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Abstract 

The sequential decay of nuclei resulting from damped nuclear reactions is 

considered with an emphasis on observables related to the angular momentum 

accumulated during the reaction. Two types of observable are cosidered: 

multiplicity distributions and angular correlations. For both types, the 

effect of particle evaporation prior to the observed decay is derived, and 

particularly detailed calculations are made for bump-region y-rays and 

fission. 

The derived expressions are employed for confronting the nucleon exchange 

transport model with data. Overall good agreement is obtained with a few 

exceptions. A significant discrepancy is found for small total kinetic energy 

losses, where the calculated spin magnitude increases too rapidly (by 

approximately a factor of two). This discrepancy may be reduced somewhat by 

certain modifications in the treatment of the neck dynamics. Other 

discrepancies are mostly ascribed to uncertainties in the knowledge of the 

properties of the sequential decay. A modified description is tentatively 

proposed for fission of highly excited reaction products. It is based upon 

the assumption that the relaxation of the K quantum number is relatively 

slow, so that the angular correlation is determined by the precessional motion 

of the fissioning reaction product. 

A separate discussion is made for double fission angular correlations. 

The existence of covariances between the spins of the two reaction products 

implies that the detection of fission from one nucleus may break the 

reflection symmetry of the angular correlation of fission from the other 

nucleus. The nucleon exchange transport theory predicts a substantial 

symmetry breaking (up to a factor of two) while a statistical model, which 

yields much smaller spin covariances, predicts a 20 percent effect only. 
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1. Introduction 

In the preceding paper, henceforth referred to as I, we discussed the 

accumulation of angular momentum as caused by stochastic nucleon transfer in a 

damped nuclear reaction. After the reaction stage, the excited product nuclei 

dispose of their angula~ momentum by various decay processes~ Only the 

observation of ejectiles from this secondary reaction stage enables us to 

ascertain the amount of angular momentum carried by the product nuclei at the 

end of the'primary reaction stage. 

Ever since ,the first experiment1) , increasingly detailed information 

has been obtained about damped nuclear reactions by observation of sequential 

decay products. Measurements l - 4) of the multiplicity of y-rays indicated 

that damped reactions endow the product nuclei with substanti al angul ar 

momenta. Studies5) of the circular polarization of y-rays gave evidence of 

negative-angle scattering. Investigations6- 7) of the angular correlation of 

sequential fission fragments demonstrated that there is not a unique relation 

between impact parameter and energy loss. 

The damped reaction product nuclei ~have a distribution of excitation 

energy and angular momentum which is different from that in compound nuclei 

produced in fusion reactions. Therefore caution must be exercised in the 

theoretical treatment of their sequential decay. For studies of 

light-particle sequential decay (including y-emission) one may make use of 

data gathered from (HI,xn) reactions, but often this information must be 

extrapolated to higher excitation energies and, sometimes, also to higher 

angul ar momenta. 
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Fission of very heavy damped reaction products present a special 

problem. The fission angular distributions observed in fusion 

reactions8) do not agree with the angular correlation data for 

sequential fission following damped reactions,9) and both are in 

di sagreement with the standard theory whi ch relates the fi ss ion angul ar 

distribution'to the effective moment of inertia of the fission saddle 

shape~ as predicted by the rotating liquid drop mOdel~8-10) 

':',j Scalar quantities characterizing the sequential decay process, such 

as the y-ray multiplicity and the fission probability, can readily be 

analyzed', in 'sequential' decay studies, provided that the model parameters 

are, knownfromtompound nucleus studies. 

On the other, hand" it i snot so strai gthforward to describe the 

correl ati ons betwe'en the directions of ,moti on of the nucleus and 

seque~'tlal'ejectiles. ,The first analysis of angular correlations6- 7,11) 

empldYedspecial p'arametrizations of the distribution of angul ar momentum 

dire2tions.Someof these7,11) use a gaussian form of the spin distribution, in 

good accordance with the theoretical distributions. Under certain 

conditibns~11) 'analytical expressions can be derived, and a comparison 

between theory' and data, though not very accurate, can be carried out. 

Another 'method ofanalysis12 ) takes a more fundamental starting point by 

deriving a general expression for the angular correlation. Applied to 

fission data this formulation has had some success in describing the 

ali gnrrien tofthe spi n .12- 13 ) 

The purpose of the present paper is to follow up on the calculations 

in I of the accumulation of angular momenta by addressing the sequential 

decay processes after the reaction and, in turn, compare the theoretical 

results with available data. 

II: 
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For those quantities which involve only the spin in one of the two 

reaction products, we aim at a rather precise calculation of the 

sequential'decay properties, integrating over the entire spin distribution 

and employing detailed information about the decay processes • 

For quantities involving both nuclei simultaneously, such as the 

width of the y-multiplicity distribution and the, double fission angular 

correlation, we resort to analytical approximations. 

First, in Section 2, we give an introductory discussion of the 

symmetries of the spin distributions and of the experimental quantities. 

Then, in Section 3, approximate analytical expressions are derived for 

average values and variances of the spin magnitude distributions, as 

relevant for y-multiplicity studies. Section 4 presents the main 

expressions for the angular correlation and gives angular correlation 

parameters forconttnuous y-rays and fission products. In Section 5 we 

cOO1pare ,the calculated results to data. In Section 6 we derive analytical 

expressions for double fission angular distributions and discuss, with 

reference to a specific reaction of experimental interest, how the 

correlation between the spins in the two reaction products can be probed 

in such an experiment. Section 7 concludes our study and attempts to 

evaluate how well the data can be described by the nucleon exchange 

transport model. 

App~ndix A evaluates the change of the spin distribution, both with 

regard to magnitude and direction, caused by unobserved neutron decay 

prior to the sequential decay actually observed. Appendix B describes our 

calculation of the fission angular correlation parameters and compares the 

results with more involved and consistent calculations, and with 

experiment. 
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2. General remarks 

We first make some general remarks about the spin distributions and 

the related observables. 

2.1 Reflection in the reaction plane 

The detection of one of the damped nuclear reaction products defines 

the reaction plane. If only scalar quantities, such as the charge and the 

kinetic energy, are measured together with the direction of motion, the 

density matrix for the system is invariant under an overall reflection in 

the reaction plane. Assuming that the forces acting during the reaction 

conserve parity, the expectation value must vanish for any quantity which 

changes sign under such a reflection. Spetifically, for the angular 

momentum the two components in the reaction plane change sign under the 

reflection while the component along the reaction normal is invariant. 

2.2 Coordinate system 

As we have discussed in I, when studying the reaction dynamics it is 

convenient to use the relative dinuclear position as the z-axis and the 

instantaneous direction of relative tangential motion as the x-axis so 

that the instantaneous reaction normal is the y-axis. Therefore, when 

discussing observables in an externally defined reference system, it is 

natural to adopt the reaction normal as the V-axis, (and also as the polar 

direction). The XZ-plane is then the reaction plane, but the orientation 

of the in-plane axes will depend on conVenience. 
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Let the angular momenta of the two reaction products be ~A and SB. 
It then follows from the above symmetry considerations that the following 

mean values and cov.ariances vanish, 

, 

F (F < 5)( > :.,5Z > -= 0 

~ F&-
Xy = FlT 

<:5 yZ ; ::. 0 

so that only the following moments are non-trivial 

<s~> 
~Fl7 ~F(" A'F6- -,F<r A"'Fb 
~ XX) U yy } U ZZ I u XZ ) u zx 

where the labels F,G refer to either of the nuclei A,B. (For 

explanation of the notation we refer to I.) Spin ~istributions 

satisfying the above requirements are said to be of standard form. 

(2.1) 

(2.2) 

The symmetry requirement is also val id at any time during the 

reaction when the quantitie~are referred to the body-fixed (L-aligned) 

system xyz mentioned above. Therefore the dynamical spin distributions 

are always of standard form and generally all the non-trivial moments are 

non-vanishing. [Although any individual nucleon transfer may produce a 

non-zero in-plane spin component, there is an equal probability for a 

transfer producing the opposite in-plane spin component so that the 

distribution remains on standard form.] 
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2.3 Higher moments 

In our current treatment, only the mean values and the covariances of 

the spins are determined, rather than the entire distribution. When 

higher moments are required to make contact with the experimental 

quantities, we assume the theoretical spin distribution to be of 

multivariate gaussian form. The higher moments can then be expressed in 

terms of the first and second moments. For example, for the product of 

four spin variables with vanishing mean values, 

<s·) J 
{2.3} 

the expectation value is 

{2.4} 

2.4 Experimental quantities 

At present, our information about angular momentum in damped nuclear 

reactions arises from three types of observable: the multiplicity of 

y-rays, the circular polarization of y-rays, and the angular correlation 

between the direction of motion of a reaction product and a sequential 

ejecti1e. In the present study we shall not address the polarization data 

since they are yet fairly crude with respect to the dependence on energy 

loss. 
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The y-multiplicity data gives information about the distribution of 

the total magnitude of fragment spin, specifically, 

(2.5) 

The angular correlation data gives information about the distribution 

of the spin directions. The moments of the directional distribution are 

the statistical spherical tensors. The information about the statistical 

tensors is modulated by the angular distribution coefficients and the 

decay probabiliti~s, which depend on the spin size. The most important 

tensors are those of rank two, namely the alignment along the reaction 

normal 

~ .... ~ 
= < 3 Sy -.s > 

Pyy , 2 ~~ (2.6) 

and the asymmetry between the i n-p 1 ane components 

: (2.7) 

2.5 Unobserved intermediate decay 

Most of the observed decay products are not emitted directly from the 
I .'. 

primary reaction product. Indeed, y-rays, and also fission to some 

extent, are preceded by the emission of (usually unobserved) light 

particles, mostly neutrons. Therefore it is necessary to determine how 

the moments of the spin distribution and the statistical tensors are 

affected by a neutron cascade. The appropriate expressions are derived in 

Appendi x A. 
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3. The spin magnitude distribution 

In this section we derive expressions for mean values and variances 

of the spin magnitude distributions. We assume that the spin distribution 

for the two reaction products is of normal form and, furthermore, that the 

fluctuations are not dominant, i.e. 

(3.1) 

FG F G We shall then derive results to second order in O"ij/<Sy><Sy>. 
4-

First, we consider the spin S in one of the nuclei and expand its 
4- 4- 4- 4-

magnitude S = lsi to fourth order in the deviation 6S:: S - <S>: 

( 3. 2) 

I 1 [ -lI)~:t ~ ~)""l ~"'1 - i /<.S>I'i 4(S' bS) ... '-1 (S . AS 165
1 +/65 I 

~1 1 ["~3 
J ~ I<'S\I" 8(5· AS ) -t 

S 1 - -'t 4!- '1 1 } -1-2.& ... 8 L 1(,(S·AS) of ••• -t .... 
6 I<.s ~\ 
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By applying relations similar to (2.4), valid for gaussian distributions, 

we obtain, to second order in /~/<S~>2:. 
F' F 1 J 

<sF> =<SF) + ~J..l 
Y :2.(Sy> (3.3) 

.... :!. ~ [11 &:F F~ H.l (FF'.t FF,2 H l)] 
8 (5.:>3 <5.{y a'JJ. - 6.u. -:2 <rxx + 2 ~XI + 6'ZI 

where FF = FF + FF 
a J..L - a xx a ZZ • For the second moment we obtain 

<S F2.) <Sf:::z. I=F ..... FF-- y> -t <Syy + 0J..l. (3.4) 

so that the v~riance of SF is 

(3.5) 

Considering now both reaction products, we find that the mean value 

of the sum of the two spin magnitudes is just the sum of the individual 

mean values, 

(3.6) 

while the variance on this quantity depends on the correlation between 
-+A 
Sand $8: 

c5 ;a + 2 ( t.. SA S B > - <' $ A > < S8 > ) 

(3.7) 
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To second order, the result for the variance is then 

1 1 AB~ FIB ~ RS ~ A8 :l) 
+ - - (<S'XX + 6)(2 + <:S' 2)( + <5'22 (3.8) 

<S~> <S~> 

3.1 Effects of neutron evaporation 

The evaporation of neutrons from the primary reaction products 

modifies the spin distribution. In this section we derive approximate 

analytical expressions for the changes in mean spin magnitudes and the 

associatedcovariances. We thus consider the evaporation chains 

A A A B B B So + SI + ••• + Si + ••• and So + SI + ••• + Sj + ••• 

in the projectile-like and target-like nuclei, respectively. As shown in 

Appendix A (A.17), at a given stage, when the evaporating nuclei have 

definite spin magnitudes Sf_1 and st" the change in spin magnitude and 

the incurred variance are approximately given by 

<~i>= < Sr- A > ~ (1- ~ 'J.~ ) R 
S i-1 - S i-l lA 

8 B (l-:t ~) 6 

<6 jl:' < .s. - Sj-1 ) '::: S. 1 
J 3, 18 ~-

(3.9) 

cf.. 'l. < (sf - S~ )~ > - A~ 2-- 3 l~Ti -1 - 1-1 I 

cJ~ «( sf - s ~ )'J. > - b ~ -::: ~"l~ - 3 b 'j J 
J -I ,) 
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where 1a = mR~ and lb = mR~ are the respect i ve moments of i ner

tia of the evaporated neutron at the barrier. 

