LBL-16804
Preprint Qé;\

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

N el
LAY

_{] @ Materlals & MOIGCUIar BERKEE\?{SE;SSATORY
; ReseaI’Ch DlV'Slon DEC 1 3 1983
LIBRARY AND

DOCUMENTS SECTION

Submitted to Fluid Phase Equilibria

THERMODYNAMICS OF ASSOCIATED SOLUTIONS. HENRY'S
CONSTANTS FOR NONPOLAR SOLUTES IN WATER

Y. Hu, E. Azevedo, D. Ludecke, and J. Prausnitz

“
October 1983 TWO-WEEK LOAN COPY
This is a Library Circulating Copy
\ which may be borrowed for two weeks. [N
For a personal retention copy, call
Tech. Info. Division, Ext. 6782.

SR

—L

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

H 2917747



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



.Wl

LBL-16804

THERMODYNAMICS OF ASSOCIATED SOLUTIONS.
HENRY'S CONSTANTS FOR NONPOLAR SOLUTES -IN WATER

Ying Hu*, Edmundo Azevedo*, Dorothea Ludecke**,
and John Prausnitz

Materials and Molecular Research Division
| Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

October 1983

This work was supported by the Director, Office of Energy Research,
Office of Basic Energy Sciences, Chemical Sciences Division of the
U.S. Department of Energy under Contract No. DE-AC03-76SF00098.



s

THERMODYNAMICS OF ASSOCIATED SOLUTIONS.
HENRY'S CONSTANTS FOR NONPOLAR SOLUTES IN WATER

o

Ying Hu,T Edmundo Azevedo,”* Dorothea Ludecke™*
© and John Prausnitz

LV Molecular and Materials Research Division
Lawrence Berkeley Laboratory and
Chemical Engineering Department
University of Califormnia
Berkeley, CA 94720

ABSTRACT

A systematic derivation is.presénted for the Helmholtz energy of a
‘van der Waals fluid mixture wﬁose nonideality is ascribed to bach chemical
and‘phyéical interactions; this derivation, applicable to all fluid densities,
leads to an equation of state which contains éhemicai equilibrium constants
in addition to the customary physical van der Waals constants a and b.
Attention is given to the need for simplifying assumptions and to the variety
of simplifying assumptions that can lead to useful results. A'particular
equation of state is used to correlate Henry's constants of nonpolar solutes
in water over a wide temperaturevrange. The correlation, however, is only
partially successful because as yet we do not have a trul; satisfactory theory

for thermodynamic properties of mixtures containing molecules that differ

appreciably in size.
v
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Many authors have explained fluid nonideality by supposing ﬁhat a fluid
contains not only the apparent molecular species Sut, in addition, polymers
of such species which are in chemical equilibrium; for example, for acetic
acid vapor, deviations from ideél-gas behavior at low or moderaﬁe pressures "
are readily explained by assuming that acetic acid dimerizes, in part, to g
form acetic acid dimers in addition to acetic acid monome;s. Similarly, |
thermodynamic properties of 1liquid solutions of hydrocarbons and alcohols
can be correlated by postuléting that alcohols bplymérize, iﬁ part, to form
dimers, trimers etc. in addition to alcohol monomers; finaliy, thermo&ynamic
properties of liquid solutions of chloroform and acetone are readily inter-
preted by assuming that these two species solvate to form a 1:1 chloroform-
acetone complex.
When these "chemical” theories of nonideal fluids were first proposed
early in this century (Dolezalek,1908), it wés customary to assume that the “true”
species Eorm an ideal solution; in other words, all deviations from ideal
behavior were ascribed to chemical effects. It was not until (about) 1950
that some authors took into account also physical interactions between the
true species (Scatchard, 1949; Kretschmer and Wiebe, 1954). However, theories
which used both chemical and phfsical contributions to nonideality were
confined either to gases at moderate densities (second virial coefficients)
or to liquid solutions containing only subcritical components at conditions
remote from critical. |
It was only in 1976 that Heidemann (1976) proposed an equation>of state, Y
applicable to all fluid densities, for fluids which exhibit chemical and phy-
sical contributions to nonideal behavior. Siﬁce then, other authors, notably

Gmehling and Liu (1979), Baumgaertner et al. (1980) and Wenzel et al. (1982)

have proposed similar equations of state based on a variety of simplifying

assumptions. However, to the best of our knowledge, for such equations of
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state no systematic derivation has been presented which clearly gives the
fundamental ideas and which also indicates,why simplifying assumptions are
necessary and what choice of assumptions may be available. In this work we
present such a derivation, applicable to all fluid densities; we the; illustrate
the applicability of a chemical-physical equation of state toward correlation

of Henry's constants of nonpolar solutes in water over a wide temperature

range.

