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Abstract 

Mechanisms for generating the net baryon number of the universe which do not 

involve grand unificatlon are considered. Detailed calculations in a simple extension 

of the standard SU(3) X SU(2) X U(l) model are used to show that physics at 

temperatures of order 1 Te V can account for the observed baryon to entropy ratio. 

Some comments regarding alternatives to this simple model and some speculations 

concerning the implications for cosmology are offered. 
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I. INTRODUCTION 

In this paper we will consider mechanisms for generating the net baryon 

number of the universe which do not rely on grand unified theories or on the existence 

of super heavy particles with masses of order 10!4 GeV. Instead we will concentrate on 

mechanisms by which particles in the 1 TeV mass range could be responsible for the 

. presently observed baryon number. 

In the context of the standard big bang cosmology,! the present baryon density 

nB can be determined experimentally by two methods2 In the first of these, galactic 

masses and the deceleration parameter are used to determine lower and upper limits, 

respectively, for the mass density P of the universe. Assuming that baryons dominate 

the mass of the universe and using the observed photon density ny of the 3'K 

background radiation, these limits correspond to the constraint nB/ny = 10- 8.9 ±1.S, 

The large uncertainty here is due to uncertainties in the Hubble constant 

(HO = 50 - 100 km sec- 1 Mpc- I) and in the ratio Q = p/pc (Q = .005 - 2) of the mass 

density to the critical density Pc = 3Ho 2/SnG
N 

(where G
N 

denotes Newton's constant). 

Recent observations3 suggest that p is near Pc with much of the mass in a form other 

than baryons. For this reason, we will use the value nB/ny = 1O-9.9±.9 obtained from 

big bang nucleosynthesis.4 The ratio nB/ny is not constant as the universe cools since 

the density of photons is increased by processes such as e + e - annihilation and since 

baryons and antibaryons were both roughly as abundant as photons at temperatures 

greater than 1 GeV. However, if baryon number is approximately conserved, the ratio 

t.nB/s of the net baryon number density t.nB = nB - nB to the entropy density swill 

be constant unless phase transitions or non·equilibrium reactions generate an 

appreciable amount of entropy. At the present, s 7.02ny so that, neglecting the 

present density of antibaryons, .:lns's = 1O-IO.8±.9. 
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If baryon number (B) is absolutely conserved, the net baryon number of the 

universe must be chosen as an initial condition, and the present value of t:mB/s is 

inexplicable. However, if baryon number is not conserved, a universe with zero initial 

excess of baryons over antibaryons may evolve into one with ~nB;t: 0 provided that 

two additional criteria are satisfied.2.5-7 Firstly, charge conjugation (C) and time 

reversal (CP by CPT) must be violated, and the violations of these symmetries must 

be manifest in asymmetries in the cross-sections or decay rates for baryon number 

violating reactions. Secondly, some species of particle which participates in ~B ;t: 0 

reactions must be out of thermodynamic equilibrium since ~nB vanishes in 

equilibrium when baryon number is violated. Indeed, in the absence of appreciable 

deviations from equilibrium, the dominant effect of ~B ;t: 0 reactions is to damp any 

non-zero initial value for ~nB' These particles must interact rather weakly to prevent 

decays or annihilations from maintaining equilibrium as the temperature falls below 

their mass. In particular, the reaction rates for these processes must be less than the 

expansion rate fuR = - -rrr at temperatures T of order the particle mass. (Here R is 

the Robertson-Walker scale factor and dots denote time derivatives.) The assumption 

that ~nB 0 prior to the era in which CP and B violating asymmetries generate 

baryon number will be justified ifany primordial baryon number is diluted by entropy 

gererating phenomena or damped by ~B ;t: 0 reactions. Following this era, ~B ;t: 0 

interactions will decouple so that ~nsls remains roughly constant between the time of 

baryon generation and the present. 

Shortly after the introduction of grand unified theories8 (GUTs), it was realized 

that these theories had all the features needed to account for the observed baryon 

number, and several authors have explored this possibility.z,5-7,9 For example, the 

simplest GUT (SU(5) with 24 and 5 dimensional Higgs representations and three 

generations) has baryon number violation in the decays of super heavy ([014 GeV) 

gauge hosons and Higgs scalars and CP violation from phases in the Yukawa 

.-
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couplings of the Higgs. Unfortunately the baryon excess obtained in this minimal 

model (.:~nB/ny - 10- 16) is too small to account for that observed. to However, more 

complicated GUTs with additional fermion or Higgs representations can produce a 

sufficiently large baryon excess. 

In this paper we adopt a radically different approach and explore mechanisms 

for generating ~nB which do not involve superheavy particles. Although GUTs can 

account for the observed excess, there are several reasons to consider alternative 

mechanisms in which baryon number is generated at lower temperatures than in 

GUTs. Because baryon generation in GUTs takes place at very high temperatures, 

the baryon excess produced by GUTs is vunerable to dilution by entropy generating 

phenomena which may occur after the GUT phase transition. For example, if 

inflation 11 were to occur after the GUT phase transition, the baryon excess generated 

by GUTs would be diluted, and it would be necessary to create the observed excess at 

lower temperatures. Other potentially dangerous sources of entropy incl ude non-

inflationary phase transitions or non-equlibrium decays of particles at intermediate 

mass scales, for example, in technicolor theories. 12 Also, we note that in some 

supersymmetric models of inflation, the phase transition does not reheat the universe 

sufficiently to produce superheavy particles abundantly. 13 In such models, baryons 

must be generated by a mechanism which does not involve superheavy particles_ 

Finally, given the failure to observe proton decay,14 the experimental evidence for 

GUTs is limited to the prediction of the weak mixing angle. 15 With this in mind, it is 

worthwhile to consider alternatives to GUT baryon generation, especially since the 

existence of these alternatives may open new possibilities for the evolution of the 

universe. 

We will now consider the general features needed for baryon generation at a 

temperature of order 1 Te V. In the standard big bang cosmology, the expansion rate is 

given byl 

'" 
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~ =- ~~7T G/~P 
( 1.1) 

The energy density p is assumed to be dominated by relativistic species so that, at a 

temperature T and in units where Boltzmann's constant equals one, 

p= 1r:2..~* T'I 
30 

llo.2.) 

Here g. is an effective number of degrees of freedom equal to the number of bosonic 

degrees of freedom plus 7/8 of the number of fermionic degrees of freedom. In the 

standard SU(3) X SU(2) X U(1) model with a single Higgs doublet and three 

generations of quarks and leptons, we have g. = 106.75 and 

R 
~ 

. 
T 

T 
=- T2.. 