In general, the evaporating nuclei have an entire distribution of 

spin magnitudes, rather than a definite value. After i evaporations 

from A· and j evaporations from B the spin magnitude distribution is 

characterized by the mean magnitudes < S~> and < S~>, the cor

responding variances cr2S~ and cr2S~' and the covariance crS~S~. By 
1 J. 1 J 

use of (3.9) it is easy to calculate the change in these quantities 

effected by a single step in the evaporation chain, for example (S~ I'S~) ~ 
1- J 

(3.10) 

:: (1 - j } ) cr S:t.A .. S ~ + ~ l T. 
"A 1-' J ;) ~ l 

~ J.~ ( 1 - 3:. 3~ ) (J' \ 
'3 ~... 3 ""... s· ~" :I" I_I 
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By recursive use of this result, the effects of the entire neutron 

cascade of nA neutrons from A and nB neutrons from B can be 

cal culated: 

(3.11) 

When the temperatures in the primary nuclei are nearly equal, as is 

expected for not too small energy losses,14) we have approximately 

( 3. 12) 

When this is the case, the last two terms in the above expression (3.11) 

for the variance of SA and SB are quite small, since nB nB 
lallA - l/A and 1b/~B - i/B: 

(3.13) 
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The sums in (3.11) can be approximated by integrals, 

(3.14) 

'.., 

For the relation between excitation energy and number of 

evaporated neutrons we shall use (A.25). Since the integral can be 

approx imated as 

(3.15) 

= 

the sum can finally be written as 
(3.16) , 
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Altogether we then obtain the following approximate result, 

2. . ( 2. 1 ) ( ~ lb) ~ (j A 8 exp -nA3~ exp -n83 1 (317) 
S +S " ~8· o 0 

The temperatures in the first daughter nuclei can be calculated from 

(A.26) once the excitation energy in the primary nuclei A and B is 

known. In the above expression we have used the same temperature T1 

for both daughter nuclei which is most often a good approximation. 

3.2 Transport description of neutron evaporation 

In the preceding, we have derived expressions for the effect of the 

neutron evaporation process by solving approximately the iterative 

equations (3.9) for the spin distribution. A simple approximate treatment 

of the same problem can be given within the framework of transport theory. 

To this end we consider nF, the number of neutrons evaporated 

from the nucleus F = A,B, to be a continuous variable. We then wish to 

consider the distribution of the total nuclear spin magnitude 

~(nA,nB) - SA(nA) + SB(nB) as a function of the number of evaporated 

neutrons. The evolution of ~ is a transport process with nA and 

nB acting as generalized time variables. The evolution of the 

individual nuclear spin magnitudes SF is qoverned by the transport 

coefficients VF and DFF which can be determined by considering the 

.. 
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effect of a single evaporation step. on a nucleus prepared with a sharply 

defined value of SF. Thus, it follows from (3.9) that 

= -~.1 s 3 3-
F 

F 

( 3.18) 

for the drift and diffusion coefficient, respectively, while the mixed 

diffusion coefficient DAB vanishes. Here 3- f = mr~F2/3 is the 

moment of inertia of the neutron at its barrier distance r Fl/3 and 
n 

d-F = ~ mr6F5/3. is the moment of inertia of the nucleus F; 

TF is the nuclear temperature. As usual (see for example ref. 30)), the 

corresponding Fokker-Planck equ~tion can be reduced to equations for the mean 

val ue and v ari ances of SF' 

~ <Vr:" =: ~ 11(5 > cin (SF> :- -
F 3 1F F 

~ CSFF = < 2. DFF' + l ~ (! ) (3.19) 
~F aSfFF' 

':. ~ J;t1F - 4 If (), 
3 "3-F FF 

Assumi ng for the time being that the temperature TF' as well as 

If and JF, remain constant throughout the evaporation chain, we obtain 

the following solution for SF: 
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Furthermore, we find for the evolution of the covariance between the 

two spins 

~ ~ 160 ($ in" cr'A8 
': - 3 3" Ri 

(3.21) 

.!.<>. : ~ lb (), 
'bMa A8 - ~ ~ AS 

so that 

(3.22) 

For the total spin magnitude L = SA + S8 we therefore have 

( 3.24) 

which is identical to the expression in (3.17), and 
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~~n 
... .~ J. (1 - e - 3 3e, 8) 

~ b 

,!!,.. _'i~ 
+ 7R"1 (1 - e - 3 3" n A) ... /e 1 (1 _ e. a ~6 n 8 ) 

2 Go :t b 

(3.25) 

If, as before, we assume that the excitation energy is initially equally 

partitioned between A and B we have that n - F F . so that 

lana/lA :::Jbnb/J.B• The factors multiplying O'AA(O) and O'BB(O) 

in the last expression above then cancel and, furthermore, the remaining 

exponents are pairwise identical. 

Th~ nuclear temperatures TAand TB are initially equal and 

decrease to zero through the cascade. This variation of the temperature 

has been ignored so far but can be approximately accounted for by 

replacing the temperature in the final expression by the average 

temperature through the cascade, 
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2.3: :2. 3 ... 
- - 3n - - - na 0. (0) e l 3" A e 1 3-8 

fI 

(3.26) 

In the last relation we have expanded the exponentials through first order 
2 Jf in the small quantity 13

F 
nF «1. This result is practically identical 

to the result (3.17). 

3.3 Relation of spin length to y-multiplicity 

The moments of the y-multiplicity distribution give a fairly good 

measure of the moments of the spin distribution for nuclei with mass 

number larger than approximately 60. Below mass number 60, evaporation 

of a particles removes too much angular momentum, and this obscures the 

relation between angular momentum and y-multiplicity.15) 

The y-lifetime is only short enough for multipolarity one and two, so 

an absolute maximum of the average spin can readily be inferred from the 

average y-multiplicity 

L. (3.27) 

... 

;..' 



19 

Since the y-multiplicity may vary for different events starting at the 

same spin in the same nucleus, a similar relation does not exist for the 

second moments. 

Empirically the unresolved y-rays deexciting nuclei of high spin have 

been studied in considerable detail. For rotational nuclei, all except 

approximately three y-rays are stretched E2 transitions,16) so for 

these nuclei one has a firm basis for relating the average y-multiplicity 

to' the average spin. For other nuclei, the picture is not so clear, but 

s ti 11 a lower 1 imit to the proportional ity between spin and; multi pl i city 

seems to be approximately 1.5 spin units pery_ray.17) 

In our 'analysis of y-multiplicity data we employ the relation between 

average multiplicity and spin when given in the experimental paper. 

Otherwise, we shall employ simple relationships in terms of propor

tionality factors and subtraction of a certain number of statistical 

y-rays. 
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4. Angular correlations 

Starting from the density operator for the primary reaction products, 

and employing the helicity representation for the final states, a general 

expression can be derived for the angular correlation between the 

direction of nuclear motion and the emission direction of sequential 

radiation.12 ) This expression can be interpreted in terms of classical 

distributions of the angular momentum vector in the nuclei. Since so far 

all theories of damped rections addressing the angular momentum variances 

consider the angular momentum as a classical quantity, we shall here 

discuss the classical version of the angular correlation description. 

4.1 Distribution function and statisti cal tensors 

For a given energy loss, the normalized distribution of angular 

momentum S in one of the nuclei, as calculated by theory, is denoted by 

The decay width at a given excitation energy depends on the 
A ~ 

magnitude S but not the direction S of the angular momentum S. In 

order to describe the angular properties of the sequential decays, it is 

useful to define for each magnitude S a normalized distribution 
A A 

function fS(S) of the directions S, 

( 4.1) 

The direction S is conveniently expressed in terms of the polar angles 

(~s'1s)' using the reaction normal as the polar direction. 
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For each S, the associated directional distribution function 

fS(S) is characterized by the statistical tensor components 

': LI'jj (Y) 
lA+l ~t'" 

(4.2) 

= ..,'ii r 1 _0. 'Sl.'iI I. (00. )' Y (.lI. ) 
:1"+1 J d. c..oS Vs d.~SJS vsJC(>s ' ~tA- usJ'Ps 

-1 0 

The reflection symmetry in the reaction plane ensures that PA~(S) 

van i shes for odd val ues of 1I. , ' 

4.2 Effects of unobserved intermediate decay 

'" The directional distribution fS(S), as given by the ~tatistical 

tensors (4.2), is affected by the unobserved intermediate decay. 

The angular momenta Si -1 ,j ,Si' of the i-II thdaughter nucleus, the 

emitted particle, and the i Ith daughter nucleus, determine the size of the 

angle between S. . 1 and S. 1 by 1-

54 s:z. .~ . .,. . - I 
l l-1 I (4.3) 

For the emission of an unobserved particle, all directions of S. with 
1 

.. -+ 
this angle 'l9'S.S. between Si and Si_l are equally probable. 

1 1-1 
Consequently, the angle X shown on fig. 1 is uniformly distributed. For· 

a definite set of angles (6S. ,'s. ) and X we have 
1-1 1-1 
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Averaging over X leaves only the terms with pi = O. A final averaging 
-+ 

over the distribution of directions of S. 1 described by the 
1-

statistical tensors P, (S. 1)' yields for the statistical tensors for 
AlJ 1-

~ ... 
P '( Si . Si-1) ( S ) 
~ s· s· ~;\t" l-1 

t t-1 ' 

For an entire unobserved cascade, with angular momenta 

SO,Sl, ••• ,Sn' this relation can be applied at each step, so we 

obtain for the final daughter nucleus 

(4.5) 

For a statistical cascade of neutrons, analytic expressions for these 

factors are derived in Appendix A. 

4.3 Expression for the angular correlation 

By Sn we denote the angul ar momentum magnitude of that nucl eus 

which emits the sequential decay product being observed, after n 

unobserved intermediate emissions. 
-+ 

For a fixed direction and size of Sn' the angular distribution of 

the momentum -+ P of the sequential decay product is only a function of the 
-+ 

angle between Sn 

pol ynomi a 1s 

-+ and p, and so can be expanded on Legendre 
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(4.7) 

The angular distribution coefficients BA(Sn) are then given by 

(4.8) 

-+ -+-
S • P 

Here n is the helicity of the emitted radiation. For a decay mode 
Sn P, 

conser~ing parity BA is zero for odd A. 12 ) 

For a fixed size of Sn the angular correlation 'of the sequential 

decay is obtained by folding the basic angular distribution (4.7) with the 
-+ 

distribution function fSn of the directions of Sn. Denoting by (19,,) 

the polar coordinates of the momentum p and applying again the relation 

between spherical harmonics and Legendre polynomials, we obtain 

In principle, the observed sequential decay can be emitted at any 

step in a cascade of unobserved particles. By Ndecay(Si) and 

BA(Si) we denote the decay probability and angular distribution 

coefficients along the chain of unobserved intermediate decay. The 

effective decay probability, ~deCay' and angular distribution 

coefficients for the entire cascade, 3jA' are then 

Jrdec.Q~ (So) =. L, N dec.~~ ( Sl ) 
t -= oJ ..• 

(4.10) 
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We shall later, in figs. 2 and 3, give examples of these functions. 

