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ABSTRACT 

i i i 

RADIAL DISTRIBUTION FUNCTION AS AN ANALYSIS TECHNIQUE 

Anthony W. Pearson 
(M.S. Thesis) 

Materials and Molecular Research Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeleyy CA 94720 

Diffraction patterns for Cu as found in a perfect FCC lattice were 

generated for various particle sizes and shapes using a computer model 

based on the Debye-Sum. These patterns were Fourier transformed to 

yield the "radial distribution function" G(R)'= 4JTR(o(R)-o
0

). This 

function was studied in relation to five variablesy i.e.y 1) particle 

size, 2) particle shape, 3) scattering vector termination, 4) the 

influence of small angle scattering due to sample size and, 5) effect 

of vibrational atomic displacements. Particle sizes of up to 30~ were 

found to influence G(R) as related to determination of the first 

coordination shell. The effect of volume scattering was to displace 

the G(R) curve negatively, but neither peak position nor area were 

affected. The measurement of o
0 

was affected and the effective o
0 

present with SAXS removed must be taken into account when calculating 

coordination shells. 
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INTRODUCTION 

This study was originated in conjunction with studies of glassy 

carbon in the hopes that it might be possible to obtain high resolution 

information regarding the turbostatic stacking nature of the material, 

and whether any presence of hydrogen in between stacking layers cou)d 

be detected. This problem raised many other fundamental questions 

about the "Radial Distribution Function" (RDF) such as: 1) effect of 

small-angle-scattering (SAXS)~ 2) effect of particle size. 3) effect 

of particle shape. 4) experimental termination error. 5) temperature 

correction. The main emphasis of this work was to ascertain the effect 

of particle size upon the RDF and to discover at approximately what 

particle size the first three coordination shells would be fully 

developed as determined by RDF analysis. 

Related Carbon studies have been performed by Ergun,3 Pings, 21 

and Lindberg.22 These papers dealt with the structural nature of 

Glassy Carbon and not with the analytical nature of the RDF. 

Papers pertaining directly to the analytical nature of the RDF have 

been widely published. Direct examples are: "Influence of Neglected 

Small-Angle Scattering in Radial Distribution Function Analysis", 

Cargill, 1 . "Analysis of Termination Effects on Atomic Radial Density 

Curves," Ergun2 et al. Discussion of the dependence of the 

"Correlation Function" on the scattering volume is discussed by 

Debye4 and the dependence of the RDF on shape is discussed by 

Riley. 5 Other related papers have been published by Oiamond,23 

Franklin, 24 and Suzuki.25 
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TECHNICAL DISCUSSION 

Computer Hardware 

All data were produced on a. Control Data Corporation 7600 series 

mainframe computer. This machine utilizes a 60-bit pipelined 

architecture with a small-core memory access time of 275 Nanoseconds. 

The proce~sirig architecture consists of a main centril proce~sing unit 

(CPU) and eight peripheral processing units (PPU). These units are 

tightly synchronized in time. Inst'ructions in all but one of the units 

are processed with every clock cycle; hence, the term "pipeline" 

architecture. The number of raw multiplications and divisions possible 

is about 2.4 x 10 6 multiplications and about 9.0 x 10 5 divisions. 

These numbers are arrived at by taking the reciprocal 6f the product 

of clock period and the number of periods per operation. The CDC-7600 

utilizes a 27.5 Nanosecond clock and 3-instruction codes to perfo·rm a 

multiply and 2-i nst ruction codes to perform a divide. Assumi rig an 

instruction is executed every clock~ycle the details are worked as 

follows: 

( Multiplications/Seconds) = 

Divisions/Seconds) = 

3 
L -1 6 IC CP 2.42 x 10 

m=1 m = 

2 
L IDCm CP - 1 = 9.09 x 105 

m=1 

where: CP = 27.5 nanosecond clock period. 
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IC = #of clock periods utilized for instruction (m) in m 

multiplication unit. (ICm = 5 periods; for all m) 

rocm = # of clock. periods utilized for instruction (m) in 

division unit. (IDCm = 20 periods; for all m) 

Computer Software 

The language utilized to produce the data was the CDC version of 

ANSI standard Fortran IV i.e., (FTN-4). This CDC compiler has several 

levels of optimizaton depending on whether the user is striving for 

faster execution time or faster compilation time. A program such as 

the one described for this project is extremeley CPU-bound and requires 

as much optimization of the code as is possible to speed execution 

time. For this reason the compiler was directed to produce object code 

at its highest level of optimization through the use of a control card 

option directive. Even using a compiler such as this at its highest 

level of optimization is inadequate and it is necessary to include a 

"vectored array" access scheme. See Appendix A for an example. Other 

optimization techniques such as reversal of summation, normalization 

of variables, and conversion of division to multiplication were used 

and are described in Appendix A. 

A problem such as this is termed CPU-bound because the time 

involved for numerical calculation far exceeds the time utilized for 

I/0 processes such as disk access or read and write operations. The 

majority of CPU time is used in performing the iterations of the 

quantity [Sin(KR)] and the square root function used in the distance 
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fonnula. These functions are the limiting factors because they need 

to be perfonned by high-level software routines. In comparison 

assembly language opcodes which perform floating point (adds, 

subtracts, divides and multiplies) all within hardware units in the 

machine, are orders of magnitude faster. The typical execution speed 

of an optimized floating point routine for SIN(X) is 24 JJS as stated 

by Cassola. 8 Thus, computation of one value of SIN(X) must be 

considered as approximately 100 times slower than the accessing of 

variables from memory and illustrates this calculation as being the 

limiting factor in program execution speed. 

The programs_ written utilize the Least-Squares-Polynominal 

Regression and Polynomi~l interpolfttion subroutines: (POLFIT, PVALUE) 

from the Sandia mathematical library version 7.2 of Lawrence Berkeley 

Laboratory.- These subroutines were used to fit and interpolate a 

least-squares polynomial for the scattering factor f(k) to data found 

in the International Tables for X-Ray Crystallography, Vol III, the 

values were not corrected for dispersion. The polynomial fit found was 

excellent with a root-mean square error of less than 3 percent from 

point to point. The inteqration routine for G(R) was done using 

Simpson's 1/3 rule. The routine is specific for problems dealing with 

equal intervals, although the technique may be adapted for problems 

with unequal intervals. Simpson's 1/3 rule is used with an even number 

of intervals and has a global error of h4, see Gerald.1 5 This 

error is insignificant when small intervals are chosen for 

integrations. 



5 

METHODS OF COMPUTATION 

Various methods of producing X-ray diffraction profiJes by 

computational numerical method have been explored. One of the most 

general powder pattern methods uses a Lorentz or Gaussian profile 

equation integrated for all (hkl) reflections in reciprocal space and 

multiplied by the appropriate structure factor for the material (see 

H. Fichtner et al.).6 This type of method is excellent for 

determining peak positions, shapes, relative intensities, and for 

answering questions concerning particle size, and strain since the 

method is easily adjusted to account for such variables. This method 

is also distinguished by its relative ease of being programmed in a 

high-level language such as Fortran IV, and its low CPU cost. 

