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Vortex Methods for Flows of Variable Density 

Christopher Radclitf Anderson 

Abstract 

We present two numerical methods for calculating the motion of an 

incompressible, inviscid fluid of slightly varying density. The methods, both 

based on the vortex method developed by Chorin, are grid free and have no 

intrinsic source of numerical diffusion. We analyze the methods using tech-

niques derived from the recent work on the convergence of the vortex 

method. We prove a convergence result for one method and prove a partial 

convergence result for the other method. 

We present an exact solution to the equations of motion for a fluid of 

variable density and use this solution to test both numerical methods. The 

test results indicate that the method::: are stable and accurate. 

An application to the problem of calculating the motion of a 2-D thermal 

is also presented. The computational results indicate that the methods are 

suitable for calculating flows associated with thermal convection 

phenomr>.na. In the course of our investigations of the motion of a 2-D ther-

mal. we found significant computational eVidence to suggest that a singular-

ity develops in the flow in finite time. This singularity appears to be confined 

to a small set, possibly a point, and is characterized by an infinite value of 

vorticity there. 

The two numerical methods presented here can be viewed as a specific 

application of a mor.e general technique for constructing algorithms for 

incompressible flow problems. We discuss this general numerical technique 

as well as the theoretical tools that are used to analyze the numerical 

methods constructed with this technique. 



ii 

Acknowledgements 

Without the exceptional environment here at Berkeley, this thesis would 

never have been written. 1 would like to thank all of those people who made 

my graduate experience at Berkeley both enjoyable and productive. 

I would especially like to thank Alexandre Chorin. His innovative and 

imaginative mathematical work has been an inspir,atign to me and motivated 

many of the results contained in this thesis. I would like to thank him for 

his enthusiasm, encouragement, and support. I would also like to thank him 

for his invaluable advice "try it and see". 

Thomas Beale and Andrew Majda's work on the convergence of the vor-

tex method formed the basis for many of the results presented in this 

thesis. I would like to thank them for allowing me the use of their results, 

both published and unpublished. 

I would also like to thank Andrew Majda and Ole Hald for many helpful 

comments concerning the theoretical results of this thesis. 

The calculations used in this thesis were preformed at Lawrence Berke-

ley Laboratory. I would like to thank Paul Concus and the Computer Science 

and Applied Mathematics group at LEt for providing financial support and 

computing facilities. I would also like to thank Wayne Graves for showing me 

how to get the most out of a VAX.. 

I would like to thank Claude Greengard, Robert Krasny and Mirta Perl-

man for many interesting discussions about vortex methods. Their com-

ments about the work contained in this thesis have been of great value. 

Finally, I would like to thank my wife Rebecca for her patience, under-

standing, and optimism. She has made my graduate years memorable ones. 

I would also like to thank her for her help in preparing this manuscript. 



iii 

CONTENTS 

Introduction............................................................................................ 1 

0: Preliminaries ............ ~:....................................................................... 8 
.... 

1 : Equations of Motion............................................................................ 12 

2 : Model Problem................................................................................... 20 

3: Discretization of the Equations of Motion ... : ...................................... 37 

4 : Analysis of- Method A .......................................................................... 41 

4.1 : Error Estimates ........................................................................... 41 

4.2: Test Problem ................................................................................ 50 

4.3: Convergence of Modified Algorithm .............................................. 60 

5 : Analysis of Method B .......................................................................... 71 

5.1 : Convergence of Method B ............................................................. 71 

5.2: Computational Results ............................ : .................................... 101 

6 : Application to a 2-D Thermal .............................................................. 1 07 

6.1 : Applicationof Method B to a 2-D Thermal.. .................................. 1 08 

6.2: Application of Method A to a 2-D Thermal .................................... 135 

6.3 : Initialization of Method A for Non-rectangular Grids ................... 147 

7: Discussion and Conclusions ................................................................ 152 

Bibliography ............................................................................................ 157 



1 

Introduction 

In this thesis we present, test, and analyze two numerical methods, 

both based on the vortex method developed by Chorin [13], for calculating 

the solution to incompressible flow problems With variable. density. Previ

ously the vortex method, as implemented in [13], has been used with suc

cess to calculate high Reynolds number incompressible fluid flow. Specific 

applications which have used the vortex method have included the calcula

tion of unstable boundary layers [15], flow past heart valves [42], aero

dynamic applications ([11],[40],[50]), the modelling of turbulent combustion 

([27],[ 48]), and the driven cavity problem [49]. (For a general discussion of 

vortex methods see ([15],[39]) An assumption made in these studies is that 

the fluid is of constant density, or, in the case of combustion modelling, that 

the effect of variable density on the vortiCity growth is negligible. 

However, density variations can have an important effect on fluid 

motion, especially when the fluid is acted upon by an external force. A good 

example of this is thermal convection. In this situation the external force is 

gravity and density variations are those caused by temperature differences 

in the fluid. The motion induced by the buoyancy of the lighter fluid is cer

tainly important and cannot be neglected. 

Often the motion induced by density variations within a fluid is highly 

complicated and difficult to model numerically, This thesis is a result of our 

investigations into possible ways of incorporating within a vortex method the 

effects of variable density. The previous success of the vortex method in 

modelling complicated flows makes it a natural choice as a basis of a 

method for solving variable density flow problems. We mention that Meng 

and Thomson present an early application of the vortex method to such 

problems in [43]. 
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Another aspect of this thesis is a presentation of a set of ideas which 

form the basis of a general numerical technique. From the vortex method 

[13] and recent work on the convergence of the vortex method 

([5],[6],[19],[30],[31]), we have been able to abstract a procedure for con

structing numerical methods for incompressible flow problems and for 

analyzing these methods. We will present this technique mainly by way of 

example. In fact, the two numerical methods that we present for variable 

density flows can be considered as two examples of applications of the tech-

nique. 

The numerical technique that we discuss is essentially a Lagrangian 

. one. We approximate the motion of the fluid by calculating the motion of a 

finite number of fluid particles and the evolution of fluid quantities ( density, 

vorticity, etc. ) associated with them. This numerical technique is different 

from other particle techniques, such as those described in ([21],[28],[44]). 

The difference is subtle, but important. In the methods that we discuss 

here, the computational points, or particles, are merely positions in a con

tinuum of fluid; The fluid quantities that are associated with the computa

tional pOints are:· the· values of the fluid quantities evaluated at the point 

positions: For example, when we represent density by a collection of points. 

the points do not carry mass, but are considered to carry the continuous 

density evaluated at those pOints. Also, we calculate the motion of the com

putational points using the vortex method, Le., a discretization of the 

vorticity-stream formulation of the equations of motion. In the particle 

method described in ([21],[28],[44]) the computational pOints represent 

true particles. The particles have a specific mass and velocity, and the 

motion of the particles is calculated using Newton's laws. To evaluate a fluid 

quantity such as density, one must form a local average over the computa

tional particles. 

/-
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There is an interesting similarity between these two techniques. In the 

numerical technique that we discuss, to evaluate a fluid quantity at pOints 

other than those whose evolution we are computing, we use a "blob" type 

approximation. Originally introduced in the vortex method [13] the "blob" 

apprOximation consists of representing a function by a collection of func

tions of small support or "blobs". In the particle techniques that are 

described in ([21], [28],[44]) the fluid quantities are evaluated by forming a 

local average over the computational particles. Recently, Gingold and 

Monaghan in [28] have introduced an averaging procedure, kernel estima

tion, to obtain more accurate estimates of fluid quantities in their particle 

methods .. One interpretation of the kernel estimation procedure is that it is 

an average over the particles assuming that the particles are of finite extent 

and have a definite shape. Upon closer examination one finds that kernel 

estimation and "blob" approximation are nearly identical. It is found that 

kernel estimation can be viewed as an approximation procedure for evaluat-

,ing a function using the values of the function at a finite number of points. 

Alternatively, the "blob" approximation can be considered as a statistical 

estimate of a fluid quantity based on samples of the function at the compu

tational pOints. The- fact that kernel estimation can be considered as an 

apprOximation procedure was noticed by Monaghan in [44]. An interesting 

result given in [44], is that kernel estimation, and hence "blob" approxima-

tion, can be viewed as a generalization of more standard approximation 

techniques, .i.e. polynomial or Fourier approximation . 

An observation that has helped us in our investigations is the Similarity 

between the equations of motion for an incompressible fluid of variable den-

sity in two dimensions and the equations of motion of an incompressible 

fluid of constant density in three dimensions. An implication of this similar-

ity is that numerical methods for one set of equations have a direct analog 
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in the other set of equations. This is a fortunate occurrence, for the conver-

gence results obtained by Beale and Majda in ([5],[6],[8]) can be used with 

very little modification to obtain convergence results for the methods 

presented here. Also, the numerical methods presented here suggest 

numerical methods for three dimensional ft.uid calculations. (In fact, it was 

our work on the motion of a ft.uid of variable density that led us to suggest 

the numerical method whose convergence is investigated in [8]) Another 

benefit of this similarity is that the numerical results presented here may 

prove useful in assessing the properties of the three dimensional vortex 

methods analyzed in [5] and [8]. 

This thesis is divided into eight sections. In section 0 we discuss some 

of our notation and prove some elementary leinmas that we need for the 

theoretical analysis in later sections. 

Section 1 contains a presentation of the equations that we use to 

describe the. motion of a ft.uid of variable density. In deriving the equations 

we make the assumption that the density variations in the fluid are small. 

(We make the Boussinesq approximation ([51],[53]).) This assumption leads 

to a Simplification of the equations and makes their numerical approxima-

tioneasier to accomplish. We will use two ditierent formulations of the equa-

tions, and, in this section, we prove their equivalence. 

In section 2 we illustrate our general numerical technique by applying it 

to a model problem. The model problem is that of calculating the motion of 

a quantity being transported by an incompressible ft.ow. The numerical 

approximation for this problem and the theoretical analysis of this approxi

mation are exemplary of the techniques to be used throughout this work. In 

particular, the techniques used to estimate the accuracy of the numerical 

approximation will be used repeatedly in later sections. 

... . 
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In section 3 we apply our numerical technique to the two formulations 

of the equations given in section 1. The result is two numerical methods 

which we designate method A and method B. Methods A and B represent two 

different approaches to the problem of calculating the motion of a fluid of 

variable density. Loosely speaking, the motion of the fluid is calculated by 

calculating the evolution of the vorticity in the fluid. In a fluid of variable 

density the vorticity grows where there are density gradients. Thus, to 

account for the growth of vorticity one needs to calculate density gradients. 

It is in the calculation of the density gradients that the methods differ. The 

tlrst approach, that taken in method A. is to calculate the evolution of the 

density, and then evaluate density gradients by differentiating the resulting 

approximation. The second approach. that taken in method B, is to calcu

late the density gradients by solving an equation that describes their evolu-

tion in time. This latter approach requires an equation of evolution for the 

density gradients as well as a method for constructing a meaningful approxi

mation to the density from the solution of these equations. The equation of 

evolution is that which is described in section'l and we use a numerical 

implementation of Poisson's formula to reconstruct the density from its 

gradients. 

We analyze method A in section 4. We begin by estimating the error in 

the approximations used in the method. The importance of these estimates 

is that they indicate how the parameters of the method might be chosen. To 

test various choices of the parameters, as well as its accuracy and stability 

we apply the method to a test problem. The test problem consists of an 

exact solution to the equations and is described in section 4.2. In the last 

part of this section we present a method which is a modification of method A 

and prove a convergence result for this modified method. Although the 

modified method has yet to be tested, we expect that the method will 
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behave in a way similar to method A. We present the convergence result to 

verify, albeit not rigorously, that the approach taken with method A is 

essentially sound. 

We analyze method B in section 5. We begin our analysis by proving a 

convergence result. We use this result and the error estimates that the 

proof provides to select the parameters for the approximations used in the 

method. Then, as with method A, we apply the method to the test problem 
-

described in section 4.2. We use this test to verify the accuracy and stabil-

ity of the method. These results also allow us to make a direct comparison 

between the two methods. 

The test problem of section 4.2 is somewhat special. In particular the 

solution of the test problem is smooth ( has many bounded derivatives) and 

has radial symmetry. It is not clear that the preformance of the methods on 

this problem are indicative of their preformance on problems which are not 

smooth and whose !lows are highly complicated. To examine the behavior of 

the method when they are applied to problems of the latter type, we apply 

the methods to the problem of calculating the motion of a 2-D thermal. A 

description of the problem and the results are presented in section 6 

There are two very interesting conclusions obtained from this last test. 

The first is that care must be taken when one uses these methods on non

smooth problems. In particular, conclusio~s about the methods and their 

implementation obtained from the results on the test problem of section 4.2 

are not necessarily applicable. The other interesting conclusion is that we 

find significant computational evidence to suggest that the equations have a 

singularity. Aside from the theoretical interest in the singularity. we pnd it 

remarkable that the presence of the singularity does not destroy the com

putational results. The numerical methods are capable of computing reli

able solutions past the time when the singularity occurs. This suggests that 
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such methods are suitable tools for investigating singularities of the equa

tions of motion. 

Finally. section 7 is devoted to a general discussion of the results. our 

conclusions about the methods, and some suggestions for future work. 
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o. Preliminaries 

In this section we describe some of our notation. We also prove some 

elementary lemmas that we will need in later sections. 

The symbol ".A" will denote the Fourier tran:sform, L e. for a function f, 

We will use I . II L2(S) and II . I L1(S) to denote the L2 and Ll norms of func

tions restricted to a set S. We will use HS to denote the Sobolev space of 

order s. The symbol "G" will designate a general constant. 

We say that a function 'f is in ML.P ( M formollifier ) it 'f satisfies the 

following: 

(i) D7'f is integrable over R2 for every multi-index 7, 0 ~ 171 ~ L 

(ii) J'f(x)dx = 1 
R2 

(iii) J xfJ'f(x)rJ:r: = 0 for every multi-index P, 1 ~·I PI ~ p - 1 
R2 

(iv) 'f(x) is rapidly decreasing, Le., there exits a constant GfJj 

depending only on p, p a multi-index, andj, an integer, such that, 

I ])/J'f(x) I ~ GfJj (1 + I x I 2)-j 

Specific functions in this class will be given in sections 4 and 5. 

The symbol Air. will denote the set of lattice pOints of a grid of uniform 

mesh width h, 

As in [5] we shall use the norms associated with the spaces Hh'I, H~, and H~ 

to measure functions detihed on Air.. These spaces are the discrete analogs 

of the Sobolev spaces H-l , HO, and HI respectively. The H~ norm, I . II D.h: is 

defined by 

I.. 
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~ Ij Ilo,h = ( L: Ilh2)* 
j I: A" 

with the corresponding inner product 

(fj,gj)O,h = L: Ijgjh2 

j I: A" 

9 

If the function has support contained in a bounded set 0, we define 

Qh = 0 n All. and denote the HO,h. norm of such a function also by I ' II O,h, 

i.e., we have 

/I Ij 10,h = ( L: Ilh2)* 
jh. t {}II 

( It should always be clear from context whether the norm is restricted to 

(lh. ) The H~ norm, I . ~ 1,h. , is defined by 

2 

I /j I f,h. = I Ij I ~,h + L: II Dt I j I ~,h 
i = 1 

where D.t denotes the forward divided ditrerence operator on the set Ah in 

the ith direction. The Hh"1 norm is defined by 

I I I < I (f j ,Wj )O,h I 
j -1,h - sup II II 

'Wi I: H~ Wj l,h 

i. e. Hh"1 is the dual to H~ with respect to the H~ inner product. 

The following four lemmas concern the norms I I -l,h, II II O,h, and 

11,h., and will be used in the proofs contained in sections 4 and 5. 

Lemma 0.1: If I j e H~ then 

Proof: We have 

so 

for all j. 

m~x I Ij I ~ h -1 I/j 10.h 
J 

h 2 I I j I ~ h 2L: I I j I 2 = II I j I ~.h 
j 



Lemma 0.2: If Ij e H~ then 

III j " O.h ~ e h.,...1 " !; I -l,h 

where the constant does not depend on h or f. 

Proof: We have 

2 

"/jll~.h = "/jll~.h + L; IDtld~.h 
oj, = 1 

~ e'h. -2 I I j " &.h 

where e' does not depend on h. Therefore 

~ h.-le'l (lj'/j)O.h I 
. h-Ie' ~ Ij Ilo,h 

~ h-le' I (/j'/j)O.h I 
II Ij 1I1.h 

~ h. -Ie' sup I (li,Wj) I 
. 'Wi & H~ I W; I l.h 

Lemma 0.3: If Ij e H~ and gj e Hh'l then we have 

Proof: If we use lemmas 0.1 and 0.2, then 

II Ijg;ll-l,h ~ ~ Ijg;ll C.h 

~ m~ I! i I "gj I C.h 
J 

10 

Lemma 0.4 : If I j e Hh'l, !; has support in a compact set 0, and g is a con

tinuously differentiable function on 0, then 
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II fjgj ~ -l.1t ~ C ~ fj ~ -l.1t 

where gj = 9 (jh) , ' 

Proof: For any Wj e Hh'"l 

2 

"gjWj I P,It = I gjWj 119,h + ~ "Dtgjwj ~ n,h 
i = 1 

where C is independent of w, Here we have used the fact that g is continu

ously differentiable so that 

max I Dtgj I ~ C' 
i~ rI' 

where C' is independent of h. Thus 

Of II - I (fjgj,Wj)O,h I _ C 1'(fj,gjWj)o,h I 
II jgj -I,h - ~~~~ "Wj ~ 1ft C" Wj ~ 1ft 

<: C I (fj,gjWj )O,h I 
- ~gjWj Il,lt 

~ C I fj l-l,1t 
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1. Equations of motion 

In this section we present and prove the equivalence of two sets of equa

tions which describe the motion of an ideal inviscid incompressible fluid 

with small density variations. 

The equations of motion in two dimensions tor an inviscid fluid are 

~+ iJ.·gradp = 0 at . 

au· + iJ..gradu = _grad P + F . 
at p 

diviJ.=O. 

The initial conditions are 

p(x.y.O) =Po(x.y) 12 (x.y ,0) = 12o(x ,y) 

( 1.1) 

(1.2) 

(1.3) 

Here p is the density. u = (Ul.'U2) is the velocity, P the pressure, and 

F = (F1.F2) is the external force. We assume that the force F is conserva

tive. i.e. curl F = O. For a derivation see ([17],[38]). 

If the variations in density are small we can make the Boussinesq 

apprOXimation ([51].[53]) to (1.1) - (1.3). Consider the following steady 

solution to equations (1.1) - (1.3) : 

and P is chosen so that 

where Pc is a constant. 

Define p'. P', and u' by 

u(x,y.t) = 0 

p(x,y.~) =Pc 

p' = P - P P' = P - J5 12' = 12 - u . 

(1.4) 

(1.5) 

( 1.6) 

We substitute these expressions into (1.1)- (1.3) and find. after some 

• , 
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simplification, 

a' 21L- + -;1'-grad p' = 0 at (1.7) 

(1 + ~(au' + u"gradu') = gradP' + 4 
Pc at Pc Pc 

(1.8) 

div u'= 0 (1.9) 

and, initially, 

p'(x,y,O) = p'o(x,y) u'(x,y,O) = uo(x,y) . 

For small variations in the density about the state Pc , p' «Pc, we make 

the Boussinesq approximation, 

(1.10) 

Thus (1.8) becomes 

aaUt' + u"grad U' = grad P' + 4 . 
. Pc Pc 

( 1.11) 

For the sake of simplicity we will drop the primes and refer to u', L, and P' 
Pc 

in (1. 7)-( 1.11) as the velocity, density and pressure respectively. In this 

notation, equations (1.7), (1.8), and (1.11) now become: 

EE....+ u·gradp = 0 
at 

au +u. adu = gradP + F 
at gr Pc P 

divu=O 

p(x,y,O) = Po(x,y) u(x,y,O) = uo(x,y) 

(1.12)-( 1.14) are the equations that we shall be using. 

(1.12) 

( 1.13) 

( 1.14) 

It is convenient for numerical work to put (1.12), (1.13), and (1.14) into 

a vorticity-stream form. Let ( be the vorticity, (;;: curl (11), and let \{I be 

the stream function, then these equations can be written as 



EE-+ iJ.·gradp = 0 at 

:i + 11· grad ~ = curl (pI') 

14 

~(1.15) 

(1.16) 

(1.17) 

where fl is the Laplace operator. If we use the fact that G = 2~lOg(r) is the 

1 

Green's function for fl. and r = (x2 + y2) 2. we find 

where • represents convolution. Thus, if we use (1.17) we obtain the follow-

ing expression for the velocity in terms of the vorticity: 

or 

where 

u = aG • ~ 
ay 

(1.18) is the"~ Biot-Savart" law. 

( 1.18) 

We mention that the pressure P does not occur in equations (1.15)- " 

(1.18). This is a result of using the Boussinesq approximation to (1.7)-( 1.9). 

The elimination of the pressure from the equations greatly simpiifies our 

computational task and is our primary motivation for USing the Boussinesq 

approximation. 

Our first numerical method, numerical method A, will be an approxima-

tion scheme based on equations (1.15).(1.16) and (1.18). Our second numer-

ical method. method B, will be based on an alternative formulation of 

(1.15)-(1.18). If we make the assumption that the support of the initial 

~, 
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density distribution is contained in a bounded set, then we can express 

(1.15)-(1.18) in the following equivalent form: 

~i + 'il. grad. ( :: curl (pI') 

11 :: K *( 

( 1.19) 

(1.20) 

(1.21) 

( 1.22) 

( 1.23) 

pz(Z,y,O) :: Poz(z,y) py(z,y,O):: POy(z,y). ((z,y,O):: ~o(z,y) . 