Summing the angular correlation (4.9) over all angular momenta S of 

the primary reaction product, and over all decay steps (and keeping only 

terms with A = 0,2,4), we can write the angular correlation as 

+ eli P", ((OS 19-) + c~~ ( 1 cos~" - 1) sin:l& c.os lcp 

( 4.11) 

with the coefficients given by 

(4.12) 

We have here employed a standard right-handed coordinate system with the 
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V-axis (equal to the reaction normal) as the polar.direction and the 

orientation of the Z-axis determined so as to yield an extremal value 

of <Si >. This choice ensures that the following moments vanish, 

(4.13) 

-+ 
for the entire distribution f(S), as well as for each of the directional 

distributions 

For y-decay,of multipolarity L, the an~ular distribution· 

coefficient SA vanishes for A> 2L, so for multi pol arity one and 

two, which are the only multi polarities of interest for angular 

correlation studies of damped reactions, the expression (4.11) is exact. 

For other decays, even fission, where the anisotropy of the angular 

correlation can be of the order of 20, angular distribution coefficients 

are generally small for A >.4. In an actual application to avery 

anisotropic case, the expansion up to A = 4 only failed for angles close 

to the polar direction,where the angular correlation has its minimum. 

Integral quantities of the angular correlation, as for example the 

dispersion in the polar angle, discussed in section 5, are extremely well 

determined by the coefficients (4.12) up to A = 4. 

4.4 Angular correlation parameters for bump region y-rays 

We consider the emission of a y-ray of multi polarity L, 

transforming a state with spin magnitude So to. a state with spin 

magnitude S1 in the same nucleus. For stretched transitions, i.e. 
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L = ISo - Sll , the angular distribution coefficients are independent 

of So.12) For stretched dipole and quadrupole y-rays, the angular 

distribution coefficients are 

L = j 

L = 2 

, 

5 
Sa = - :; II 

8 .. :: 0 

B - _ 1 
If - , (4.14) 

For damped reactions between heavy nuclei with mass numbers above 50 

or so, many different nucleides emit y-rays, and the intensity of any 

discrete y~ray of known multipolarity is very weak. Consequently, angular 

correlation studies of heavy nuclei have been limited to unresolved 

y-spectra. 

Information about the multi polarity composition of continuum y-rays 

has been gained from multi-y-ray angular correlation studies with compound 

nuclei formed in fusion reactions. In a careful study,16) these angular 

correlation data for many nuclei could to a high accuracy be accounted for 

by only stretched y-rays of dipole and quadrupole multipolarity. For 

given compound reaction and y-energy interval, only one parameter then 

need be specified, namely the ratio of stretched quadrupole y-rays to the 

total number of y-rays. 

Especi a 11 y the energy ; nterval between 600 keV and 1200 keV, situated 

in the so-called rotational bump4,17) for rotational nuclei in the middle 

of the rare earth region, has a very high percentage of stretched 

quadrupole y-rays, between 90 and 97 percent17 ,18). y-rays in this energy 

interval have been used4) for the study of angular correlations in the 

collision of 165Ho with 165Ho • 
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To determine the angular distribution coefficients, we combine the 

information about the multi polarity composition with other experimental 

information. The lower limit of 600 keV y_ray energy corresponds to an 

angul ar momentum of 17 h, obtained as an average for all isotopes between 

Tb and Yb and wi th mass number between 156 and 164. The upper 1 imit of . 

1200 keVy-energy corresponds to;· an angul ar momentum of 45 h, as 

determined on the basis of continuum spectroscopy.!9) For a feeding 

above angul ar momentum 45 h, there wi 11 then on the average be 14 

stretched quadrupole y-rays within the interval. Considering the high 

mul ti pl icity for the y-rays in this interval l 7) and the fact that the 

multiple correlation enhances the upper part of the multiplicity 

distribution, the average number of quadrupole y-rays in the energy 

interval in the multicorrelation experiment will only be slightly lower 

than 14. With 14 stretched quadrupole·y-rays and purity percentage 

between 90 and 97, there will be between 0.4 and 1.6 stretched dipole 

y-rays. 

Except for an insignificant change of the ~4 coefficient, the 

same angular correlation can be explained by 14 stretched quadrupole 

y-rays and in addition 0.8 to 2.9 y-rays with isotropic angular 

distribution. Above 2.5 MeV y-ray energy, statistical y-rays dominate, 

and the angular distribution is almost isotropic. For the statistical 

y-rays the isotropic angular distribution is expected to·arise from a 

mixture of stretched and unstretched 'y-rays. For the lower energy 

interval we consider here, we also helieve that the interpretation in 

terms of stretched quadrupole transitions and isotropic statistical 

transitions is the more correct one. 
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With this information, we can now define the number of decay products 

and the angular distribution coefficients (4.10) for y-rays in the energy 

interval between 600 keV and 1200 keV in the decay of nuclei in the middle 

of the rare earth region. 

Starti ng at spi n magn itude S, 1 et < Sn > denote the average 

spin-magnitude after emission of n neutrons (A.24). The average number 

of stretched E2 y-rays within the energy interval between 600 keV and 

1200 keV is then: 

for 111\ ~ < S., > £ Y5~ 

o .tor <Sri> ~ 171\ 
(4.15) 

This result is not rigorously correct since we have ignored the fact that 

the evaporation chain contributes to the variance of Sn. However, 

since 'there is already an appreciable variance in the injection spin 

magnitude S the committed error is negligible. 

To the E2 y-rays we add a number of isotropic y-rays, and although 

there seems to be some increase in the number of statistical y-rays with 

. .' 1 t 20) b IY lncreas lng angu ar momen urn, we use a constant num er, cllstat. For 

the isotropic part of the y-rays, the angular distribution coefficients 

are zero. The resulting number of y-rays within the interval and the 

corresponding angular distribution coefficients are then 
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cJr,(S) = chisE:! ( S) -to cffstat 

5 < '( 50 S)' It' -1 -1 0 cffltEl (S) 0 p~ ss: 0 cJ,.(S) 

where ~tatiS' between 0.8 and 2.9'~E2(S) is defined in (4.15) and the 

average P2 and P4, factors are estimated in (A.24).-

Figure'2 shows these coefficients as functions of spin magnitude for 

different excitation energies of 165Ho • 

The kinks on the curves in the figure would be smoothed-out if one 

also took into account the evaporation-induced fluctuation in the 

magnitude of the angular momentum Sn. As mentioned above, for the 

quite broad primary spin distributions in question, the neglect of this 

fluctuation is of minor importance. 

For large spins the angular distribution coefficients approach the 

as)4Tlptotic values obtained with 14 stretched E2 and 1.2 isotropic 

y-rays and no dealignment due to neutrons. With the average spin 

typically around 35 h '(cf. fig. 6), the coefficients are significantly 

different from these asymptotic values. 

4.5 Angular correlation parameters for fission 

In the standard theory of nuclear fission it is assumed that the 

angle between the nuclear symmetry axis, along which the collective 

separati on proceeds; and the total angul ar momentum remains constant 
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beyond a certain transition configuration, usually identified with the 

fission saddle shape. This assumption is motivated by the expectation 

that the motion from the saddle region to the scission point is fast 

compared with the relaxation time for the K quantum number determining the 

tilting angle. The angular distribution of the fission fragments is then 

directly related to the distribution of saddle configuration 

orientations. This distribution, in turn, is assumed to be statistical, 

depending on the nuclear temperature at the saddle. A recent review of 

fission angular distributions, including a comprehensive analysis of data, 

is given in ref. 21). 

Before proceeding to calculate the angular distribution parameters, 

we wish to point out certain problems concerning the fission of heavy 

nuclei which, if solved in some way, may modify our results significantly. 

The first such problem concerns the role of the preceding reaction 

dynamics on the transition stage at which the helicity distribution is 

frozen out. [We prefer to discuss the angul ar distribution in terms of 

the helicity representation because of its generality and the maximal 

simplicity of the expressions for the angular distribution coefficients in 

this representation.] For sequential fission of very heavy nuclei 

following a damped nuclear reaction,9) the width of the helicity 

distribution is approximately constant as a function of the nuclear charge 

all the way up to Z = 115, as evidenced by the nearly constant width of 

the out-of-plane fission fragment angular distribution. [In making such a 

direct connection between the angular distribution and the helicity 

distribution we assume that there is only a weak correlation between the 

mass number and the spin of the nucleus. This assumption is supported by 



31 

the fact that the out-of-plane angular distribution is practically 

independent of the mass of the reaction partner.] On the other hand, for 

fission of very heavy nuclei. formed in fusion reactions,8),the width of 

the hel i-city distribution, as given by Ko in the standard 

parametrization, increases significantly with the nuclear charge, 

although K "is smaller than expected from rotating liquid drop o 
estimates of the saddle shape for K = O. Thus, for th,e heaviest nuclei, 

the angul ar di s tributi ons, indi cate that fi ss ion after fus ion is quite 

different from fission after a damped reaction. 

The second problem concerns the dependence of the saddle shape upon 

the orientation of the nuclear symmetry axis relative to the angular 

momentum vector. Until .now, one common shape has been used for all values 

of K, namely the one determined by the rotating 1 iquid drop model with 

K = O. Generally, this is expected to underestimate the elongation of the 

saddle shape since a finite value of K will reduce the centrifugal force 

acting on the rotating nucleus. 

The third'problem concerns the calculation of the probability for 

fission relative to neutron evaporation. This quantity is determined by 

the ratio of level densities associated with the respective transition 

configurations (namely the fission saddle shape and the residual daughter 

nucleus with a neutron at the barrier). 

It is not clear which degrees of freedom should be treated explicitly 

in the two decay modes, apart from the ,di s integrati on coordi nate 

itself. 22) In the traditional approach, the two coordinates 

perpendicular to the disintegration coordinate for the free motion of the 

neutron at the barrier are treated explicitly whereas for fission only the 
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disintegration coordinate is considered. This leaves open the question 

which other degrees of freedom require different treatments in the two 

cases. In our calculations we shall take a Fermi gas level density of the 

same form for both the residual nucleus after neutron emission and for the 

fission saddle shape. This assumes that degrees of freedom not treated 

expl icitly, such .as for example collective vibrations, will give the same 

enhancement factors on the level densities for the (quite different) 

transition shapes associated with either fission or neutron emission. 

4.5.1 Angular distribution coefficients for specified E and S 

With an orientation-independent, axially symmetric saddle shape the 

distribution of helicities, ,in this case the distribution of K quantum 

numbers, will at medium and high excitation energies be gaussian-like: 

with K, given by o 

K~ 
() ) = 1 1 1) - Jijl 

.. .l. 

Here T is the excitation temperature and and j.( f) 
.L 

the 

( 4.17) 

(4.18) 

parallel and perpendicular moments of inertia of the fission saddle shape, 

respectively. For a given spin, the classical angular distribution 

coefficients (4.8) are given by 
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( 4.19) 

so, for example, B2{S) = 5{ 3<K 2 > - S2) /2S2, where the average of K2 

is with respect to the distribution (4.17) with K within the interval 

between -S and S. 