However, this method must be rejected when questions of calculating 

the Radial Distribution Function are considered. The reason this 

method should not be used in calculating RDF is that intensities are 

not produced in 11 Electron Units ... The transform kernel of the RDF 

consists of a delicate comparison between the scattering per atom in 

the ensemble being studied versus the scattering factor of a single 

ato"m. Due to this reason any failure in correcting either experimental 

or computational intensity data to Absolute Electron Units will result 

in wildly oscillating behavior of the transform [see (Klug and 

Alexander) 7 and Kaplow].l4 

Since the behavior of the RDF is critically dependent on data 

being in electron units the only solution to the problems posed other 

than pursuing theoretical answers was to use a Debye Summation. The 
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Debye Sum will yield perfectly adequate results for crystalline powder 

patterns, except that interparticle effects which give rise to a 

smoothing of small-angle scattering will be absent. The absence of 

this effect is due to the fact that the Debye sum is treating all 

scattering problems as an homogenous· ideal gas composed of particles 
. 

of a singular shape and size with no particle interactions (hence the 

gas is ideal)'. In crystall'ine powder patterns it's these interparticle 

interactions which give rise to smooth low-angle intensity data (see 

R i1 ey5). 
.. 

It's certainly conceivable to think a{ modifying ttie comp-ufational 

program using a Debye summation to not only account for these 

interactions, but to also include the result from having a distribution 

of particle sizes and shapes.· 

The main drawback ot' using a ·oebye sum calculation is the reason 

of feasibility. Considering a tube of side length Na; N=l,2,3 etc. 

the number of interactions which must be considered in a conventional 

Debye summation for an FCC lattice is·l6N 6 calculations. Obvious 

symmetry will reduce the problem to 4N3 {2N3-l) calculations, but 

reductions beyond this point involve producing an increasingly complex 

computer program and require a certain knowledge of matrice representa

tion of crys.tal symmetry .19 Three ( 3} programs have been 

successfully produced with the following characteristics: 

(1) Vectored Loop Method: Using vectored looping techniques the 

Debye sum is calculated for an FCC lattice usi~g 4N3(2N3-l) 

calculations for all. N. This method has an N6 relation. 

-. 
C· 

\,),.._ 
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(2) Z-Stacking Method: Using vectored looping techniques the 

Debye sum is calculated for an FCC lattice using (N-1) (1 + 8N 4}-8N3 

calculations for all N. This method has an N5 relation for large N • 

(3) Array Symmetry Method: Using a qualitative symmetry found by 

inspection; the Debye sum is calculated for an FCC lattice using 

approximately N2 calculations. It's suspected that the program has 

a flaw which prevents it from functioning for all N. 

In this paper intensities were calculated using the Debye sum 

expressed as follow: 

where: 

K = 4wSin(~)/A; the scattering vector 

I.E.U.(K) =intensity in absolute electron units. 

f(K) = scattering factor of the atom being studied. 

( 1) 

RIJ = the absolute magnitude of the distance between the atom I 

and the atom J in the ensemble under study. 

The computational procedure for I.E.U.(K) is as follows: 

1) The shape of the particle is decided upon and the algorithm 

for that shape is placed in the program so as to create atoms at the 

desired real-space coordinates. The particle shapes used for this 

problem were the cube, plate, and rod. Conservation of scattering 

volume was observed for all of these cases so that for any N value 
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i1T4Jlemented the results are comparable for any shape produced. 

following shapes have the following structures: 

The 

Shape: Structure 

Cube: The total number of atoms is 4N 3 in accordance with an 

F.C.C. structure of length Na on a side. The cube has N 

unit cells per degree of freedom and is thus an equiaxed 

structure. 

Plate:· The total number of atoms is 4N 3• The plate structure 

is one (1) unit cell thick in the [001] direction; N unit 

· celi.s wide,. in the--[610] direction, and N2· unit cells 

long in the [100] direction. 

Rod: The total number of atoms is 4N 3• The rod structure is 

one (1) unit cell thick in the [001] direction and in_ the 

[010] direction. The rod is N3 unit cells long in the 

[ 100] direction. 

2) The coordinates of the structure are arranged in conventional 

F.C.C. fashion using the standard translation fonnula of: 

Xn,Yn,Zn; Xn+1/2, Yn+1/2, Zn; Xn+1/2,Yn,Zn+1/2; Xn,Yn+1/2, 

Zn+1/2 for n =· 1,2 ••• N3• The placement of the coordinates Xn, Yn,Zn 

are determined by the .shape of the particle as per the criteria 

previously explained. All of these coordinates are placed in memory. 

3) The intensities may now be generated directly from the Debye 

sum using any of the three programming techniques previously 

discussed. I.E. the Z-stacking method, vectored loop method, or array 

symmetry method. 

. 
' 
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Vectored Loop Method 

Using vectored loops shown in Appendix A the summation is done as 

shown in Equation 1 to arrive at I.E.U.(K). 

Z-Stacking Method 

The same set of transformations and vectored looping shown in 

Appendix A are used in this method, except the summation is performed 

with a multiplicity factor which redu~es the number of terms needed 

for the summation. The number of terms is effectively reduced by 

{1/N). The method is accomplished as follows: 

N•3 

I . I 
I I 

I 
1 /__.Plane 3---. Contains atoms 73-108 

z • 2 .._ r1--:==-'~ 
I I 

Shape • cube 

I I 

/ ,'--.Plane 2 ~contains atoms 37-72 
Z • I .,__ 1-:::=::_1 ._ 

I 
I I 

/ /--.Plane I -.contains atoms 1-36 
z. 0 ..,__ "-1---' 

Figure A 

Each plane shown in Figure A has 4N 2 atoms or 36 atoms for the case 

above. As shown, each plane contains the atoms numbered in the scheme 

shown above and the summation may be reduced as follows: 



4N 2 

+ 2{N-1) L 
!=1 

10 

• • • 2 

(2) 

4N
3 

Sin(KRIJ) 
L -:-:-K =-R ----' 

J=4N2(N-1)+1 IJ 

This surrmat ion can be programmed without great difficulty. 

Array Symmetry l'v1ethod 

This method is the most difficult to program but affords the 

greatest reduction in computational analysis. This method is arrived 

at by the analysis of the real-s~ace interatomic distance matrix as 

f 011 ows: 

1) First. form the upper triangular matrix R with any element 

RIJ = [(X(I)-X(J))2+(Y{I)-Y(J))2+(Z(I)-Z(J))2]1t2 

J elements-

I 2 3 4 5 6 7 8 9 10 II · · · · · · · · 4N3 
I elements ll I I 

21 
3 

4 
5 

6 
7 

8 
9 

10 
II 

. 
. ._ 
~ . 
'--

. 
" 
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This matrix may be broken into 4x4 submatrices; but it's 

convenient to first perform the subtraction of all submatrices 

involving interactions of atoms within each individual unit cell. The 

contributions from these submatrices are easily analyzed. 