Here pz and Py are the derivatives of the density and G:: 2~log(r), 

1 

r :: (z2+y2) ~ Equation (1.19) is obtained by differentiating equation (1.15) 

with respect to x and USing the condition that d.iv 'il =0. Equation (1.20) is 

obtained similarly. Equation (1.21) is derived from Poisson's formula [36] 

and integration by parts, 

We use (1.21) to reconstruct the density from its gradients because it has an 

easily implementable numerical analogue. Numerical method B is based on 

(1.19)-( 1.23). 

We mention that the assumption on the support of P occurring in (1.15) 

translates into the assumption that the density occurring in (1.1) is uniform 

outside some bounded set. (We are describing the evolution of the density 

variation in (1.15) and not the evolution of the density.) Also, this assump

tion on p Simplifies the proof that (1.15)-( 1.18) are equivalent to (1.19)

(1. 23). The equivalence of these equations is most likely true under less res-

trictive assumptions, but such a result is not needed for our work, so we do 
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not pursue the matter. 

To show the equivalence of (1.19)-(1.23) to (1.15)-(1.18) , it is sufficient 

to show that (1.19)-(1.21) are equivalent to (1.15). If u andp are sufficiently 

smooth, and div u = 0, then it is easily seen that any solution of (1.15) is 

also a solution of (1.19)-(1.21). The fact that a sufficiently smooth solution 

of (1.19)- (1.21) is a solution of (1.15) is the content of the following 

theorem. 

Theorem 1.1 

Assume that for any time t, O~t <T, 11 and its derivatives are continu

ous and bounded for x e R2 and div 11 = O. Also assume pz and Py have com

pact support and are twice continuously differentiable ( in both x and t ) 

solutions of 

If we define P by 

ir P:r: +.-t d - - -at""· gra pz = - U lZPz .,.... u-aPy 

a-:!2 + .-t ad - - - -at "U. ·gr Py - - UlyPz - u2yPy 

pz(x,y,O) = poz:(x,y) 

py(x,y,O) = pllv(x,y) . 

where G is the fundamental solution of Laplaces equation, then 

and 

£E....+ u·gradp = 0 at 

£E....- -ax - pz 
£E....- -
ay - Py 

In order to prove this result, we need the follOwing lemma: 

(1.24) 

(1.25) 

(1.26) 

( 1.27) 

( 1.28) 

-, 



... 

17 

Lemma 1.1: Under the hypothesis of Theorem 1.1 we have 

Proof: We derive a differential equation for the quantity ~::::: Cpz)y - (py)z . 

We differentiate equation (1.24) with respect to. y and find 

a(pz )1/ . L () () at - - (,"'ly 15z z + U2y 15z y + Ulzy15Z + u2zy15y 

+ Ul(PZ)ZY + U2(15Z)yy + UIZ(PZ)" + U2Z(Py)y] 

Similarly we differentiate (1.25) with respect to x and find 

- ~h;(15y)~ + U2z;(P1/)Y + Ulyz15Z + u2yz15y 

+,., (P. l= + "2(P. l"" +,. " (P. l. +"2y (P. l.] 

( 1.29) 

(1.30) 

We subtract (1.30) from (1.29). and using the assumptions that 

div 11 ::::: 0 and equality of cross partials. we find that 

~~ ::::: -ud(15z)zy -(15Y)=] -U2[(15Y)YY - (15Y)YZ] 

::::: -U1[(15z)y - (15y)z]z.-U~[(15z)y - (15Y)z]y 

= -'il. grad. ~ . 

Therefore ~ satisfies 

with initial data 

~x.y .0) ::::: PO
Zll 

- PrJ,p ::::: O. 

(1.31) 

Using the fact that ~ is a Cl solution of (1.31) with vanishing initial data. one 

can show. using energy estimates [36.pg. 140]. that ~::::: 0 for all t. 0 ~ t <T. 
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This completes the proof. We now prove Theorem 1. 

Proof: Consider il'gradp, withp given by (1.28), 

_-t d [G • - G· - ] rG • - G· - J ·I.£·gra p = UI[: P: + II Py: + U2[: P: + y py y 

= UI[G. (15:)= + Gy • (py)z] + U2[Gz • (pz)y + G • (py)yyJ {1.32) 

If we use Lemma 1.1 and integration by parts, (1.32) can be written as 

(1.33) 

Here we have used Poissons formula for this last simplification. We use 

Poisson's formula once again and rewrite (1.33) as 

-+ - G·[-+ -] G.[-+-] UtPz u'dJy = :& [UIP: U'dJy:& + y [UIP:, u'dJy y 

= G: • f·gradpz + u1:Pz + U2:Py] + 

, Gy • ~.gradpy + UlyP: + ueyPY] 

If we use (1.24) and (1.25) this expression can be further simplified to 

lr tr 
G • ~+ G • .J!L z ot y ot 

therefore 

11. grad P = G • ,_oP_z_ + G • _ap_y_ , : at y at 
So, 

ElL - ~G • -] ~G. - ] at - at1 z P: + at1 y Py 

a- a-= G • ~+ G • ....ElL : at 71 at 

= il'gradp 

This proves the first part of the theorem. For the second part, 

',. 

. 
'. 
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, 

EEL (G • - + G • - ) ax = z pz 'II P'll z 

If we use Lemma 1.1 and Poisson's formula, then we find 

= pz . 

In a similar manner one can show that ~t = 75'11' This completes the proof. 
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2. Model problem 

. As mentioned in the introduction, we abstract from the vortex method 

[13] and the analysis of the vortex method ([5],[6],[19],[30],[31]) a general 

numerical technique. We will apply this technique to construct and analyze 

numerical schemes for (1.15)~(1.18) and (1.19)-(1.23). Before we do this 

however, we illustrate the technique on a simpler, model. problem. We con

sider the problem of calculating the motion of a quantity beirig transported 

by an incompressible flow. The method we present may- not be of any practi

cal value, but our description and analysis of it will serve to reveal the key· 

features of the general technique. Some of the theoretical results will be 

used in later sections. 

Let u(x,t) = (u 1(X,t),U2(X,t)) be a given velocity field defined on R2 

such that div u = O. Let J (x ,t) be some quantity passively transported by 

the velocity field 11, i.e. f satisfies the partial differential· equation 

~+u.V! =0 
elf 

J (x ,0) = J o(x) . 

(2.1) 

(2.2) 

We assume that the support of Joe 0 , 0 a bounded set in R2. The problem 

is to calculate anapproxirnation to J (x ,t) for times t~ O. 

Our starting point is to write (2.1) and (2.2) in Lagrangian form as 

dx~~,t) - u(x(a,t»x(a,O) = a 

df(a,t) = 0 
dt 

f (a,O) = J o(a) 

(2.3) 

(2.4) 

where a = (al,a2) e R2. The solution to (2.3), x (a,t) , is the trajectory of a 

fluid particle which at time t=O is located at the point a. Equation (2.4) 

describes the evolution of f along the particle trajectory x (a,t). In partiCU

lar, (2.4) expresses the fact that the quantity f does not change along parti

cle paths. For a discussion of the equivalence of (2.1) and (2.2) with (2.3)'. 

;;. 
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and (2.4) , see [20, pp. 139-145]. 

We approximate the solutions to (2.1) and (2.2) by constructing discrete 

approximations to equations (2.3) and (2.4). Define the intersection of a grid 

of uniform mesh width h with (} as, (lh = (}nA'~, where A'~ is defined as in sec

tion O. The discrete approximation to (2.3) and (2.4) is obtained by comput

ing the solution to the following set of O.D.E.s : 

d.x(jh,t) =11.( ('ht» 
dt x J ' x(jh,O) = jh (2.5) 

df (jh,t) = 0 
dt 

[ (jh,O) = f o(jh) (2.6) 

for all jh e (lh. 

Thus the computed approximation to f (x ,t) for t~O consists of the 

values of the function f at the set of pOints ~x (jh, t) I jh e (lh ~. 

What is attractive about such a scheme is that the values of the func-

lion f at the pOints x(jh,t) are not smoothed by this process. It is for this 

reason that we are justified in calling the method non-diffusive. Note that we 

are computing the exact solution at the pOints x(jh,t), thus the method is 

similar to the Random Choice Method ([14],[29]) where a solution is con-

structed as a superposition of locally exact solutions. We expect that the 

most prominent feature of the Random Choice Method, the ability to com-
, 

pute accurately the evolution of sharp tluid discontinuities, will also be a 

feature of this method. This property is not shared by conventional finite 

difference schemes for solving (2.1) and (2.2). 

One unattractive feature of such a scheme is the difficulty approximat

ing the function f (x ,t) at points other than the particle trajectories, 

~x (jh ,t) I jh e (lh ~, or approximating differential and integral operators 

applied to f. This difficulty arises because the points at which the approxi

mate solution is computed, x (jh,t), are not necessarily distributed uni-
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formly in space. Interpolation or differentiation formulas tend to be compu

tationally unstable or of low accuracy. An approximation procedure that 

has proven successful in overcoming this difficulty is that which is implicitly 

used.in the vortex method ([5],[i3]). We now describe this approximation 

scheme. 

Consider a function ~ in ML.P, where ML.P is defined as in section O. 

Let ~6 = ;2 -ft( ~ ~ where 0 is a parameter to be specified later. We take as 

our approximation to f 

/"'(x,t) = ~ ~6(X -x(ih.,t»/(ih,t)h2 

iherP 
(2.7) 

In the vortex method this type of approximation is used to approximate 

the vorticity. ( Although in some versions of the vortex method, the function 

~ is not necessarily chosen to be in ML.p.) An interpretation of (2.7), due 

to Chorin [13J, is that we are approximating ! (x ,t) by a sum of "blobs" 

~6(X) with strength I (jh,t)h2 located at the pOints x (jh,t) . 

. An estimate of the accuracy, or consistency, of the approximation 

scheme (2.7) is implicit in the work of Beale and Majda ([5],[6]) or Cottet 

[19]. The following result is a minor modification of the conSistency lemma 

contained in [19]. 

Lemma 2.1 : Consistency of the approximation 

Assume the velocity field il and the function / (x ,t) satisfying (2.1) are 

sufficiently smooth for ~t < T. If /0 has support contained in n, n a 

bounded set on R2 and ~(x) is in ML.p with L > 3 andp > 0, then 

h L 
max //"'(x,t) -/(x,t)/ ~CoP + C(~ 

O:s; t:s; T u 
(2.8) 

for all x g~. The constants depend on T,L,p,n, and bounas on a finite 

'. 

." 
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number of derivatives of 'il and f. 

In order to prove lemma 2.1 we need the following result which 

describes the error in using the trapezoidal rule for approximating integrals 

of functions over R2. The proof of the following lemma is a result from [3]. 

Lemma 2.2 Given a function 9 such that 9 has compact support, 9 e C2(R2) 

and Dflg e Ll for I PI ~ m with m ~ 3, then 

(2.9) 

Proof: We use the Poisson summation formula [22] and express the sum in 

(2.9) as 

Now, 

so 

i(o) = !g(x)rJ.x 
R2 

h 2 l: g(kh)-!g(x)rJ.x= l: i(21l'~ 
Ie t: ZxZ R2 Ie t: z)(z 

Ie pO 0 

For any function feU, 

So, 

which implies 

Similarly, 

(2.10) 

(2.11) 
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Let 

then 

(2.12) 

Then (2.12) implies that 

so that 

Now, using the fact that for m ~ 3 

1 ~ 1 
~ I (k k) /I m = 8 L: 'm - 1 

Ie~O 10 2 IlWI: j=lJ 

( see [3] ) we have that 

(2.13) 

If we combine (2.11) and (2.13) we obtain the desired estimate. We now 

prove lemma 2.1. 

Proof: Our goal is to estimate 



25 

/h.(x,t) - I(x,t) = ~~c5(X -X(iJt.t»/(iJt,t)h2 - I(x,t). (2.14) 

Consider t fixed, 0 ~ t ~ T. We write (2.14) as the sum of two terms 

Ih.(x,t) -/(x,t) = [~~c5(X -x(iJt,t»/(iJt,t)h2 - f~c5(x -XI)/(XI,t)d.x'j . 

+ [f ~c5(X - x')1 (x',t )d.x' - 1 (x ,t») 

= ~A~ + ~B~ .. 

To estimate term A, we first change variables in the integral using the flow 

map x(ex,t). Since the flow is incompressible, I Jx(cx,t) I == 1. where J is the 

jacobian. Also we have 1 (iJt,t) = 1 (x(iJt,t),t) so that term A can be written 

as 

~~c5(X - x(ih,t»1 (x(iJt,t),t)h2 - f~c5(x - x(ex,t»1 (x(ex,t),t»dex . 
ih. 

Thus we recognize term A as the error in using the trapezoidal rule for 

approximating the integral with respect to ex of the function 

g(x,ex,t) = ~c5(x -x(ex,t»/(x(ex,t) , t) . 

Under the assumptions on Y and f, we can apply lemma 2.2, and we find 

If we use Leibnitz's rule we find, 

where CPt 'fl2 is a constant depending only on (:11 and {J2 and not on f. The func-

tion 1 has support in [} and is smooth so we can estimate this by, 
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(2.16) 

Since the flow is smooth and incompressible, we estimate each term in 

(2.16) by 

(2.17) 

Here n is a set that contains the image of n under the flow_ Thus we must 

find L1 estimates on the derivatives of the function 'f6. We have the following 

pointwise estimates. 

(i) I DP'f6(%) I ~ Op
C
+2 for all % e R2 

(ii) 
- C -

1 nP'f6(%) I ~ 1 %12 +P for all %. 1 % 1 > 0 . 

For (i). since 'f is ra,pidly decreasing, 

<_C_ 
- oP + 2 . 

For (ii). again using the fact that 'f is rapidly decreasing. 

Choosing k > (3 ; 2 and noting that with 1 % 1 > 6 we have 

it follows that 

Cp." C -----'~---< --~---,,-
X 1%1 2 +P 02 + P( 1 + I -I 2)" 
6 

.... ;.;-

• . _, 
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This proves (ii). Now, 

(IDPV6(X -x')ldx'= J ID.8V6(X -x')ldx' 
11 1/: -:" < 6jnn 

We use (i) to estimate the first term of (2.18) and (ii) to estimate the second 

term, thus 

<.L - 6.8 . 

If we use these bounds for the terms in the sum (2.17), and use (2.15) and 

(2.16), then we find, 

(2.19) 

By choosing the constants large enough. the estimate (2.19) can be shown to 

be hold for any t. 0 ~ t ~ T, and any x e R2, thus 

(2.20) 

To estimate term B, we use the fact that a function is bounded by the U 

norm of its Fourier transform, so 

~ J I f(r.;) - f(r.;) . ~6(r.;) I dr.; 

= J I f (r.;) I 11 - ~ (r.;o) I dr.;. 

Our assumptions on'f1 imply the following: 

(i) ~(O) = Jv(x)dx = 1 

(ii) De~(O) = CJxfJv(x)dx = 0 for 1 ~ 1.81 ~p -1 

(2.21) 
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(iii).max I Dg~((.») I ~ C 
r.I t R2 

for I a I = p . 

We use Taylor's theorem with remainder and properties (i), (ii), (iii) of \{t to 

estimate 

by 

11 - ~(o(.») I = I-¥(O) - ~(o(.») I 

~ I ~. ~a~(o)(o(.»)a I 
O~a~lpl-la. 

~ CoP I (.) I P 

Therefore,assuming that f is smooth so that its Fourier transform decays 

suffiCiently fast. the right hand side of (2.21) can be estimated by 

(2.22) 

Again. if we choose the constants large enough. this estimate can be shown 

to hold for all t, 0 ~ t ~ T. If we combine the estimate (2.20) for term A 

and (2.22) for term B, then we find 

.. h L 
max I ~'lrc5(% - % (ih. ,t)! (ih..t )h2 - ! (% ,t) I ~ C oP + C (71 . (2.23) 
O~t~T ill. U 

This completes the proof. 

The pointwise estimate (2.23) implies the follOwing L2 estimate, 

Corollary: Under the assumptions of lemma 2.1, for any H, H a bounded set, 

h h L 
max If. (%,t) -1 (z,t) h2(R) ~ C oP + C (71 . 
O~t~T U 

(2.24) 

From the second term in the error estimate (2.8) we see that it is a 

good idea to choose the paramet~r 0 > h. If we let 0 = h q for q < 1 then for 
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h sufficiently small as h ~O the error decreases. 

In deriving this estimate the trajectories x (jh ,t) are assumed to be 

exact solutions to (2.5). During the course of an actual computationx(jh,t) 

will not be computed exactly, and it is of interest to estimate the behavior of 

the approximation (2.7) under perturbations of the trajectories x(jh,t). 

Such an estimate is a stability estimate for the approximation scheme (2.7). 

We prove the following result: 

Lemma 2.3 : Stability of the approximation 

Under the assumptions for the consistency lemma and the assumption that 

for 0 ~ t ~ T, 

I z(jh,t) - x(jh,t) ~ Ooh ~ oh 

where z(jh ,t) are computed trajectories, then for any bounded set R, 

I 2: 'itcS(x -x(1h.,t))f(ih,t)h2 ~ 2: 'itcf(X -x(1h.,t))f(1h.,t)h2 I ~ 
~c~ ~£~ ~~ 

CO-l ~ x(1h.,t) - x (1h. ,t)l O.h . (2.25) 

The constants depend on T,L,p, n, and bounds on a finite number of deriva-

tives of 11 and f. 

The proof of this lemma follows closely the proof of the stability of the 

velocity approximation in the vortex method given in ([5],[6],[30]). To prove 

the stability lemma, we need the follOwing discrete U estimates for DP'it6, f3 

being a multi-index, 

Lemma 2.4: With t fixed, Xj = x(jh,t), we have 

I f31 ~ 1 (2.26) 

for all x e R2 and Ro a bounded set in R2, provided h is suffiCiently small. The 

constants Cp depend on Co, the derivatives of the fiow and the derivatives of 
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the function ir. 

Proof: We have the following two bounds on the derivatives of ir6 . 

(i) I DPir6(x) I ~ 62+~PI 

(ii) IIJPir6(X)I~ Ixl~+IPI 

For a proof of these bounds. see lemma 2.2. Let j be a multi-index. 

j = (j i .h). define 

and 

Bj = f x e R2 I x = x (a. t ). a t Qj ~. (2.27) 

i. e. Bj is the image under the flow of the rectangle Qj. Since the flow is 

incompressible. the area of Bj is h 2. Also) since we are assuming that the 

flow is sufficiently smooth. then it follows that the diameter of Bj is uni

formly of order h. so that. as h < 6 

X· t B· J 

tor someCl . We assume that Co > C1. Fix anx t R2 and let 

Then 

J 1 = tj t Z X Z I jh t Re I Xj - x I ~ (3C l + 1)6~ 

J2 = tj 8 Z X Z I jh t Ro I Xj - x I > (3C1 + 1)6~ . 

U ~Bj I j t Jd c ~ Ix' - x I ~ (4C l + 1)6~ .. 

We use the pointwise bound. (i) to estimate the contribution to the sum 

(2.26) from points in J 1. 

For the remaining part. we use the fact that the area of Bj is h 2 so that for a 



fixed x t R2 we have 

where we are considering G(x') as a step function on Bj deftned by, 

for x' e Bj . 

If j e J2 , then 

I x - Xj + Yj I ~ (2C1 + 1)6 > 6 

so that the pOintwise bound (ii) implies that 

max lJ)Pv 6(x -x· +Y')I ~C(x -x· +y.)-IPI-2 
I YJ I ~ c06 J J J J 

For x' e Bj 

which implies 

Therefore, 

Also, for x' t B; , 

so that 

Ix -x'i ~ Ix -xjl -Ix' -xii 

~ (1 + 2C1)6 

for x' 1': Bj . 

31 

(2.30) 

If we use (2.30) and (2.31), then the integral in (2.29) can be estimated by 
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j I G(x') I dx' ~ c f (/ x - z' I - 2C I o) -IPI - 2d,x' 

UBi UBi 
i c J2 i I: J2 

~C J (lx-x'I-2CIo)-I.8I- 2d,x'. 
(1 + 2C1)6s; Iz -z'l s; .. 

If we change to polar coordinates and let r = I x - x' I, then this latter 

integral becomes 

... 
C j (r":'" 2C I o) -1.81 -2r dr 

(1 + 2C1)6 
. (2.32) 

If we use the change of variables r = r - 2C I o and note that 

r +2CIo ~ (1 + 2C1)r forr > 0; then (2.32) can be estimated by 

Cj ........ -I.8I- I J""<_C_ f IRI 1 
6 T ar - 01.81 or,.. ~ . . (2.33) 

(2.28) and (2.33) imply the desired bound. 

We now prove lem~a 2.3. 

Proof: Let Xj = x(jh,t), Xj =x(jh,t). and Ij = I (jh,t). We 

need a pOintwise bound for ej. so we use lemma 0.2 and the assumptions of 

this lemma to find 

~ 0 . 

