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The rotational properties of nuclei in the statistical region are 

predicted on the basis of a simple BCS model. · The model can be described 

in terms of three reduced variables. A back-bending, which disappears as the 

temperature increases, is observed in the plot of the moment of inertia 

versus the square of the angular velocity. 

The experimental discovery of strongly varying moments of inertia 

in the ground state rotational bands of deformed even-even nuclei [1,2] has 

prompted a variety of theoretical developments [3-5] for the interpretation of 

this feature. A rather appealing model explains the observed increase and 

back-bending of the moment of inertia versus the square of the angular 

velocity in terms of the disappearance of the pairing superfluidity due to 

the increasing angular momentum [3,4]. 

In this work a very simple pairing model, introduced in detail in a 

previous paper for different purposes [6), is used to calculate the zero and 

finite temperature behavior of the angular velocity and of the moment of 

inertia as a function of angular momentum. 

* Work done under the auspices of the U.S. Atomic Energy Commission. 
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The model is characterized by three parameters: the density ~ of 

the equidistant, doubly degenerate, single particle levels; the average z 

projection ~ of the single particle angular momentum; the gap parameter 

6
0 

corresponding to zero temperature and zero angular momentum. 

The properties of the system are contained in the grand potential Q: 

[ 
1 .] 862 

dEE- E + S {ln[l + exp- S(E- ym)] + ln[l + exp- S(E + ym))} - ~ 

(1) 

where S = ~ is the reciprocal of the temperature, E is the energy of the 

single particle levels measured with respect to the constant chemical potential, 

E -- [~ 2 + A
2 ]112 , y 1·s gu1 1 "t d G · th · · t gth c:. w the an ar ve oc1 y an 1s e pa1r1ng s ren .• 

The pairing cut-off S is taken to be much larger than the gap parameter 

throughout the calculation: s » 6 • 
0 

~ suitable differentiation of the grand potential, all the other 

thermodynamical equations are obtained: 

The gap equation: 

s 
an= 2g J 
a~J. 

dE 1 1 
2E [tanh 2 S(E- yro) +tanh 2 S(E + ym)] = o 

0 

the angular momentum: 

I = ~ ~~ = 2mg ( d£ [ 1+ exp ~ ( E ym) l + exp ~(E + yro) J 
0 

the energy 

(2) 

(3) 
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E - -
an as= g [ 

£ { 1 1 J t::,.
2 

d£ £ 1 - 2E tanh 2 S(E- ym) + tanh 2 S(E + ym)} - G 

The case in which T = 0 can be worked out analytically and is considered first. 

The angular momentum equation yields: 

(5) 

The gap equation can also be integrated explicitly, producing the following 

relationship between 6. and y : 

(6) 

~means of eqs. (5) and (6) one obtains the following important relations: 

6. 
r= 

where I cr 

0 

y = 

(1 -

I cr 
ejR 

...L) 
1/2 

for 
Icr 

I (2- -) 
Icr 

I/I cr 

for 

I 
2-

I cr 

I:E;;.;I 6. cr 

I~ I y cr 

for I~ I cr 

= 0 for I ;;;;,: I 
cr 

I I~ I = :::::- for 
d'R cr 

= ;f.R· for I ~ I cr 

(7) 

(8) 

(9) 

The eq. (7) gives the dependence of the gap parameter 6. upon angular 

momentum. The gap parameter decreases as the angular momentum increases and 

vanishes at the critical angular momentum I • The effect of sup~rfluidity 
cr 

(-. ('• (' (;, ( 
' 

(4) 
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on the moment of inertia is quite visible in eq. (9). The moment of inertia 

vanishes at zero angular momentum, and it increases monotonically as the, 

angular momentum increases from zero to its critical value. Above the critical 

angular momentum the superfluidity disappears and the moment of inertia attains 

its rigid value. More peculiarly, the angular velocity y, given by eq. (8), 

decreases with increasing angular momentum in the interval 0 ~I ~I • For cr 

values of the angular momentum larger than I the angular velocity increases cr 

proportionally to the angular momentum. This behavior generates a very 

pronounced back-bend in the plot of the moment of inertia versus the square 

of the angular velocity. 

By integrating eq. (4) and subtracting the ground state energy one 

obtains the yrast function, namely the region of the highest angular momentum 

states at a given energy, or conversely, the region of the lowest energy states 

at a given angular momentum: 

I 
I cr 

( 2 - _I_) for I ~ I 
2Icr cr 

for I ~ I cr 
(10) 

Above the critical angular momentum, the yrast line is a parabola typical of 

an object rotating with a rigid moment of inertia. Below the critical angular 

momentum the yrast line is also a parabola but it has a negative instead of a 

positive second derivative. The consistency of eq. (10) and eq. (8) can be 

tested by remembering that: 
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dE 
Y = ar 

If the system is characterized by a moment of inertia depending upon a 

variable which is allowed to take its equilibrium value, one obtains: 

dE dE 
y = af = di 

It is easy to verifY that by applying eq. (12) to eq. (10) one does indeed 

obtain eq. (8). 