The submatrices subtracted are of the form 

I 2 3 4 5 6 7 8 4N3-3 
4Nt3 
4 N ~ 2 t--t--+--+--f 

4 N! I ...,_.........._~~----~ 
4N3 ....__-Io...o...,j~ 

where a= lattice constant for Cu = 3.6148A. This subtraction 

leaves the upper triangular matrice in the following form 
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Examining a typical one of these submatrices reveals a symmetry 

pattern shown below: 

I 
2 
3 
4 

5 6 7 8 
2 5 5 3 
I 2 3 I 
I 3 2 I 
3 5 5 2 

Note: the elements have been 

normalized by multiplying by 

/2"ta anct squaring the result. 

Thus, a value of 1 for an 

element would represent an 

interatomic distance of a/~ 

and a value of 2 would 

represent a distance of (a) 

etc. 

...... 
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The symmetry of each individual submatrice can be seen to involve 

the diagnoal terms and off-diagonal terms such that all the diagonal 

terms are equal, and the trace of the matrix is four (4) times the 

first element. All off-diagonal terms will be odd numbers if the 

diagonal elements are even and all diagonal elements must of necessity 

be even numbers.* Further syrrmetry can be found by co~Jl)aring the sum 

of the off-diagonal elements below the diagonal to the sum of the 

off-diagonal elements above the diagonal and noting their equivalence. 

One other important syrrmetry that is observed is that any set of 

sub-matrices defined by having the same first element will also be 

such that the sum of the elements in any matrice of the set will be 

equal to the sum of the elements from any other matrice in the set. 

These symmetries by themselves are practically enough to define the 

whole problem analytically, the only symmetry factor which appears 

difficult to deduce is the repetition factor of each submatrice. The 

repetit.ion factor would give the number of matrices contained in the 

set of all matrices with equal traces. 

*All diagonal elements involve the distance between equivalent atoms 
in different unit cells. Since the atoms are equivalent the sum of 
the difference in their vector components will always add to a whole 
number, eg. R15 = la; Rsg = 2a; Rl,29 = 3a such that any 
(X diag-X diag) = 0,1,2,3 ••• etc. 

This relation is also true for Y and Z vector components of any 
diagonal elements. Since the above relation is true it's true that 
all normalized diagonal components will be even whole numbers. 
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These symmetries however suggest a shorthand computational method 

involving the determinaton of the repetition factor. The program 

operates by generating all first diagonal elements except those of the 

type RIJ where I = J and RIJ where I > J and storing them in large 

core memory. 

The program then stores the unique va 1 ues of each first e 1 ement 

such that a tab 1 e wi 11 be formed which contains the va 1 ue of each 

unique interatomic distance associated with a diagonal element. The 

program then finds the repetition factor ~f each element in the table 

by counting its redundancy from the table of all elements found in 

large core memory. Once the repetition factor of each element is 

found the program recreates the submatrix associated with each unique 

·diagonal element. The Debye sum is then computed for each submatrix 

and multiplied by the repetition factor to yield the end result. 
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RADIAL DISTRIBUTION FUNCTION 

The intensity distribution of coherent radiation from an ensemble 

of atomic scatterers was described by the Debye sum. The sum was 

computed by one of several methods described and produced an intensity 

pattern with the following five variables: 

1) Vector termination point 

2) Small angle scattering 

3) Terrperature diffuse scattering 

4) Ensemble shape 

5) Ensemble size 

The first three (3) of these variables and their influence upon 

the radial distribution function have been treated in detail. 

However, the last two variables appear to not have been given as 

detailed an examination. Specifically variable (4) was given 

treatment by Riley, 5 and a treatment of variable (5) was not found, 

even though extensive treatments of particle size upon intensity 

distributions have been performed by such people as (Stokes and 

Wilson). 9 Each of these variables have been examined and the 

results are presented in the proceeding sections. 

Radial Distribution Function Defined 

The following treatment has been taken from Kaplow,10 and 

(Enderby and Howells).11 

G(R) is most frequently found in the form: 

G(R) = 4wR(o(R)-o
0

) 
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where 

P0 = average number of atoms per unit volume 

4wR 2p(R)dR = average number of atoms in a spherical shell a 

distance R from the center of an average atom; with the shell having 

thickness dR. 

G(R) is related directly to the interference function through a 

Fourier sine inversion; and this is the property which makes it the 

most convenient function to use when transforming X-Ray intensity 

data. G(R) also appears when expressing potential energy equations 

such as the (PY) Percus Yevick model or the (HNC) Hyper-netted-Chain 

equation as expressed by Sten.13 The appearance of G(R) in 

correlation functions such as the "direct carrel at ion function" is 

also related to the properties of G(R) and its definition. The 

intention here is not to describe G(R) in term~ of its atomic 

correlation functions or the existing atomic energy potentials of the 

system being studied.· Rather that knowing an adequate expression for 

the interference function we wish to study the resulting G(R) by 

varying certain parameters in the interference function. G(R) may be 

exp~essed in terms of the Debye sum as follows: 

j
oo. 4N 3 4N3 Sin(KR ) 

G(R•) =.?. K L L IJ Sin(KR•)dK 
w 

0 
1=1 J=I+1 KRIJ 

(3) 

where R• =a continuous variable distinguished from RIJ· This 

equation may be arrived at by substituting eq. 1 into the intensity 

kernel of the Zernicke-Prins equation given by eq. 4. 

·•. 
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(4) 

Equation 4. may be easily rearranged to yield G(R) and the Fourier 

inversion relationship is easily visible in equation 5 and 6. 

G(R) = 4wR(p(R)-p
0

) =; ~oo Ki(K)Sin(RK)dK 

F(K) = Ki(K) = ~
00

G(R) Sin(RK)dR 
0 

(5) 

(6) 

Note the function G(R) depicted is purposely written in large 

capital script so as not to confuse it with the function little g(R) 
.. 

which is also similar to G(R) by the following relation: 

(R) G(R) + 1 
g = 4wRp

0 

(7) 

The function little g(R) is the function which appears directly in 

potential energy expressions such as the PY and HNC equations. 
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RADIAL DISTRIBUTION FUNCTION AND VECTOR TERMINATION ERROR 

The following treatment is adopted from Ergun. 2 The treatment 

is based on rewriting the Debye sum as a sum over all unique atomic 

distances and substituting it into the transform for G(R). Using the 

interference function (eq. 6) obtained from the Debye sum where ~he 

Debye sum has been corrected for vibration gives: 

F(K) 

where 

K = 

-

4TrSin(e) 
). 

(8) 

mJ = aYerage number of interatomic distances RJ per atom in the 

ensemble. 

mean square deviation in RJ due to vibration 

RJ = a unique interatomic distance in the ensemble. 