If we use the mean value theorem along the segment from x - Xj to x - Xj' 

then 

~ 'lt6(X -xj)/j h2 -. ~ 'lt6(X -xj)/j h 2 = 
~~~ ~~~ 

where m~ I Yj(x) I ~ Clo and el is the ith component of ej so that 
J 

e! = ef1ef2. We will estimate each term separately and sum the estimates. 



Since the two terms have the same form we concentrate on estimating 

2; ~'ft6(X - Xj + Yj(x))e!l j h 2 
. 

jh t r/I 
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(2.34) 

The other term is treated similarly. Let Bj be defined as in (2.27) of lemma 

2.1, and define 

To estimate (2.34) we will consider D'ft6(x - Xj + Yj (x)) and ej Ij as step 

functions defined on H x S and S respectively. Specifically, let 

G(X,X ') = Dp'ft6(X - Xj + Yj (x)) . x e R x' tBj 

I (x') = Ijej x' t Bj 

then, since the area of each Bj is h 2, 

2; nP'ft6(X -Xj + Yj(x))/jej h 2 = !G(x,x')/(x')dz' 
~tr/l s 

We apply generalized Young's inequality [26] to the latter integral and find; 

I !G(x ,x')! (x')dz' h2(R) ~ C II I I L2CS) 
s 

where C is that number such that 

max! I G(x,x') I dz' ~ C 
z tR s 

max fI G(x,x') I dz ~ C . 
:,r:' t si 

To estimate (2.35 ) we apply lemma 2.4 with Ro = H, 

max! I G{x,x') I dz' = max 2; I nP'ft6(X -Xj + Yj(x)) Ih 2 

% t R s % I: R jh t 0" 

Similarly for (2.36), 

(2.35) 

(2.36) 
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max! I G(X ,x') I d:r;.= max 2:[ I G(x ,x') I d:r; 
z· I: S z'£ S R k k 

N 

where Xjk is that· point in Bk at which the continuous function 

D~4(X -.xi +Yj(x», considered as a function of x, assumes it maximum 

value. The sum is over all k such that Bk nR is not empty. Thus, if we apply 

lemma 2.4 with Ro = f UBk I Bk n R ~ OL then (2.36) can be bounded by 

G <-- 0 

- C -Thus C ~ ~ If we use this bound on C then, 

~ Co-1 I ej "O,Il . 

This completes the proof. . 

We combine the consistency and the stability estimate and obtain a 

convergence proof. 

Theorem 2.1 Convergence of ~e approximation 

Assume the velocity field u and the function f are sufficiently smooth for 

o ~ t ~ T. Assume that the support of f 0 is contained in a bounded set nand 

that ~(x) is in ML,p for some p > 0 and L ~ 3. If h is sufficiently small and if 

0= h q for q < 1, I x(ih,t) - x(ih,t) II O.1l ~ h S where s > q + 1. then we h?-ve 
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for 0 ~ t ~ T and any bounded set It 

(2.37) 

where 

l"'(x,t)= l: ~cS(x -i(ih.t»f(ih,t)h2 
iII.,r/I 

and i(jh,t) is a computed solution to (2.5). The assumptions on p.q,L and s 

imply that as h ... 0 the right hand side of (2.37) tends to zero. Here the 

constant depends on p,L,R, n, and a finite number of derivatives of the velo-

city and the function f. 

Proof: We have 

J"'(x ,t) - f (x ,t) = fl"'(x .t) - f"'(z,t)~ + ff"'(x,t) - f (x ,t)~ 

= f l: ~cS(x -i(ih,t»f(ih,t)h2 - l: ~cS(x -x(ih,t»)f(ih,t)h2~ 
ill. , r/I . ill. , r/I 

+ ~ l: ~cS(x -x(ih,t»f(ih,t)h2 -f(z,t)~ . 
ih£oA 

(2.38) 

We estimate the first term of (2.38) using the stability lemma 2.3 and the 

second term using the consistency lemma 2.1. Thus 

This completes the proof . 

We note that the trajectories i(jh,t) need to be computed with 

increasing accuracy as h ... 0 to assure convergence. This is not an unreason-

able requirement. We expect that the errors committed in the calculation 

of i(jh,t) will be largely in the numerical solution of the O.D.E.s (2.5) and 

therefore uniformly of order (At)l for some l > 1. The requirement that 
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"x(ih.t) - x(ih.tH O.h~ Chs 

implies that we need (M)t ~ Chs or ~~ C. Thus. this requirement is 
h S 

very similar to the stability requirement for explicit finite difference 

schemes for the approximation of solutions of hyperbolic equations. 

In summary. a numerical method for apprOximating the solution to 

(2.1) and (2.2) consists of solving the O.D.E.s (2.5) and (2.6). We construct an 
approximation of the solution at pOints other than x (jh. t) using the approx

imation scheme (2.7); The consistency and stability lemmas combine to 

establish the convergence of this approximation to the exact solution. 

We will be using a technique similar to that described above for the con-

struction of approximations to the solution of (1.15-1.18) and (1.19)-(1.23). 

We compute the trajectories of a finite number of fluid particles and the 

values of the flow quantities (density. vorticity. etc.) associated with them. 

It will be necessary to find apprOximations. based on this computed informa

tion. to derivative and integral operators applied to the flow quantities. We 

construct the approximations by applying the particular operators to 

approximations of the form (2.7). For example; we use 

as an apprOximation to the x derivative of f. For each of these approxima

tions one must evaluate their consistency and stabillty. We preform such an 

analysis for avariety of operators in later sections: 
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3. Discretization of the Equations of Motion 

In this section we describe approximation schemes for (1.15)-( 1.18) and 

(1.19)-( 1.23). Our technique will be to write the equations in Lagrangian form 

and then discretize them in a manner analogous to that used in the model 

problem. We begin by discussing a scheme for 0:15)-(1.18). 

In Lagrangian form equations (1.15)-( 1.18) become 

dx(a,t} u(x(a,t» x(a,O) = a (3.1) 
dt 

df(a,t} = pz(a,t )F2 - py(a,t )F1 ~(a,O) = ~o(a) (3.2) dt 

dp(a,t} - 0 
di - p(a,O) = po(a) (3.3) 

11 = K· ~(a,t) (3.4) 

where a = (al,a2) e R2. The solution to (3.1), x (a,t), is the trajectory of a 

fluid particle which at time t = 0 is located at the point a. Equations (3.2) 

and (3.3) describe the evolution of the vorticity and density along the parti

cle trajectory x(a,t). For a discussion of the equivalence of (3.1)-(3.3) and 

(1.15)-(1.18) see [20, pp. 139-145]. 

Assume the· support of Po is contained in a, where a is a bounded set in 

~. For a given value of h, define (lh as the intersection of a grid of uniform 

mesh width h with a; n" = anAl!.. Let 'it be a function in ML.p and for a value 

of 6, 0 > 0, define 'itc5 = ;2 '¥( f7. Our approximation to (3.1) to (3.4) consists 

of solving an approximation to the O.D.E.s (3.1)-(3.4) for all pOints inn", i.e., 

dX(~~,t} = ul!.(i(jh,t» z(jh,O) = jh (A.i) 

dJ<~~,t) 'P:(jh,t)F2 - P:(jh,t)F1 1(jh,O) = ~o(jh) (A.2) 



dp(jh,t) = 0 
dt 

for all jh e rP. 

. p(jh,O) = Po(jh) 

The velocity uh(x(jh,t» in (A.1) is computed by 
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(A. 3) 

uh(x(jh,t» = 'E (K* \{is)(x(jh.t) -x(ih,t»1(ih,t)h2 . (A.4) 
ih.£o"· 

The derivatives of the density necessary to evaluate (A.2) are computed by 

a\{i 
P:(jh,t) = L; i!:-(X(jh,t) - x(ih,t»p(ih,t)h2 

ill t: 0" X 
(A.5) 

. P:(jh,t) = . 'E °a\{iS (x(jh,t) -x(ih,t»p(ih.,t)h2. 
ih.t:0" y .. 

(A.6) . 

The parameter 6 occurring in (A.4)-(A.6) will be specified later. As in-the 

vortex method, the function \{i is chosen so that K"; \{is may be computed 

expliCitly. This is method A. 

We remark that the expression for the velocity u is obtained by apply

ing the kernel K to the approximation of the vorticity given by 

1'(x.t) = L; i's(x-x(ih.t»)t(ih,t)h2 
ih dY' 

(3.11) 

and the density derivatives are obtained by differentiating an approximation 

to the density given by 

/f(x.t) = 2: \{is(x -x(ih,t»p(ih,t)h2 
iheoh 

(3.12) 

To construct an approximation scheme for (1.19)-( 1. 23) we first write 

these equations in Lagrangian form, 

dx~~,t) = u(x(ex,t» x(ex,O) = 0 , (3.13) 

d t( ex, t) ) () dt - p~(ex,t F2 - Py ex,t Fl ~(ex,O) = ~o(ex) (3.14) 



"I .,;. 
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(3.15) 

dpy(a,t) _ ( ) 
dt -Uly(X(a,t» py(a,t) - u~(x(a,t» py(a,t) 3.16 

py(a,O) = po/a) 

(3.17) 

where we are using the same notation as that in (3.1)-(3.4). Assume the sup-

port of ~o, Po and Po are contained in some bounded set O. For some 
% y 

h > 0, define (lh by (lh = anAh. Let'" be in ML.p, we will approximate the 

solutions of (3.13)-(3.17) by the solving an approximation to (3.13)-(3.17) for 

all points in (lh given by 

ciX(!{;,t) = uh(x(jh.t» x(jh,O) = 0 (B.1) 

r!J(jh,t) = 'P;(jh,t)F2 -7t.":(jh,t)Fl 
dt '1/ 

1(jh,O), = ~o(jh) (B.2) 

c1Py~h,t) = "';;'~1;(x(jh,t)}Py(jh,t) - u~:z:(x(jh,t»'P1;(jh,t) (B.3) 

'P:(jh,O) = Po (jh) 
% 

d:'h (jh ,t ) '" h "'. "'. '" h "'. )"" ) dt = -ul1/(x(Jh,t»Py(Jh,t) -u21/(x(Jh,t) p1;(Jh,t (B.4) 

'/>y(jh,O) = POy(jh) 

The velocity uh (x(jh, t» is computed by 

uh(x(jh,t» = L: (K*"'6)(X(jh,t) -x(ih,t)Jt(ih,t)h2 (B.5) 
iIJ,£oh 

and the derivatives of the velocity field in (B.3) and (B.4) are computed by 

,... h '" ,,8"'6 '" . '" ) "j.. 2 u1;(x(jh,t» = i.J (K· -a 1(X(Jh,t) - x(ih,t ) t;(ih,t)h 
iIJ,£oh x 

(B.6) 

u:(x(jh,t» = l: (K* aa"'61('i(jh,t) -'i(ih,t» 1(ih,t)h2 
iIJ,£~ Y . 

(B.7) 



40 

The density is approximated by 

p(x,t) = 2: (Gz ·~6)(X -X(iJz.,t»Pz(iJz.,t)h2 
ih £ 0 

(B.B) 

+ 2: (Gy • ~6)(X - Z(iJz.,t) J"4 (iJz., t )h2 
ih £ 0 

This is method B. 

We note that the approximation to the velocity derivatives given by 

(B.6) and (B.7) are obtained by differentiating the approximation to the velo

city (B.5). Also, the density in approximation (B.B) is obtained by using the 

approximations to the density derivatives 

p:(x,t) = 2: ~6(X -'X(jh,t»Pz(jh,t)h2 
jll. £ 0" 

P:(x,t) = 2: 'f6(X -x(jh,t»/ly(jh,t)h2 
ill. £ 0" 

in the formula (3.17). 

The accuracy of these schemes is dependent upon the initial grid spac

ing h, the smoothing parameter 6 and the function 'f. In sections 4 and 5 

we will consider error estimates, similar to those found for the model prob

lem, for these schemes. These estimates will be used as a guide for choos

ing the pa.rameters. 
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4. Analysis of Method A 

To implement method A we must choose h. the initial mesh width. the 

function ¥ used in (A.4)-(A.6). and the smoothing parameter o. (We note 

that it is not necessary to choose the same fUnction ¥ and parameter 0 for 

(A.4) and for (A.5)-(A.6).) To guide us in our choice of these parameters we 

consider error estimates for the velocity and density derivative approxima

tions. The stability. as well as the accuracy of the method for various 

choices of the parameters will be investigated by applying the method to a 

test problem. This test problem consists of an exact solUtion to equations 

(1.15) - (1.18) and is described in section 4.2. We are not able to prove con

vergence of method A. but if we modify the method. we can prove conver

gence of the modified algorithm. The modified algorithm and the conver

gence result are presented in section 4.3. Although we have not yet tested 

the modified algorithm. we expect computational results similar to those 

obtained. with method A. Thus. we present the convergence results to 

demonstrate the validity of the general approach. 

4.1. Error Estimates 

We are interested in error estimates for the velocity approximation 

(A.4) and the density derivative approximation (A.5)-(A.6). The error esti

mates contained in [6] and [19] are applicable to (A.4). The statement and 

proof of the estimate that we use is a slight modification of the results in [6J 

and in [19]. 

Lemma 4.1.1: Consistency of velocity approximation 

Assume that the velocity field u (x .t) is sufficiently smooth for 

x e R2. 0 ~ t ~ T. and that the initial vorticity has support contained in O. 0 

a bounded set. Let on = OnAh. Also assume ¥ e ML.P with L ~ 3 and p > O. 



. then for u'" (x ,t) defined by 

u'" (x ,t) = L; K ·~6(X - x (ih ,t» ~(ih ,t)h 2 

ihtril 

we have the estimate 

max I u"'(x ,t) - u(x ,t) I ~ C6P + C( ~1L6 
O:s:t:s:T . u 
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(4.1.1) 

where the constants depend on a finite number of derivatives of the flow, 0, 

T, P and L. 

Proof: Fix an x e R2 and t, 0 ~ t ~ T. Let K· ~6 = ~. We begin by writing. 

the error as a sum of two terms, 

u"'(x,t) -u(x,t) = ~u"'(x,t) - J~(x -X')~(XI)d.x'~ 

+ ~J~(x _XI)~(XI)d.x' -u(x,t)l 

= ~Al + ~B~ . 

To estimate term A we change variables in the integral using the tlow 

map x (a,t): R2 ~ R2 ( i. e. the solution of (3.1) in section 3). Since the flow 

is incompressible, the jacobian of this transformation is identically 1, so 

that term A can be written as 

ih ~ riI ~(x - x(ih,t»~(ih,t)h2 - !K.s(x - x(a,t »~(x (a,t).'t )da. . (4.1.2) 

Since ~(ih,t) = ~(x(ih,t),t), then (4.1.2) can be viewed as the err-ort!! using 

the trapezoidal rule for integrating the function 

g(x,a,t) = K6(X -x(a,t»Hx(a,t),t) 

with respect to a over R2. 
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We apply lemma 2.2 in section 2 to (4.1.2) and find 

/ A / ~ ChImax~ I Dk1g (x ,a,t)l V, "Dka!} (x ,a,t) hd (4.1.3) 
" 

Thus we must estimate 

If we use Leibnitz's rule, then 

The function ((x(a,t),t) is smooth and has support contained in n so that 

(4.1.4) can be estimated by 

(4.1.5) 

Since the ft.ow x(a,t) is smooth and incompressible, we can estimate 

integrals over R2 at time 0 by integrals over R2 at time t. Thus each term in 

(4. 1.5 ) can be bounded by 

C ~ "DtlK6(x - x')I L1(n) 
o~ltll =L 

(4.1.6) 

where the constant depends on a finite number of derivatives of the flow and 

"0 is a set in R2 containing the image of n under the map x (a,t). 

To estimate (4.1.6) we need point-wise estimates for the function K6 . 

The estimates given in [5] are suitable. If we make the appropriate 

modifications to account for the change in dimension, then for any multi-

(i) 1K6(x)/ ~Co-I-Itil 

(ii) /K6(x)/ ~C/x/-l-Itil 

For the proofs of these estimates see the proof oflemma 5.1 in [5] . 



For a given multi-index p, then 

r I ])PK6(x - x') I dx' = J I ])PK6(x - x') I dx' 
11 liz - z'l ~ c5inO 

+ JI ])PK6(z - x ') I dx' 
liz - z'l > c5jnO 

If we use the estimate (i) for the first term in (4.1.7) we find 

J. I ])PK6(x - x') I dx' ~ 11"62 C6- l -IPI 
IIz-z'l ~c5jnRl 

~ C6 l -ipi . 

To estimate the second term in (4.1.7) we use (ii), 

211" diamater(Tl) + c5 
J I ])PK4(x - x') I dx' ~ CJ J r- IP1 

llz-z'I>c5jnO 0 c5 

1 
C diamater (0) + 6 

~ Clog 161 
C6 l - IPI 

We combine (4.1.8), (4.1.9) with (4.1.4)-(4.1.6) and find 

thus, 

I A I ~ ChLmax~ I D~g (x ,t ,a)" L10 "D~g (x ,t ,a) I OJ 

~ C hL 6l - L = C( ~~L6 

To estimate term B, we have 

B = K • ¥c5 • ~ - K • ~ 
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(4.1.7) 

( 4.1.8) 

f3=0 
I f31 = 1 (4.1.9) 
I f31 > 1 

(4.1.10) 

We use the fact that a function is bounded by the Ll norm of its Fourier 

transform, so 
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We now proceed as in [6]. As in the proof of lemma 2.1 of section 2. if \ft is in 

ML.p • then 

11 - ~(or.» I ~ CoP I r.> IP 
Assuming that ~ is sufficiently differentiable. then 

for some constant C. and noting that the Fourier transform of K satisfies 

... 1 
IK I ~ "T'CJI 

we have that 

J ........ .~ J 1 C I r.>o I P I K(r.» I I ~(r.»1 11 - 'l.'(r.>o) 1 dr.> ~ -1-1- I 1 + 2 dr.> r.> 1+r.> P 

Thus, 

I B I ~ CoP . (4.1.11) 

By choosing the constants large enough the two estimates (4.1.11) and 

(4.1.10) can be shown to hold for aU x E R2 and t. 0 ~ t ~ T, so that 

for all x E R2. This completes the proof. 

An estimate of the accuracy of the density derivatives is contained in 

the following lemma. 

Lemma 4.1.2 : Consistency of the density derivatives 
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Assume that the velocity field u(x,t) and the density p(x,t) are 

sufficiently smooth for x e R2, 0 ~ t ~ T. Assume that the density has sup

port contained in a bounded set a and'l{l is in ML.P with L ~ 3 andp > O. Let 

on = anN'. Then for p:(x,t) andp:(x,t) defined by 

p;(x,t)= ~ aa'l{lc5(x-x(ih.,t»P(ih.,t)h2 
iheoh X 

a'l{lc5 
p:(x,t) = ~ px -x(ih.,t»p(ih.,t)h2 
, iA£oh Y 

we have the estimates 

(4.1.12) 

h h max I py (x ,t) - py(x ,t) I ~ CoP + CC:r-10-1 
OS ts T IJ 

where the constants depend upon a finite number of derivatives of the flow, 

a finite number of derivatives of p(x, t) , and on T, p and L. 

Proof: The proof of this result follows very closely that of lemma 2.1 in sec

tion 2. We will only prove the consistency of the x derivative, the con-

sistency of the yderivative is proven in a similar manner. 

We begin by writing the error as the sum of ~wo terms, 

= fA~ + ~B~ . 

For term A, we change variables in the convolution integral using the map 

x (a., t): R2 ~ R2. Since the flow is incompressible, the jacobian of this 

transformation is identically 1, so term A can be written as 

a'fc5 J a'l{lc5 
~ ~a x - x (ih.,t»p(ih,t)h2 - ~a x - x(o.,t»p(x(o.,t)do. 
" x x 
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Nowp(ih,t) = p(x(ih,t),t)so that we recognize this difference as the error in 

using the trapezoidal rule to integrate the function 

a~6 
g(x,ex,t) = ~x -x(ex,t))p(x(ex,t)) 

with respect to ex over R2 . 

As in the proof of lemma 2.1, we use lemma 2.2, and bounds on the 

derivatives of the function aa~4 to find 

max I AI ~ C(~L6-1 
O$t$T 6 (4.1.13) 

To estimate term B, we rewrite this term as 

(4.1.14) 

The estimation of the right hand side of (4.1.14) is identical to the estimate 

of term B in lemma 2.1, i. e. identify P: with p. Thus we have the estimate 

(4.1.15) 

(4.1.13) and (4.1.15) together imply the estimate (4.1.12). 

In our choice of the parameters we will consider h to be arbitrary and 

then seek choices of the other parameters so that as h -+ 0 the error 

decreases. It is clear from the estimates (4.1.1) and (4.1.12) that we should 

choose our functions ~ in ML.p for some Land p. In our computations we will . 

choose functions for which L is arbitrarily large (~ is infinitely differentiable 

and rapidly decreasing). Thus we need only choose an appropriate value of 

p. From both of the estimates (4.1.1) and (4.1.12), we conclude that choosing 

p larger should decrease the error. It might be thought that choosing p as 

large as possible is the best choice. There are two reasons why this may not 

be true. First, the functions ~ for which p is large tend to be expensive to 

evaluate, hence the increase in accuracy may not be justified in view of the 
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increased cost. Secondly, the increased accuracy is dependent upon the 

ftow being increasingly smooth. In particular, the size of the constant multi

plying the oP term in (4.1.1) is proportional to the decay of the Fourier 

transform of ~ and in (4.1.12) is proportional to the decay of the Fourier 

transform of p. For flows which are not sufficiently smooth, Le. their 

transforms do not decay sufficiently fast, then we expect that there is a 

finite Po such that for P ~ Po, increasing the value of p will not increase the 

accuracy. 

The other parameter we must choose for each approximation is 15. If we 

let 0 = h q , then in order for the second term in each error estimate to 

decrease, we see that it is necessary that q < 1. What precise value of q < 1 

is not clear. To make the COP term in each error small, we should choose 

o = h q with q near one, Le. q = 1- e for some small e > O. Unfortunately 

this is the worst choice in view of the error associated with the second error 

terms of the form (.p L O-k. Ideally, one would like to balance the errors in 

each ot the terms, but without detailed knowledge of the constants, this is 

dit!icult. It may appear that if Y is in ML.p and- L is arbitrarily large the error 

in the second term may be considered negligible for any q < 1. This is an 

erroneous conclusion, for the L appearing in (4.1.1) and (4.1.12) can only be 

taken arbitrarily large assuming the quantities 11, x(a,t), ~,andp are 

infinitely ·differentiable. If the flow is not infinitely differentiable, then the 

value of L appearing in the estimates (4.1.1) and (4.1.12) can only be taken 

as large as the maximum number of derivatives of the vorticity for (4.1.1) 

and only as large as the maximum number of derivatives of the flow or the 

density for (4.1.12). ( See the estimate of term (4.1.4) in lemma 4.1.1 and 

(4.1.13) in lemma 4.1.2.) Thus if the flow and associated quantities are not 

sufficiently smooth, there is good reason to choose 0 = h q