4.5.2 Competition between fission and neutron evaporation 

The fission of a highly excited heavy nucleus competes with light 

particle emission.' Often this competition is important not only for the 

primary reaction product but also at later stages after emission of one or 

more neutrons. In a given nucleus with a definite spin Sand 

excitation E, th~ ratio between the two decay widths is approximately 

given by the ratio of the level densities for the respective transition 

states, 

in( E - an) S ) 
f/(E -8

"
s) 

(4.20) 

Here Pf is the level density of the fission saddle configuration which 

has a barrier height equal to Bf , and Pn is the level density in 

the neutron evaporation daughter nucleus with Bn being the neutron 

separation energy. The effective barrier radius for the neutron is Rn 

and the temperature in the daughter nucleus is 1n. The last factor is 

the contribution to the level density from the emitted neutron and its 

precise form depends on haw the neutron's translational degrees of freedom 

are tr ea ted. 
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For the cases of present interest, rn/rf is of the order of 

unity so that delayed fission must be taken into account. In order to do 

that, we expand the level densities in (4.20) using the same nuclear 

temperature T, which is a good approximation. 

Including enhancements of the level density corresponding to an 

axially symmetric prolate shape,23) and integrating over the K quantum 

number, we obtain 

rn -fJ 
J,(n) 1(") 

?Co 
J. II 

1lh) _ j(n) 
J. .. 

~{ 

( Bt - Bn 
X exp i I 

err ( 1"')- i") 
•. I' 
l" j.(I'\) -ly,) 

J. .. 

erl ( 

(S+! ~ 

(5+1)) r 
:t 

ltn Rn T 
~l. 

(4.21) 

Here an and af are the 1 evel density parameters for the daughter 

nucleus after neutron emission, and for the fission, respectively, and 

l = J.{f)j.{n) /(j(f) - l(n)) is the effective moment of inertia for the 
e J. J. .1. J. 

neutron-to-fission competition. The perpendicular and parallel moments of 

inertia of the neutron emitting shape and of the fission shape are 
, 

denoted J.in),'j~,n) and Jif),J~f), respectively. The neutron emitting 

shape is probably not much deformed, so, although this is not correct for 

the highest spins and lowest temperatures, we insert the limit of small . 

arguments for the error function containing the neutron quantities to 

obtain: 
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rn ;: lS+l et/( $+1 )-1lmR~ e)(p(BrBn_ 54 + (Q.n-Q.l)T) (4.22) 
rf llfl" Ko fi. I<CJ ~~ ,... lT3e 

The most probable shape of the neutron emitting state will be 

oblate-rather than prolate, but for the limiting case of small 

deformations, (4.22) is valid'for both prolate and oblate deformations._ 

For small excitation energies it may be very crude to apply 

expressions for the level density not taking into account the shell 

structure of individual nuclei, but for the higher excitation energies and 

larger angular momenta we are interested in here it is well justified. 

The barrier hei ghtsand separati on energies are then regarded as smooth 

quantities, derived from a macroscopic nuclear model (for example the 

liquid drop model), neglecting shell correction energies and odd-even mass 

di fferences. 

The above result (4.20) can be used to follow the fission 

probability through an entire neutron cascade. Experimental evidence for 

fission in the later decay steps comes from lifetime measurements and 

detailed calculations have reproduced the observed fraction of slow 

fission. 24 ) 

4.5.3 Total fission probability and effective distribution coefficients 

In the present study we shall content ourselves with a more 

schematic calculation of the total fission probability and the effective 

angular distribution coefficients associated with an entire neutron 

cascade. 

Let be the probability that the nucleus fissions at the i'th 

stage in the cascade. We then have the equation 
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Nli):: r1 ( Ei-1 1 Sj., ) [ 1 _ 1:1 
N(j) ] 

, rj(Ei_i,Si.,)trn(ti-\,Sj.,) j:1 1 

which can be solved iteratively to yield N( i) 
f • 

(4.23) 

* In this calculation, the values of the excitation energy E. and 
1 

the angular momentum Si along the decay chain are chosen randomly 

according to the statistical decay probabilities, given the approximations 

(A.7) and (A.8) to level densities and transmission coefficients. The 

fission probability and the angular distribution coefficients, taking into 

account the dealignment factors (A.20), are first calculated individually 

for each randomly selected decay chain, and finally averaged to obtain the 

quantities for the entire cascade. 

A brief description of the calculated procedure is given in 

Appendix B together with a discussion of how important delayed fission is 

for the calculated quantities. Appendix B also contains a comparison 

between our calculations and the more detailed calculations of 

ref. 24) for the fission of 198pb , as well as a comparison of calculated 

angular distribution coefficients to data from the fission of compound 

nuclei formed in fusion reactions. The comparison shows that our 

calculation gives a reasonably good reproduction of the more refined 

calculation, and of data. 

4.5.4 Fission parameters for nuclei in the vicinity of 208pb 

The results for the fission probability depend sensitively on the 

fission barriers and neutron decay energies. In table 1 we show three 

different parameter sets derived from different prescriptions for the 

nucleus 208po . In fig. 3 is shown the fission probabilities and angular 

distribution coefficients following from the different prescriptions. 
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With the liquid drop model and the Lysekil parameters, the fission 

barrier rapidly decreases as the neutrons are evaporated and the fissility 

parameter x thus increases. Given enough excitation energy, all nuclei 

will then eventually fission, and the fission will occur after the 

evaporation of quite many neutrons. On the other hand, the droplet values· 

for the parameters display a weak tendency in the opposite direction. Fot 

the highest excitation energy applied in fig. 3, there is therefore a very 

pronounced difference between the fission probabilities calculated with 

the two di fferent parameter sets. The lower temperatures encountered at 

the later decay steps lead to larger values of the angular distribution 

coefficients, but those are, on the other hand, being counterbalanced to 

some extent by the dealignment accumulated during the preceding decay 

steps. So, although fission on the average occurs later in the decay for 

the liquid drop model and with the parameters from the folded Yukawa than 

for the droplet parameters the angular distri·butjon coefficients are quite 

s imil ar. 

We shall apply the liquid drop model with the Lysekil parameters for 

our comparisons of fission probabilities and correlations to data in 

Sect ion 5. 
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5. Comparison with data 

In this section we compare calculated spin magnitude moments and angular 

correlations with experimental data on sequential decay. The calculated 

quantities are obtained by combining our theoretical primary spin 

distributions of nuclei leaving the reaction with the description of the 

sequential decay. 

In some experiments, all scattering angles are covered, and our 

comparison is formally correct. For other experiments, only a certain range 

of scattering angles are investigated, and the spin distribution will be 

biased by the limitation to a particular interval of scattering angle •. Some 

experimental results, however, indicate that this is not a strong bias. 

Furthermore, for the strongly focussed reactions which we are mostly concerned 

with, the angular range is often wide enough to encompass most of the 

distribution for the smaller energy losses. At present, we cannot include a 

scattering angle bias in our theoretical treatment, because we do not include 

any coupling between the size of the transport coefficients and the deviation 

of a given trajectory from the mean trajectory. 

5.1 Mean value and variance of y-multiplicity 

5.1.a The reaction Kr + Sm 

The most complete y- multiplicity data exist for the collision of 

86Kr + 154Sm at the two bombarding energies 490 MeV and 610 MeV. 2) The 

data are shown in fig. 4 together with our calculation of the mean values and 

variances of the spin. For the mean values we integrate over the 

distribution, using the full relations (A.24) for the neutron decay. For the 

variances we employ the approximate relations (3.5) and (3.8), modified by the 

neutron decay as in (3.17). For the highest TKEL, the relation (3.1) is 

\. 
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not fulfilled, and for TKEL > 80 MeV and 140 MeV for the two bombarding 

energies we just show the calculated values at TKEL = 80 MeV·and 140 MeV, 

respectively. 

For the small TKEL, the calculated mean value of the spin is rising too 

ste.eply by a factor of two, relative to the experimental results. For the 

higher TKEL, the experimental values reach a maximum and then stay almost 

constant, showing a very weak decrease towards the highest TKEL. The 

theoretical results reproduce these features and the maximum has approximately 

the. correct size, but is reached at a too small TKEL, and the decrease for the 

highest TKEL is too pronounced. 

Th~ variances are in good agreement with the data. About 20 percent of 

the calculated variance is due to the correlation between the spins in the 

nuclei, especially the appreciable positive covariance a~~ ~long the reaction 

normal. The presence of this correlation explains in a natural way the rather 

large variance of the sum of spin magnitudes seen in the y- multiplicity data. 

5.1.b The reaction Ho + Ho 

The mean· y-multiplicity has been measured as a function of TKEL for the 

reaction of 1400 MeV 165Ho with 165Ho , which we used as the example to 

illustrate the angular momentum transport in I (see figs. 2-3, 6-8 and 12-14 

of I). The comparison between experimental and theoretical results for the 

spin magnitude after neutron decay is shown in fig. 5. The experimental 

result shows qualitatively the same behavior as for the reaction of 86Kr 

with 154Sm , except that the decrease toward the highest TKEL is 

significantly present for the Ho + Ho reaction. The calculated results 

deviate in the comparison with experiments for the lowest and highest TKEL in 

the same way as for the Kr + Sm reaction. 
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5.2 Angular correlation of bump-region y-rays 

The most detailed experiment on y-ray angular correlations in coincidence 

with nuclei from damped nuclear reactions for sufficiently heavy systems has 

been performed for the 165Ho + 165Ho reaction. 4) Using the mean 

values and variances shown in I,figs. 12 and 14 and employing the angular 

distribution coefficients given in the equations (4.16), we arrive at the 

result shown in the lower part of fig. 5 for the out-of-plane anistropy as a 

function of TKEL. 

Before discussing the dependence of the angular correlation on the polar 

angle -8 (the out-of-plane angle), where there is a significant variation, we 

briefly discuss the dependence upon the azimuthal angle, (the in-plane 

angle). Fort9 = goO (i.e. in the reaction plane), the variation of the 

experimental angular correlation asa function of , is less than 10 percent. 

Although our calculated spin variances show a considerable asymmetry between 

the two in-plane directions, the angular distribution coefficients of 

stretched E2 y- rays have such val ues that the two terms c22 and c42 

of the angular correlation (4.11) almost cancel each other for 9 = 90
0

• In 

the reaction plane our calculated angular correlation thus only h~s an 

anisotropy of less than 2 percent. Going to polar angles around -8 ~45°, 

the two terms interfere constructively, and we have a 10 percent variation of 

the angular correlation as a function of azimuthal angle cP for TKEL = 150 

MeV, dropping to around 4 percent when going to smaller or to larger TKEL. 

Generally in experiments on the angular correlation of stretched E2 y-rays, 

the variation with azimuthal angle rp for the fixed polar angle e ~45° is 

expected to give the most sensitive information about the in-plane asymmetry 

of the spin variances. 
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The cal culated out-of-pl ane anisotropies overshoot the experimental -ones 

significantly. To produce a smaller anisotropy, the spin distribution has to 

be less aligned with the reaction normal. This can be achieved either by 

decreasing the size of the average spin vector or by increasing the in-plane 

variances, or both. Before reaching conclusions we shall obtain a more 

complete picture by considering also fission data. 