Note, the sum excludes the distance RJ = O; and counts each distance 

twice. 

It is interesting to note here that treatments by other authors 

such as Warrenl2 include the use of an exponential convergence 

factor in K-space to make the problem soluble. rt•s assumed that 

these factors whether they are convergence factors or temperature 

factors are acting as integrating factors for the problem. The 

~-· 
> 
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treatment of the problem in any case will of necessity be inexact 

except in the case presented where it is assumed that all vibrational 

displacements in the lattice ensemble are equal. This assumption is 

of course invalid for polycrystalline experimental systems. 

Rewriting the function G(R) in terms of both upper and lower 

limits of integration gives a function which represents the 

distribution function for a set of experimental data with a lower 

cutoff-limit of K=M1 and an upper cutoff-limit of K=M2• 

Sin(KR)dK (9) 

where 

DA(R) = the G(R) function which would be obtained with a typical 

set of experimental data having respective vector termination values 

of M1 and M2• 

F(K) = the interference function defined in equation 8. 

Rearranging order of summation and integration gives 

2 
( 10) =-

wAll J 

The integral in equation 10 must be solved in the complex plane 

and the procedure is long. The solution may be found in the appendix 

section of the paper mentioned. The solution by Ergun2 is given as: 
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( 11) 

erf(X) = Is the standard error function of X 

Z(a,b) 

where 

a = M6 J . 

The function PJ(R) is derived by changing the integration limits 

for equation 9, such that M1 = 0 and M2 =oo. 

Thus, G(R) which contains no termination error can be obtained by 

the summation of equation 11 over all interatomic distances. We can 

signify this function by an infinity (oo) subscript. 

·.J 



4wRD (R) = 4wR ~ 
All 
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(12) 

Equation 12 expresses a method for calculating G(R) from just 

knowledge of position, vibrational displacement, and the multiplicity 

of every interatomic distance. Or conversely experimental curves may 

be corrected to reflect data as though it were taken without 

termination. The key to utilizing these expressions comes from 

knowledge of mJ and 6J both of which are difficult to obtain for 

complex experimental systems. For a theoretical system of the F.C.C. 

copper lattice as used in the computational models here, it would not 

be an unfair treatment to consider all of the 6J equal. The 

parameter mJ could be computed from the array symmetry method 

described earlier; while 6J could be set equal to the expectation 

value of the mean-square displacement as arrived at by the summation 

of all the elastic waves in the system. Upon such considerations 

calculation of G(R) devoid of termination error becomes a trivial task. 

If this same function would need to be determined for experimental 

data it's absolutely necessary that all of the 6J be set equal so 

that the error functions can factor out. 

Figure 1 illustrates the variation of parameters M2 and M1• 

The displacement factor for this figure is 6
0 

= 0, which corresponds 

to a temperature ofT= Oo Kelvin. Due to the uncertainty principle 

even at T = 0°K there is still a small displacement in the lattice, 

it's assumed to be zero. The effect of vector termination can be seen 

clearly in Curve A where M2 = 20A-1. In this case the appearance 
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of termination satellites will be seen at (:.4 A-1) = (2w/Kmax) to 

the side of any major peak. These peaks are readily seen at r = 

2.15A; r = 2.95A and at r = 4.05A and r = 4.8A. These satellites 

correspond to the major torrelation distances r = 2.55A and r = 4.42A 

(see Ergun2 and Warren12): Curve B shows the rapid washout of 

detail and peak broadening that occurs from vector termination due to 

the influence of the convoluted function T(M2 ) described by ,x 

Ergun. 3 

where 

and 

4wrDA(r) = /oo 4wxp(x) [T(M2,x)-T(Ml'x)]dx 
0 

( 13) 

(14) 

where DA(R) was previously defined in equations 9-11 and p(x) is a 

delta like function which peaks at all interatomic distances. This is 

the function we would like to obtain by a deconvolution of the integral 

in equation 14. This sort of procedure is dependent on M1 and M2 
and may not be able to be performed unless the analytical behavior of 

T(M,x) shows bounded support I,E (dies off rapidly with increasing 

x). There are many instances where T(M,x) may not be deconvol~ted and 

other methods such as described previously must be used. 
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RADIAL DISTRIBUTION FUNCTION AND SMALL-ANGLE SCATTERING 

The treatment of the exclusion of small-angle scattering (SAXS) on 

the RDF has been treated in depth by Cargill. 1 His treatment 

examined the SAXS associated with density fluctuations, and this makes 

his work very important for a material such as glassy carbon because 

of its high internal porosity. The data generated computationally in 

this paper contains SAXS associated with volume scattering and the 

effect upon the RDF is substantially different from the one noted by 

Cargill. The essential result revealed by Cargill is illustrated in 

equation 15. The result shows that the neglection of SAXS from the 

intensity kernel produces a G(R) which appears to correspond to a 

material of greater average atomic density than the material being 

studied. As a consequence of the slope of G(R) being disturbed near 

the first pea~ the coordination number of the first shell will be 

disturbed. 

( 15) 

where 

Gexp(R) = the Radial Distribution Function arrived at when SAXS 

is neglected from the interference function. 

w = a vo 1 ume which is of the order of the atomic vo 1 ume of the 

particle. This volume is associated with the Gaussian 11 Precision 

Function .. used to approximate the contribution of SAXS due to density 

fluctuations. 
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n2(w) = the average of the square of the atomic density 

fluctuations. 

y(w,R) = the density fluctuation correlation function. 

The effect of neglecting SAXS yields a decrease in G(R) by the 

amount (4wRn 2(w)y{w,R)/p
0

) which introduces an error of 

(4wRn2(w)/p
0

) at small values of R where the density fluctuation 

correlation function is near unity. 

Since the particle sizes in this problem are so small the 

unobservable peaks are clearly visible (see Figure 7a). These 

unobservab 1 e peaks are usually never seen in ex peri menta 1 situations. 

They are, however, responsible for contributing the amount 4wRp
0 

in 

the G(R) curve negatively and can be interpreted as the changing of 

P
0

to a smaller value for all G(R) values corrputed in this paper 

w~ich include volume scattering in the intensity kernel. See Figure 3 

which shows the contribution to G(R) from volume scattering. 

Figures 2 and 4 shows the intensity and G(R) functions for a 

cube-shaped particle of size N = 4 on an edge. Where Figure 2 

contains SAXS and Figure 4 does not. The overlay of Figures 2 and 4 

is shown as figure 5. 

The results for Figures 2, 4 are shown in Table 1. The effect of 

low-angle cut-off (M1 = 2.3A-1) is responsible for the slopce seen 

in Figure 4 as compared to Figure 2 which shows a zero slope in the 

small-R region. The calculations of SAXS for any M1 cutoff is 

calculated by smoothing the interference function in the region 

.• 
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K = oA-1 to K = M1A-1. The Porod region is located and the 

constant relating its behavior is determined. This constant is then 

used to subtract the analytic expression for volume scattering (see 

Warren12). 

