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Yortex Methods for Flows of Variable Density
Christopher Radcliff Anderson

Abstract

~

We present two numerical methods for calculating the motion of an
incompressible, inviscid fluid of slightly varying density. The methods, both
based on the vortex method developed by Chorin, are grid free and have no
intrinsic source of numerical diffusion. We analyze the methods using tech-
niques derived from the recent work on the convergence of the vortex

method. We prove a convergence result for one method and prove a partial

- convergence result for the other method.

We present an exact solution to the equations of motion for a fluid of
variable density and use this solution to test both numerical methods. The

test results indicate that the methods are stable and accurate. -

An application to the problem of calculating the motion of a 2-D tHermal
is also presented. The computational results indicate that the methods are
suitable for calculating flows associated with thermal convection
phenomena. In the course of our investigations of the motion of a 2-D ther-
mal, we found significant computational evidence to suggest that a singular-
ity develops in the flow in finite time. This singularity appears to be confined
to a small set.. possibly a point, and is characterized by an infinite value of

vorticity there.

The two numerical methods presented here can be viewed as a specific

application of a more general technique for constructing algorit'hms for

.incompressible flow problems. We discuss this general numerical technique

as well as the theoretical tools that are used to analyze the numerical

methods constructed with this technique.
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Introduction

In this thesis we present, test, and analyze two numerical methods,
both based on the vortex method developed by Chorin [13], for calculating
the solution to incompressible flow problemsAwith variable density. Previ-
ously the vortex method, as implemented in [13], has been used with suc-
cess to calculate high Reynolds nuinber incompressible fluid flow. Specific
applications which have used the vortex method have included the calcula-
tion of unstable boundary layers {15], flow past heart valves [42], aero-
dynamic applications ([11],[40],[50]). the modelling of turbulen£ combustion
([27].[48]), and the driven cavity problem [49]. ( For a general discussion of
vortex methods see ([15],[39])) An assumption made in these studies is that
the fluid is of constant density, or, in the case of combustion modelling, that

the effect of variable dénsity on the vorticity growth is negligible.

However, density variations can have an important effect on fluid
motion, especially when the fluid is acted upon by an external force. A good
example of this is thermal convection. In this situation the external force is
gravity and density variations are those caused by temperature differences
in the fluid. The motion induced by the buoyancy of the lighter fluid is cer-

tainly important and cannot be neglected.

Often the motion induced by density variations within a fluid is highly
complicated and difficult to model numerically, This thesis is a result of our
investigations into possible ways of incorporating within a vortex method the
effects of variable density. The previous success of the vortex method in
modelling complicated flows makes it a natural choice as a basis of a
method for solving variable density flow problems. We rﬁention that Meng
and Thomson present an early application of the vortex methed to such

problems in [43].



Another aspect of this thesis is a presentation of a set of ideas which
form the basis of a general numerical technique. From the vo.r;tex‘ method
[18] and recent work on the con\?ergencev of the vortex method
([5][6][19][30][31]) we have been able to abstract a procedure for con-
structing numérical methods for inc.ompressible flow problems and for
analyzing these methods. We will present this technique mainly by way of -
_v_example. In fact, the two numerical methods that we present for variable

density flows can be considered as two examples 6f applications of the tech-
nique. ' v

The numerical technique that we discuss is essentially arLagrangian
"one. We approximate the motion of the fluid by calculating the motion of a
finite number of fluid pafticles and the evolution of fluid quantities ( density,
vorticity, etc. ) associated vﬁth them. This numericé.l technique is diﬁerent
from other particle techniques, such as those déscribed' in ([R1],[28].[44]).
The difference is subtle, but important. In the methods that we discuss
here, the computational points, or particles', are merely positions in a éon;
tinuum of fluid: The fluid quantities that are associated with the computa-
tional points are’the values of the fluid quantities evaluated at the point
positions; For example, when we represent density by a collection of pointé,
the points do not.carry mass, but are considered to carry the continuous
density evaluated at those points. Also, we calculate the motion of the com-
putatidnal points using ‘the vortex method, i.e., a discretization of the
vorticity-stream formulation of the equations of motion. In the particie
method described in ([R1],[28].[44]) the computational points represent
true particies. The particles have a specific mass and veloc.ity, .and the
motion of the particles is calculated using Newton's laws. To evaluate a fluid
quantity such as density, one must form a local average over the computa-

tional particles.



There is an interesting similarity between these two techniques. In the
numerical technique that we discuss, to evaluate a fluid quantity at points
other than thoée whose evolution we are computing, we use a "blob"” type
approximation. Originally introduced in the vortex method [13] the "blob"
approximation consists of representing a function by a collection of func-
tions of small support or "blobs". In the particle techniques that are
described in ([21], [28],[44]) the fluid quantities are evaluated by forming a
local average over the computational particles. Recently, Gingold and
Monaghan in [28] have introduced an averaging procedure, kernel estima-
tion, to obtain more accurate estimates of fluid quantities. in their particle
methods.. One interpretation of the kernel estimation procedure is that it is
an average 6ver the particles assw:'ning that the particles are of finite extent

and. have a definite shape. Upon closer examination one finds that kernel

_estimation and “blob"” approximation are nearly identical. It is found that

kernel estimation can be viewed as an approximation procedure for evaluat-

ing a function using the values of the function at a finite number of points.

Alternafively. the "blob" approximation can be considered as a statistical
estimate of a fluid quantity based on samples of the function at the compu-
tational points. The.fact that kernel estimation can be considered as an
approximation procedure was noticed by Monaghan in [44]. An interesting
result given in [44], is that kernel estimation, and hence "blob" approxi_ma-
tion, can be viewed as a generalization of more standard approximation

techniques, .i.e. polynomial or Fourier approximation.

An observation that has helped us in our investigations is the similarity
between the equations of motion for an incompressible fluid of variable den-
sity in two dimensions and the equations of motion of an incompressible
fluid of constant density in three dimensions. An implication of this similar-

ity is that numerical methods for one set of equations have a direct analog
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in the other seﬁ of equations. This is a fortunate occurrence, for the conver-
gence results obtained by Beale and Majda in ([5],[6].[8]) can be used with
very ﬁttie modiﬁcation to obtain convergence results fof the methods
presented here. Also, the numerical methods presented .here suggesﬁ
numerical methods for three dimensional ﬂuid calculations. (In fact, it was
our Wo-rk on the motion of a fluid of variable density that led us to suggest
the numeri‘cai rﬁethod whose. convergénce is investigated in [8]) Another
benefit of this similarity is that the numefical results presented here may
prove useful in assessing the properties of the three dimensional vortex
methods 'analyzéd in [5] and [8]. |

- This thesis is divided vintov eight sections. In section 0 we discuss some
of our notation and prove. éome _elernentary lemmas that weA need for the

‘theoretical analysis in later sections.

Section 1 contains a preséntation of the equatioﬁs that we use to
describe the motion of a fluid of va.riabie density. In deriving the equatiéns
we make the assumption tha£ the density variations in the fluid are small.
(We make the Boussinesq approximation ([51],[53]).) This assumption leads
to a simplification of the equations and makes their numerical approxima-
tion'easief to accomplish. We will use two differeﬁt formulations of the equa-

tions, and, in this section, we prove their equivalence.

In section 2 we illustrate our general numerical technique by appiying it
to a modél problem. The model problem is that of calculating the motion of
a quantity being transported by an incompressible flow. The numericé.l
_ approximatiori for this problem and the theoretical analysis of this approxi-
mation are exemplary of the techniques to be used throughqut this work. In
particular, the techniques used to estimate the accuracy of the numerical

approximation will be used repeatedly in later sections.

e



In section 3 we apply our numericél technique to the two formulations
of the equations given in section 1. The result is two numerical methods
which we designate method A and method B. Methods A and B represent two
different approaches to the problem of calculating the motion of a fluid of
variable density. Loosely speaking, the motion of the fluid is calculated by
calculating the evolution of the vorticity in the fluid. In a fluid of variable
density the vorticity grows where there are dehsity gradients. Thus, to
account for the growth of vorticity one needs to calculate density gradients.
It is in the calculation of the density gradients that the methods differ. The
first approach, that taken in method A, is to calculate the evolution of the
density, and then evaluate density gradients by differentiating the resulting
approximation. The second approach, that taken in method B, is to calcu-
late the densit;y gradients by solving an equatioh that describes their evolu- -
tion in time. This latter approach requires an equation of evolution for the
density gradients as well as a method for constructing a meaningful approxi-
mation to the density from the solution of these equations. .The equation of
‘ evolqtion is that which is described in section 1 and we usé a numerical
implementation of Poisson’s formula to reconstruct the density from its

gradients.

We analyze method A in section 4. We begin by estimating the error in
the approximations used in th_é method. The importance of these estimates
is that they indicate hqw the parameters of the method might be chosen. To
" test various choices of the parameters, as well as its accuracy and stability
we apply the method to a test problem. The test problem consists of an
exact solution to the equations and is described in section 4.2. In the last
part of this section we present a method which is a modification of method A
and prove a convergence resuit for this modified method. Although the

modified method has yet to be tested, we expect that the method will



behave in a way similar to method A. We present the convergence result to
verify, albeit nét rigorously, that the approach taken with method A is
eséentially sound.

We analyze method B in section 5. We begin our analysis by proving a

convergence result. We use this result and the error estimates that the

proof provides to select the parameters for the-approxima;ions used in the

method. Then, as with method A, we apply the method to the test problem
described in section 4.2. We use this test to vérify the accuracy and stabil-
ity of the method. These results also allow us to make a direct comparison

between the two methods.

‘The test problem of section 4.2 is somewhat special. | In particular the
solution of the test problem is smooth ( has many bounded derivatives ) and
has radial symmetry. It is not clear that the preformance of the methods on
this problem are indicative of their preforménce"on p;oblems which are not
smooth énd whose flows are highly complicated. To examine the behavior of
" the method when they are applied to problems of the latter type, we appiy
the methods to the problem of calculating the motion of a 2-D thermal. A

description of the problém and the results are presented in section 6

There are two very interesting conclusions obtained from this last test.

The first is that care must be taken when one uses these methods on non-

smooth problems. In partiéular’, conclusions about the methods and their

‘implementation obtained from the results on the test problem of section 4.2
are not necessarily applicable. The other interesting ;:onclusion is that we
find significant comp'utational evidence to suggest that the equations have a
singularity. Aside from the ﬁheoretical interest in the singularity, we find it
remarkable that the presence of the éingularity does not destroy the conﬁ-
putational results. The numerical methods are capable of computing reli-

able solutions past the time when the singularity occurs. This suggests that

=



such methods are suitable tools for investigating singularities of the equa-

tions of motion.

Finally, section 7 is devoted to a general discussion of the results, our

conclusions about the methods, and some suggestions for future work.

N



0. Preliminaries
In this section we describe some of our notation. We"also_ prove some

elementary lemmas that we will need in later sections.

The symbol “~" will denote the Fourier transform, i. e. for a function f,
fw) = ferm=of (z)dz
We will use | - | zg and | - | ys) to denote the L? and L! norms of fune- -

_tions restricted to a set S. We will use H* to denote the Sobolev space of

order s. The symbol "C" will designate a general constant.
We, say that a _func_:tion ¥ is in ML-P (FM for mollifier ) if ¥ satisfies the
following: '

(i) D™ is integrable over R? for every multi-index ¥, 0=< |y| <L
(i) [¥(z)dz =1
R? : _
(i) fxﬂil(z)dz =0 for every multi—index g, 1< |8] <=p -1
R? : . _
(iv) ¥(z) israpidly decreasing ,i.e., there exits a constant Cg; |

depending only on 8 f a multi-index, and j. aninteger, such that,
| DA¥(z) | < Cgy(1 + | 2|37

Specific functions in this class will be given in sections 4 and 5.

The symbol A* will denote the set of lattice points of a grid of uniform

mesh width h,
A = {(G1hjzh) | (G1.72) & ZXZ} .

As in [5] we shall use the norms associated with the spaces Hy!, HY, and H} .
to measure functions defined on A*. These spaces are the discrete analogs
of the Sobolev spaces H™!, H®, and H! respectively. The H? norm, | - | o4, is

defined by



1filon =( Y fPR2%

jehb

with the corresponding inner product

(fi9idon = 2 figih® .
ch"

If the function has support contaihed in a bounded set (), we define
(0 = 0 N A" and denote the Hg, norm of such a function also by | * [ onx,

i.e., we have

"fj|o.n = ( 2 fjah-'g)}i

sheh
( 1t should always be clear from context whether the norm is restricted to

(*.) The Hi norm, | - |, . is defined by
2 2 2 + 2
171 én= |fj|c.n+.21||D-;fj|c.h
=

where D{' denotes the forward divided difference operator on the set A* in -

the ith direction. The H;! norm is defined by

: | (f5.w;i)on |
N < SUu e e et
I Til-1a w, czl',Ik I wy lin

i. e. Hy! is the dual to Hj with respect to the HY inner product.

The following four lemmas concern the norms | f-1n. | [|ox, and

| |1x. and will be used in the proofs contained in sections 4 and 5.

Lemma 0.1: If f; ¢ HY then

m;ixlfjl sh M filon -
Proof: We have
h2|f;| sh22|fj|2= 1 /518
3

so

1 £31 =h ' filon
for all j. -



10

Lemma 0.2: If f; ¢ Hf then
Ifilloa<CR S5 -1n

where the constant does not depend onhort,

Proof: We have

2
IFilén=07i18n + 2 ID{fi 6

i1 =1
. 8 _
<\1filén+ h—gflfj"g.h-
=Ch2| f;18n

where C' does not depend onh . Therefore

1Filon = | (F5./5)on | < RTIC(f5.5)on ]
A 7 PYO T

<h-lC | (F5.f5)on]
T IFilin

< h—IC} S’u.p l (fj'wj) I
: wj CHA I wj I 1h

— h.'l.C' ﬂ fJ l —lf'h .
Lemma 0.3:If f; ¢ HY and g; £ Hy! then we have
1759il-ta <R[ filonllgil-1n -
Proof: If we use lemmas 0.1 and 0.2, then

1 £igil-1rn = 17595 lon
= mJ!’-’-" [ £5109;51a0n
<Ch2| filonlgil-in -

Lemma 0.4 : If fj e Hy', f; has support in a compact set ), and g is a con-

tinuouslyv differentiable function on (), then
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1 £595 0 -on<Cl S50 i
where g; = g(jh) .

Proof: For any w; & Hy!
2 2 . 2
Hgjw; | En = lgsw; | én + _21 I Di*gs5w; | on
{=

< maz | g; 12wy | 8n + (3 maz | Digs12) | w; 18n
je b i=1 je®

(3 IDfw; |8, ) maz | g; |2
je b

i=1
<Clwjlia
where C is independent of w. Here we have used the fact that g is continu-

ously differentiable so that

maz |Dig;| <C
maz | Difg; |

where C' is independent of h. Thus

C 1{f5.9;5w;)on |
C - fwilin
C

| (f395.w5)on |
igill -1hn = SUY -
“fJgJ F-in wy cz!',I,} i Wy " Lh

[ (f;.9;w;)on |
lly,-wj | LA

SEIij—l.h. .
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1. Equations of motion

In this section we present and prove the equivalence of two sets of equa-
tions which describe the motion of an ideal inviscid incompressible fluid

with small density variations.

The equations of motion in two dimensions for an inviscid fluid are

%;L-_i- 2-gradp =0 - (1)
%;+ 2-gradd = _g__rc:)dP._'_ﬁ-r. ‘ (1.2)
divid =0 . L (1.8)

The initial conditions are
p(z.y.0) = polz.y) 2(z,y.0) = Lo(z.y)
Here p is the density, 2 = (u;u3) is the velocity, P the pressure, and

F= (Fl‘.Fg) is the external force. We assume that the force F is conserva-

tive, i.e. curl F* = 0. For a derivation see ([17],[38]).

If the variations in density are small we can make the Boussinesq
approximation ([51].[53]) to (1.1) - (1.3). Consider the following steady

solution to equations (1.1) - (1.3) :

Z(z,y.t)=0 | (14

" plzy.t) = pe ' (1.5)
and P is chosen so that
grad P = p ' (1.8)

where p; is a constant.
Define p', P', and 2' by
p=p—-p P=P-P d'=2-7T .

We substitute these expressions into (1.1)- (1.3) and find, after some
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simpﬁﬁcation.
%Et‘—+ 2'-gradp' =0 (1.7)
(1+ Q(%+ a'grada’) = EXL |, L (1.8)
pc " 0Ot c Pc
div '= 0 ©(1.9)
and, initially,
p'(z.y.0) = polz.y)  2'(z.y.0) = dolz.y) . s

For small variations in the density about the state p, o' < p;, we make

the Boussinesq approximation,

14+ L& w 1. - (1.10)
Pc
Thus {(1.8) becomes
ot ' Pc Pec '

For the sake of simplicity we will drop the primes and refer to @', L and P’

Pc
in (1.7)-(1.11) as the velocity, density and pressure respectively. In this

notation, equations (1.7), (1.8), and (1.11) now become:

%%+ 2-gradp = 0 (1.12)

oz 2-gradd = Q_’E‘iﬁ.+ pF (1.13)
at Pe

divid =0 (1.14)

p(z.y.0) =polz.y) 2(z.y.0) =2olzy) .
(1.12)-(1.14) are the equations that we shall be using.

It is convenient for numerical work to put (1.12), (1.13), and (1.14) into
a vorticity-stream form. Let £ be the vorticity, ¢ = curl(2), and let ¥ be

the stream function, then these equations can be written as
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‘ %%+ "zZ-g'radp.= 0 S (1.15)
%§—+ a-vg'radf =curl(pf") ' (116)
M= —¢ w=¥ ups-¥ (1.17)

where A is the Laplace operator. If we use the fact that ¢ = élﬂ_—log(r) is the
Green's function for A, and 7 = (z® + y®)?, we find

¥=Gr¢

where * represents convolution. Thus, if we use (1.17) we obtain the follow-

ing expression for the velocity in terms of the vorticity:

_98G .. __8G ., -
“'ay § V= "%z 3
or '
d=K*¢ . C {1.18)
where
‘Elf
- |Rmr
K= -z

(1.18) is the . Biot-Savart " law.

We mention that the pressure P does not occur in equ_ations' (1.15)- -
(1.18). This is a result of using the Boussinesq approximation to (1.7)-(1.9),
The elimination of the pressure from the equations greatly sifnpliﬁe's our
computational task and is our primary motivation for using the Bbussinesq

approximation.

Our first numerical method, numerical method A, will be an approxima-
tion scheme based on equations (1.15),(1.16) and (1.18). Our second numer-
ical method, method B, will be based on an alternative formulation of

(1.15)-(1.18). If we make the assumption that the support of the initial
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density distribution is contained in a bounded set, then we can express

~ (1.15)-(1.18) in the following equivalent form:

9;%+ 2-grad p; = —U1zpz — UszzPy - (118)

. '%p;_,_‘_ @-grad py = —uypy — UzyPy (1.20)
p =Gz%; ’+ Gy %oy . (1.21)

%§—+ 2 -grad ¢ = curl (pF) (1.22)

2 =K*¢ (1.23)

pz(2.9.0) = poz(z.y)  py(z.y.0) = poy(z.y)  &(z.y.0) = &lz.y) -

Here p., and p, are the derivatives of the density and G = #log(?),

L C ‘
# = (z%+y?) 2. Equation (1.19) is obtained by differentiating equation (1.15)

.with respect to x and using the condition that div @ = 0. Equation (1.20) is
obtained similarly. Equation (1.21) is derived from Poisson's formula [36]

and integration by parts,
p=G*dp = Gz‘pz + Gy‘py ’
We use (1.21) to reconstruct the density from its gradients because it has an

easily implementable numerical analogue. Numerical method B is based on

(1.19)-(1.23).

We mention that the assumption on the support of p occurring in (1.15)
translates into the assumption that the density oc'currin'g‘in (1.1) is uniform
outside some bounded set. (We are describing the evolution of the density
variation in (1.15) and not the evolution of the density.) Also, this assump-
tion on p simplifies the proof that (1.15)-(1.18) are equivalent to (1.19)-
(1.23). The eqﬁivalence of these equations is most likely true under less res-

trictive assumptions, but such a result is not needed for our work, so we do
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not'pursue the matter. _ -

'To show the equivalence of (1.19)-(1.23) to (1.15)-(1.18) , it is sufficient
to show that (1.19)-(1.21) are equivalent to (1.15). If 2 and p are suﬁiciently
smooth, and div 2 = 0, then it is easily seen that any solution o.f (1.18) is
also a solution of (1.19)-(1.21). The fact thét a sufficiently smooth solution

of (1.19)- (1.21) is a solution of (1.15) is the content of the following

théorem.

Theorem 1.1

Assume that for any time t, 0<t<T, 2 and its derivatives are continu- ‘
ous and bounded for z £ R?® and div 2 = 0. Also assume 5, and foy have com-
pact supporﬁ and afe twice céntinuously differentiable ( in both 2 and ¢ )

solutions of

agtz + d-grad p, =._ulzﬁz = UgzPy | (.1'24)
aaﬁt +2-grad b, = — Uiy Pz — UzyDy o (1.25)
Pz(z.y.0) = po_(z.y) | (1.26)
Py(zy.0) = po (z.y) . , (127
If we define p by
P=Gz‘*ﬁz + Gy *py (1.28)

where G is the fundamental solution of Laplaces etiuation. then

%;L+ d-gradp =0

and

e

= Pz =py -

@l
Sl

In order to prove this result, we need the following lemma:
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Lemma 1.1: Under the hypothesis of Theorem 1.1 we have

(P= )y = (py)z

Proof: We derive a differential equation for the quantity &= (p;)y — (py)z-

We differentiate equation (1.24) with respect to y and find

o(p : _ ~ ~ _
'azTh’: - E“ly(pz)z + uzy(Pz)y t Uiy Pr + Usgy Py

+ ul(ﬁz)zy + uz(ﬁz)w + ulz(sz)y + uz:(/—’y)y] . (1.29)

Similarly we differentiate (1.25) with respect to x and find |

A o o
(gx;) = - Elzlz(Py), + uz;(l)y)y + UiyzPz + U2z Py
+ui(ﬁy)” + ua(ﬁy)yz Uy (Bz)z + uay(/_)y)zJ . (1.30)

We subtract (1.30) from (1.29), and using the assumptions that

div 4 = 0 and equality of cross partials, we find that

ot

- ul{(ﬁz)zy _-(/_’y)n] - uz[(l_’y)yy - (ﬁy)yz] v

—ua{(B)y - By)s], —uelBedy - Bue),

R

~ .
Therefore w satisfies

g%+ 2 -grad® =0 (1.31)
with initial data
z.Y.0) = po_, —pg,, = 0.