5.3 Angular correlation of sequential fission 

5.3.a The reactions Pb + Ni and Pb + Zn 

Figure 6 shows the average and the dispersion of the magnitude of the 

angular momentum, together with the alignment and other tensor components of 

rank two and four, as calculated with our version of the Nucleon Exchange 

Transport Model for the reactions of 20Bpb at 7.5 MeV per nucleon with 

targets of 58Ni and 90Zr • The fourth order alignment is defined as 

( 5.1) 

(in the classical limit). The angular correlation between the outgoing 

target-like fragments and fission fragments from the sequential fission of the 

lead-like nuclei has been measured by von Harrach et ~.,7) and the inverse 

reaction for the case of 58Ni on 208pb at the same center-of-mass 

energy has been measured by Steckmeyer et ~.29) In fig. 7 we show the 

results by von Harrach et ~. for the dispersion in the polar angle and the 

fission probability as functions of the total kinetic energy loss. By using 

angul ar di stribut ion coeffi cients and fi ss ion probab il ities equiv al ent to the 

ones shown in fig. 3, combined with our calculated spin distributions in the 

lead-like nuclei, we arrive at the results shown in fig. 7 for the dispersion 
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in the polar angle and for the fission probability. (In the calculation, the 

dissipated energy is divided between the reaction products in proportion to 

their mass.) With increasing TKEL, the charge and mass of the reaction 

products change. The different curves labelled a, band c show calculations 

performed with the average value for the mass and charge as obtained with our 

model for different kinetic energy losses. Curve a corresponds to TKEL = 0, 

curve b to TKEL in the middle of the interval, and curve c corresponds to the 

highest calculated energy losses. 

With the angular correlation written in the form(4.11) the variance in the 

polar angle is given by: 

,..1. g C = --l+~~ .. -.!t ... (5.2) 
'f q Co 2.15 c.. -. '" 

Since (19- ~)2 is a smooth function of angle, it is well described by 

the expansion coefficients for the second and fourth Legendre polynomials. 

The coefficient for the 6 1 th order term will'be around 0.01. 

As shown in ref. 13), applying the absolute limitations to the ~2 

angular distribution coefficient makes it possible to derive an absolute lower 

limif'to the alignment of the nuclei emitting the sequential decay product 

observed: 

< R > q ( 2.. 'il'~ ) . yy > - -s (fA - ~ + 2-
de.cQ.y II, 

(5.3) 

For TKEL above 140 MeV for the nickel collision and above 200 MeV for the 

zirconium collision, more than 90 percent of the heavy nuclei fission, and the 

relation(5.~ applies to the entire spin distribution to a good accuracy. The 

absolute' limits derived on the basis of the polar angle dispersions are shown 

in fig. 6. 
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Following the full drawn parts of the curves a, band c on fig. 7 within 

the intervals of TKEL where they should apply, we see that there is an 

interval around TKEL = 80 MeV for the nickel case and around TKEL= 110 MeV· 

for the zirconium case, where we have a good agreement with the data. For the 

smaller TKEL, the statistics of the data is not so good, while for the larger 

TKEL there is a clear discrepancy bet~een calculation and experiment. 

5.3~b The reactions U + Ni and U + Zr. 

Following the same procedure, we arrive at the results shown in figs. 8 

and 9, equivalent to figs. 6 and 7, but now with 238U as the heavy 

projectile. The uranium-like nuclei have larger fission probabilities and the 

saddle shapes are more compact than for the case of the lead-like nuclei. The 

dispersion in the polar angle is thus much larger in fig. 9 than in fig. 7. 

Our calculations show reasonable agreement with the data for TKEL smaller than 

70 MeV for the nickel collisions and for TKEL smaller than 120 MeV for the 

zirconium collisions. For the higher TKEL, the calculated polar angle 

dispersion-is far too large. With the present treatment of the sequential 

fission, a significant increase of the average spin vector is required to 

obtain agreement with the data for the highest TKEL. (However, see the 

further discussion in section 5.5.) 

5.3.c In-plane angular correlation for the reactions Kr + Bi and Kr + U 

The first experiment on sequential fission was performed by Vandenbosch 

et ~. for the reaction of 86Kr with 209Bi , and then later with 

238U as the target. 6) These data are in good agreement with the results 

by von Harrach et ~7,9) concerning the variation of the angular correlation 

with the polar angle. Our comparison to the polar angle variance in figs. 7 
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and 9 thus addresses both sets of data, and, besides, a calculation of the 

angular correlation itself close to the pole will require terms beyond the 

41th order in (4.11), since the main Olth, 21nd and 41th order terms tend to 

cancel each other. 

The data sets are, however, in mutual di sagreement concerning the 

dependence of the angular correlation with respect to the azimuthal angle. 

The Kr + Bi and Kr + U data show an appreciable in-plane anisotropy, up to 

a factor of two, whereas the Pb + Zr and U + Zr data display less than a 

20 percent variation. For directions close to the reaction. plane, ~ ~90°, 

the leading terms of the angular correlation (4.11) add up, and we only 

introduce a minor error by terminating at the 41th order. 

Figure 10 shows the experimental and calculated in-plane angular 

correlation for three different kinetic energy losses for each of the two 

reactions Kr + Bi and· Kr + U. The data are summed over intervals of TKEL, 

and we calculate the angular correlation at the average TKEL in each case, 

except for the lowest TKEL, where we use the centroid of the interval, TKEL = 

20 MeV instead of the average TKEL = 13 MeV, since both our model for the 

nucleon transfer and our description of sequential fission are not expected to 

be realistic at such low TKEL. For each TKEL we apply fission parameters for 

the average mass and charge of the heavy nucleus as calculated in the model. 

The data are taken for fixed detector positions, and this introduces a bias on 

the spin distribution relative to the spin distribution for fixed TKEL only 

and thi~ addition~l bias we cannot take into account in the calculations. We 

have not included a fourth data set at the very highest TKEL in our comparison 

because of this bias, whereas the bias is less severe for the lower energy 

losses, where the reaction is quite focussed in scattering angle. 
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Our calculation agrees well with the experiment on the position of the 

maximum and minimum of the in-plane angular correlation, along the minor and 

major principal axes of the spin variance tensor~ respectively. Only. for 

TKEL = 170 MeV in the Kr + Bi reaction do we get a discrepancy here, but 

this TKEL is in our calculation located at the upper edge of the energy loss 

distribution and is not focussed in scattering angle, so the discrepancy is 

not so serious. The amplitude of the calculated variation is too small 

relative to the data by a factor of two. 

5.4 Discussion 

5.4.a Information on the spin moments from the combined data 

In fig. 11 we show, as functions of the energy loss relative to the 

maximum energy loss for each reaction, the most important characteristics of 

the spin distribution in the heavy reaction partner for some of the collisions 

we are studying. The figure displays a strong similarity between the 

different spin distributions, although the basic parameters determining the 

dynamical evolution, such as for example the grazing orbital angular momentum 

in the reaction, the relaxation times, and the moments of inertia, do not 

scale in a simple way between the different collisions. The similarity of our 

results allows us to give a general discussion of the discrepancies between 

calculations and experiment, as functions of TKEL. One should be aware, 

though, that actual spin distributions may be more diverse, depending upon the 

specific reaction. Since the comparison to different kinds of data will lead 

to opposing conclusions in some cases, we must evaluate which kind of data has 

the most significance. 

For small TKEL, the fission data with 238U as a projectile are well 

reproduced by the calculation, whereas the y-multiplicity data, on the other 

hand, indicate that the calculated average spin vector is too large. A 
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substantial part of this conflict between the two types of data may be due to 

the excitation energy ascribed to the heavy nucleus being too large. A more 

equal division of the dissipated energy (than in proportion to the mass) would 

leave the y-multiplicity results almost unaffected, whereas the resulting 

lower temperature in the fissioning nucleus would reduce the width of the K 

distribution thus resulting in a smaller polar angle dispersion. Since the 

y-multiplicity data give the more direct information, our conclusion for this 

interval of TKEL is based upon these data. 

For medium TKEL all data sets are in agreement with our calculation, 

except for the angular correlation of bump region y-rays. This may be due to 

the lack of precise knowledge of the structure of the y-rays, with respect to 

the multi polarity and the average amount of angular momentum removed by each 

y-ray. With increasing TKEL, the mass width becomes larger, and the nuclei 

emit more neutrons. Consequently, an increasing number of the y-emitting 

nuclei will not have good bump spectra. Experiments utilizing known discrete 

y-ray lines in damped nuclear reaction studies will be very valuable to check 

the continuum y-ray data. 

For the largest TKEL, the comparison to all data sets, except for the 

angular correlation of bump region y-rays, indicate that the average spin 

vector decreases too much in the calculation. Again, we disregard the 

continuum y-data because of the above mentioned difficulty. 

Since our calculated spin distributions are dominated by the average spin 

vector, it is natural to point to this quantity as the source of the most 

pronounced discrepancies, as we are doing here. Indeed, it is not possible to 

turn the conclusions around, postulating that the average spin vector is in 

accordance with data and that the variances are the sources of the 

discrepancies. For small TKEL, the calculated average spin vector alone will 
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result in too large average y-multiplicities, even with zero variances. For 

the largest TKEL, agreement with the y-multiplicity data may be achieved by 

increasing the variances, especially the in-plane variances (cf. eq. (3.3)), 

but this would worsen the comparison to the fission data. Ascribing the 

disagreement at the largest TKEL to a too small value of the average spin 

vector, as we do, gives the right direction for both kinds of experiments. 

Turning now to the spin variances, the variance along the reaction normal 

(the V-axis) is rather directly related to the spin magnitude variance which 

in turn is related to the second moment of the y-multiplicity distribution, 

and this quantity is well reproduced by our calculations. 

The in-plane variances enter the results in two ways: 

(i) The difference between the two principal in-plane variances, 

quantitatively expressed through the asymmetry PXz (2.7), is directly 

tested through the azimuthal angle variation of the angular correlations. The 

calculated directions of the principal axes of the in-plane covariance tensor 

are well in accordance with the data, and the calculated asymmetry is too 

small according to one data set and too high according to the other.' 

(ii) The two in-plane variances combine to give alignments and fourth 

order alignments smaller than the maximal value of 1. The alignment is the 

main quantity controlling the out-of-plane correlation, but the alignment is 

always multiplied by the second-order angular distribution coefficient, which 

is a function of the magn itude of the angul ar momentum. The average 

y-multiplicity and the fission probaility give us a handle on the size of the 

angular momentum, and for medium TKEL the agreement of all data sets (except· 

for· the bump region continuum y-ray angular correlation) supports the 

calculated values of the sum of in-plane spin variances. 
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.S.4.b Sensitivity of results to the neck dynamics 

Throughout the present study we have employed the standard implementation 

of the model, as described in detail in App. A of ref. 30) In order to 

assess the significance of the disagreement with the data it is of interest to 

study the sensitivity of the central results to certain less well-founded 

details of the implementation. They all concern aspects of the neck dynamics 

about ,which we have little direct evidence. 

·In the standard version of the model, it is assumed that the neck 

contains nuclear matter at normal density Po' Of course, it might well be 

that the density in the interaction zone is somewhat below normal. We have 

therefore made calculations with the (probably extreme) assumption that the 

neck density is only i Po' This change reduces the Fermi momentum of 

the nucleons being transferred and thus inhibits their dissipative 

efficiency. The result of this modification is shown as the thin line on fig. 

12.· However, since the energy dissipation and the angular momentum transfer 

are both affected, the resulting effect is only moderate. As regards the rise 

of the spin magnitude with TKEL, there is about a 20 percent decrease, which 

is in the direction of the data but far short of the 50 percent reduction 

needed for agreement. It should be noted, though, that this change in S 

versus TKEL is produced without any noticable change in the NZ-distribution, 

so that the good agreement with the aspect of the data is not affected. 

The second type of modificaton explored concerns the damping of the 

neck. In the standard implementation, the transfer of nucleons takes place 

partly though a (fully open) cylindrical neck of radius c and partly across 

the gap between the two juxtaposed nuclear surfaces outside the cylinder. 

Therefore one may introduce an effective neck radius ceff which is the 

radius of that slightly larger uniform cylinder which would allow the same 

," 
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total nucleon current. During the early approach phase, the cyl inder radius 

is zero but ceff is not. Since the overall form factor for nucleon transfer 

is governed by ceff rather than c it may be more appropriate to use ceff 

in the energy dissipation rate. This can be accomplished through suitable 

technical modifications. The main effect is an effective increase in the 

-radial dissipation rate. In consequence, the two nul~eides will not approach 

as closely and the form factor will remain smaller. Althogh the evolution of 

the nuclear shape, as given by R(t) and c(t), will thus be noticeably 

different, the resulting effect. on the various observables as functions of 

TKEL will be only minor. For example, both and S wi 11 decrease by 

about 10 percent for a given value of TKEL. 