3 
I.E.U(K) 1 tt . 4'1rR Po f2 "'2(KR) 

4
N3 vo ume sea er1ng = 3 (K)'~~ 

where: 

4N 3 = the number of atoms in the ensemble 

P
0 

= macroscopic density 

f{K) = atomic scattering factor 

t/(KR) = 9 (SinKR- CosKR) 
2 

(KR)4 KR 

4'1r5 ine K = A 

Rewriting eq. 18 gives a Porod approximation 

Cf2 {K)<~2 (KR)> C'f2(K) 
I.E.U(K)volume scattering= = K4 

where 

{18) 

{19) 

<~ 2KR)> = 9 
4 which is the expectation value of the interference 

2(KR) 
function for SAXS for spherical particles. 

Since the particle is a cube its "gamma" function (y
0

(R)) will 

be different and this will mean a different scattering function is 

actually applicable (see Guinier, Fournet). 16 Thus, the analysis is 

not exact. 

The coordination analysis shows that the contribution of volume 

scattering (SAXS) to the RDF profile must be corrected for by altering 
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P0 (see Table 1). The new Po may be calculated from the negative 

shift observed. This is possible since peak-positions and area are 

conserved. Table 1 does not account for the shift observed and thus 

different coordination numbers are reported. The coordination numbers 

reported with (SAXS) removed are correct to within experimental 

error. As mentioned, the influence of particle size and the intensity 

of SAXS at angular values outside of the direct beam are directly 

observed. This has applicability to a material such as glassy-carbon 

since its pore sizes are small, on the order of R = (10- 20)A (see g 

(Hoyt). 17 R is the electronic radius of gyration and for a g 

spherical particle would just be its radius. 

.• 
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PARTICLE SIZE AND INTERPARTICLE INTERFERENCE AND INFLUENCE UPON RDF 

The effect of particle-size broadening on the profile inK-space 

has been well documented. The classical papers are those by Scherrer 

and (Stokes and Wilson). 9 The.derivation of their equations may be 

found in practically any college-level textbook dealing with 

diffraction. In a material such as glassy carbon where the presence 

of faulting and strain are present along with particle size, the use 

of the above methods have very limited value. 

This paper does not apply strictly to glassy carbon, however it 

will show how the evolution of particle size may be traced using the 

RDF. To make the method applicable for glassy carbon would require a 

strain analysis such as the Warren-Averbach method (see Wagner 18 ). 

The analysis for faulting might then be completed in R-space using the 

method of Ergun3 where the Cosine transform of (001) reflections· are 

curve-fitted to an exponential form. 

For a material such as glassy carbon we need to consider the 

effects of layer size, strain, and faulting. Ergun3 has chosen to 

write the interference function for glassy carbon as: 

J(h) = 

h = 4TrSine 
,\ 

n(lq) = the total number of interatomic vectors of length lq 

( 20) 
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-al 
g(lq) = (e q) which modifies n(lq) to account for interl ayer 

stacking defects and finite lattice size. Where a is a defect 

correlation distance given as: a = (2/d). d =mean distance between 

defects between layers. f(h, lq) = a factor used to account for 

tefll>erature vibration and strain in the lattice. 

The similarity of equation 20 and equation 8 are immediately 

visible except for the omission of g(lq·) and the average of n(lq) 

from equation 8. The similarity of equation 20 and equation 1 (the 

Debye sum) can be inmediately recognized also. The result arrived at 

by COfll>utation in this paper only expresses the effect of n(lq) upon 

the RDF and this function is known and expressible for any lattice in 

set notation· (see Ergun19 ). Since n(lq) is independent of the 

scattering vector, the function G(R) is only product dependent upon 

n(lq). Since n(lq) is a function of particle size, G(R) can be 

used as a measure of particle size when temperature and strain effects 

are not present in the interference function as expressed by the 

function f(h, lq). The function g(lq) which was used to account 

for a defective lattice will necessarily be included in n(lq) since 

its also scattering vector independent. Ergun3 has outlined a 

method for seperating n(lq) and g(lq) so as to arrive at d, the 

mean-defect-free interlayer distance. 

The relationship of SAXS to particle size through "radius of 

gyration" calculation are explored extensively in such texts as 

(Guinier and Fournet) 16 and the relationship of the correlation 

function to specific surface area are shown by Debye.l4 The problem 
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being solved in this study involves an ideal gas composed of copper 

particles of a single size. We can write the intensity function in 

terms of a volume scattering term and a perturbation volume term from 

(Guiner and Fournet)l6 

(21) 

where 

r1(K) =the scattering due to the volume of the particle (see 

equation 21). 

N = the average number of particles in the scattering volume. 

F2(K) = the structure factor of the material being studied. 

v1= the average total volume available per particle. 

v2= ~
00

4wR[1 - p(R)] Sin (K~)dR referred to as the perturbation 

0 volume. 

Ie(K) = the scattering of a single electron for non-polarized 

radiation. 

P(R) =probability of finding a pair of atoms seperated by a 

distance R, when the atoms are in different particles. 

The term I1(K) expresses SAXS due to volume scattering and it is 

this term which gives rise to scattering in the Guinier and Porod 

regions. The result from equation 21 is the same result as I1(K) if 

I1(K) is evaluated using the Fraunhofer approximation with a 

flat-faced diffractometer sample. Rewriting equation 21 yields 
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I.E.U(K) = Nie(K) [r1(K)- V~ F2(K)l 
1 J SAXS TERM 

(21A) 

+ Ie(K)N F
2

(K)(WAXD-Intensity TERM) 

Exploring the behavior of the ratio (V 2tv1) for different 

systems gives much insight as to how interparticle effects control the 

interference- function and thus the RDF. For the system computed in 

this paper we can easily show that there is no prefferred orientation 

of particles and as such the quotient (V2tv1) = 0. The RDF 

obtaine·d by transfqrming equation 21 with this condition will create a 

G(R) function with a zero-slope in·the small R region as illustrated 

in Figure 2 where the slope at small-R is flat. 

In any system such as glassy carbon the value of (V2tv1) will 

be non-zero due to the large internal porosity of the material and the 

density fluctuations between lathes. When interparticle effects 

become non-negligible it's necessary to rewrite the intensity function 

either in terms of Thermodynamic variables or in terms of potential 

·energy expressions. The effect of interparticle interference will 

always be to decrease the SAXS K-4 law so that the corresponding 

G(R) function must possess a negative slope at small-R. 

Table 2 shows the Scherrer analysis for the (002) reflection. The 

Scherrer equation gives an excellent approximation of true particle 

size. Table 3 shows both peak height and width for G(R) for the first 

three coordination shells for the particle sizes N = 2; N = 9 for all 
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three particle shapes. The evolution of· peak width inK-space is 

expressed by the Scherrer equation (eq. 22). While the relation 

between the correlation function and interference function in terms of 

particle size is expressed by a 11 free electron .. volume described by 

Debye4 in equations 23, 24 and 25. The evolution of the RDF with 

particle size is shown in Figures 7-9, and table 3. 

