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THAT DIFFER IN SIZE AND POTENTIAL ENERGY 

Ying Hu*, Dorothea Ludecke** and John Prausnitz 

Holecularand Materials Research Division 
Lawrence Berkeley Laboratory and 
Chemical Engineering Department 

University of California 
Berkeley, CA 94720 

ABSTRACT 

Recent computer-simulation work by Shing and Gubbins for binary mixtures 
has shown that common semi-empirical models (van der Waals n-fluid models) are 
in error when the molecules of the two components differ appreciably in size; 
the error is most severe in the dilute region. While perturbation theories are 
much better they, like computer simulations, are not as yet useful for engi
neering work because of prohibitive computer requirements. 

This work proposes an algebraic expression for the Helmholtz energy of a 
mixture which gives results in very good agreement with those reported by 
Shing and Gubbins. This expression, using the local-composition concept, is 
based on a simplified but realistic picture of a fluid mixture: short-range 

- order and long-range disorder. The proposed expression uses the Hansoori
Carnahan-Starling-Leland equation for the contribution of repulsive forces. 
For the contribution of attractive forces, it uses a new expression based on 
not one, but several radii for the first-neighbor shell, one radius for each 
component. 

With reasonable simplifications, the resulting equation for the Helmholtz 
energy indicates that van der Waals "constant" a is a strict quadratic function 
of mole fraction only at very low densities; at advanced densities, there are 
small deviations from the quadratic mixing rule. For practical calculations, 
computer requirements are nearly the same as those for conventional engineering 
models. 

* East China Institute of Chemical Technology, Shanghai, China 
** Institut fur Metallphysik, Gottingen, W. Germany 
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Since van der Waals' work on fluid mixtures of nonelectrolytes about YU 

years ago, many authors have proposed models for the equilibrium properties 

of such mixtures. Most of these models follow from phenomenological, semi-

empirical considerations leading, on the one hand, to variations on the 

original van der Waals equation of state Le.g. Redlich-Kwong (1949), Soave 

(1972), Peng-kobinson (1976)] and on the other, to variations on van Laar's 

equation for activity coefficients [e.g. Scatchard-Hlldebrand (Hildebrand,1929), 

Wilson (1964), NRTL (Renon and Prausnitz,1968) , UNIQUAC (Abrams and Prausnitz, 

1975)j. At the same time, more fundamental models based on perturbation 

theory [e.g. Barker-Henderson (1967), Chandler-Weeks-Anderson (1970), 

Mansoori-Leland (1970)1 have been proposed. More recently, with the increas-

ing availability of large computers, it has become possible to avoid models 

entirely and to calculate thermodynamic properties of mixtures by computer 

simulation using Monte Carlo or molecular-dynamics techniques (Mansoori and 

tiaile, 19ij3). 

While semi-empirical methods often give good agreement with experiment, 

such agreement is obtained only through several adjustable binary parameters 

which in many cases can represent only one property (usually chosen to be the 

Gibbs energy) while failing for another property (e.g. enthalpy or density). 

Computer simulations have indicated that currently available semi-empirical 

models are fundamentally incorrect for mixtures of different sized molecules, 

especially in the dilute region (Shing and Gubbins, 1983). 

For engineering work, semi-empirical methods are nevertheless used 

because good pertubation theories and computer simulation require excessive 

amounts of computer time. For a typical calculation of a chemical potential 

in a mixture, computer requirements for the modern methods are two or three 

oraers of magnitude larger than those for the older, semi-empirical 

.. 
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techniques. For iterative design of equipment for separation operations, 

where thermodynamic properties must be calculated over and over again, 

presently available theoretical models are not economical. 

In this work we present an algebraic expression for the Helmholtz energy 

A of a simple mixture; other desired thermodynamic properties are readily 

• obtained by standard differentiation. Because it is algebraic, computer 

requirements for our expression are nearly the same as those for common semi-

empirical models. 
. 

Our expression for A is based on a realistic but simplified picture of 

fluid mixtures including those where the components differ appreciably in 

molecular size. Although relatively simple (as dictated by low computer 

requirements), our expression is in good agreement with computer-simulation 

results reported by Shing and Gubbins (1983). 

