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.. Phase. transformations in real solids usually involve the forma-
tion.of elements of new phase which .differ in size or shape from the typi­
cal structural eiement of the parent. The associated el,astic energy affects. 
the thermodynamics of the transformation and strongly influences _the.nature 
and morphology of the product phase. Many of the consequences of: elastic 
strain can be predicted or understood on the basis of models which treat the 
parent and product pha:ses as linear elastic bodies. The linear elastic 
theory is .reviewed in this paper. It is shown that the theory may be de­
rived .from a simple starting point: .the strong harmonic model of a solid 
solution. From this starting point it is possible to develop·both the mi­
croscopic and macroscopic formulations of.the theory. The known results of 
the theory are extracted and recent extensions are presented and discussed. 

Phase transformations in real solids usually involve the formation or 
reconfiguration of ·elements which differ in size or shape from the typical 
structural component of the parent· phase. The phase transformation has the 
effect of introducing volumetric defects into the parent which are in.ter­
nally distorted themselves and cause distortions of the matrix in which they 
lie. The associated elastic strain influences the energetics of the phase 
transformation, the morphology of the product, and .sometimes even the crys­
tal structure and composition of the product phase. 

The pioneering work of Eshelby (1) showed that many of the consequences 
of volumetric distortion could be understood or predicted from a linear 
elastic model in which both the defects and the matrix are taken to be 
linear elastic bodies whose mismatch is quantified in terms of the elastic 
strain necessary to achieve the volume, shape and orientation of one through 
the continuous deformation of the other. Eshelby specifically obtained an 

t This work was supported by the Director, Office of Energy Research, Office 
of Basic Energy Science, Material Science Division of the U.S. Department 
of Energy'under contract DE-.AC03-76SF00098. 
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analytic solution for the elastic strain and elastic energy associated with 
a coherent ellipsoidal defect in an elastically isotropic body, and genera­
lized the result in two directions which are directly pertinent to the theory 
of phase transformations: the elastic energy of a solid solution, mcxlelled 
as a distribution of misfitting spheres in an isotropic matrix, and the elas­
tic energy of a particle of new phase, modelled as an isolated ellipsoidal 
elastic inclusion. Eshelby's results emphas,ize the unity of these two prob­
lems in the context of the elastic theory. 

The elastic model of a solid solution has, in fact, an independent his­
tory which traces back at least to Zener's (2) hypothesis that strain-induced 
elastic interactions are responsible for the ordering of carbon in Fe-C mar­
tensites, and to the Friedel (3) treatment of the isotropic solution of elas­
tic atoms which anticipates the Eshelby result. A more detailed atomistic 
treatment was provided by the "lattice statics" mcxlel of Matsubara (4) and 
Kanzaki (5), who modified the lattice dynamics of Born and Huang (6) to 
compute the static equilibrium lattice displacements about a point defect. 
These results were generalized to distributions of point defects by Krivog­
laz and Tichonova · (7) and by Khachaturyan (8). Khachaturyan (9) subse­
quently developed the mcxlel into a microscopic elastic theory of the solid 
solution. Elements of the theory were re-derived in subsequent work by Cook 
and de Fontaine (10). 

The fruitful application of the solid solution theory to phase trans­
formations dates at least from the Cahn (11,12) theory of spinodal decom­
position in cubic solids, which he developed from a semi-macroscopic per­
spective. The microscopic theory was used by Khachaturyan and Shatalov (13) 
to predict the structures of interstitial superlattices in tantalum, and has 
been used extensively in the theory of ordering reactions (14). An adaption 
of the microscopic theory was developed and used by Wen (15) and by Wen, 
Khachaturyan and Morris (16) to perform computer simulation studies of mar­
tensitic transformations and defect reconfiguration reactions in idealized 
elastic solids. 

The Eshelby treatment of macroscopic inclusions was reformulated by 
Khachaturyan (17), who found a Fourier transform solution which permits the 
analysis of an arbitrary distribution of elastic inclusions in a body of uni­
form anisotropic elastic constants. Khachaturyan and Shatalov (18) general­
ized this result to.treat interacting inclusions of different types, but still 
with the assumption of uniform elastic constants. Eshelby (1) had shown that 
it is possible to obtain the solution for an isolated ellipsoidal inclusion 
whose elastic moduli differ from those of the matrix. Lee, Barnett, and 
Aaronson (19) generalized this result to find an analytic solution for an 
ellipsoidal inclusion with mismatched elastic constants in an anisotropic 
matrix. The solution is, however, restricted to the case of an isolated 
particle. 

The applications of the macroscopic elastic theory have been primarily 
to the theory of precipitate shapes and habits, the theory of metastable in­
termediate precipitate phases, and the theory of martensitic transformations. 
The wealth of useful applications is reviewed in a recent monograph by 
Khachaturyan (20). 

The intent of this paper is to review the derivation of the linear elas­
tic theory from a simple starting point: the strong harmonic model of a 
solid solution. From this starting point we develop both the microscopic 
and macroscopic models and show that virtually all relevant features of the 
elastic theory, including both alternate formulations and specific applica­
tions, are contained and can be extracted in a straightforward way. Since 

.. 
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the previous applications of the theory are found as special cases of the 
general model, the possibility of extending them in new directions is ob­
vious and illustrated by examples drawn from recent·work. 

The Solid Solution 

Theory 

The solutions of interest here are those which may hypothetically be 
created by introducing solute species; modelled as elastic defects, onto 
the atom sites of a solvent host lattice. We are interested in computing 
the free energy of the solution for an arbitrary but specific distribution· 
of the solute species~ The theory will be written for a substitutional. 
solution on a primitive solvent lattice. The generalization to intersitial 
solutions or non-primitive lattices is straightforward (9). 

Assumptions and Kinematics 

The Solution. The free energy of the solution will be referred to that 
of the solvent in a pure, undistorted state~ The atom sites of the solution 
(labelled by the vectors z) can be brought into one-to-one correspondence 
with the lattice sites, !• of the reference state by the_relations 

(1) 

where the vector .function u(r) gives the displacement of the atom site from 
its reference position. The-chemical state of the (v + 1) component solid 
solution is then specified by the v distribution functi-ons, c (r), p=l. •• , v. 
the function c (r) has the value 1 if there is a solute of type-p at the · 
atom site refe¥e'ii'ced to r, and is zero otherwise. The average of c (r) over 
the lattice is the mean ~oncentration, c . p -

p 

The Solute. In the elastic model of a solid solution one attempts to 
separate the chemical effect of the solute from its influence as an elastic 
defect in distorting the solvent lattice •. The elastic defect.is related to 
the geometric mismatch between the relaxed structures of the solute and the . 
solvent and is defined in the model by the linear elastic strain, £~·.,whose 
negative is the strain required to deform the solute until it fitsl.Jwithout 

. distortion in the host lattice. 

The definition of £~ . requires a clear specification of the structure 
and orientation of the _l.Jrelaxed reference stat.e to wh:i,ch the solute is 
referred. When the solute preferentially -forms a crys.tal having the same 
crystal-structure as the solvent, or when· the solute is an element of new 
phase whose crystal structure and orientation are specified, then the appro­
priate reference state is obvious. But when .the solute preferentially forms 
a crystal having an equilibrium structure different from that of the solvent 
the reference is not unique and should be chosen so as to minimize the free 
energy of solution. Since the elastic energy increases quadratically with 
the magnitude of the elastic strain, the free energy of solution will 
usually be minimized if the reference used to define £~. is that stable or 
metastable state of the pth solute which is geometrically closest to the 
structure of the solvent. The solution may .then be made through a quasi­
chemical cycle involving a structural transformation of the solute (if 
necessary) from its equilibrium state to the metastable structure closest 
to that of the solvent follo:wed by a small'elastic distortion to establish 
a coincident ·lattice. The second step defines the elastic strain £0 

•• (p). 
' l.J 
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If the reference structure for the pth elastic defect is identical to 
that of the host crystal then the reference strain Efj(p) is a simple dila­
tion (homogeneous expansion or contraction) and each solute species is re­
presented by only one elastic defect. If the reference structure differs 
from that of the host lattice, however, a single solute species may give 
rise to several distinct elastic defects, which differ in the orientation 
of the principal axes of the reference strain with respect to the axes of 
the host crystal. 