Using the fact that @ is a C! solution of (1.31) with vanishing initial data, one

can show, using energy estimates [36,pg. 140], that @ = O for all t, o<t <T.
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- This completes the proof. We now prove Theorem 1.
Proof: Consider 2 -grad p, with p given by (1.28),
d-gradp = 'u.l{G, *5. + Gyv'vp?y]z + ug[G, *pz + Gy ‘;‘)y]y
= u,[G * (Bades + Gy * (By)s] + 22[Ge * (B2)y + G * (5y)yy | (152)
If we use Lemmma 1.1 and integration by parts, (1.32) can be written as _
_ _ . _ 1
= sl * (Bades * G * (Badyy| * 12[G * (By)s + G * {5y )uy |
= UPg + UPy . - (1.33)
Here we have used Poissons formula for this last simplification. We use
~ Poisson's formula _oncevégain and rewrite (1.33) as
) —_G',..f-v - G..f— .
Upz + Ugpy = Gz LRz + UPy | + v [Y1Pz +ua0yy
=G; * [ll-g'ra.dﬁ, + U Py + uz:ﬁy] +

Gy * Ed-gradﬁy +uyps + ugyﬁy] :
If we use (1.24) and (1.25) this expression can be further simplified to

3P2 0By
] »
Gz at T Gy at
therefore
. 8Pz 8By
. = * *
a-gradp = G, ot + Gy, 3t
So, h

o= arCe "7 + 56 vp))

%: . , 0Py
= * *
T AT
=d-gradp .

This proves the first part of the theorem. For the second part,
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) _ -
E;L‘—' (Gz *pz + Gy ‘py)z

=G *(Pz)zz + G* (Oy)ry -

If we use Lemma 1.1 and Poisson's formula, then we find
=G* (ﬁz)zz +G* (pz)yy

= Pz

In a similar manner one can show that % Py This completes the proof.
gy Y P

19



20
2. Model problem

' As mentioned in the introduction, we abstract froni the vortex method |
[13] and the analysis of the vortex method ([5].[6].[19].[30].[31]) a general
numerical téchniqﬁe. We will abpljr thlS fechnique to construct and analyze
numerical sc.hemes .for (1.15)-(1.18) and (1.19)-(1.23). Before we ~dol this
however, we illustrate the technique on a simpler, model, problem. We con-'
sider the problem of calculating the motion of a ciuantity being f.ransported
by an incompressible flow. The method we'pre‘sent may-not be of any practi- :
cal value, but our description and vanalysis o‘f it will s_érve to reveal the kéy :
featurés- of the general te‘chhique. Some of the theoretical r_esul'ts“ will be
used in later sections. | | | |

Let vﬂ(z,t) = (ul.(z,.t),ua(z,t)) be a given velocify field defined on R®
such that div 2 = 0. Let f(z,t) be some quantity passively transported by

the velocity field 2, i.e. f sétisﬁes the partial diﬁerential-equation

9 o -
| 8 +avr=o0 @
J(z.0) = folz) . c (23)

We assume that the support of f; € Q,Q a bounded set in R2. The problem

is to calculate an'ap'proxi'mation to f(z.t) for times £= 0.

Our starting point is to write (2.1) and (2.2) in Lagrangian form as .

d_z.g;_-_f.L: 2 (z(a,t)) - z(a,0) = a o (2.3)
_E%j—iho 7 (@.0) = fo(a) (e

where a = (a;,a2) £ R% The solution to (2.3), z(a,t) ..is the trajectory of a
fluid particle which at time t=0 is located at the point. a. Equation (2.4)
describes the evolution of f along the particle trajectory z(a,t). In particu-
lar, (2.4) expresses the fact that the quantity f does not change along parti-

cle paths. For a discussion of the equivalence of (2.1) and (2.2) with (2.3) «
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and (2.4) , see [20, pp. 139-145].

We approximate the solutions to (2.1) and (2.2) by constructing discrete
approximations to equations (2.3) and (2.4). Define the intersection of a grid -
of uniform mesh width h with Q as, Q* = QN\A*, where A" is defined as in sec-
tion 0. Thé discrete approximation to (2.3) and (2.4) is obtained by comput-

ing the solution to the following set of 0.D.E.s :

Eg?‘_'tl.z ﬂ(z(jh,,t)) z(jh.O) =jh | (25)
AR 7 Gh.0) = folih) (2.6)
for all jh & Q*.

Thus the computed approximation to f(z,t) for £=0 consists of the

values of the function f at the set of points {z (jh.t) | jh & O*}.

What is attractive about such a scheme is that the values of the func-
tion f at the points z{jh,t) are not smoothed by this process. 1t is for this
reason that we are justified in calling the method non-diffusive. Note that we
are computing the exact solution at the points z(jh,t), thus the method is
similar to the Random Choice Method ([14],[29]) where a solution is con-
structed as a superposition of locally exact solutions. We expect that the
most prominent feature of the Random Choice Method, the ability to com-
pﬁte accurately the evolution of sharp fluid discontinuitieg. will also be a
feature of this method. This property is not shared by conventional finite

difference schemes for solving (2.1) and (2.2).

One unattractive feature of such a scheme is the difficulty approximat-
ing the function f(z.t) at points other than the particle trajectories,
iz(jh,tj | jh &£ *], or approximating differential and integral operators
applied to f. This difficulty arises because the points at which the approxi-

mate solution is computed, z(jh,t), are not necessarily distributed uni-
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formly in space. Interpolation or diﬂerentiatioﬁ formulas tend to be compu-
tationally unstable or of low accuracy. An approximation procedure that
has proven successful in overcoming this difficulty is that which is implicitly
used .in the vortex method ([5][13]) We now describe this approximation

scheme.
Consider a function ¥ in MY:?, where ML'? is defined as in sectibn 0.

Let ¥; = 6—1;1'( g—) where § is a paramétef to be specified later. We take as

our approximation to f

FMzt)= ¥ Yolz —z(iht))f (iR, t)h2 . (2.7)
heh

In the vortex method this fype of approxirilation is used to approximate '
the vorticity.( Although in sorﬁe versions of the vortex method, the function
¥ is not necessarily cho.s'en to be in MMP ) An interpretation of (2.7), due
to Chorin [13], is that we are approximating f (z.t) by a sum of "blobs”

¥4(z) with strength f (jh.,t)hzl located at the points z (jh.t). |
- An estimate of the abcuracy. or consistency. of the approximation
scheme (2.7)‘is implicit in the work of Beale ahd Majda ([5],[6]) ér Cottet
[19]. The following result is a minor modification of the consistency lemma

contained in [19].
Lemma 2.1: Consistency of the approximatibn

Assume the velocity field 2 and the function J (z.t) satisfying (2.1) are
sufficiently smooth for 0<t<7T. If fo has support contained in 0, Q0 a
bounded set on R?® and ¥(z) isin MMP with L > 3and p > 0, then

L

) (2.8)

Ih‘

crsntai(rlf"(z,t) - f(z.t)]| = Cdf + C(

(=1

for all z £ R®. The constants depend on T,L.,p.Q, and bounds on a finite



23

number of derivatives of 2@ and f.

In order to prove lemma 2.1 we need the following result which
describes the error in using the trapezoidal rule for approximating integrals

of functions over R?. The proof of the following lemma is a result from [3].

Lemma 2.2 Given a function gsuch that g has compact support, g £ C3(R?)

‘and Dfg ¢ L for |B| < m with m = 3, then

82 T g(kh) = [g(@)dz| = Chmmax DR |ugs - ID59 lge ) -
R

k £2ZxZ
(2.9)
Proof : We use the Poisson summation formula [22] and express the sum in
- (2.9) as
~ k
h* Y gkr)= 3 g(Rry) . (2.10)
k & ZxZ k € ZxZ
Now, .
g(0) = fg(z)dz
R?
so
R Y glkh) - [g(z)az = ¥ §(ansy .
k¢ Zx2 RE k g ZxZ h (.11)
k»0

For any function f ¢ L,

max|f(w)| < | f|d=z
weR? R2
So,

max| (mi)"™of'g (wy.we) | < [ | DRt | dz
RZ

weR
which implies

1

7 (wywg) | € ——=>———[|DI'g |dz .
| g (wrwe) | (Zﬂ)”‘lwll"‘él g |

Similarly,
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, <€ "t |DRg |dr .
’9(9102)1 (Zﬂ)mlwzlmi{z‘l zzgl
Let h
=_ 1 1 |
C = max .WI,D;’;gIdx' (zn)mleg;gldx
then ” '
- C - C
|§ o] < 1o 1 (oo | S T (2.12)
for all (wy.wz) £ R?. Define | (@, w2) | max bY
I (©1,02) | max = max{ ||, |we]]
Then (2.12) implies that
~ C
lg{wpwe)| =
| T Hewwe) | B
so that
~. 2 C
19 (ke rk) | = —5= .
I —,T-(kllkz) H l’z?ax
D i 1 .
2™ | (krko) | B
Now, using the fact that for m = 3
1 = 1
=8 ———
o Tk o 2 77
('see [3] ) we have that
~ ok AR™BC , & 1
lkgog (znh)l = (271')".' \j;ljm—ll . (213)

If we combine (2.11) and (2.13) we obtain the desired estimate. We now

prove lemma 2.1.

Proof: Our goal is to estimate
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frz.t) - f(z.t) = %E‘I’G(“’ - z(h)f (#h R? = f(zt) . (314)

Consider t fixed, 0<¢ < T. We write (2.14) as the sum of two terms

fh(z't..)' _f(x't) = {g\I’G(z -Z('Lh,t))f (’Lh.,t)h.z —f\lla(z —z')f (Z'.t)dz’] |
+ {f‘l’a(z ~z)f (z"t)dz’ —f(:::,t)]

= {A] + {B]. .

To estimate term A, we first change variables in the integral using the flow
map z(a,t). Since the flow is incompressible, |Jz{(a,t)| = 1, where J is the
jacobian. Also we have f (ih,t) = f(z(ih,t).t) so that term A can be written

as

gl)%(z —z(ih.t))f (a?(vh..t).f-‘)h2 —f%(i: —z(at)f (z(at),t))da .
Thus we recognize term A as the error in using the trapezoidal rule for:
approximating the integral with respect to a of the function

glz.at) = Yoz - z(at))f (z(at) . 1) .
Under the assumptions on ¥ and f, we can apply lemma 2.2, and we find
|A] < Chlmax {IDig(z.at)l,. IDGg(z.at)l) .  (215)

If we Llse Leibnitz’'s rule we find,

DLg(z at) = , %: LCﬁx-ﬁantl\PG(‘r -z (at ))fof (z{a,t))
1+he= v

where Cg, g, is a constant depending only on g, and 8 and not onf. The func-

tion f has support in {? and is smooth so we can estimate this by,

IDhganly=l % Cou itz —2(@t DD (2(t) Iy
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<C IDE ¥a(z — 2 () |1 - -
o< lg:lsL 8 ) L) (216)

Since the flow is smooth and incompressible, we estimate each term in

(2.16) by

108z - 2@ Nl =C T 104G -2 ug - (@17
v 7=

Here Q is a set that contains the image of Q under the flow. Thus we must
find L! estimates on the derivatives of the function ¥;.- We have the following

pointwise estimates,

(i)  |DP¥y(z)| € ===  forallzeR?
631-2 ]

. C

W Jor all z, IZI)(S'.

(1) | DMz)| s

For (i), since V¥ is rapidly decreasing, -

| Ds(2) | = = DR

c

e
: dﬂ +2
For (ii), again usmg the fact that ¥ is rapidly decreasing,

| D¥(z) | = | DD |

1 Coe
= s2+8
T 1 R

Choosing £ > L;;iand noting that with |z | > d we have
BT E(L+ | BB =z |20

it follows that

Ca.x c
62+p(1+|‘;_|2)k |z|2*F
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This proves (ii). Now,

{| DAYy(z ~z') | dz' = S | DBYs(z — z') | dz’
flz -z'] <6)N7 :
+ | DAOy(z —z') | dz' .
ilz—z{zomn (2.18)

We use (i) to estimate the first term of (2.18) and (ii) to estimate the second
term, thus B

diameter (T) + 6

' ' C 2 1
{lDﬁ\Pa(z—z)ldeWZN5)+C _[ T;—lmdx
<L
é

If we use these bounds for the terms in the sum (2.17), and use (2.15) and

(2.16), then we find,

[A] sC(g—)’" : (2.19)

By choosing the constants large enough, the estimate (2.19) can be shown to

be hold for any t,0<¢ < T, and any z ¢ R?, thus

Ryt
0rsn‘a.;(rlz\.l sC(d) . (2.20)

To estimate term B, we use the fact that a function is bounded by the L!

norm of its Fourier transform, so

max|B| =max|f - f "I’o.l
z ¢R® z ¢ R2

<[ (@) = F(&) Tu(e)| do
= [1F@)] 11 -$ws)|de . 221)

Our assumptions on ¥ imply the following:

(i) ¥(0) = [¥(z)dz =1

(i) DEY(0) =C[zP¥(z)dz =0 for 1< |B|<p -1
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(i) .max |Da¥(w)| <C for |a| =p
weRP '

We use Taylor's theorern with remainder and propefties v(i)‘. (ii), (iii) of ¥ to
‘estimate N |
1 - F(6w) |
by -

|1 - $¥(6w)| = | ¥(0) - ¥(60) |

=l ¥ —D“ff(oxao)“l

0<a=|pl] -1 &

26 N sup |D¥(650)] | (0]

lal =p

<Co |w|P

Thérefore,assmning that f is smooth so that its Fourier transform decays '

sufficiently fast, the right hand side of (2.21) can be estimated by
S1f@)] 6 |w|PdosCs® . " (2.29)

Again, if we choose the constants large enough, this estimate can be shown
to hold for all t, 0<t¢t < T. If we combine the estimé.te (2.20) for term A

and (2.22) for term B, then we find
, o _

- 2 P =0
oms‘axsrl L ¥s(z Z(Th t))f (th.t)RZ ~ f (z.t) | =Cé?+ C (,6) . (2.23)

This bompletes the proof.

The pointwise estimate (2.23) implies the following L? estimate,

Corollary: Under the assumptions of lemma 2.1, for any R, R a bounded set,

' L
orsn‘aic”fh.(x,t) —f(2.t) | oy = C & + c(%‘-) L (229)

From the second term in the error estimate (2.8) we see that it is a

good idea to choose the parameter 6 > h. If we let § = A9 for ¢ < 1 then for
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h sufficiently small as 2 +0 the error decreases.

In deriving this estimate the trajectories z(jh,t) are assumed to be
exact solutions to (2.5). During the course of an actual computation z (jh.t)
will not be computed exactly, and it is of interest to estimate the behavior of
the approximation (2.7) under ‘perturbations of the trajectories z(jh,t).
Such an estimate is a stability estimate for the approximation scheme (2.7).

We prove the following result:
Lemma 2.3 : Stability of the approximation

Under the assumptions for the consistency lemma and the assumption that

forO0<t <T,

| Z(jh.t) —z(jh.t) | on < 6R

where Z(jh.t) are computed trajectories, then for any bounded set R,
| ¥ Yoz —Z(h t))f (h )R — ¥ Yoz —z(ih £))f (iR t)RP] <
theh th e Qb L2R)
Cd—lu;(?}l,t) —Z('Lh,t)lo'h . (225)

The constants depend on T,L.p, 0, and bounds on a finite number of deriva-
tives of i and f.

The proof of this lemma follows closely the proof of the stability of the
velocity approximation in the vortex method given in ([5],[6].[30]). To prove
the stability lemma, we need the following discrete L! estimates for Df¥,, g8

being a multi-index,
Lemma 2.4 : With t fixed , z; = z(jh,t), we have

' C
max |DBVs (z —z; + ;) |h? s —— >1
w SR, 141 2608 I 6 ( 2] yJ)I 5181 1 (2.28)

for all z ¢ R? and Ry a bounded set in R?, provided h is sufficiently small. The

constants Cg depend on Cy, the derivatives of the flow and the derivatives of
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the function V.

Proof: We have the following two bounds on the derivatives of ¥; .

c

® 10%()| < e

all z ¢ R?

c

—_— 2
PIAL |z| >6.,z eR* .

(ii) |DP¥e(z)| =

For a proof of these bounds, see lemma 2.2. Let J be a multi-index,
J = (j1Jz). define

Q; = [J1 —¥hJ, .+ ¥h]x [Jz "}?1-.7'2 + %’7-]

and
Bj={z¢s R*| 2 =z(q,t). ae Q,- i, _ (R.27)

i. e. By is the image under. the flow of the rectangle Q;. Since the flow is
~ incompressible, the area of B; is h?  Also,since we are assuming that the .
" flow is sufficiently smooth, then it follows that the diameter of B; is uni-

formly of order h, so that, ash <4

Iz'-zjlscld zlsBj

for some C; . We assume that Cg > C,l' Fix anz ¢ R® and let
Ji ={jeZxZ| jheRy |z ;—zl S(Sél+ 1)8}
J2=1j sZxZ| jhsRe |z; 2| >(3C, + 1)8} .
Then
U8Bl jed c tlz' -z <(4C, + 1)6}. .
We use the pointwise bound (i) to estimate the contribution to the sum
(2.26) from points in ‘_Il'

c c
%, max| DA¥(z = z; +y;) | h® < m{(4C, + 6] 35 i (2.28)

jed

For the remaining part, we use the fact that the area of B; is h? so that for a
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fixed = £ R? we have

— Ay : 2 ~ t '

jes lufrll?%oa | DPYy(z —z; + ;) |R2= [ G(z)dz
2 UBj
Jely

where we are considering G(z') as a step function on B; defined by,

G(z') = Iyﬁlixcotsl DPy(z — z; + y;) | forz'eB; .

1fj £ Jz . then

|z —z; +y;| =(2C, + 1)6 > 6

so that the pointwise bound (ii) implies that

max |DA¥s(z —z; +y;)| < Clz —z; +y;) 181 -2,

ty;1 = C6
For z' ¢ B;
z -z +y,-| > |z ~-z'| —201.6
which implies
(z -z; +y;) 1Pl 2 < (|z —z'| —2C,6) ~ 17l -2
Therefore,
| G(z") | éC(Iz —‘z'l —2C,6) - 181 -2 forz'eB; .

Also, for z' ¢ B; ,

lz —z'| 2|z —-z;| = |z' -z

> (1+RC,)6
so that

U{Bj|jsJ2§ Ciz' eR?|(1+R2C)6< |z —2'| =oof .

31

(2.29)

(2.30)

(2.31)

If we use (2.30) and (2.31), then the integral in (2.29) can be estimated by
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J 16 dz'<C [ (|2 —z'| —2C,8) " 18! ~2az’
LB : UB;
fel; Jelp

<C (l]z —z'| —2C,6) 1Al ~2dz'
(1+2C)8< |z -z'| < |

If we change to polar coordinates and let » = |z —z'|, then, this latter

infegral becomes

C [ (r-2c6)-181-2rar . (2.32)
{(1+2C,)6

If we use the change of variables =7 —2C;6 and note that

¥ +2C,6= (1 + 2C,) for ¥ > 6, then (2.32) can be estimated by

u~— _ C . ) _ . .
C{r .“’l ldFsdw for|g] =1 . (2.33)

(2.28) and (R.33) imply the desired bound.
We now prove lemma 2.3.
Proof: Let z; = z(jh.t), Z; =Z(jh.t), e; =z; —~Z;, and f; = f(jh.t). We
need a pointwise bound for e;, so we use lemma 0.2 and the assumptions of
this lemma to find |
mjaxlej‘l <h7 Jejlon

<0

If we use the mean value theorem along the segment fromz - z; toz — EJ-,

then

z ‘I’g(.’t —;j)fjhz - 2 ‘I’a(z —'.’Ej)_fjhz =
jheQh . jhe(P
. [ E Dﬁ\Pd(z _zj + yj(z))ejﬂ]fjhz
jheth 18] =1
where max|y;(z)| =C;6 and e} is the ith component of e; so that
j

ef = ef‘efz. We will estimate each term separately and sum the estimates.
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Since the two terms have the same form we concentrate on estimating

J_h‘émD"l’o(z ~z; + y;(z))effh? . - (2.34)

The other term is treated similarly. Let B; be defined as in (2.27) of lemma
2.1, and define

To estimate (2.34) we will consider D¥4(z —~ z; + y;(z)) and e;f; as step

functions defined on R x S and S respectively. Specifically, let

G(z.z') = Dg¥s(z —z; +y;(z)) "z eR z'eB;
I (z) = fjej z' & B;

then, since the area of each B; is h?,

Y DAYz —z; +y;(z))fje5h® = fG(z.z')f(z')d'c' .
jhemh 3 v

We apply generalized Young's inequality [26] to the latter integral and find;
| {G(x,x’)f (.’L")d’t' " L2®R) = E " f l L3(S)

where C is that number such that

glg{ |G(z,z')|dz'<T (2.35)

max |G(z,z)|de =T . (2.36)

To estimate (2.35 ) we apply lemma 2.4 with Rq = R,

max [ |G(z.z)|dz' =max Y |D¥(z - z; + y;(z)) | A®
zeRg ztth:(]"

< max max |DAVs(z —z; + y;) | A%
zath?ﬁ" |yj|‘sclal s J yJ)l
C

< =
o)

Similarly for (2.38),
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| g,lgg{lG(z.r')ldx-#glgg ZJIG(z.x’)Idz
. =1§;an [Z['DB‘I’” —z; + 5 (z)) | dz]

< max EID”% x,k zj+yj(2'jk))|h2
‘ jhcﬂ"' x . _

where 5,-,, is that’ point in B, at which the continuous function
D¥s(z — z; +y; (z:)) considered as a function- of X, assumes it ‘maximum
value. The sum is over all k such that Bk MR is not empty Thus, if we apply

lemma 2.4 with Ro = UBk I B, m R # 0}, then (2. 36) can be bounded by

<= max Dﬂ{, T — 2 + h2
jhe b ; Vype szcol oz = z; y:k)l

<C
(0]
Thus C = g— If we use this bound on C then,

z a(z—zJ)th - 2 Us(z ~2)f;h*] oy = llfG(u)f( z')dz' || (am

jhc Jh:ﬂ"

= C
<CIS lieg = 5158 lon
=Cé'ejllon -

This completes the proof.