As derived in the following sections, our expression for A is limited 

to simple mixtures (i.e. those containing spherical molecules that interact 

predominantly through dispersion forces), not only because that is the simplest 

case, but also because it is only for such mixtures that we can compare our 

results witn presently-available cOmputer-simulation and perturbation-theory 

results. Our expression for A for Simple mixtures, however, serves as a 

useful basis for a modified expression, suitable for more complex mixtures. 

Holecular-Thermodynamic Framework 

We seek an expression for Helmholtz energy A as a function of volume 

v , temperature T and mole numbers nl, n2 ••• nk • Similar to our previous 

work (Hu et al., 1983), we begin with the pure fluids in the standard state 



-4-

(0) and we then subject these fluids to three steps, ,as discussed below. 

This procedure gives us an expression of the form 

A - A
O + MI + Mn + MIll (1 ) 

The standard state is the pure, ideal-gas fluid at system temperature 

T and 1 bar. 

In the first step, we isothermally mix the pure ideal gases to form an 

ideal-gas mixture at system volume V, 

It 

L (2) 
i=f 

In the second step we isothermally and isometrically change the ideal-

gas mixture to a hard-sphere mixture by inflating each molecule i to diameter 

0i. To find MIL for this step, we use the expression of Mansoori-

Carnahan-Starling-Leland (1971), 

where 

L1All' = nRT[-3(1-~''''~.11-r.,)/2 +(.3~,,+ZrJ)(f-S)-1 

+ 3 ( f - t, - r~ - r ~/.3 )( 1- 5 f~z + ( ~ J -/ ) frt ( I - 5 )] 

k 'iC 77.' N· j ~ L S1- Si 
~ ,-w a: .) -- -

i = I 6 V \. 

k 

t, L Llij 
-,no 

( (J'i. +()j )( 0: Vj ) 
J> ie, 

k k 
~" ) (v, OJ),/..t rt. L ,tjij L 

j >i=f f=f 
(-r- O"e 

If 

r3 [ ,J;; ( 5i / g ):'/3 Xi. In J3 

(3) 

Here NAv is Avogadro's number. For comparison, it is useful to consider also 

expressions for ~AII based on van der Waals 1-, 2- and 3- fluid theories 

(Rowlinson and SWinton,1902); these are given in Appendix I. 
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In the third step, we "turn on" forces of intermolecular attraction and 

we allow for molecular softness. In other words, we charge the hard-sphere 

molecules with a potential. To obtain an algebraic expression for ~AIII , 

we introduce a simplified but realistic physical picture for a dense fluid 

mixture as shown in Figure 1. For simplicity, that picture shows a binary 

mixture. However, the results derived below are given for a mixture of k 

components • 

The essential idea in Figure 1 is that a dense fluid is described by 

short-range order and long-range disorder. Consider a molecule of species i 

which we arbitrarily select as our central molecule. This central molecule 

is surrounded by near neighbors that form a first coordination shell; some of 

these neighbors are of species i while others are of species j • 

In the top section of Figure 1 we show only molecules of species i and 

in the middle section we show only molecules of species j , in addition to 

the central molecule. The lowest part of Figure 1 is the sum of the two 

other parts. 

In the upper section, we see three neighbor molecules of species i in 

the £i~st coordina~ion shell. The center-to-center distance between the 

central molecule and anyone of these three neighbors is rii*. The distance 

bet,,~een the center of the central molecule and the outer boundary of the 

shell formed by-the neighbors is given by rii**. These distances are sho~~ 

by the dashed circles. 

The ~ddle section considers the dimensions of the first coordination 

shell for~ed by ~olecules j. The corresponding distances, again shown by 

the dashed circles, are rji* and rji**. 
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Consistent with this physical picture, we write 

(4 ) 

where SR designates the short-range (partially ordered) contribution and 

LR designates the long-range (random) contribution. Contribution ~SIIILR 

is zero. 