'1< <'(03) 

with K = 7.15 X 1017 GeV. Particles with a mass M - 1 TeV which are not neutral 

under SU(3) X SU(2) X U(l) have reaction rates for annihilation or decay which are 

at least of order a2M at temperatures of order their mass. Because these rates are 

much larger than the expansion rate for T - 1 TeV, any model which hopes to 

generate ll.ns at this temperature must contain particles with no SU(3) X SU(2) X 

U(1) gauge interactions. (This explains the failure of the model of Ref. 16.) In the 

next section, we will consider the generation of baryon number in an extension of the 

standard model which contains neutral singlet Majorana fermions. 

Of course, to generate a baryon excess, baryon number must be violated, and 

the presence of ll.B ,: 0 interactions at low energies is severely constrained by the 

failure to observe any ll.B ,: 0 processes in nature. Although the strongest of these 

constraints is that from the proton lifetime,14 this constraint is easily satisfied by 
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making the proton absolutely stable. In the models considered here, lepton number 

conservation is imposed as a symmetry, and all particles beyond those present in the 

standard model have masses greater than 1 GeV. All final states for Ill.BI = 1 nucleon 

decay are then forbidden by either lepton number or kinematics. This solution is 

somewhat unattractive, both because it involves imposing a global symmetry by hand 

and because the presence of baryon number violation without lepton number violation 

is rather unnatural from the perspective of grand unification. However there are 

examples of GUTs in which only one of baryon and lepton numbers appears as a global 

symmetry of the effective theory at energies much less than the GUT scale. 17 

In addition to Ill.BI = 1 nucleon decays, the presence of baryon number violation 

may lead to potentially disastrous rates for Ill.BI 2 transitions such as neutron-

antineutron oscillations, Ill.BI = 2 nucleus decays and pp -+ K + K +. Such processes 

are not forbidden by lepton number and proceed through six-quark operators of the 

generic form C(qcq)3 where C is a model dependent.coefficient. The failure to observe 

free neutron-antineutron transitions with an oscillation time less than 107 sec 

(Ref. 18) imposes the constraint 

c <7\ I (Cf-c'f)3/ n > -3:1-
<. 7x (0 GQ.V (I. '1) 

In the bag model, the matrix element appearing here has been estimated to be 

< nl(qcq)3In> '" 10-5 GeV6 with the exact value depending on the spin structure of 

the operator,19 and the resulting bound on the coefficient is C s; 7 X 10- 27 GeV5. 

The failure to observe Ill.BI 2 decays of nuclei may also be interpreted as a 

constraint on the coefficients of six-quark operators. Present data20 limit the lifetime 

for such a decay to be greater than 1032 years and lead to the constraint C s; 10 - 27 

Ge V5 with some uncertainty arising from nuclear wavefunctions. 
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In the next section, we consider the generation of baryon number in a simple 

extension of the standard model. A detailed discussion of this model leads to rate 

equations for the evolution of llnB, and these equations are numerically integrated to 

show that the observed value of llnB/s can be obtained from processes occurring at 

temperatures of order 1 TeY. In Section III, we discuss alternatives to the model of 

Section' II with emphasis on the use of supersymmetry to motivate the appearance of 

new particles. "Finally, Section IY summarizes the conclusions and speculates on 

possible implications for cosmology. 

• 
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II. BARYON GENERATION IN A SIMPLE MODEL 

In this section, we consider the generation of the cosmological baryon number 

in a simple extension of the standard SU(3) X SU(2) X UOl model which contains a 

single weak doublet Higgs field and three generations of quarks and leptons. As 

note~ in the introduction, the generation of baryon number requires the existence of 

additional particles and interactions not present in the standard model. In particular, 

baryon number violating interactions can produce a net baryon number at 

temperatures of order 1 TeY only if some particle species is neutral with respect to 

SU(3) X SU(2) X U(1). Here this requirement will be met by the inclusion of two 

massive Majorana fermions Nr (r I, 2) which have no gauge interactions. To 

accommodate the need for baryon number violation, we also include a scalar field <P 

transforming as an SU(3) triplet, SU(2) singlet with weak hypercharge ,- 113. In a 

two component spinor notation, the new fields Nr and <P have the Yukawa couplings 

LfoJ~:: Arc.. Nr DaD< <P oc + Bah Uo.oc D¥~: E..«B~ 

..L . 0(.1""\ f3n ~)' 
+ 4 C ... b QA Q\:, ':I::' e..c{3"¥£ ..... n (~.I) 

in which a,b are generation indices, while a,p, y and m, n are SU(3) and SU(2) indices, 

respectively. Also, Q denotes the left-handed quark (SU(2) doublet) fields, while U 

and D are the left-handed antiquark (SU(2) singlet) fields. Finally, the coupling 

constants A, Band C are arbitrary complex matrices. In addition to these 

interactions, we include Majorana masses Mr of order 1 TeY for the N r along with a 

positi ve mass-squared Mop 2 of order (102 - 103 Te y)2 and quartic interactions for the 

color triplet scalar <P. When the interactions of the standard model are also included, 
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the action is the most general consistent with all symmetries (including lepton 

number) and renormalizability. 

The Yukawa couplings (2.1) admit a baryon number symmetry under which 

the baryon number of the left-handed N, fields is 1 while that of <t> is - 2/3. This 

symmetry acts in a chiral manner on the four component Majorana fields N, and is 

broken by the Majorana mass terms for these fields. Because the one-particle states 

for massive Majorana fields do not form eigenstates of chirality, it is more convenient 

to assign the N, baryon number zero. Baryon number is then violated by the Yukawa 

couplings (2.1). The existence of this renormalizable baryon number violation at low 

energies is restricted by the failure to observe any 6.B "" 0 processes. [n the present 

model, I6.BI 1 nucleon decay does not occur since all kinematically allowed final 

states are forbidden by lepton number conservation. On the other hand, graphs such 

as that shown in Fig.1 contribute to I6.BI = 2 processes. Taking the couplings A, B 

and C to be of order ..t, the limits on I6.BI = 2 processes discussed in the introduction 

lead to the constraint 

M.M; (2.2.) 
Ali 

< -2.7 !> 
10 GeV-

in which MI is the lighter N mass. Since only ..tIM<tJ is relevant in what follows, we fix 

M<tJto be 300 TeV. The constraint (..\.4/M
J 

S; 10-5 GeV- I) is then satisfied for an 

interesting range of values for .t and M,' 

The model considered here contains CP violation from phases in the Yukawa 

couplings (2.1) and also from phases in the quark mass matrix. 21 Contributions to the 

processes considered below which involve quark masses mq are suppressed by powers 

of m/M, and can be neglected. When quark masses are neglected, the couplings B 

and C can be chosen real and- diagonal by field redefinitions. However, taking the 

Majorana masses M, to be real, the phases in A cannot be removed when the number 

• ~~ 
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of N, is greater than one. These remaining phases produce CP and B violating 

asymmetries in the decay rates and scattering cross-sections of the N " [n the 

following, the total rates and the asymmetries for these processes are computed in the 

limit of large M<tJ and zero quark masses. Also, we neglect the mass MI of the lighter 

Majorana fermion (N I) in processes which involve both N 1 and N2. 