We combine the consistency and the stability estimate and obtain a

convergence proof.
Theorem 2.1 Convergence of the approximation

Assume the velocity field @ and the function f are sufficiently émooth for
O0<t =< T. Assume that the support of f¢is contained in a bounded set ) and
that ¥(z) is in M“P for some p > 0 and L= 3. If h is sufficiently small and if

6=h3 for g <1, |Z(ih,t) —z(ih.t) [ op <h° where s > g + 1, then we have
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for 0 <t < T and any bounded set R,

L(1- -
max | 7P (z.t) = f(z.t) | o< C (AP + RLOTD 4+ he70) (537

where

JTMzt)= ¥ Ve(z ~Z(ih.t))f (ih.t)h?

the
" and z(jh.t) is a computed solution to (2.5). The assumnptions on p.q.L and s
imply that as A » 0 the right hand side of (2.37) tends to zero. Here the

constant depénds on p.L.R, Q, and a finite number of derivatives of the velo-

city and the function f.

Proof: We have

Pt - 1 (2.8) = (PH(z0) = P4 + 7P ) - £ (2.0}
={ T Y(z ~H@ht)S RE - T oz - z(@ht)f ()

heh et
+§ Y Yslz —z(ih,t))f (ih,£)R2 - f(z.t)} . (2.38)
th e Qb .

We estimate the first term of (2.38) using the stability lemma 2.3 and the

second term using the consistency lemma 2.1. Thus

L

))

B

I 7™ (z.t) = f(z.t) |y = COTM | Z(ih,t) — z(ih.t) [ on + C(6° + (

O

< C(hs~7 + hPT + hL1-1))

This completes the proof.

We note that the traject-ories Z(jh.t) need to be computed with
increaéing accuracy as h -0 to assure convergence'. This is not an unreason-
able requirement. We expect that the errors committed in the calculation
of Z(jh.t) will be largely in the numerical solution of the 0.D.E.s (2.5) and

therefore uniformly of order (At)! for some I > 1. The requirement that
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| Z(ih.t) = z(ih,t) | op < Ch®

implies that we need (At)* < Ch® or K%Ls C. Thus, this requirement is .

very similar to the stability requirement for explicit finite difference

schemes for the appfo:dmétion of solutions of hyperbolic equations.

In summary, a numerical method for approximating the solution to
(2.1) and (2.2) consists of solving the 0.D.E.s (R.5) and (R.8). We construct an
approximation of the solution at points bther than z (jh,t) using the approx-
imation scheme (2.7). The consistency and stability lemmas combine to

establish the convergenée of this approximation to the exact solution.

We will be using a technique similar to that described above for the con-
struction of approximations to the solution of (1.15-1.18) and (1.19)-(1.23).
We cbmpute the trajectories of a finite nmber of fluid particles and the
values of the ﬁbw quantities (density, vorticity, ete.) .ass'ociated with them.
It will be necesséry to find approximations, based on this computed informa-
tion, to derivative and integral operators applied to the flow quantities. We
construci the approximaﬁions by applying the particular operatbrs to

approximations of the form (2.7). For example, we use

i) = Y Xz p(in ) (i t)R?

jheqh a
as an approximation to the x derivative of f. For each of these appi'oxima—
tions one must evaluate their consistency and stabiﬁty. We preform such an

analysis for a variety of operators in later sections.
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3. Discretization of the Equations of Motion

In this section we describe approximation schemes for (1.15)-(1.18) and
(1.19)-(1.28). Our technique will be to write the equations in Lagrangian form
and then discretize them in a manner analogous to that used in the model

problem. We begin by discussing a scheme for {1.15)-(1.18).

In Lagrangian form equations (1,15)-(1.18) become

;iz_g_-tL u(z(at)) 2@l =a | (3.1)

L) o po(ot)Fe = py (ot )Fy E(@.0) = éo(0) (3.2)

5’-2%1= 0 p(e.0) = po(a) | (3.3) |
4 =K*&at) | (3.4)

where a = (a;,a;) £ R% The solution to (3.1), z(a,t), is the trajectory of a
fluid particle which at time ¢t = 0 is located af. the point a. Equations (3.2)
| and (3.3) describe the evolution of the vorticity and density aleng the parti-
cle trajectory z{a,t). For a discussion of the equivalence of (3.1)-(3.3) and

(1.15)-(1.18) see [20, pp. 139-145].

Assume the support of pg is contained in Q, where Q is a bounded set in
R®. For a given value of h, define (* as the intersection of a grid of uniform

mesh width A with Q; O* = QN\A*. Let ¥ be a function in M“? and for a value
of §, § > 0, define ¥; =’é-{/(%. Our approximation to (3.1) to (3.4) consists

of solving an approximation to the 0.D.E.s {3.1)-(3.4) for all points in Q*, i.e.,
dZ(gh,t) _ ~po ~ .
e G L I %(jh.0) = jh (A1)

M&’:'t =p2(jh.t)Fz = B(jh.t)F1 H3h.0) = £o(jh) (A.2)
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d";tz_'t =0 " BGR0) =polih) | (AD)
for all jh & O*.

- The velocity_ Ut (Z(jRh,t)) in (A1) is computed by

uh(zuht»— T (K e Eoh. t)-mt»"émnhz. vy
_ ©odheh , s

The de'rivatives of the density necessary to evaluéte {(A.2) ar;e computed by

"(Jh t) = ZI z Jh t) - (fh.t))p(fh.t‘)h»'2 - i  (A.5)
ih e QA ‘ .
"é?(fh».tv)j‘ )} -—-(z(jh.t)-E(ﬂz‘t))p(v:h-t)hzt.‘ e
. m;n : o o

The parameter § occurring in (A4)-(A.6) will be specified later. As i‘n"the'
vortex rnethod the functlon ¥ is chosen so that K* ¥, may be computed

exphc1tly -This is method A

We remark that the expression for the velocity 11 is obtamed by apply-

ing the kernel K to the approximation of the vorticity given by
P(zt) = Znh%@: ~Z(ih )JiCRE)RE (3.11)
' ihe : - .

and the density derivatives are obtained by d’iﬁfer'eritiatingvan approximation

to the density given by .

Pzt)= Y Ys(z -r(v!l t))p(m t)h?® . (3.12)
' theh ] - ‘

To construct an approximation scheme for (1.19)-(1.23) we first write

these equations in Légrangian form,

_(“_tl_ 2(z(a,t)) z{(a,0)=0 "~ (3.13)
QHRL) = o (0t)Fs - py(t)Fy  E0) = fol0) (3.14)

dt
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dpz(a.t) |

= “wie(E(at)) polat) —ug(z(at)) pylat) (3.15)
pz(a,0) = Po’(a)
dpyd(:t.t) = —uyy (z(a.t)) py(ait) —u?y(x(a,t)) py(a.t) (3.16)

py(@.0) = po, (<)
plo,t) = Gy*oz(a,t) + Gy"py(a,t) (3.17)
where we are using the same notation as that in (3.1)-(3.4). Assume the sup-
port of £, Po, and Po, are .contained in some bounded set {). For some
h >0, define 0" by * = QNA*. Let ¥ be in M“P, we will approximate the

solutions of (3.13)-(3.17) by the solving an approximation to (3.13)-(3.17) for

all points in (* given by

= ;;'t = uM(Z(jh.t)) Z(h,0) = 0 (B.1)
g}g%)_ 2(gh t)Fe = pyjh.t)F1  jh,0) = £o(sh) (B.2)
fpygh't) = —ul, (z(jh t)fpy (Jh ) = Ubz (Z(jh.1)p (R 1) (B.9)
P2 (3h.0) = po,(jh)
d“(%:tht)— ry (TR £)Vpy (R ) —ua;( (5h )Pz (R t) | (B.4)

Py (7h.0) = po (i) .

The velocity w*(z(jh,t)) is computed by

Ut (E(ht)) = ¥ (K*¥e)(Z(sh.t) — Z(ih t)f¥(ih,t )h? (B.5)

theth

and the derivatives of the velocity field in (B.3) and (B.4) are computed by

BEGR) = T (K° FHEMD ~F0) WnOr  (26)
he

BWEGR = % (K* THEGR.L) - Fht) WinOR? . (B7)
iheh y : )
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The density is approximated by

plat)= ¥ (Gs *¥)(z = Z(ih t)ps (th.t)h? | (B.6)

* mzn(Gy * Ys)(=z ‘;(Th-t)ﬁy(ih.t)hzv_

This is method B

We note that the approximation to the velocity derivatives Ag'iven by
(B.6) é.nd (B.7) are obtained by differentiating the apprdxirnation to the velo-
city (B. 5) Also, the density in approximation (B.8) is obtained by using the

approximations to the density derivatives

Phzt)= T Vol ~E(h.t)) B (R
jheqhb

oHz.t)= Y Y(z - z(jh.t))p, (jh. t.‘)h,2
Jhan

in the formula (3.17).

The accuracy of these schemes is depend_ent upon t.he initial grid spac-
ing h, the smoothing 'pérameter 6 and the function ¥. In sections 4 and 5
we will consider error estimates, similar to those found for the model prob-
lem, for these schemes. These estimates w111 be used as a guide for choos-

ing the parameters.
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4. Analysis of Method A

To implement method A we must choose h, the initial mesh width, the
function ¥ used in (A.4)-(A.8), and the smoothing parameter 6. { We note
that it is not necessary to choose the same function ¥ and parameter ¢ for
(A.4) and for (A.5)-(A.6).) To guide us in our choice of these parameters we
consider error estimates for the velocity and density derivative approxima-
tions. The stability, as well as the accuracy of the method for various
choices of the parameters will be investigated by applying the method to a
test problem. This test problem consists of an exact solution to equations
(1.15) - (1.18) and is described in section 4.2. We are not able to prove con-
vergence of method A, but if we modify the method, we can prove conver-
gence of the modified algorithm. The modified algorithm and the conver-
gence result are 'presented in section 4.3. Although we have not yet tested
the modified algorithm, we expect computatioﬁal results similar to those
obtained with method A. Thus, we present the convergence resﬁlts to

demonstrate the validity of the general approach.

4.1. Error Estimates

We are interested in error estimates for the velocity approximation -
(A.4) and the density derivative approximation (A.5)-(A.6). The error esti-
mates contained in [6] and [19] are applicable to (A.4). The statement and
proof of the estimate that we use is a slight modification of the results in [8]
and in[19]

L]

Lemma 4.1.1: ConSistency of velocity approximation

Assume that the velocity field w(z.t) is sufficiently smooth for
z ¢ R? 0<t < T, and that the initial vorticity has support contained in Q, Q

a bounded set. Let * = QNA*. Also assume ¥ ¢ ML''? with L>3 andp >0,
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“then for u” (z.t) defined by

ut(zt) = Y K*(z —z(ih.t)) £(ih )R
. ' heh )

we have the estimate
Jax | uh (z t) —-u(z t)| =CéP + C( )Ld . (4.1.1)

where the constants depend on a finite number of derivatives of the flow, Q,

- T,pandL.

Proof: Fix an z e R% and ¢,0<t <T. Let K* ¥, =K, . We begin by writing
the error as a sum of two terms, |
xt)—uzt)-{u"zt) dez—z)f( Ydz'}
+ {fKe(z — z)¢(z')dz' — u(z t)}

= {A] + {B] .

To estimate term A we change variables in the integral using the flow
map z(a,t): R® > R? (i. e. the solution of (3.1) in section 3 ). Since the flow
is incompressible,. the jacobian.of this transformation is identically 1, so

that term A can be written as

Y Kz -z (it DEAER? — Kz - (ot )z (a.t).t o <4le>f

1.):.50“

Since f(mh t) = £z (th,t).t), then (4.1.2) can be viewed as the error in using

the trapezmdal rule for integrating the function
g(z.at) =Koz — z(o.t))é(z(at).t)

with respect to a over R®.
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We apply lemma 2.2 in section 2 to {4.1.2) and find
|A] = Chlmax{| Di g (z.a.t)] 1 ID&g (z.at) ] 4 - | (4.1.3)
Thus we must estimate
ID&g (z.t) |
~ If we use Leibnitz's rule, then

Di g (z.at) = b Cs, 8, D.‘;lKo(z —z(a,t))Dgff(x(a,t).t) (4.1.4)
1841 + 1821 =L

The function £(z(a,t),t) is smooth and has support contained in Q so that

(4.1.4) can be estimated by

c T 1Dz —2 () g, @19

Since the flow z(a,t) is smooth and incompressible, we can estimate
integrals over R? at time 0 by integrals over R? at time t. Thus each term in

(4.1.5) can be bounded by

c X

P g
where the constant depends on a finite number of derivatives of the flow a_nd
0 is a set in R? containing the image of Q under the map z(a,t). |

To estimate (4.1.6) we need point-wise estimates for the function Kj .

The estimates given in [5] are suitable. If we make the appropriate

modifications to account for the change in dimension, then for any multi-
index 8 = (8:.£2).
(i) |Ks(z)] =Cs- 114l all z ¢ R?

(i) |Ks(z)| =C|z| -1~ 14l all |[z]>6 zeR?.

For the proofs of these estimates see the proof of lemma 5.1 in [5] .



For a given multi-index 8, then

{IDBK"(Z'”"”‘“': S | DFKg(z — z') | dz’
flz -z | =6iN0
| + | DKz —z') |dz' .
uz-z{wmn ,z (4.1.7)

It we use the estimate (i) for the first term in (4.1.7) we find

. | DPKy(z — z') |dz' < mé? Co—1- 181
flz—-=z'] <6|NR, ' .

< cstol8l (4.1.8)
To estimate the second term in (4.1.7) we use (ii),

2n diamater(Tl) + §

| DfKy(z ~z) |dz' < C [ [ e
- c ,

flz -2’ >6N0
C diamater(Q) +6 B=0
<{ Clog|d| |8l =1 (4.1.9)
col- 1Al [8] >1
We combine (4.1.8), (4.1.9) with (4.1.4)-(4.1.6) and find
IDLg(z.t.a)] = Cot L
thus,
|41 = Chimax{ | Dkg (= £.00 | 1. | Dkg (z.£.00 1
< Chb gL = c(-:;—)La L (4.1.10)

To estimate term B, we héve
B=K*¥;*({—-K*¢ .

We use the fact that a function is bounded by the L' norm of its Fourier

transform, so

sup|K* ¥ * £ ~K* ] = [(1R) Su() E)| ~ |R@) E)]) do .
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< f1R@)| 1E@)| |1 -¥(6w)| de
We now proceed as in [6]. As in the proof of lemma 2.1 of section 2, if ¥is in
ML?  then

|1 -¥F(6w)| <C6° |w]|P
Assuming that ¢ is sufficiently differentiable,then

o) = —C
3@ = e

for some constant C, and noting that the Fourier transform of K satisfies

1
lo]

IR <

we have that

. A | - (.1l __Clws|?
SR H) 1= ¥60)| 2o [ 1S 2
- =CéP
Thus,
|B| =Cé&® . ' (4.1.11)

By choosing the constants large enough the two estimates (4.1.11) and

(4.1.10) can be shown to hold for all z ¢ R2andt, 0<t <T, sothat
max_ |ut(z.t) —u(z,t)| <C6® + C(;‘_)Ld

0=<t=<T

for all z £ R®. This completes the proof.

An estimate of the accuracy of the density derivatives is contained in

the following lemma.

Lemma 4.1.2 : Consistency of the density derivatives
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Assume vt-hat' the velocity field il.(z,t) and the dénsity pl{z,t) are
sufficiently smooth for z ¢ R%, 0 <t <T . Assume that the density has sup-
port contained in a bounded set 2 and ¥ is in MMP with L>3 and p > 0. Let

0" = QNA*, Then for pg(z,t) and p/(z,t) defined by

6\[’5

pM=z t) = ), z —‘.":('.i}z.,t))p('i}'t.,t)h.2

. fheﬂ"

phzt)= ¥ Doz _ 2 t)pin )n?
thelh Y ' ' i

we have the estimates

_ Orgtai(Tlp,(x t) p,(:z: )| <C61’ + C(-—)d 1 _(.4.1.12)

— ah Tey —l
oriltasx’,lpy(z-t) py(z»t)l _$C5p +C(6)6 v

where the constants depend upon a finite number of derivatives of the flow,

a finite number of derivatives of p(z,t), and on T, p and L.

Proof: The proof of this result follows very closely that of lemma 2.1 in sec- -
tion 2. We will only prove the consistency of the x derivative, the con-

sistency of the y derivative is proven in a similar manner. -
We begvin by writing the error as the sum of t..wo terms,

a\p v
2 * ; i axc ‘p pz;

pHz.t) —pz(?.t5 = {pk -
= EAQ.% B

For term A, we change variables in the convolution integral using the map
z(a,t) : R?» R?® . Since the flow is incompressible, the jacobian of this

transformation is identically 1, so term A can be written as

Z—(z — z(ih,t))p(ik t)R? - f——(z - z(a.t))p(z(aut))da
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Now p(ih t) = p(z(ih.t).t)so that we recognize this difference as the error in

using the trapezoidal rule to integrate the function

9@.at) = Tz - 2(at Doz (@)

with respect to a over R?.

As in the proof of lemma 2.1, we use lemma 2.2, and bounds on the

Ov;

iz to find

derivativés of the fuhction

Jmax |l =C(3ret (4.1.13)

To estimate term B, we rewrite this term as

ov
B=—*0=p, =¥ *p; ~p; . (4.1.14)

The estimation of the right hand side of (4.1.14) is identical to the estimate

of term B inlemma2.1, i. e. identify p, with o . Thus we have the estimate

maxrl%‘pz -p. | C6® . (4.1.15)

VEF 2
(4.1.13) and (4.1.15) together imply the estimate (4.1.12).

In our choice of the parameters we will consider h to be arbitrary and
then seek choices of the other parameters so that as A- 0 the errof
decreases. It is clear from the estimates (4.1.1) and (4.1.12) that we should
choose our functions ¥ in M? for some L and p. In our computations we will .
choose functions for which L is arbitrarily large (V¥ is infinitely differentiable
and rapidly decreasing ). Thus we need only choose an appropriate value of
. p. From both of the estimates (4.1.1) and (4.1.12), we conclude that choosing
p larger should decrease the erro"r. It might be thought that choosing p as
large as possible is the best choice. There are two reasons why this fnay not
be true. First, the functions ¥ for which p is large tend to be expensive to

evaluate, hence the increase in accuracy may not be justified in view of the
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increased cost. Secondly, the increased _acéurééy ié dependent upon the
flow being increasingly smoofh. In partic‘ular,_the size of> the constant multi-
plying the 6P term in (4.1.1) is proportional to the decay of the F‘durier '
transform of ¢ and in (451.12) is prdpoftional to the decay of the Fbu’rier
| transform of p. For flows whiéh aré not.-suﬁicientl).r smooth, i;é. their
tranéforms do not decay sufficiently fast, then we expect that there is a
finite pgy such that for P = pq, increasing the value of p will not i_néréase the
accuracy. o | |

The other parameter we must choose for each approximation is 4. If we
let 6 = A%, then in-order for vthe éecond term in each érrof estimate to |
decrease, we see that it is necessary that g < 1. What precise value of g < 1
is not clear. To make the C6P term in each error small, we should choose
6 = h? with q near one, i.e. .q =1—¢ for ‘.‘somé"small £> 0 Unfortunately
this is the worst choice in view of the error associated with the second error

. N L .
terms of the form (—2‘% 67*. Ideally, one would like to balance the errorsin

each of the terms, but witﬁout detailed ‘knowledge of the constaflts. this is
difficuit. It may appear that if ¥ isin MLP and-L is arbitrarily large the error
in the second term may be considered negligible for any :q < 1 This is an
erroneéus conclusibn, for the L appéaring in (4.1.1) and (4-.1._12) can only be
taken arbitrarily large assumiﬁg the quantities 1, ':c(a,t), £ and p are
| inﬁmtely'differentiable.v If the flow is notl infinitely differentiable, then the
value of L appearing in the estimates (4.1.1) and (4.1.12) can only be taken
as large as the maximum number of derivatives of the ilorticity,for (4.1.1)
and only as large és the maximum number of derivatiw}es of the flow or the
density for (4.1.12). { See the estimate of term (4.1.4) in lemma 4.1.1 and
(4.1.13) in lemma 4.1.2.) Thus if the flow and associated quantities are not
sufficiently smooth, there is good reason to choose § = h? .. with q somewhat

less than 1. (i.e. q nearer to .5 than to 1 ) We remark that such a conclusion



49

is further substantiated by the results on the accuracy of the vortex method
presented in [48].
Our conclusioné based on the error estimat.es are
(1) Choose the function ¥ in Mt ? for some L and p
(2) Choosing the parameter p largér should decrease the error

(3) Choose § = h? with qnear 1. If the flow or associated quantities are not

too smooth, then one should choose a smaller q.
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4.2. Test Problem

Given the force function

F=aF (5
where 72 = (z® + y®), t is the time variable, and F is a constant, then a C”

solution to (1.15)-(1.18) with initial conditions

1
p(zy.0) =] 4 ' 2S>a

£z.y.0)=0 |  (e22)

is

o 1A(%LQ)_W .
( ) T . rTTso
U\ zy) =1 A \5.2 . 7-2>a (423)
y( Tt
r?
'z z,94.0) = 2
(z.2) r? Ft rP<a
UAT Y ) = 4 A \T,.2 r>a (4,2.4)
x(i.?)Ft
\ 7'2

The smoothness of the density follows frorﬁ the definition of p(z,y,0).