, with q somewhat 

less than 1. ( i.e. q nearer to .5 than to 1 ) We remark that such a conclusion 
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is further substantiated by the results on the accuracy of the vortex method 

presented in [46]. 

Our conclusions based on the error estimates are 

( 1) Choose the function 'Ii" in ML . P for some L and p 

(2) Choosing the parameter p larger should decrease the error 

(3) Choose 6 = h q with q near 1. If the flow or associated quantities are not 

too smooth, then one should choose a smaller q. 
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4.2. Test Problem 

Given the force function 

F=2tF(~~ r2 r2 

where r2 = (x 2 + y2), t .is the time variable, and F is a constant, then a C7 

solution to (1.15)-( 1.18) with initial conditions 

p(z ,y ,0) = ( 
ex ex r2 
-- ~l--~B 
16 16 ex 
o 

(4.2.1) 

t(x,y,O) =0 (4.2.2) 

is 

p(x,y,t) = p(x,y,O) 

=:v.. e{x ,y. ,O~ F t2 . 
r2 r2 ~ ex 

Ul(X,y) = 
_y(~Ft2 r2 > ex (4.2.3) 

16 
_r2 

x e{x,y',O~ F t2 
r2 r2 ~ ex 

U2(X,y) = 
x( 1~ )Ft2 r2> ex (4.2.4) 

r2 

The smoothness of the density follows from the definition of p(x ,y ,0). 

For r2 ~ ex, the term p(x,y,O) occurring in (4.2.3) and (4.2.4) is a polynoIIlial 

in r2 with no constant term, so e(x ,¥, 0) is a polynomial in r2. Thus the velo
r 

cities are C'" for r2 < ex. The non-smoothness of the velocity occurs at the 

pOints for which r2 = ex. 

The ft.ow is a radially symmetric body of ft.uid rotating about the origin. 

What makes the flow interesting is that fiuid particles at different distances 

from the origin move at different rates, Le. there is local shear. Typically, 

flows with shear present the greatest challenge to Lagrangian schemes [45] 
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and we therefore believe that this problem is a nontrivial test of the method. 

Since p(x ,y ,0) does not have compact support we need to modify our 

numerical procedure slightly. If we define p by 

__ ex 
p- --p 

16 
then p has compact support and satisfies the same equation that p does. To 

apply method A, we proceed as the method is described in section 3, but we 

compute the evolution of p instead of p. Using an approximation of p, one 

easily obtains an approximation of p and of the derivatives of p. 

In our computations we choose ex in (4.2.1)-(4.2.4) to be .5 and F = 10.0. 

In figure 4.2.1 we show the density distribution p(x,y,O) as a function of r. 

Figure 4.2.2 shows the distribution of the points in Qh for an h = .0886 at 

time t = o. The positions of the pOints in O~ at times t = 0.0, t = 1.0 and 

t = 1.6 are depicted in figures 4.2.3. To help illustrate the nature of the 

flow, in figure 4.2.4 we present the positions at times 0, 1.0 and 1.6 of those 

pOints in W whose initial coordinate was less than zero at time t = O. (Le. 

we are presenting the evolution of the left half of the body of fluid ). 

The solutions of the ordinary differential equations (A1)-{A3) were calcu

lated using 4th order Runge-Kutta. Our time step, .1. was sufficiently small 

so that a decrease in the time step did not Significantly effect the results. 

The space step h was allowed to take on three values, .0823, .0726, and .0628, 

corresponding to 200, 300 and 400 computational pOints respectively. 

The functions 'ir used in the approximations (A.4) and (A.5)-(A.6) were 

chosen to be in ML . P and one of 

(p = 2, L = 00) 

(p = 4 , L = 00) 

..,.2 e 
'ir{r) = -

1r 

r2 
1 2 1--

'ir(r) = =-<2e"" - ~ 2) 
1r 2 

(4.2.5) 

(4.2.6) 
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(p = 6, L = 00) 
3 2 r2 1 2 27 - -'f" --

'f/( r) = =-< 8e -r - ----€ 4 + e 2) 
rr 4 

(4.2.7) 

where r2 = (:z;2 + y2). These functions are suggested by Beale and Majda in 

[7]. 

To estimate the accuracy of our numerical approximation fo~ (1.15)-

(1.18) with the initial conditions (4.2.1)-(4.2.2) we compared the computed 

velocity (A.5) to the exact velocity (4.3.3). We measured the relative error 

in the first component of the velocity in the discreteL2 norm, i.e. we used 

1 

~~oh I u~(;:( ill ,f)) - 1L 1(;:( ill ,f)) I'h' r 
1 

fl' L: I 'UICi(ih,t» I 2h2
] 2 

in £0" 

where -iL~ is the computed velocity; u 1 is the exact velocity (4.2.3) and 

x( ih, t) are the computed trajectories. These errors were computed at each 
'. 

time step, but we only present the results for times t = 1.0 and t = 1.6. 

These times correspond to a maximum point rotation or ; and 2rr radians 

respectively. At time t = 1.0, the initial point distribution is still relatively 

organized ( see figure 4.2.3 ) and we expect the errors measured at this 

time are indicative of the short time error. At time t = 1.6 the organized 

point distribution is lost, and we believe that the errors measured at this 

time are indicative of long time error. We consider both types of errors 

because they behaveditl'erently with respect to the parameters. 

In all our computational experiments it was found that the error grew 

at a rate which was independent of the number of time steps taken, i.e. the 

method is stable. Computational experiments also indicated that the accu

racy of the method is not particularly sensitive to the choice of the function 

''f/ and 6 used in the velocity approximation (A.4).Therefore, for the velocity 



53 

approximation we chose 6 = h·B:i and ~ to be of type (4.2.6) above. The larg

est changes in the errors occurred when the parameters of the density 

derivative approximation (A.5)-(A.6) were varied. To examine this behavior, 

we let 6 = h'l for q = .95, .85, .75 and at the same time varied the function ~ 

in (A.5)-(A.6) over the three types (4.2.5)-(4.2.7). The results of these com

putations are given in tables 4.2.1 and 4.2.2. 

The results indicate that the method is convergent. Reducing the value 

of h while the other parameters were fixed reduced the error in each case. 

The effect of using a ~ for which p was larger is a beneficial one. This effect 

is also quite dramatic. For example, at t=1.6 with h = .0886 and 6 = h·B:i, the 

error is 19 % for p = 2 and 1. 7 % for p = 6. 

An unexpected result is that the optimal choice of the parameters ( 

that choice which yielded the smallest errors) depends upon the length of 

time that one desires to compute the solution. For example, as seen in 

tables 4.3.1 and 4.3.2 the optimal choice at t = 1.0 is not the optimal choice 

at t = 1.6. It appears that for short time, choosing 6 = h'l with q = .95 and 

p = 6 is best, while for longer times, choosing q = .85 and p = 6 is the best 

choice. The major difference between the approximations at these times is 

the organization of the computational points that enter into them. Thus we 

believe that the change in time of the optimal choice is' dependent upon 

computational point organization. We conclude that when the computational 

points are disorganized it is better to choose a large smoothing parameter. 

We also measured the error in the positions of the trajectories x(ih,t). 

It was found that the errors behaved in much the same way as the velocity. 

Thus we believe that the velocity errors give a reliable indication of the 

accuracy of the solution. In general the computational results indicated 

that the method is convergent and stable. 
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t = 0.0 

t = 1.0 

t 1.6 
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Relative Velocity En:or ( in ,:; ) 

h - .rHAB 

0=2 0=4 0-6 

6 = h·D:; lB.O 5.5 2.5 

6 = h·B5 26.0 10.0 3.5 

6 = h·7:; 37.0 lB.O 7.2 

6 = h·e:; 50.0 31.0 15.0 I 

Relative Velocity Error ( in " ) 

h = .r,72::\ 

0=2 0=4 0:-6 

6 = h,g:; 12.0 2.9 1.3 

0= h·B5 19.0 5.B 1.7 

I o :.: h·75 30.0 12.0 3.B 

0= h·e5 43.0 23.0 9.9 

. I Relative Velocity Error ( in " ) 

h- )628 

0=2 0=4 0=6 

0= h,g:; 9.9 1.8 0.84 

15 = h·65 16.0 :3.9 1.0 

15 = h·75 25.0 9.0 2.4 

15 = h·B:; 3B.0 1B.0 7.0 

Table 4.2.1 

Error in Velocity at t = 1.0 
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Relative Velocity Error ( in % ) 

h = .0886 

I I 
p=2 p=4 p=6 

~ = h·95 18.0 5.8 4.0 

~ = h·B5 26.0 10.0 3.6 

~ = h·75 37.0 18.0 7.3 

15 = h·65 50.0 31.0 15.0 

Relative Velocity Error ( in % ) 

h - .0723 

0=2 0=4 0=6 

~ = h·95 13.0 3.1 2.4 

6 = h· B5 19.0 I 5.8 1.7 I 

o = h·75 30.0 I 12.0 3.7 

6 = h·65 I 43.0 23.0 9.9 

Relative Velocity Error ( in " ) 

h -062R 

0=2 ! 0=4 0=6 

~ = h·95 10.0 2.1 2.5 

6 = h·e:; 16.0 3.7 0.96 

I 
~ = h·75 25.0 8.B 2.1 

6 = h·65 38.0 lB.O 6.9 

Table 4.2.2 

Error in Velocity at t = 1.6 
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4.3. Convergence of the ModitiedAlgorithm 

We are not able to prove the convergence of method A. The difficulty 

arises in obtaining. estimates for the density derivative approximations 

(A.5)-(A.6). However. if we compute the derivatives in the following Lagran

gian fashion. this difficulty is overcome and we are ,able to obtain aconver

gence proof. 

If x(a.t) = (xl(a.t). xz(a.t)) is the solution to (3.1) . then we use 

(4.3.1) 

(4.3.2) 

as approximations to the derivatives of p. Here ann is a finite difference 
Cl.£ 

approximation to -aa . 
ai 

To derive approximations (4.3.1) and (4.3.2). consider the identity 

Since the ftow is incompressible 

1 

and we ~an invert the matrix of partials (4.3.3) to obtain 

OX2 

oaz 

aXl 
---

oaz 

Now. the density is a solution of the equations 

(4.3.3) 

(4.3.4) 



" 
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~f (a,t) = 0 p(a,O) = po(a) (4.3.5) 

dx . 
d.t (a,t) = u(x(a,t» x(a,O) = a (4.3.6) 

where Po is the initial density distribution. (4.3.5) and (4.3.6) imply that 

p(x(a;t),t) = po(a). Therefore 

af) I af) I apo 
Bc;'a,t) = ~x(a,t),t) = aa. (a) 
,v ..... , , 

(4.3.7) 

fori = 1,2. Thus (4.3.4) can be written as 

..E..E.-- aXe apo aXe opo 
ox 1 - oae oal oal oae 

(4.3.8) 

..E..E.-- aX l apo aX l apo 
BXe - - oae oal + oal aae 

(4.3.9) 

If we replace the derivatives ~:z; by finite differences we obtain (4.3.1) and 
Vaj 

(4.3.2).· The reason for using (4.3.1) and (4.3.2) instead of a finite difference 

approximation to the formula 

12-- op ,Bal + Bp oae 
OXj - oal aXj Bae aXj 

Ba· 
is that the terms ~are not easily approximated by finite differences. 

vXj 

We approximate the solution of (3.1) - (3.4) by solving the following O. D. 

E.'s. 

: (iJt,t) = :;J.h.(iJt,t) x(ih,O) = ih (A'.l) 

~iJt,t) = Fe ::1 (ih,t) - Fl o~ (ih,t) 1(ih,O) = ~o(ih) (A'.2) 

~f (iJt,t) = 0 p(ih,O) = Po(ih) (A'.3) 

where 
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uh(ih,t) = 2;(K f'\f6)(x(ih,i) ~x(jh,t)f~jh,t)h2 
jh ' (A'.4) 

and the density derivatives in ( A'2 ) are computed by 

(A'.5) 

(A'.6) 

Here we are using the notation of section 3. This is method A' . 

As mentioned in the introduction there is a great similarity between 

equations (3.1) - (3.4) and Euler's equations in three dimensions. This simi-

larity also extends to numerical methods for each set of equations. One 

benefit of thls similarity is that much of the analysis in [5] for the 3-D vortex 

method presented there is applicable to method A' without. substantial 

modification. Thus to prove the convergence of method A', we will be follow

ing closely the proof of convergence presented in [5]. 

Before we give a precise statement of the convergence result, we need 

the following definitions. 

Definition: We say that .r is rth order accurate if for any sufficiently 
. vai 

smooth function of compact support 

(4.3.10) 

where C depends on a finite number of derivatives of f (x). We assume that 

the constant C appearing in (4.3.10) has the following bound: 

(4.3.11) 

where the set R contains the support of f, and C' does not depend on f. 

Definition: We say that ~ is stable if ~ are uniformly bounded map-
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pings from H~ to Hh"l i. e. there exists a fixed constant C so that for h ~ ho, 

(4.3.12) 

For a characterization of a set of difference apprOximations which are 

stable, we have the following result from [5]. 

Proposition 4.3.1 Given a multi-index 1. let T denote grid translation in the 

direction of 1. Then, every difference operator of the form 

~= .L 2: ~ (h)T 
oa hili s'o 

with I a,(h) I ~ C satisfies the stability condition (4.3.12). 

Proof: See the proof of proposition 1 in [5]. 

We now give a statement of our convergence result. 

Theorem 4.3.1 : Convergence of method A" 

Assume that the velocity field u (x ,t) and density p(x ,t) are sufficiently 

smooth for x e R2, 0 ~ t ~ T, and that the initial vorticity and density have 

support contained in O. Define (lh by (lh = O(1Ah. Also assume 

(1) ~ is in ML.p for some Land p satisfying (3) below. 

(2) The difference operators aI)h in (A' .5)-(A' .6) are rth order accurate 
a,; 

and stable in the sense of (4.3.12). The value r is chosen so T > 3 . 

(3) We choose 0 = h g with q < 1 and L, p, q are chosen so that L ~ 3, pq > 3 

and L(q - 1) + q > 3. 

Then, if we compute i(ih,t),1(ih,t), and p(ih,t) as solutions of (A'.l) -

(A' .3) for ih e Oh, we have the following error bounds: 

(i) max ~ IIi(ih,t) - x(ih,t) II Oh + n(ih,t) - ~(ih,t)" -1h~ ~ C(hpq + hL(q + 1) 
as t sT' . 
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(iii) max luh(x,t) -u(x,t)IL2(~)~C(hpq +hL(q+I» 
O:s;t:s;T L\ 

(iv) max I~ (x ,t) - p(x ,t) h2(R) ~ C(h(P - 1)'1 + hLq) 
O:s; t:s; T 

where R is a bounded set in R2. Here the constants depend on T, p, L, n, 

R, and a finite number of derivatives of the flow and the density. 

The proof of this theorem depends on a consistency and stability esti-

mate for the velocity approximation. The consistency estimate that we need 

is that of lemma 4.1, whose hypothesis are satisfied under the assumptions 

of this theorem. The Main Stability Lemma in [5], with the obvious 

modifications to account for the change in dimension. and the kernel K, is' 

applicable to our problem. Since the necessary modifications are so slight, 

we do not prove the following result but we refer the reader to [5] for a 

proof. 

Lemma 4.3.1 : Stability of velocity approximation 

Assume the hypothesis of theorem 4.3.1. Provided that 

max II x(ih,t) - x(ih,t) 11011. S h 3 
O:s; t:s; T . 

. for some T-~ T, we have for 0 ~ t ~ T# the estimates 

I uh(x(ih,t» - uh(x(ih,t» II 0.11. ~ C( ~ x(ih,t) - x(ih,t)l 0.11. +1I1(ih,t) - ~(ihot) 1-1).) 

( 4.3.13) 

I uh(x ot) - uh(x ,t)h2(R) ~ CO x(iJl. ot) - x(ih,t) I 0.11. + H(ih,t) - ~(ihot) I -1.11.) 

(4.3.14) 

where u'" and uh are given by 

uh(Xot) = L: ~(x -x(jhot»~jhot)h2 
ill. & nil 

. , 



and 

uh(x,t) = 2: ~(x -x(jh,t»CJ(jh,t)h2 
ih l: nil. 
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We will also need the following result for differential inequalities due to Hale 

[32]. 

Lemma 4.3.2 : Suppose g(t,y) is continuous on an open connected set 0 in 

R2 and that the initial value problem for the scaler equation 

y=g(t,'JI) 

has a unique solution. If x(t) is a continuous n-vector function with continu-

ous first .derivative on [a,b] such that Ix(O)1 ~y(O), (t,x(t» cO for 

a ~ t ~ b and I x (t ) I ~ g (t, I x (t) I ) for a ~ t ~ b, then 

Ix(t)1 ~y(t) on a ~ t ~ b 

Proof: See the proof of the corollary 6.3 in [32]. 

We now prove theorem 4.3.1. 

Proof: Consider the error in the particle positions 

ei(t) = z(ih.,t) - x(ih.,t) 

and the error in the vorticity 

Vi (t) = 1( ih., t) - ~(ih., t ) 

As in [5] we will obtain a differential inequality for 

~ ed C.h + Ivd -l,h' 

From the ordinary differential equations (3.1) and (A' .4), we conclude. 

ei = u h (X(ih. ,t» - u(x(ih,t» (4.3.15) 

= luh(x(ih.,t» -uh(x(ih.,t»~ + ~uh(x(ih.,t» -u(x(ih,t»~ . 

If we use the consistency lemma, lemma 4.1.1, then the second term of 
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(4.3.15) is estimated by 

II Uh (x (ih ,t» - u(x(ih ,t» I C.h ~ C(oP + (~ 1L6) ( 4.3.16) 

We make the assumption that 

I ei I C.h + I vi I -l.h < h 3 (4.3.17) 

for 0 ~ t ~ T· with T· ~ T . We use the stability lemma, lemma 4.3.2 and esti-

mate the first term of (4.3.15) by 

Thus, for 0 ~ t ~ T· we have 

I ei (t) ~ C.h ~ C( I ei I C.h + I Vi I -l.h + 6P + (~ 1L6) 

To estimate Vi we use (3.3) and (A' .5)-(A'.6), 

Vi = (F~z(ih,t) - 'F\'Pr,(ih,t» - (F2Pz(ih,t) - FlPy(ih,t» 

= ~(F~z(ih,t) - F2Pz(ih,t»J - H'F~(ih,t) - FIP1l(ih,t»J . (4.3.18) 

where' we are using F to indicate that the force function is being evaluated at 

the computed trajectories. We will show how to estimate the first term of 

(4.3.18), the second term is estimated in a similarly. 

F2P:z:(ih,t) - F2 pz(ih,t) = ~[F2 - F2)Pz(ih,t)J + ~[F2 - F2JrPz(ih,t) - pz(ih,t)]J 

+ ~ F 2lP:z: (ih ,t) - pz (ih ,t ) B 

= fAJ + fBJ + ~q . 

Since F2 is continuously differentiable and pz is smooth, for term A we find 

I (F - F2)Pz(ih,t) II-I.h ~ C IF2 - F21 C.h 

= C~ F2(~(ih,t» - F2(x(ih,t» I c.~ 

~ C sup I V'F 2 I I ~ (ih ,t) - x (ih ,t)l C.h 
z£11 

~ C I ei I C.h 

where n is a compact set in R2 containing the points :z: (ih, t), x( ih, t) for 

. , 
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t, 0 ~ t ~ T. 

To estimate term B we use lemma 0.3. and estimate IF - F I M as in 

the estimate for term A. 

I (12- F2)(Pz (ih,t) - pz{ih ,t» I -l.1t ~ Ch -211F2 - F211 e.1t IIPz (ih It) - pz (ih,t) 11-1.1t 

~ C h-2 II ei II e.1t IIPz(ih,t) - pz(ih.t) 11-l.1t 

(4.3.19) 

For an estimate of the right hand side of (4.3.19) we use (A'.5), 

p';(ih,t) -Pz(ih,t) = 

[
rrx"'z(ih,t) ape (ih) _ rrx"'z(ih,t) oPe (ih)j 
oa2 oal oal OCX2 

(4.3.20) 

We show how to estimate the first term of (4.3.20), the second term is han-

dled Similarly. 

(4.3.21) 

Since o{Jpe is continuously differentable, we apply lemma 0.4 to the first 
CXl 

term on the right hand side of (4.3.21). followed by the stability criterion 

(4.3.12), 
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. sCI ei I O.h . (4.3.22) 

In this last estimate we are extending x2(ih,t) -x2(ih,t) to be zero outside 

(lh. This extension does not effect the estimate since ~PO has support in Qh. 
. vCXI 

For the second term on the right hand side of (4.3.21) we use lemma 0.4 and 

the accuracy estimate (4.3.10). 

[

DhX2 8X2 1 8po D" X 2 8X"2 I ~ih,t) - ~ih,t) ~ih) 1-1.h ~ c~ ~ih,t) - ~1h,t) I 
8CX2 8CX2 8CXI 8CX2 . 8CX2 O.h 

(4.3.23) 

Thus (4.3.22) and (4.3.23) imply 

(4.3.24) 

For term C, since F2 is continuously differentiable, this term can be 

estimated in a manner similar to that for term B, . 

I F2(P%(1h,t) - P%(1h,t) I-I.h ~ Ip%(1h,t) - P%(1h,t) 1-1.h 

~ C(hr + I ei I O.h) . 

Therefore, combining the estimates of terms A. B, and C, we have 

If we add the estimates for e~ and v~ then we have 

(4.3.25) 

(4.3.26) 

(4.3.27) 
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Consider the set of functions ~ei(t)~ and ~Vi(t)~ as forming the com

ponents of a vector vaJued function E(t) : [O,T·] ~ R2m , where m is the 

number of points in on, 

E(t) = (SI(t),'" ,Sm(t),VI(t),'" ,vm(t» 

Then (4.3.27) implies that 

I E(t) I ~ Co(E(t) + hT + 6P + (~Lo) 

E(O) = 0 . 

Here we are using the norm 

I~l =l(x l · "x2m)1 = ~~xdr=do.h. + Ifxj~l~m+d-l.h 

on R2m. We apply lemma 4.3.2 to E(t) and find, I E(t) I ~ yet), where yet) is 

a solution of 

Therefore, for 0 ~ t ~ T -, 

( 4.3.28) 

where the constant CI depends on Co and T, but not on T·.· We now remove 

the assumption (4.3.17). Our assumptions on 6, p, L, and r imply 

6P + ( ~ ~L6 + h T = h pq + h L( I - q) + q + h T ~ 3h 3 +I: 

for h < 1 and some e > O. Choose ho small enough so that for h < ho, 

C I (6P + (~ ~L6 + h T) ~ ~3 . 

Let T· be the first time less than T such that 

I Si I O.h + ~ Vi I -l.h ~ h:'l (4.3.29) 

By (4.3.28) we have that 
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( 4.3.30) 

for 0 ~ t ~ T-. But (4.3.30) contradicts (4.3.29) at T-, so T- must be equal to 

T. Thus, if h ~ ho 

I Sf. I O.h + "Vi" -1.h ~ C(hpq + h L(1 - q) + q + h T
) (4.3.31) 

for 0 ~ t ~ T. The first estimate (i) is now proven. To estimate (ii), we write 

The first term is estimated using the stability lemma 4.3.1 and the second 

using consistency estimate, lemma 4.1.1. Therefore, 

I uh (ih. ,t) - u (ih. ,t)/l O.h ~ C( " sd O.h + ~ Vi " -1.h + h T
) + C(hpq + h L(1 - q) + q) 

~ C(hpq + h L(1 - q) + q + h T ) • 