To obtain an expression for ~III we write 

11 U.m,SR 
(5) 

I ~~. [00 
-2, nNAv. L- Xi ~ 

.. =1 j=1 r.tt" 
J' 

nNA'" /. I -x·E··(r)".nr ar V J J' 
(6) 

( R ~ ~ 1/ Xji, hs - n L L- X· Z c ') X·· -t.J1 Z " "J' X i=. j-I Ji 
(7) 

l~ these equations, k is Boltz~ann's constant, n is the total number 

of 1:.':)1 es a:J.::l is the local mole fraction of j around a central molecule 

i ; if no other subscript appears, Xji refers to the real mixture while 

subscript hs refers to the hard-sphere mixture. 

The coordi~a:io:J. number Z(i) is the total number of neighbor molecules 

in the first shell around a central molecule of species i. The potential 

~ji is evaluated at distance rji*. In our calculations, reported below, 

we use the Lennard-Jones potential but some other potential could be used. 
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One of our main problems is to obtain an expression for • 
Z(i) • 

To do so, we set Z(i) equal to· the product of three quantities: 

k 
Z(i) = I 

j=i 

The purpose 

(

volume of first ) ( 
coordination shell 
formed ~y mole-

.. cules j . 

number ) 
densit,y of 
molecules 

j . . (

densitY-dependent) 
Boltzmann factor 
for i-j pair 

of the Boltzmann factor is to obtain consistency with the 

theory of fluids at low densities where the radial distribution function 

is given by exp [-Eji(r)/kT]. The purpose of the Boltzmann factor in 

Eq. (8) is to correct the overall density to obtain a local density. Our 

density-dependent Boltzmann factor takes the semiempirical form 

where a depends on density p such that 

as p + 0, a + ao ' where a o is a constant near unity 

and, as p + dense fluid, a becomes very small, i.e. 0 < a « ao 

(8) 

gji(r) 

At high densities, the distribution of nearest neighbors depends priwarily 

on molecular geometry (packing effect) and only weakly on the ratio of 

potential to kinetic energy. Therefore, a tenos to zero as density increases. 

For wixtures of spherical molecules, siwple geowetric consici<2r<l~ions 

give the first and second factors on the right side of Equation (~). 

We obtain 

k 

L 
j=1 

(9) 

For the dimensions of the first shell, we write 
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* os K 0ij (10) 

** r **.. K ° ij ij (11 ) 

where K* and K** are universal constants. Since rij* is very close to 

the first peak of the gij radial distribution, we expect K* to be near 

1.15. To obtain a good approximation for K** , we use computer-simulation 

data for local mole fractions, kindly sent to us by Professor K. Gubbins 

(1983); these data indicate that, for hard-sphere mixtures, the local 

composition varies somewhat in the region (1.0-1.5) Oij ; however for 

larger distances, the local composition does not change. This suggests to 

K** us that should be close to 1.5; comparison of calculated and "observed" 

(computer-simulation) Henry's constants, as discussed later, indicates that 

the optimum values are K* = 1.150 and K** = 1.575 • 

Local Compositions 

To find local composition Xij , we minimize ~Alll (Eq. 4) 

according to 

d(oAIII)~ = a 
L,V, bulk co~position 

(12 ) 

subject to two restraints. The first of these follows from normalization 

(mntericl. balance) while the se::ond fo110\-.'5 from a balance of ij pairs: 

the nuw~c~ of ~J p~~rs C~~: c~~al th2 r.~wjer of ji pairs. For a binary 

mixture, (i=l, j=2) these restraints can be written 

Xli + x21 = x12 + x22 = 1 
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For a binary mixture, there is only one independent variable which we here 

choose to be x21 . Eq. (12) becomes 

( afjAm ) 0 (13) oX,z., T. V, X, 

Substituting Eqs. (5,6,7) into Eq. (13), we obtain 

Zo.) r~ - j ( Z,,,;C, ~ ZeL) X'''' )'2._ 4r. Xl. Z(n Z(.L) r/~.' 
X,t/ Z Zen X. 1:',,& 

(14) 

Extension to ternary and higher mixtures is briefly discussed in 

Appendix .II. 