The third type of modification examined concerns the damping of the neck 

towards the end of· the reaction. As argued in ref. 30), one would generally 

expect the one-body wall dissipation to be reduced for long narrow necks. 

Therefore, a reduction factor, exp(-d/(c + b)), was introduced in the neck 

dissipation rate. (Here ,d is the neck length,c the neck radius, and 

b = 1 fm the nuclear surface diffuseness.) In order to explore the 

sensitivity to this somewhat arbitrary element in the model, we have made 

calcuations without the reduction factor. The neck then grows longer before 

rupture occurs, resul ting in a somewhat 1 arger energy 1 oss for a given number 

of transferred nucleons. In order to get an impression of the maximum effect 

of such modifications we consider the results of maki~g both the second and 

the third modification in the same calculation. The effect is then around 30 

percent on the mass di spers ion and around 50 percent on the mean spin 

magnitude. The effect on the spin magnitude is just what is needed to bring 

agreement with the data (cf. fig. 2) but at the same time the good agreement 

for the NZ-distribution is spoiled. 
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We thus find that while various modifications of the more uncertain 

details in the implementation of the model can produce substantial effects in 

some of the observables, no combination of the modifications considered 

appears able to achieve a substantial reduction in the slope of S versus 

TKEL without at the same time significantly affecting the behavior of the 

NZ-distribution. In view of this finding we consider the discrepancy in S 

versus TKEL to have some significance. 

5.5 Prescession determined angular correlation for fission 

For the angular correlation of fission fragments, the discrepancy between 

calculation and experiment is very pronounced for the largest TKEL, and it 

would require a much larger adjustment of the average spin vector to obtain 

agreement with these data points than with the y-multiplicity data. 

Part of this problem may be that the fission of the heaviest nuclei 

following damped nuclear reactions is not a truly sequential process, since 

the time scale associated with a full equilibration of the nuclear orientation 

may be comparable to a typical fission life time. In order to examine this 

possibility, we explore below an idealized situtaion in which the fission 

angular distribution is determined by the prescession of the fission precusor 

around its spin vector. 

When the two nuclear fragments lose contact at the end of the damped 

reaction, the heavy nucleide is likely to be deformed with its largest 

principal axis lying close to the reaction plane. [The occurrence of large 

deformations at the scission stage is indicated by calculations within the 

TDHF and the Coherent Surface Excitation models which both include the 

deformation degrees of freedom. However, so far no calculation has been made 

to study the out-of-plane orientation of the fragments at scission so our 
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assumption that the major axis lies near the reaction plane is guided by 

intuition.] After scission this deformed fragment will start precessing 

around its angular momentum vector. At the same time, its intrinsic 

excitations will couple to its orientation, and the distribution in 

orientations relative to the spin vector will tend to relax towards the 

standard statistical distribution. In analogy to what happens during the 

reaction phase, the diffusion in orientation is accompanied by the excitation 

of the til ting mode in the deformed fragment. If the time for fission is 

shorter than the til ting relaxation time, but on the other hand 1 arger than 

the time for a full prescession revolution, each orientation on the 

prescession circles described by the poles of the deformed shape will become 

an equally probable emission direction for the fission fragments. Denoting 

byes the angle between the reaction normal and the spin vector, the angle 

between the spin vector and the emission direction of fission fragments will 

be eithern/2 -~s or n/2 + '5. Expanded on Legendre polynomi~ls, the 

angular distribution of the momentum p of the fission fragments will depend 

upon -8
5 

an dis 

(5.4) 

Appl ying the addition theorem for the spheri cal harmoni cs, the angul ar 

correlation for an entire distribution of magnitudes and orientations of the 

spin can be written 

(5.5) 
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and the expans ion coeffi cients are· 

Evaluating the terms, as it was done for the standard case (4.11-12), we 

obtain for the second-order Legendre term: 

~ = _ 1 ~ is < P.) _ U < Po " 
Co 1Lf ,<y li&sion ., YYYY'lissiol"l 

(5.7) 

where the subscript indicates the restriction to the part of the distribution 

undergoing fission. Cutting off at the 41th order term, the variance in the 

. out-of-plane angle is 

Cf,44 = O.2.g0' + 0.2.081 (Pyy'>, . . -O.5lll<Pyyyy'> . . (5.8) 
v J'1~SIO" JI~r.IOtl 

The cut-off at the 41th order term is less justified in this case than for the 

standard fission decay, but still this expression is expected to be accurate 

within a few percent for our calculated spin distributions. 

To illustrate the angular correlations resulting from this picture, we 

show (by crosses) on fig. 9 the polar angle dispersions calculated on the 

basis of expression (5.8) for the U + Zr reaction. For the largest TKEL, 
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where the present p4cture is expected to be most relevant, the prescession 

determined angular correlation is in better agreement with the data. The 

remaining discrepancy in the polar angle dispersion at high TKEL may be 

remedied by increasing the aligned spin component; such a modification would 

also improve the agreement with the y-multiplicity data, as discussed earlier. 

The prescession angular correlation picture outlined here will also be 

able in part to resolve the discrepancy (mentioned in section 4) betw.een the 

fission data for fused compound nuclei and nuclei having undergone damped 

nuclear reactions. In the present context we have found it sufficient to just 

sketch the main idea .of this picture; a proper treatment would require not 

only a refined treatment of the reaction dynamics, so that the orientations of 

the deformed fragments can be better ascertained, but also a careful 

consideration of the fission dynamics, so that the relevant time scales can be 

estimated. 
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6. Correlated fission angular distributions 

In this chapter we derive simple approximate expressions for the 

correlated angular distributions of fission fragments from the damped 

reaction products. 

6.2 Definitions 

The normalized correlated spin distribution for the spins SA and 

and B is given by fAB(SA,SB) with SB of the two reaction products A 

r. +A J -;tR -+A 7B JdS d~-fAB(S,S) = 1. The normalized spin distributions for the nuclei 

separately are given by 

-. J 4 4 ~8 I" ( SR) = elS 8 luJ $", S ) 

(6.1) 
~ r ~ ~ ~) 18 ( S 8) ': d ~ A j t\& ( 5 A I S 8 

We now assume that the reaction products A and B may undergo 

fission after their mutual interaction has ceased. Let the corresponding 

bb "l"t" b " b PA(·-+a·,tl<A) pro all 1 es e glVen y ;) 

are the spins of the fissioning nuclei and -+ a and -+ " e are unlt vectors 

indicating the fission directions, as seen in the respective eM frames of 

the fissioning nuclei. Taking into account the distribution of spins in 

the fissioning nuclei, we find for the corresponding angular distributions 

of fission products 

: f elSA lR(SA) 'PA (~, SR) 

PB (~) ~ f d S8 fs{S&) Pe (~, SS) 
(6.2) 

.-
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respectively. The joint probability for A fissioning in the direction 

~ and B fissioning in the direction t is 

Since the two nuclear spins are correlated,· the detection ofa 

fission product from one of the nuclei introduces a bias on the spin 

distribution of the other. These biased spindistributi~ns are given by 

(6.4) 

where fA(sA,e) is the probability that the nucleus A has the spin SA 
~ 

when its reaction partner B is known to fission in the direction s; 

analogously for fB(SB;:); they are thus normalized to unity when integrated 

(d~A-fA(-+SA,·-+s·) = P
B 

(-+s) over the spin variable. It is clear that we have }:~ 

and ~dSBfB(SB;~) = PA(~). 

6.2 The basic fission probabilities 

We shall assume that the nuclei A and B always fission, 

regardless of the magnitudes of their spins. We then have 

(6.5) 
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where KA and K8 are the mean K-values associated with A and 8; they 

depend on the nuclear temperatures but need not be further discussed 

here. If the spin distribution is fairly narrow the spins in the 

preexponential factor may be replaced by an appropriate mean value: 

AA f\A 

SA ~. SA - < SA) ( 1 + CS'xx 1- 6Z2 ) 
Y 2.( SA )l. 

Y 

86 88 

58 ..-; Sa :: < S & > ( 1 + (5 xx -+ 6 21 ) 
y 2.(S~ >'£ 

Furthermore, if these mean values are large in comparison with the 

respective K-values the error functions are nearly unity and may be 

ignored. With these assumptions we arrive at the simple approximate 

expressions 

p. ~ ~A) -=:: (l 'iT f 3h. SA ( ~A .... )~ e - S . I)( /2 K: 
A ( (X, S 

KA 

eo'> .. l. 

Ps ( ~, S8) ( )-3~ Sa e - (s B. (3)/2K: 
-=: 2" 

'<8 

6.3 Notational tools 

Throughout our discussion of the fragment spin correlations two 

different spaces are intertwined: 1) the three-dimensional space 

associated with the nuclear spins and 2) the two-dimensional space 

(6.6) 

(6.7) 
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associated with the fragment labels A and B. It is therefore useful to 

introduce a six-dimensional superspace in which both of those spaces are 

embedded. In analogy with our notation in three-dimensional space, ,we 

shall use double arrows over quantities associated with the superspace. 

Thus, we introduce the superspin 

.... > 
S 

and the associated covariance matrix 

It is also natural 

~A 
S 

~S 
S 

(
~AA 

- ~8A 
(5 

~'>A8 ). 

~88 
<5 

to imbed the individual 

4 

= (sA -+) 
I 0 

~ 

- (0 .. S8) 

(6.8) 

(6.9) 

fragment spins as 

(6.10) 

For pedagogical reasons we adopt the symbol * to denote multiplication 
=*A <;s -+ A+--+ +-B 

of supervariables. Thus, for example, we have S * S = S • 0 + 0 • S = o . 
. , 

.With this notation the gaussian approximation to the spin-spin 

distribution can be written 

It is helpful to introduce the reduced directional vectors 
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J 

and the associated tensors 

~ 

A -

These quantities are imbedded in superspace as 

) 

. .. ... 
b ': (0., b ) 

{6.12} 

{6.13} 

{6.14} 

Finally, for calculating the joint fission angular distributions, the 

following supertensor is of interest, 

c.:=. J\;.B • <=> (=> <a) ( 
{6.15} 

With this notation the basic fission angular distributions {6.7} can be 

written 

D (~ ~B 
'-8 ~JS ) 

I -+8 ~ +-8 
: (21tf~2. ~ -~ s· 8· S 

Ks e 

and their product can be written as 

{6.16} 
:+ ¢:> 4=8 

-3/:t S8 _ I ~ 8 ~ 8'" S 
• (~1i) - e 

Ks 

.-



(6.17) 

It is also useful to introduce the reduced spins sa:: SA • a = SA • ~/KA 

and sa:: ~B • b = 5B • ~/KB which are dimensionless measures of the 

alignment of the fragment spins with the respective fission directions. 

For this we introduce the operator 

{6.18} 

which transforms supervectors into vectors in label space. We shall adopt 

the use of arrows under quantities associated with label space and the 

symbol 0 for the multiplication in label space. {Again, the explicit 

use of multiplication symbols is redundant since the dimensionality of the 

matrices involved automatically indicates the type of multiplication 

involved.} We then have for the reduced spin 

~ = (Set J S,,) = 

The associated reduced covariance matrix is 

-+ -+ 

{6.19} 

{6.20} 

~AB 
where, for example, a a We note that is symmetric, aaa =K· a 

KB 
. a 

~ B 
a a a = apfA • We al so note that 

{6.21} 
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6.4 The fission-fission angular distribution 

We first consider the joint fission-fission angular distribution. 

This is the most complicated case and the other cases can readily be 

obtained subsequ~ntly by appropriate specializations. 