The Strong Harmonic Approximation. The solution differs from its re­
ference state (the pure solvent) through the addition of solute and the im­
position of lattice displacements. It follows that the associated free 
energy change may be expressed as a functional of the functions, ~(L) and 
cp(L) (p=l, ••• , v). We shall assume that this functional is adequately re­
presented by the harmonic series: 

~G[u(r),{c (r)}] = G0 + ~ ~(p)c (r) 
- - p - pr p -

+ 
2
1 ~~ ,~pq(r-r')c (r)c <~') 

PL,L - - P - q ~ 

+ ~~ ,~Pi(r-r;)c (r)ui(r') P!.,:t ~ ,_ p ,_ .._ 

+ -2
1 ~ .~.j(r-r')ui(r)uj(r') 

!'! 1 - - - -

(2) 

where the sums are taken over the reference lattice and the coefficients are 
independent of position. Higher order terms are neglected. A non-zero term 
linear in the displacement, u, would be incompatible with the mechanical 
equilibrium of the reference-state and has hence been eliminated. 

The strong harmonic approximation has two consequences which concern the 
elastic constants of the bulk solution. First, the dynamical matrix is as­
sumed to be independent of composition., which implies that the elastic con­
stants are unchanged by alloying. For the body of this paper we shall, in 
fact, make the stronger assumption that the difference between the elastic 
constants of the solute and solvent may be neglected. A brief treatment of 
the consequences of differences· in the elastic moduli is given in the final 
section, where the solutions to macroscopic inclusion problems are extracted 
from the theory. Second, while a matrix of bulk elastic constants can be ob­
tained by imposing a macroscopic deformation on the harmonic crystal, these 
will not be the full elastic constants of the reference state. In the impor­
tant case of a primitive lattice the computed elastic constants will, in fact, 
have an incorrect symmetry, being related by the strong Cauchy conditions 
rather than the less restrictive Voigt relations (25). This problem is in­
herent to the harmonic treatment of lattice vibrations and arises from the 
failure of the model to include many-body, anharmonic, and thermal effects 
which influence the elastic rigidity of real crystals. To partly compensate 
for this shortcoming of the model we shall replace the computed bulk elastic 
constants by the true elastic constants of the reference crystal wherever 
they appear. 

Macroscopic Homogeneity. While the solute species may be configured 
in an essentially arbitrary way, we shall assume that the solution is sensi­
bly homogeneous when viewed on a scale large compared with the dimension of 
the solute or of the largest relevant solute cluster. The assumption of 
macroscopic homogeneity permits an important decomposition of the vector 
displacement, u(r), within a macroscopic sample of the solution. Neglect­
ing rigid rotation and surface terms; 
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(3) 

where·Eij is a uniform elastic strain defined by the boundary displacement. 
of the body of the solution and ui(!) is an internal displacement field 
which may be taken to vanish over the boundary (or set to satisfy a perio­
dic boundary condition). The distribution function for the pth solute may 
also be written as a sum of its mean and its variation: 

c (r) = c + ~c (r) p- p p-. . (4) 

Evaluation of "the Free Energy through an Eshelby Cycle 

The terms which contribute to the free energy of the solid solution ~y 
be evaluated through the use of an equivalent cycle to create the solid 
solution along lines suggested by Eshelby (1). The equivalent cycle in~ 
valves the six hypothetical operations: 

1. Taking the pure solvent crystal, isolate v clusters of which the pth 
contains N 'solvent atoms, and cut each cluster out of the solvent lattice. 
If surfacepeffects can be ignored, the free energy of the assembly is not 
changed. 

2. Substitute ~olutes ·of the pth type for atoms of the 
let the transformed cluster relax to its stress~free state. 
tion causes the free energy change 

pth cluster and 
The transmuta-

(5) 

. c 
where ~~ is the chemical energy difference per atom between the solvent and 
the pth psolute in its reference state. The associated free expansion of 
the pth cluster involves no energy change since the cluster is stress-free. 

3. Let surface tractions be applied to each cluster to restore it to 
the shape it had before the transmutation occurred. The required strain is 
Ei. = -Eo·. (p). Since each cluster is. macroscopic, "the deformation may be 
de~cribe!Jby continuum elasticity. If we neglect the work done on the load­
ing mechanisms (whi"ch · is recovered in any case) the net free energy change 
is the total mechanical work done on the cluster~, which defines the "elas­
tic self-energy," ~o 1 , of the solution and is: 

·e 

:l;o () N1;- o ()o () 
~G3 = p~el p = 2 pcpvAijktEij p Ekt P (6) 

where v is the volum~ per atom site and Aijkt is the fourth-order tensor of 
elastic constants. 

4. Let the clus"t:ers (p=l, ••• v) be ·reintroduced . into the sol vent crys­
tal. Since each cluster just fits into the space from which it was removed, 
there is no free energy change. 

5. Now, let the solute be dispersed through the host lattice at con.,. 
Stant shape to create the solute distribution appropriate to the solid 
solution. The'free energy change is the chemical free energy of mixing. It 
has two contributions:. (1) an energy change ~~s per atomic defect on dis­
solution, which is associated with the replace~nt of the homogeneous envi­
ronment of th~ defect by an environment of ho~t atoms (if, the defect were 
an element of new phase with bulk properties this energy would be simply the 
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chemical contribution to the surface energy of the defect particle), (2) a 
configurational energy change due to the mutual chemical interaction of 
solute defects. To second order in the solute interaction the resulting 
free energy change is 

S- 1 ch 6G5 = N E6~ c + -
2 

E E ,V (r-r')c (r)c (r') 
p p p pq !! pq - - p - q -

(7) 

6. Finally, let the distributed atoms relax, introducing an equilibrium 
elastic strain into the lattice. In this relaxation, each solute atom will 
function as a center of force which acts to displace the lattice about it. 
The lattice displacement is opposed by the elastic resistance of the lattice. 
The associated energy is 

6G6 = ~e'l = -E E • fp(r-r')c (r)u (r') 
P u' i-- P - i-

+ 1
2 E ,Aij(r-r')ui(r')uj(r) r r ,._ ,_ "' """"" - (8) 

The symmetrical tensor Aij(~-£') is the Born-von Karman tensor (dynamical 
matrix) of the host lattice, and the fP(~-,t') are the ''Kanzaki" forces 
which act from a solute atom of type pat location~ on an atom at site~·. 
Since the elastic relaxation is spontaneous, ~~1<0; the physical effect of 
the elastic relaxation is to remove part of the elastic energy which was 
introduced when the solute species were deformed to fit properly into the 
host lattice. 

The total free energy change is separable into chemical and elastic 
terms: 

6G = 6G h + 6~ l c em e 
where 

6G = N DC 6~ +! E E vpq(r-r')c (r)c (r') 
chem p p p 2 pq u' ch-- p- q -

c s is the chemical free energy change, with 6J,J the sum of 6~ and 6~ and p p p 

= N tc Y2Aijkn£~j(p)£k0 n(p) - E E ,f~(r-r')c (r')ui(£) 
PP .oc,~ .oc, PU ~-- P"' 

+ 2
1 

E ,Aij (r-r')u. (r)uj (r') !!.. ,_......, 1.- ,.._ 

is the elastic contribution to the free energy. The terms appearing in 

(9) 

(10) 

(11) 

these equations have the form required by the strong harmonic approximation 
(eq.2). The coefficients are, of course, restricted by the symmetry of 
the crystal in its~lute- and deformation-free state and are further res­
tricted by the requirement that 6~el be invariant to rigid body displacements. 