Similarly for (iii), we use the stability estimate (4.3.14) and consistency 

estimate (4.1.1). 

luh(x,t) -u(x,t)h2(R) = luh(x,t) -uh(x,t)h2(R) + l1~h(k,t) +u(x,t)ilL2(R) 

~ C( " si ~ O.h + I Vi II-l.h + h T
) + C(hpq + h L(1 ~ q) + q) 

~ C(hpq + h L(1 - q) + q + h T ) . 

The convergence of the density approximation follows immediately from 

(4.3.31) and theorem 2.1 in section 2. This completes the proof. 
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5. Analysis of method B 

We begin our analysis of method B by proving a convergence result. As 

in the proof for method A' in section 4, we will exploit the similarity between 

this method and a corresponding method for 3-D vortex motion and use 

much of the analysis contained in [5] and [8]. This convergence result is 

somewhat weak in the sense that we must assume that the method is accu-
" 

rate of order 2 + 2q for 0 ~ q <1. Specifically we must assume that the com-

ponent apprOximations used in the method have error estimates which can 

be bounded by Ch 2 + 2q for some constant C which does not depend on h. To 

investigate the necessity of this assumption in practice, as well as to assess 

the behavior of the method when the parameters 'lr and 0 are varied, we test 

the method on the problem described in section 4.2. The results of these 

computations are discussed in section 5.2. 

5.1. Convergence of method B 

A precise statement of the convergence result for method B is the fol-

lowing: 

Theorem 5.1 

Assume that the velocity field u (x ,t) and the density p(x ,t) are sufficiently 

smooth for 0 ~ t ~ T and x s R2. Assume that the support of the initial vorti

city and the support of the initial denSity are contained in some bounded 

set 0, and that the force F" = (F1,f2) is conservative (curl f = 0) and is con

tinuously differentiable. If we compute x(ih,t), «ih,t), Pz(ih,t), 'Pv(ih,t), 

andpn(ih,t) for ih s Qh according to (B.1)-(B.4) and (B.8), and we choose 

(1) 'lr eML . P for some L and p which satisfy (3) below 

(2) 0 = h q q < 1 



(3) we choose a combination of p. q. and Lin (1) and (2) such that 

pq > 2 + 2q and L( 1 - q) > 2 + 2q 

then for h ~ ho we have 

(i)· max (Ix(ih.t) -x(ih.tHo.h + I«ih.t) -~(ih.t)ll_t.h 
os;t..::T 

+ lip: (ih.t) - P: (ih.t) II-t,h + II 'A, (ih.t) - py(ih.t) 11-1.h) 

~ C(hpq + hL(t - q» 

(iv) max 17f(ih.t) - p(ih.t) II Oh ~ C(hpq + hL(l-q» 
Os;ts;T ,. 
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where R is a bounded set in R2, The constants depend on T. p. L. It and 

bounds on a finite number of derivatives of the flow and the density. We 

mention that we are considering the norm I . 10,h in (ii) to be restricted to 

the set Qh. 

To prove this theorem we will need consistency and stability estimates 

for the approximations used in (B.1)-(B.7). One consistency estimate that 

we need is lemma 4.1.1 in section 4. and the other is an estimate of the con-

sistency of the approximations (B.6)-(B.7) to the derivatives of the velocity. 

This estimate is the content of the following lemma. 

Lemma 5.1.1 : Assume that the velocity field u(x.t) is sufficiently smooth 

for x ~ R2. 0 ~ t ~T. and that the initial vorticity has support contained in a 

bounded set O. Also assume 'fr is in ML ,p with L ~ 3 and p > O. If 
.. 

(X1.x2) = (x .y) and we compute ~ by 
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(5.1.1) 

then we have the estimates, 

max 11{(x,t)-u~(x,t)1 sC6P +C(~L 
O:s; t:s; T v 

(5.1.2) 

for i=1,2. Here the constants depend on a finite number of derivatives of the 

tlow, 0, T, p, and L. 

Proof: Since the approximation (5.1.1) is of the same form as the approxi

mation to the velocity (B.5), the proof of this lemma is a minor modification 

of the of the proof of lemma 4.1.1. In particular we obtain a proof if we iden-

B~6 . 
tify K· ax" with K -~6 in lemma 4.1.1. We remark that the loss of a factor 

of delta in the second term of (5.1.2) is due to the increased singularity of 

a~4 
K·--B:z; . 

We need two stability estimates. The first is lemma 4.3.1 and the second 

is a stability estimate of the approximations occurring in the right hand side 

of (B.3)-(B.4). To prove this latter stability estimate we need several techni-

cal lemmas. For the most part, these lemmas concern bounds on integral 

operators whose kernels are related to K "'~6 ( = K.s) and its derivatives. 

Since many of the results presented here are taken directly from [5] and 

need little modification, we will refer the reader to the corresponding 

results in [5] for many of the proofs. 

We need the following discrete and continuous V estimates for oPK.s, f3 

being a multi-index. 

Lemma 5.1.2: With time t fixed and Xj = x (jh,t), we have 



and 

max I I)P~(x - Xj + Yj) I h 2 ~ 
IYll ~6 I. C P = 0 

Clog I 15 I P = 1 
Cc5 1 - IPI P> 1 

C P=O 
Clog 115 IP = 1 
Co 1 - I fJ I P > 1 
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(5.1.3) 

(5.1.4) 

for all I x I < R. provided h ( and thus 15 ) are small enough. The constants 

depend on Ro. Co and bounds for the derivatives of the flow. 

Proof: See the proof of lemma 3.2 in [5]. 

.A continuous Ll estimate that we use is. 

Lemma 5.1.3: There exists a universal constant C. so that 

r I'~(x) I dx ~ CR 
,;1:1 ~R 

Proof: See the proof of lemma 3.3 in [5]. 

An L 2 estilnate for I)P~ we need is 

Lemma 5.1.4: For a multi-index p. I P I = 1 . we have for all f e lfl 

Proof: see the proof of lemma 3.5 in [5]. 

To obtain estimates on the convolution sums involving l)fJI\5. we shall use the 

following two results which are closely related to the generalized Young's 

inequality [26]. 

Lemma 5.1.5 (a): Let K(x.x') be a function defined on SlXS2. where Sl and S2 

are bounded subsets of R2. If we define the operator K : HO(~.R) -+ HO(Sl.R) 

by 
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(K/)(x) = [K(x,X')/(X')dx' 

then 

where I K I is the smallest number satisfying 

[I K(x ,x') I ax' ~ I K I [I K(x,x') I dx ~ I KI 
1 

Lemma 5.1.5 (b) : With Sl and S2 as in 5.1.5 (a) and H~(S) = H~(Ah nS). 

Define the operator K: ~(S2,R) ... ~(Sl,R) by 

(K/)(ilt) = 2: K(ilt,jh)1 (jh)h 2 

ih l: S2 

then 

where I K I is the smallest number so that 

2: I K( ih ,jh) I h 2 ~ II K ~ , 
ih e Sz 

2: I K( ilt ,jh) I h 2 ~ I K I 
1h. l: SI 

for all i,j with ilt e Sl and jh e S2' Here ~ . I H~(S2) and I . = II HR(SI) are the 

norm I . 110)r. restricted to the set S2 and Sl respectively. 

Proof: See the proof of lemma 3.1.a and 3.1. b in [5] or lemma 0.10 in [26]. 

We combine lemma 5.1.2 and 5 .. 1.5 to obtain the following discrete L2 

estimates. 

Lemma 5.1.6: Let Ij e H~, and assume the support of Ij is contained in Ro, 

a bounded set in R2. Let P be a multi-index, I PI ~ 1, then if I Yij I ~ Coo, 

~ 2: 1)PK6(Xi - Xj + Yij)/ j h2 1 O.h ~ Col-ltlll Ij ~ Oft 

ih I: RO 
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Proof: By lemma 5.1. 5 (b) it is sufficient to show 

(5.1.5) 

and 

(5.1.6) 

For (5.1.5). we use lemma 5.1.2. 

~ COl - IPI 

The estimate for (5.1.6) follows similarly. 

In the next lemma we use a partition of the fluid domain given by the 

following: 

If j = (j 1.12) is an integer multi-index. let 

Qj = ~ x e R21 x e [ j 1 - ~ • j 1 + ~ ] x [ j 2 - ~ . j 2 + ~ ] ~ 

The Q;'s partition~. Define 

i. e. Bj is the image under the flow of the rectangle Qj. Since the flow is 

incompressible. it is measure preserving. thus the area of each Bj is h 2 . For 

a function f. defined on the set of points x (jh.t). we will often associate a 

step function f (x) defined by 

f (x) = I j x e Bj . 

With this construction 

~ f I HlI(R2) = I f I 0.11. 
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The following lemma is closely related to lemma 5.1.6. 

Lemma 5.1. 7: 

Assume f e H~ and the support of f is contained in a compact set O. 

Let Sl be a bounded set in R2 and S2 = ~ UBj I jh e O~. If (3 is a multi-index 

then 

I (x') = Ij 

then. 

x' e B· , 

We apply lemma 5.1.5 (a) to the right hand side of (5.1.8), and find 

where C is that constant for which 

SUf, [I ])P K(x ,x ') I d:r:' ~ C 
Z I: 1 2 

and 

SU1![ I ])P K(x ,x') I d:r: ~ C 
Z'£~ 

1 

(5.1.9) 

(5.1.10) 

(5.1.11) 

For (5.1.10), since the Bj partition S2 and have area h 2, for a given x e Sl 

then, 



= L: I ~(x - Xj) I h 2 

in. t: 0 

We apply lemma 5.1.2 to (5.1.12) and find 

{1=O 
{1 = 1 
{1>1 
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(5.1.12) 

(5.1.13) 

For (5.1.11). we again use the fact that Bj partitions the plane. Let 

. S~ = ~j I Bj nS~ ~ 0 ~. For a givenx' e S2. 

(

c {1=O 
~ Clog I 15 I {1 = 1 . 
. CD I - 1.8 1 {1 > 1 

(5.1.14) 

Thus (5.1.13). (5.1.14) and (5.1.9)-(5.1.11) combine to give the estimate 

(5.1. 7). 

We measure the error in the vorticity and density gradients in the Hh"l 

norm so we need a version of lemma 5.1.6 for integral operators from 

Hh"l to H~. 

Lemma 5.1.8: With the notation used in lemma 5.1.5(b). suppose 

S? = ~x' I I x' I ~ Ro~. For f eHh"lwith support of f contained in 

~X I I x I ~Ro~ then. 

~ Kf II O.n ~ C ( I K I + I DrKI ) I f ~ -l.n 

with the norms I K I. I DrK II as in lemma 5.1.5. and Dr is the forward 

difference quotient with respect to the index j. 
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Proof: See the proof of lemma 3.4 in [5]. 

When the integral operators have a special form, then the result of lemma 

5.1.8 can be strengthened. This is the content of the next lemma. 

Lemma 5.1.9: For! eHh"l with support of ! contained in a bounded set 0, 

then 

~ ~Kd(.'l!t - Xj )!j h2 11 0.11. ~ C I!j I -1.11. . 
j 

Proof: This estimate is that of the term vP) in Main Stability Lemma of [5] 

with the appropriate modifications to account for the change in dimension 

and the kernel K. 

We now prove the stability estimate for the approximations in (B.4) and 

(B.5). 

Lemma 5.1.10: 

Define 

ei = 'i(ih,t) - x(ih,t) 

Vi =1(ilI.,t) - ~(ilI.,t) 

r~ = P: (ill. ,t) - P:t: (ih,t) 

r lli = ~(ih,t) - PII(ih,t). 

Under the hypotheSiS of theorem 5.1.1, if for t, 0 ~ t ~ T·, T· ~ T, . 

(5.1.15) 

I u:r:t:/x(ih ,t ))P:t: (ill. ,t) - u~~ (x(ih ,t ))P:t: (ill. ,t) II -1.11. ~ 

C( I ei 10,11. + II Vi I -1.11. + II T:t:i II-I.h + I Til. 11-1;11.) 

(5.1.16) 
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I u~/i(ih,t»Pv(ih,t) - u~( (X (ih,t»py (ih,t) II-I.h ~ 

C( I ei IO,h +11 Vi II -l.h + "T:z;~ II -l.h + I Ty1. II -l.h) 

(5.1.i7) 

for i = 1,2. Here the constants depend on T, p, L, and a finite number of 

. derivatives of the flow andthe density, but not on T·. 

Proof: The proof of this lemma is based on a proof of the stability of the vor

ticity growth terms presented in [8]. We will only prove the estimate 

(5.1.18) 

. Le. the estimate (5.1.16) for i = 1. The remaining estimates are done in a 

similar manner. Let Xi = x(ih,t), ii = 'i(ih,t), ~i = Hih,t), 1i =1(ih,t), 

and Also let 

a~cS oK 
K· ~= aX • ~cS= D:z;~. We begin by decomposing the left hand side of 

(5.1.18) into four terms, 

= ~~[D:z;Ki('ii - 'ij) - D:z;KcSl(~ - 'ij)]~jp:Z;th2! 
j 

+ ~~[D;r;Ki(~ - 'i j ) - D:z;~l(~ - Xj )]~jpzth2! 
j . 

+ ~~D;r;~I(.7; - Xj )a;P:z:( - ~jp:z;(]h2! 
j 

+ ~L:[D:z;~I('ii - 'ij) - D:z;KcS1(Xi - Xj)]('fjP:Z;t - tjp:z;Jh2! 
j 

= TI + T2 + Ts + T4 . 

Here Kd l is the first component of Kd . ,For convenience we will drop the 

superscript and refer to Ki as KcS. Similarly we will drop the subscript on D 

and refer to D:z; as D. The estimate that we seek will follow from the triangle 

inequality.and individual estimates of TI to T4. 
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We begin by estimating TI. Since P: is continuously differentiable. we 

apply lemma 0.3 to find 

~ Td -1.1l = II 2: [DK4(Xi - Xj) - D~(Xi - Xj )]~jh2p:~ II-I.1l 
j 

(5.1.19) 

We apply the mean value theorem along the segment from Xi - Xj to Xi - Xj 

and estimate the right hand side of (5.1.19) by 

(5.1.20) 

where max I Yi I ~ max I ei I. To estimate (5.1.20) we estimate both terms 

separately and sum the estimates. Since each term has the same form we 

concentrate on estimating. 

~ 2::D2K4(Xi - Xj + Yij )e,;{jh2) -l.h 
j 

(5.1.21) 

where we let Yij = Yi + (Xj - Xj). We employ Taylor's theorem with 

remainder to estimate (5.1.21). 

~ 2::D2~(Xi - Xj + Yij )ei~jh21_1.1l ~ I 2::D2~(~ - Xj ) e,;{jh 2 I -1.1l 
j j 

+ ~ 2::D3KcS (Xi - Xj + Zij )Yije.iJjh211_1.1l 
j 

where max I Zij I ~ max I Yij I ~ 2 max I e, I . We 

I TP) I -l.h ~ I TI(l) i C.Il' so that TP) can be estimated by 

II TI(I) 1I-1.1l ~ II2::D2~(Xi - xj)edjh2 ~ C.1l 
j 

have that 

(5.1.22) 
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To estimate (5.1.22), 

I ~D2K.s(Xi -Xj)~ih21 ~ I ~D2Kcs(xi -Xi)~ih2 - !D2Kcs(xi -x')t(x',t)dx' I 
j i 

+ I !D~(xt - x')~(x',t )dx' I . (5.1.23) 

We employ arguments similar to those used in lemma 4.1.1 to estimate the 

first term in (5.1.23) and find 

I ~~K.s(x - xi )~jh2 - !D2~(x - x')~(x',t )dx' I ~ C( ~~L6-1 
J . 

( See the estimate of term A in lemma 4.1.1.) Also, if we use lemma 5.1. 3 

then we can estimate the second term of (5.1.23) by 

I !D2K.s(x - x')~(x',t )dx' I = I !~(x - x')D2~(x',t )dx' I 

~maxID2~1 £1~(x-x')ldx' 

:S CR ~ C 

where R is the diameter of the set conta.1ning the support of the vorticity for 

o :s t ~ T. Thus, 

(5.1.24) 

To estimate T 1(2), we apply lemma 0.1 and lemma 5.1.6 to find 

RTf2) II-l.h :s I Tf2) I O.Il:S h-l112:D3~(xt - xi + Z;,;)Yii~ih21 O.Il I ei I Q,h 
j 

~ h -1 ( C II'1:~x I Yij I 6-2 ) I ei I O.Il 
. \J . 

, (5.1.25) 

The estimates (5.1.24) and (5.1.25) imply 

The assumption (5.1.15) and the hypothesis of theorem 5.1 of this lemma 

imply 
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where the constant is independent of h. Thus, 

To estimate T2, we use the mean value theorem from xt - Xj to Xi - Xj' 

(5.1.26) 

where max 1 Yij I ~ 2 max 1 ej I. To estimate (5.1.26) we estimate both terms 

separately and sum the estimates. Since the terms both have the same form 

we concentrate on estimating 

2:n
2
K6(Xi - Xj + Yij )ej~jpZ(h2 

j 

We apply Taylor's theorem with remainder to (5.1.27) and find 

2:lJ2K6(Xi - Xj + Yij )ej(jp~h2 = 2:lJ2K6(Xi - xj)ej(jpz(h
2 

j j 

(5.1.27) 

+ 2:n3K6(xt - Xj + Wij)ejYij(jPzl.h
2 

i 

= T2(1) + T2(2) 

with max I Wij I ~ max I Yij I s 2max I ej I. We first estimate T2(1) . Since pz 

is continuously differentiable, , 

~ ~n2K6(Xi - Xj )ej~jpZ(h2 ~ -1)1 ~ ~ ~n2K6(xt - Xj )ej(j h2 11 -l,h 

J J 

(5.1.28) 

Now, by the chrun rule, if cx(x,t) = (CXl(X,t),CX2(X,t)) is the inverse of the flow 

map x(cx,t), we have, 

The functions are 
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smooth so we can estimate the right hand side of (5.1.28) by 

(5.1.29) 

.' B~ 
where the constant depends on bounds for the derivatives of ax . Let D: be 

a finite difference approximation to the derivative which is rth order accu-

rate in the sense of (4.3.10) and stable in the sense of (4.3.11). (We are 

suppressing the subscript k on Cl for clarity) We can estimate the terms on 

the right hand side of (5.1.29) by an estimate of the form. . 

I2:DaD~(:z; - Xj )ej~;h21_1.h ~ I2:DaD~(x(ih.t) - xj)ej~jh2 
; ; 

- 2:D:D~(x(ih.t) - x;)ej~jh211 -c1.h 
j 

+ ~ 2:D:D~(x(ih.t) - x;)e;~jh211_1.h 
; 

(5.1.30) 

The first term of (5.1.30) is estimated using the accuracy criterion for the 

difference formula lemma 4.3.11. 

I2:DaD~(x(ih.t) -xj)e;~;h2 - 2:D:D~(x(ih.t) -xj)e;~jh21_1.h 
; ; 

~ I2:DaD~(x(ih.t) -xj)e;~;h2 - 2:D:D~(x(ih.t) -x;)e;~;h2i O.h 
; ; 

(5.1.31) 

To estimate the right hand side of (5.1.31) we apply Sobolov's lemma. 

maxl2:D~ + ID~(X(Cl.t) -x;)e;~jh21 s I2:D~ + ID~(X(Cl.t) -xj)e;~jh2 i H2(0) 
atO.; ; . 

1 

~ ( 2: I2:D~ + IPI + ID~(x(a.t) - x;)e;~jh211 {2(O) )2 
o~ 1.81 ~2 j 

(5.1.32) 

Since the flow is smooth. we can replace Cl derivatives by x derivatives. so 

that the terms in (5.1.32) can be estimated by 
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2: ~ 2:DJ +r+ 1.8IDK6(x(a,t) -Xj)ej~jh21IL2(n) ~ 
osl.8ls0 j 

where 0 is a bounded set in R2 containing the image of 0 under the map 

x(a,t) . We apply lemma 5.1.7 to each term in the sum and find that 

(5.1.33) 

Choose r so that r : 3 > q ( which is possible because q < 1 ), then 

o~: 3 < C, where the constant is independent of h. Thus using (5.1.31) and 

(5.1.33) we have that 

(5.1.34) 

We apply the stability assumption on the finite difference approximation 

to the derivative, (4.3.12), to the second term of (5.1.30) and find 

I ~D;DKcs(x(a\,t) -xj)ej{jh2 11_1.h ~ ~ ~DKcs(J; -xj)ej{jh2~0.h 
j j 

(5.1.35) 

Let Bj and Qj bu defined as in lemma 5.1. 7. To estimate the right hand side 

of (5.1.35) we consider ej{j and DKcs(x\ - Xj) as step functions on 

s = U~Bj : jh e OJ . 

We define 

K(x ,x') = DKc,(J; - Xj) for x e ~ and x' e Bj 

for x' e Bj 

Thus, since the area of Bj is h 2 , 
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Also, since the !low is measure preserving, 

and 

Thus an estimate of K and f will yield the desired estimate. WewriteKas 

where 

K 1(x ,x') = DK,s(x - x') 

K2(x ,x'} = DKd(Xi - Xj) - DKd(x - x') 

Therefore 

(5.1.36) 

The first term is DKd ., ' and so can be estimated using lemma 5.1.4. We 

find 

If we use the mean value theorem and lemma 5.1.2 then we have the follow-

ing Ll estimates of K2• 

~ C6-1 . (5 ~ C 

and 

~ C6-1 . (5 ~ C ... 
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Thus, to estimate the second term of (5.1.36) we use lemma 5.1.5 (a) and we 

find, 

I J~(x,x')f (x')dx'il HO(S) ~ C II f I HO(S) ~ C m~ I {j I 18 i I o.1t ~ ell ei Ilo.n 
J 

(5.1.37) 

If we combine the estimate (5.1.34) for the first term of (5.1.30) and (5.1.37) 

for the second term we find 

For Ti2) we use lemma 5.1.6 to find 

I EDS~(~ - Xj + 'Wij )eiY\j{jPz .. h2 1-1.1t ~ I EDS~(Xi - Xj + 'Wij )eiYij{jh2 11 o.1t 
j j 

~ C 0-2 rn.~x I Yij I m?-X I {j I I ei I o.1t 
'1 1 

~ c I ei 1O.h 

In this last estimate we have used the fact that 

max I Yij I ~ 2 max I ei I ~ h -1 ~ ei ~ O.h ~ h 2q. The estimates for T2(1) and T2(2) 

imply 

We estimate Ts as follows: 

ED~(Xi - Xj)(1jPz .. - {jpz .. ]h 2 = tEDK6(Xi -Xj)viPz .. h 2 j 
j i 

+ tEDI\s(Xi - Xj)VjTz .. h2 l 

+ ~ED~(~ - Xj ){jT21 h 2 j 

= TS(1) + Ts(2) + Ts(S) 

where Vj and Tz .. are defined as in the statement of this lemma. For TS(1), we 

change the x derivative to an ex derivative using the chain rule. ( See the 

estimate of (5.1.28» Since the flow andp21 are smooth, 



"TP) ~ -l,h = I ~ D~(x (ih,t) - Xj )VjPz~h21 -1.h , . 

sCI ~Da~(x(ih.,t) - Xj)VjPz,h2" -1.h 
j 

s C 12: DaK6(Xi - Xj )vj h 2
" -1.h 

; 
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(5.1.38) 

Let D: be an rth order finite difference approximation to the derivative that 

is stable in the sense of (4.3.12). We estimate (5.1.38) by 

C~EDa~(x(ih.,t) -Xj)vjh211_1.h 
j 

s C I2:Da~(x(ih.,t) - Xj )vj h 2 - 2:D:~(x(ih.,t) - Xj )vjh21_1.h 
j j 

(5.1.39) 

The first term, the error in the finite difference approximation, is 
.. 

estimated like the corresponding term (5.1.31) in the estimate for T2 . 

Using arguments similar to those employed there, we find 

I2:Da~(xt - Xj )vj h 2 - 2:D:~(xt - Xj )Vjh2 ~ -1.h 
j j 

(5.1.40) 

Here '0 is a set containing the points Xj for 0 s t s T. We apply lemma 5.1.7 

to each term in the sum on the right hand side of (5.1.40) and find 

s Chr t5 -(r+5) I Vj II-l.h 

sCI Vj ~-I.h (5.1.41) 

where, in making the last estimate, we have chosen r so large so that 

r 
5 

> q. r+ 
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For the second term of (5.1.39). we apply the stab.ility condition (4.3.12) 

and find 

"2:D:~(x(ih.t) - Xj)Vjp:z:~h2" -l.h ~ I12:D:~(x(ih.t) - Xj)vj h 2 1_l.h 
j j 

~ ~ 2:~(Xi - Xj)vj h2 1 C.h . 
j 

(5. L42) 

Here we have extended Vj to be zero outside of n" . This does not affect the 

estimate since P:z:~ has support in on . We estimate (5.1.42) using lemma 

5.1. 9 and find 

~ 2:~(:&.t ..:.. Xj)vj h2 1 O.h ~ C ~ Vj I-l.h 
j 

(5.1.42) and (5.1.43) combine to yield 

(5.1.43) 

To estimate T3(2). we use lemma 0.3 and lemma 5.1.8 and the assumption 

(5.1.15). 

I T31 -I.h = "2:D~(:&.t - Xj )vjT:z:~h21 -l.h ~ Ch -2 ~ T ~ II-I.h " 2:D~(Xi - Xj )Vjh 211 C.h 
j j 

~ C I Vi I -I.h . 

The function 2:DKd(x - Xj )~jh 2 is a continuously differentiable function 