When a = 1 , The local composition becomes 

X, (l,,! erpC -Ell {r/~ )/kT] + x'" ~~ exp[ - ELI (Ti~ )/k T] 
(15) 

which is the same as that in Wilson's equation. Therefore, Wilson's local 

composition is, in a sense, "exact" at low densities, as previously pointed 

au: by C;,dO and Le:et (l S'd3). i:o\.,,-ever, at l:'q~id-like de:1sir:iE:s, a is 

so.aJ..l compared to unity and therefore Hilson's equation overestimates nonran-

domness, as pointed out previously (-Nakanishi et al., 1982). 

For ha:-d-sphere mixtures Ell = £:22 = E:12 = O. In that case, 

3 / J j :C.LI.h~ - XL ~I (X, all + XL~' ) (16) 

The equations given above provide an algebraic expression for Helmholtz 

energy A of a mixture containing spherical molecules that differ in size 

and potential energy. These equations were derived to provide a good 
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approximation to results obtained from computer simulation as shown in the 

next section. 

Comparison of Results with Those from Monte Carlo and Perturbation-

Theory Calculations 

First, we consider dense binary mixtures whose molecules are of the 

same size. We use our algebraic equation to calculate local composition, 

residual chemical potential and lienry' s constant over a wide range 

of ratio £11/£22. We compare our calculated results with 

those reported by Nakanishi (1982) and by Shing and Gubbins (1983), 

using Honte-Carlo computer simulation (Me) and perturbation theories (LHB = 

Leonard-Henderson Barker (1970); LL = Lee-Levesque (1973»). For 

characteristic energy £12, we use 

(17) 

For our present purposes we confine attention to dense liquid mixtures. 

For these ~e use a = 0 • 

?ig'':::-'2 2 shu;.;.:; lc::.al cocpos1tions xll or x22 for an equimolar :ni:-::tere 

(Xl = xL = 1/2) ;.;i12:;:-e £11 = £22/ 2 ; these local compositions are shown 

as a function of £12 (lower abscissa) or k12 (upper abscissa). Our 

resul ts a;:;:-ee \vell with those based on He especially when we consider the 

probabl.e uncerLa1ncy in the He calculacions. 

The residual potential is shown in Figure 3 for the case £11/£22=2; 

£22/k = 10UK ; T = 120K 
3 

p022 = 0.7 and all = 022 = 3.405A 

Agreement is again good, probably within computational error. 

The most sensitive test is provided by Henry's constant. Results are 

shovffi in Figure 4 fo~ conditions similar to those in Figure 3 except that 
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is now the independent variable and 

with k12 = U. Agreement with Me is excellent except for very small values 

for £12/£Z2 which are almost never attained in real mixtures. However, 

we are not convinced that the Me results are correct in the limit 

£lZ + o. This limit is for a mixture where £11 = £lZ = 0 according 

to Me, for this case, H/pkT = 1. But this corresponds to a zero residual 

chemical potential for the solute. That, however, is not reasonable since 

molecular diameters 01 and oZ are not zero: that is, we have a 

hard-sphere solute dissolved in a real solvent. For such a solute, the residual 

chemical potential should not vanish because the definition of residual refers 

to an ideal gas, not a hard-sphere gas. 

Figure 5 shows the variation of coordination numbers with the size ratio 

(01ZI02Z)3. When the central molecule i = Z , the coordination 

number z is about lZ when the size ratio goes to. zero. For equal-sized molecules 

z is near 10, and z is about 6 when the size ratio is somewhat larger than Z. 

On the other hand, when central molecule i ~ 1 and the size ratio goes to 

zero, the coordination number is very low because in that event the region 

of local order is vanishingly s:nall. But: as the size retia :;.:-;.cre<:~scs, t:le 

coordination number rises to about 12. 

Residual potentials are shown in Figures 6 and 7 for a variety of 

conditions, as indicated. Figure 6 compares results obtained from this ivork 

• witll those obtained for riC and froI!l van der Waals n-fluid theories. For tb.e 

case shown, 012 is only slightly larger than 022·j for that case, one-fluid 

van der Waals theory provides a fair approximation. Figure 7 provides 

comparisons with Me and perturbation theories. It would be useful to make 

comparisons for cases where 3 (01Z/oZ2) >1.5 but, unfortunately, no He 

results are as yet available for such cases. 
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However, the effect of large differences in molecular size is shown 

dramatically in Figure 8, which shows Henry's constants calculated 

by MC, perturbation theories, and van der Waals theories. It is evident that 

the algebraic equation for Helmholtz energy A, described above, gives very 

good results. Figure 8 emphasizes that van der Waals n-fluid theories are 

• very poor in the dilute region whenever there is a significant difference in 

molecular size. 