Evaluation of the Elastic Contribution to· the Free Energy 

The instantaneous displacement field, u(r), is the sum of a static and 
a dynamic displacement. The former is a co~s;quence of the shift in the 
equilibrium lattice positions as the lattice is strained; the latter re­
sults from lattice vibrations. In the strong harmonic approximation lattice 
vibrations do not contribute to 6G. The dynamical matrix, A, is unaffected 
by alloying, so the vibrational free energy is unchanged fr~m its value in 
the reference state. The free energy change is hence due to the static 
equilibrium displacement field. 
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Using equations 3 and 4, 

6~el = ~:1- Ne:ij ~Aij(p)cp + ~ Aij1me:ije:1m 

·l: l: ,fPi(r-r')ui(r')6c (r) 
- P n -- - . P -. 

1 
+ -2 l: ,Aij(r-r')ui(r)tij(r') . n ........ - ,..., - (12) 

where ~:1 is the elastic self energy and is independent of the displacement: 
The tensors Aij(p) and Aij 1m are given by t~e summations: 

Aij(p) = f ~ [fi(£)rj + f~(£)ri] (13) 

1 1 . 
A =- l: A (r-r')r r' = -- l:A (r)r r 

ij1m N £,£' ij -- 1m 2 L ij - -1"111 
(14) 

The Macroscopic Strain. The net stress-free strain of the' crystal on 
forming the solid solution can be found, along with the values of the tensors 
Aij(p) and Aijk1 , from the condition that the solution obey Hooke's Law in 
response to small imposed stresses. By the usual relations of elasticity, 
the macroscopic elastic stress is related to the homogeneous strain by 

. 
0 

= _a_· (6~el) ·= _ :t Aij (p) 1 
ij ae: v· · p v cP + v Aijk1e:k1 

ij 
(15) 

where V is the crystal volume. 

Defining the tensor E'ij by the relation 

Aijk1£k1= ~Aij(p)cp (16) 

we have 
1 .A· (. - ) 1 A el (17) 

0 ij = v ijk1 e:k1 .... e:k1 = v ijk1e:k1 
el . · · · · ·· . · -

where e:k1 is that part of the elastic strain due to Ihe externally imposed 
stress oij" In the stress-free state o1j=O and e:~1=0; then from eq. 15: 

Eij = ~ ~ sijk1Ak1(p)cP (18) 

where Sijk1 is the elastic compliance tensor, the tensor inverse to Aijk1• 
Equation 18 shows that Vegard's Law is obeyed with respect to each 
of the solute species, as is expected since the model is second order. In 
the limit cp ,;.1, Eij=e:i_j (p)., and we are led to the ·simple result 

. ~ij = ~ e:i_j (p)cP. (19) 

The value of Aij(p) which is consistent with eq. 18 is 

Aij(p) _ o _ o 

v - 0 ij (p) - ).ijk1e:ij (p)' (20) 

where oi_j{p), the "transformation stress", is a material constant. 

In the absence of external stress the macroscopic strain is just the 
uniform relaxation strain, Eij· The associated elastic contribution to the 
free energy of the stress-free crystal is: 

- 6~el =I ~q(v).ijk1e:~j(p)e:k1 (q))cp<opq- cq> +terms in u(r)). (21) 
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External Stress. The computation of the Gibbs free energy in the pre­
sence of an external stress involves some subtlety because of the use of the 
stress-free solvent crystal as the reference state. The Gibbs free energy 
change is the sum of the elastic energy added to the body by the external 
stress and the change in the elastic potential of the loading mechanism. 
The change in the potential energy of the loading mechanism is the sum of 
the work done on the loading mechanism during the elastic deformation of 
the solution, and the virtual work done in creating the solution from the 
reference state under the applied stress, aij" It follows that the total 
contribution of the external stress to the Gibbs free energy is 

where eij is the total strain and V is the volume of the crystal. 

The Internal Strain. The equilibrium local displacement field u(r) 
must provide a minimum of the elastic energy. A necessary condition-i;, 
from eq. 16: 

~A .. (r-r')u.(r') = ~ fp(r'-r)c (r') 
r' ~J - - J - pr' i - - p -- -

(22) 

(23) 

Since the local displacement u(r) vanishes on the boundary of the body 
(by its definition), the Fourier tra~sform of both sides of euqation 23 may 
be taken to give: 

A .. (k)u. <k> = ~:FPi<k>t:~c*<k> ·. 
~J - J - p - p-

where the Fourier transform of .the arbitrary tensor function, ~(r), is --
A ~ -ik•r 
~(k) = ~(r)e --......,......, r-........., 

(24) 

(25) 

and ~*(k) is its complex conjugate. 
component u.(k) is 

The solution of eq. 24 for the Fourier 

~-

(26) 

A 

where G is a Green's function inverse to the dynamical matrix~· 

If the solution (eq. 26) for the internal displacement field is used 
in equation 12 the last two terms on the right hand side of the equation 
sum to give, ~rlth equations 21. and 22, 

= Vo . • t ... 
~J ~J 

· N ~ o o - -+ -2 (vA .. k 0 E .. (p)Ek 0 (q))c (o -c) p,q ~J ~ ~J ~ p pq q 

- 2N1 ~ k~[FPi(k)Gi.(k)Fj*q(k)]t:~~ (k)t:~~*(k). 
p,q - - J - - p - q -

(27) 

This expression gives the total elastic contribution to the free energy of 
the solution. 

., 



9 

Separation of Physically Distinct Contributions to the Elastic Energy 

Physically, the elastic contribution to the free energy of the crystal 
can be divided into four parts: (1) the elastic self energy, which is a . 
simple sum of one-particle elastic energies·and is equal to the energy which 
would be observed if the particles did not interact, for example, if tliey ~· 
were present in infinite dilution; (2) a configuration-independent pairwise 
interaction energy whose magnitude depends only on the type and the total 
concentration of the solute atoms present; this interaction is indirect and 
has its source in the elastic image forces which arise from relaxation of 
the unconstrained crystal boundary;'(3) a configuration-dependent pairwise 
interaction energy which results from the direct elastic interaction of the 
defects; (4) the contribution of external forces. While equation 27 super~ 
ficially appears to separate the elastic energy into physically distinct 
terms, it does not; parts ofboth the self energy.and the "image force" 
contributions are buried in the third term on the right hand side. The 
identity 

l1;A A - -- ~c (k)~c*(k) = Nc (o . - c ) 
N k p - q - p pq q 

(28) 

has the consequence that the averqge values 

(29) 

add configuration-independent terms to the elastic energy. 

To complete the separation of physically distinct contributions to the 
elastic energy we define the potentials 

I 

41o = (vA. .. knEoi.(p)Eokn(q).- Q ), pq ~J N J N pq . 

~ (k) = 
pq-

£ Q - F~ (k)Gi. (k) FJ*q (k) 1 
pq ~ - J - "": 

0 

With these definitions 

~41 = Vcr E + N l: 41° c. (o c ) 
el ij ij yP, q . pq p pq - q 

+ 2N1 
1: 1:~ <k>~c <k>~c*<k>. 
p 'q ~ pq - p - q -

(30) 

(~0) 

(k=O) (31) 

(32) 

The first term on the right is the free energy change due to the external 
load, the second is. that which depends only on the average defect .concentra­
tion, and the third gives the specific contribution of the defect configura­
tion. 

Using equation 28, the elastic contribution to the free energy in the 
absence of external load can also be written: 

(33) 

where 

~' (k) = ~0 + ~ (k) 
pq - pq pq -

(34) 
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Equation 33 shows correctly, but deceptively, that the elastic energy of the 
solution is due to the non-uniformity of the concentration field. It is 
true that the elastic energy would be zero if all 6c (k) were zero, i.e., 
if the crystal were composed of.identical pseudo-at~-which averaged the 
properties of the various components. But no such crystal can be composed 
of discrete atoms, and equation 32 shows that a crystal made of discrete 
atoms has an elastic energy which is, in part, independent of the defect 
configuration. 