For r? < , the term p(z,y.0) occurring in (4.2.3) and (4.2.4) is a polynomial

in 7? with no constant term, so QKZ_”,.g._OLiS a polynomial in 72. Thus the velo-

cities are C= for 7 < a. The non-smoothness of the velocity oceurs at the
points for which 7% = a. ’

The flow is a radially symmetric body of fluid rotating about the origin.
What makes the flow interesting is that fluid pafticles at different distances
from the origin move at different rates, i.e. there is local shear. Typicaliy,

flows with shear present the greatest challenge to Lagrangian schemes [45]
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and we therefore believe that this problem is a nontrivial test of the method.

Since p(z,y.0) does not have compact support we need to modify our
numerical procedure slightly. If we define 5 by
5= 2 _
P= 16
then p has compact support and satisfies the same equation that g does. To
apply method A, we proceed as the method is described in section 3, but we

compute the evolution of p instead of p. Using an approximation of g, one

easily obtains an approximation of p and of the derivatives of p.

In our computations we choose a in (4.2.1)-(4.2.4) to be .5 and F = 10.0.

In figure 4.2.1 we show the density distribution p{z,y.0) as a function of r.

Figure 4.2.2 shows the distribution of the points in * for an h = .0886 at
time ¢ = 0. The positions of the points in Q* at times £ = 0.0, ¢t = 1.0 and
t = 1.6 are depicted in figures 4.2.3. To help illustrate the nature of the
flow, in figure 4.2.4 we present the positions at times 0, 1.0 and 1.8 of those

points in (* whose initial coordinate was less than zero at time ¢ = 0. (i.e.

we are presenting the evolution of the left half of the body of fluid ).

The solutions of the ordinary differential equations (A1)-(A3) were calcu-
lated using 4th order Runge-Kutta. Our time step, .1, was sufficiently small
so that a decrease in the time step did not significantly effect the results.
The space step h was allowed to take on three values, .0823, .0726, and .0628,

corresponding to 200, 300 and 400 computational points respectively.

The functions ¥ used in the approximations (A.4) and (A.5)-(A.8) were
chosen to be in M ? and one of

(p =2, L= oo) \P(r)': -e—;—rf— (425)

2

(p=4.L=w) ¥(r) = }T—(za-fz -7 (4.2.6)
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. . _3 2 _re .
(p=6,L=w) Wry= Heer -2 T4 17T (227

where 7% = (z? + y®). These functions afe suggested by Beale and Majda in . -
[7].
vTovestimate .the accuracy of our numerical approximatibn for (1.15)-
(1.18) with the initial conditions (4.2.1)-(4.2_.2) we compared the computed

| velocity (A_.5) to the e)%act velocity (4.3.3). We measured the relative error

in the first component of the velocity in the discrete L? norm, i.e. we used

lmz 3(ih.t)) - u (3 (k1) | W]z“

1
| (E(h £)) | %F?

lih b

where 17{‘ is the computed velocity, u, is the exact velocity (4.2.3) and
;(ﬂz,t) are the computed trajectories. These errors were computed at each

time step, but we only present the results for times £ = 1.0 and ¢ = 1.8.

These times correspond to a maximum point rotation of g—and 2m radians

respectively. At time ¢ = 1.0, the initial point distribution is still relatively
organized ( see ﬁgure 4.2.3 ) and we expect the efrors measured at this
time are indicative of the short time error. At time ¢ = 1.8 the orgamzed
point distribution is lost, and we beheve that the errors measured at thlS
time are indicative of long time error. We consider both types of errors

because they behave differently with respect to the parameters.

In all our computational experiments it was found that the error grew
at a rate which was independent of the number of time steps taken, i.e. t.he
method is stable. Computatidnal experiments also indicated that the accu-
racy of the method is not particularly sensitive to the choice of the function

¥ and 6 used in the velocity approximation (A.4). Therefore, for the velocity
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approximation we chose § = 28 and ¥ to be of type (4.2.8) above. The larg-
est changes in the errors occurred when the parameters of the density
derivative approximation (A.5)-(A.8) were varied. To examine this behavior,
we let 8 = h? for ¢ = .95, .B5, .75 and at the same time varied the function ¥
in (A.5)-(A.6) over the three types (4.2.5)-(4.2.7). The results of these com-

putations are given in tables 4.2.1 and 4.2.2.

The resuits indicate that the method is convergent. Reducing the value
of h while the other parameters were fixed reduced the error in’each case.
The effect of using a \Il for which p was larger is a beneficial one. This effect
is also quite dramatic. For example, at t=1.6 with h = .0886 and & = A%, the

erroris 19 % forp=2and 1.7 % forp = 6.

An unexpected result is that the optjrnal choice of the parameters (
that choicé which yielded the smallest errors ) depends upon the length of
time that one desires to computé the solution. For example, as seen in
tableé 4.3.1 and>4.3.2 the optimal choice at £ = 1.0 is not the optimal choice
at £ = 1.8. It appears that for short time, choosing § = A% with g = .95 and
- p = B is best, while for longer times, choosing g = .85 and p = 6 is the best
choice. The major difference between the approximations at f.hese times is
the organization of the computational points that énter into them. Thus we
believe that the change in time of the optimal choeice is dependent upon
computational point organization. We conclude that when the computational

points are disorganized it is better to choose a large smoothing parameter.

We also measured the error in the positions of the trajectories z(ih.t).
It was found that the errors behaved in much the same way as the velocity.
Thus we believe that the velocity errors give a reliable indication of the
accuracy of the solution. In general the computational results indicated

that the method is convergent and stable.
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Figure 4.2.1
Density as a Function of r
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Relative Velocity Error (in % )

h=g@
p=2 _p= p=6
§=h?"9 18.0 5.5 2.5
|g=hos 260 | 100 3.5
5=hTs 37.0 18.0 7.2
5 =hHo 50.0 31.0 15.0

Relative Velocity Error (in % )

L h=0723
p=2 p=4 p=6
§=h"9 12.0 2.9 1.8
s=h® | 190 58 1.7
§=hT 30.0 12.0 38
§=h?o 430 | 230 9.9
Relative Velocity Error ( in %)
h=0628
p=2 p=4 p=86_
§=h"% 9.9 1.8 0.84
d=h?B 16.0 3.9 1.0
§=hTS 25.0 9.0 2.4
S=h" 38.0 18.0 7.0
Table 4.2.1

Error in Velocity at t = 1.0




Relative Velocity Error (in %)

bs oang
p=2 p= p=86
d=h% 18.0 5.8 4.0
S=h® 26.0 10.0 3.6
§=h7 37.0 18.0 7.3
§=h® 50.0 31.0 15.0
Relative Velocity Error (in % )
e h=.07v23
p= p=4 p=6
6= h 130 | .31 2.4
5= hB_ 19.0 5.8 1.7
g=hT" 30.0 12.0 3.7
§=h"s 43.0 23.0 9.9
Relative Velocity Error ( in % )
h =.0628
p=2 p=4 p=6
g=h% 10.0 2.1 2.5
6 = h 16.0 3.7 0.96
d=h" 25.0 8.8 2.1
8 =h? 38.0 18.0 8.9
Table 4.2.2

Error in Velocity at t = 1.6
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| 4.3. Convergence of the Modified Algorithm
We are Vnot’. able to prove the convergence of method A. The difﬁculty
arises in obtaining estimates for the density derivative approximations
(A.5)-(A.6). However, if we compute the derivatives in the following Lagran-
giah fashion, this diﬁicu.ltylﬂis overcome and w}e'aLre .able tpl thain' a conver-

gence proof.

If z(a,t) = (z,(a.t), To(a,t)) is the solutidn to (3.1) , then we use

ae . oy thz {3 6p° {3 —- thz (s apO . )

azl lz(‘lh.‘) aaa \m't) aal \'Lh) 6a1 \m't)m(m) . (4"3'1)
G Dz 8po . Z1n 1y 2P0 -

azz |z(1.h,t) - 2 \m't)aal \?‘h') + aal \ lt)aaz \7]7.) (4"32) ‘

oo

as appro'ximat-ions to the derivatives of p.. Here 512:1;—15 a finite difference

approximation to 6_' ‘
a4

To derive approximations (4.3.1) and (4.3.2), consider the identity

3 3

dp |8z, oza || dp :
da da; Oa,||0=x :
=0 N 0 (43.3)
Oaz | |8y By ||0Z2]
Since the flow is incompressible
9z, 0z, Oz, 0z, _ ,
3, 8oy e, Oop
and we can invert the matrix of pé.rtials (4.3.3) to obtain
dp ) 0z, 8z ){ ap | |
ozx -8a. o, || e :
o ; T (4.3.4)
Bp | _ 0%z, 0z, ||
0z | dog Ba, ||Ocz|

Now, the density is a solution of the equations
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at)=0 | p(a,0) = po(a) (4.3.5)

5
~~

%t"‘_.(a,t) =u(z(at)) z(a0)=a . (43.6)

where pg is the initial density distribution. (4.3.5) and (4.3.6) imply that

p(z(a.t).t) = po(a) . Therefore
560%(&'” - %x(“-t)-‘) = g%:(a) (4.3.7)

fori = 1,2. Thus (4.3.4) can be written as

9p _ 9z 8pg  0z3 Opo

3z, 9az 0a, . 0, 0g (4.3.8)
dp _ _ 0=z, 8pg . 0z, Bpg
8z, =~ Bap 8a,  Ba, oy (4.3.9)

dz;
If we replace the derivatives 52‘—by finite differences we obtain (4.3.1) and
7]

(4.3.2).- The reason for using (4.3.1) and (4.3.2) instead of a finite difference

approximation to the formula

3p _ 8p Oy - dag
0zx; 0oy Oz; day 9z;

Aoy
is that the terms 5—;'—are not easily approximated by finite differences.
) ,

We approximate the solution of (3.1) - (3.4) by solving the following O. D.

E.'s.
dZ ..\ _ ~ngs P :
Spiut) = uh (i t) z(ih .0) = ih (A1)
%—(ih,t) = Fzga%(m.t) —Fla—%(ﬂt.t) Hih,0) = ¢o(iR)  (A'.2)
%:&(m,t) =0 : p(ih,0) = po(ih) (A".3)

where
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(iR t) = z’;(K $0)(Z(ih t) = Z(jh.t)TEh £ )R? (A'.4)
: |

and the densu:y derivatives in ( A'2 ) are computed by

9B (ip ) = thz (ih,t) ame) ——{m t)a—p‘-’z-{m) (A".5)

0z,
ap .. D"zl . .\ 0pg D'z, 00 . |
Se(ih.t) = = PE: n ) Loy + Saknt)Exin) . (.0
Lo 60(2 Ba 03] .

. Here we are using the notation of section 3. This is method A".

As mentioned in the introduction there is a great similarity between
equations (3.1) - {(3.4) and Euler's eQuations in three dimensions. This simi-
larity also extends to numerical methods for each set of equations. One
benefit of this similarity is that much of the analysis in [5] for the 3-D vortex
method presenﬁed there is applicable to method A’ without substantial
modification. Thus to prove the .convergence of method A’ we will be follow-

ing closely the proof of convergence presented in [5].

Before we give a precise statement of the convergence resuit, we need
the following definitions. |
Definition: We say that %— is rth order accurate if for any sufficiently .

smooth function of compact support

1 3oLin) - 2Lt Lo < v (48.10)

a%
where C depends on a finite number of derivatives of f (z). We assume that

the constant C appearing in (4.3.10) has the following bound:

T+l
C=sC |a

(3—011).TL' 12(R) (4.3.11)

where the set R contains the support of f, and C' does not depend on f.

Definition: We say that %— is stable if EDE':— are uniformly bounded map-
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pings from H? to Hj;!i. e. there exists a fixed constant C so that for A < hq,

D* fi .
| 6a,-J l-a=Clfilon - (4.3.12)

For a characterization of a set of difference approximations which are

stable, we have the following result from [5].

Proposition 4.3.1 Given a multi-index 1, let T denote grid translation in the

direction of 1. Then, every difference operator of the form

oLy gt

aT: h—lll <l
Q
with | g, (k)| = C satisfles the stability condition (4.3.12).
Proof: See the proof of proposition 1in (5]

We now give a statement of our convergence result.

Theorem 4.3.1 : Convergence of method A’

Assume that the velocity field v (z,t) and density p(z,t) are sufficiently
smooth for z ¢ R?, 0< ¢ = T, and that the initial vorticity and density have

support contained in Q. Define Q* by * = Q\A®. Also assume

(1) V¥isin MP for some L and p satisfying (3) below.

() The difference operators —a%—-in (A'.5)-(A".8) are rth order accurate
i

and stable in the sense of (4.3.12). The value r is chosensor > 3.
(8) We choose 6§ = h? withg <1 and L p, q are chosen so that L= 3, pg > 3

and L(g = 1) + ¢ > 3.

Then, if we compute z(ih,t), ¥(ih.t), and p(ih,t) as solutions of (A'.1) -

(A'.3) for ih £ QF, we have the following error bounds:

(1) max §13(ih.t) = 2(th.t) Lo + [Hih.£) = R .£) | 13 < CRS + AL+ V)
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i . (s . ; < p7 4 plLig+1)
| (u)cmtai(rl U »(zh.,t) wuih,t)|op < C(h*? + h )

() max | (z.t) - u(.;":.t)v | o < C(RPT + AL + 1)
(w) max |P(z.t) - p(z.t) | gy < C(AP ~D7 + 114)

where R is a bounded set in R?. Here the constants depend on T, p, L, Q,
VI_E, é.nd a finite number of der,ivativesﬁ of the flow and the density.

The proof of this theorem: depends on a consistency and stability esti-
mate for the velocity approximation. The cbnsistency estimate that we need
is that of lemma 4.1, whose hypothesis are satisfied under the assumptions
of this theorem. The Main Stability Lemma in [5], vﬁth the obvious
modifications to accounf. for the‘ change in dimension and the kernel K, is-
applicable to our problem. Sincé the hecessary-modiﬁcations are 36 slight,
we do not prove the following result but we refer the reader to [5] for a

proof.
Lemma 4.3.1 : Stability of velocity approximation

Assume the hypothesis of theorem 4.3.1. Provided that |

Z(ih t) - z(ih.t < h3
Jmax | z(th,t) - z(iht) | on < h
" for some T°< T, we have for 0 < ¢ < T*the estimates

[ (E (i £)) = uh(z (.6 Don < CUIZ(R.L) - 2(R.6) L on + [Hint) - £(int) ] ~14)
‘ | . (4.3.13)

[ u"(z.t) —u™(z.t) | gg = CNZ(ih.t) — z(i.t) | o + IKin t) =~ £(ih.t) ] 1)
(4.3.14)

~h ~h ; b
where «"* and " are given by

P(zt)= T Kelz - 30h.£)B(h A2
jh Qb
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and

uh(z t) = 2 Ks(z —:1':(jh,t))c.;(jl'l.,t)h.2 .
jhelh

We will also need the following result for differential inequalities due to Hale

[32].

Lemma 4.3.2 : Suppose g (£,y) is continuous on an open connected set. Q in

R? and that the initial value problem for the scaler equation

v =g(t.y)

has a unique solution. If z(t) is a continuous n-vector function with continu-
ous first derivative on [a,b] such that |z(0)]| <y(0), (t.z(t))cQ for

a<t<band |[z(t)] <g(t.|z(t)])fora<t<b, then
|z(t)] <= y{t) ona<t<bd

Proof: See the proof of the corollary 6.3 in [32].
_ We now prove theorem 4.3.1.

Proof: Consider the error in the particle positions

e,(t) = T(ih,t) — z(ih t)

and the error in the vorticity

v (t) =Hih t) = E(in t) .
As in [5] we will obtain a differential inequality for

Reilon + Tuill—1a.

From the ordinary differential equations (3.1) and (A’.4), we conclude

é; = ut(z(ih t)) —u(z(ih.t)) : (4.3.15)

(W (z(ih b)) - uh(z(ih.t))} + fuh(z(h 1)) —u(z (1)) .

If we use the consistency lemma, lemma 4.1.1, then the second term of
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(4.3.15) is estimated by
Jut(z(ih.0)) - u(z(h ) Lon < CE + (26) . (43.18)

We make the assumption that
leilon + 1wl -in <h® _ : (4.3.17)

for 0<t <T withT°<T . We use the stability lemma, lemma 4.3.2 and esti-

mate the first term of (4.3.15) by
| ub(Z(ih.t)) —ur(z(h.£)) Lon = Clheclon + Tl 1n) -
‘Thus, for 0=t < T * we have
16t} T on = (1 o Lon bl on + 07 + (2yte) .
To estimate u; we use (3.3) and (A'..S)-(A'.S).
vy = (Fope (ih t) = Fipy (h.t)) = (Faps (ih.t) = Fuoy (ih,t)) |
= (BB (iht) ~ Fopo ()} = iy (ihat) = Fipy (1h.£))) (4:3.18)

where we are using T to indicate that the force function is being evaluaied at
the compﬁt.ed trajectories. We will show how to estimate the first term of

(4.3.18), the second term is estimated in a similarly.

- Folbo(ih.t) = Fapy(ih,t) = {(Fz = Feloz (ih.£)} + {(Fe = Fell(Be (h.£) = p2(i.£)})
+ {Folps (i t) = oy (th.£) 3
= (A} + (B} +1{C} .

Since Fy is contihuously differentiable and p, is smooth, for term A we find

I (F = Fo)pz(th.t) | -1a = C 1Tz — Falon
= C| Fo(z(ih.t)) = Fo(z(ih.£)) | on

= Csup| VP | |Z(a.t) —2(ht) lon
ZE

<Cleilon

where {1 is a compact set in R? containing the points z(ih.t), Z(ih t) for
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t,0=<t<T

To estimate term B we use lemma 0.3, and estimate | ¥ —F],, as in

the estimate for term A

| (e = Fo)(pz (1h.t) = pz (i t)) | -n < CR | Fe = Falon 22 (ih t) — po(i.t) | -1
| <Ch™® Jelon 1P:(ih.t) = pe(in.t) | -1

< Cl B (th.t) —p,(ih.t) | Lyp . (43.19)

For an estimate of the right hand side of (4.3.19) we use (A'.5),

pz(ih t) = pz(ih t) =
D"z';/

6a1 )

D";é, 8po ,
. ih) —
[aaz \m't) )

. 9P .
day th.t) dag \zh)]

0zz . dpq . 0zg . 8pg .
[aag ‘m't)aa, (i) day :m't)acxg ()

_{Drza 0zy . | o .
D"zz . 0zs . 3pg ,.
_[__(Ml ih,t) — —(‘m1 m,t)] __(aaz ih) .

We show how to estimate the first term of (4.3.20), the second term is han-

dled similarly.
Drz, 8zy . 89P0 ..
| Tﬁg-(m’t) - E(?h.t)] E(’Lh) | -1n (4.3.21)

Dtz, > 9
< | [Wx:(ih,t) - ‘a—::—(‘l?z.t)] ﬁ%‘(ﬂl) -1

Drz, . 8z, . dp0 , .
+ | W(Th.t) - E(Th-t) m(lh)l—m

)
Since 5—?— is continuously differentable, we apply lemma 0.4 to the first
1 . .

term on the right hand side of (4.3.21), followed by the stability criterion
(4.3.12),
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DAz, Dz, dpo . _ [z, . Dz
| W(?h-t) - W@"'t) 67(1-(1’1) I L <Cj ﬁz—(ﬂ},t)f W(?h-t) l-1n
< C| Zp(ih.t) — zo(ih,t) [ on

In this last estimate we are extending Zg(ih t) — z3(ih,t) to be zero outside
- » " . - . a ] . .l )
(*. This extension does not effect the estimate since -af%-has support in O*.
, : 1

For the second term on the right hand side of (4.3.21) we use lemma 0.4 and

the accuracy estimate (4.3.10).

DhZZ .