Combining eqs. (6.3), (6.11) and (6.16) we have 

Since the exponent is of second order in the integration variable it is 

possible to evaluate the integral by bringing the integrand on quadratic 

form ( "completing the square"). The integrand is of the form 

[.J 
(6.23) 

provided that the induced shift is given by 

(6.24) 

It expresses the bias introduced in the mean spins as a result of the 

joint detection of the two fission fragments at ~ and a. After 
=? 

carrying out the S-integration we are left with 
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The rank of C is only two, and therefore it is possible to reduce 

the six-dimensional determinant and exponent to quantities in the 

two-dimensional label space. We first note the following identity: 

(6.26) 

where I is the identity in label space. The inverse matrix is readily 

calculated, 

1 ( 1 + a'PfS - ~«~ ) 

d. - O'(lOt 1 + ()«or 
(6.27) 

where d = 11 + Zl = (1 + auu )(l + ass) - ausa su . Thus the exponent in (6.25) 

is 

(6.28) 
1 ( ·1 = -J.-<:§.> 0 I + cS) o<S> 

-,.. ~... ... 

In order to calculate the preexponential factor we make use of the 

identity 
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<*> ~ ~ 
II+c.-1t<S" I (6.29) 

We thus arrive at the following expression for the joint angular 

distribution 

6.5 The individual fission angular distributions 

The individual angular distributions of the fission fragments from 

one of the reaction products are given by eqs. (6.2). Due to the results 

(6.16), these expressions are of the same form as the expression (6.17) 

for the joint angular distribution, the only difference being the 
~ 

replacement of the supertensor C of rank two by either of the rank one 
~ ~ 

tensors A or ,B-. The result (6.25) can then immediately be taken over 
~ 

for PA(~) and PB(a) with the appropriate replacements of C. By 

proceeding in an analogous manner we then arrive at the results 

P
A 

( :) : (2 .. fo/:l, ~ (1 + tr. r i -1 < sO() ( 1 + <S'DCOC )-1 < 5« > 
KA 11(0( e 

I -1 

Po (t) : (21i l-~' ~ (1" 6pp fi e -I<Sp> ( 1" CS'I'P) <'51') (6.31) 

With these results we can derive an expression for the enhancement 

factor 

( 6.32) 

," 
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6.6 Biased spin distributions 

The biased spin distributions can also be derived <in a manner 

analogous to the one used for obtaining the joint angular distribution. 

Let us consider the biased distribution for the spin of nucleus A; the 

other one follows analogously. Using (6.4), (6.7) and (6.11) we have 

In analogy to (6.23) we find for the exponent 

=> # ~ ~ <"""> -t ¢ 
+ < s > ~ B .. ( I + 6'f< B) ,,< $) 

Here the biased shift is given by 

The integrand in the above expression for fA is thus a six-
=> => => 

(6.33) 

(6.34) 

(6.35) 

dimensional gaussian centered at 5 = <5> + t.a and with covariance tensor 

(:-1 + ;)-1. The integration over SS then leaves a distribution in 
~A ~A ~A 
5 which is a three-dimensional gaussian centered at 5 = <5 > + 

t: where ~: = (~a)A is the A-part of the supervector 1
13

, 

~A Furthermore, the corresponding biased covariance tensor cr is the AA-part 

of (~-l+B)-l. 

We now make use of the following relations 
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, .... ++~ ++ ~ H 
-= , I + 8· 0'88 I = I 1 + 0- 88 . B I (6.36) 

and 

(~ 6t> <='> )-1 I ~ B:Ioo' 
<':::;)1 1 ~ {'="> = -- B~<s 

cL~ 
(6.37) 

It is then readily found that 

(6.38) 

Thus, the detection of a fission fragment from B in the direction 1 
shifts the mean spin of A to 

...... S: :: <51\>- ?~ 

(6.39) 

.-
Furthermore, the mean spin of those target-like nuclei which fission in 

-+ 
the direction of a is given by 
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(6.40) 

It also readily follows that 

(6.41) 

so that the biased covariance for the sA-distribution is given by 

~ 1 ~ ~ ~BA <s AA - - d AS . B . cS 
d~ 

(6.42) 

The biased spin distribution can therefore be written 

(6.43) 
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6.7 Illustration: 8.5 MeV/n U + Pb 

We now wish to illustrate the theory by considerng the reaction 8.5 MeV/n ' 

238U + 208pb which is of actual experimental interest. 32 ) We have 

carried out dynamical trajectory calculations for specified J-values and 

subsequently integrated over those to obtain the final spin distribution 

as a function of the kinetic energy loss TKEL. We consider in some detail 

the results for a moderate energy loss, TKEL = 140 MeV, and a large one, 

TKEL = 280 MeV. For a specified energy loss, the joint fission-fission 
++ + 

angular distribution PAB(a,e) is a function of the four angles a = 

(~A'~A) and t = (eB,fB) and thus not easy to display. We 

therefore choose to fix the direction t at a specified value and then 

study PAB 
+ + 

as a function of Q. We wish to recall that a denotes the 

fission direction for the projectile-like reaction fragment A as seen in 
+ 

its rest frame while e denotes the fission direction for the target-like 

reaction fragment B as seen in its rest frame; thus the two directions 
+ + 
a and a do not refer to the same inertial frame, and the appropriate 

transformations need be carried out to relate to angul ar 

distributions obtained in the laboratory system. Our particular choice of 

frames is made in order to best bring out the physical effects of the 

correlation between the fragment spins. 

In order to give a global impression of the effect of the correlation 

of the two fragment spins SA and 5B on the joint fission-fission 

angular distribution we show in fig. 13 contour plots of the quantity 

+ + + + PAB(a,a)/PA(a)PB(a). The fission direction of the target-like 

reaction product has been fixed at either S = 

+ (..Q ° ° or a = ue = 45 '~e = -30 ). The directions 

(ia 45° , CPa = 60°) 

CPa = 60, _30° 

.-
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correspond to the major and minor in-plane principal directions, 

respectively, at the specified energy loss of TKEL=140 MeV. [At both 

energy losses considered, the calculated scattering angle is eCM ~ 70° 

so that the major in-plane principal direction is expected to form an 

angle of approximately 35
0 

(~BCM/2) with the beam direction. In 

t l 't th' l' close to 30 0

• a c u a 1 y 1 S an gel s Consequently in the adopted 

coordinate system, which has the Z-axis perpendicular to the beam and the 

X-axis along the beam, the major in-plane direction has 80 ~ 60
0 .J When 

a is taken to be out of (but not perpendicular to) the reaction plane 

(i.e. when ~~ ~ 90
0 

and 6~ ~ 0
0

) the distribution of fission 

fragments from the projectile-like reaction product is no longer 

reflection symmetric with respect to the reaction plane (nor with respect 

to any other plane, as we shall discuss later). This is clearly seen from 

the figure. It is also noted that the effect is considerably larger when 

a is chosen in the major principal direction (~~ = 60
0

) 

is chosen in the minor principal direction (f~ = _30 0

), 

-+ than when ~ 

as is to be 

expected since it is easiest to tilt the spin in the major principal 

direction. 

The division by the product of the individual distributions PA(~) and 

PB(e) of course enhances the effect in the polar regions where the absolute 

yields are the smallest. In order to gain an impression of the. absolute 

size of the effect we show in fig. 14 the absolute yield PAB(~,e) as a 

function of a single angular variable, namely the polar angle B, with 
a 

CPa fixed to be the same value as f~(since the largest effect 

is expected when ~ ~ a). Figure 14a corresponds to 8 = (45
0

, 60
0

) 

while fig. 14b has a = (45
0

, _30
0

). The upper portions are for a 

moderate energy loss of TKEL = 140 MeV while the lower portions are for a 

large energy loss of TKEL = 280 MeV. 
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We note that the distribution in fig. 14 is biased towards a, 
particularly at the moderate energy loss. This is expected since this 

particular angular selection will probe the major in-plane components of 

the spin distribution which arises predominantly from the in-plane 

wriggling mode and consequently has positive signature. Towards the 

largest energy losses the distribution will relax more towards equilibrium 

which is characterized by a slightly positive covariance for the in-plane 

wriggling mode (c.f. fig. 14 of I). Thus, the correlated fission 

distribution PAB is significantly different from the uncorrelated 

product PAPB at the moderate energy loss, whereas, for the larger 

energy loss, the difference is less pronounced. 

In fig. 14b, where a is in the minor principal direction, we probe 

mainly the twisting and tilting modes. Generally, the tilting mode 

dominates at the small TKEL, leading to small positive crAB along the 

minor princpal axis. For larger TKEL, the tilting relaxation time becomes 

very long, whereas the twisting relaxation time decreases, and crAB along 

the minor principal axis decreases at some point and ultimately turns 

negative with increasing TKEL (c.f. fig. 14 of I). Thus, at the moderate 

TKEL, where crAB is still positive along the minor principal axis, the 

maximum of PAB is shifted slightly towards the direction a, whereas 

the negative value crAB at the large TKEL induces a shift of the 

maximum in the opposite direction. 

The fact that the location of the maximum of PAB , as a function of 

the direction ~ for fixed a, moves toward a for positive crAB and 

away from l for negative crAB can qualitatively be understood as a 

three-step process: (i) Fission into the direction a imposes a strong 
-+-

bias of the spin SB of nucleus B towards directions perpendicular 
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-+ 

to a AB -+ 
(c. f. eq. (6.40)). (i i ) For pos iti ve cr this bias of· SB induces 

-+ 
a bias of SA in the same direction and in the opposite direction for negative 

crAB (iii) The fission fragments emitted from nucleus A will· 
-+ 

preferably be emitted perpendicular to 'the spins SA biased in this 

way, and this favours the direction it over directions perpendicular to 

t for positive crAB and disfavors it for negative crAB 

Figure 15 shows the average spin and contours for the variance in :the 

two planes containing the Y- axis and, respectively, the minor and major 

principal axes for the unbiased spin distribution in nucleus A, and for 

the distribution biased bya detection of fission fragments from nucleus 

B. The angles of maximum PAB restricted to the planes shown' 

correspond roughly to the direct ions perpendi eul ar to the biased average 

spin in the two cases. Since the biased variance tensor does 

not have the biased average spin direction as a ptincipal axis, PAB is 

not reflection symnietric with respect to the plane perpendicular to .... 
..... A 
S" or any other plane. 

It is instructive to contrast the above results with the expectations 

of a statistical model. For this purpose we assume that all spin modes 

are fully relaxed at the time of neck snapping, as already discussed in 

I. As already pointed out there, the resulting principal system is 

rotated approximately _45 0 

relative to the dynamically calculated 

distribution. In order to maximize the effect we therefore choose either 

( 0 9 0) or 8 = 45, 0 , corresponding approximately to the 

major and minor principal directions of the statistical spin distribution • 

The results are shown in fig. 16. It is clearly seen that the effect 

is much smaller (nearly an order of magnitude) and probably hardly 

exper imenta lly detectable. The results exh ib it the qual Hati ve feature of 
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a slight positive shift when biasing along the major principal detection 

and a slight negative shift when biasing along the minor principal 

direction, as specified. 

In summary, we wish to state the following. Our calculations 

indicate that the dynamically accumulated correlated structure in the 

spin-spin distribution of the reaction products gives rise to significant 

effects in the joint fission-fission angular distribution. Moving one 

fission detector out of the reaction plane breaks the symmetry with 

respect to reflections in that plane. The resulting reflection asymmetry 

of the fission distribution from the other reaction product is fairly 

sizeable and shows a characteristic variation with direction and energy 

loss. In contrast, calculations based on the assumption of full 

statistical relaxation of the spin modes yield very little effect. It 

would be of great interest to observe such structure. Given sufficient 

data quality, it should be possible to determine the principal directions 

and, from the character of the correlations, obtain an indication of the 

relaxation times for the various dinuclear spin modes. 
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7. Concluding Remarks 

Theories of damped nuclear reactions are often expressed in terms of 

degrees of freedom which are familiar from simpler nuclear reactions, such 

as surface vibrations and nucleon transfer. However, the'clean 

characteristics of such elementary nuclear excitations are largely washed 

out due to the complexity of a damped reaction where high temperatures' and 

large distortions occur. [One exception may be the substantial overall 

deformations of the reaction products 'at the time of scission, as 

suggested by the fact that the nuclei often emerge with relative energies 

well below the exit channel Coulomb barrier. Another exception may be the 

(still conjectured) Fermi jets, which are transferred nucleons directly 

transmitted through the reci pient.] The experimental study of damped 

reactions is therefore practically limited to observables subject to· 

overall conservation after the reaction: the mass and charge numbers, the 

momentum and energy, and the angular momentum. (Parity is also conserved, 

prior to sequential decays, but is of little use.) 