The Real Space Form of the Elastic Free Energy 

There are four equivalent ways of ~riting the elastic contribution to 
the free energy as a lattice sum in real space, each of which is useful be­
cause of its mathematical form or because of the manner in which it sepa­
rates the different contributions to the energy. We exhibit two of these: 

1. Taking the Fourier transform of the last term on the right in equa­
tion 32 gives 

( c_,. 
N I 

6~ - vcr £ + - ~ ~ c (o - c ) el - ij ij 2 p,q pq p pq q 
1 ~ 

+ -
2 
~ ~ ,~ (r-r')6c (r)6c (r') 
p' q !! pq p - q -

(35) 

where 

~ (r-r') =.! ~~ (k)ei~· (,E-,E') 
pq - - N k pq -

(36) 

This form of the real-space interaction preserves the separation of physi­
cally distinct contributions to the free energy. Only the last term is 
sensitive to the precise configuration of defects. 

2. Using the identity 

el ~ o -= £i. + £ .. (p)c 
J p ~J p 

the elastic free energy may be written as the conventional lattice sum: 

6~el = Vcr .. £:: + ~ ~~o c (r) 
~J ~J p ! p p -

+ 1
2 
~ ~ .~E (r-r')c (r)c (r') 
p,q _E,! pq-- p- q-

(37) 

(38) 

The first term on the right in this equation is the free energy of elastic 
compression of the lattice and is unaffected by the solute content or dis­
tribution. The second term is linear in the solute content; the coefficient, 
~o , is the elastic contribution to the atomic chemical potential of species 
ppin the dilute solution limit: ~ 

o V 0 lo () ~p(crij) = vcr;.£ .. (p) + -2 ~ 39 
~J ~J pp 

The third term is a sum of binary solute interactions; ~~0 (r-r') is a binary 
interaction potential which gives the total interaction energy of a solute 
pair: ~0 

~E (r-r') = ~ (r-r') + ~N 
pq-- pq--

(40) 
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The Long-Wavelength Approximation 

The evaluation of the elastic contribution to the free energy of an 
arbitrary distribution of substitutional defects is straightforward given 
the results <of .the previous sections, and can be carried out on a computer 
with no greater difficulty than is involved in the computation of the chemi~ 
cal energy of a multi-component solution h~ving long range binary interac­
tions. However, the computation does require specific forms for both the 
dynamical matrix, ~(!~) , of the lattice and the defect forces, Fl (!~)· ·-·With 
appropriate additional assumptions these coefficients .can be estimated or 
extracted from diffraction data, as ha~ been done, for example, by Blanter 
and Khachaturyan (21). But the. precise evaluation of the· lattice forces 
requires a major excursion into the physics of bonding • 

If, however, one is interested in the behavior of defects which are, in 
aggregate, large on the scale of the crystal lattice, or if one is prepared 
to accept approximations in the spirit of the Debye approximation in lattice 
dynamics, then it is possible to evaluate the interaction potential in terms 
of the macroscopic elastic constants. To accomplish this we determine the 
long-wavelength limit of the potential~ (k). 

' ' pq -
' ~p 

Consider· first the force F. (k). In the limit of small _k (long-wave-
J -length) 

(41) 

The first term on the right vanishes. The second may be simplified by add­
ing and subtracting symmetrizing terms and evaluated as 

~p . . 0 
F.(k) = -1k 0 V0. 0 (p) 

J - JV J;v 
(42) 

The Green's function, G .(k) is the inverse of the dynamical matrix, 
A .. (k), whose long wavelengt~Jform is 

1J - . . -

~ I 1
2 

I 1
2 

-l Aij(~) =.vAikR.j~kR. =_ k vAikR.jekeR. = k vQij(~) (43) 

where e is a unit vector in the direction of k and the equation defines the 
matrix- Q:!. It follows that 

1J 

A 1 
G. j (k) = 

2 
Q •• (e) 

1 - vlkl 1J -

With these relations the average intera/!?.'ction, Q . pq 

- ~ :£ 0 ( ) ( ) 0 ( ) - - l;B I '( ) Qpq- N kei0 ij P QjR. ~ 0 R.m q em- N k pq ~ 

(eq. 29) becomes: 

where the second equation defines the scalar B' (e). And pq-

i (k) = i (e) = Q -B' (e) 
pq - pq - pq pq -

(k*O) 

(44) 

(45) 

(46) 

In the long-wavelength approximation the potential depends only on the. 
macroscopic elastic constants and on the direction, !' of k. The potential 
was defined to vanish.at k=O in eq. 31. 
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The Elastic Contribution to The Free Energy of The Solid Solution 

The derivation of the expression (eq. 38) for the elastic energy, ~~ 1 , 
assumes a specific, though arbitrary, distribution of the elastic defects~ 
In a typical solid solution the distribution of solutes is neither known nor 
fixed, so the thermodynamic contribution to the elastic energy is determined 
by a weighted average over a representative ensemble. If the solution has 
a given composition '(cp, p=l, ••• , v) and temperature then the states of the 
solution differ through the specific choice of the distributions cp(!), 
p=l, ••. v. Since the volume of the solution is independent of the ktom dis­
tribution the canonical ensemble may be used. The only parameter in the 
expression for the elastic energy which depends on the solute distribution 
is the Fourier coefficient, ~cp(~); hence the elastic contribution to the 
Gibbs free energy of the solut1on is 

N k o -
<~~el> = Vcr .. Ei. + -2 ~ c (o -c) 1J J p,q pq p pq q 

+ -l ~ ~k~ Ck><~c <k>~c*{k)> 
2N p, q ,._ pq - p - · q -

where <.6~ {k)ll~*(k)> is an average over the canonical ensemble. 
p- q-

Applications 

The Random Solid Solution 

(47) 

If the solute distribution is random then, by equations 28, 46 and 47 
the average of the potential ~pq(~) is zero. The elastic contribution to 
the free energy of a random solution is hence 

(48) 

The elastic energy depends only on the configuration-independent terms. 

The Binary Solution of Tetragonal Defects on a Cubic Lattice 

Most of the solutions which are of practical interest in metallurgy 
have cubic structures. The solutes in these systems usually behave as 
spherical inclusions (the usual substitutional solute) or as tetragonal 
defects (such as carbon in BCC iron). Both solute types are included in 
the general case of tetragonal inclusions on a cubic lattice. We can 
easily find the relevant equations for a binary solution. Generalization 
to the multicomponent solution of tetragonal defects is straightforward. 

Matrix Elastic Properties. A crystal of cubic symmetry has a maximum 
of three independent elastic constants, which are usually taken as the 
Voigt constants, c 11 , c22 and c44 • Using the dimensionless forms 

ell c12 
c = -- c = -- .6 = c - c - 2 A = c

1 
+ 2c

2 1 c 44 ' 2 c 44 ' 1 2 ' 

the matrix of elastic constants is 

(49) 

where the parameter .6 is the "anisotropy factor," which vanishes for an iso­
tropic matrix. The coordinate axes are taken parallel to the cubic axes of 
the crystal. The Green's tensor, n(e), which governs the elastic energy in 
the long-wavelength approximation is-defined by the equation 

• ,. 

•• 
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which can be inverted to give 

. -1 
Qij<z> = fij(z)d <z> 

13 

(50) 

(51) 

-1 -1 
where fij(e) is the cofactor of the (ij) element of the matrix c~~ g (z) 
and d(z) is the determinant of this matrix. 

The Transformation .Strain. If the stress~free strain of the defect is 
tetragonal, with principal axes parallel to those of the matrix, the trans­
formation strain can be written 

I 

E:j = E(oij + noi3oj 3), (52) 

Where n. iS, the 11 t_etragonality t II 

(53) 

The Elastic Energy. The elastic self-energy of the tetragonal inclu­
sion is 

where 

d<z> = 

r~<z> = 

r. (e) = 
. 6 -

2 2 
+ (!!.+2) n £ 3 (e)}, 

e .. fi.e. 
l. J J 

2 
cl + b.(cl+c2)r4(z) +b. (A+l)r6(~), 

2 2 2 2 2 2 
ele2+ ele3 + e e 

2 3 

2 2 2 
ele2e3 

From equation 45, 
2 . 2 v 

Q = vc· E <b(e)> = c ,,E (-4 )#b(e)dw 
~~ - 4~ n -

It follows from equations 30, 46 and 47 that the elastic energy per unit 
volume of a solution of tetragonal defects'on a cubic lattice is: 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 
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(61) 

where 

2 . - -
[(3A+2An-c

1
n ) - <b(£)>] c(l-c) 

- 2~ ~[b(~)-<b(z)>] <l6c(~>l 2>. (62) 

The configuration dependence of the elastic energy is given by the second 
term of ~q. 62. If the solution is random-this term vanishes since 
<l6c(k)l >is constant. 