Thermodynamic Framework

Consider a binary mixture of components A and B . In the absence of
any association or solvation, the number of moles of A 1s mnp, and the
number of moles of B is npg, .

We assume that both components A and B can continuously associate to

. form linear polymers: dimers, trimers, etc. according to

A + 4 T A By + By 2 By
A2+A12A3 _ BZ+BI:B3
Ay + 4 2 Agn Bj + By # Bin

where index i goes from unity to infinity. As indicated by the double arrows,
we assume that the indicated molecglar species are in chemical equilibrium, »
characterized by equilibrium constants KAZ,..., KAi+l and KBz,..., KBi+1 which
depend only on temperature. For simplicity, we assume that, for each component,
all association constants are equal, independent of i , designated by K
and Kpg , respectively.

For solvation, there are many stoichiometric possibilities: the genéral

formula for a solvated species is A, B, where indices n and m can be
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any integer between'one and infinity. To simplify, we assume that solvation
equilibria are of the form

A + By 7 AB

AB + AB 3 (AB)o

A4
(AB)y + AB 3 (AB)jH -
where index i goes fron one to infinity; Further, we.assume that one
equilibriumAconstant KAB , applies to all solvation equilibria, except the
first ohe; its equilibrium constant is KXB .

Given this physical picture, our aim is to establish an expression for the
Helmholtz energy A of a mixture at temperature T and volume V cont#ining
monomers, associated species anq solvated species which are in chemical equili-
brium. Unlike other authors, we do not assume that this mixture is ideal; sub-
ject to simplifying assumptions, wé take into account physical interactions
(repulsion and attraction) between the chemical;y—equilibfated molecular species.

To obtain the desired expression for A we consider four steps, all at
temperature T . Our reference states are pure component A and pure component
B, each at T and 1 bar, in the ideal-gas state. In this reference state,
pure components A and B exist only as monomers.

Step I - Formation of Pure Associated and Solvated Species in the

Ideal;Gas State at T and 1 bar:

AAT = I n AgA + i RT '
=g A 88X, ] V

[ -] .
+ Zn [Agg + i RT]
i Biyy OBBiy

+ I D(AB), [Ag°(AB)i+ (2i-1) RT] 1)
i=
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where Agzi+1 = gtandard Gibb§ energy of formation of one mole of specieé

Aj4y . Similar definitions hold for Ag§i+l and AngB)i . The number

of moles of species j 1s designated by nj .

Step II - The Pure Monomers and'the Pure Associated and Solvated Species
at T and 1 bar in the lIdeal—-Gas State are Mixed to Form an Idgal-

Gas Mixture at T and V :

bATT = z nj RT 1n JV (2)

where gas constant R in the logarithm is chosen to give units of bars.

We now introduce nr , the total number of moles

[ © - :
np = L np + I ng + I n(AB).
1=t 1 44 1 g i

We then obtain for AApy

M -]
AA7T =RT [-n7ln V+ np ln RT+ I ny lnng + I np 1ln ng
i1 1 i g 1 i

+ I n(ap). ln n(ap), ! ' (3)
= i i
i=l
Step III - Each Molecule in the Ideal-Gas Mixture at T and V (a Point)

is Inflated to a Hard Sphere to Form a Hard-Sphere Mixture :

Myrry = np RT A% ) (4)
D.T
v

where £ =

is the reduced density with $ a size parameter for the
mixture and éf(g) is obtained from a shitaﬁle hard-sphere equation
of state. [Equation (4) uses a one-fluid approximation. While some other

approximation could be used, only the one~fluid approximation gives a



feasible algebraic form. ] For example, if we use the original van der Waals

equation,

8

A%(E) = - 1n(1-4E) | (5

or, using the Carnahan-Starling equation,

\\-\ ;

3£-4 :
A% = - —5%} 6)

1-£)
Step IV - The Hard Spheres at T and V are Charged with an Attractive

Potential to Form a Real Mixture:

3 Kk :
MMy = np =A (€) : (7)
A
where -%- is a parameter characterizing the attractive potential energy of
the mixture and éf*(g) is obtained from a sémi-empirical equation
of state of the van der Waals form. For example, if the original van der

Waals equation is used,
A¥ () = - | (8)

1f we adopt the Redlich-Kwong equation of state,

1
A¥* () = -ln L+ 48) N¢))

The desired Helmholtz emergy A of the real mixture is given by

)
A = npo af + npy af + AAT + AArr + AATTT + AATy (10)

where 33 is the molar Helmholtz energy of pure A in the standard

state; a similar definition holds for ag .
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The equation of state for pressure P follows frdm

P = - (E) | (11)
av T,n
RT 3A* 4 aa** (¢
P = pp|— - RT -= e ;a——(—)l . (12)
v av b dy

The chemical potentials for components A and B are, respectively,
equal to those for monomers A; and By . [For a simple proof of this

general result see Prigogine and Defay (1954)]

9A
TN W (s‘—nA ) - (@A3)
LT, V.0 (i#4)) |

A
ug = ug, = (3o ) 14s)
1 L 1,v,n (3#B))
E A j
For y, , we obtain
Hp = 22 = RT 1n(V/RT) + RT(1+ln nAl)
T aa%(g) 3¢
+RT A7(E) + np RT g~ + 3
A
8 aw 4 8™ g wk _ 33/B

+5 A () +np g 3¢ "Tm,, Thr A (E)'—"‘anAl (15)

There is a similar relation for ug .
In Equation (15), the first three terms are ideal-gas contributions;

the fourth and fifth terms are hard-sphere contributions; the remaining terms

are contributions from attractive forces.
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We consider four types of chemical equilibria:

Association of A:

LT S Fag4 @e)
A7 4y ds P INETR
_Ai Al Ai AI
Association_of B:
$8 - 3B hd
KB = i+l o i+l Qa7

By %8, P OB, 331

Solvation:
o $AB 4 AB a8
. P
b % T da bn
o (AB) s 3 (aB) 4y
KAB = P /‘ (19)
¢(AB)m ¢A.B 3(A_B)m3 AB
Here 3 is the true mole fraction (3j'= nj/or) , and ¢ is the
fugacity coefficient given by the well-known thermodynamic relation
) 4 RT
RT 1ln ¢y = J’[(a—) - —51 4V - RTla 2 (20)
v T,V,n

(3#k)

where 2z = PV/nrRT is the compressibility factor.

The fer chemical equilibria [Equations (16), (17), (18) and (19)]
contain ratios of fugacity coefficients. In general, these ratios depend on
temperature, density and composition. In that event, wé have tremendous V)
mathematical complexity. However, as shown by Heidemann (1976), this
complexity can be greatly reduced by a proper choice of mixing rules for 2%
and % « Several choices are available such that the ratio of fugacity

coefficients is independent of i (the degree of association and/or solva-
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tion) and further, is the same for all four equilibria, as shown below.

For example, Heidemann assumed
ay = izal by = ib; ‘ )
and then derived the mixing rules
2= 2 (xi a, + 2x,xp VaAlaBl + x% aBl) (22)
(23)

B = (—)(xA a % Bl)

aj for normal alkanes

where nj, = np, + ng, . However, experimental values of

indicate that Eq. (21) overestimates the effect of 1 on ay .
In this work, we suggest a generalized mixing rule to replace Eq. (22)

(24)

n, l+w 2 e, 2
= (=) (xy ay + 2x,xp /aAl aBl(l+kAB ) + x3 aBl)
where o {(w {1 and kg 1s a binary interaction parameter. Eq. (23)
is unchanged; |
With these mixing rules, we obtain
P P P P |
. ¢A ¢A1 ¢Bi ¢BL ¢A1¢Bl ) ¢(AB)1¢AB
¢A1+-1 *Bin *a8 C I
- ERT £ %) a-w) 1 a*e.
=% exp f 3E . "~ KT ° %X " a¢ d§
b b (25)

The detailed derivation is presented in Appendix I. Note that when w =1

(as in Heidemann's work), only repulsive forces contribute to a .
and ny/nt , we must simultaneously solve the

" To obtain n n
A > 7By
chemical equilibria and material balances,as discussed in Appendix II.
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Henry's Constant for a Nonassociating Solute in an Associated Solvent