B ( 2e) = ...---->-__ 
L cose8 

where 

Scherrer Equation 

a(2e) =the full width at half-maximum intensity measured in 

(22) 

radians for a reflection associated with the crystallite dimension L. 

L =the crystallite dimension in angstroms associated with the 

plane reflection being examined. 

e 8 = the Bragg-angle of the plane reflection being examined. 

The Scherrer equation is valid for reflections having no 

broadening due to instrumental effects, crystal strain or fault 

broadening. Thus, all figures presented can be analyzed using the 

Scherrer equation. 

Debye has expressed a 11 free electron .. number ( n*) as the 

scattering due to the total number of electrons w in the scattering 

volume V. 

2 2 n* = VAv <(6n) > C(R)Sin(KR)dT 
KR (2 3) 
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where 

V =volume illuminated by the primary beam. 

Av<(on) 2> =·the expectation value of .the square of free electron 

density fluctuation per cubic centimeter, evaluated for small atomic 

seperation distances. 

dT = a volume element defined by R and e. 

The integral in equation 23 represents an effective scattering 

power contained in the illuminated volume V as observed at K. This 

knowledge then leads directly to a relation between the correlation 

function C(R) and the volume expressed by its Fourier Transform. 

Oebye expresses this volume function as (K) where: 

( K ) = j 00 

c ( R) 5~ ~ ( KR ) . d T .( 2 4) 

0 

C(R) = the correlation function for the material as defined by 

De bye. 

Equation 24 is an expression of the electron volume participating 

in scattering and can be associated with particle size when the volume 

element dT is evalu.ated for a case such as spheres at K = 0. The 

relation between this volume and this scattered intensity is given by 

equation 2 5 • 

(25) 
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where 

(::2)
2 

= the scattering cross section of a free electron • 

(1 +cos2e) 
2 = polarization factor for an unpolarized primary beam. 

r = the distance from the sample to the point of observation. 

Equation 25 is significant in showing the proportionality between 

intensity and 11 free electron volume 11
• Equation 25 may be rearranged 

to yield a result given by Guinier16 shown in equation 29. 

(26) 

where 

Y0 (R) = a correlation or .,characteristic function., of the 

particle. Its definition is that it represents the probability that 

an arbitrary point at a distance R in a random direction from a fixed 

point in the particle will itself be in the particle. 

The equivalence of equations 25 and 26 can be shown by equating 

y0 (R)F 2(K) and VAv<(on) 2>C(R). This can be easily shown since 

Debye defines n*(K) in the Porod region identically to F2(K). 

(27) 
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R1 = radius of particle undergoing diffraction 

p2 = square of electron density of particle. 

Further it can be shown that the integral of y
0

(R) over all R is 

one half of the average particle size. Table 3 exhibits the growth in 

amplitude of the first peak in G(R) for three different shape 

particles. All peak widths remained constant within measurement 

limits. The peak heights showed a limiting behavior as particle size 

was increased. See figures 7-9 and Table 3. Where figures 7-9 

represent the growth in coordination number vs. particle size and 

Table 3 shows the growth of G(R). 

\ 

. ... 
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PARTICLE SHAPE AND ITS EFFECT UPON THE RDF 

Particle shape influences the scattering curve at small angles and 

as such it will be shown that its effect on G(R) is negligible for 

large particle sizes. Scattering curves for various shaped particles 

have been calculated by such people as Kratky and Porod and Rayleigh. 

These curves can be shown to have similar characteristics in that they 

will all tend to zero, oscillating about a K-4 curve as long as 

K » (1/e:); where e: represents the small dimension for anisotropic 

shapes such as discs or cylinders. The Zemicke-Prins equation and 

other similar derivations all involve the neglection of scattering at 

small angles where the shape of the volume exerts its influence. In 

typical experimental data this intensity will be covered by the 

primary beam. The actual G(R) curve which will be derived from 

experimental intensity will be a difference function as shown by 

Riley. 5 

2R 
=-

'If 

where: 

[~ Ki(K)Sin(KR)dK 
0 

M1 = the low-angle cut-off for the experiment 

i(K) =the experimentally observed interference function. 

(28) 

()(R) = the "shape function" defined as the Fourier transform of 

the unobserved low-angle scattering for an amorphous particle of 

uniform electron density. 

The seperation of ~(R) is impossible, since its analytical form is 

not known for systems of particles found in non-dilute experimental 
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situations. In the case of a very dilute system or theoretical system, 

as in the Debye sum, ~(R) is equivalent to y
0

(R) the characteristic 

function of the particle. The information of a particle size will be 

found at the largest R-values observable in the RDF. In reciprocal 

space this information should be in the SAXS region, and this implies 

that the correction of SAXS should have an effect upon the RDF peaks 

at largeR. However, examination of the "characteristic function .. 

shows that it takes on its largest value at R = 0 and falls to zero at 

distances approaching-and or equal to the particle size. For example, 

a sphere of radius Rs will have a y
0

(R) function defined by 

equation 29. From inspection one can determine-the function is zero 

at R = 2Rs. 

Yo
sphere(R) 1 3R 1 (R )

3 
= -~+ro ~ (29) 

Equation 29 illustrates how the function y
0

(R) would be useful 

in determining characteristic particle size. However, the equation 

really c·ontains no information on the shape of the particle and it's 

possible that two different shaped particles could have very similar 

Y0 (R) since y 0 (R) is dependent upon the surface to volume ratio of 

the particle. The illustration of y
0

(R) approaching zero can be 

found in Figure 5 where the RDF functions approach identical values at 

R = 14.50~. This is to be expected from a particle whose 

characteristic dimension is of this order. 

\ 
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The effect of particle shape will be to change the function 

r
0

(R); which would be equivalent to changing nJ(RJ) in equation 

8. The change in this function may be monitored directly by comparing 

peak-height ratios in G(R). 

-The absence of a specific pattern can someti~res be related to its 

shape. For exaiJl)le, an F.C.C. structure in the shape of a rod cannot 

contain distances expressed as the square root of an integer which has 

as its square root a non-integer number. I.E. 

ro d f7'i'7" f'l':'" R I J I= v c. a, v ,) a, r-5a, rba, rta, rB"a, rn:Ja etc. 

These distances are allowed for a plate or cube shape and other 

methods need to be used to di sti ng_uish these shapes. One method which 

can be detennined qualitatively but.is not offered here as a 

quanitati ve method is to ratio the peaks found at a, and 2a. It 

should be noted that these ratios will be a function of particle size 

and will not converge until that size becomes much larger than 2a. 