The presence of 6.B "" 0 interactions in this model is manifest in the lowest 

order decays of the N,. As shown in Fig. 2, the final states for these decays can have 

B = ± 1 or B = O. Adding Figs. 2a and 2b, the total rate for 6.B "" 0 decays of N, is 

~ = r rN .. -. <t't'l- + ~ .. ~ 't'ti' 
MS" 

(' 

=-SI2.1T~M~ L.ll ArQS\,J1+ iAro. Bbl\:B:t I AI"CL C:\~. 
.. be. 

In addition, the rate for the liB =. 0 decay of Fig: 2c is 

r, 1 = rN;t ..... N, <tit -= 

!i 
·M2. 

'I 
10.(.'" TT3 Me 

[: 'A~A~b \:1. 
",b 

(2."3 ) 

(2.'+ ) 

Neglecting the mass of N I' the lowest order asymmetry in the l1B "" 0 decay of N 2 is 

due to the graph shown in Fig. 3a. As required by unitarity for contributions to CP 

violating asymmetries in decay rates or cros~-sections, this graph contains a loop with 

a physical (on-shell) intermediate state. Permutation of the identical particles in the 

final state produces the two distinct contributions shown schematically in Figs. 3b 

and 3c to the interference between the a:mplitude of Fig. 3a and the lower order 

amplitude of Fig. 2a. After summing Oyer generations, the product of couplings 

appearing in Fig. 3b is real; and for this reason, Fig. 3b contributes equally to liB = 1 

and 6.B = - 1 decays and cancels in the asymmetry. However, the combination of 

couplings from Fig. 3c has a non-zero imaginary part provided that the number of 
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generations exceeds one. Evaluating the contribution of Fig. 3c, we find that 

IJ. C = f'N2. ~ 't't't - T'N .. ~ ii-'l 

7 
M;l. 

1109(,0."...'1 Mi 
'\ (.)f ~ '* ) 
L 1M A;1a.A.:u,Bcb Bc.d A'd A,,, • (.4,s) 
,,"cd 

The magnitude of this asymmetry can be relevant to cosmological baryon generation 

(t1r/f 2 ~ 10- 1°) fora range of parameters in which the couplings A, Band C are of 

order litO while the N2 mass is of order 1 TeV. In obtaining this asymmetry, the 

existence of more than a single species of ~Iajorana fermion was crucial both to the 

presence ofCP violating phases and to the presence of a physical intermediate state in 

the graph of Fig. 3a. Indeed, the lightest N has no CP violating asymmetry in its 

t1B ~ 0 decays at this order. 

In addition, we must consider scattering processes which involve the Majorana 

fermions, because additional asymmetries occur. in t1B ~ 0 scattering and also 

because these processes play an important role in governing the deviations from 

equilibrium which are obtained as the temperature drops below the N masses. The 

lowest order graphs for the relevant t1B 0 processes appear in Fig. 4, and the 

resulting cross-sections (weighted by the relative velocity) for these processes are 

<F .. V = (o-v) HrNr':" oK 

0-;:1.. V = (crV)N,N:t~ 't-;;: 

c 

s- 'f M~ 
'I 

ICDTr Mil 
II Ar",A:bl:t 
",b ) 

S(l.s+ M~) '\ ~ 'l. 

= '32;rM.:t S+Ml. LIA2,AA.",\ 
41 2. ... 1:> 

and 

CJN<tV - ('TV)Nlt -'>N,"t + <.crV)"'2.lJ--+N,'t 

57'TM: 
s(Fs+M~) 

S+M~ L IA:t4A~ r' 
Aob 
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(:z .• Co) 

where s denotes the square of the total center of mass energy. In averaging over 

initial states in (2.6), we have assumed that, at temperatures of order 1 TeV, quark 

masses and SC(2) gauge interactions maintain equilibrium between the various 

species of quarks so that right· handed charge - 113 quarks account for 114 of the total 

number of quarks: In a similar manner, the t1B ~ 0 scatterings shown in Fig. 5 

combine to give 

a;.<tV = (O-V)t.I~'t""''T't + (o-V)N .. <t .... o/i 

_ I .s (5"5 + 1'1:) \'r; . l..!. . -II- -II' -If 1.1 
- ILf~I7TM; s + M2. l.Jl1A ..... B""\+ J-.Ara.B...A .. c;Bbq + \An:a~ \ J. 

I' .. be. 

(2..7) 

The last quantity of interest is the asymmetry in the t1B ~ 0 scattering of the 

N r shown in Fig. 6. The portion of the is figure to the left of the dotted line represents 

a contribution to the amplitude for N2q ~ qq, while the figure as a whole gives the 

contribution to the interference between this and the lowest order amplitude. 

Evaluating this contribution, we find that:. 

IJ.0'":l, V 
::: 

(o-y) N~'t~ 't<t (~V) "l.'t-'>-2tCf 

153(;. 7i4 M: Sl ~ (.,I(.. * * ) 
--. L..! 1m A.t.Q.Al.b BC.b Bc:.d A •• /l.o. . 

1. o.b<<I 

=-

(.:t.<6) 

• 
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Similarly, the asymmetry in LlB "" 0 scattering of N 1 is 

54 ( \ - ~~) D.O'l..V 40jv ::: 
s~- M'I 

20 

(2-. q) 

in which the change in sign comes from the antisymmetry of the imaginary part of the 

couplings in Eq. (2.8), while the factors result from differences in the energy 

denominators 1I2PNO 2p_ 0 and in the integral over physical intermediate states. . q 

To reduce the number of independent parameters, we will assume that A, Band 

C are all of order 1. In summing over generations, it is not assumed that Band C have 

been diagonalized. When the terms of the sum are not positive, we take the phases to 

be randomly distributed so that the square root of the number of terms is obtained. 