The most sensitive test for a theory of solutions is in the dilute
region. Therefore, we now turn attention to Henry's constants. To obtain an

expression for HA,B , Henry's constant of nonassociating solute A in

associated solvent B , we first recall the defimition ' v
HA',B = 1imit (fA/xA) . ' (26)
Xp > O

where £, ; the fugacity of the solute, is related to the residual chemical

potential uAr by

vk f RTln (Px,/2)

RT (27)

1n fA =

where 2z 1is the compressibility factor of the liquid mixture; the residual

chemical potential is defined by
uE = uy(T,x,v) - pldeal 8as(p . y) (28)
For Henry's constant, we obtain

U
HA,B = limit [P exp (Eér - 1lnz)]
Xp* 0
In the limit x4, * 0 , z 18 the compressibility factor of pure liquid B .
Because A 1is nonassociating, Ky = (0 , and the general formula for

solvated species is ABj .

Data Reduction

To apply Eq. (29), we take water for solvent B in the temperature range

20-300°C . At any temperature, we must obtain parameters a and b and-
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association constant Kg . To do so, we use experimental data for vapor
pfessures and for liquid densities over a range of temperature (Bain,l1964).
Since it is difficult to obtain 3 unique parameters, we usé in addition,-
experimental Henry's constants for a particular nonassociating solute A ,
viz. methane (Crovetto et al.,1982) and experimental PVI and vapor-pressure
data for pure methane (IUPAC, 1976). We use mixing rules Eqs. (23) and

(24) with w = o and for methane-water we arbitrarily set kpy =0 .

Table 1 shows :esults of data reduction for water. True mole fractions

(up to 3y) are also shown at each temperature for saturated liquid water.
Figures 1 and 2 indicate that, with the parameters indicated, we obtain an
excellent fit. To facilitate'calculations, tﬁe parameters for pure water

are represented by

a = (-612.42 + 67.545T)/TL*4  (bar*12mo1~2) (30)

b = (0.13672 + 2.7457.1072TL<2)/70.5 (Qemo1~l) - . (31)
1ok = -'H4 § , -~ (32)

. RT R |

whefe H/R = -5.890. x 10Xk ‘and AS/R =.-18.22 for temperatures below
200°C . (For temperatures greater than 200°C , we use the association
constants shown in Table 1.) Parameters a and b for methane (and other
nonassociating solutes) are given in Appendix III.

Figure 3 shows calculaﬁed and experimental Henry's constants for methane
in water. Also shown are Henry's constants calculated with the Carnahan-
Starling-van der Waals model (no association ) and different values of kAB .
It is evident that if this latter model is used to fit Henry's constants, it is
necessary to assign a large empirical temperature dependence to Kkpp . In
this model, a single.value of kpy cannot reprodﬁée the observed maximum

when Henry's constant is plotted against temperature.