A preferred method of detennining shape is in examining the 

intensity curve in reciprocal space. The Scherrer analysis of 

Figure 6a reveals the particle has well developed structure of (111) 

type planes. In coiJl)arison plate and rod shapes show poor development 

of these planes (see 6b and 6c). This infonnation in conjunction with 

Scherrer analysis allows speculation as to the shape of a particle. 

In a fonnal sense the sensitivity of the two methods should be 

identical since both methods are manifestations of the same reality. 

In practice however differences in structure tend to be more localized 



38 

in curves in reciprocal space as compared to the effects in 

real-space. Both curves have their advantages in certain situtations, 

but'in conjunction with each other they form a powerful tool when 

interpreting experimental data against scattering models constructed 

computationally. 

'\.· 
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DISCUSSION AND CONCLUSIONS 

The results obtained by Fourier inversion of Small-Angle data 

(SAXS) show that this portion of the intensity is associated with the 

effective density of the material and particle size. The importance 

of SAXS subtraction when dealing with only volume scattering is found 

in the Zernicke Prins equation and discussed by Cargill, 1 

Franklin,24 Diamond,23 and Warren.1 2 The removal of SAXS and 

application of gaussian analysis provided answers for coordination 

numbers within experimental error. See Table 1, which shows the 

results of coordination numbers obtained with and without Saxs data. 

Peak-position was always conserved regardless of Saxs. Evidence is 

found in figure 5 which shows an overlay of RDF patterns which include 

and exclude Saxs in their intensity kernel. The figure clearly shows 

the superposition of peaks. Peak area was also found to be conserved, 

however the P0 is shifted to some unknown value when Saxs is 

included in the transform. This area conservation is best 

demonstrated by figure 5, which shows both patterns as identical but 

displaced by the amount shown in figure 3. 

The results obtained from the diffraction data at higher angles 

(WAXD) is completely accurate to within experimental error as 

demonstrated by figures 6a, b, and c which show convincing WAXD 

patterns accurate to within :.o5A-1 for a cube, plate and rod 

structure. Also the Fourier transforms of this data which illustrate 

the interatomic distances were accurate to within :.o5A. From these 

results and the coordination number results obtained in figure 7 it 
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appears as though the model •s discontinuity has not interferred with 

the data obtained in real or reciprocal space. The primary results of 

this study are reflected in figures 7, 8 and 9. Close examination of 

these figures demonstrate conclusively that the first coordination 

shell stops evolving with an effective particle size of 30-40A. All 

of the shapes studied confirm this result so shape appears to play no 

ro 1 e. 

The results for the second and third coordination shells must be 

obtained from figures 8 and 9, since the particle size in the three 

dimensional model is not large enough for the second or third shell to 

have converged. There appears to be no easy way to confirm these 

results since they are based on the one and two dimensional models of 

the plate and rod. The result for the second shell appears to be that 

it has converged at particle sizes on the order of 90A as shown in 

figure 8. Figures 8 and 9 indicate that the third shell is fully 

evolved at an effective particle size of -uoA. Since the effective 

particle size in figure 9 is increasing so rapidly the interpolation 

is best taken from figure 8. Since figures 8 and 9 represent data 

from one and two dimensional models respectively, the results may not 

apply to experimental situations and care should be used in 

transferring these results to experimental situations. 
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Table 1. Effect of SAXS 

Shape = Cube 

Coordination Coordination Actual 

R G(R) (G(R))corr No. No. Corrected Coordination No. N 

2.55 25.70 

4.45 2 3.82 

5.75 18.22 

2.55 29.92 

4.45 32.25 

5.75 28.46 

23.21 

21.64 

18.02 

26.96 

28.58 

23.52 

10.96 

19.22 

21.16 

12.58 

24.89 

30.07 

10.00 

17.75 

20.99 

11.40 

22.42 

25 0 77 

12 

12 

4 

4 

4 

9 

9 

9 
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Table 2. 

* ' Na L002 t.K002 

N A A Shape A-1 \ 

4 14.45 14.21 Cube .442 

7 25.30 25.50 Cube .246 

9 32.53 33.42 Cube .188 

*Loo2 = 2rr/t.Koo2 
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Table 3 

'" 
G(R~ 6G(R) Width at Coordination 

N Shape atoms/~ half max =.o2A No. R ~ 
;j' 

2 Cube 19.40 .17 8.53 2.55 
3 Cube 23.44 .17 10.09 2.55 
4 Cube 25.70 .17 10.96 2.55 
5 Cube 27.16 .17 11.52 2.55 
6 Cube 28.17 .17 11.91 2.55 
7 Cube 28.91 .17 12.19 2.55 
8 Cube 29.48 .17 12.42 2.55 
9 Cube 29.92 .17 12.58 2.55 

2 Plate 17.26 .17 7.70 2.55 
3 Plate 19.39 .17 8.52 2.55 
4 P 1 ate 20.37 .17 8.90 2.55 
5 Plate 20.93 .17 9.12 2.55 
6 Plate 21.29 .17 9. 26 2.55 
7 Plate 21.50 .17 9.34 2.55 

1 Rod 7.36 .17 3.88 2.55 
2 Rod 11.74 .17 5.57 2.55 
3 Rod 12.18 .17 5.74 2.55 
4 Rod 12.33 .17 5.80 2.55 
5 Rod 12.40 .17 5.83 2.55 

2 Cube 6.48 .17 10.95 5.75 
3 Cube 13.97 .17 17.47 5.75 
4 Cube 18.22 .17 21.16 5.75 
5 Cube 21.24 .17 23.79 5.75 
6 Cube 23.39 .17 25.66 5.75 
7 · Cube 26.74 .17 28.58 5.75 
8 Cube 27.71 .17 29.42 5.75 
9 Cube 28.46 .17 30.07 5.75 

2 Plate 5.95 .17 10.49 5.75 
3 P 1 ate 9.79 .17 13.83 5.75 
4 Plate 11.65 .17 15.45 5.75 .. ~ 5 P 1 ate 12.68 .17 16.34 5.75 
6 Plate 13.32 .17 16.90 5.75 
7 P 1 ate 13.75 .17 17.28 5.75 



N Shape 

1 Rod 
2 . Rod 
3 Rod 
4 Rod 
5 Rod 

2 Cube 
3 Cube 
4 Cube 
5 Cube 
6 Cube 
7 Cube 
8 Cube 
9 Cube 

2 Plate 
3 P 1 ate 
4 Plate 
5 Plate 
6 Plate 
7 P 1 ate 

1 Rod 
2 Rod 
3 Rod 
4 Rod 
5 Rod 

G(R) peak 
atomstl\2 

-0 
4.17 
4.83 
4.99 
5.11 

11.24 
18.95 
23.82 
26.88 
28.82 
30.26 
31.37 
32.25 

6.58 
. 9.23 
10.52 
11.29 
11.74 
12.01 

0 
2. 72 
3.01 
3.16 
3.25 
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Table 3 cant 

f.G ( R) 
Width at half max 

.17 

.17 

.17 

.17 

.17 

.17 

.17 

.17 

.17 

.17 

.17 

.17 

.17 

.17 

.17 

.17 

.17 

.17 

.17 

.17 

.17 

.17 

.17 

.17 

Coordination 
No. 