Specifically, we take 

\' \ "* \2. _ « 
L Aro.Asb - <J A 
C1b 

~ }I 2 1. * "* + I * \l.} _ ~ 't ~ l A ... " BbJ + :l.. Arc.. BbcA ... cBbCl A ... o.Cbc. -.;;L). 
",be 

and 

L lm (A:'A4b S:b 13cdA~dA,J ;. -Cf ~' 
"'bc.d 

(.:2..10) 

Of course, this procedure would fail in the case of a single generation for which the 

last of these sums vanishes. The use of other procedures such as diagonalizing Band 

C before computing the sums or assuming that only the heaviest two generations have 

significant couplings does not alter the asymmetries Llr/r 2 and Lla/a2q by more than a 

factor of two, 

<5 
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To determine the reaction rates for the processes considered above, it is 

necessary to thermally average the decay widths and cross-sections. The treatment of 

this in the appendix makes use of two important simplifying assumptions. Firstly, we 

assume that deviations from thermodynamic equilibrium occur only in the total 

number of particles of each species so that the phase space density of each species is 

proportional to its equilibrium distribution. Because the N r interact weakly at these 

temperatures, this assumption is not necessarily justified. For example, the N 1 

produced in N 2 decay might fail to thermalize prior to their decay. Secondly, the true 

Fermi-Dirac distributions have been replaced by their low temperature Maxwell-

Boltzmann approximations, and accordingly the calculations have been done using 

the zero-temperature propagators. This is partially justified since the main interest is 

in temperatures below the masses of the N r' Although not justified for ultra-

relativistic quarks, this simplification should not affect the numerical results 

significantly. For example, the equilibrium number of quarks in Fermi-Dirac 

statistics differs from its Maxwell-Boltzmann value by only a factor of 3/4 «3) "" .90 

(where (p) denotes Riemann's (·function). 

U sing the thermally averaged widths and cross-sections (Eqs. (A.8) and (A.12) 

of the appendix), we may write rate equations for the time evolution of the number 

densities nr of the N
r 

and of the net baryon number density Llns- Neglecting the 

asymmetries, we have 

nl + 3: n, = -1<r.) 1o,<'a;1-V> r;~J<ol-n,) + [<r.) +<'IN'tv>n~(n;l.-~ 1'\,) 

- <.cr;l.V) (n'''';Ln,nJ - 2<'rJ;v) (n~- 7114) 

(:z..II) 
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and 

nit- 3f n.2.= -[< r~)+<.a-.l'tv>nJni'"nJ-l(r..l)+<'Q'"Nttv)nJ(n.2.- ~ n,) 

- <''OJ.l.V> <'Y'I,\12.-n,n~J -2..<"O"2..V> (n~-h/) _ (:t.I.2.) 

Here iiq = 361r?-pJ is the equilibrium density of quarks at inverse temperature p, 

while ii, = M/ln2p K2(PM,) is the equilibrium density of N,. (Kn(x) denotes the 

modified Bessel functions.) The terms here refer successively to N decay and Nq 

scattering with tJ.B "" 0, N decay and Nq scattering with tJ.B = 0, N 1 N 2 annihilation 

and, finally, N\N\ or N2N2 annihilation. The terms involving the equilibrium 

densities fl, represent the inverse reactions which have been included using the CPT 

argument of the appendix. 

For the net baryon number density, we retain only the terms linear in the small 

quantities tJ.r, tJ.o, and tJ.nB and obtain 

Ana + 3: Ana:: (Lll'> (n2"n.2) + <'Ao-.:z.v)"0't{ n.l..- ~1 n,) , 

_ 3 nol1a 

:t. ncr Il3 (~YY\r + <,o-r'tv>n,r<n ... +.2iir~ • 
r:=.\ 

(2...I"~) 

The terms here represent the generation of baryon number through the asymmetries 

tJ.r and tJ.o, and its destruction through the lowest order tJ.B "" 0 contributions to 

inverse N decay and to Nq and Nq scattering and inverse scattering. As noted on 

general grounds in Reference 7, the term - < tJ.r > 02' needed so that the reaction 

rates cancel in equilibrium, includes the asymmetry in inverse N2 decay (which 

_ contributes < D.r > n2 by CP.T) and also the asymmetry between the reactions 

c 
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3q -> 3q and 3q -> 3q which contributes - 2 < tJ.r > n2. Finally, we note that the 

contribution from the difference between the cross-sections forqq -> Nq and qq -> Nq 

cancels by the CPT argument of the appendix when the relationship between 

< tJ.01 v > and < tJ.02v > (Eq. A.12) is used. 

For numerical purposes, it is convenient to use p as the independent variable 

and to write equations for the ratios r, = n/ny and tJ.rB = tJ.nB/ny of the number 

densities to the photon number density ny = 2/n2pJ. In the standard cosmology, Eq. 

(1.3) leads to 

d 
d{3 ( ~~ ) := kt3 ( • ~ R ) - n+-n n,y R (.::t.14) 

for any density n. Here K = [45/4n3GN g.J 1I2 with g. = 106.75 in the present model. 

The evolution equations then take the form 

dr, {f, ) 3"<'O-;'tV)] rl ) 3"(<TN4V5\1 .!a) 
J~ = - K{3 l r: + 7T"1f3l ({',-f',) -.L"S~~ + -rr:l.I3? J\r~ r, lj 

.:l... <"Oi.lv} l{ <. 9j v> } 
+ - (r,r2,.-r,1',,) + 7r2.{3?> ~1',2._r,.1) 

"\1"': fr, 3{'(<:r",+V») f/ 3C.(<:rN<tv}li ~ ) 01; :;:.-KP\.l\~)+ 71""-/33 (1' ... -r;')+L"r.\)+ 7r"2.;S'" J'C'2.- ~f\ 

:t ~cr,J..V> __ 4 <'<:T2..v) ~ - :l.o\} 
+ -, (1"':,1'>...-1',(':>.)+ _" ... 3 (r1 -r2.} 

and 

d ~rG _ « > _ 3" (O<J",,-V> ( r2.) 
JI3 - K,Bl D.r (r-.1.- r :a..) + 7r 4 f3"!> 1"')..- -=- 1"', r, 

~re ~ r· - 3~ <.rr~'tv> - )]} 
- 1'- k\!<.r.->r .. + ..".1133 \rr+~r.- b .. ls) 

• 



.... 

17 

in which i' ii. /n 112 (PM )2K2(PM). Assuming that the universe is in r r y r r 

equilibrium with AnB = 0 at temperatures above the N masses, the intitial conditions 

for Eqs. (2.15) are r l = r2 = 1 and urB = 0 near P = o. 

We have numerically integrated the evolution Equations (2.15) for M<!> = 300 

TeV and for various values of .t, MI and M2. The behavior of r l , r2 and urB as 

functions of P is shown in Fig.7 for the values.t = .1, MI = 400 GeV and M2 = 1000 

Ge V. As the temperature drops below the masses of N I and N 2' the density ratios r I 

and r2 for these particles (solid lines) deviate from their equilibrium behavior (dotted 

lines). These deviations are larger for N I than for N 2' partially because the reaction 

rates are smaller for N I and partially because some N I are produced in the reactions 

which deplete the number ofN2. The baryon excess is generated when the N2 density 

deviates from equilibrium, and most of this excess (-80%) is produced by the 

scattering asymmetry u02 at temperatures between M 2 and MI for which 

n:fii2 > nl/nl · Most of the N2 are removed by the reactions N2q --> qq and N2q --> qq, 

and at these temperatures the fractional asymmetry between these reactions is of 

order 1-5 X 10- 9. The density ratio r2 deviates from its equilibrium value by 

roughly.01 - .04, and these deviations produce the final value unB/ny = 6.7 X 10 -\\ 

which is reached when the number of N2 becomes negligible. Finally, we note that 

only a small fraction « 1%) of the baron excess is lost in scattering with N 1 after the 

era of baryon generation. 

