to reach any intracranial target; therefore, it is necessary to degrade 

the beam energy in order to obtain the required residual range. This must be 

done in a manne( that minimizes the beam straggling, the multiple scattering 

and the loss of the primary ions due to nuclear interactions (26). 
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Beam Edge Sharpness 

To achieve a sharp lateral edge to the beam and thus, to the treatment 

volume, the penumbra of the beam is kept as small as practical, consistant with 

all other requirements, and the beam passing through the final collimator is 

~ essentially parallel. These conditions are met by placing all the beam 

degrading material about 3.6 m upstream of the final beam collimator. The beam 

striking the degrader is approximately 3 by 4 em (FWHM). Immediately after the 

degrading material the beam is collimated by a 2.2-cm brass collimator. This 

geometry produces a geometric penumbra of 0.9 mm at a position 15 em downstream 

of the final collimator. The ~ngular spread of the beam collimated to a 

3.0 em diameter is less than 0.5 deg. 

Beam Energy Degradation 

The beam energy must be reduced from 230 MeV/u to about 145 MeV/u for the 

maximum desired residual range (27,28). For a given energy loss, higher 

atomic number (Z) materials scatter the beam more than lower Z materials (28). 

At the position selected for the degrading material, polyethylene alone does 

not result in sufficient multiple scattering to provide the uniformity of dose

distribution desired over the treatment field at the isocenter of the patient 

positioner. Due to space limitations, it is not practical to place the 

polyethylene absorber further upstream of the irradiation position. Therefore 

some of the degrading of the beam energy is accomplished with copper. Using 

~- only a copper absorber scatters the beam more than required for the appropriate 

beam diameter and reduces the dose-rate below the minimum acceptable level. 

Thus, a combination of materials was selected to provide sufficient scattering 

of the beam to obtain an acceptable uniform irradiation field while minimizing 

the loss of the useful beam. An additional consideration was to limit the 
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amount of induced-radioactivity with long half-lives. The induced activity in 
I 

the polyethylene is carbon-11, with a 20.5 min half-life .. Therefore, the beam 

is degraded by first the polyethylene then the copper absorbers before the 

initial collimation with a brass collimator. 

The energy degradation is accompl~sh~d with a composite absorber consisting 

of 15.3 em of polytheylene followed by 0.34 em of copper. Adjustments in the 

depth of penetration in the phantom or patient are made with an additional 

thickness of polyethylene added to the front of the fixed degrader. The 

modulation of the stopping region of the beam is controlled by a rotating 

variable thickness acrylic absorber (30) located upstream of the beam 

degraders. The beam current is monitored by parallel-plate transmission type 

ionization chambers (31) located upstream of the beam modulator and degrader, 

and by another transmission ionization chamber located behind an intermediate 

collimator (7~0 em diameter). 

Radiation Dose Measurement 

The dose at the stereotactically-determined isocenter of the patient 

positioner, i.e., within the patient•s brain, is obtained by calibration of 

the transmission chambers with a tissue-equivalent (TE) ionization chamber1 

located at the isocenter of the patient positioner. Depth-dose curves are 

obtaind by scanning the TE ionization chamber.along the beam path in an acrylic 

box filled with water. Measurements are also made by scanning a diode (32,33) 

in the water-filled box. Beam profiles are obtained from diode scans across 

the beam axis and from densitometry of X-ray films exposed at different depths 

of penetration in a polyethylene phantom. 

1 Far West Technology, Goleta, CA 
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RESULTS 

Depth-dose measurements with the tissue-equivalent ionization 

chamber indicated a maximum range to the Bragg peak of 14.7 em in 

water; this includes 0.5 c,m for the wall thickness of the ionization 

chamber and its watertight housing (Fig. 2). The dose beyond the 

Bragg peak decreases from 90 percent of the maximum to 10 percent 

within 6 mm. The peak-to-plateau ratio was 2.58. Because the 

geometry of the tissue-equivalent ionization chamber causes poor 

resolution of the Bragg ionization peak, the measurement was also made 

with a transmission chamber behind a variable water absorber (34). 