Spherical Defects on An Isotropic Lattice: The Eshelby Equations 

If the defects are spherical (n=O) and the matrix is isotropic (6=0) 
then equation 56 simplifies to: 

(63) 

It follows that the second term in equation 62 vanishes; the elastic free 
energy is independent of the configuration of the defects. The elastic 
contribution to the free energy is, in the absence of external stress: 

(64) 

For an isotropic solution 

-1 -l 
c44 = ~' c

1 
= 2(1-v) (l-2v) , c2 = 2v(l-2v) • 

where ~ is the shear modulus and v is Poisson's ratio. Using this notation 
in equation 64 we have: 

l+v 2- -
<M> 

1
> = 2~V(-1 ) e: c(l-c), (65) 

e -v 

which is precisely the equation derived by Eshelby (1) from a specific ana­
lysis of the interaction of dilational defects in an isotropic matrix. 

Spherical Defects on A Cubic Lattice: The Cahn Equation 

If the defect is spherical (n=O) and the matrix cubic, as is usually 
assumed for substitutional solutions on a cubic lattice, then equation 56 
gives: 

(66) 

and, in the absence of external stress, 

(67) 

The elastic contribution to the free energy of a cubic binary solution 
of spherical defects was previously computed by Cahn (11). He approximated 
the geometric function in the elastic energy to obtain a relation which can 
be written, in the present notation: 
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(68) 

Equation 68 follows from 67 if the inverse of equation 28 is used to gather 
the two bracketed terms. The result is: ·, 

which is i~entical to the Cahn equation under the approximation 

-1 . 
~(~) ~ [c1 - 2Ar4 (~)] • 

(69) 

(70) 

The approximation is exact for the symmetry directions [100], [110] and [lll] • . , 
Spinodal Decomposition in a Cubic Crystal 

Spinodal decomposition results from the spontaneous growth of composition 
fluctuations to establish a quasi-periodic·'profile. The development of the 
theory of spinodal decomposition in elastic. solids (11, 12). has concentrated .. 
on the onset of decomposition in an initially random binary solution on' a cuac 
lattice, so we shall exhibit the equations ,for that case. .. 

Thermody~amic Criteria. If'cotnposition fluctuations are imposed on an 
initially random solid solution, the total ~ree energy change is the sum of 
chemical and elastic contribution$. In the long-wavelength limit (20): 

v a2 2 2 2 -
AG = 2N ~{---2 [AG 0 (c)] + mk - c44£ [b(~) - <b(~)>]}<IAc(k) I f 

dC .· · (72) 

where AG 0 (c) is the chemical free energy of a random solution of composition 
c. If the coefficient is negative for any k then the solution is unstable 
with respect to an increase in the amplitude of the corresponding composition 
wave. Letting n be the direction for which b(e) takes on its maximum value, 
the relevant condition is -

a2 
' 2 ---2 [AG 0 (c)]<c44 £ [b(~}- <b(~)>]. (73) 

ac 

When this inequality is satisfied the solution will spontaneously develop a 
periodic decomposition in the direction!! (which isa2eegenerate by symmetry). 
Since b(n) < <b(~)>,, decomposition connnences when W [AG 0 (c)] is positive; 
spinodal decomposition precedes the "chemical" 
spinodal. 

Equation 73 follows the Khachaturyan (9,20) development of the theory. 
The original presentation of.the theory, by Cahn (ll,l2), sets a slightly 
different, though equivalent (10) criterion. Cahn's starting point was the 
Gibbs free' energy of the relaxed, homogeneous crystal, AG(c). The vanishing 
of the second compositional derivative of this quantity define$ the thermo­
dynamic or "incoherent" spinodal. Since AG(c) includes the configuration­
independent part of the elastic energy, then for a random solution 

a
2

AG(c) a
2 

ac2 = ac2 [AGo (c)] - N4>;p (74) 

If this equation is us~d 
spherical solute, then 

,, j v. a2 
AG = -. ~{---· 

2N k ac2 

in 72, and the result·specialized to the case of a 

2 .. 2 2 
[AG(c)] + mk + (ell+ 2c12)£ [3-A~(~)]}<!Ac(k) I >,(75) 

z 



16 

which is .the form derived by Cahn (11). 

The last term in the bracket in eq. 75 is not the elastic energy of a 
composition wave; it contains configuration-independent elastic terms which 
cancel the similar terms embedded in 6G(c). It may be given a physical mean­
ing as the sum of the elastic energy of the spinodal wave (which is negative 
for the favored directions) and an elastic "virtual work" which maintains the 
coherence of the lattice during decomposition. The sum is positive, and has 
the consequence that the "coherent" spinodal limit, which is given by 

a2 2 
- ac2 [6G(c)] =(c11 + 2c12)£ [3-A~(~)], (76) 

where ~ is the most favored orientation, always lies inside the thermodynamic 
spinodal. 

The Preferred Orientation. The preferred orientation, n, for the spino­
dal wave is, from equation 72, the direction which maximizes-b(~), and hence 
minimizes the total elastic energy. The preferred direction has been found 
for the general case of a tetragonal solute in a cubic matrix by Wen, Kostlan, 
et al. (22). If n is referred to the spherical coordinates (8,~), where e is 
thepolar angle from the teragonal axis, or [001] direction, and~ is the azi­
muthal angle measured from the [100] direction then: (1) if 6~, ~=0 (if 
6=0, ~ is arbitrary) and 

where no -

1 + .!k 
n 

2 cos e = . o 

2 cos e = 

1 

[l - 1] 
nl 

0 

1 

-no .=:;;; n < 0 

0 < n < oo. 

1T 
= 4 and 

6 n [(-) - -] 
6+4 n1 

-1 

-n < n < - n 1 2 

n <n<oo 
3 

(77) 

(78) 

-1 -1 -1 where n1=(6+4)A[6A+4(c1+c2)] , n2=l11[6A+4c1] , and n3=M(2c1) • In the 
special case of a spherical solute these equations give the familiar results 
n=[OOl] if 6<0 and n = 1/13 [111] if 6>0. - -

The Macroscopic Inclusion , 

If the elastic inclusions are macroscopic (on the scale of the atomic 
structure) then it is reasonable to treat them by a continuum analysis in 
which the underlying atomic structure is never referred to at all. The 
original treatment of the macroscopic inclusion, by Eshelby (1), was a con­
tinuum theory of this type as were the subsequent analyses by Khachaturyan 
(17) and Khachaturyan and Shatalov (18). One of the objectives of the pre­
sent work, however, is to emphasize the underlying unity of the elastic theory, 
so we shall obtain the elastic theory of macroscopic inclusions from the 
theory of atomic (or elementary particle) defects. That analysis will pro­
ceed directly to the Khachaturyan-Shatalov (18) equation, which is the most 
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gener~l of the various formulations. The Eshelby (1) solution for the ellip­
soidal inclusion can then be extracted. It can, moreover, easily be shown 
that the treatment of a thin-plate or isolated ellipsoidal inclusion does •· 
not require the assumption of uniform elastic constants which has been made 
in the bodv of this review. Dropoin2 this assumption permits an alternative 
derivation of the Lee, Barnett, and Aaronson (19) solution for'th~ isolated 
ellipsoidal inclusion with arbitrary elastic constants. 

Theory 

Assumptions and Kinematics. 