The importance of scattering processes seen here is in sharp contrast with the 

conventional picture of baryon generation in grand unified theories 2 •5•6,7,9.IO In 

many GUTs, including the simplest examples, uB '" 0 scattering of.superheavy 

particles is higher order in perturbation theory than uB '" 0 decay, and the CP 

violating asymmetries in cross-sections are negligible. In such models, decays are the 

dominant processes in depleting the abundances of superheavy particles, and the 

baryon number is generated through the asymmetries in these decays. However, 

• ~ 
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scattering may be an important source of baryon number in models containing 

superheavy fermions since decay and scattering can occur at the same order for these 

particles22 

Immediately after the era of baryon generation, the ratio of the photon number 

density to the entropy density is 

( ~) -
5 'J~t'\. 

4S n~) 

7r'l '3* -- _,­
i 9 .l.. <'~.I") 

for g. 106.75. After the decay of the residual N I , the universe will expand 

isentropically, and unB/s will remain constant unless a significant amount of entropy 

is produced by the weak interaction phase transition. However, most of the baryon 

excess is generated prior to the decay of the N I' and these decays can produce entropy 

since they occur out of equilibrium. To estimate this effect,23 we assume that all of 

the N 1 escape annihilation' and that they decay instantaneously when the 

temperature falls to IIp\. At this point, the energy density is 

p 
7T'2.ljoJr 

30/3,'1 [I + 4~ 13, M, 1 
-rr"l '3* 

0..17) 

in which we have included the contributions of the relativistic species and of the non-

relativistic N \. Since the energy density is conserved in an instantaneous process, the 

decay ofN 1 reheats the relativistic species to a temperature lIPr given by 

,8, 

If ... L' + 
LI !; SC<» 

V'l '3* 8 i M. l "'1 
(~.I~) 

and the entropy is increased by the factor (PI/pl. Collecting the factors, the value 

(unBls)o of the baryon to entropy ratio at the present time is related to the value 

(unB/ny)gen of the baryon to photon ratio immediately after baryon generation by 



( 
A(\8 \ ~ 
~ )0 (61'\8) , [ - .-- 1+ 
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"1 
,l3I M,]-ij 
1"\ ..2.. • (::ll/l'/) 

The value of PI may be estimated by finding the temperature at which n/ny has fallen 

to lie. 

These effects are incorporated in Fig. 8 which shows the present ratio (t.nB/s)o 

as a function of 1 for three choices of the Majorana masses. For small values of 1, the 

asymmetries ur/r 2 and uo.joZq are small, and the rate r I of N I decay is so small that 

the entropy produced by these decays dilutes the baryon excess significantly. This 

dilution is never significant for the values of 1 which produce the largest values of 

(t.nB/s)o shown in Fig. 8. For large values of 1, the deviations from equilibrium for .'If 2 

are small, and little baryon number is generated. As the Majorana masses increase, 

the asymmetries uflr z and t.oZ/o2q rise, and a larger excess is generated. However, 

the total reaction rates also increase with M I and M2. This reduces the deviations 

from equilibrium so that a large excess can be obtained only for small values of .t 
, , 

Finally, we note that the baryon excess is relati~ely insensitive to the mass ratio 

M/M2' although for very small values of MI , the excess can be diluted by the entropy 

produced in N I decay. 

A rough understanding of the dep~ndence of the baryon excess on .t and :V12 can 

be obtained by comparing the reaction rates with the cosmological expansion rate. 

Because of phase space and combinatorical factors, the depletion of N2 is dominated 

by scattering with t.B ~ o. This reaction proceeds at the rate/volume 

<. ~4-V > (),. n J.. --

:L 
)..'i M:L 

. IT" M~ 
TO? Yl:z.. (::t.:zc) 

.:-
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at temperatures T less than M2. Comparing this with the volume expansion term 

3R.!R n2, we find that this reaction becomes ineffective at reducing the number of N2 

when the universe cools below the decoupling temperature 

Td ,.., 
'1 

?:."7T" M~ 

K A'I M: 

-:::::. I TeV ( ,~ >. 
M f )'1 ( , "~V )2-

Y:)-o=r;V M~. C~_::t') 

For Td < M2, the deviations from equilibrium will be suppressed by the Boltzmann 

factor e - M2tr d. On the other hand, as T d is increased beyond Mz' the growth of these 

deviations is slow and is offset by the decrease of t.o.j02q. It follows that the optimum 

value of 1 is that for which T d - M2, that is 

A ~ 10 ( M~ ) 
30oTe.V 

( I TeV f/'1 
M:L • (::t . .u.) 

As long as T d - Mz' the deviations from equilibrium obtained as the temperature falls 

below M2 (t.n.jny == .02 from Fig. 7) will be roughly constant, and the magnitude of 

the baryon excess will be largely governed by the size of the asymmetry 

<A<T:tL 
< Q"l..j) 

,.., 2.M:2. A :I-

~-rr M; [ 

:z.. 
. 300 TeV M2. 

-:::::. ('-1)(' IOcr) /0>" • __ 1 (:t.U) 
Mii 1TeVJ 

at temperatures of order M2. Using Eq. (2.16), we may estimate the present baryon 

excess as 

( ~) .... 
. S 0 

( 1'\>") (.1Y1:t)(.1Q".l.) __ -13 - -- -- - 4)( /0 
S 'J>!.... ~ 1 <T'1- ( 

M )11 
I T:V 2. (.2.2..'1) 

• 
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when A is given by Eq. (2.22). The estimates (2.221 and (2.241 are reasonably reliable 

guides to the locations and heights of the maxima in Fig. 8. 

The maximum value of the baryon excess shown on the curves of Fig. 8 is 

(6onB/s1o = 5.5 X 10- 13 for A = .05, MI = 800 GeV and M2 = 2 TeV. The rough 

estimate (2.24) suggests that this may be increased by a factor of three by increasing 

M2 by a factor often, and in fact numerical integration of the evolution equations for 

A = .01, MI = 8 TeV and M2 = 20 TeV produces the value (6onB/s1o = 1.7 X 10- 12. 