j 

such that 

independent of O. (See the estimate of (5.1.23) in T/ I
) .) Thus. if we use 

lemma 0.4. then 

"T3(3) I -I.h ~ I 2:DK6(Xi - Xj )~jT~ I-l.h 
j 

~ C "T:z:," -l.h . 
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Combining the estimates on TP), TS(2) , and TS(3), we find 

I Tsl-I,h ~ C( II Tzt II-I,h + I Vi 1-1.h) 

It remains to estimate T4. We first apply the mean value theorem along the 

'" ..... segment from Xi - Xj to;z; - Xj' 

= 'E[DKc5(Xi - Xj + (ei + ej)) - D~(Xi - Xj)]UjPzt - ~jPzJh2 
j 

(5.1.44) 

where rn,~x I Yij I ~ 2 m!lX I ei I. We will estimate both terms in (5.1.44) 
\J 1. 

separately and sum the estimates. Since each of the terms has the same 

form we will concern ourselves with estimating 

(5.1.45) 

Consider 

We estimate (5.1.45) by estimating 

(5.1.46) 

We first estimate the terms in (5.1.46) containing ej 

:I 
. 'E 2:D2~(;Z; - Xj + )ej ath2 (5.1.47) 

, = 1 j 

The first term of (5.1.47), 1= 1. is estimated by 



~ ~D2~(Xi - Xj + Yij )eja lh2 ~ -1,h. ~ ~ 2:D2~(Xi - Xj + Yij )eja l
h2 1 O.h 

j j 

~ C 6-1 m~ I Vj I 1 ei I O.h , 
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~ C h-26-1 1 Vj "-I.h I ei IO.h' (5.1.48) 

Here we have used the estimate m~x I Vj I ~ h -1" Vi II O.h ~ Ch -211 Vi II -1.h and , 
lemma 5.1.6 to estimate. 1 2:D2~(J; - Xj + Yij )ejvi,h2 " QJI.. The second and 

j 

third terms of (5.1.47) are estimated Similarly. For the second term. 

~ 2:D2~(Xi - Xj + Yij )ej a 2h2 ~ -1,h. ~ "2:D2~(J; - Xj + Yij )eja2h21 O.h 
j j 

~ C 6-1 m~1 Vj I m~x Ir:::j I II ej IO.h , , 

(5.1.49) 

while for the third term. 

I 2:D2~(J; - Xj + Yij )ejash 211 -1,h. ~ 2:D2K,,(J; - Xj + Yij )ej ash 21 O.h 
j j 

Under the assumption (5.1.15) then each of the estimates (5.1.48)-(5.1.50) 

can be bounded by C 1 ei I O.h where the constant is independent of h. For 

the terms of (5.1.46) that contain ei • 

3 S 
I2:D2~(J; - Xj + Yij)( 2: a,)ei h2 " -1,h. ~ "2:D2K,,(Xi - Xj + Yij)( 2: a,)eih2 1 O,h. 

j '=1 j /=1 

S 
~ h -1" eill O,h. 2: I2:D2K,,(J; - Xj + Yij )a,h2

11 O.h 
, = 1 j 

(5.1.51) 

We estimate each term in the sum on the right hand side of (5.1.51) individu-

ally. For the first term. 1=1. we use the fact that P:::( is a smooth function. 
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lemma 5.1.8 and the mean value theorem to find. 

(5.1.52) 

Similarly. for the second term 

~ l:D2~(Xi - Xj + Yij )a2h21_1,h ~ C II D2~(.7; - Xj + Yij )VjT~th211 C.h 
j 

and for the third term. we use lemma 5.1. 8, 

1Il:D2~(Xi - Xj + Yij )czt h2 11_1.h ~ C I D2~(.7; - Xj + Yij )T~th 21 C.h 
j 

( 5.1.53) 

(5.1.54) 

Under the assumption (5.1.15) then we can combine (5.1.52)-(5.1.54) with 

(5.1.51) to find 

3 

Il:D2~(.7; - Xj + Yij) ( l: at)ed C.h ~ C(I T:i I -l.h + II vd -l.h) . 
. j t=1 

If we combine the estimate of (5.1.47) with the estimate of (5.1.51) we have 

If we combine the estimates of TI• T2 • T3• and T4 we obtain the estimate 

(5.1.44). This completes the proof. 

The next two results concern the stability and consistency of the den-

sity approximation (B.9). 

Lemma 5.1.11 : Stability of density approximation 

Under the assumptions of theorem 5.1. and if 
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II ei II Q,h + Ip:~ I-l.h + II Ty~ I-l.h ~ h 2 
+2q (5.1.55) 

for 0 ~ t ~ Te
• then 

~~(ih.t) - ph(ih..t) II O.h ~ C (II ei II + ~ T~ ~ -l.h + I Ty( II-l.h ) 

(5.1.56) 

(5.1.57) 

where R is a bounded set in R2. 

Proof: Let 2; = x(ih.t). Xi = x(ih.t). We have 

~(ih .t) - ph(ih..t) = 

t 2:(G: *'f4)(Xi -x;)Pz(jh,t)h2 + 2:(Gy *'f4)(Xi -x;)~(jh.t)h2J 
j ; 

~L:(G: *'f4)(2; -x;)p:(jh,t)h2 + 2:(Gy *'f6)(Xi -x;)py(jh.t)h2 J 
j j 

= ~2: (G: * 'f4)(Xi - x; fp: (ih. ,t )h2 - 2: (G: * 'f4)(2; - x; )p: (ih. ,t)h 2J 
j ; 

+ ~2:(Gy *'f4)(Z, -x;)~(ih,t)h2 - 2:(Gy *-¥4)(2; -xj)py(ih.t)h2J 
; ; 

(5.1.58) 

If we identify the pair p:(ih,t), 'Pz(ih.,t) and the pair Py(ih.,t), ~(ih,t) ",ith 

the pair t(ih.t).1(ih.,t). then the estimate of each term in (5.1.58) is identi-

cal to the estimate of the stability of the velocity approximation given in 

lemma 4.3.1. Thus. using the arguments of that lemma, we find 

Similarly, the continuous stability estimate (5.1.57), follows from the argu

ments tor the estimate (4.1.14) of lemma 4.3.1. 

Lemma 5.1.12 : Consistency of density approximation 

Under the hypothesis of theorem 5.1 we have 
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max I ph (Z ,t) - P (Z ,t) I ~ C (oP + (~ ~LO ) 
O~t~T u 

(5.1.59) 

Proof: Consider 

ph(Z,t) -p(Z,t) = 

~(GZ * 'f6)(Z - z(jh,t))Pz(ilt,t)h2 +~(Gy * 'f~)(x - x(jh,t))py(jh,t)h2 
i i 

-p(Z,t) 

= ~~(GJ: • 'i'6)(Z - z(jh,t))Pz(jh,t )h2 - J(Gz * 'f~)(~ - Z')pz (X',t )d.x'~ 
i 

+ ~~(Gy *'i'6)(Z -z(jh,t))py(jh,t)h2 - J(Gy *'f~)(x -z')py(x',t)d.x'~ 
i 

-p(x,t)~ 

As in the proof of lemma 4.1.1, terms A and B can be viewed as errors in 

approximating continuous integrals using t.he trapezoidal rule. If we use 

arguments similar to those employed in lemma 4.1.1 we find, 

max I A I ~ C ( ~Lo 
O~t~T u 

(5.1.60) 

and 

h max I B I ~ C ( -:r)Lo . 
O~t~T u 

(5.1.61) 

To estimate term C, since p has compact support and is sufficiently smooth 

we can use Poisson's formula to express p in terms of its derivatives, 

Thus, 
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Each of these terms can be estimated using arguments similar to those used 

for the estimate of term B in lemma 4.1.1. If we employ those arguments, 

then we find, 

/ C/ ~ CoP . (5.1.62) 

By choosing the constants large enough, the bounds (5.1.60)-(5.1.62) can be 

shown to hold for all t, 0 ~ t ~ T. Thus the two bounds imply the result 

(5.1.59). 

We are now ready to prove theorem 5.1. 

Proof of Theorem: Define 

e" (t) = x (ih, t) - x (ih ,h ) 

Vi(t) =«ih,t} - ~(ih,t) 

T ~ (t) = Pz (ill., t) - P: (ih, t ) 

Ty«(t) =~(ih,t) -py(ih,t) 

We proceed as in [5] and derive a differential inequality for the quantity 

Assume that 

~ ei "Oft + II vi ~ -1ft + I TZ( I-l.h + ~ Ty( " -1ft ~ h 2 
+ 2q 

for t, 0 ~ t ~ T·. We use equations (3.13) and (B.1) and find for ai, 

e" = uh (ih ,t) - u (ih ,t ) 

= [uh(ih,t) -uh(ih,t)] + [uh(ih,t) -u(ih,t)] 

(5.1.63) 

Under the assumption (5.1.63) we can apply the stability lemma, lemma 

4.3.2 to the first term and find 
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We use the consistency lemma. lemma (4. 1. 1}. for the second term. 

Thus for 0 ~ t ~ T--

(5.1.64) 

If we use l' to denote F evaluated at the computational points and equations 

(3.14) and (B.2). then for I vi 1-1
.
h we have. 

Vi = (Fz 'P:(ih.t) - 1'1 P:(ih.t» - (Fz pz (ih.t) - FI Py (ih.t» 

= (Fz'P:(ih.t) -Fzpz(ih.t» - (FIP;(ih.t) -F1 Py(ih.t» 

(5.1.65) 

We will show how to estimate the first term in (5.1.65). the second term is 

done similarly. 

Fz 'P:(ih.t) - Fz pz (ih It) = (Fz - Fz) pz (ih.t) + Fz CP:(ih ,t) - pz (ih ,t» 

= ~(F2 - F2) Pz(ih,tH + !(F2 - F2)(iJ:(ih,t) - Pz(ih,t»l 

+ ! F 2 CP:( ih . t) - pz (ih. t» ~ 

=~Al+~Bl+!q . 

To estimate term A. F is continuously differentiable so that 

I F2 - F21 = I F2(X(ih.t» - F2(x (ih,t» II 0"" ~ SU12 I VF21 I x(ih.t) - x(ih.t)l O.h 
ze"O 

~ C I x(ih.t) - x(ih.t)l C.n 

(5.1.66) 

where 0 is a compact set containing the points x(ih,t). x(ih.t) for 

o ~ t ~ Te
, If we use inequality (5.1.66) and the assumption that pz is con-

tinuously differentiable then we find 
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~ C II ei II O.h . 
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For the second term, B, we first apply lemma 0.3 and then estimate 

I F2 - F21 C.h as in the estimate for term A. 

1(11'2 - F2)(f>;(ih,t) - p;,;(ih,t» " -l.h ~ Ch-2 fF2 - F211 O.h 1I'P;(ih,t) - p;,;(ih,t) I-i.n 

~ Ch-2
11 ei" C.h ~ T;,;, II-l.h 

~ C I ei I C.h . 

Here we make the last estimate using the assumption (5.1.63). Since F2 is 

continuously differentiable, term C can be estimated using lemma 0.4, 

If we combine the estimates for terms A, B, and C, and estimate the 

second term of (5.1.65) in a similar manner, then for a ~ t ~ T·, 

(5.1.67) 

It remains to estimate ~ T1.:( " -l.hand ~ Ty, I-l.h' We use equations (3.15) and 

(B.3) to estimate I T1.:( I-I.h· 

7':, = -u~:(ih,t)p:(ih,t) - u~(ih,t)P:(ih,t) 

+ ul:(ih,t)p:(ih,t) + u2;I:(ih,t)py(ih,t) 

= ~ul:(ih,t)p:(ih,t) - u~:(ih,t)p:(ih,t)J 

+ ~u2:(ih,t)py(ih,t) - u~(ih,t)P:(ih,t)J 

To estimate the first term of (5.1.68), we rewrite it as, 

(5.1.68) 

u1:(ih,t)Pz(ih,t) - u~(ih,t)p;(ih,t) = Hu1:(ih,t) - ut(ih,t)]p:(ih,t)J 

+ ~u~:(ih,t)p:(ih,t) - u~(ih,t)Pz(ih,t)J 

= ~Ai + ~BJ . 

We use the pointwise estimate of lemma 5.1.1 and lemma 0.4 to estimate 
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term A. and find. 

We use lemma 5.1.10 to estimate term B. 

The estimate for the second term of (5.1.68) is carried out in a similar 

manner. Therefore. 

(5.1.69) 

We also find that 

(5.1.70) 

If we add the inequalities (5.1.64). (5.1.67). (5.1.69). and (5.1.70). then we 

find 

" Si "C.1l + "Vi I -1ft + I T~ I -1ft + I Tyi. ~ -l.1l 

~ C( I 2i I C.1l + I Vi I -1.1l + .. " Tzi. II -l.1l + "Tyi. I -1.1l + t5P + (~ ~L ) . 

(5.1.71) 

We now employ arguments like those used in the proof of method A'. 

From the differential inequality (5.1.71) and lemma 4.3.2 it follows that for 

where y( t) is a solution of 

y(t) = Cc(y(t) + t5P + (pL ) y(O) = 0 . 

Thus 
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(5.1. 72) 

The estimate (5.1.72) holds for all times such that (5.1.63) is satisfied. The 

constant C1 depends on T and Co. but not on Te
. We now remove the assump-

tion (5.1.63). 

We are assuming that p. q. and L are chosen so that 

h pq + hL(l - q) ~ h 2 + 2q + I: for some e > O. Thus. there exists an ho so that for 

h <ho 

Let Te be the first time such that 

If T· ~ T. then (5.1. 72) holds and 

(5.1. 74) 

for 0 ~ t ~ Te
. But at Te (5.1.74) contradicts (5.1.73). so T· must be greater 

than or equal to T. Thus for h ~ ho and for 0 ~ t ~ T. 

(5.1. 75) 

This is estimate (i). 

Using (5.1.75) we will obtain the other estimates (ii)-(v). To obtain (ii). 

we use (5. 1. 75). lemma 4.3.1, and the consistency lemma. lemma 4.1.1. 

I uh(ih..t) - u (ih..t H O.h ~ C( II uh(ih.t) - uh(ih..t)l O.h + ~ ?.Lh(ih..t) - u(ih. .t) IDo.h 
h 

~ C( ~ ei II O,h + ~ Vi 1I-1,h) + C(oP + (pLa ) 

The continuous velocity error. (iii). can be estimated using (5.1.75). the 
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continuous stability estimate of lemma 4.3.1. (4.3.14), and the pointwise 

consistency estimate of lemma 4.1.1, 

I1Lh (ih ,t) - u (ih ,t) h2(R) ::; II ~h (iii, t) - U h (ih, t) h2(R) + I u h (ih ,t ) - u (ih ,t )I L'~(R) 

::;C( ~ ei II C.h + I Vi ~ -l.IJ + C(oP + (~ 1Lc5 ) 

For (iv), we rewrite the error as, 

1P"(ih,t) - p(ih,t) II C,h::; Ilpn(ih,t) - ph(ih,t) II C,h + Ilph(ih,t) - p(ih,t) II C.h 

We estimate the Drstterm using lemma 5.1.11 and the second term using 

lemma 5.1.12. Therefore 

1IP"(ih,t) - p(ih,t) I O,h ::; C( II ei II C,h + II Vi ~ -1,h + I rZ1I-1.h + I ry~ II-l.h) 

+ C(oP + (h ~L6) o 

The estimate of the continuous density (v) is done in a similar manner. This 

completes the proof. 
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5.2. Computational Results 

In this section we describe the computational results when method B is 

applied to the test problem described in section 4.2. We did not attempt to 

rigorously check the error estimates of theorem 5.1, but instead, sought to 

answer the following questions: 

Is the method stable? 

Is the requirement of high order accuracy in the convergence proof 

necessary in practice? 

How does the error behave when the parameters h, Y, and 0 are varied? 

How does the method compare with the results of method A? 

Our reason for not checking rigorously the error estimates of theorem 

5.1 is that the test problem does not satisfy the assumptions of the theorem. 

In particular, the external force function F is not continuously 

differentiable. This situation can be remedied, and we plan to do a detailed 

analysis ot the error estimates of theorem 5.1 in the future. 

The parameters to be chosen are h, the initial mesh width, 0, the 

smoothing parameter, and the function Y used in (B.5)-(B.8). We allowed h 

to take on three values, h = .0886, h = .0728, and h = .0626 , corresponding 

to 200, 300, and 400 points respectively. The error estimates of theorem 5.1 

suggest that we should choose 0 = h q for some q < 1. We therefore let o=hq 

tor q = .95, q = .85, and q = '.75. The functions Y used in the approximations 

(B.5)-(B.8) were chosen to be in ML.p and one of 

(p = 2, L = 00) 

(p = 4, L = 00) 

-r2 
y(r) = _e_ 

rr 
(5.2.1) 

(5.2.2) 
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(p = 6 , L = co) 
3 r2 '1 2 27 _.....,.2 

l{r(r) = -::-<Se -r - ~ 4 + e -2") 
1T' 4 

(5.2.3) 

These functions are suggested by Beale and Majda in [7]. The integration of 

the ordinary differential equations (B.1)-(B.4) was preformed using fourth 

order Runge-Kutta. The time step, !:It = .1, was chosen sufficiently small so 

that a decrease in the time step did not significantly effect the results. 

As in the tests on method A, we measure the relative error in the first 

component of the velocity. This error is computed by 

1 

fl 2: I ulx(ih,t» 12h2]2 
in e 0" 

where u~ is the computed velocity , u~ is the exact velocity and :X(ih,t) are 

the computed point positions. We present in tables 5.2.1 and 5.2.2 the 

errors for the various choices of the parameters at times t == 1. 0 and t = 1. 6. 

These times correspond to a maximum point rotation of : and 21T' radians 

respectively. (See figures 4.2.3 and 4.2.4. ) 

We found that the errors grew at a rate which was independent of the 

number of time steps. Le. the method is stable. The requirement of the 

convergence proof. that the method be at least accurate of order h 2 + 2Q. 

does not appear to be necessary in practice. For every chOice of the param

eters for which this assumption is not satisfied, the computational results 

indicate that the method is still convergent. We are pleased with this result 

for it demonstrates that the method is more robust than the convergence 

proof. theorem 5.1. indicates. 

Although the error estimates (i)-(v) of theorem 5.1 are not strictly 

applicable, they indicate some of the features of the behavior of the error. 
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In particular, the estimates indicate that choosing the function \IF with P 

larger should decrease the error. This behavior is observed in the results. 

Also, like method A, the change in the error was very Significant. For exam

ple, at time t = 1.6 with h = .0626 and 0 = h·75 , the error for p = 2 was 8 % 

while for p = 6 it was .78 %. 

It was found that the smallest errors at time t = 1.0 are obtained using 

o = h·95 and F = 6, while the smallest errors at time t = 1.6 are obtained 

using 0 = h·75 and F = 6. Thus it appears necessary to choose a larger 0 to 

insure long time accuracy. Since the major difference in the approxima

tions at these two times is the distribution of the computational points, we 

conclude that one should choose a larger smoothing parameter when the 

computational pOints become disorganized. This same conclusion was drawn 

for method A, and we remark that quite similar behavior is observed in 

accuracy tests for the vortex method [46]. 

The conclusion that one' needs to choose a relatively large 0 to insure 

long time accuracy appears to be a characteristic feature of these methods. 

Unfortunately, this conclusion raises the question "How large should 6 be ?". 

We do not believe that the relative size of delta that we found for this prob

lem is universal, Le., we believe that the q in 0 = h q is problem dependent. 

To overcome the di.t!iculty in choosing the appropriate 0 we have devised an 

empirical procedure for determining it. This procedure is described and 

tested in section 6.1. 

In comparison with method A, the errors associated with method B were 

much smaller. For example, using the optimal parameters, at time t = 1.6, 

the error with method A is 7.3 % while the error for method B is .29 %. A pos

sible explanation for this result is the following: To calculate the solutions to 

(1.12)-( 1.14) in the vorticity- stream formulation we must evaluate density 

derivatives. In method A we evaluate these derivatives by differentiating the 
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Relative Velocity Error ( in " ) 

h = 0886 

p=2 p=4 p=6 

6 = h·9:S 5.3 0.82 0.25 

6 = h·85 8.3 1.8 0.32 

IS = h·?5 12.0 3.9 1.0 

Relative Velocity Error ( in " ) 

h - .0723 

0=2 0=4 0=6 

3.7 0.40 0.14 

6 = h·B5 I' 6.1 I 1.0 0.12 

9.8 I 2.4 0.49 

Relative Velocity Error ( in ~ ) I 
h - 0f)28 

p=2 p=4 0=6 

0= h·9:S I 2.8 0.24 0.10 

0= h·BO 4.8 0.67 0.061 

0= h'?:S 8.1 1.7 0.29 

Table 5.2.1 

Error in Velocity at t = 1.0 
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. Relative Velocity Error ( in " ) 

h"';'; .CRAS 

0=2 0=4 0=6 

6' = h· g5 5.7 3.7 5.4 

6' = h·B:) 8.3 2.7 3.5 

6' = h·75 12.0 3.9 2.1 

Relative Velocity Error ( in " ) 

h = .C723 

0=2 0=4 . 0=6 

6' = h·g5 3.9 2.4 3.7 

6' = h·B5 6.0 1.5 2.1 I 
(5 = h·75 9.7 2.3 1.1 I 

Relative Velocity Error ( in " ) 

h- }S28 

0=2 0=4 0=6 

6' = h·95 3.0 1.6 2.7 

I 6' = h'B:'J 4.8 1.0 1.4 

6' = h'~ 8.0 1.6 0.78 

Table 5.2.2 

Error in Velocity at t = 1.6 
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6. Application to a 2-D Thermal 

In this section we use method A and method B to calculate the motion 

of a 2-D or 'line' thermal. A 2-D thermal is that object which was initially a . 

cylindrical body of buoyant fluid having its axis of symmetry perpendicular 

to the gravitational force and which has moved under the effect of gravity. 

We model the motion of a line thermal by computing the solution to equa

tions (1.15)-( 1.1 8) with initial data of the form 

I 

[
PI 

Po(x,y) = 0 
for r ~ if 

for r > if 

(o(x,y) = 0 

(6.1.1) 

(6.1.2) 

Here r = (x 2 + y2) 2' and PI is a constant such that PI ~ O. For the external 

force, r, we use r = -( 0 , g ) where g is the gravitational constant. In all of 

our. calculations we use PI = -.1, g = 10.0 and if = .5. 

Due to the presence of gravity. the circular region of lighter fluid will 

rise in time. The problem is to calculate the motion of this lighter fluid. For 

a more detailed description of line thermals and of theoretical and experi

mental studies of their motion see ([25],[47],[52],[53]). An earlier numeri

cal study of the motion of a 2-D thermal is presented in [43]. 

We are interested in this problem for two reasons. The first is to gain 

an understanding of the behavior of the methods when they are applied to 

more realistic problems, i.e. problems closer to those which our numerical 

methods are intended to be useful for. The motion of a 2-D thermal is a good 

test problem for it contains the key features of convective motion and yet is 

simple in the sense that the initial conditions are easily described and there 

are no external boundaries. 

The second reason we consider this problem is to obtain an understand-

ing of the nature of the solutions of equations (1.15)-( 1.1 8) with data of the 

form (6.1.1)-(6.1.2). We remark that this problem can also be considered 
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one of calculating the motion of a vortex sheet [4] whose strength changes 

in time. From equation (1.22) we see that vorticity can only grow where 

there are density gradients. In this problem the density gradient is non-zero 

only on' the interface separating the light and heavy fluid. (The density gra

dient is a distribution With support on the interface. ) Thus. the vorticity will 

only be non-zero on the interface. i.e. the interface is a vortex sheet. We 

hope that some of the conclusions derived from this investigation will lead to 

a better understanding of the motion of vortex sheets in generaL We men" 

tion that the evolution of an infinite vortex sheet is being studied by Krasny 

[37] using methods similar to those employed here. 

We Will first present the results obtained With method B. In section 6.2 

we will present the results obtained With method A. 