Some calculations were also made for a few real mixtures of spherical 

(or nearly spherical) molecules. The results are shown in Table 1 ; pure-

component parameters are shown in Appendix III. Results calculated 

with the method presented here are as good as those calculated from 

perturbation theory ,(Grundke et al.,1973). 

Implications Toward a "Practical" Equation for Calculating 

Chemical Potentials in Mixtures 

The results of this study lead to some useful suggestions toward a 

practical equation of the van der Waals form for the chemical po~ential of a 

co~ponent in a fluid mixture. 

\';e find that, to an excellentapproxi~ation, the local n:ole fraction is 

X·· 
J~ 

(18) 

• 

It can then be shown that 

(19) 
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where, for the mixture, van der ~aals "constant" aH is given by 

k Ie 

LL 
i =, j=' 

Ii 
r· x· a:'J° .. J 

.~ and "constant" aij H is related to reduced temperature kT/t:ij by 

" f ( d.. E 9 )-' [ ( cJ.. E 4j ) I ] 8 } t g (J'j 0.48 k T exp O.Q8 kT - -t- 0./ 

where t:ij is the Lennard-Jones energy parameter. It is important to 

emphasize that Equation (2U) is not assumed but derived from our previously 

stated assumptions. 

We use superscript H on "constant" a because we want to call 

(20) 

(21 ) 

attention to its definition which, as indicated by Eq. (19), is in terms of the 

Helmholtz energy. In the equation of state (EOS), "constant" a is somewhat 

different because it depends on density; the relation between aH and aEOS 

is found from p=-(aA/aV)T n.; it is given by 
, J 

(22) 

If "constant" a depends only on temperature and composition, there is no 

H EO~ difference between a and a ~ 0 This is the case in popular semi-empirical 

equations (like ~oave-Kedlich-Kwong) but comput.er siulUlations clearly si-.ow t~,at 

J "constant" a depends on density in addition to temperature and composition. 

The quadratic mixing rule indicated by Eq. (20) follows directly from our 

derivation, subject only to the use of approximate local mole fractions Eq. 

(18) • However, since a depends on reduced denSity, "constant" 

(for i=j and for i * j) also has a composition dependence; that dependence is 

not large (especially at hiGh reduced density ,·;here a« 1) but for hi6hly 
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asymmetric mixtures L 0ii »OjjJ, it can be significant. 

To 1l1ust+ate, we fit the equations derived here to extensive experimental 

data for argon, we find that 

(
ocr!) 0.IS6S' O. 60 - O. 58 ,-

for the range po3 = 0 to 0.8 

We obtain an excellent fit of vapor pressures, liquid densities and 

second virial coefficients in the temperature range 85 < T < 1000 K using 

the conventional Lennard-Jones parameters 0 = 3.27 A and £/k = 109.4 K. 

Figure 9 shows reduced ali as a function of reduced density po3 

and reduced temperature kT/£ . 

(23) 

For extension to mixtures, we assume that Eq. (23) can be generalized to 

0.60 - 0.58 (PO- 3) 0.1865 (24) 

wh2re -3 (25) 
(J 

This definition of the reduced density for a nixture is based on the Gean-

density approximation discussed by Gonsalves and Leland (197~). 

We can now illustrate the variation of ali with composition. We consider 

a saturated, isothermal binary mixture at 150 K with £ll/k = 100 K ; 

0Il = 3.40 A ; £l2/k = 200 K and 022 =4.40'A. For the mixture, we use 

1/2 £12 = (£11 £22) • At saturation conditions, 

the chan~e in reduced liquid density is small. As indicated on the right side of 

Figure ~, reduced aH is not sensitive to reduced density in this region, 
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therefore we expect that, for the liquid mixture, a plot of aH (for the mixture) 

versus x gives a curve very close to a parabola as given by "classical" van 

der Waals theory. Figure llhshows the ratio of aH to aH(classical). We 

find that aH (for the mixture), as calculated by the methods presented 

here, is closely approximated by the "classical" ali when 112 is near -0.0375 • 

Ho~ever, the situation is qualitatively different for the saturated vapor. 