. 62:2 . apo . - Dh.?.'2 . ‘ 62:'2 v

— < — th
|| 522ih.0) = S2h.t)| 28| p = CI Z2iht) = Go(in ) Lo
< Ch™ . - (4.3.23)

Thus (4.3.22) and (4.3.23) imply
[Bf-1a= C(,l e;lon + 7). . . (4.3.24)

For term C, since Fp is continuously differentiable, this term can be .

estimated in a manner similar to that for term B,

| FalBe(ihd) = pu (@) | oin < Blihd) = put)lan
| <Cth™ + leglon) . (4.3.25)

Therefore, combining the estimates of terms A, B, and C, we have
Joil-1asC(leslon + A7) . ' (4.3.28)
If we add the estimates for e; and v; then we have
. . ' R
Heilhon + |l -1 <Collelon + lug i +A™ + 67 + (d—)Ld) :

(4.3.27)
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Consider the set of functions {e;(t)} and {v;(t)} as forming the com-
ponents of a vector valued function E(t) : [0,T*] - R®™, where m is the

number of points in Q*,
E(t) = (e(t). - - - .em(E)uy(E), - - - up(2)) .
Then (4.3.27) implies that
[E(t)| < Co(E(t) + AT + 6P + (;‘—}La)
| E(0) =0 .
Here we are using the norm
2] = (z,  Zom) | = NezdPeilon + 1121322 m e 1] 21

on R®™. We apply lemma 4.3.2 to E(t) and find, |E(¢)| = y(t), where y(¢) is

a solution of
y = h L T
y(t) = Co(dP + (3—) §+h" +y) .
Therefore, for0<t <T*,
h
leilon + Jugll -1n < Cy(6P + (6—)1‘6 + A") (4.3.28)

where the constant C, depends on Cq and T, but not on T*.. We now remove

the assumption (4.3.17). Our assumptions on 4, p, L, and  imply
6P + (-Z'—)I‘d +hT =hP? + RLI-9)+q 4 pr < 3p8*e
for h < 1 and some £ > 0. Cho.ose hgy small enough so that for h < kg,
Ci(6? + (’;—)Ld +h") < )12_3 .
Let T* be the first time less than T such that
leclon+ Jugloin=h% . | (4.3.29)

By (4.3.28) we have that
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’ . 3 :
leibon + " Ui | c1p %"‘ (4.3.30)

for 0<t <T° But (4.3.30) contradicts (4.3.29) at T*, so T* must be equal to

T. Thus, ifh < hg "
leclon + [vill oo <CRPT + RLI-D % ¢ pry  (43.31) o
for 0 <t < T. The first estimate (i) is now proven. To estimate (i1), we write
@P(ih,t) — u(ih t) = {Wh(ih t) —ul(ih t)] + Ul (iR t) —u(ih t)] .

The first term is estimated using the stability lemma 4.3.1 and the second

using consistency estimate, lemma 4.1.1. Therefore, ,

[uh(ih t) —w(iht) on <C(leifon + | vl -1 + R7) + C(hPT + LI -9+ )
< C(hPY + hLO -2 +q 4 o7y |

Similarly for (iii), we use the stability estimate (4.3.14) and consistency

estimate (4.1.1).

128 (2.6) ~u(z t) | g = |94 (z.8) —ub(2.8) | oy + | TR (k.E) +u(z.t) ] g
<Clesfon + lvill-yn + A7) + C(RPT + AL -9V +7)

<C(hP + RLI -0 +q 4 pry) |

The convergence of thev density approidmation follows immediately from

(4.3.31) and theorem 2.1 in section 2. This completes the proof.

I
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5. Analysis of method B

We begin our analysis of rﬁethod B by proving a convergence result. As
in the proof for method A’ in section 4, we will exploit the similarity bétween
this method and a corresponding method for 3-D vortex motion and use
rriuc_h of the analysis contained in [5]-and [8]. This convergehce result is
somewhat weak\in the sense that we must assume that the method is accu-
rate of order 2 + 2q for 0 £ g <1. Specifically we must assume that the com-
ponent approximations used in the method have error estimates which can
be bounded by Ch?* 2 for some constant C which does not depend on h. To
investigate the necessity of this assumption in practice, as well as to assess
the behavior of the method when the parameters ¥ and ¢ are varied, we test
the method on the problem described in section 4.2. The results of these

computations are discussed in section 5.2. -

5.1. Convergence of method B

A precise statement of the convergence result for method B is the fol-

lowing:
Theorem 5.1

Assume that the velocity field u(z.t) and the density p(z.t) are suﬁiciently
smooth for 0 < ¢t < T and z £ R?. Assume that the support of the initial vorti-
city and the support of the initial density are contained in some bounded
set Q, and that the force ¥ = (F,,F,) is conservative (curl I = 0) and is con-
tinuously differentiable. If we compute Z(ih t), Hin t), by (ih 1), Zy(ih,t),

and P (ih t) for ih £ O* according to (B.1)-(B.4) and (B.8), and we choose

(1) ¥ &ML P for some L and p which satisfy (3) below
(2) 6=h7 g <1
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(3) we choose a combination of p, q, and Lin (1) and (2) such that

pg >R+ 2 andL{l -g)>2+2q

then for h < hg we have

() max (1Z(h.t) = z(iht)|on + IHiRE) - £6RE) ] 1

+ 15 (ih.t) —pg(ih.t) | oy p + 1By (ih.t) = py(ih.t) | -y 5)

< C(hP? + pL1-9))

s oy ( pg L1 -q)y
(i) oin:ai('r'u (th,t) —u(ih,t)[gn < C(hP? + h )
1 n —u ‘ P9 L(1-9)
(i) Ol;ntai(T"u (z.t) u(z,t)|Lg®sC(h +h )
; « 13 (iR - p(1 ' bl L(1-q)
(w) max |6 (#h.£) ~ p(ih t) | on < C(RP + RHIZ9))

~ ~ .
(v) jmax [ (z.t) = p(z.t) | pg) =< C(AP +hf1 ?))

where R is a bounded set in R®. The constants depend on T, p, L, R, and
bounds on a finite number of derivatives of the flow and the density. We
mention that we are considering the norm || - |¢a in (i) to be restricted to

the set Q*.

To prove this theorem we will need consistency and stabili'ty éstimates
for the approximations used in (B.f)-(B.?). One conéistency estimate that
we need.is lemma 4.1.1 in section 4, and the other is an estimate of the con-
sistency of the approximations (B.6)-(B.7) to the derivatives bf the velocity..

This estimate is the content of the following lemma.

Lemma 5.1.1 : Assume that the velocity field u(z,t) is sufficiently smooth
forz e R 0<t <T, and that.the initial vorticity has support contained in a
bounded set (. Also assume ¥ is in ML'P with L=>3 andp >0. If

(z,.22) = (z.y) and we corn;;ute u} by
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v
wh(zt) = L (K* ===) (z —z(ih.t))é(ih.t )k (5.1.1)
ih e Qb 0z
thep we have the estimates,
h
cgtaicrluz(z.t) -uz(z.t)] <CéoP +C(6—)L | (5.1.2)

for i=1,2. Here the constants depend on a finite number of derivatives of the

flow, Q, T, p, and L.

" Proof: Since the approximation (5.1.1) is of the same form as the approxi-
mation to the velocity (B.5), the proof of this lemma is a minor modification
of the of the proof of lemma 4.1.1. In particular we obtain a proof if we iden-

0¥

i *
tify K oz,

ith K *¥, in lemma 4.1.1. We remark that the loss of a factor

of delta in the second term of (5.1.2) is due to the increased singularity of

, 0¥

K oz,

We need two stability estimates. The first is lemma 4.3.1 and the second
is a stability estimate of the approximations occurring in the right hand side
of (B.3)-(B.4). To prove this latter stability estimate we need several techni-
cal lemmas. For the most part, these lemmas concern bounds on integral
operators whose Kernels are related to K *¥; ( = K;) and its derivatives.
Since many of the results presented here are taken directly from [5] and
need little modification, we will refer the reader to the corresponding

results in [5] for many of the proofs.

We need the following discrete and continuous L! estimates for DfK;, g

being a multi-index.

Lemma 5.1.2 : With time t fixed and z; = z(jh.t), we have



- e g=0
Y max |DKe(z —z; +y;)|A%< | Clog|é| £=1
ek 14 | | cat-lEt g>1

, - o g=0
Y . max | DKy(z ~z +y) A=y Clog|é| A=1
theRy ¥i : | csr-18l g>1

7

(5.1.3)

(5.1.4)

for all jz| <R, pr"ovided h ( and thus 6 ) are small enough. The constants

depend on Ry, Cp and bounds for the derivatives of the flow.
Proof: See the proof of lemma 3.2 in [5].
.A continuous L! estimate that we use is,
Lemma 5.1.3: There exists a universal constant‘C, so that
{ [Ks(z)|dz < CR . .
jJzl =R _
Proof: See the proof of lemma 3.3 in [5].

“An L? estimate for DPK; we need is

Lemma 5.1.4: For a multi-index ﬂ |8] =1, wehave forall f ¢ H®

1{D*Ke) *F lo<Clf lo -

Proof: see the proof of lemma 3.5 in [5].

_ To obtain estimates on the convolution sums involving DfK;, we shall use the

following two results which are closely related to the generalized Young's

inequality [26].

Lemma 5.1.5 (a): Let K(z,z') be a function defined on Slxsg, where S, and S;

are bounded subsets of R?. If we define the operator K: H%(S,,R) -» H%(S,.R)

by
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(Kf )z) = ELK(z,Z')f (z')dz' z&S,
then
IKf "HO(SI)S IKI lf IHO(Sg)
where ] K| is the smallest number satisfying

!IK(x.z')Idx's IK| [lx(z.z')ldzs K]

forallz £ S;and z' ¢ Sy
Lemma 5.1.5 (b) : With S; and S; as in 5.1.5 (a) and H2(S) = HJ(A*NS).
Define the operator K: HP(Sas,R) » H2(S1.R) by
(KfYih) = 3 K(ih.jh)f (jh)h2
necs,
then
"Kf I H,?(sl) = I KI l f I Hﬁ(sg)
where | K| is the smallest number so that

Y IKGhjR)|[R2< |K|, = ¥ |K(h,jh)| A%< |K]
jheS, thes;

for all i,j with th £ S, and jh £ S;. Here | - lHﬁ(sg) and | - =] np(s, are the

norm |} - | g4 restricted to the set S, and S, respectively.

Proof: See the proof of lemma 3.1.a and 3.1. b in [5] or lemma 0.10 in [26].

We combine lemma 5.1.2 and 5,1.5 to obtain the following discrete L2

estimates.

Lemma 5.1.6: Let f; ¢ HP, and assume the support of Jj is contained in Ry,

a bounded set in R% Let f be a multi-index, | 8| =1, thenif |y | < Co6 |

I ¥ DfKelzi —z; + 430 ;R% lon<C6 18V | fillon -
jh e RO
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Proof: By lemma 5.1.5 (b) it is sufficient to show

’g;l%’)‘{jhzeznol DFKs(z — 25 + wiy) | RE < Co' ~ 1Al (5.1.5)
and
o B 2 1-18] '
j?%%?m | DPKe(z; — 25 + yyy) | RE< CoT 1AL (5.1.8)

For (5.1.5), we use lemma 5.1.2,-

max DfKs(z; — z; + ;) | h®? < max max | DPKs(z; — z; + i) | 2
m‘mj"gRoI (= 1+ %) -m:ﬂ":'hz::Rthjl“I ( .J vl

= Ccst- 181

The estimate for (5.1.6) follows similarly.

In the next lemrha we use a partition of the fluid domain given by the

following:
If j = (ji.je) is an integer multi-index, let

. h . h . h . h
Qf:iztRzlzs[Jl-E—'Jl'*E]x[72—§'72+ 2—]; ,

The Q;'s partition R®. Define
Bj={zeR| z= z(a.t)v ae Q).

i. e. B; is the image under the flow of the rectangle Q;. Since the flow is
incompressible. it is measure preserving, thus the area of each B; is A% For
a function f, defined on the set of points z(jh.t), we will often associate a

step function f (z) defined by
f(z)=f; =zeB; .
With this construction

0 D iogey = 17 Lon
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The following lemma is closely related to lemma 5.1.6.

Lemma 5.1.7:

Assume f ¢ Hf and the support of f is contained in a compact set Q.

Let S; be a bounded set in R? and S; = {{JB; | jh £ 0§. If § is a multi-index

then
C g=0
| SD#Ka(z - 2;)f5h% | yysy < | Clogl Bl =1 t1f lon . (517
J _ car-18l g>1

Proof: Define D?K,(z,z') on S;xS, and f on S, by
DPRs(z.z") =DPKy(z ~2;) =z ¢S, z'¢B;
@) =15 z's B
then,

HZD’KG(Z - 2;)f Rl ypos ) = "!DﬂK(z’z')f (2982 [ pogs,) - (5.1.8)

J 5
We apply lemma 5.1.5 (a) to the right hand side of (5.1.8), and find

]I!D"K(z.z')f ()42 | yors ) < CISf lymsy =CHSilon  (5.1.9)

where C is that constant for which

fggélD’K(z,Z')!ﬂ'Sﬁ (5.1.10)
and
| zsfz:gz!l'lD"K(z.Z’)ldrSE - (5.1.11)

For (5.1.10), since the B; partition S, and have area h? for a given z £ S,

then,

4|WK6(2,2’)|M' =% JID’KJ(z,z’)Id':’

jh eQ By
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= ¥ |DPKe(z - z;) | A . (5.1.12)

jh:ﬂ

We apply lemma 5.1.2 to (5.1.12) and find

| C B=0
maxZIDﬂKcz -z )Ih.zs Cloglé| g=1 . (5.1.13)
2e57 cst — 18l g>1 '

For (5.1.11), we again use the fact that B; partitions the plane. Let

'St={j | B;N\S; #03. Foragivenz' ¢ Sy,

!lDﬁKg(z,z')ldx =y JlD"KAz,z’)Idx
1 'y :

jcS

=Y rnaxlDﬁKa(x -z )|h2
Jcsf‘

< max | D*Ks(z; = z; + vy) | AP
jesplyyl =Cob o

C g=0
<{ Clog|é| g=1. (5.1.14)
car-18l g>1
Thus (5.1.18), (5.1.14) and (5.1.9)-(5.1.11) combine to give the estimate

(5.1.7).

We measure the error in the vorticity and density gradients in the H;!
norm so we need a version of lemma 5.1.6 for integral operators from

Hi! to HY.
Lemma 5.1.B: With the notation used in lemma 5.1.5(b), ~suppose
Sa={z'| |z'| =Rg}. For [feH;! with support of f contained in
{z| |z | =Rg} then,

IKf lon < CUKI + IDFKI LS [ -1a

with the norms [K|. |DK| as in lemma 5.1.5, and D} is the forward

difference quotient with respect to the index j.
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Proof: See the proof of lemma 3.4 in [5].

When the integral operators have a special form, then the result of lemma

5.1.8 can be strengthened. This is the content of the next lemma.

Lemma 5.1.9 : For f ¢Hy! with support of f contained in a bounded set {Q,

then

| Y Kslz ~ j)fjhzﬂo.hsc 1 fil-in -

b]
Proof: This estimate is that of the term v{? in Main Stability Lemma of [5]
with the appropriate modifications to account for the change in dimension

and the kernel K.

We now prove the stability estimate for the approximations in (B.4) and

(B.5). -
Lemma 5.1.10:
Define

e; = z(ih t) — z(ih,t)

v = §(ih t) = £(ik t)

Tz, = pz(ih t) — po(iht)

Ty, = py(ih.t) — py(ih t). .
Under the hypothesis of theorem 5.1.1, if for t, 0 ¢ < T", T°<T,

leclon + Tuillcon + Dzl oin + Iy | con < R2HE (5.1.15)

then, letting (z,.z,) = (z.y),
|20 (B (ih £S5, 0 £) — uly (2(ih £))pg(ih )] 1 <

Clleilon + lvil-1ta + Ime -1 + Iy [ -1)

(5.1.16)
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Iué m¢m¢mn u@<wm»@wmw4ﬂs
|anﬁ+nwuqﬁ+nquﬁ+1muﬂm.

(5.1. 17)
for i = 1,2 Here the constants depend onT, p, L and a finite. nurnber of

" derivatives of the flow and-the density, but not on T".

Proof: The proof of this lemma is based on a pfoof of the stability of the vor-

ticity growth terms presented in [B]. We will only prove the estimate

I 2tpe —ulepz lon=Clleslon + 1wl an t g o + Iy L an) -

) (5.1.18)
i.e. the estimate (5.1.18) for 1 = 1. The remaining estimates are done in a

sumlar manner. Let z; =z(1.h,t), Z, = z(ih,t), & = £(ih t), & = &ih.t),

B =Reht). Ry ='7;y(m,t), and Kz =K *¥ Also  let
. 0¥ _ 3K

3z - 3z -—* ‘Iq, =D, Kg We begm by decomposing. the left hand side of

(5.1.18) into four terms,
ﬂ{*,(-ﬂz.f)?),(m;t) —ul (iR t) py(ih t) =
| ‘J;DzKa‘(?:i - Z;5kh %, - %‘,szal{z; = z;);h%
4;m@@—%—mwm—mm%m'
+ (TI0 K o =) = DeKella — 2)lspeh '_
+ f;DzKal(zt — z;)(&pz, ~ €2, 0%
+ (DK Gi - %)) - DKoz, - 2;)1(ipz, — €502, )03

_ =T, +Ta+Tg+ Ty . | .
Here K is the first component of K; . For convenience we will drop the
superscript and refer to Kj' as K. Similarly we will drop the’subscript onD

and refer to D, as D. The estimate that we seek will follow from the triangle

inequality and individual estimates of T} to T,.
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We begin by estimating T;. Since p, is continucusly differentiable, we

apply lemma 0.3 to find
ITiln = | g[DKa(?ci —%;) = DKa(z: — Z;)165A%0, | -1
< | ;[DKG(;i - z) - DKs(z; - z)6h% -1 - (5.1.19)
We apply the mean value theorém along the segment from z; - ;_.,- toz; — ;j
and estimate the right hand side of (5.1.19) by |

|2_“”2 leDKo(zi -Z; + yi)edih?| in (5.1.20)
J =

where max|y; | < max|e;|. To estimate (5.1.20) we estimate both terms
separately and sum the estimates. Since each term has the same form we

concentrate on estimating,

1 Z:Dng(z,; — z; + yij)ei€hP | oo (5.1.21)
j

where we let yy; =1y; + (z; —;J-). We employ Taylor's theorem with

remainder to estimate {5.1.21).
| ;D?'Ko(z-; —z; + yy)e€;h?| —1.)'; < | %:DZKG(-?{ - z;)e €R%| Jop
+ ;DsKo(z,; —-z; + z)ye6hR | Jyp
< T, + T,
where max | 25 | < max|yy; | <2 max|e|. We have that
| T,(0} _u; < | T,¥ g5, so that T,(? can be estimated by
1T 2 = | ;Dde(xi —z;)eiéih? | on

< mt_axl 2D2K6(zi - z;)¢R%] e lon - (5.1.22)
- _
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To estimate (5.1.22), |
| D0%Ks(m; — z;,);h%] < | LDKy(z; — 2;)é;h% ~ [DKy(z; — z)(z" t)dz' |
J ) 7 . : )

+ | [D%MKy(z; —z)E(z"t)dz'| .  (5.1.23)

We employ arguments similar to those used in lemma 4.1.1 to estimate the

first term in (5.1.23) and find
| LDPKs(z = 2;)¢5h% ~ [Do(z ~ z')(z' t)dz' | < C(%‘—)Lcs-l .
J .

( See the estimate of term A in lemma 4.1.1.) Also, if we use lemma 5.1.3

then we can estimate the second term of (5.1.23) by

| JD%Ks(z — z)¢(z" t)dz' | = | [Kelz — z')D3(z "t )dz’ |
< max | D% | {IKc(z -z')| dz'

<CR =< C

where Ris the diameter of the set containing the support of the vorticity for

Ost<T. Thus,
IT ] =01+ (29567 e Lo (5.1.20
To estimate T1(27, we apply lemma 0.1 and lemma 5.1.6 to find
TR0 1n = 1T o <7 | DKelo = 5 + 267 onlelon
<h"! (c rr{;?x!yij | 672) leilon
sCh7'6max| el leshon - (5.1.25
The estimates (5.1.24) and (5.1.25) imply
IT®01p % C (A6 maxl e + (19671) feclon -

The assumption (5.1.15) and the hypothesis of theorem 5.1 of this lemma

imply
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(76 max e | + (B3H67) < (A2 62 Jeslon + (Bl67) < C
where the constant is independent of h. Thus,
IT ) n=Cleclon -
To estimate Te, we use the mean value theorem from z; — ;J- to z; — z;j,
Ty = ;[DKG(’& - Z;) = DKy(z; — z;)1¢;p4, 1

= §|mz= lDﬁ DKs(zy = 2; + yyy)e;¢;p5h° (5.1.26)

where max|y;; | <2 max|e;|. To estimate (5.1.26) we estimate both terms
separately and sumn the estimates. Since the terms both have the same form

we concentrate on estimating
?DZKG(% —Zj + Yy )ejéipzh? | (5.1.27)
We apply Taylor's theorem with remainder to (5.1.27) and find
;szd(xi - Z; + yyy)e;€jpzh? = ?Dde(zi - z;)ej €50z 02
| + };DSKo(zi ~Z; + Wy)e;Yi; €z, h?
= T 4+ T,

with max|w;; | < max|y;| <2max |e; |. We first estimate T . Since ps

is continuously differentiable, .
| XD%Ke(z: — z5)e;€;02,h% | -1n < | UD*Ke(zi — z5)e£h% ] -1
j j
(5.1.28)

Now, by the chain rule, if a(z.t.) = (ay{z.t).ax(x,t)) is the inverse of the flow

map z(a,t), we have,

2 L =2 ) = Y ._ ., _(X_ i E‘ﬁc_
so D®Ks(z; —z;) ngKa(z(a,t) z;) =, [he functions —— are
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smooth so we can estimate the right hand side of (5.1.28) by

v , |
| EDZKo(?& - z;)e;€5h% | 10 = C| bZ lZ:Dax,,DKé(-T? (h t) — z;)e;&;h% ] _1n
J =1j

(5.1.29)

, . » fofed
where the constant depends on bounds for the derivatives of 8; . Let D be

a finite difference approximation to the derivative which is rth ordér accu-
rate in the sense of {4.3.10) and stable in the sense of (4.3.11). (We are
suppressing the subscript k on & for clarity) We can estimate the terms on

“the right ha.qd side of (5.1.29) by an estimate of the form.
| 2DaDKs(z: = 2;)e;¢;2%] -1 < | EDDKs(z (ih.1) - z5)esé;h?
- ;DQDKo(Z‘(?'f’nt) - z;)e;¢;h%| Lk
+ 1D t) - eyt un

(5.1.30)

The first term of (5.1.30) is estimated using the accuracy criterion for the
difference formula lemma 4.3.11,
| 2 DaDKs(z (th t) ~ z;)e;£h°% — 3 DEDKs(z (iR t) — z;)e;€;h% | -1a
j B
< | Z)D,,DKJ(z (ih t) - zj)e;¢;h% — Z}D{,‘D}Q(z(m,t) —z;)ejéih on
j : j

< CA™max| 5107 * 'DKy(z(a.t) - z)essh? | (531

' To estimate the right hand side of (5.1.31)vwe apply Sobolov's lemma,

max | 2DZ " 'DKs(z(at) — z;)ej¢;h% | < | 1D * 'DKs(z (o t) — z;)e;65R% | zq)
3 7

<( ¥ 120718l +1DKy(z(at) = zp)ej€5h% | By )P
¢<|f|l =<2 .