6.1. Application of Method B to 2-D Thermal 

To implement method B we must choose an initial distribution for the 

computational pOints and the initial conditions for the O.D.E.s (B.2)-(B.4). 

As the method is described in section 3. the computational pOints are 

chosen to be those in on = OnAh , where 0 is a set containing the support of 

the initial density derivatives and the initial vorticity. The initial conditions 

for the O.D.E.s (B.2)-(B.4) are chosen to be Po.(ih) . pOy(ih) and ~o(ih) where 

ih e (lh. Unfortunately. we are not able to follow this procedure because the 

density derivatives of the initial conditions are distributions. We proceed as 

follows: 

We initially distribute the computational pOints uniformly With spacing 

h along the interface ~ (x.y) I x 2 + y2 = r2~. i.e. if ale are the computational 

points we let 

al; = r(cos(kh) . sin(kh» for k = 1. ... N 

where 



See figure 6.1.1. 

h - 211" 
=r N' 

109 

To select initial conditions for the O.D.E.s describing the evolution of 

the density derivatives, we set the density derivatives equal to a multiple of 

the normal to the interface of the initial data. We use 

~(CX,t,O) = POy(cx,t) = "I sin(cx,t) 

where the constant "I is chosen so that when we construct the density using 

(B.6) the total mass of the lighter ft.uid is identical to the mass of the lighter 

fluid in the initial condition (6.1.1). Specifically, we choose "I so that 

J /1'(x,O)dx = "I J ~ G:(x - cx,t)cos(cx,t)dx 
1:1,s;,.a 1:1,s;~ ,t=1 

N 
+ "I J 2: Gy(x - cx,t)sin(cx,t)dx 

1:1,s;J'A: = I 

= -PI 11" 7'"2 . 

Here we have absorbed into "I the weight factor h 2 normally occurring in the 

sum (B.5). For the initial conditions of the vorticity O.D.E.s (B.2) we use 

for Ie = 1. ... ,N 

There is a second technique for constructing suitable initial conditions 

for the numerical method. This consists of modifying the initial conditions 

(6.1.1)-(6.1.2) so that the procedure described in section 3 will work. 

Specifically, one woUld first, smooth the initial data and then approximate 

the solution of this smoothed problem. The usefulness of such an approach 

has been demonstrated in conjunction with the Fourier method [41]. A 

disadvantage of using this latter technique is that it uses more computa-

tional points than the former. This economy is our primary reason for using 

the first technique. 



110 

The other parameters that need to be selected are the function ~ and 

the parameter o. We chose. the function ~ used in (B.6) and (B.8) to be 

1 

1 2 
~(r) = -e-T 

1T" 
(6.1.3) 

where r = (x 2 + y2) ~ This choice corresponds to ~ e ML • P for p = 2 and 

L = "". 
The last parameter to be specified is the smoothing parameter O. We 

found that the proper choice of 0 was a critical factor in obtaining con

sistent numerical results. Our first, and unsuccessful, technique was to 

choose 0 in a manner suggested by the error estimates of section 5. We let 

o = h q for some q < 1. With these choices we then solved the O.D.E.s (B.1)

(B.4) using fourth order Runge-Kutta with a step size of !::.t =.1. We moni

tored the quality of the computation by computing the mass of the thermal 

at each time step. Typically, for the values of q that we tried, q = .95, q = 
.75, and q = .5, it was found that there was a time 1'. depending on q, such 

that the solution failed to conserve mass for t ~ T. Furthermore, decreasing 

h, (increasing the number of computational pOints ) did not improve· the 

results. The results of the calculation for 0 = h·?5 are shown in figures 6.1.2 

and 6.1.3. In figure 6.1.2 we present a graph of the mass as a function of 

time for different values of h. In figure 6.1. 3 we present the pOSition of the 

interface at time t = 3.0 for the values of h used in figure 6.1.2. (For clarity 

we have connected the computational points with straight line segments ). 

We see that as h -+ 0 the results are not consistent. 

An explanation of these results lies in an analysis of the manner in 

which we are approaching the solution of equations (1.15)-( 1.18) with the 

numerical approximation. We expect that as h -+ 0 and 0 -+ 0 the numerical 

approximation will converge to the solution. A-priori there is no reason to 

assume that approaching the limit h = 0 and 0 = 0 using the relation 0 = h'l 
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is appropriate for this problem. This conclusion is. based on the results of 

section 5 which depend on the assumption that the fiow and associated 

quantities are smooth. This assumption is clearly not satisfied in our prob

lem. We believe that the inconsistent numerical results are occurring 

because the limiting process is not being carried out in the correct fashion. 

To avoid this difficulty we use the the following procedure. We fix a 

value of 0, say 01, and then determine an hi, so that for all h < hi the com

putational results do not Significantly change fora ~ t ~ T. (T is selected 

arbitrarily). We then select another O. say 02 with 02 < 01' Again, we find an 

h2 such that for h < h2 the results do not Significantly change over a ~ t ~ T. 

We continue in this manner and thus construct a sequence 

(h 1.0 1) , (h 2 .02) , •.. (~.o,,). Our hope is that as the sequence (~,01;) .... (0,0) 

the corresponding numerical solutions. approach the solutions of (1.15)

(1.18) with data (6.1.1)-(6.1.2). One can view the above procedure as empiri

cally determining the appropriate approach to the limit. 

This procedure worked well. For the values of 0,; that we tried it was 

found that there was always an ~ so that for h ~ ~ the approximation pro

cedure converged. Our assessment of convergence was obtained by consid

ering three features of the computation, 

(1) The conservation of mass of the lighter fiuid for a ~ t ~T. 

(2) The convergence of the length of the interface. 

(3) The convergence of the position of the interface. 

An example of the convergence behavior for 0 = . 07 is illustrated in 

table 6.1.1 and figure 6.1.4. Table 6.1.1 shows the variation with respect to 

h at time T = 3.0 of the mass and of the arc length. Figure 6.1.4 shows the 

position of the interface at time T = 3.0 as h is varied. We mention that the 

time step, I:!.t = .1 was chosen small enough so that it had an inSignificant 



effect onthe results. 

In figures 6.1. 5 to 6.1.11 we present the results of the computation for 

o ~ t ~ 3.0 and for values of 6 = .1, .09, .OB, .07, .06, .05, .04. Each of these 

figures is the converged solution (with respect to h ) corresponding to that 

particular 6. We limited ourselves to 6 ~ .04 because for smaller 6's the 

number of points necessary to obtain convergence was very large ( > BOO ). 

In figure 6.1.11a we present a close-up of the solution corresponding to 

6 = .04 at time t = 3.0. 

From the computational results we see that as 6 ... 0 the solutions 

approach a limit solution. This result raises two interesting questions: 

What is the nature of the limiting solution? 

Is this limiting solution the solution of (1.15)-( 1.1B) with initial data 

(6.1.1)-(6.1.2)? 

We first discuss the nature of the limiting solution. The most prominent 

feature of the solutions as 6 ... 0 is the behavior of the "curl" of the thermal. 

( See figure 6.1.11a. ) As 6 tends to zero! these curls have an increasing 

number of winds. Associated with this phenomena we find that the arc 

length of the interface is increasing. In figure 6.1.12 we present a plot of the 

length of the interface at time t = 3.0 as a function of 6. We fit a curve of 

the form 1(6) = A6-Je + B and found that k = -.105. Thus we conclude that as 

6 ... 0 the interface becomes infinite in length. The curve l (6) is' the solid 

line in figure 6.1.12. This suggests that a singularity is occurring in the lim

iting solution. 

To understand the nature of this singularity we also considered the 

growth in time of the length of the interface. In figure 6.1.13 we plot the 

arclength verses time for the values of 6 tested. What we observe is that up 

to time T Rj 1 the arclength of the solution is independent of 6. After that 
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time the arclength grows linearly in time at a rate which is inversely propor

tional to O. We conjecture that the time T is a critical time, the time at 

which a singularity occurs in the flow. Before time T the limit solution is 

well behaved, after that time we expect that the interface of the limit solu

tion becomes infinite. 

We are also interested in the 'size' of the singularity. We note that as 

o ... 0 the solutions agree over an increasingly larger' part of the thermal. 

This is illustrated in figures 6.1.14 where we have superimposed the solutions 

for 15 =.1 and 0 = .09 and the solutions for 0 = .05 and 0 = .04. These 

results suggest that the limit solution is well represented by the finite 0 

solution except for in the 'eye' of the curl. We conclude that the support of 

the singularity is small. possibly confined to one point. 

The behavior of the vorticity is illustrated in figure 6.1.15. In this figure 

we present perspective views of the absolute value of the vorticity at time t 

= 3.0 for solutions corresponding to 0 = . 1, 0 = .07 and 0 = .04. The plots 

were obtained by evaluating at the grid pOints of a 90 x 90 grid the approxi

mation of the vorticity given by (3.11). This information was then used in the 

perspective plotting routine in [23]. From the results we see that, like the 

arc length. the magnitude of the vorticity increases as the smoothing 

parameter 0 ... O. We also note that the largest growth of the vorticity is 

concentrated in the "eye" of the curl. To illustrate the growth of the vorti

city as 0 ... 0 we present in figure 6.1.17 a graph of the magnitude of the vor

ticity as a function of 15. We fit a curve of the form v (0) = c + D o-.e and 

found that k = -2.028. Thus we expect that as 0 4 0 the vorticity becomes 

unbounded. 

Based on these results we conclude that the limiting solution is a singu

lar one. The singularity most likely occurs at a point and is characterized 

by an infinite value of vorticity there. The interface of the limit solution also 
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appears to be infinite; Other features of the solution deserve further study,. 

in particular a more detailed look at the structure of the singularity and 

how the singularity evolves in time . 

. The second question, the relation between the solutions obtained asa 

limit of our numerical solutions and the solutions of (1.15)-( 1.18) with data 

(6.1.1)-(6.1.2), is a difficult question to answer. One must be cautious, as 

there are examples of numerical schemes which are consistent and conver-

gent, but converge to erroneous solutions. (See [33]). We are not able to 

answer this question, but we propose the following investigation to under

stand the limiting process: When we fix «5 and let h -- 0 we expect that we are 

converging to the solution of 

apz . 
ijt+ 116·gradpz = -(U16)zP: - (U26)zPy 

apy _ . 
7it+ 116·gr adpy - -(U16)1IPZ - (uu)yPy 

P = Gz • 'f6 • pz + Gy • 'f6 • P1I 

~f + 116'gr~ = pyF l - pz F2 

'116 = K ·'f6 • { 

(6.1.4) 

(6.1.5) 

(6.1.6) 

(6.1.7) 

(6.1.8) 

If the solutions of (1.15)-( 1.18) are sufficiently smooth then this convergence 

can be proven - in fact the result follows immediately from theorem 5.1. We 

call the equations (6.1.4)-(6.1.8) the delta equations aSSOCiated with (1.15)

(1.18). The question of the limit of the numerical solutions as «5 --+ 0 ( 

assuming that convergence with respect to h has been achieved) reduces to 

the question of the behavior as «5 -- 0 of the solutions of the delta equations. 

An investigation of this type is very similar to the study of the " model " 

problem for finite difference equations ([34],[54]). Certainly a satisfactory 

solution to this problem concerning the delta equations will aid in the under-

standing of the limiting process. 

• 
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We have not carried out this investigation, but we note that our com

puted results can be used to ascertain properties of the solutions of the 

delta equations. In particular we see that the gross features of the flow, the 

distance traveled by the thermal and its general shape are well represented 

by relatively large <5. This result has several implications. The first is that it 

indicates that one need not use an excessively small delta ( and hence many 

computational points ) to obtain the general features of the solution. Also 

the solUtions of the delta problem appear to be non-diffusive. If the solu

tions were diffusive we would expect that that the distance traveled by the 

thermal to be dependent upon <5. Another observation is that even though 

the limit solution is quite complicated, this limiting solution does not con

taminate the finite delta solution. An example of a situation where this does 

not hold is in the use of Fourier methods to solve problems whose solutions 

have jump discontinuities. If we consider an approximate solution to be one 

consisting of a finite number of modes, then, due to Gibbs phenomena, the 

existence of a jump discontinuity will contaminate the approximate solution. 

These observations indicate that the delta-equations have many desirable 

approximation features. 

We remark that the procedure for determining hand <5 used above can 

be used for other problems. For example, in the test problem of section 4 

and section 5, we let <5 = h q . This choice was based on error estimates for 

the approximations used in the methods. Other than the fact that q should 

be chosen such that 0 ~ q < 1, the precise value of q was not specified by 

the error estimates. One could use the procedure described in this section 

to determine the appropriate q. To do this one would fix a value of 0, say 01, 

and then find an hl such that for h ~ hl the computed solution didn't 

change. One would then select another 02, with 02 < 01, and determine an h2 

such that for h < h2 the solution didn't change. Continuing in this manner a 
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set of values (h1.01). (h 2 .02) • ...• (ht.Oi) are determined. By fitting a 

curve of the form 0 = h q to these pOints. an appropriate value of q could be 

found. 

This completes our discussion of the application of method B to com

pute the motion of a 2-D thermal. In the next section we describe the 

results of applying method A to the same problem. 

• 



117 

1." 

•. s • 

,. .. " 
'.4' 

'.C!8 

•. ee 

-•. a. 

-'.4' 

-'.68 

-•. s. 

-1." 
-1.88 .... s. -'.6' -'.4' -•. a. .... ..a. ..... '.6' '.88 1." 

Figure 6. 1. 1 

Distribution of Computational Points for Method B 



118 

'.1'" 
' •• 858 

J 

•. '9H, " ,. 
.1 I . • 1 

' .• ss. I . . 1 I . . 1 
I . 

' .• see ' 1 I .' . 
:=-;~ . • ': 1 

M H 
A 

' •• 1S. 
\ i \i. s . i 
\ . :j : 

s . I " .. 
\. :j: 

'.e?" ~ .. ." 
1: .. 
f-. 

'.865' 

'.8688 

'.1558 

8.8588 

8." 8.as '.56 8.a4 1.la 1.... 1.68 1.96 a.a.. a.sa a.a8 

"t ... 

N = 200 N = 300 N = 400 

Figure 6.1.2 

Conservation of Mass in Time 

h = .!I.... 
N 



119 

Figure 6. 1.3 N = 200 

Interface Position at t = 3.0 

o = h·75 h = .!!:.... 
N 

N = 300 

N = 400 



N Mass Arc leMth 

150 7.641 x 10-2 9.768 

250 7.855 x 10-2 9.824 

350 7.854 x 10-2 9.839 

450 7.854 x 10-2 9.846 

Table 6.1.1 

Fixed Delta Convergence atl = 3.0 

6 = .07 

Initial Mass = 7.8539 x 10-2 
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Figure 6.1.4 
N.= 150 

Interface Position at t = 3.0 

0=.07 h = .!!:.... 
N 

N = 250 

N = 350 



t = 1.2 

t = 0.6 

t = 0.0 

Figure 6.1.5 

Interface Position as a Function of Time 

Q = .1 
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Figure 6.1.6 

Interface Position as a Function of Time 

<5 = .09 
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t = 1.2 t = 3.0 

t = 2.4 

t = 0.0 t = 1.B 

Figure 6.1.7 

Interface Position as a Function of Time 

6 = .08 
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Figure 6.1.8 

Interface position as a Function of Time 

6 = .07 
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t = 3.0 

t = 2.4 

t = 1.8 



t = 0.0 

Figure 6.1.9 

Interface Position as a Function of Time 

c5 = .06 

126 
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t = 1.8 



Figure 6.1.10 

Interface Position as a Function of Time 

0=.05 
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t = 0.0 

Figure 6.1.11 

Interface Position' as a Function of Time 

6 = .04 
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Arc Length as a Function of 6 at t = 3.0 
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Arc Length as a Function of Time 
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6.2. Application of method A to a 2-D Thermal 

In this section we discuss the application of method A to the problem of 

calculating the motion of a 2-D thermal. As in section 6.1 we calculate this 

motion by solving equations (1.15)-( 1.18) with initial conditions (6.1.1)

{6.1.2}. Our hope is that the results obtained with method A will be compar

able to those obtained with method B. 

We encounter two difficulties in implementing method A. The first 

difficulty is that which was caused by the initialization procedure for the 

method as described in section 3. In that procedure, the initial computa

tional pOints are distributed on the intersection of the support of the initial 

density with the nodes of a rectangular grid, Qh. The initial density distri

bution of the 2-D thermal is radially symmetric, but for the values of h ( the 

initial mesh width ) that we were able to use, this symmetry was not well 

represented by the distribution of computational points. In figure 6.2.1 we 

show the initial distribution of computational points when distributed 

according to the procedure of section 3. Since the motion of a 2-D thermal 

is unstable, the effect of this rather coarse approximation to the initial data 

was very significant. Although the resulting apprOximate solution with this 
,. 

discretization may be closer to the actual physical phenomena, where per-

turbations on the boundary are to be expected, it is unfortunately further 

from the computational results obtained with method B. To facilitate a 

comparison between the two methods we choose to distribute the computa-

tional points in a way which preserved the initial radial symmetry. An accu-

rate implementation of this initialization requires some care, and in section 

6.3 we describe a Suitable procedure. In figure 6.2.2 we show the distribu-

tion of computational points obtained using the results of section 6.3. 

The second difficulty is more fundamental, having to do with the 

apprOximations made in method A. From equation (A.2) we see that the 
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vorticity grows where the derivatives of ph (x ,t) are non-zero. Consider the 

approximation of method A at time t = O. If we initialize as described in sec

tion 3 ( with a radially symmetric distribution of computational points) then 

this dictates putting computational points only where the density is non-

zero. Thus we place points inside a circle about the origin of radius T. If we 

consider the derivatives of ph (x ,t) based on this distribution of computa

tional pOints, we find that they are non-zero outside the circle of radius T. 

Since the vorticity grows in proportion to density derivatives, we find that 

there will be vorticity growth outside the circle of radius T. In our approxi-

mation procedure, there are no computational points outside this circle and 

so the vorticity growth will nat be approximated. The essence of the prob

lem is that the support of the density ( which determines the placement of 

computatiorial points) and the support of the dehsity derivative approxima-. 
tion ( which determines the vorticity growth) do not coincide. 

In our initial attempts to use method A to calculate the motion of a 2-D 

thermal this problem was not noticed. The result was that the solutions 

mo.ved only about two-thirds as fast as those calculated with method B. 