The case in which T > 0 will now be considered. It is well known 

that at zero angular momentum the gap parameter decreases with increasing 

temperature and vanishes at the critical temperature T given by: cr 

T = 2[). /3.5 cr o 

( 11) 

(12) 

(13) 

It follows that the system is characterized by three critical quantities Icr' 

T , QJR which can be related to the physical parameters of the system as cr 

follows: 

I =~m[). 
cr - o 

T = 2[).
0
/3.5 cr 

2 
=2~!!!_ (14) 

Since these three critical quantities contain all the physical information on the 

model, it is possible to scale every specific physical situation by means of the 

following three reduced variables: the reduced angular momentum I/I . , the cr 

reduced temperature T/T and the reduced moment of inertia ~~~R. cr 

The dependence of the critical temperature upon angular momentum as well 

as the overall dependence of the gap parameter upon angular momentum and 

,,, 
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temperature are shown in fig. 1. It can be observed that at large angular 

momenta, an increase in temperature has an antiblocking effect resulting in an 

increase of the pairing correlation. The same effect is responsible for 

an increase of the critical angular momentum 

T 
temperature~= 0.47. This effect, called 

cr 

I 
up to a value I= 1.22 at a 

cr 
thermally assisted pairing 

correlation, has been discussed in detail elsewhere [6]. 

In fig. 2 the yrast line is shown together with higher energy-angular 

momentum isotherms and with the line of the critical energies. One can see that 

the yrast line has negative second derivative everywhere below the critical 

angular momentum; the lower isotherms have positive second derivatives at low 

angular momentum and negative second derivatives at high angular momentum; the 

higher isotherms have positive second derivatives everywhere. This behavior 

is better appreciated in fig. 3 where the angular velocity is plotted as a 

function of angular momentum for various temperatures. At T = 0, as predicted 

by eq. (8), the angular velocity decreases as the angular momentum increases. 

At higher temperatures the angular velocity goes from zero to a maximum and 

then decreases. At the highest temperatures the angular velocity increases 

monotonically with angular momentum. At and above the critical angular 

momenta, the angular velocity becomes independent of temperature and increases 

proportionally to the angular momentum. 

The dependence of the moment of inertia on angular momentum is shown 

in fig. 4. At zero temperature such a dependence is given by eq. (9). At 

larger temperatures the moment of inertia starts with a finite value and 

increases until it reaches the rigid value at the corresponding critical 

angular momenta. 
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More impressive is the dependence of the moment of inertia on the square 

of the angular velocity shown in fig. 5. The back-bending is extremely pronounced 

at T = O, it is attenuated as the temperature increases until, at a temperature 

TT ~ 0.53, it disappears. Above this temperature and below the critical 
cr 

temperature the moment of inertia increases regularly with the square of the 

angular velocity. The back bending is associated with the presence of negative 

second derivatives in the energy angular momentum isotherms and with the presence 

of negative first derivatives in the angular velocity angular momentum isotherms. 

The kinks appearing in figs. 3, 4, 5 at the critical angular momenta are due to 

a phase transition which should be real for macroscopic systems, but which 

becomes an artifact of the theory for small systems where fluctuations are 

large. This difficulty can be eliminated by accounting for the fluctuations 

as it has been done in ref. 7. Calculations which allow for fluctuations 

and which are based on a more realistic single particle model are in progress. 
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FIGURE CAPI'IONS 

j • 
v 

Fig. 1. Contour map of the reduced gap parameter as a function of the 

LBL-1663 

reduced temperature and of the reduced angular momentum. The lines 

of constant gap parameter are spaced 0.05 ~ • 
0 

Fig. 2. Yrast line and higher isotherms. The energy scale is expressed in 

units of condensation energy. The isotherm next to the yrast line is at 

T/T = 0.158 and the following isotherms are in steps of 0.0526 T • The cr cr 

dashed line represents the yrast line of the unpaired system. The upper 

line crossing the various isotherms represents the boundaries between the 

paired and unpaired region. 

Fig. 3. Reduced angular velocity as a function of the reduced angular momentum 

for various temperatures. The rising diagonal line represents the angular 

velocity of an unpaired system. The upper line corresponds to T/T = 0. cr 

The next isotherm is at T/T = 0.158 and the following isotherms are in cr 

steps of 0.04 T ··· cr 

Fig. 4. Moment of inertia as a function of angular momentum for various 

temperatures. The T/T = 0 curve reaches the rigid value at I/I = 1. cr cr 

The following isotherm is at T/T = 0.158 and the spacing between the cr 

remaining isotherms is 0.08 T • 
cr 

Fig. 5. Moment of inertia versus the square of the angular velocity for various 

temperatures (solid lines). The T/T = 0 isotherm is incomplete on the cr 

right. The next isotherm is at T/T = 0.158 and the following cr 

isotherms are in steps of 0.04 T 
cr The dashed lines are lines of 

constant angular momentum in steps of 1/7 I • 
cr 
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