This value is the same as the experimental lower limit on 6onBis, and the values 

obtained for M2 - 1-2 Te V are not far below this limit. To conclude this section, we 

note that the calculation of the baryon excess is subject to several uncertainties, 

especially since the couplings A, Band C involve many unconstrained parameters. 

For example, if we abandon Eq. (2.101 and instead assume that only two generations 

have appreciable couplings in Eq. (2.1), the value of (6onB/s1o typically increases by a 

factor of two. Alternatively, if it is assumed that the phases for each generation add 

constructively, a factor of three increase would be expected. Also, the minimal choice 

of only two species of Majorana fermion has been made merely for convenience. If the 

model were the low energy residue of a GUT, we might expect the presence of three 

species of N, one for each generation. Naively, we would expect the baryon excess to 

be roughly 2 - 3 times larger when a third N is included. However, the actual 

increase might be larger since the processes which deplete the density of the third N 

could drive the density ofN 2 farther from equilibrium. Finally, if the couplings Ala of 

the lighter Majorana fermion are taken to be of order Al while the other couplings A2a, 

Band C are still of order A, the asymmetries can be increased by the factor (1/A)2 

without significantly affecting the total reaction rates of N2. Of course, ,ll cannot be 

increased arbitrarily, both because of the limits on I60BI = 2 processes and because 

processes such as N 2q ~ N 1 q will eventually dominate the reaction rates of N 2' For 

Majorana masses of order 1 Te V, the latter constraint is the more stringent; but even 

• 
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this constraint allows the asymmetries to be increased by an order of magnitude. For 

these reasons, the true lower limit on the masses of the Majorana fermions is probably 

of order 1 TeV. 



23 

III. ALTERNATIVE LOW ENERGY ~IODELS FOR BARYON GENERATION 

In the previous section, it was shown that the cosmological net baryon number 

can be produced at temperatures of order 1 Te V in a simple extension of the standard 

model. In this section, we will consider some alternative mechanisms for baryon 

generation at low temperatures and argue that the model of Section II is minimal for 

this purpose, although not necessarily unique. The emphasis of this section is largely 

on supersymmetric models, because supersymmetry offers a convenient motivation 

for the introduction of the additional particles (neutral Majorana fermions and color 

triplet scalars> discussed in Section II. 

To begin however, we examine a non-supersymmetric alternative to the model 

of Section II. At temperatures of order 1 Te V, the deviations from equilibrium needed 

to generate an excess of baryons can be obtained only if the model contains particles 

with no SU(3) X SU(2) X UO) gauge interactions . .If the gauge group is not extended, 

the only alternative to the neutral fermions of Section II is the inclusion of one or 

more neutral singlet scalars X. Although these scalars have no Yukawa couplings to 

the fermions of the standard model, there are three species of color triplet, weak 

singlet scalars <t>a with hypercharges - 4/3, - 113 and 2/3 which can couple to quarks. 

The most general such couplings which preserve lepton number admit a baryon 

number symmetry under which the <t>a have baryon number - 2/3; however this 

symmetry ~ould be broken by I~BI = 2 terms such as <t>a<t>!l<t>Y e nand X<t>a<t>!l<t>Y e n a,..y . a,..y 

in the scalar potential. In such a model, the neutral scalars can decay or annihilate 

into B = 0 final states through operators such as X<t>a*<t>a or X2<t>a*<t>a, respectively, 

and these processes will maintain thermodynamic equilibrium unless they are 

suppressed by small couplings or by powers of Mx/M<{> for Mx < < M<{>. Because these 

~B. = 0 processes are lower order than are those with ~B ~ 0, it is difficult to obtain 

large CP violating asymmetries in the reaction rates for the neutral sc'alars without 

(" 
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making extremely artificial choices for the parameters. In this respect, the model of 

Section II is very different in that ~B "" 0 processes dominate the reaction rates of the 

Majorana fermions N, present in that model. 

It is presumably possible to construct a supersymmetric model which 

incorporates the mechanism of Section II for baryon generation by promoting the 

fields of that section to superfields and by including terms such as (2.1) in the 

superpotential. However it is interesting to consider the supersymmetric case 

separately since supersymmetry can be used to motivate the appearance of Majorana 

fermions and color triplet scalars. Indeed, any supersymmetric extension of the 

standard model necessarily contains a neutral singlet fermion and color triplet scalars 

- these are the U(1) gauge fermion (bino) and the scalar quarks (squarks), 

respectively. If the superpotential contains all terms which preserve lepton number 

(including the I~BI = 1 term fa be UaaDb/lDe/a/lYJ , the model will have couplings 

similar to those considered in Section II. Specifically, the gauge fermion Yukawa 

couplings g'.l.DaaAOa*a replace the couplings of the N, in Eq. (2.1), while ~B ~ 0 

couplings such as f b U Db .. Ao ea/ly replace the other terms of (2.1). Here.l. denotes' ac aa J)- cy 

the bino field, Ax is the scalar component of the chiral superfield X, and the same 

symbol is used for both chiral superfields and their fermion components. This 

super symmetric model is then analogous to the model of Section II when the bino and 

the squarks are taken to correspond to the N, and <t> fields of Section II, respectively. 

Because of this correspondence, it is interesting to ask whether the observed 

cosmological baryon number can be generated when ~B ~ 0 interactions, but no new 

fields, are added to the minimal supersymmetric extension of the standard model. 23 

Of course, squark masses similar to the <t> mass of Section II (300 TeV) are rather 

unnaturaL However, even setting this problem aside, we will argue that there are 

serious objections to this approach. 

• 
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One objection is that the supersymmetric model has fewer CP violating phases 

than the model of Section II since the bino interacts through the real gauge coupling 

g' and since field redefinitions suffice to remove the phases from fabc unless the 

number of generations exceeds two. More importantly, the supersymmetric model 

contains only a single bino, while the model of Section II contained at least two 

neutral fermion fields. For these reasons, the graphs analogous to those (Figs. 3 and 

6) which produced CP violating asymmetries in Section II either involve real 

combinations of couplings or have no physical intermediate state; and therefore these 

do not produce asymmetries in the supersymmetric model. Of course, the limitation 

to a single bino is removed in extended (N = 2) supersymmetric models. However, in 

'view of the restricted nature of the couplings in such models, it would be rather 

difficult to obtain a satisfactory asymmetry. 