Here the reduced density changes appreciably with vapor composition. As 

indicated on the left side of Figure 9, reduced ali varies significantly with 

reduced density in this region. In that case, we expect that ali (for the 

mixture) is not a quadratic function of x for isothermal conditions at 

saturation. Figure lOb shows that there is no value of 112 which can make 

aH(classical) agree with that calculated here. 

To obtain the chemical potential, we combine Eq. (4) for ~AIII with-

Eqs. (2,3) for the other contributions; for component i, chemical potential 

~i is found from 

When we perform this differentiation, we note that ~i depends not only on 

(26 ) 

H H a ii and a jj but also on the derivative of H a ij with composition (through 

the assumed dependence of a on reduced density). This dependence introduces 

an aSYlllilletry in the chelllical potential which one would not ir:rr-ucdiately expect 

from Eq. (20) which gives ali (for the mixture) as a quadratic function of x • 
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From these considerations we conclude that the origina:l v~er Waals 

symmetric (quadratic) mixing rule for "constant" aH gives a very good first 

approximation which, in any event, is exact at zero density. However, since 

coefficients H H H aii ,ajj and aij are somewhat density-dependent, and since 

density depends on composition, we find that there are small deviations from 

van der Waals' symmetric mixing rule; at high densities, these are probably not 

significant unless there is a very large size difference. For liquid mix-

tures where the size difference is moderate, our study leads to a conclusion 

identical to that reached by Hoheisel and Kohler (1983): essentially all 

effects of size difference arise from the repulsive (Carnahan-Starling) 

contribution to the partition function. For such liquid mix~ures, in the 

attractive contribution, it is proper to neglect effects of nonrandomness as 

suggested by the quadratic mixing rule for van der Waals "constant" aH 
e 

However, it appears that, for mixtures where all and a22 differ 

appreciably, aH (for the mixture) is not a quadratic function of x at 

moderate densities, e.g. in the vapor phase along the saturation line, whenever 

~t~t ~~~se is well removed from the ideal-gaR limit. 

This conclusion follows fro~ our assumption that, for a mixture, a is a 

function of reduced density with the mixing rule given by Eq. (25). This 

assu~ption requires more detailed study. We cannot now come to any definite 

concl '..!sion because, unfortunately, computer simulations are currently available 

only at high reduced densities, not at intermediate reduced densities. 

, 

Concl usion t" 

Our results indicate once more that the original van der Waals theory 

(which separates repulsive and attractive contributions to the Helmholtz energy) 

provides a remarkably good approximation, for pure fluids and for mixtures, 

provided that the reduced density is high. Our present position is that, for 
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relatively simple mixtures, we know what to do at the two ends of the density 

spectrum: small densities (where the second vi rial coefficient is sufficient) 

and high densities where the mean-field approximation is good. Our ignorance 

is in the intermediate-density region. Hopefully, computer-simulation workers 

t, will supply intermediate-density results in the not-too-distant future. Such 

results are necessary for further progress toward a reliable equation of state 

for fluid mixtures. 

Our study shows that computer simulations are extremely useful for pro-

viding guidance in the development of algebraic equations for the Helmholtz-

energy as a function of temperature, density and composition. While it is 

likely that, in some future generation, all desired thermodynamic properties 
< 

will be generated by computer simulations alone, it is also likely that limi-

tations in molecular theory and in computing capacity will make it necessary 

for many years to depend on algebraic expressions for practical calculations 

as required for chemical process design. 