Thus the problem can have significant effects. We remark that for problems 

with smooth solutions this difficulty does not appear. In this case the sup

port of the density and density derivative approximation will be very close. 

It is for this reason that the difficulty was not detected in the test problem 

of section 4.2. 

Our solution to this problem is to first smooth the initial data (6.1.1) 

and then apply method A The initial smoothing that we use is 

-r2 ",' 1J-2 
Po(x',y') = -2 e" Po(x,y)d:r:dy 

1i'/ . 
(6.2.1) 

where r2 = (x' - x)2 + (y' - y)2 and l' is a parameter to be chosen. We use 

this procedure because we expect that the solutions of (l.15)-( 1.18) with 
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smooth initial data will still be smooth. Thus, as in the test problem of sec-

tion 4.2, we expect the support of the density and the density derivative 

approximation will coincide.' This reasoning is not rigorous, but the compu

tational results indicate that there is some merit to it. 

With the above considerations taken into account we then approximated 

the motionol a 2-D thermal using method A. We chose the functions in (B.6) 

and (B.8) to be 

r2 
. 1 2 1--

-Ir( T) :: 1T (2e -r - ze 2 ) (6.2.2) 

which corresponds to -Ir t ML , P for L:: 00 and p :: 4. ( We assumed that the 

solutions are smooth so that a higher order cut-off will increase the accu

racy of the computation, cf. the results of section 4.) For the smoothing of 

the initial data we use 7 :: .1 in (6.2.1). The profile of this initial density dis-

tribution is shown in figure 6.2.3. We choose this 7 because it yields an ini

tial density approximation which is close to the initial density approximation 

obtained with method B with c5 :: .1. Similarly, for the smoothing parameter 

c5 in (A.4)-(A.6) we fixed the value of c5 at.1. Again, the reason for this choice 

is to match the parameters with those of method B with 6 = .1. With these 

choices we then solved the O.D.E.s (A.1)-(A.3) with M =.1 for' several 

different numbers of pOints N. 

For the calculations with N > 400 the computed solutions appeared to 

have converged. In figures 6.2.4 we present the pOSitions of the computa

tional pOints for times between t = 0.0 and t = 3.0 for N = 638. One notice-

able feature of these figures is the 'tail' of the thermal that forms. Upon 

closer inspection, it is found that the points in the tail represent very little 

density, and so give a misleading representation of the position of the ther-

mal. To represent the position and shape of the thermal more accurately 

we present contour plots of the density in figure 6.2.5. These contours were 
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obtained by evaluating the approximate density ph (x.t) of (3.12) on a rec

tangular grid and then using the contour plotting routine given in [23]. To 

facilitate a comparison between these results and the results obtained with 

method B we present in figure 6.2.6 the contours associated with the solu

tion which is depicted in figure 6.1.5. 

Comparing figures 6.2.5 and 6.2.6 we see that method A agrees rather 

well with method B. In particular. the general shape of the thermal and the 

distance traveled are the same. It is difficult to compare the resolution of 

the two methods from the contour plots. but we note that method B gives 

sharper contours. It is clear from the results depicted in figure '6.1.5 that 

method B is superior in resolving the fine scale features of the solution. This 

superiority is certainly expected. because in the implementation of method 

A we are forced to smooth the problem and thus the solution has no shar

ply defined interface. Although we have presented the results for only one 

choice of the parameters. other computational experiments suggest that 

these results are indicative of the results that would be obtained with other 

choices of the parameters. 

It was found that the calculation of the motion of the thermal can be 

continued for a much longer time with method A than with method B. As an 

example of this we present in figure 6.2.7 the results obtained with method A 

for the above parameter choices and for times up to 6.0. Using an 

equivalent parameter choice and number of computational pOints. method B 

yielded meaningful results up to time t = 4.0. We explain this difference in 

ability by considering the nature of the apprOximations made in each of the 

methods. The success of method B depends on an accurate calculation of 

the density derivatives. For the problem of the motion of a 2-p thermal. this 

requirement translates into an accurate calculation of the motion of the 

interface. The most prominent feature of the 2-D thermal is that the inter-
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face becomes increasingly complicated as time progresses. Thus to com

pute this motion accurately. method B needs a large number of computa

tional points. If there are an insufficient number of points then the results 

quickly become meaningless. (In this problem this was characterized by a 

failure to conserve mass.) In method A. the density derivatives are com

puted by differentiating a smoothed approximation to the density. In 

essence. the density derivatives that enter into the calculation are 

smoothed or averaged density derivatives. Thus. the presence of a very 

complicated distribution of density derivatives will not necessarily adversely 

affect the computation. 

The difference in methods can also be explained by considering the 

associated delta-equations. For method B they are given by (6.1.4)-(6.1.8) 

and for method A they are given by 

~1 + uo' grad P = 0 

~? + uo' grad ~ = curl(PoF) 

Po = '¥o • P 

U o = K • '¥ 0 • ~ 

(6.2.3) 

(6.2.4) 

(6.2.5) 

(6.2.6) 

If we compare equations (6.2.4) and (6.1.7). then the difference in the two 

methods becomes clear. In method A. the vorticity growth depends upon 

the smoothed density derivatives. while in method B the vorticity growth 

depends upon the actual density derivatives. For problems which have very 

complicated distributions of density derivatives. the approximation used in 

method A may be more appropriate. 

Although one can continue the calculation longer with method A. we are 

faced with the question of the validity of the results. This is a difficult ques

tion. and we have not yet arrived at a satisfactory answer. We remark that 
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the solution which is depicted in figure 6.2.7 has some of the features of 

experimentally observed thermals. In particular, it is observed [52] that 

thermals split into two counter-rotating structures and that the bulk of 

mass of the thermal is concentrated in the rear of the thermal. This 

behavior is clearly seen in figure 6.2.7. More extensive computations should 

allow for other comparisons to be made. Another approach to the assess

ment of the computational results is to analyze the associated delta

equations (6.2.3)-(6.2.6). For a fixed delta as h -+ 0 the computed solutions 

can be expected to converge to the solutions of the delta-equations. (The 

reason for considering this type of convergence is that it is easier to obtain 

it computationally, ct. the corresponding results in section 6.1 for method 

B) Thus, understanding the relation between the delta-equations and the 

equations. (1.15)-( 1.18) will help illuminate the nature of the numerical 

approximations that are constructed with method A. 
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Figure 6.2.5 

Contours of Density Method A 

Increments of -.02 starting at -.02 
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t = 0.6 

Figure 6.2:6 

Contours of Density Method B 

Increments of -.02 starting at -.02 
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t = 1.8 



t = 3.0 

Figure 6.2.7 

Contours of Density Method A 

Increments of -.02 starting at '-.02 
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6.3. Initialization of method A for non-rectanguiar grids 

In this section we discuss an initialization procedure for equations 

(A.l)-(A.4) when one wants to use computational points other than those 

which are initially distributed on the rectangular grid Qh. The computa

tional pOints will usually be distributed in a manner dictated by the 

geometry of the initial conditions as well as accuracy considerations. To 

simplify the presentation we discuss the procedure for the numerical 

scheme used in the model problem of section 2: The application of the tech-

nique to (A.l)·(A.5) follows easily. 

Consider the approximation used in the model problem of section 2, 

Ih(X,t) = 2; \{t6(X -x(ih,t» I(ih,t) h 2 

Vr.~ri' 

where x (ih, t) and I (ih, t) are solutions to 

d:r:(ih,t) 
dt 

u(x (ih,t» 

dl (ih,t) - 0 
dt 

x(ih,O} = ih 

I(ih,t) = lo(ih) 

(6.3.1) 

(6.3.2) 

(6.3.3) 

Thus the computational points x (ih ,t) are those that originate on the 

rectangular grid Qh = 0nAh. Let ~a.d denote another set of computational 

points, not necessarily distributed on a rectangular grid. With this change, 

the appropriate modification of formulas (6.3.1)-(6.3.3) is 

Ih(X,t) =2;\{t6(X -X(CXi.t» f(cx\,t}W;. 
~ 

where x(~,t) andf(~.t) are solutions to 

d:r:(~,t) 

dt 

(6.3.4) 

(6.3.5) 
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dl (ai,t) 
dt = 0 (6.3.6) 

and Wi are weights that depend upon ai.. To determine the weights 1.V.t and in 

part determine the ex;. we Will consider an error estimate for (6.3.4). As in 

the estimate of (6.3.1) that is given in section 2, we write the error in using 

(6.3.4) as a sum of two errors, 
<' 

Ih -I = (lh -I • 'lt6) + (f ·'lt6 - /) 

= ~AJ + ~BJ 

The error term A can be viewed as the error in approximating the integral in 

f • 'lt6 by a discrete sum, while term B can be viewed as the error in approx-

imating the function f by f convolved with the approximate delta function 'ltc5 ' 

The error term B is analyzed as in section 2 and is found to not depend on 

the choice of computational points. It is in term A that the choice of compu

tational pOints makes a difference. If we use the map x(a,t) to change vari

ables in the integral in term A we find, 

A = l:'ltc5(X - x (ai ,t)) I (a;. ,t) Wi'- f'lt6(X ..,.. x')! (x',t )dx' 
~ 

= l:'lt6(X - x (ai.t ))! (ai. ,t)Wi. - J'lt6(x - x(a,t))f (x(a,t ),t )da 
Q( 

Since I (ai,t) =! (x(ai.,t),t), we recognize term A as the error in using an 

integration formula of the type 

(6.3.7) 

to approximate the iritegralover R2 With respect to a of the function 

g (a) = 'lt6(x - x(a,t ))1 (a,t) 

From this we conclude that ~ should correspond to integration weights and 

ai. to integration points of the approximation (6.3.7). Any integration 

... ~ 
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formula of type (6.3.7) will work, so we find that there are many possible 

choices of the ai's and Wi'S. We use this freedom to choose the computa-

tional points in a way which makes better use of the structure of a particu-

1ar problem. 

As an example of the use to the above analysis we discuss a possible 

choice of the computational points when the initial distribution f o(x,y) is 

radially symmetric. For the model problem, since f is transported by the 

flow, we have that f (a,t) = f o(a). Thus to make the error in term A small, 

we seek integration points and weights so that 

(6.3.8) 

is well approximated by a discrete sum of the form (6.3.7). Let R denote 

that radius such that f o(a) = 0 for I a I > R. (We are assuming that f 0 has 

finite support). We rewrite (6.3.8) using polar coordinates and find, 

It 2TT 

J-It6(x -x(a.t»fo(a)da = J !-It6(x -X((T,").t)fO(T) T d:r d" 
o 0 

(6.3.9) 

The reason for writing (6.3.8) in polar coordinates so that when we approxi-

mate the iterated integral in (6.3.9) with one dimensional integration 

schemes, the resulting integration formula will be radially symmetric. We 

approximate the integral on the right hand side of (6.3.9) using Gaussian 

quadrature for the integration in the r coordinate and using the trapezoidal 

rule for the integral in the " coordinate. Specifically. let qz and TZ, 

l = 1 .... K. denote gaussian quadrature weights and points for an integral 

over the interval [0. R]. (Se e [1].) 

Let h,,(l) = N2(~) where N(l) is some number depending on 1. then 
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(6.3.10) 

In the notation for (6.3.7) w~ are using points ~cxd given by, . 

l=l,"'K 

and weights 

j = 1, ... ,N(l) 

(6.3.11) 

(6.3.12) 

In figure 6.3.1 we present the distribution of computational points given by 

the above procedure when 'R2 = .5 The significance of using the choice 

(6.3.10) is that the computational pOints are distributed in concentric cir

cles about the origin. For radially symmetric data we expect that this distri-

. bution will have smaller errors than if we had used the trapezoidal rule to 

approximate (6.3.8). The accuracy of using (6.3.10) can be analyzed using 

error estimates for the resulting integration formula. We do not pursue this 

approach here, but leave such an analysis for future work. 

The advahtage of using (6.1.10) was demonstrated in the calculation of 

section 6.2. In that calculation the use of computational points that were 

not radially symmetric had a harmful effect on the results. We also tested 

the distribution of computational pOints by using these pOints in the calcula

tion of section 4.2. For an equivalent number of points, the errors in using 

(6.1.10) were smaller than using points initially distributed on a rectangular 

grid. In particular for the number of pOints approximately equal to 300, 

the relative error in the velocity was 5.9% using initialization (6.1.10), while 

the error was 12% using the initialization of section 4.3. 

.• a 
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7. Discussion and Conclusions . 

We have presented two numerical methods for calculating the motion of 

an incompressible fluid of sightly varying density. We have also presented, 

mostly by way of example, what we believe to be a general technique for con

structing and analyzing numerical algorithms for calculating the solutions of 

incompressible ·flow problems. The methods are grid free and, in view of the 

results of section 6, are capable of representing very complicated fluid 

motion. The methods give "smoothed" approximations to the solutions of 

the fluid equations, but this smoothing does not accumulate and contam

inate the numerical approximation It is this property that is the distinctive 

advantage of these methods over finite difference methods. 

We have also shown that the theoretical techniques developed for the 

vortex method ([5],[6],[8],[19],[30]) can be used to analyze more general 

numerical methods. In particular, we have used these techniques to obtain 

convergence results for the methods proposed here. Also, our use of these 

theoretical techniques in sections 4 and 5 to help select parameters for the 

numerical methods demonstrate their power and utility. This utility is also 

demonstrated in section 6.3 where we use the theoretical techniques to dev

ise the proper numerical procedure when the initial computational pOints 

are on a non-rectangular grid. 

Of the two methods, method B appears to be superior. It was more 

accurate on the test problem of section 4.2 and was much better at resolv

ing the fine scale features of the motion of a 2-D thermal. Although method 

A is less accurate than Method B, it has the property of being able to calcu

late the long time motion of the 2-D thermal with fewer pOints. 

.-

.... 

. .} 
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As for the efficiency of the methods. they both require O(n2 ) operations 

for each time step, where n is the number of computational points. Com

pared to grid techniques which usually require O(m) or O(m log m), where 

m is the number of grid point~. the methods presented here may seem to 

be inefficient. Such a conclusion is not necessarily valid since one typically 

needs much fewer computational points using these methods than with grid 

techniques to resolve the fine scale structures of the flow. This fact is illus

trated by figure 7.1. In this figure we have superimposed a 33 x 33 grid over 

the computational results obtained with method B using an equivalent 

number of pOints. Clearly the fine scale features of this solution would not 

be resolved with a finite difference method using such a grid. We mention 

that the operation count of the methods presented here may be reduced if 

one uses particle-grid techniques such as Cloud In Cell ([ 18]) or its variants 

([2].[10],[12].[35]). ( For a review of particle-grid methods see [24].) 

Although using such algorithms leads to a loss of accuracy in the calcula

tion. their use can reduce the amount of computational labor enormously . 

. Another aspect of the implementation of these methods is the choice of 

the function ~ and the smoothing parameter a. We believe that for smooth 

problems, the conclusions drawn from the theoretical analysis are reliable. 

In particular. using ~ in ML.p with P > 2 is beneficial. Also. letting a = hg for 

o < q <1 . where h is the initial mesh width. seems a proper choice. For 

non-smooth problems the results of section 6.1 indicate that these choices 

may not be appropriate. For method B, the results obtained with ~ in 

ML.P for large p were not substantially better. Also using the relation 

c5 = h g to approach the limit (a.h) ~ (0.0) gave unsatisfactory computational 

results. We would recommend determining the relation between h and 6 by 

the empirical procedure described in section 6.1. We remark that the 
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empirical determination of the relation between hand 6 may also be of use 

in the vortex method. especially when the smoothness of the solution is not 

known. 

We have mainly concentrated on the numerical methods. rather than on 

the problems which they are designed to solve. For example. our interest in 

the motion of a 2-D thermal was primarily to investigate the numerical 

methods rather than the behavior of the thermal. The next logical step is to 

concentrate on the physical phenomena. We hope that these methods will 

be useful in obtaining an understanding of the flows associated with thermal 

convection. One possible application may be in the study of turbulent heat 

transfer. 

There are other directions for future work. We believe that method A 

can be improved. We are currently investigating another method. similar to 

method A. that is more accurate and avoids the problem in placing compu

tational points that was described in section 6.2. We are also investigatIng 

ways to incorporate the effects . of diffusion. surface tension. and of solid 

boundaries into the methods. 

We find the existence of the singularity of the equations. as revealed by 

the computational results of. method B. very intriguing. This singularity 

deserves more study. In particular. the similarity between two dimensional 

flows of variable density and three dimensional flows of constant denSity sug

gests that there may be some relation between the singularity obtained here 

and that obtained by Chorin in [16]. We also mention that preliminary com

parisons indicate that the results obtained here are consistent with the 

results obtained by Krasny [37] for the singularity occurring in the motion 

of an infinite vortex sheet of constant strength. 

." 

; 
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As for the general technique presented here, a comparison needs to be 

made between results obtained with the methods presented here and those 

obtained with other particle techniques such as those described in 

([281,[ 44]). Lastly, the behavior of the delta-equations (6.1.4)-(6.1.8) and 

(6.2.3)-(6.2.6) as t5 -+ 0 have yet to be investigated. The results of such an 

investigation should illuminate the properities of the approximate solutions 

that are constructed using these methods. 
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