NI—-

(5.1.32)

Since the flow is smooth, we can replace a derivatives by x derivatives, so

that the terms in (5.1.32) can be estimated by
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D T DK e at) = 2y)eq 2 1y <

C Z I ;D'aKG(x - zj)ej 'gjh'z I 12

1<s]Bl=r+4

where Q is a bounded set in R? containing the image of ( under the map

z(a,t) . We apply lemma 5.1.7 to each term in the sum and find that

' r+4 1
| Y D%Ks(z —xj)ejfjhalLam)sC'(loglél +1=Z=:1;57:1_ Y leilon -

1< |8|=r+a

(5.1.33)
Choose r so that 7 :3 > g ( which is possible because ¢ < 1 ), then

T .
;T< C, where the constant is independent of h. Thus using (5.1.31) and

(5.1.33) we have that
hT r+ 1] £ h?| < hT
C Elg()){l ;Da Kg(x.(a. ) —zj)ejé;h*| =C "d‘r+—3| ei|on

=C " ey "0.)!. . . (5 134')

We apply the stability assumption on the finite difference approximation

to the derivative, (4.3.12), to the second term of (5.1.30) and find
| X DaDKs(z(c.t) — z5)e;€;h% | -in < | LDKe(zi — z;5)e;4h% on -
j J

(5.1.35)
Let By and Q; be defined as in lemma 5.1.7. To estimate the right hand side

of (5.1.35) we consider e;¢; and DKg(z; — z;) as step functions on

S=U2B1]h SQ; .
We define

K(z.z") = DKg(z; — z;) forz ¢B;andz'¢B;
f(z) =e;é for z' ¢ B; .

Thus, since the area of B; is A%
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LDKy(z; — z5)e;¢h% = { K(z,z")f (z)dz' .
J : .

Also, since the flow is measure preserving,

I {K(Z 20 (Z)dx | o) = | XDKs(zi — z5)€58% o
7 .

1/ Lo = lejéilon -
Thus an estimate of K and f will yield the desired estimate. We write K as

K(z.x') = Ki(z,z') + Ks(z,z")

where

| Kz .z") = DKe(z - ')

Koz .z') = DKg(z; = z;) ~ DKg(z — ") .
Therefore

| [K(z =201 (=) Lypg = | [Kiz.2)f ()d2" | oy

| { Ko(z,2)f (z)dz" | o, - (5.1.36)

The first term is DKs * f . and so can be estimated using lemma 5.1.4. We
find
IKi*flo=ClSf ﬂosm?xlfﬂ leilon=<Cleilon -

If we use the mean value theorem and lemma 5.1.2 then we have the follow-

ing L! estimates of K,

SuprKzrz)Idr<sup[Z}' | D°Kg(zy — 2 + y35) | R?] - &
3 ‘jlscoé
<Cé'l-6=<C
and
- 2% (o — o xan) R2]
ggg{lf(a(z.z)dzl €93m,.i"coa D*Ks(z — z; + yi5) | R?] - 6

<C6'-6<C .
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Thus, to estimate the second term of (5.1.36) we use lemma 5.1.5 (a) and we
find,
lng(I..’r')f (z")dz' | HO(s)s Clr IH°(S) =C mJaXIEJ [ leilor=Cleilon -

(5.1.37)
If we combine the estimate {5.1.34) for the first term of (5.1.30) and (5.1.37)

for the second term we find
1T oa=Cleclon -
For T,?) we use lemma 5.1.6 to find
| ;DSKG(-"& - z; + wy)eyiéiozh? | -1n < | ;DSKG(-?& —z; + wy)eyyéih? o
<C62 n‘glxlyij ImJ@XI &l leilon

=<Cleilon -

In this last estimate we have used the fact that
max|y; | <2max|e;| <h™![e;]os <h?. The estimates for To!") and T®
imply -
ITel uan<Cleilon
We estimate Ty as follows:
2. DKy(zy — ;) (&P, — &0z, A% = i?DKa(Z‘-; - zj)uipz b
j
+ {2 DKz — zj)ujr 3
+ (DK (z; — 75)€57,h3

= Ts(l) + Ts(z) + Ts(a)

where v; and 7z are defined as in the statement of this lemma. For ToV, we

change the x derivative to an a derivative using the chain rule. ( See the

estimate of (5.1.28) ) Since the flow and p; are smooth,
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" TS(I) u -Lh = l 2 DKG(Z (’Lh.t) - zj)‘vjpz‘hz l -1h
; b
< Cl Y DaKs(z (ih.t) — z;)v;pzh? | -1
| .
< Cl Y DaKo(z: = z)v;h% | 1
i

(5.1.38)
Let D2 be an rth order finite difference approximation to the derivative that

is stable in the sense of (4.3.12). We estimate (5..1.38) by
C1 EDae(aih.8) = 25)ush?] -1 |
< CI EDe(a(ih.t) = 2;)ush? = TOIKe(z (ih.t) = 23)05n* | 1
+ C| DIKg(z (th t) — z;)uh%| _pp .

(5.1.39)

VThe first term, the error in the finite difference approximation, is
estimated like the correéponding term (5.1.31) in the estimate for T, .

Using arguments similar to those employed there, we find

I X DaKs(z, = z5)uih® — LDAK (2 = z)ush®| 1
i

b

<Ch7( Y 1Tz —zuRtliem) - (5.1.40)
J o ' '

1< |8l sr+4

Here Q is a set containing the points z; for 0<t < T. We apply lemma 5.1.7

to each term in the sum on the right hand side of (5.1.40) and find

, r+b V E
Ch.r( Z I EDﬁKG(I - ZJ)'UJha u Hom) = Chr[ kz i— ] I 'UJ' " ~1h
) ’ =

k.
1< |8 <r+4 16

< CR76 =+ 9 [y |y, | o

sClvjan (5.1.41)

where, in making the last estimate, we have chosen r.so large so that

r
T +95

>q.
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For the second term of (5.1.39), we apply the stability condition (4.3.12)

and find
I ZD&‘Kg(x (tht) — xj)'uquhz |- =1 EDQKG(Z' (ih.t) — z;)uih? ] _1p
j j ,
< [ YKelzi — zj)vihPlon - (5.1.42)
j _

Here we have extended v; to be zero outside of * . This does not affect the

estimate since pz has support in (* . We estimate (5.1.4R2) using lemma

'5.1.9 and find

H§K6(zi = Ziwih?lon < Clyj | i - (56.1.48)

(5.1.42) and (5.1.43) combine to yield
BT —in <C Jwj o

To estimate T3®), we use lemma 0.3 and lemma 5.1.8 and the assumption

(5.1.15),

ITal i =1 ;DKG(‘Q - z;)u;r  h3 |y < CR B 7y Y ;DKJ(% - z;)u;h% | op

< Ch=2367 g | con L wi | -1
<Clo |- -
The function Y ,DKs(z - z;)¢;R% is a continuously differentiable function
J

such that

maxlzD"’Kc(x - z;)¢;R?| = C

zcRE J

independent of 6 . ( See the estimate of (5.1.23) in T{(" .) Thus, if we use

lemma 0.4, then
1T -1n = | EDKs(z: = 208572, | -1

sC "rz‘ﬂ—l.h .
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Combining the estimates on Tg", T¢®, and T4, we find.
ITsl con = Clme | -1n + Do) 1) -

It remains to estimate Ty. We first apply the mean ‘val'ue theorem along the .

segment from ;,; - ;j toz; — z;. o &

DIDK(E - %) = DRyl = 21, - 102, 0%
= DIKe( - 5+ (e + ) = DRl = 55) (6 — oA
= m?_.; lgDﬁD&(xi -z + v )P, - £502,)(e: + e,--)hv"’
R (5.1.44)

‘where max|y;; | <2max|e;|. We will estimate both terms in (5.1.44)"
4 i

separétely and sum the estimates. Since each of the terms has the same

form we will concern ourselves with estimating

%:DZKG(::,; —z; + Yy )Pz — 4502 (e; + &5 ) R2 . (5.1.45)

Consider
'\éj;z.‘ - fjpz.‘ = (ﬁéj - Sj)pz, + (éj - Sj)(;)q —pz.‘) + Ej()zz‘ "'pq)
= Ujpg + VT + f,-r'q

= {a,} + fag) + {ag) .
We estimate (5.1.45) by estimating
3 \ . .
12 Y DPKe(zi — z; + yyy)(e + e;)h® . - (5.1.48)
=15 .
~ We first estimate the terms in (5.1.46) containing e;

3 ' '
Y UDPKe(z — z; + )ejah® . ' (5.1.47)
1=17

The first term of (5.1.47). 1= 1, is estimated by
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| EDZKo(Z’i —-z; + yij)ejalhzu -1 = IIEDeK,,(z.; —-z; + yij)ejalhz lon
i j

<Cé ' max|v;] le;lon
J
=Ch267 v l_inlelon - (51.48)

Here we have used the estimate max|v;| S A ' |v; ] on = CR#*|v; | -, and
j

lemma 5.1.6 to estimate ] 3} D®Ks(z; — 2; + yij)e;vih®[on. The second and
il

third terms of (5.1.47) are estimated similarly. For the second term,

| Y D%Ks(zi = z; + yi5)e;azh?] 1 < "Z_:DZKG(% -z + yyy)ejazh?l o
3 3

<Cé'max|v;| max |7z | lejlon
j j 1
sCh"*d*l?‘:J—m Tvj I -in lejlon

(5.1.49)
while for the third term,

I LD?Ke(z: — z; + yij)ejash®| - 1n < LD?Ke(z — 25 + yyy)ejash®|on
i : 3
<Cé'max|7z | lejlonr

sCrR267 gl -inleilon - (51.50)

Under the assumption (5.1.15) then each of the estimates (5.1.48)-(5.1.50)
can be bounded by Cle; ] on where the constant is independent of h. For

the terms of (5.1.48) that contain e; ,

3 3
| L D%Ks(z: — 25 + yi;)(IZ @)ech?| in < | LD%Ke(z — 25 + v35)( Y mdesh®lon
7 =1 7
3
sh e llon X 1 2D%Ks(z: — 25 + yg)mhZ | on
1S 7

(5.1.51)
We estimate each term in the sum on the right hand side of (5.1.51) individu-

ally. For the first term, l=1, we use the fact that Pz, is a smooth function,
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lemma 5.1.8 and the mean value theorem to find, .
| Zj:Dng(z,; = z; + Yy Uipz P | c1a < C | LD%Ke(Zi — 25 + 435095 | o
S j : _

<6l -im - © (5.1.52)

Similarly, for the second term -
I 2 D°Ke(z: — z; + yyj)ach®| -1 = CI DPKe(z: — 27 + 145)v;7,h% | o
j .
C=Cmax g | lvg|in 67

<COPR o a1 oin (5159

and for the third terrri, we use 1e_r1ima 5.1.8,
| ZDde(Ii - z; + yyj)mh?|| oy p < CD¥Ky(zy — 25 + yig)rzh® lon
J ‘
. 08~2 o
=C6%reln - {5.1.54)

Under the assumption (5.1.15) then we can combine (5.1.52)-(5.1.54) with

(5.1.51) to find
8 _ v
| 2D%Ks(z — 75 + yi,-)(lZ a)eilon = Cllmz | -in + lvill -1n) -
J =1 . .

If we combine the estimate of (5.1.47) with the estimate of (5.1.51) we have

I Taf -1a =< C( }]r,‘ I -1n + ﬂ"'m I,—U + leilon + vl -1a) -

If we combine the estimates of Ty, Tz, Ts, and T, we obtain the estimate

(5.1.44). This completes the proof.

The next two results concern the stability and consistency of the den-
sity approximation (B.9).
Lemma 5.1.11 : Stability of density approximation

Under the assumptions of theorem 5.1, and if
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leslon + 1ozl cin + Iy 11 = < h?+¥ (5.1.55)
forO<t <T° then

17 (iht) = p*(ih £) on = C (el + Irz | -1n + Iyl <10 )
(5.1.58)
I (2.8) = p*(@.8) L < CC hechon + I7ed-n + Iyl -1n)
(5.1.57)
where R is a bounded set in R?.

Proof : Let z; = z(ih.t), Z; = Z(ih.t). We have .

P(iht) —ph(int) =
{ L(Gz * ¥a)(Z: = Z; ) (3R 1R + L(Gy * Wo)(Z: — Z5)py (jh .t Jh3
J J

(2(Gs * Vo) (z: = 2)ps (jh 1R + TGy * ¥o)(zi = z;)py (jh.1)RH
J J

ﬂ&m*mﬁ—%%mnﬂ—&avmm—mmmﬂw
J

2 ‘I'G)(Nt —zj)py (th t)h'z ;(Gy * V) (zy ‘zj)py(mvt)hzi .
J

(5.1.58)

If we identify the pair p,(ih.t), b, (ih,t) and the pair py(ih,t), By (ih.t) with
the pair £(ih.t).¢(ih.t), then the estimate of each term in (5.1.58) is identi-
cal to the estimate of the stability of the velocity approximation given in

lemma 4.3.1. Thus, using the arguments of that lemma, we find
I (ht)y =" t) on < C(leslon + Dra d-in + Iyl in) -

Similarly, the continuous stability estimate (5.1.57), follows from the argu- |

ments for the estimate (4.1.14) of lemma 4.3.1.

Lemma 5.1.12 : Consistency of density approximation

Under the hypothesis of theorem 5.1 we have
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l)rsn‘azcrlp"(..":,t) -plz.t)] < Cv(dp + (:—;’—)Ld ) (5.1.59)

“for all z ¢ R

Proof. Consider

Pt (z.t) —p(z.t) = |
2(Gz * ¥s)(z — z(jh.t))pz (th £)R® + 1 (Gy * ¥g)(z — z(jh.t))py (jh .t )RE
2 Lo

J

- p(z.t)
= @(G, *s)(z — z(jh.t))pz (jh.tIRE ~ [(Gs * ¥s)(z — z')po(z' t )dz '}
+ @(G,, * ¥o)(z - z(jh.t))py (h.E)RZ = [(Gy * ¥e)(z — z')py (z".t )dz']
+ (G, * ¥}z = z)p (' t)dz' + [(G, * ¥5)(z — =)oy (z" t)dz’

—plz.t)s
={A} + (B} + {C} .

As in the proof of lemma 4.1.1, terms A and B can be viewed as errors in
approximating continuous integrals using the trapezoidal rule. If we use

arguments similar to those employed in lemma 4.1.1 we find,

o?:a_«).{rlAl Sc(ﬁ ] (5.1.60)
and
max |B| =C (DL (5.1.61)
© 0=tsT ) o

To estimate term C, since p has compact support and is sufficiently smooth

. we can use Poisson's formula to express p in terms of its derivatives,
p(z.t) =Gz *p; + Gy *p, .
Thus,

C =1J(Gs * ¥s)(z —z)pz(z't)dz' — Gy * g}
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+ SI(Gy * ) (z -z')py(z"t)dz' -Gy *py; .

Each of these terms can be estimated using arguments similar to those used
for the estimate of term B in lemma 4.1.1. If we employ those arguments,

thén we find,
|C| =CéP . (5.1.62)

By choosing the constants large enough, the bounds {5.1.60)-(5.1.62) can be
shown to hold for all t, 0={ < 7. Thus the two bounds imply the result

(5.1.59).

We are now ready to prove theorem 5.1.

Proof of Theorem: Define
e;(t) = ?:(i.ﬁ,t) — z(ih k)
ui(t) = Hiht) - ¢(ih.t)
() =Pe(ih.t) = pa(ih 1)
Ty (8) =By (dh t) — py (A1) .
We proceed as in [5] and derive a diﬁerential inequality for the quantity
leilon + I?i l-1n + ""‘z‘ﬂ—m'*' bry d-in
Assume that
lechon *+ 1uloin + Iralo1n + I7 l1n <h2*%  (5.163)
fort,0<t <T' Weuse equations. (3.13) and (B.1) and find for é;,
é; = uh(ih t) —u(iht)
= [wh (ih,t) — ub(ih,t)] + [uh(ih t) —u(ih t)] .
Under the assumption (5.1.63) We can apply the stability lemma, lemma

4.3.2 to the first term and find
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ﬂﬂh(ih,t) —ut(ih ) on=C(lellon+ luil-1n) -
We use the consistency lemma, lemma (4.1.1), for the second term,
[ u(ih t) —u(m,{) lor =C (67 + (;‘—)Ld) .
Thusfor0<t <T*

, h
léillon = C(6P + ((ﬁl“s + leillon + lvillon) - (5.1.64)

If we use T'to denote F evaluated at the computational points and equations
(3.14) and (B.2), then for | 7; | ~'* we have,
vy = (Fp oMk t) =Ty pl(iR t)) = (Fp p,(ih.t) — F, py (ih £))
= (Fp p2(ih.t) — Fa po(ih.t)) — (FiD(ih.t) — Fy py(ih t)) .

(5.1.65)

We will show how to estimate the first term in (5.1.85), the second term is

done similarly.

Fp2(ih.t) = Fopa(h t) = (F = Fa) pa(ih.t) + T (B2(iR.E) - pa(ih.t))
= {(Fy = Fo) pa(ih £)} + {(F = Fo)(al(ih t) = p, (ih 1))}
+ {Fz (p2(ih t) = po(ih.t))}
={A] +{B] + {C] .

To estimate term A, F is continuously differentiable so that

1To = Fel = [FoB(ih.)) = Fel@(iht) op = sup | Wa| |3(h.t) = 2(@h.t) Lo

< C|Z(th.t) -~ z(ih.t)] on

(5.1.68)
where ) is a compact set containing the points z(ih.t), ?:'(171,_t) for
0<t <T'. If we use inequality (5.1.66) and the assumption that p, is con-

tinuously differentiable then we find

I (Fz — Fopo (iR t) ] ~1h = I F2 - Fodoz(iht) L on
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<Cl|% - Falon
<Cleifon -
For the second term, B, we first apply lemma 0.3 and then estimate

| 2 = F2] o as in the estimate for term A.

| Fz — Fo)(ol(ih t) = po (iR £)) | -on < CR72| T = Fall on I p2(ER.E) = pa(ih,t) | 1
| <Ch%leilonlTall -1n
<Cleilon -

Here we make the last estimate using the assumption (5.1.83). Since F3 is

continuously differentiable, term C can be estimated using lemma 0.4,
1 P2 (pi(ih t) = pz(tht)) | -1a <C 7z | -1 -

If we combine the estimates for terms A, B, and C, and estimate the

second term of (5.1.65) in a similar manner, then for 0 < ¢t < T",
foil-in=C(leslon + "7':, J-n + "Ty‘ l-1n) . (5.1.87)

It remains to estimate |7, [ -;5and 7, | -;». We use equations (3.15) and
(B.3) to estimate |7z | _y5.
Fo, = Ul (i, ENpH(iR 1) — UL (ih tpl(iR 1)
+ w1z (iR, )y (h.8) + sy (ih.8)py (i )
= {3 (i t)pz (th t) — ulz(ih £ Jo}(th t )]
| + fugz (h.t)py (i t) — Ul (ih .t JRh(iR 1)) .

(5.1.68)
To estimate the first term of (5.1.68), we rewrite it as,

ulz(i}l-t)pz("h-t) —a{;("‘h-t);g(m't) = z[ulz(m-t) - u’l‘z(ih,t)]p,(ih,t)f
+ futs(ih,t)p, (ih t) — Wl (ih t o, (iR t)]

= {A] + {8} .

We use the pointwise estimate of lemma 5.1.1 and lemma 0.4 to estimate
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term A, and find,
| (2 100.0) = i0.) ] o) L on < © (62 + (21)

We use lemma 5.1.10 to estimate term B,
| ubz(ih t)p, (thit) - ﬂf‘z(ﬂz-t)?z(ih.t) f-iasClleilont 7zl oin + vill -in)

The estimate for the second term of (5.1.68). is carried out in a similar

manner. Therefore,-

Vo dn < Cllechon + I7g Lo+ ludan+ 6 + (B0 ) . (5.1.69)
We also find that |
I7y I -in = Clleifon + H"qﬂ;ln + vl o +.5p + (:—)L ) (5-1-76)
If we add the inequalities (5.1.64), (5.1.67), (5.1.69), and v(5.1.7o), then we
find |
DéTon + D9:h-n + Doe Dot + 170 -1n
<C(leilon+ lvil-un + Img ll-in + [y | -1 + 67 + (g—)L ) -

(5.1.71)
We now employ arguments like those used in the proof of method A'.
From the differential inequality (5.1.71) and lemma 4.3.2 it follows that for

O<t<T
leclon + [usl + Izl oin + Iy I -in = y(2)

where y(t) is a‘solution of

§(t) = Coly(t) + 67 + (’geL ) y(0) =0 .

Thus

: h
leilon + lvil-ia + Irg loin + Iy | -in < Cy(67 + (6_)L)

<
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= Ci(hPY + ALO-D)
(5.1.72)
The estimate (5.1.72) holds for all times such that (5.1.63) is satisfied. The

constant C,; depends on T and Cg, but not on T*. We now remove the assump-
tion (5.1.63).