Appendix IV gives a convenient sir;uaary of our proposeci "practical" equation 

or: ".::o.te ?t its present state of de·:elop,,:2<lt. 
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Table 1 

COMPARISON OF EXCESS PROPERTIES 
AT P a 0 and xl = 0.5 

GE and HE 1n J·mo1-1 and VE 1n cm3 ·mo1-1 

PERTURBATION 
PROPERTY EXPERIMENTAL THEORY 

k~) 0.004 0.017 
G 84 84 
HE - 45 
VE -0.52 -0.47 

k!" 0.022 
G J 115 115 
aM - 6~ 

VE -0.70 -0.50 

k" " 0.001 -D.OOl 
GtJ 34 34 
HE 51 35 
VE -0.18 -D.27 

kt " 0.014 0.014 
G J 57 57 
HE - 79 
VE 0.10 -D.07 

k!j 0.012 0.028 
G 74 74 
HE 103 89 
VE 0.17 0.03 

I 
k;j 0.01 b u ,U13 
G""' 37 37 
HE bO 52 
VE 0.14 -.06 

k-rj -0.002 
GE: 42 42 
HE 44 43 
V E -U.21 -0.26 

k£j 0.014 0.010 
G 23 23 
liE - 34 
V E U.13 U.07 

k£j 0.002 0.017 
G 115 115 
HE 105 96 
V E -0.32 -0.48 

THIS WORK 

0.008 
84 
38 
-0.55 

0.012 
115 

61 
-0.57 

-0.006 
34 
39 
-0.32 

0.007 
57 
86 
-0.09 

0.020 
74 
90 
0.03 

I 
i U. ()l 0 
I 

37 
56 
0.07 

-0.008 
42 
48 
-0.32 

0.008 
23 \) 

36 
0.07 

0.005 
115 

91 
-0.62 



) 

-19-

FIGURE CAPTIONS 

Fig. 1 Short-range order and long-range randomness 

Fig. 2 Variation of local compositions with £12/Ell and k12. 

Fig. 3 

£22=2£11' £12={£11£2i(l-k12)' {Ell £22/k=1l9.8 K, 

022a3.405 A, p03=0.75, Ta 120 K , x1=0.5 

MC: Monte Carlo results by Nakanishi et al. (1982) 

Reduced residual chemical potential for mixtures with energy ratio 

£11/£22= 2 , £22/k = 100 K', T == 120 K, pa~2 = 0.7 , 

022 = 3.405 A. • 

HC: Honte Carlo method, LHB: Leonard-Henderson-Barker theory, 

LL: Lee-Levesque method (Shing and Gubbins, 1983) 

Fig. 4 Henry's constant (or residual chemical potential in infinite dilution, 

pi (Xl =O)/kT - In(H l ,2/pkT ) for mixtures with different' energy 

ratio €.!2/€22. 

£22/K = 100 K , T - 120 K , PO~2 = 0.7 , a22 = 3.405 A. 

1':C, LHB, LL: See caption of Fig. 3 

;:'..6 • .J Va:::-ia~ion of coorcination n'.1oba:::-s with size :::-atio fo;:" :-:1 0.5. 

£22/k = 100 K , 022 = 3.405 A , T = 120 K , 3 po = 0.7 

Fig. 6- Reduced residual chemical potential for mixtures with 

( 012/ 022)3=1.5, £22/k=100 K, T=120 K, 022=3.405 A, 

p03=O.7 • 

Comparison with Monte Carlo results (Shing and Gubbins, 1983) and 

van der Waals n-fluid models 

(a) for component 1 (b) for component 2 
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Fig. 7 Reduced residual chemical potential for mixtures with 

( 012/ 022)3=1.5, £22/k=100 K, T=120 K, 022=3.405 A, 

p03=O.7 .Comparison with Monte Carlo results and Perturbation 

theory. MC, LHB, LL: see caption of Fig. 3. 

(a) for component 1 (b) for component 2 

Fig. 8 Henry's constant (or residual chemical potential at infinite 

dilution) for mixtures with different size ratio ( 012/ 022)3, 

€22/k=100 K, ~22=3.405 A, T=120 K, 3_ po -0.7 • 

Comparison with (a) Monte Carlo results and van der Waals 

n-fluid models (b) Perturbation theory. 

tiC, LHB, LL: see caption of Fig. 3 

Fig. 9 Variation of reduced van der Waals constant a~j/(€ij/k)/(NAVOij3) 

with reduced density p03 and reduced temperature kT/€ij • 

Fig.10 Variation of reduced van der Waals constant a~j/(€ij/k)/(NAVO'ij3) 

with composition. 