0 
8.94 
9.52 
9.65 
9.76 

10.75 
15.94 
19.22 
21.28 
22.58 
23.55 
24.30 
24.89 

7.61 
9.39 

10.26 
10.78 
11.09 
11.27 

0 
5.02 
5.21 
5.31 
5.37 

R ~ 

5.75 
5.75 
5..75 
5.75 
5.75 

4.45 
4.45 
4.45 
4.45 
4.45 
4.45 
4.45 
4.45 

4.45 
4.45 
4.45 
4.45 
4.45 
4.45 

4.45 
4.45 
4.45 
4.45 
4.45 
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FIGURE CAPTIONS 

Fig. 1. Shows the effect of termination error upon resolution of 

peaks in the RDF. Both curves are for cubes of side~length 

(N = 3). Curve A shows termination at K = 2oA-1, and 

Curve B shows termination at K = 5~-1. 

Fig. 2. Shows the RDF for a cube of side-length (N = 4). This 

distribution was produced from data taken from K = .05~- 1 

. 2·ot-1 to K = ~ • The flat zero slope in the small R region is 

indicative of the presence of volume scattering in the 

transformed intensity function. 

Fig. 3. Shows a Saxs transform of the intensity region K = .05~- 1 

to K = 2.3A-1• The contribution of this curve to G(R) 

should be 4wRp
0 

out to (Na/2). The intensity data is 

extracted from figure 2 and represents Saxs for a cube of 

side-length (N = 4). 

Fig. 4. This figure shows the result of transforming intensity data 

without Saxs (volume scattering). The intensity data used in 

this transform is the same as figure 2 except the limits 

extend from K = 2.3A-1 to K = 20A-1. 

Fig. 5. This figure demonstrates the effect of the y
0

(R) function 

by showing the overlay of figures 2 and 4. Note the 

convergence of the two curves at R = 14.5~. Note also the 

exact overlay of peak position, demonstrating Saxs has no 

effect on RDF positions. 
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Fig. 6a, These figures show overlays of WAXD for the shapes and sizes 

b,c indicated on the figures. These figures also illustrate the 

evolution of the specific planes associated with each shape 

1 and how particle size effects sharpness in reciprocal space. 

> • 

Fig. 7. The coordination number for cube shaped particles for the 

first three coordination shells is plotted versus the 

effective particle size. Since the data transformed contains 

Saxs, the asymptote of the first coordination shell curve 

rises above the theoretical line shown. 

Fig. 8. The coordination number fur plate shaped particles for the 

first three shells is plotted versus the effective particle 

size which is N2a for plates. Note that the asymptote of 

the first shell begins at the same value as that for cubes. 

Fig. 9. The coordination number for rod shaped particles for the 

first three shells is plotted versus the effective particle 

size which is N3a for rods. Note that the asymptote of the 

first shell begins at the same value as that for cubes and 

plates. 
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APPENDIX A 

VECTORED ARRAY ACCESS 

Consider a usual 3-level nested "Do Loop" with variables I,J,K. 

Count = 1 

Do 100 I = 1,N 
Do 200 J = 1, N 
Do 300 K = 1, N 
X(Count) = (I-1)*a 
Y(Count) = (J-1)*a 
Z(Count) = (K-1)*a 
Count = Count + 1 

300 Continue 
200 Continue 
100 Continue 

Rewriting this scheme in terms of vectored access qives: 

Count = 
Do · 100 

Rim = 
Do 200 

Rjm = 
Do 300 
X(Count) = 
Y(Count) = 
Z(Count) = 

1 

300 Continue 
200 Continue 
100 Continue 

I = 1,N 
(I-1)*a 
J = 1,N 
(J-1)*a 
K = 1,N 
Rim 
Rjm 
(K-1)*A 

When N is large the savinqs in computation will be substantial 

since the quantity (Rim) and (Rjm) will be calculated N, and N2 

times respectively instead of N3 times. Only the most advanced 

compilers are capable of generating code such as the above from the 

starting code previously shown. 
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REVERSAL OF SUMMATION AND MULTIPLICATION CONVERSION 

The Debye summation found in this program could be performed as a 

(3-level) nested 11 Do Loop'~ as shown below. The order of the sunmation 

can be an important factor in consumption of time as well as possibly 

providing elimination of other unne~essary loops. 

Do 

Do 
Do 

50 
100 
200 

K = Il* .05 

I1 =1, KMAX 3 
I = 1, 4N-1 
J = I+1, 4N 3 

X(I)-X(J) 2+ Y(I)-Y(J) 2+ Z(I)-Z(J) 2 

KR 
Sum = Sin IJ + Sum 

KRIJ 

200 Cant i nue 
100 Continue 

I.E.U(I1) = Sum fli 1) 3 2 
+ 4M f ( Il) 

Sum = 0 
50 Cant i nue 

Instead this summation could be rewritten as: 

Do 100 I = 1, 4N 3-1 
Do 200 J = I+l, 4N 3 

RIJ X(I}-X(J) 2+ Y(I)-Y(J) 2+ Z.(I )-Z( J) 2 
= 

Converts division ~ RDIJ = li'RIJ 
to multiplication 

Do 300 Il = 1, KMAX 
Sum(Il) = RDIK Sin(KRIJ) 

+ Sum( I1) 
300 Continue 
200 Continue 
100 Continue 

Do 500 Q = 1, KMAX 

.. 

\.. 

, .. 
: 

·~ 
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Division by K ~ 
is performed here 
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IEU(Q) = f2(Q~Sum(Q) + 4N3f2(Q) 

500 Continue 

The time savings is realized by changing the order of summation 

~nd utilizing the reciprocal of RIJ• Similarly the reciprocal of K 

could have been used to change the line above line 500. 
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NORMALIZATION OF VARIABLES 

One of the most time consuming steps in the program is the 

generation of coordinates. By normalizing these coordinates by the 

factor (a/4) where a is the lattice constant much time can be saved. 

These ~ 
are the normalized 
coordinates 

produces a 
modified K 
which converts 
the normalized 

Count = 1 
Do 100 
Do 200 
Do 300 

X{Count) = 
Y(Count) = 
Z(Count) = 
Count = Count + 1 

300 Continue 
200 Continue 
100 Continue 

I = 1, 4N 3, 4 

J = 1' 4N 3, 4 
K = 1, 4N 3, 4 

{I-1) 
(J-1) 
(K-1) 

Do 600 N = 1, KMAX 
K DUM { N ) = --· 0......,5.--a-

4 
K(N) = .05N actual K in reciprocal space 

600 Continue 
coordinates to real-coordinates 

f.' • 
'). 
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