Table

1

PARAMETERS AND TRUE MOLE FRACTIONS OF ASSOCIATED SPECIES IN SATURATED LIQUID WATER

—
t/u(,‘ «')7‘)01"12'“101-2 I)/l'mol_l' K/lmr-.l 2'] }2 }3 34 }5 }6
20 6.757 0.00946 6.511 7.27+1071 | 1.99-107" | 5.42+1072 ;1.48-10'2 4,04-10-3 1.10-1073
50 6.507 0.00917 | 0.9830 | 7.67-107} | 1.79-107* | 4.16-1072 | 9.68-107 | 2.25-1073 | 5.24-107"
100 6.168 0.00881 | 0.08563 | 8.20-1077 | 1.48-1071 | 2.66-107% | 4.79-1073 | 8.63-107* | 1.55-107%
150 5.884 0.00853 | 0.01357 8.60-10° | 1.21-1071 | 1.69-107%2 | 2.38-1073 | 3.33-107% | 4.68-107°
200 5.641 0.00831 | 0.002881 | 9.00-107! 9.0-0-10"2 9.01-107> | 9.01-107% 9.02-10'5‘ 9.03-107°
250 " 5.426 0.00814 | 0.0007025| 9.381071 | 5.841072 | 3.64-1073 | 2.27-107% | 1.41-107% | 8.79+10"7
300 5.244 0.00805 | 0.0001998| 9.64-1071| 3.50-207% | 1.27-1073| 4.62-107° | 1.68-207% | 6.11-1078
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We also reduced experimental Henry's-constant data in water for'14 non-—
assoclating solutes in addition to methane. Results are shown in Figures
4-9. Good fits are obtained for argon,'krypton, nitrogen, oxygen, carbon
- monoxide, carbon dioxide and hydrogen sulfide using a single value of Kkup ,
as given in Table 2. We note that the molecular sizes of these solutes are
close to that of water. However, results are not good for xemon, pentane, ~
hexane, cyclohexane and benzene whose molecular sizes are appreciably larger
than that of water; results are also not good for hydrogen, helium and neon
whose molecular sizes are appreciably smaller than that of water. Our
inability to fit Henry's constaﬁts for these asymmetric systems is probably
due to the use of a one-fluid approximation (Equation 4) and also due to the
inadequacy of mixing rules Eqs. (23) and (24). It appears that, while the
chemical theory of associatgd fluids takes into account the effect of sfrongly
oriented 1ntermolecular'for§es5 the one-fluid approximation with simple mixing
rules fails to take into account normal intermoléecular forces (repulsion and
attraction) in mxtures where the molecules differ significantly in size. Our
mixing rules are, esseﬁtially,'generalizations of the van der Waals one-fluid
theory of mixtures; the work of Shing and Gubbins (1983) has shown that a
one-fluid theory leads to significant error for asymmetric mixtures, especially
in the dilute region. To improve the chemical theory of solutions, it will
be necessary to focus attention on better relations for calculating
A*(£), 8 and . -
Proceeding empirically, we can very much improve our fits of Henry's
consﬁants by assigning a small linear temperature dependence to kpp as
shown in Table 2. We note that for large solutes, kg increases with
temperature while for small solutes, kg decreaseé with temperaturé.

Figures 4 to 9 show calculated results using a temperature-independent

kAB (dashed lines) and using a slightly temperature—dependent kap (solid

Al
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lines) according to Table 2. This empirical procedure is clearly not
satisfactory but may have some utility for estimating solubilities in water

when no experimental data are available.
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Table 2

FOR AQUEOUS BINARIES

d ksg
Solute kypg at 100°C

daT
Ne 0.277 -0.00096
He 0.082 -0.00284
Ho -0.104 -0.00125
Ar 0.082 —0.00010
Kr '0.070 0.00018
Co -0.246 -0.00069
COoz -0.007 0.00009
HpS 0.002 -0.00011
Xe 0.01L0 0.00032
CeHeg -0.170 0.00057
n—CsH; 2 -0.221 0.00078
cyclo—CgHj 2 -0.309 0.00112
n~CgHy 4 -3.323 0.00061




Conclusion

For associated fluids and their mixtures, it is possible, as shown here,
to develop a generalized expression for thé Helmholtz energy as a function of
temperature, volume and composition. The generalized expression leads to
an equation of state for an assembly of mélecules that interact chemically
to form dimers, trimers, etc., all at éhemical equilibrium; this chemical
interaction reflects strong orientational forces such as hydrogen bonding.
Normal forces of fepulsion and attraction are taken into account by application
of the claséical van der Waals theory of fluids.

if complete generality is to be maintained, mathematical complexity
is hopelessly large. To reduce the theory to practice, simplifying éssumptions
must be made, as discussed here. While the introduction of chemical equiliﬁria
i8 useful for taking into account strong qfientational forces of attractionm,
the chemical theory of real fluids is nevertheless limited at present by oﬁr
inadequate understanding of mixtures containing molecules of different size.
The conventional.procedure for such mixtures is to use a one-fluid van der
Waals approximation but that is insufficiently precise, especially in the
dilute region. Future progress in mixture thermodynamics can only be attained
if we can replace the customéry one~fluid approximation by a theoretically
significant expression for the potential energy and for the configurational

entropy of mixtures containing molecules of different size.
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Appendix I. Derivation of‘Equation (25)

AWé'rearrange Eq.(12) as follows:

ke
BA (E) ' s %A (&)
RT l-w Aw a —
P = n—— = nRT —5— - n; (nTb) 5T 57 (1-1)

"~ According td Eqs. (23) and (24), né% and 3/31+w are functions of n,, , ngo
and parameters of monomers only, and anAb/anAi R 8nBo/§nBi , anAo/an(AB)i ,
n(po)/magy; all equal 1 . We obtain the following equations through

differentiating Eq. (I-1);