‘We are assuming that p, q -and L are chosen so that
hP? + RL1-9) < hR +29 +2 for some £ > 0. Thus, there éxists an hg so that for .
h < kg

C (P + hlay < P22

Let T* be the first time such that
es(t) fon + Nwilt) | con + D7zl cin + Iy I cia 2 R3P% (5.1.73)

It T" < T. then (5.1.72) holds and

| h?* 2
leclon + luilcin + Irg lon + Imy lan =

(5.1.74)

for 0=t <T° But at T® (5.1.74) contradicts (5.1.73), so T* must be greater

than or equal to T. Thus for h < hgand for0<=t¢ < T,

leclon + Nuillcon + N7z foin + Iry | con < C(RPT 4+ ALO-9))
(5.1.75)

This is estimate (1).

Using (5.1.75) we will obtain the other estimates (ii)-(v). To obtain (ii),

we use (5.1.75), lemma 4.3.1, and the consistency lemma, lemma 4.1.1,

|3 (ih,6) = w(@h,6) [on < COLTA (ih.) = ub(ih t) [op + [uh(iR.t) = wlin.b) Do

<C(lechon + Dl -un) + C6° + (16)

< C(hP? + RLO-T))

4

The continuous velocity error, (#i), can be estimated using (5.1.75), the
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continuous stability estimate of lemma 4.3.1, (4.3.14), and the 4pointw1‘se
consistency estimate of lemma 4.1.1, |
| 2" (ih.t) —u(ih.t) || o < ||u (ifi,t) - uh(ih, t)||L2® + Iu (ih t) = u(ih, g
=C(llesfor + lu-1n) +C(8% + (5—)1“5 )

< C(h# + RUI-D)) |

For (iv), we rewrite the error as,
12 (ih.t) = p(ih.t) [ gp < DM (3R .E) — p (iR t) | op + | P (iR E) = p(ih.t) [ op - -

We estimate the first term using lemma 5.1.11 and the second term using .

lemma 5.1.12. Therefore
1’2" (ih.t) = p(ih, t)lc,n<c(f|9tﬂon+"'U-.“—l.h‘*' | I—lh+ | N -1a)

o + (534)
< C(RPT + pMOI-T))

The estimate of the continuous density (v) is done in a similar manner. This

completes the proof.
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5.2. Computational Results

In this section we describe the computational results when method B is
applied to the test problem described in section 4.2. We did not attempt to
rigorously check the error estimates of theorem 5.1, but instead, sought to

answer the following questions:
Is the method stable?

Is the requirement of high order accuracy in the convergence proof

necessary in practice?
How does the error behave when the parameters h, ¥, and ¢ are varied?

How does the method compare with the results of method A?

Our reason for not checking rigorously the error estimates of theorem
5.1 is that the test problem does not satisfy the assumptions of the theorem.
In particular, the external force function P is not continuously
differentiable. This situation can be remedied, and we plan to do a detailed

.analysis of the error estimates of theorem 5.1 in the future.

The parameters to be chosen are h, the initial mesh width, 4, the
smoothing parameter, and the function ¥ used in (B.5)-(B.B). We allowed h
to take on three values, h = .0886, h = .0728, and h = .0626 , cofresponding
to 200, 300, and 400 points respectively. The error estimates of theorem 5.1
suggest that we should choose § = h? for some g < 1. We therefore let §=h?
for q = .95, q = .85, and q =-.75. The functions ¥ used in the approximations
(B.5)-(B.B) were chosen to be in M':? and one of

(p=2.L= ¥(r) = e:, | (5.2.1)

re

(p=4,L=w) ¥(r) = 11‘_—(2e"'a - %é——z_) (5.2.2)
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r? -

| 1 27 -3, &
(p=6,L=wx) ‘If(r)=;-(82""2—re * t+e ). (6.2.3) .

These functions are suggested by Beale and Majda in [7]. The integration of
the ordinary differential equations (B.1)-(B.4) was preformed using fourth
order Runge-Kutta. The time step, Af = .1, was chosen sufficiently small so

that a decrease in the time step did not significantly effect the resuits.

As in the tests on me_thod A, we measure the relative error in the first
component of the velocity. This error is computed by
L
2

i Y | T (iht)) —u,( Z(ih b)) | 2R3
h e

1
[ % JuyBan.e) |22 |
th e O

where 17.'{‘ is the computed velocity , u% is the exact velocity and ;(ﬂz,t). are
the computed point positions. We present in tables 5.2.1 and 5.2.2 the

errors for the various choices of the parameters at timest = 1.0 andt = 1.8.
These times correspond to a maximum point rotation of -2— and 27 radians

respectively. ( See figures 4.2.3 and 4.2.4.)

We found that the errors grew at a rate which waé independent of the
number of time steps; i.e. the method is stable. The réquirement of the
convergence proof, that the method be at least accurate of order h?+ %,
does not appear to be neéessary in practice. For every choice of the param-
eters for which tﬁis assumption is not satisfied, the computational results
indicate that the method is still convergent. We are pleased with this result
for it demonstrates that the method is more robust than the convergence

proof, theorem 5.1, indicates.

Although the error estimates (i)-(v) of theorem 5.1 are not strictly

applicable, they indicate some of the features of the behavior of the error.
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In particular, the estimates indicate that choosing the function ¥ with p
larger should decrease the error. This behavior is observed in the results.
Also, like méthod A, the change in the error was very significant. For exam-
ple, at time t = 1.6 with h = .0626 ahd 6 =h7, the error for p = 2 was B %

while for p = 6 it was .78 Z%.

It was found that the smallest errors at time t = 1.0 are obtained using
6 =h® and p =6, while thé smallest errors at time t = 1.6 are obtained
using 6 = A7 and p = 8. Thus it appears necessary to chdose a larger 6 to
insure long time accuracy. Since the major difference in the approxima-
tions at these two times is the distribution of the computational points, we
conclude that one should choose a larger smoothing parameter when the
computational points becofne disorganized. This same conclusion was drawn
for method A, and we remark that quite similar behavior is observed in

accuracy tests for the vortex method [486].

The conclusion that one needs to choose a relatively large § to insure
long time accuracy appears to be a characteristic feature of these methods.
Unfortunately, this conclusion raises the question "How large should ‘6 be ?'".
We do not believe that the relative size of delta that we found for this prob-
lem is universal, i.e., we believe that the q in d = h? is problem dependent.
To overcome the difficulty in choosing the appropriate ¢ we have devised an
empirical procedure for determining it. This procedure is described and

tested in section 6.1.

In comparison with method A, the errors associated with method B were
rnuch smaller. For example, using the optimal parameters, ét time t = 1.8,
the error with method A is 7.3 % while the error for method Bis .29 %. A pos-
sible explanation for this result is the following: To calculate the solutions te
(1.12)~(1.14) in the vorticity- stream formulation we must evaluate density

derivatives. In method A we evaluate these derivatives by differentiating the
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density approximation (3.12). In general, diﬁerentiating an approximation
leads to a loss in accuracy. This loss 6f accuracy can be theoretically
estimate(;l. If one compares the accuracy estimates for the density deriva-
tive approximations (A.5) and (A.8) ( see estimate (4.1.12) ) with the accu-
racy estimates for the density approximation (3.12) ( see estimate (R.8) )
" one finds that the accuracy of the density derivatives is a factor of 7!
larger than that for the density. In method B the density derivatives are
primary variables; i.e. not derived from another computed quantity, so the
error introduced by numerically differentiating the density approximation is

not present.

We conclude from these computations that method B is stable and
accurate. The method appears to be more robust than theorem 5.1 indi-
cates. It also appears that method B is the more accurate of the two
.methods. The convergence results, alth‘ou,gh not strictly apphcable. indicate
to some extent the behavior of the error. In particular, the conclusions
based on the error estimavtes.v i.e. letting 6 = h? and using functions \[f in MLP

with p large, seem to be valid.



Relative Velocity Error (in%)
. b= o
p=2 p=4 p=6
§=h"% 5.3 0.82 0.25
g =hbt 8.3 1.8 0.32
=h™ 12.0 3.9 1.0
Relative Velocity Error (in X )
b =_0723
p=2 p=4 p=6
§=h%® __ 37 0.40 0.14
§=hb 6.1 1.0 0.12
d=h"™ 9.8 2.4 0.49

Relative Velocity Error (in %)

p=2 p=4 p=6
§ =h9s 2.8 0.24 0.10
g =hb 48 0.67 0.061
d=hT 8.1 1.7 0.29

Table 5.2.1

Error in Velocity at t = 1.0
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- Relative Velocity Error {(in % ) -
BERLE '
p=2 -p=4 p=8
8 = h9 5.7 3.7 5.4
| §=h% 8.3 2.7 3.5
§=h™ | 120 39 | 21
ﬁehﬁve Velocity Error (inx)
b
p=2 p=4 - p=86
§=h"® 3.9 | 2.4 3.7
g = h?b5 6.0 1.5 ‘-’2.1
§=h7 9.7 2.3 1.1

Relative Velocity Error ( in %)

p=2 =4 p=6_
6 =h% 3.0 1.6 2.7
8 = hbs 48 1.0 1.4
5 =hT" 8.0 1.6 0.78
Table 5.2.2

Error in Velocity att = 1.6
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6. Application to a 2-D Thermal

In this section we use method A and method B to calculate the motion
of a 2-D or 'line’ thermal. A 2-D thermal is that object which was initially a
cylindrical body of buoyant fluid having its axis of symmetry perpendicular
to the gravitational force and which has moved under the effect of gravity.

We model the motion of a line thermal by computing the solution to equa-

tions (1.15)-(1.18) with initial data of the form

p f <7
polz.y) = { 6 e ror (6.1.1)
tolz.y) =0 | (6.1.2)

L _
Here r = (z® + y®)® and p, is a constant such that p, < 0. For the external

- force, ', we use F' = —(0,g ) where g is the gravitational constant. In all of

our. calculations we use p1 =—-1,g=100and* =.5.

Due to the presence of gravity, the circular region of lighter fluid wibll‘
rise in time. The problem is to calculate the motion of this lighter fluid. For
a more detailed description of line thermals and of theoretical and experi-
mental studies of their motion see ([25].[47].[52].[53]). An earlier numeri-

cal study of thé motion of a 2-D thermal is présen;ed in [43].

We are interested in this problem for two reasons. The first is to gain
an understanding of the behavior of the methods when they are applied to
mere realistic problems, i.e. problems closer to those which our numerical
methods are intended to be useful for. The motion of a 2-D thermal is a good
test problem for it contains the key features of con.vective motion and yet is
simple in the sense that the initial conditions are easily described and there
are no external boundaries.

The second reason we consider this problem is to obtain an understand-

ing of the nature of the solutions of equations (1.15)-(1.18) with data of the

form (6.1.1)-(6.1.2). We remark that this problem can also be considered
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one of calculating the motion of a vortex sheet [4] whose strength changes
in time. From equation (1.22) we see that vorticity can only grow where
there are density gradients. In this problem the devnsity gradient is non-zero
only on 'the inferface separating the Iight' and heavy fluid. ( The density gra'-
dient is aldistribution wifh support on the interface. ) Thus, the vorticity will
only be non-zero on the intérface, i.e. the interface is a vortex sheet. We
hope that some of the conclusions derived from this investigation will lead to |
a better understanding of the motion of vortex sheets in general. We men-
tion that the evolution of an infinite vortex sheet is being studied by Krasny

[37] using methods similar to those employed here.

We will first present the results obtained with method B. In section 6.2

we will present the results obtained with method A.

6.1. Application of Method B to 2-D Thermal

To implement method B we must choose an initial distribution for the
computational points and the initial conditions for the 0.D.E.s (B.2)-(B.4).
As the method is described in section 3, the computational points are
chosen to be those in (* = QNA*, where (is a set containing the support of
the initial density derivatives and the initial vorticity. The initial conditions
for the 0.D.E.s (B.2)-(B.4) are chosen to be pg_(ih) ,pgv(i}:.) andvgo(ih) where
ih ¢ Q*. Unfortunately, we are not able to follow this procedure because the
density derivatives of the initial conditions are distributions. We proceed as

foHow's:

¥We initially distribute the computational points uniformly with spacing
h along the interface {(z,y)| z? + y® = 7%}, i.e. if &, are the computational
points we let

o, = T(cos(kh) , sin(kh)) for k=1, N
where
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h=*F T

See figure 6.1..1.
To select initial conditions for the O0.D.E.s describing the evolution of
the density derivatives, we set the density derivatives equal to a multiple of

the normal to the interface of the initial data. We use

Be(00,0) = po, (@) = 7 cos(u)

By (a.0) = Po, (o) =7 sin(e)

where the constant 7 is chosen so that when we construct the density using
(B.8) the total mass of the lighter fluid is identical to the mass of the lighter
fluid in the initial condition (6.1.1). Specifically, we choose v so that

J Peodz=y [ 3 Gz - acos(a)ds

l2f<re 121 <7 k=1

+ | { ’*ﬁ:le.(z - ak)sm(ak)dz

=-p 72
Here we have absorbed into ¥ the weight factor A% normally occurring in the

sum (B.5). For the initial conditions of the vorticity O.D.E.s (B.2) we use

¢ (o .0) =”g°(2x;)=o for k=1, ,N .

There is a second technique for constructing suitable initial conditions
for the numerical method. This consists of modifying the initial conditions
(6.1.1)-(8.1.2) so that the procedure described in section 3 will work.
Specifically, one would first smooth the initial data and then approximate
the solution of this smoothed problem. The usefulness of such an approach
has been demonstrated in conjunction with the Fourier method [41]. A
disadvantage of using this latter technique is that it uses more computa-
tional points than the‘ former. This economy is our priméry reasonlfor using

' the first technique.
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The other parameters that need to be selected are the function ¥ and

the parameter §. We chose the function ¥ used in (B.8) and (B.8) to be

Y(r) = %r_e.,z - (6.1.3)
L
where 7 = (z* + y?)?.

This choice corresponds to ¥ ¢ MIv*-lJ for p =2 and
L =0

. The last parametér to be speciﬁed-is the smoothing parameter . We
found that the proper choice of § was a critical factor in obtaining con-
sistent numerical results. Our first, and unsuccessful, technique was to
choose ¢ in a manner suggested by the error estimates of section 5. We let
6 = h? for some g < 1. With these choices we“then solved the O.D.iE,s (B.1)-
(B.4) using fourth order Runge-Kufta with a step size of At =.1. We rﬁom’-
tored the quality of the computation by computing the mass of the thermal
at each time step. Typically, for the values of q that we tried, q=.95 q=
.75, and q = .5, it was found that there was a time T, depending on q, such
that the solution faﬂevd to conserve mass for ¢t = T. Furthermbre, decreasing
h, (increasing the number of computational points ) did not improve-the
results. The results of the calculation for 8 = A'™® are shown in figures 6.1.2
and 6.1.3. In ﬁgure 6.1.2 we present a graph of the mass as a function of
time for different \_rall.ies of h. In figure 6.1.3 we present the position of the
interface at time t = 3.0 for the values of h used in figure 6.1.2. ( For clarity
we have connec.ted the computational points 'vﬁth strafght line segments ).

We see that as A - 0 the results are not consistent.

An explanation of these results lies in an analysis of the manner in
which we are approaching the solution of equations (1.15)-(1.18) with the
numepical approximation. We expect that as h » 0 and ¢ » 0 the numerical
approximation will converge to the solution. A-priori there is no reason to

assume that approaching the limit ~ = 0 and 6§ = 0 using the relation § = AY
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is appropriate for this problem. This conclusion is based on the results cf
section 5 which depend on the assumption that the flow and associated
quantities are smooth. This assumption is clearly not satisfled in our prob-
lém. We believe that the inconsiétent numerical results are occurring

because the limiting process is not being carried out in the correct fashion.

To avoid this difficulty we use the the following procedure. We fix a
value of §, say d;, and then determine aﬁ hy, so that for all A < h; the com-
- putational results do not significantly change for 0< ¢ <7T ( T is selected
arbitrarily ). We then select another 6, say 6z with 63 < §,. Again, we find an
hgz such that for A < hy the results do not significantly change over 0 < ¢ <T
We continue in this manner and thus construct a sequence
(h1.61) . (h2.62) ., - - - (hy,8;). Our hope is that as the sequence (h;,d;) - (0,0)
the corresponding numerical solutions approach the solutions of (1.i5)-
(1.1B) with data (6.1.1)-(6.1.2). One can view the above procedure as empiri-
cally determining the appropriate approach to the limit. -

This proceduré worked well. For the values of 6; that we tried it was
found that there was always an k; so that for A < h; the approximation pro-
cedure converged. Our assessment of convergence was obtained by consid-

ering three features of the computation,

(1) The conservation of mass of the lighter fluid for 0 < ¢ <T'
() The convergence of the length of the interface.

(3) The convergence of the position of the interface.

An example of the convergence behavior for 6 = .07 is illustrated in
table 6.1.1 and figure 6.1.4. Table 6.1.1 shows the variation with respect to
h at time T = 3.0 of the mass and of the arc length. Figure 6.1.4 shows the
position of the interface at tifneﬁ‘ = 3.0 as h is varied. We mention that the

time step, At = .1 was chosen small enough so that it had an insignificant
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effect on the resuits.

In figures 8.1.5 to 6.,1..11 we present the results of the computation for
0<t=<30 énd for values of ¢ = .1, .09, .OB.V'.O’?. .08, .05, .04. Each of these
figures is the converged sc;iution ( ﬁth respect to h ) corresponding to that.
particular §. We lirnited ourselves t§ d=>.04 becalise for smaller d's fhe.
number of points necessary to obtain convergénce was very large ( > 800 ).
In figure 6.1.11a we present a close-up of the solution corresponding to

§ =.04at time t = 3.0.

From the computational results we see that as § » 0 the solutions

approach a limit solution. This result réises two intereéting quéstions:
What is the nature of the limiting solution ?

Is this limiting solution the solution of (1.15)-(1.18) with initial data
(6.1.1)-(6.1.2)° ' |

We ﬁrs£ discuss the nature of the limiting solution. The most prorﬁinent |
feature of the solutions as 6 - 0 is the behavior of the “curl” of the thermal.
( See figure 6.1.11a. ) As 6 tends to zero, t_hese curls have an increasing
number of winds. Associated with this phenomena we find that the arc
length of the interface is increas_iné. In figure 6.1.12 we present a plot of the
length of the interface at time £ = 3.0 as a function of d. We fit a curve of
the form 1(6) = A6™* + B and found that & = ?.105. Thus we conclﬁde that as
6 -» 0 the interface becomesA infinite in length. The cufve (&) is the solid
line in ﬁéure 6.1.12. This suggests that a singularity is occurring in thé lim-
iting solution.

To understand the nature of this singularity we also considered the
growth in time of the length of the interface. In figure 6.1.13 we plcv)tb the
arclength verses time for the values of ¢ tested. What we observe is that up

to time T ~ 1 the arclength of the solution is independent of 4. After that
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time the arclength grows linearly in time at a rate which is inversely propor-
tional to 8. We conjecture that the time T is a critical time, the time at
which a singularity occurs in the flow. Before time T the limit solution is
well behaved, after that time we expect that the interface of the limit solu-

tion becomes infinite.

We are also interested in the 'size’ of the singularity. We note that as
8 -» 0 the solutions agree over an increasingly larger part of the thermal.
This is illustrated in figures 6.1.14 where we have superimposed the solutions
for §=.1 and 6 =.09 and the solutions for § = .05 and 6 = .04. These
results suggest that the limit solution is well represented by the finite §
solution except for in ﬁhe ‘eye’ of the curl. We conclude that the support of

the singularity is small, possibly confined to one point.

The behavior of the vorticity is illustrated in figure 6.1.15. In this figure
we present perspective views of the absoiute valuve of the vorticity at time t
= 3.0 for solutions corresponding to § =.1, § =.07 and 6 = .04. The plots
were obtained by evaluating at the grid points of a 90 x 90 grid the approxi-
mation of the vorticity given by (3.11). This information was then used in the
perspective plotting routine in [23]. From the results we see that, like the
arc length, the magnitude of the vorticity increases as the smoothing
parameter § » 0. We also note that the largest growth of the vorticity is
concentrated in the "eye” of the curl. To illustrate the growth of the vorti-
city as § » 0 we present in figure 6.1.17 a graph of the magnitude of the vor-
ticity as a function of 6. We fit a curve of the form v (6) =C + Dé~* and
found that &k = -2.028. Thus we expect that as J » 0 the vorticity becomes
unbounded. |

Based on these results we conclucie that the limiting solution is a singu-

lar one. The singularity most likely occurs at a point and is characterized

by an infinite value of vorticity there. The interface of the limit solution also



114

appears to be infinite. Other features of the solution deserve further study,.
in particular a more detailed look at the structure of the singularity and

how the singularity evolves in time.

- The second Question. the relation between the solutions obtained as a
limit of our numerical solutions and the solutions of {1.15)-(1.18) with data
(6.1.1)-(6.1.2), is a difficult question to answer. One must be ‘cautious, as
there are examples of numerical schemes which are consistent and conver-
gent, but converge to erroneous solutions. { See [33] ). We are not able to
answer this question, but we propose the following investigation to under-
stand the limiting proéess: When we fix § and let A » 0 we expect that we aré

converging to the solution of

302

o+ Legradp, = ~(w1e)aps — (Uee)ey (6.1.4)
dpy ., :
5t -+ Bogradpy = —(Urg)ypz — (Las)ypy (6.1.5)
p =Gy *¥s*py + Gy *¥s*py (6.1.6)
%§-+ 2y gradé = p,Fy —pFp | (6.1.7)

g =K *y * £ | (6.1.8)

If the solutions of (1.15)-(1.1.8) are sufficiently smooth then this éonvergence
can be proven - in fact the result follows immediately from theorem 5.1. We
call the equations (6.1.4)-(6.1.8) the delta equations ‘associated with (1.15)-
(1.18). The question of the limit of the numerical solutions as 6 - 0 (
assuming that convergence with respect to h has been achieved ) reduces to
the question of the behavior as ¢ -» 0 of the solutions of the delta equations.