These problems can be understood by the following argument. The minimal 

supersymmetric extension of the standard SU(3) X SU(2) X UO) model, including 

soft operators which break supersymmetry and with baryon (B) and lepton (Ll 

numbers conserved, possesses a discrete R-parity in variance 

Rp 
(_\)~~+L+2.S 

(~.,) 

in which S denotes spin. When the tl.B "" 0 coupling fabc is included and lepton 
. . 

number conservation is retained to ensure the stability of the proton, (.-.: 1)3BR 
. " p 

survives as an unb;oken symmetry. If the bino is the lightest' Rp odd particle, the 

lowest order bino decays must be into final states with B = ± 1. Using CPT and 

unitarity, it can be shown that contributions to CP and B violating asymmetries in 

decay rates must involve a tl.B "" 0 rescattering of the final state; and in the present 

context, this rescattering must involve Itl.BI 2 operators such as that induced by 

graphs analogous to Fig. 1. Unfortunately, the asymmetry obtained in this W!!.Y is far 

too small to account for the observed baryon number. This is because Itl.BI 2 
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rescattering amplitudes are constrained to be small, both by the experimental limits 

on Itl.BI 2 processes and, more importantly, since the interactions mediated by 

squarks must be suppressed if deviations from equilibrium are to be obtained. A 

similar argument may be used to restrict asymmetries in cross-sections for tl.B "" 0 

scattering in the supersymmetric model. This argument might be circumvented if 

some Rp odd particle, not necessarily a neutral singl.et, were lighter than the bino. 

For example, if an SU(2) gauge fermion (wino) were the lightest Rp odd particle, 

graphs analogous to Figs. 3 and 6 with N2 and Nl respectively replaced by the bino 

and wino would have a physical intermediate state. These' graphs might produce a 

sufficiently large asymmetry provided that an adeC{uate source of CP violation were 

introduced. At a minimum, this would require the inclusion of additional generations 

with quark masses large enough for CP violation to be obtained from. the quark mllss 

matrix. 
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IV. CONCLUSIONS 

In this paper, we have explored mechanisms for generating the net baryon 

number ofthe universe at low temperatures of order 1 TeV .. In Section II it was shown 

that the cosmological baryon number could be produced by physics occurring at these 

temperatures in a simple extension of the standard SU(3) X SU(2) X U(I) model. 

Some alternative models were considered in Section III, and it was argued that the 

mechanism of Section II was at least minimal, if not unique. Models which 

incorporate a mechanism similar to that of Section II are rather heretical in that they 

contain renormalizable baryon number violation at energies much less than the usual 

scale of grand unification (1014 GeV). Although this feature can be made 

phenomenologically acceptable by imposing lepton number as a global symmetry, it 

also makes these models somewhat difficult to embed into conventional schemes of 

grand unification. Since we. are not entirely willing to forsake either the 

attractiveness of unification or the successful GUT prediction of sin2ew (Ref. 15), it 

would be interesting to construct a GUT which has a model such as that of Section II 

as its low energy residue. Although it is possible for GUTs to lead to low energy 

theories which contain baryon number violation without lepton number violation,17 

we ~ill at present simply regard this complication as the price to be paid in any model 

which generates baryon number at low temperatures. In addition, we note that in 

Section II we were led to introduce scalars with mass of order 300 TeV. This is both 

interesting and potentially troublesome, since it is not clear what, if any, physics is to 

be associated with this scale. 

In seeking alternative mechanisms for cosmological baryon number 

generation, we were not motivated by any particular outstanding problem with 

baryon generation in GUTs; and in fact, GUT baryon generation certainly does 

provide one possible explanation for the observed baryon number. Instead, given the 
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lack of evidence for baryon number violation at superheavy scales,14 we regard it as 

worthwhile to consider alternative and perhaps more testable mechanisms, especially 

since these alternatives allow a wider range of cosmological scenarios. In particular, 

baryon generation at low temperatures may revive some models of inflation which do 

not reheat sufficiently to produce the observed baryon number through mechanisms 

involving superheavy particles. For example, in some, although not all, of the 

supersymmetric inflation models, the reheating temperature can be as small as 

1 MeV (Ref. 13). Although models in which the reheating temperature is this small 

are probably inconsistent with baryon generation through any mechanism, it is 

interesting that the alternatives to GUT baryon generation considered here allow for 

reheating temperatures much less than those allowed by mechanisms involving 

superheavy particles. Moreover, mechanisms for baryon generation at low 

temperatures can accomodate previously unexplored scenarios such as inflation in 

phase transitions occurring at scales much below that of GUT symmetry breaking. In 

the model of Section II, the reheating temperature for an inflationary phase transition 

would probably be required to be somewhat larger than the mass of the heaviest 

Majorana fermion in order to abundantly repopulate the numbers of these particles. 

Although this does not allow inflation at the weak scale, it does allow for inflation at 

intermediate scales far below the GUT scale. While there is no compelling reason to 

have int1ation at scales below that of GUTs, the existence of this possibility is rather 

intriguing. 

Note added: 

After completion of this' work, we were informed that the generation of baryon 

number from Majorana fermions with mass 107 _10 12 GeV has been considered by 

A. Masiero and T. Yanagida [phys. Lett. 112B,336 (1982).1 In that paper, baryon 

generation is associated with an intermediate scale (107 GeV) in the context ofa GUT. 

We thank R. Peccei for pointing this out. 

• 
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APPENDIX. THERMALLY AVERAGING WITH CLASSICAL STATISTICS 

In this appendix, we review the finite temperature averaging of decay rates and 

cross-sections using classical (Maxwell-Boltzmann) statistics 7 and present the results 

of this averaging for the processes of interest in Section II. In Maxwell-Boltzmann 

statistics, the density of the ith species of particle in phase space is taken to be 

f .. (Pi) ~i. 
n~ 

n~ 

e- J3 ' Pt 
(,4. I) 

in which the integer gi counts the spin and internal quantum number multiplicity of 

the species, while Pi de~otes the 4-momentum. Also, ni is the actual number density 

of the species, andni is its density in thermodynamic equilibrium. This choice reflects 

the assumption that all species are in kinetic equilibrium at a common temperature 

(If! Iff in a comoving frame), but that the .species may not be in chemical 

equilibrium. In chemical equilibrium, the density is then 

_ ~. ell . ni. = q:. ~ e..-~. r. 
.,J l. (;~.:TT)"!. 

2-
~t mt. 
~-rr:l.,8 

K;z..(,8mt·) (A • .l.) 

in which mi is the mass of the ith species, and Kn(x) denotes the modified Bessel 

functions. For massless particles, we have mi
2 K2(pmi) -> 2/p2 so thati'i; -> g/n2If3. 

For a general reaction A1 ... AN -> B1 ... B:\1' the use of classical statistics allows 

the reaction rate/volume to be written as 

WA~B~ S~ Sf frrr, f.:tPi)d"'rJlU dUj't}2.1T)'1 S'I(t.f',- %,Cf-) IMA-fsl2. 

(A.3) 
Here si and Sf are statistical factors obtained by including a factor of n! for every 

set of identical particles in the initial and final states, respectively. Also, 
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dWk = d3k1(2n)32ko, while IM
A 

.... sI
2 is the square of the Lorentz invariant transition 

amplitude averaged and summed over initial and final quantum numbers, 

respectively. 