The solid will be assumed to contain v types of inclusions. which are 
coherent with the matrix and derivable from it through the stress-free trans­
formation strains, £lj(p),p=l, ••• ,v. The inclusions are macroscooic in ~he 
sense that the long-wavelength approximation applies and the dfscrete lattice 
may be ignored~ The-elastic constants are assumed uniform unless otherwise 
specified. The ·distribution of the pth inclusion is 'given by the function 
6p(!), which takes the va~ue 1 when r is inside the inclusion and is zero 
otherwose. ~~e domain over which 6P(~) is non-zero need not be .simply-con­
nected, since the function may describe a distribution of discrete particles 
of type p, but the domain is assumed·to be composed of simply-connected vol­
umes, each of which is large comEared to the lattice soacing. ~ith this un­
derstanding, Cp(_t)=6p (~) and cp=6 :vp/V, the volume fractiori of the pth de-
fect. · . p 

The Elastic Strain Field. 

Uniform Elastic Constants. It follows from the results of the urevious 
section that, given uniform elastic constants and no external-stress, 

.. 
where ~i-:1 is. the stress-free expansion o.f the body: 

1 0 

£ij = V ~Vp£ij(p) 

and uij <r> is the internal strain field: 

1 
uij <r> = 2 (ui,j + uj ,i>. 

The internal displacem~nt, J.!(t), satisfies the equation: 

Aij~mkjk~um(~) = -ikj ~oij(p)eP(~) 

(79) 

(80) 

(81) 

(82) 

which is obtained from equation 24 by replacing ~m(~) and Fl(~) by their 
long-wavelength forms. {Sirice r now defines a continuum rather than a dis­
crete lattice, t.he Fourier tran;forms are integral transforms.) The reverse 
Fourier transform of'eq. 82 can'be written 

J-~oi_j(p)ep(,t) + Aij~mum,R.l,j = oij,j = 0, (83) 

which is Cauchy's First Law. The solution to equation 82 is: 

ui (~) = -i l~l-2nimkR.~o;R. (p)ep (!~), (84) 

frpm which 
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ui,j <~> = ejnim <!:>et~a;t (p)ap<~>, (85) 

whose symmetric part is the internal strain uij(~). 

Inhomogeneous Elastic Constants. If the elastic constants of the in­
clusions differ from those of the matrix there is no simple general solution 
for the internal strain. A particular solution can, however. be found for 
thf case in which the internal strain within each inclusion is constant 
(uij(p)). In this case the internal stress field may be written 

aij(r) = AijR.mum,r~o~j(p)eP(E), (86) 

where the "effective transformation stress", 

(87) 

where ai;(p) is the transformation stress computed from the true elastic con­
stants of the pth inclusion and ~Ai 1 tm is the difference between these and 
the elastic constants of the matrix·. Using this notation the Fourier trans­
form of Cauchy's First Law (83) regenerates eq. 82 with C1° replaced by £ 0

• 

The solution is 

u. j(k) = ejr2im(e)entcf0 n(p)a (k) 
1, - -. .1\,p m)\, p -

(88) 

This solution requires a constant u!j(n), a result which has only been es­
tablished for isolated inclusions having a thin-plate or ellipsoidal form. 
It is unlikely that non-trivial multi-particle examples exist, but eq. 88 
may nonetheless be useful as a first approximation. 

The Elastic Energy. 

Uniform Elastic Constants. When the elastic constants are uniform the 
elastic energy of an arbitrary distribution of inclusions can be calculated 
from the continuum limit of the atomic model. In the lone wavelength limit 
eq. 33 for the elastic energy of a stress-free defect solution can be written 

~~el = 2
1
V E kE'B (e)e (k)S (k), 
p,~ pq - p q 

(89) 

w}:lere 

(90) 

(the second term on the right is Bpq(e). eq. 45 and we have replaced ~cp(~) 
by v-lep(~) and removed the k=O term ?rom the summation). The summation may 
now be replaced by an equivalent integral, giving 

- 1 3 " " ~~ 1 - 2 (2 ) 3 E fd kB (e)e (k}e (k) 
e n p,q pq - P - q -

(91) 

where the integral is taken over the Brillouin zone of the crystal so as to 
exclude the ffingUlarity at the origin (i.e., its principal value is meant). 
Equation 91 is the Khachaturyan-Shatalov equation (18). 

Since Bpq(~) is independent of the magnitude of k, the Khachaturyan­
Shatalov equation can be rewritten in the convenient form: 

~~el = 21 E 1(d4w)B (e)H (e) 
p,q n p~ - pq -

(92) 

where dw is the element of solid angle·, the integral is taken over the unit 
sphere, and 

a 
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1 k .. 

H (e) .. <~2 2 )1 maxe (ke)e*(ke)k2dk. 
pq- 'II' 0 p - q 

(93) 

Equation 92 expresses the elastic energy of an arbitrary distribution of 
inclusions as an integral· whose kernal is the product of two terms, one of 
which, Bpq(!), is an energy which depends on the transformation strain and 
the elastic constants of the matrix whil~ the other, ~q(e), is a geometric 
factor which depends only on the distribution of inclusions. Using the de~ 
finition, eq. 90, and the identity, analogous to 28 

d3k · dw 
f (2· )3 e {k)S*(k) = 1H (e)-

4 
= V[a o -e e ] , (94) 

'II' . p - q - pq - 'II' p pq p q .. 

where ap is the volume fraction of p, 

v - _....;. = -2 L Oi0 j(p)Ei0 ,(Q)[a 0 -a a ] p,q J p pq p q 
1 dw - - r f B' (e)H (e)-. 
2 p,~ pq - pq - 4'11' 

(95) 

The second term on the right gives the relaxation energy ~~~1 due to the in­
ternal strain field. the rela~ation· term may be re-phased in the usual 
continuum form 

(96) 

I ' 

Inhomogeneous Elastic Constants. For simplicity we shall assume that 
the v.olume fraction of inclusions is negligible, so that the homogeneous 
strain, Eij• may be ignored, and that the body is stress-free. The .strain 
is assume equal to the constant uij(p) withi~ inclusion p. Substituting 
the Fourier transforms of the internal stress (eq. 86) and strain fields 
(eq.· 88) into eq. 96 gives the relaxation energy in the form 

~?Pe'l = 2
1 r 1d4w[eiai0 j (p)nj n {e) a: (q)e ]H (e). p , q 'II' . . A. - A-m m pq -

(97) 

Adding the self-energy terms we obtain an equation of the form of the Kha­
chaturyan-Shatalov equation with 

(98) 

The Preferred Inclusion Shape and Habit: the thin-plate inclusion. 

Consider an isolated inclusion which is small compared with the body in· 
which it is embedded. Then the elastic energy is, in th~ stress-free case: 

1 dw 
M l = ~2 -4 B(e)H(e). 

e 'II' - -
(99) 

The Preferred Shape. It is easy to show that the elastic energy is 
minimized if the precipitate has the form of a thin plate with a definite 
crystallographic habit. Let n be the direction for which B(e) is minimum. 
Then B(e) ~B(n) and, in the stress-free case, -- - . 

·~?Pel ;> ~ B(~)1:~ H(!:,) = ~ VPB(!!,) (100) 

The equality ho~ds for an arbitrarily thin plate whose normal is £· 

The ·elastic energy is always minimum for a thin plate perpendicular to 
~ but may, in some cases, reach the same minimum for other geometries. If 
B(e) is isotropic, as it is for a simple dilation in an isotropic body, then 
~?P;l is independent of shape. If B(e) is isotropic in a plane, as it is for 
hexagonal symmetry, and has a minimum value for e lying in that plane, then -
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the energy is also minimized by a thin rod shape (20). 

The preferred physical shaP.e of the inclusion is determined by the bal­
ance between the elastic energy, which is a volume term and usually prefers· 
a thin-plate shape, and the surface energy, which prefers a spherical or 
faceted shape. In the limit of large inclusion size the volume terms domi­
nate and a plate-like morphology is expected. The small-particle case is 
discussed by Khachaturyan (20); the. common progr~ssion of precipitate shape 
from sphere to cube to thin plate during coarsening is easily interpreted. 