"

An inveétigation of this type is very similar to the study of the " model "
problem for finite difference equations ([34],[54]). Certainly a satisfactory
solution to this problem concerning the delta equations will aid in the under-

standing of the limiting process.
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We have not carried out this investigation, but we note that our com-
puted results can be used to ascertain properties of the solutions of the
delta equations. In particular we see that the gross features of the flow, the
distance tra‘}eled by thé thermal and its generai shape are well represented
by relatively large 6. This result has several implications. The first is that it
~ indicates that one need not us-e an excessively small delta ( and hence many
computational points ) to obtain the general features of the solution. Also
the solutions of the delta problem appear to be non-diffusive. If the solu-
tions were diffusive we would expect that that the distance .traveled by the
thermal to be dependent upon d. Anothér obéervation is that even though
the limit solution is quite complicated, this limiting solution does not con-
taminate the finite delta solution. An example of a situation where this does
not hold is in the use of Fourier methods to solve problems whose solutions
have jump discontinuities. If we consider an approximate solution to be one
consisting of a finite number of modes, then, due to Gibbs phenomena, the
existence of a jump discontinuity will contaminate the approximate solution.
These observations indicate that the delta-equations have many desirable

approximation features.

We remark that the procedure for determining A and ¢ used above can
be used for other problems. For example, in the test problem of section 4
" and section 5, we let § = h?. This choice was based on error estimates for
the approximations used in the methods. Other than the fact that q should
be chosen such that 0 < q < 1, the precise value of q was not specified by
the error estimates. One could use the procedure described in this section
to determine the appropriate g. To do this one would fix a value of ¢, say 4,
and then find an h,; such that for h <h, the computed solution didn't
change. One would then select another 32. with 6z < 6,, and_ determine an hgp

such that for A < h; the solution didn't change. Continuing in this manner a
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set of values (h,.6,), (hs82), - - ,(h.,-,d.;) are determined. By fitting a
curve of the form d = h? to these points, an appropriate value of g could be
found. o - |

This completes our discussion of the application of method B to com-
pute the motion of a 2-D' thermal. In the next section we describe the

results of applying method A to the same problem.
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Distribution of Computational Points for Method B
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N Mass Arclength
150 | 7.641 '><10‘2 9.768
250 | 7.855 x 1072 9.824
350 | 7.854 x 10-2. 9.839
450 | 7.854 x 107® 9.846
Table 6.1.1

Fixed Delta Convergence at't = 3.0

d =.07

Initial Mass = 7.8539 x 1072
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8.2. Application of method A to a 2-D Thermal
In this section we discuss the application of method A to the problem of
calculating the motion of a 2-D thermal. As in section 6.1 we calculate this
motion by solving equations (1.15)-(1.18) with initial conditions (6.1.1)-

(6.1.2). Our hope is that the results obtained with method A will be compar-

able to those obtained with method B.

We encountér two difficulties in implementing method A. The first
difficulty is that which was caused by the initialization procedure for the
method as described in sec¢tion 3. In that procedure, the initial computa-
tional points. are distributed on the intersection of the support of the initial
density with the nodes of a rectangular grid, (*. The initial density distri-
bution of the 2-D thermal is radially symmetric, but for the values of h ( the
initlal mesh width ) that we were able to use, this symmetry was not well
represented by the distribution of computational points. In figure 6.2.1 we
show the initial distribution of computational points when distributed
according to the procedure of section 3. Since the motion of a 2-D thermal
is unstable, the effect of this rather coarse approximation to the initial data
was very significant. Although the resulting approximate solution with this
discretization may be closer to the a‘i:tuai physical phenomena, where per-
turbations on the boundary are to be expected, it is unfortunately further
from the computational results obtained with meihod B. To facilitate a
comparison between the two methods we choose to distribute the computa-
tional points in a way which preserved the initial radial symmetfy. An accu-
rate implementation of this initialization requires some care, and in section
6.3 we describe a suitable procedure. In figure 8.2.2 we show the distribu-

tion of computational points obtained using the results of section 6.3.

The second difficulty is more fundamental, having to do with the

approximations made in method A. From equation (A.2) we see that the
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vorticity grows where the derivatives of p*(z,t) are non-zero. Consider the
approximation of method A at time t = 0. If we initialize as described in sec-

tion 3 ( with a radially symmetric distribution of computational points ) then

this dictates putting computational points only where the density is non-

zero. Thus we place points inside a circle about the origin of radius 7. If we
consider the derivatives of p*(z,t) based on this distribufion of computa-
tional points, we find that they are non-zero outside the c'ircle of radius 7.
Since the vorticity grows in proportion to density derivatives, we find that
there will be vorticity growth oﬁtside the circle of radius #. In our approxi-
mation procedure, there are no computational points outside this circle and
so the vorticity growth will not be apprommated. The essence of the prob-

lem is that the support of the density ( which determines the placement of

computational points ) and the support of the density derivative approxima-’

tion ( which determines the vorticity growth ) do not coincide.

In our initial attempts to use method A to calculate the motion of a 2-D
thermal this problem was not noticed. The result was that the solutions
moved only about two-thirds as fast as those calcula;ed with method B.
Thus the problem can have significant effects. We remark that for problems
with smooth solutions this difficulty does not appear. In this case the sup-
port of the density and density deriva}tive- approximation will be very close.
It'is for this reason that the difficulty was not detected in the test problem

of section 4.2.

Our solution to this problem is to first smooth the initial daté (6.1.1)

and then apply method A. The initial smoothing that we use is

—r2

~ 1 e
po(z'Y') = r—rnye 7 po(z,y)ld.'rdy (6.2.1)
where 2 = (z' —z)? + (y' —¥)? and vy is a parameter to be chosen. We use

this procedure because we expect that the solutions of (1.15)-(1.18) with
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smooth initial data will still be smooth. Thus, as in the test problem of sec-
tion 4.2, we expect the support of the density and the density derivative
approximation will coincide." This reasoning is not rigorous, but the compu-

tational results indicate that there is some merit to it.

With the above considerations taken into account we then approximated
the motion of a 2-D thermal using method A. We chose the functions in (B.6)
and (B.8) to be

r2

| ¥(r) = 117—(22 2 _ é—e 7 ) (6.2.2)
which corresponds to ¥ ¢ MU'P for L= = and p = 4. ( We assumed that the
solutions are smooth so that a higher order cut-off will increase the accu-
racy of the computation, cf. the results of section 4.) For the smoothing of
the initial data weuse ¥y = .1 in (6.2.1). The profile of this initial density dis-
tribution is shown in figure 6.2.3. We choose this ¥ because it yields an ini-
tial density apprommation which is close to the initial density approximation
obtained with method B with = .1. Similarly, for the smoothing parameter

d in (A.4)-(A.6) we fixed the value of § at .1. Again, the reason for this choice

is to match the parameters with those of method B with 6 = .1. With these

.1 for several

choices we then solved the O.D.Es (A.l)-(A.S) with At

different numbers of points N.

For the calculations with N > 400 the computed solutions appeared to
have converged. In figures 6.2.4 we present the positions of the computa-
tional points for times betweent = 0.0 and t = 3.0 for N = 638. One notice-
able feature of these figures is the 'tail’ of the thermal that forms. Upon
closer inspection, it is found that the points in the tail represent very little
density, and so give a misleading representation of the position of the ther-
mal. To represe;lt the poqsition and shape of the thermal more accurately

we present contour plots of the density in figure 6.2.5. These contours were
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obtained by evaluating the approximate density p"(z.t) of (3.12) on a rec-
tangular grid and then using the contour plotting routine given in {23]. To
facilitate a comparison between these results and the resulté obtained with
method B we present in figure 6.2.6 the éontdurs associated with the solu-

tion which is depicted in figure 6.1.5.

Comparing figures 8.2.5 and 8.2.6 we see that method A agrees rather
well with method B. In particular, the general shape of the thermal and the
distance traveied are the same. It is difficult to compare the resolution of
the two methods from the contour ploté, but we note that method B gives
sharper contours. It is clear from the results depicted in figure 6.1.5 that
method B is superior in resolving the fine scale features of the solution. This
superiority is certainly expected, because in the implementation of method
A we are forced to smooth the problem and thus the solution has no shar-
ply defined interface. Although we have presented the results for only one
choice of the parameters, other computational experiments suggest that
these results are indicative of the results that would be obtained with other

choices of the parameters.

It was found that the calculation of the motion of the thermal can be
continued for a much longer time with method A than with method B. As an
example of this we present in figure 6.2.7 the results obtained with method A
for the above .pArameter choices and for ,ti;nes up to 6.0. Using an
eqv..livalent, parameter choice and number of computational points, method B
yielded meaningful results up to time t = 4.0. We explain this difference in
ability Iby considering the nature of the approximations made in each of the
methods. The success of method B depends on an accurate calculation of
the density derivatives. For the problem of the motion of a 2-D thermal, this
requirement translates into an accurate calculation of the motion of the

interface. The most prominent feature of the 2-D thermal is that the inter-
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face becomes increasingly complicated as time progresses. Thus to com-
pute this motion accurately, method B needs a large number of computa-
tional points. If there are an insufficient number of points then the results
quickly become meahingless. ( In this problem this was characterized by a
failure to conserve mass.) In method A, the density derivatives are com-
puted by differentiating a smoothed approximation to the density. In
essence, the density derivatives that enter into the calculation are
smoothed or averaged density derivatives. Thus, the presence of a very
complicated distribution of density derivatives will not necessarily adversely

affect the computation.

The difference in methods can also be explained by considering the
associated delta-equations. For method B they are given by (6.1.4)-(6.1.8)

and for method A they are given by

%%+ dg gradp = 0 (6.2.9)
%—+ 24 grad £ = curl(psh) (6.2.4)
pPs=¥s*p ' (8.2.5)

2y =K* ¥, *¢ (6.2.6)

If we compare equations (6.2.4) and (6.1.7), then the difference in the two
methods becomes clear. In method A, the vorticity growth depends upon
the smoothed density derivatives,b while in method B the vorticity growth
depends upon the actual density deri\}atives, For problems which have very
complicated distributions of density derivatives, the approximation used in

method A may be more appropriate.

Although one can continue the calculation longer with methoed A, we are
faced with the question of the validity of the results. This is a difficult ques-

tion, and we have not yet arrived at a satisfactory answer. We remark that
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‘the solutiqn which is depicted in figure 6.2.7 has some of the features of
experimentally obsérved thermals. In particular, it is observed [52] that
thermals split into two counter-rotating structures and that the bulk of
mass of the thermal is concentrated in the rear of the thermal. This
behavior is clearly seen in figure 6.2.7. More extensive computations should
allow for other comparisons to be made. Another approach to the assess-
ment of the computational results is to analyze the associated delta-
equations (6.2.3)-(6.2.6). For a.ﬁxed delta as A - O the computed solutions
can be expected to converge to the solutions of the delta-equations. ( The
reason for considering this type of convergence is that it is easier to obtain
it computationally, cf. the corresponding results in section 6.1 for method
B) Thus, uﬁderstanding the relation between the delta-equations andA the
equationsi(l.lS)-(l.lB) will help illuminate the nature of the numerical

approximations that are constructed with method A.
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6.3. Initialization of method A for non-rectangular grids

In this section we discuss an initialization procedure for equations
(A.1)-(A.4) when one wants to use computational points other than those
which are initially ‘distributed on the rectangular grid (*. The computa-
tional points will usually be distributed in a manner dictated by the
geometry of the initial conditions as well as accuracy considefations. To
simplify the presentation we discuss the procedure for the numerical
scheme used in the model problem‘of section 2. The application of the tech-

nique to (A.1)-(A.5) follows easily.

Consider the approximation used in the model problem of section 2,

PMzt)= Y ¥z -z(iht)) f(iht) h? (6.3.1)
theh

where z(ith,t) and f (ih,t) are solutions to

dz (ih,t

> = u(z(ih.t)) z(ik,0) =1ih (6.3.2)
L) =0 f(ih.t) = folih) (6.3.3)

Thus the computational points z(ih,t) are those that originate on the
rectangular grid 0* = QNA*. Let {o;} denote another set of coﬁlputational
points, not necessarily distributed on a rectangular grid. With this change,

the appropriate modification of formulas (6.3.1)-(6.3.3) is

Ihz.t) ='§‘{’6(z —z{a.t)) f (ot )uy (6.3.4)

where z(o;,t) and f (a;.t) are solutions to

dZ(;;.t) :u(z(at.t)) ' z(ailo) = oy (635)
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df (es.t) _
at 0

F(@:.0) = Folay) (6.3.6)
and w; are weights that depend upon a;. To determine the weights w; and in
part determine the o; we will consider an error estimate for (6.3.4). As in

the estimate of (6.3.1) that is given in section 2, we write the error in using

(6.3.4) as a sum of two errors,
<

fr=f ==Y+ (Y- )
= {43 + (B}
The error term A can be viewed as the error in approximating the integral in
~ f * ¥5 by a discrete sum, while term B can be viewed as the error in approx-
imating the function f i)y f convolved with the approximate delta function V.
The error term B is analyzed as in secvtion 2 and is found to not depend on
the choice of cornputational points. It is in term A that the choice of compu-
tational points makes a difference. If we use the map z(a,t) to change vari-

‘ables in the integral in term A we find,

A=Y ¥z —z(a;.t)) flog.t) wy— [¥s(z —z)f (z'.t)dz’
a‘

= Y¥(z — (et )f () = [¥z ~ (@) (z(at) )da

ay

Since f(a;.t) = f(z(a;;t).t), we recognize term A as the error in using an

integration formula of the type

29(0&‘)“& | (6.3.7)

to approximate the integral over R? with respect to a of the function |
g(a) = ¥g(z ~ z(a.t))f (a.t)

From this we conclude that u; should correspond to integration weights and

a; to integration points of the approximation (6.3.7). Any integration’

e
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formula of type (6.3.7) will work, so we find that there are many possitle
choices of the ¢o;'s and w;'s. We use this freedom to choose the computa-
tional points in a way which makes better use of the structure of a particu-

lar problem.

As an example of the use to the ébove analysis we discuss a possible
choice of the computational points when the initial distribution fq(z,y) is
radially symmetric. For the model problem, since f is transported by the
flow, we have that f (a,t) = f4{a). Thus to make the error in term A small,

we seek integration poinfs and weights so that
S¥(z - z(at))fo(0)dax (6.3.8)

is well approximated by a discrete sum of the form (6.3.7). Let R denote
that radius such that fo{(a) =0 for |a| > R. ( We are assuming that f¢ has

finite support ). We rewrite (6.3.8) using polar coordinates and find,

Ran

S¥e(z — z(at))fol@)da = {[%(z —z((r8),t)f or) r dr d

(6.3.9) .
The reason for writing (6.3.8) in polar coordinates so that when we approxi-
mate the iterated integral in (6.3.9) with one dimensional integration
schemes, the resulting integration formula will be radially symmetric. We
approximate the integral on the right hand side of (8.3.9) using Gaussian
quadrature for the integration in the r coérdinate and using the trapezoidal
rule for the integral in the ¥ coordinate. Specifically, let g, and 7,
=1, - K, denote gaussian quadrature weights and points for an integral
over the interval [0, R]. (See [1].) A

Let hy(l) = NZ(—T;)-where N(l) is some number depending on |, then
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Ran

_of{‘l’a(z - z((r.8))f (r) rdrdd = ﬁ Nﬁ)‘l’o(z -z ((r, ;jhd(l))-t)f0<rl) T q Py

l=1=1
| | (8.3.10)
In the notation for (6.3.7) we are using points {a;} given by,
(TLCOS(jho(l)) , 7ysin(jhs(l)) t=1---K j=1- N
(6.3.11)
and weights

wy ; = nqihs(l) ' . (6.3.12)

In figure 6.3.1 we present the distribution of computational points given by
the above procedure when R? =.5 The significance of using the .choice
(6.3.10) is that the computational points are distributed in concentric cir-
cles about the origin. For radially symmetric data we expect that this distri-
“bution will have smaller errors than if we had used the trapezoidal rule to
approximate (6.3.8). The accuracy of using (6.3.10) can be analyzed using
errt;r estimates for the resulting integration formula. We do not pursue this

approach here, but leave such an analysis for future work.

The advantage of using (6.1.10) was demonstrated in the calculation of

section 6.2. In that calculation the use of computational points that were
not rédially symmetric had a harmtul effect on the results. We also tested
~ the distribution of computational points by using these points in the calcula-
tion of section 4.2. For an equivalent numbex: of points, the errors in using
(6.1.10) were smaller than using points initially distributed on a rectangular
grid. In particular for the number of points approximately equal to 300,
the relative error in the velocity was 5.9% using initialization (6.1.10), while

the error was 127 using the initialization of section 4.3.

[ g
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7. Discussion and Conclusions | A

We have presented two numerical methods for calculating the motion of
an incompressible fluid of sightly varying density. We have also prese'nted,
mostly by way of example, what we believe to be a general téchnique for con-
structing and analyzing numerical aléori_thms for calculating the solutions of
incompressible flow problems. The methods are grid free and, in view of the
results vovf section 6, are capable of representing very complicated .ﬂuid
motibn. The 'niethods give "smoothed"” approximations to the solutions of
the fluid equations, but this smoothing does not accumulate and contam-
inate the numerical approximation. It is this property that is the distinctive

advantage of these methods 6ver- finite difference methods.

We have also showh that the theoretical techniques developed for'the
vortex method ([5],[6],[8].[19],[30]) can be used to analyze more general
numerical methods. In particular, we have used these techniques to obtain
convergence results for the methods proposed here. Also, our use of these
theoretical tech:ﬂques in sections 4 and 5 to help select parameters for the
numerical methods demonstrate their power and utility. This utility is also
demonstrated in section 6.3 whefe we use the theoretical techniques to dev-
ise the proper numerical proce.dure' when the initial computational points

are on a non-rectangular grid.

Of the two methods, method B appears to be superior. It was more
accurate on the test problem of section 4.2 and was much better at resolv-
ing the fine scale features of the motion of a 2-D thermal. Although method
A is less accurate than Method B, it has the property of being able to calcu-

late the long time motion of the 2-D thermal with fewer points.

.
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As for the efficiency of the methods, they both require 0(n?) operations
for each time step, where n is the number of computational points. Com-
pared to grid techniques which usually require O{m) or O(m log m), where
m is the number of grid points, the methods presented here may seem to
be inefficient. Such a conclusion is not necessarily valid since one typically
needs much fewer computational points using these methods than with grid
techniques to resolve the fine scale structures of the flow. This fact is illus-
trated by figure 7.1. In this figure we have superimposed a 33 x 33 grid over
the corriputational results obtained with method B using an 'equivalent
number of points. Clearly the fine scale features of this solution would not
be resolved with a finite difference method using such a grid. We mention
that the operation count of the methods presented here may be reduced if
one uses particle-grid techniques such as Cloud In Cell ([18]) or its variants
([2].[10].[12].[35]). ( For a review of particle-grid methods see [24].)
Although using such algorithms leads to a loss of accuracy in the calcula-

tion, their use can reduce the amount of computational labor enormously.

“Another aspect of the implementation of these methods is the choice of
the function ¥ and the smoothing parameter 6. We believe that for smooth
problems, the conclusions drawn from the theoretical analysis are reliable.
In particular, using ¥ in Ml with p > 2 is beneficial. Also, letting § = A7 for
0 < g <1, where h is the initial mesh width, seems a proper choice. For
non-smooth problems the results of section 6.1 indicate that these choices
may not be appropriate. For method B, the results obtained with ¥ \in
MLP for large p were not substantially better. Also using the relation
6 = h? to approach the limit (6,h) -» (0,0) gave unsatisfactory computational

results. We would recommend determining the relation between h and ¢ by

the empirical procedure described in section 6.1. We remark that the
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empirical determination of the relation between h and § may also be of use

in the vortex method, especially when the smoothness of the solution is net’

known.

We have mainly concentrated on the numerical methods, rather than on .

the problems which they are designed to solve. For example, our interest in
the motion of a 2-D thermal was primarily to investigate. the numerical

methods rather than the behavior of the thermal. The next logical step is to

concentrate on the physical phenomena. We hope vthat these methods will

be useful in obtaining an understanding of the flows associated with thermal
convection. One possible application may be in the study of turbulent heat

transfer. '

There are other directions for future work. We believe that method A
can be improved. We are currently ihvestigating another method, similar to
method A, that is more accurate and avoids the problem in placing compu-
tational points that was described in section 6.2. We are also investigating
ways to incorporate the effects of diffusion, surface tension, and of solid

boundaries into the methods.

We find the existence of the singularity of the equations, as revealed by
the computational results of method B, very intriguing. This singularity
deserves more study. In particular, the similarity between two dimensional
flows of variable density and three dimensional flows of constant density sug-
gests that there may be some relation between the singularity obtained here
and that obtained by Chorin in [18]. We also mention that preliminary com-
parisons indicate that the results obtained here are consistent with the
results obtained by Krasny [37] for the singularity occurring in the motion

of an infinite vortex sheet of constant strength.

N
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As for the general teéhnique presenfed here, a comparison needs to be
made between results obtained with the methods presented here and those
obtained ‘yvith other particle techniques such as those described in
([28].[44]). Lastly, the behavior‘o.f the delta-equations (6.1.4)-(6.1.8) and

(8.2.3)-(8.2.8) as 6 » 0 have yet to be investigated. The results of such an

" investigation should illuminate the properities of the approximate solutions

that are constructed lising thesév methods.
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