In the following, we consider explicitly the cases of decay (N = 1) and scattering 

(N = 2). This will be sufficient since the reaction rates for the inverse reactions can 

then be determined by the CPT relation 

(
"") .l. (N )' ::t. 11 '3; I Mia ... 7t I -= TI~, I M A_ S I (A,Li) 

in which the factors arise from the averaging over initial quantum numbers in IMI2 

and in which l' labels the CP conjugate of the /h species. Since the masses and 

mUltiplicities of CP conjugate species are equal, we may use momentum conservation 

to show that 

WS"';li -= (
N - )( M n-) TJ ~~~ U n; WA~P, (A.s) 

When CP is conserved, this is equivalent to the principle of detailed balance. When 

CP is not conserved, detailed balance may not apply. However, unitarity may still be 

used to show that the. total rates for transitions to and from any given species cancel in 

equilibrium. 

For decays A -+ B \ ... BM' the reation rate (A.3) reduces to 

\t\,jA~'a = .2mA ~~~ fdWPAfl\(PA) = nil < G:~13> (l1.G.) 

in which r A .... B is the partial width for the decay and where the averaged partial width 

is 

c 

< r'A-'>S) = 

:=. 

, 

Lf 7T':L !3 r ( -S'p 
(V\A K;!"CSI'YIA) A~B JefwPA e.' A 

~-'>S 
1<. (,.sMA) 

K2, (SmA) (A.?) 
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The extra factor is simply the thermal average of the time dialation factor for the 

decay of a moving particle. Applying this to the decay rates (2.3 - 2.5) of the model of 

Section II and making use ofthe simplifications in (2.l(i), we find 

117 )..'1 M; <C> :: 'I 
I02.Lhr3 (VIi 

5 
Cf >,'i M:>. 

<~l. > = IO:tI../;rl M; 

and <Llr) 
9 A" M; 
40'lG0 7T 'lM: 

K. (13 Mr) 

K2..(,8M .. ) 

K.(I3M.2,) 

K2., (PM,l,) 

k, U3M l.) 

K2...(~M;)) 
(A.<6) 

Similarly, for a general scattering process Al A2 -+ BI ... B~[, the reaction 

rate/volume is 

WA~B -= Sj, fdwr.c:h.)1'2:~.(PI)~f.I;P':,J[.2.P~ .."l.P~ (O-V)A~B 1 
= nA,nA:z. < <..crV)A-+S> (A.9) 
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in which (ov) A--+8 is the conventionally defihed.cross-section. The quantity in square 

brackets depends only on s = (PI + p:l, and the averaged cross-section < (ov)A--+8 > 

may. thus be given as 

.' r:2. 2:rr>"J3' 1· I ( -,B.o. 
(l...o-V)/HP) :. LU m~ K 1(.s,,,,.:d· 1G,7r"1. J c1s clw

Q 
e.. (f(s) 

= ~. l4J, m= ~:Ltr~''''L)] fh rs K,(,8.'S) ~ <.s) 

(A ,/0) 

where Q2 = sand 

1'· 

Q'"<.s) = ~. [..l:r~ .2.p: lO-V)A-+sl· 81T" JJWl'loIw,,1.2·:rr)'f~'1(Q- f,-l' ~) 
• 

(A. ,\) 

This result may be regarded as averaging over pliase space integrals for the incoming 

particles. Again using Eq. (2.10), the.averaged cross-sections in the model of Section 

II are 

:7..7 ~4M>[( K3(,8M~))2. (K.C6M .. ) )2.] 
~crrV) :::: ~ 2..8". M~I<:I..(I3Mr) - K ... (,6M ... ) . 

<cr;;z.v) = 
q .>. 'f M;z.:I.. [ 1< .. (,I3M,%.' 

'4 :2... 
fcl.fv M~ Kl.<1-3M2 ) 

+ IJ 
:2. • 

K~(,8 M>..) + I 1 )..'f Ml. r ~ < (T"" v) -:: 'i 
't 12.&n-M~ K:>,.(l3 t'1 ... ) 

<,lTr'tV ) -= 
I ~ )..'1 M; .. t 5 K'I(tSM r ) + I J 
6 thr M~ Kz(t3M,.) 

and 

<Ll o-2Y> =. 
n, 
,11:l, 

• 
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3 )..' M; r KIj{,6M,) + ~ K,lt9M,,) J 
(O:J..LI "lTl.M~ L "K2.U3M>..) ... !3M:l. K:l,(,dM~) 

(A. 12.) 

; 

n 

.. ,-;. 
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FIGCRE CAPTIONS 

Figure 1. A typical lowest order graph for the IIlBI = 2 transition 3q ~ 3q. 

Arrows on (solid) fermion lines refer to chirality while those on (dashed) 

scalar lines refer to the flow of color triplet charge. The cross denotes an 

insertion ofthe Majorana N mass. 

Figure 2. Lowest order contributions to N decay. The final states have baryon 

number (a) B = 1, (b) B = - 1 and (c) B = O. The crossed graphs for (a) 

and (b) are not shown. 

Figure 3. Lowest order graph which contributes to the CP violating asymmetry ~r 

in N2 decay. Shown are (a) the contribution to the amplitude, (b) a 

contribution to the interference term which cancels in the asymmetry and 

(c) the crossed contribution which produces the asymmetry. 

Figure 4. Lowest order contributions to (a) N annihilation and (b) Nq scattering 

withllB = o. 

Figure 5. Lowest order graphs for the IlB = 1 reaction Nl'j ~ qq. Those for the 

~B = - 1 reaction Nq ~ l'jq are related by CPo 

Figure 6. Lowest order contribution to the asymmetry uU2 in N2q scattering with 

IlB "" o. The portion of the figure to the left of the dotted line is a 

contribution to the amplitude while the figure as a whole represents the 

contribution to the interference term. The asymmetry in N 1 q scattering is 

given by interchanging N 1 and N2. 

Figure 7. Evolution of the density ratios r r = n;nyfor r = 1 and 2 as functions of the 

inverse temperature f3 (solid lines). Also shown are the equilibrium ratios 

Fr (dotted lines) and the baryon to photon ratio urB in units of 10- \0 

(dashed line). The figure is fod = .1, Ml = 400 Ge V and M2 = 1 Te V. 
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Figure B. The present baryon to entropy ratio (LlnB!slO as a function of A for three 

choices of the N masses: :\-11 = SO GeVand Mz = 200 GeV (dashed linel, 

M I = 400 Ge V and :vIz = 1 Te V (solid line 1 and:vI1 = BOO Ge V and 

M z = 2 TeV (dot-dashed line). 
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