The Internal Strain. The internal strain field can be found from the 
inverse Fourier transform of ui i(k), (eq. 85). In the thin-plate limit the 
shape factor, Sp(~), is negligi~le-for the~ outside a thin rod in the direc-
tion, n, normal to the plate. Hence . · · 

ui,j(£) ~ njnim(n)o;iniep(r). (101) 

Two important results follow from eq. 101: .. (1) the strain is constant inside 
the thin-plate inclusion; (2) the constant dis~lacement' gradient inside the 
particle has a dyadic form, 

ui,j = nj ii (J!.) •. (102) 

Equation 102 has the consequence that the strain within the inclusion is an 
"invariant plane strain": The sum of a simple expansion or contraction along 
the normal, n, of the inclusion andaconstant shear in the plane of the par­
ticle. The ;esult is that a perfect crystallographic match is established· 
between the inclusion and the matrix in the plane of the interface, which is 
hence an invariant plane of the total strain, £fj + £i., describing the geo-
metric change from the matrix to the constrained incluiion. · 

An Invariant Plane Transformation Strain. If the transformation strain, 
ko, is itself an invariant plane strain, it can be written as the symmetric 
part of a dyad: 

£fj = t (i_inj + ijni) (103) 

If the inclusion is a thin plate in a stress-free body, and the habit is ~ 
or 1:._ then the elastic energy, .!l4>el' is identically zero (by eq. 99) •. This 
result establishes the basic assumption of the "phenomenological theory" of 
martensite particle or inclusion habits; since fl4>el~- the preferred habit is 
a vector of the dyad (the directions .B and ~ are degenerate). But it should· 
be noted that the derivation is for a thin plate. A particle of finite 
thickness will have a finite elastic en~rgy, and could have a different pre­
ferred habit. 

The Influence of External Stress. An external stress adds the contri­
bution· 

.!lG(o) = Voi.£eijl + V o .. £io' 
- J p 1] J 

(104) 

.. 
to the free energy. Since 6G(£) is independent of inclusion geometry, it 
will not change the preferred shape or habit of the particle. However, if 
the transformation strain is non-spherical then the transformation may gene­
rate several distinct crystallographic variants of the inclusion phase. In 
this case a non-spherical stress will remove the degeneracy of the variants 
and promote the formation of that (or those) which provide the least value 
of the factor oii£fj• This phenomenon is well known from research on stress­
induced martensites, and was described by Eshelby (1). 

v 
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The influence of external stress is more complicated when the trans­
formation strain £ 0 is itself a variable, as it is when the inclusion is a 
composite particle or ordered phase whose stress-free strain varies with the 
state of order or the configuration of the internal constituents. ·Then the 
external stress may change the habit as well as the energy of the particle. 
If the particle forms in the stress field and if the various states of the 
particle.are freely convertible, the internal constitution and habit should 
be chosen to estab'lish a least value of 

el 1 
6~el- vaij£ij = Vp[0ij£~j + 2 £~j~fjk1(~)£kt 1 (105) 

where 

(106) 

It follows from eq. 105, for example, that the internal state and possibly 
the habit of twinned martensite plates may change with the applied stress 
at the time of their f~rmation.· 

Finite Thickness. It is not possible for an inclusion of finite size 
to reach the true thin-plate limit since the surface-to-volume ratio of such 
an inclusion would be arbitrarily large and incompatible with a finite sur­
face. tension. If the particle is finite in thickness but thin then the 
method of Khachaturyan and Hairapetyan (23) can be used to write the' elastic 
energy as the sum of a volume term and an edge energy which formally resem­
bles the energy of a dislocation loop. Given cubic symmetry and a large 
value of the aspect ratio, (diameter divided by thickness): 

6~ = V {.! B(n) + SinK} 
el p 2 - WK 

(107) 

where 
=(a 2B(~)\ 8ij a a J = 80ij' ei ej !:=~ 

(108) 

Inhomogeneous Elastic Constants. Since the relaxation strain is con­
stant within the thin-plate precipitate, the effect of a.modulusmismatch 
in the inclusion may be found analytically. The s.olution is, in fact, tri­
vial. Since the relaxation strain is confined to the inclusion the strain 
energy and the habit plane in the stress-freecase can be found by substitu­
ting the correct elastic constants for the inclusion into equations 100 and 
101. 

The Ellipsoidal Inclusion. 

The ellipsoidal inclusion is an important special case because of its. 
constant internal strain and its flexible geometry, which permits-its use 
to approximate various inclusion shapes from rods to flat plates. The pre­
sent treatment of the ellipsoidal inclusion will be confined to the demon­
stration that the internal strain is constant in its interior, which has two 
corollaries: (1) the equations proposed by Eshelby (1) apply when the ma­
trix is isotropic (i.e., the Khachaturyan (17) and Eshelby (1) solutions to 
the inclusion problem are consistent), and ·(2) the strain field and elastic 
energy associated with the ellipsoidal inclusion can be found analytically 
when the elastic constants of the matrix and inclusion differ (as was shown 
by Lee, Barnett, and Aaronson (19) through a different approach). 

The Internal Strain. The internal strain within an ellipsoidal inclu­
sion can be proved to be constant and evaluated from the following general 
theorem: If F(.!:_) is a function of .!:. = ~/I~ I, and !,o is any point within the 
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ellipsoid, then the Fourier transform 

A ik·r d3k (109) 
F(~o) = /~(£)9(~)e _- _o (2~)3 

is a constant given by an integral over the unit sphere: 
- d -F(r ) = <F> = p..J!!.. F(e') (110) 

~:, 4n ,..., • 
The function F(~') in the integral is obtained from F(~) by the transforma­
tion 

e = (111) 
i 

where a
1 

is the 
and 

th 
1 

of the i principal axis of the ellipsoid, R=(a1a2a 3)3 

k' 
' i ei = kf' 

where~· is a vector with components aiki/R, k'=lt'l, and 

e' e' e' 
g = [ (...1.) + (....2.) + (..2.) ]~ 

al az a3 

(112) 

(113) 

It follows via the inverse Fourier 
strain within an ellipsoidal inclusion 

transform of ea. 85 that the internal 
is a constant, ~Ij: 

t _ M o 
€: ij - ij k.t E:k.t 

where the fourth-order tensor 
e' e' 

Mijkn- !(dw)n (e')t. (_J!)(_i) 
~ - 4~g ir - rskt a a 

s j 

Isotropic Media. l·1hen the matrix is isotropic 
_ .!. eiej 

nij(e) -ll [oij 2(1-v)], 

O'io • = 2]..1 [E:~j + 0 •j (1 \)2 )€:~ •] • J ]._ ]._ -\) u. 

Using these relations in eq. 114, the non-zero components of the matr>ix 
M are: ijk.t 

-1 [(2-v)<;~> - <;4>] ~III = (1-v) I 

MIIJJ = (l-v)-1[v<;2>- <;2e2>] 
I I J 

- -1 - + <;~>) ~JIJ = [2(1-v)] [(1-v)(<e~> 

where 

(114) 

(115) 

(116) 

(117) 

(118) 

(119) 

and the ej are the componer£ of the vector to the surface of the unit: sphere.: 
The elements MIJKL may be shown to be identical to those found by Eshelby 
(1). 

.. · .. 
Inhomogeneous Elastic Constants. Since the internal strain is constant 

within an isolated ellipsoidal inclusion, the overall strain field and the 

.. ... 
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elastic energy associated with. an ellipsoidal inclusion. with a modulus mis­
match may be readily found. It follows from eqs. 88 and 113 that the con­
stant strain within the inhomogeneous inclusion is 

(120) 

where Sijkt d:rends on the elastic constants of the matrix only. Inserting 
the value of oij from eq. 96 gives a linear equation for £1j: 

t 0 t . 
£ij = sijki.p'ktmn£mn - t.A.kimn£mn] <121) 

where the A.kimn are the elastic :c?nstants of the matrix. The solution to 
this equatio~ sets the value of £ij' and permits the calculation of the 
strain field from eq. 97 and the determination of the elastic energy via 
eq. 107. 