(a) fo~ saturated liquid (b) for saturated vapor 
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APPENDIX I AAII from van der Waals n-fluid model: 

(1) One-fl uid 

(1-1) 

where 

5-
_3 
(j-

Ie k 

LL 
i=f j-I 

(2) Two-fluid, 

L1Alr = 
Ie-

'YlRT L X. (4Si- 3 S/ )/(f-5,,)1. 
i-I 

(1-2) 

where 5i. = TC nNAy - 3 
6 V ~ 
k .3 L x.. (j .. 

j=-f J lJ 

(3) Three-fluid 

f1AlI.' = 'nRT t t Xi Xj (~Sij - 35i.J' )/(1-: 5i.j)~ (1-3) 
, .. , j=' 

where 



-25-

APPENDIX II Calculation of local compositions for a multicomponent mixture 

For a k-component system, the total number of local mole fractions 

is k2 • However, these are subject to two kinds of restraints. The 

first follows from normalization represented by k equations of the form 

Ie 

LX .. -- 1 • JI. 
J=f 

i - L ... , k (11-1 ) 

The second follows from a balance of ij pairs, represented by k(k-l)/2 

equations of the form 

i = 1, ••..• , k j = i + 1, ••• , k (11-2) 

The total number of independent variables is equal to k2-k-k(k-l)/2 

= k(k-l )/2. 

Differentiating Helmholtz energy change ~AI1I with respect to 

these k(k-l)/2 independent local mole fractions, we obtain k(k-l)/2 equations 

( o (1I-3) 

When we solve these equations, we obtain k(k-l)/2 local mole fractions. 

For a binary, an analytical expression for local mole fractions can be 

.. easily obtained as is shown by Equation (14). For a multicoUlponent system, 
Cw 

especially when k>3, the situation becomes more difficult. In this case, 

it is better to use simplified local mole fractions as shown in Equation 

(l~) • 
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APPENDIX III l:'otential parameters. for pure fluids 

Fluid £/k/K a/A 

Argon 119.H 3.4U5 
Krypton 167.0 3.633 .,", 

Methane 152.0 3.74 
101.3 3.612 

~, 

Nitrogen 
Oxygen 119.H 3.36 , 
Carbon monoxide 104.2 3.62 

APPENDIX IV Summary of "practical" equation of state at its present 

stage of development 

The equation of state is fou~d from 

aA 
p = - (-) 

av T,all n 

where A is given by Equation (1); ~AI is given by Equation (2) and ~AII 

is given by Equation (3). 

For aAIII use Equations (19), (20), (21), (24) and (25). 

The chemical potential lJ is given by Equation (26). An expression for 

the contribution of ~AIl to lJ is found in "Applied Statistical Hechanics" 

by T. M. Reed and K. E. Gubbins, page 25d. However, the equation given there 

is in a form significantly different from that used here. Interested readers 

can obtain a copy of our expression by writing to one of the authors. 

.. 
• 
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List of symbols 

A 
a 
G 
H 

Helmhol tz energy 
van der Waals "constant" 
Gibbs energy 
Enthalpy 

~L,~** , 
Henry's constant of 1 in 2 
constants 

k 
k12 
112 
LHB 
LL 
Me 
NAv 
n 
p 

r 
r* 
r** 
R 
S 
T 
V 

Boltzmann's constant 
binary parameter 
binary parameter 
Leonard-Henderson-Barker 
Lee-Levesque 
Monte Carlo 
Avogadro's number 
number of moles 
pressure 
intermolecular distance 
location of molecules in first coordination shell 
outer radius of first coordination shell 
gas constant 
Entropy 
temperature 
volume 

x mole fraction 
x12 ,x21'." •• local mole fraction 
Z(i) coordination number for molecule i 

Q. density dependent constant 
e: potential energy 
E: energy parameter 
)l chemical potential 
0 size parameter 
p nU!1ber density 

Superscripts 

E excess properties 
EOS derived from equation of state 
H derived from Helmholtz energy expression 
r residual 
o standard state 

Subscripts 
hs hard sphere 
LR long range 
SR short range 
1,2, ••• ,i,j,k component index 
1,11,111 step in model construction 
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