* *
(%)T,V,nj(j#Ai) - E\I‘; - RI i%-(v—g-)- - '(l-fw)~ g--a?v—(g)- - F1 (1;2)
34" (E) . A"y
F'a%::)T,ij (3#8,) - 5?1/"»' RT —_'aV" - (1) %_a_v— - Fi | (;—3)
34" (&) A aa™* ()
" (W(ﬁ,:)nv,nju#(u)i)’%‘ R —y— - ) Sy - R (10)
where .
= Pr RTa[aA (E)]/a Pa0 “'i.w a[(nTg)w galw' = Bég)llanAo (I-5)
aA €] 4 aé**(g)

= op RO —gg—1/amg, + my " 3laph g Sg—lfeny,  (1-6)
Foa= F, + Fp (1-7)

Substituting Eqs. (I-2), (I-3), (I-4) into Eq. (20), we obtain

o = POi%a1 ='P¢Bi¢31 - Péa1%81 - PO (a8)1%a8
¢Ai+1 ¢Bi+1 ®an ® (as X+1
3" () TG
X = = 1-w 4 °=
=P exp [{, (-—v— "t 5. v ) /=
*x T k&
_grr ¢ (vaé (® 1w 5 24 (s)) v as
3 "po 3E RT 5 9t
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Appgndix II. Solution for mn,, , n;, and nO/nT .

Substituting Eqs. (25) into Eqé. (16), (17), (18) and (19), we get

. - }Ai+l _ }Bi+l - }AB = }(AB Y+l (1I-1)
- ] "
a7k Ze?mfs ‘w?mfas Fas)ifas€as '
Yo/
Then we can write the following equations from material balance,
. - - 3 3 Fan |
Al Bl AB
I F.+ T F..+ L F - + + — =1 (II-2)
gm1 AL gay BLgg (BN IKek, o IKgady  1Kupedis
w ® 3 2
Al AB
n.( L 13,,+ I i}» Y =n_[ + ] = n x (1I-3)
T AL AB)1 T 2 R 2 o0"A
a1 e WL T k03,07 (-Kjpad,y)
® © : } }
Bl AB
o (I 1} . +I 1iF ) =n.f + ] =n (11-4)
T Bi AB)L T 2 - 2 %3
i=1 i=l (AB) (l-KBq}'Bl) (l-KABa}AB) °
Solving Eqs. (II-2), (II-3) and (II-4) together with
Fap = Kip a3 %
AB AB Fa1/B1 (1I-5)

from Eq. (II-1), we get }hlﬂ }%1, }KB and n, /np Also nyy/n, and ngq/n,.
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PARAMETERS a , b(®) aND b(l) FOR PURE COMPONENTS

b@ 4p(N72

(b = > where T = T/Tc, T. is critical temperature)
1+ T2 ,
SOLUTE a/bar<12/Kemol ™2 b€ /1 emo1 L [b(1)/1 emo1 2
Ne 3.916 0.03594 0.00433
He 6.470 0.01119 0.00609
Hy 4,228 0.08378 0.00507
0y 20.73 0.01529 0.00780
Ar 22.24 0.01685 0.00789
Ny 21.77 0.02067 0.01023
Kr 43.26 0.01900 0.00970
co 17.84 0.01940 0.00990
o, 71.95 0.01967 0.01004
HyS 105.6 0.02052 0.01047
Xe 86 .97 0.02458 0.01254
Cellg 454.7 0.05371 0.01559
n~CsH; 5 419.5 0.06041 0.02693
_cyclo—CgHy o 621 .9 0.07835 0.01735
n—CgHj 4 " 598.9 0.07587 0.03359
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List of symbols

symbol of component
Helmholtz energy

van der Waals attraction parameter
molar Helmholtz energy
symbol of component

van der Waals size parameter
fugacity

molar Gibbs energy
enthal py

Henry's constant of A in B
equilibrium constant
binary parameter

number of moles

pressure

gas constant

entropy

temperature

volume

liquid phase mole fraction
compressibility factor
true mole fraction

i
-]

N N <O XK

fugacity coefficient ratio
fugacity coefficient
reduced density .
chemical potential

Superscripts:

standard state

hard—-sphere contribution

*%*  attractive potential contribution
A mixture

r residual

Subscripts:
A,B component index
i,n,m degree of association

I,II,I1I,IV step of model construction

reduced property

total _

absence of any association or solvation

o
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