The existence of an analytic solution for inhomogeneous ellipsoidal in­
clusion was previously demonstrated by Lee, Barnett, and Aaronson (19) from 
the Eshelby (1) formulation of the problem in real space. · 

Applications 

A variety of applications of the macroscopic elastic theory is presen­
ted and discussed irt ref. 20. These principally·conceiri the shapes, habits, 
internal state, or distribution of precipitates and martensite particles, 
and. often' closely predict the results of experimental work. As examples of 
the applications we will briefly discuss the shape, habit, and internal 
strain of 'tetragonal precipitates in cubic crystals, a case which includes 
a great many of the important intermediate hardening precipitates. 

The Thin-Plate Tetragonal Inclusion in a Cubic Matrix. 

Since the internal strain within a thin-plate inclusion is. constant and 
confined to the inclusion, the internal strain and energy of the inclusion 
can and should be computed from the tetragonal elastic constants of the in­
clusion. But since these are rarely known most applications of 'the theory 
have assumed them to be equal to the elastic constants of the cubic matrix. 

The Preferred Habit. If we neglect anisotropy in the surface energy · 
then the preferred habit of a tetragonal inclusion is the plane perpendicular 
to the vector, ~' which maximizes · 

(122) 

If we neglect the difference between the elastic ·constants of the precipitate 
and matrix then n can be found analytically, as was shown by Wen, Kostlan, 
et al. (21). Th; solution was ·given in eqs. 77 and 78. Under these approxi­
mations the habit of the tetragonal inclusion is identical to the preferred 
habi·t of a spinodal wave in a cubic lattice containing tetragonal defects. 
In particular, the predicted habit is of type (hOk) if the anisotropy factor, 
t.>O, and is (hhk) when t.<O. When the inclusion is cubic we have the familiar 
results: n=[OOl] for t.<O and 1//3 [111] for t.>O. When the tetragonality, n, 
is positive, n=[OOl], i.e., the tetragonal axis is perpendicular to the habit 
plane (excepting a small range of n near zero in the t.>O case). 

The theory gives an accurate prediction of the habit planes of a variety 
of precipitate phases, including the (102) habit of Fe4 C in a-Fe, the (227) 
habit of V2H in vanadium, the (001) habit of GP zones in several systems (20), 
the (001) habit of y' andy" Ni 3 (Ti,Al,Nb,Ta) precipitates in Fe- and Ni-based 
superalloys, and the (102) habit of Ni 3V in superalloys (24). It misses the 
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(001) habit of Fe16N2 :in a.-ironbut this habit is predicted if the finite 
thickness of the Fe 16N2 precipi.tate is taken into account (25). 

The theory also fails to predict the (103)habit common for oxides and 
carbides of the BCC refractory metals Nb, Mo, and V. Since these metals 
have positive anisotropy, the type of the habit is wrong; a ·(hhk) habit is 
predicted. This discrepancy is under investigation, but may have a simple 
explanation. Examination of the Nb20 case (20) shows that (103) is the ha­
bit the precipitate would take if the ~Ok) type were required.. If the oxy­
gen addition changes the sign of the anistropy, !J., then use of the elastic 
constants of the precipitate would yield a preferred habit near (103). 

The Internal Strain. The strain inside the thin-plate inclusion can be 
computed from eq. 101 if the stress-free strain and the elastic constants 
are known. A good match between the computed and measured internal strains 
had been obtained for GP zones (20), Fe15N2 in a.-iron (25) and VHo.45 in 
vanadium (20), where in all cases the matrix elastic constants were used. 
No counter-examples are known .to us. 

The elastic theory requires that a coherent thin-plate precipitate have 
a perfect crystallographic match with the matrix in the plane of the preci­
pitate, i.e., that the habit plane be an invariant plane of the internal 
displacement. This result has the consequence that the internal strain may 
change the apparent symmetry of the precipitate phase. A coherent thin~ 
plate cubic precipitate with a (001) habit .in a cubic matrix will appear to 
be tetragonal in diffraction experiments; the tetragonality results from the 
concentration of the strain in the direction perpendicular to the habit, and 
has been observed experimentally, for example in GP zones in Al~Cu (26) and 
in Cu-Ni-Fe (27). A coherent tetragonal precipitate with a non-symmetrical 
habit may undergo more complex changes in apparent symmetry; the unusual 
crystallography of the nearly tetragonal VHo.4s precipitate in a (227) habit 
in vanadium (28) is largely explained by the elastic the~ry (20). 

The Finite Tetragonal Inclusion. 

If a tetragonal precipitate is formed by a discrete nucleation process 
in a cubic crystal then finite interfacial tension will prevent the precipi­
tate from achieving a limiting thin-plate morphology until it has coarsened 
to a large size. The result may be a shift in the preferred habit of the 
precipitate and a systematic change in its aspect ratio during coarsening. 
These effects have been studied in some detail for the particular case of 
Fe15N2 in a.-iron (25,29). 

The Preferred Habit. If the interfacial tension is assumed to .be iso­
tropic then the preferred habit is determined by the elastic energy. From 
eq. 95, £ should maximize the function 

dw 
M~l =.9iB'(~)H(~) 41T; (123) 

where B'(e) is given by 121. If the shape of the particle has circular sym­
metry abo~t n, as do, for example, the disc, lens, and spheroid, then the 
geometric factor 

H(e) = H (a.), ...., K 
(124) 

where the aspe~f ratio, K=2R/d, is the ratio of particle diameter to thick­
ness and a.=cos (e•n) is the polar angle of e with respect to n. Assuming 
cubic symmetry and letting B be the azimuthal angle about ~: -

4.' 

J 
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~~· • ~~'(n,K,n) 
el -

= <4V)c44t~1b(n,e)H (a)sin adadS 
11' - K 

(125) 

where b(n,e) is given by eq. 56. It follows that for a ~iven particle shape 
the prefer~ed habit depends only on the tetragonality, n, of the transforma­
tion strain and on the aspect ratio, K. 

Equation 125 was used to determine the preferred habit of Fe16N2 in a­
iron as a function of aspect ratio, assuming a disc shape and the elastic 
constants of a-iron. The habit is aiways of type (hOK); however, the angle 
9, between the preferred normal, n, and the.tetragonal axis, [001], changes 
continuously from 9=22.5° (a habit near (102)) as K~ to 9=0 (the (001) ha­
bit) when K is small. The experimental results (30) show that Fe1 6N2 preci­
pitates form as discrete particles of measurable thickness and have the (001) 
habit. 

A similar shift in particle habit with aspect ratio was found. by Mayo 
and Tsakalakos (31) for the hexagonal MgZn2 precipit~ from solution in Al. 

The Change of Aspect Ratio on Coarsening. The aspect ratio of a small 
tetragonal precipitate should be determined by a balance between its elastic 
energy, which is minimized for large K, and its interfacial tension, which 
increases as K becomes larger. Using the approximation for the elastic 
energy given in eq. 107, the shape-dependent part of the free energy is 

f::.G' = 
V. SinK 

P +·ys 
' 'II'K 

(126) 

where y is the inte~facial tension (assumed isotropic) and S is the surface 
area. For a thin disc of given radius this expression is minimized when 

K2 -~ 
R(inK-1) - 3 B (127) 

which gives the preferred aspect ratio as a function of the particle radius, 
the surface tension, and the elastic factor, 8, which is determined by the 
elastic constants and the particle habit. 

Equation 126 predicts that the aspect ratio will increase with the par­
ticle radius, R, so that the ~-hand side of the equation remains constant. 
This relation has been test~d (29) ap,ainst the coarsening 
data for Fe1bN2 (28). While the data sets do not reproduce one another, 
eachis well fit by equation 126. The interfacial tension of Fe16N2 can be 
estimated from the equation and the data after evaluating S. The results 
range from 6-29 ergs/cm2for Fe16N2 • 

Conclusions 

There is no question that the linear elastic theory oversimplifies the 
physics of solutions, precipitates and inclusions. On the other hand, it 
offers the advantage_of including a substantial part of the r~levant physics 
in a unified model which is mathematically tractable, which offers sound 
qualitative interpretations of a variety of important reactions in the solid 
state, and which often yields surprisingly accurate numerical results. For 
those reasons the linear elastic theory warrants study and continued develop­
ment as an integral part of the theory of phase transformations ~n solids. 
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