This measurement resulted in a peak-to-plateau ratio of 3.09, which is 

felt to be more indicative of the maximum dose in the unmodified Bragg 

peak. 

The depth-dose distribution with the stopping region broadened by 

2.5 em is shown in Fig. 3. The slope of the dose curve in the 

broadened stopping region is intentional, and is designed to 

approximate a uniform biological equivalent dose (35-37). The beam 

profile was measured with a diode and with X-ray film at the midpoint 

of the 2.16 em broadened stopping region. The lateral edge of the 

beam is sharpest at all depths when the final collimator is placed in 

contact with the entrance surface of the polyethylene or water phantom 

(Table 1). 

A dose-rate of 4.0 Gy/min is regularly and uniformly delivered in 

the modified Bragg peak, permitting no more than 1-3 minute treatment 

duration per portal for stereotactic radiosurgery in the brain. 
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Dl SCUSSION 

A new beamline configuration, intended primarily for stereotactic 

radiosurgery in the brain with the Bragg ionization peak of the 230-MeV/Li 

helium-ion beam at the 184-inch Synchrocyclotron has been developed. This 

modified beam has a 14.7 em range in water to the Bragg peak ~ith sharply 

delimited lateral and distal borders. The practical limits on beam diameter 

range from 0.6 em to 4.0 em. The unmodulated Bragg peak maximum dose is 

greater than 3 times the entrance dose and the width of the peak at 80 percent 

of the maximum is 0.7 em. The energy of the beam can be modulated by a 

rotating acrylic variable-thickness absorber to increase the width of the 

high;_dose region to as much as 4.0 em. The physical properties of this beam 

are similar to that of the proton beams that have been available for 

stereotactic radiosurgery at the Harvard Cyclotron Laboratory (30) and at the 

Gustaf Werner Institute in Uppsala, Sweden (4,5). The maximum range of the 

helium-ion beam is greater than that of these proton beams; therefore, more 

energy degradation is necessary to obtain the same residual range. But since 

the nuclear charge and mass of helium is larger than the proton, the multiple 

scattering and the range straggling can be less for the same residual range in 

tissues. 

This helium-·ion beam has proven suitable for fundamenta-l and clinical 

neuroscience research to induce focal lesions in the central nervous system. 

It provides improved dose localization and dose-distribution for stereotactic ~· 

radiosurgery of the of neurological patients with intracranial deep arterio

veneous malformations, ·including carotid-cavernous fistulas, thus far treated 

at the 184-inch Synchrocyclotron (38). Studies are in progress to develop beam 

-characteristics of heavier ions, such as carbon, with small uniform transverse 
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profile and modified Bragg peak for improved dose distribution at the Bevalac 

(26,39-43). These heavier ion beams have physical characteristics with unique 

advantages for application to stereotactic radiosurgery of the central nervous 

system (22,43). 
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FIGURE LEGENDS 

Figure 1. The medical cave at the 184-inch Synchrocyclotron (upper) 

illustrating the helium-ion beam delivery line in relation 

to the stereotactically-determined isocenter of the patient 

positioner (ISAH: Isocentric Apparatus for Humans) (25) 

(lower) used for stereotactic radiosurgery of intracranial 

vascular disorders {XBL 824-485; XBL 824-486}. 

Figure 2. Depth-dose measurements of the 230-MeV/u helium-ion beam at 

the 184-inch Synchrocyclotron using the tissue-equivalent 

ionization chamber. The maximum range to the ]ragg peak is 

14.7 em in water. This includes 0.5 em for the wall 

thickness of the ionization chamber and its watertight 

housing (XBL 828-1107). 

Figure 3. The depth-dose distribution of the 230-MeV/u helium-ion beam 

with the stopping region broadened by 2.5 em 

(XBL 8212-7366). 
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Table 1. Distance between 90 and 10 percent points in centimeters on 
lateral profile for a beam with a 2.16 em modulated stopping 
regions and scan at midpeak 

Residual 
Range, em 

6 

9 

12 

Collimator-to-Phanton Distance 
0 em 10 em 

0.15 

0.24 

0.34 

19 

0.19 

0.27 

0.38 
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