Observables related to the mass and charge partition, for example as 

expressed in terms of the mean neutron and proton numbers of the 

projectile-like reaction product and the associated three second moments, 

can be obtained experimentally in a fairly direct manner and have been 

studied thoroughly in the past. The present series of two papers has 

focussed on the angul ar momentum observab 1 es. Be ing vectors, the angul ar 

momenta enrich the description conSiderably, adding two first moments and 

thirteen second moments as functions of the kinetic energy loss, but the 

experimental methods for obtaining this information are less direct. 
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The most direct experiments so far are y-multiplicity experiments, 

which probe the spin magnitude distribution. The mean multiplicity of 

y-rays is closely related to the mean spin component along the reaction 

normal while the y-multiplicity variance is mostly determined by the spin 

variance in that direction. 

An ideal experiment for probing the directional distribution of the 

spin would be the measurement of angular correlations of y-rays associated 

with known discrete rather low-lying E2 transitions, through which most of 

the intensity passes. This would permit the determination of the 

reflection symmetric moments of the spin directional distribution, i.e., 

the statistical tensors of even rank. (Of course the dealigning effect of 

sequential decays preceding the particular transition studied must be 

incorported in the analysis.) In this way the tensors of rank two and 

four could be determined fairly unambiguously. Ideally the entire 4n 

angular region would have to be covered, or, exploiting the symmetries, 

one quarter thereof. Recent improvements in discrete y-ray detection 

techniques may soon make such an experiment possible. 

At present, angular correlation experiments are using less perfect 

sequential decay modes. They introduce a bias on the spin distribution 

which must be taken into account in terms of decay probabilities and 

angular distribution coefficients. The variation of· the angular 

correlation with respect to the polar angle (using the reaction normal as 

the polar axis) is primarily determined by the magnitude and alignment of 

the spin relative to the reaction normal. Sometimes fission data directly 

yield a lower bound on the spin alignment for large TKEL. Since most 

theories do not conflict with such absolute bounds, it is necessary to 

perform detailed calculations to compare theory and data. The variation 
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of the angular correlation with azimuthal angle yields, to the extent it 

is statistically significant, information about the direction of the 

principal in-plane axes for the spin variance tensor. This is important 

since different theories predict quite different results for this 

quantity. The ampl itude of the variation with azimuthal angle depends on 

the spin magnitude and the di fference between the major and minor in-pl ane 

variances, and again the comparison between theory and experiment requires 

detailed calculations. 

Of particular interest is the correlation between the spins in the 

two product nuclei, since different assumptions about the reaction 

dynamics yield quite different results for this quantity. The spin-spin 

covariances can be probed in a double angular correlation experiment. 

Again, discrete y~~ays would be ideally suited to obtain precise 

information on the correlation coefficients. However, for the time being, 

a more practical method is offered by the double fission process. On the" 

basis of our approximate analytical analysis of the double fission angular 

correlations, it appears that this type of experiment should suffice to 

give a rough indicator of the sign and size of the spin-spin correlation. 

The present study is carried out within the framework of the nucleon 

exchange transport model. This model has arisen as a natural consequence 

of our general understanding of low-energy nuclear dynamics in terms of 

nearly independent nucleons moving in a time-dependent effective one-body 

field. In this picture the dissipation of the macroscopic motion is 

caused by the inelastic interactions of the individual nucleons with the 

mean field. In the case of a binary system, as is temporarily created 

during a "damped reaction, this mechanism appears as the transfer of 

individual nucleons b~tween the two reaction partners. The strong 



74 

spin-spin correlations predicted directly reflects this character of the 

angular momentum exchange in the reaction and thus appear to be an 

important test case for the theory. 

In the present paper we have compared theory and experiment for a 

number of angular-momentum related observables. [Data33 ) on the 

correlation between angular momentum and charge partition have not been 

considered since the theory has not yet been developed sufficiently 

regarding this type of observable.] Throughout our studies we have kept 

the various model parameters fixed' at their standard values and no 

attempts have been made at fitting the data. On the whole, the theory is 

supported as far as the variances of the spin are concerned, but the 

situation is less favorable for the mean spin. For small TKEL the 

calculated mean spin increases to rapidly, reaches a maximum for 

intermediate TKEL in accordance with the data, and proceeds to decrease at 

higher TKEL somewhat too markedly. [However, the picture is somewhat 

obscured by the fact that the different sets of data are not in mutual 

accordance.] 

As we have discussed, the disagreement for small TKEL can be reduced 

by more refined treatment of the neck dynamics but only at the cost of 

affecting the behavior of other observables. We therefore attach some 

significance to this discrepancy. The cause of this failure is not clear 

to us at this point but the problem might be helped by an improved 

treatment of the nucleon transfer process and future studies may be 

focussed in this direction. 

The disagreement for large TKEL is probably caused by the mean 

trajectory method of solution, which prevents dynamical fluctuations, for 

example in the nuclear separation, from coupling back into the mobility 
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coefficients. If the fluctuations were allowed to accentuate themselves 

through the induced changes in mobility coefficients, potentials, etc, the 

highest TKEL-values might receiv~ contributions from a wider range of 

impact parameters, in turn giving rise to a larger mean spin. 

The present study has developed the description of angular momentum 

in damped reactions to a considerable detail, within the nucleon exchange 

transport model, and has carried out a fairly broad confrontation with 

data. It would be very helpful to our assessment of the situation if 

other models would be subjected to an equally complete treatment. This 

would am6unt to deter~ining the characteristics of the spin evolution 

implied by the degrees of freedom considered, as well as comparing to data 

in ord~r to test the qualitative and more quantitative predictions. 
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Appendi x A. 

In this appendix we derive expressions for the changes in magnitude and 

statistical tensors for the spin in a nucleus caused by a statistical cascade 

of unobserved neutrons. 

By So we denote the spin magnitude in the nucleus leaving the damped 

reaction and by Si' i = 1, ..• ,n we denote the spin magnitudes in the 

first, second, etc. daughter nucleus after neutron emission. Then Sn is 

the spin of the n'th daughter nucleus, which finally emits the decay product 

being observed, whether a y-ray or a fission fragment. 

At each step in the cascade we imagine (for the time being) that the 

mother nucleus has a definite spin magnitude S. 1. 1-
We then wi sh to 

determine the distribution of the spin magnitude S; in the daughter 

nucleus, as characterized by the average change 

and the incurred variance 

(A.l) 

(A.2) 

For the statistical tensors we are interested in the average values of 

the factors (4.5) relating the statistical tensors of rank A = 2,4 at the 

i I th step, 

." 
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to those at the previous step. 

Denoting by j the angular momentum of the evaporated neutron, we obtain 

~ ~ 

p. (Si . Si-1 ) 
~ $·5· , 1-1 

and 

where we have kept leading order terms in j/Si and (S. - S. ·1)/S., 
1 1- 1 

For one step in a statistical cascade, starting from definite values of 

the angular momentum Si_l and the excitation energy Ei_l' the relative 

probability for the angular momentum sequence S. l' j, S. 1- 1 
is given by 

where the summation runs over the orbital angular momentum of the neutron and 

its kinetic energy £. T1(£) is the transmission coefficient. p = 

p(Ei,Si) is the level density in the· i'th daughter nucleus, evaluated at 

the angular momentum Si and the energy Ei_l - B - £ after neutron 

emission, where B is the binding energy. 

To obtain the changes in the magnitude of the angular momentum (A.l) and 

the factors for the tensors, we must evaluate the averages 

of the quantities 2 F = S. - S. l' (S. - S. 1) 1 1- 1 1-
and .2 

J • 

(A.6) 
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In order to obtain analytic expressions we apply the two standard 

approximations: (i) Sharp cut-off transmission coefficients with effective 

barrier radius R: 

i/ 
(A.7) 

of htrw-ise. 

Here m is the mass of the neutron. (ii) Approximation of the level density 

around some set of arguments E',S': 

In this expression ~ is the moment of inertia of the i'th daughter nucleus 

and T is the temperature at E' ,SI, given by 

where a 

T : 
t S·:L 

E --
2."3-

is the level density parameter. 

(A.9) 

We choose the values E' = E. t- B 
1-

and SI = S. l' The level density p(E',S') is common to all the terms of 
1-

the summations in both numerator and denominator of expression (A.6), and 

therefore cancels. 

The integral over the kinetic energy of the neutron, entering into the 

first exponential factor of the expression (A.8), yields: 
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1 For particles of spin ~, the sums in the expressions (A.5) and (A.6) 

are: 

s. ~ {O tor eV'(h n",elei 
• 'h tor odd- "",cite: 

For each j the 1 summation yields 

Finally, the factors containing the spin magnitude Si in (A.B) are 

approximated: 

(A.12) 

The summations over S. 
1 

and j can be interchanged: 

Sj'" Si-t' 60 '!- 00 t r ~ [: L ~L L (A.13 ) '-' -= 

S·: {~ a~I$·-s. I a=\ 6,' = tntl.)( ( - ~ - S· ) ~-!. Aj=-a-I I-I I , 1-' -2-
1 ~ 

Defining the following variables and constants 
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IA = Il· o - 1.1 

we replace the sums over j and ~j by integrals, and combining the factors 

(A.II) and (A.12), except for common factors, we then obtain: 

norm 

norm ~< Sj - Si-1 ) 

n ()t" m .«(Sj - 5i_,)2.> 

hor rn "* (~~> 

where norm (the normalisation) represents the numerator in expression (A.6). 

The integrals are elementary: 

not"m 

.l 
.: 

not"rYI 
2.b + _.2. T'" 
5 b2. • 

1 - t··· 
2 

( A.1' ) 
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Here the last column is due to the lower integration limit being 4 
instead of O. 

Keeping the main terms plus the first order terms in. the small parameters 

b2 5i _1 
( 

2)-1 
b' and -- , we 

o /1 
obtain 

O'~ ::: «(S. - S· )~> -(S· - $. >~ 
, 1 1-1 1 1-1 

{A.17} 

In these expressions, the second terms in the parentheses are of the order 
b2 b. The expansion of the result as a power series in this parameter, assuming 
o 

mR.:t· . 1 - ~ {A.I8} 
3 

is the most severe approximation done. For a heavy nucleus, A > 100, the 

relation {A.I8} is valid, except at the last few steps of a neutron cascade at 

the highest angular momenta. 

Looking in more detail at the change in the angular momentum <5. - S· 1 >, 1 1-

the first term (except for the above mentioned corrections of the order 

b2/bo) comes from the orbital motion of the neutron. It can be 
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interpreted classically as the average angular momentum of a neutron placed 

randomly on the surface of the nucleus at the effective barrier radius and 

following the overall classical rotation of the nucleus. The second term, 

which diverges for 5. 1 = 0, comes from the factor 25. + 1 in the 
1- 1 

1 evel dens ity. The last term is due to the spi n 1 of the neutron. "2" 

Relative to emi ss ion of a spinless particle with the angular momentum 

sequence 5. 1,1,5., the spin 1 gives two possibilities of the 
1- 1 "2" 

daughter nucleus angul ar momentum, adding or subtracting 1 The "2". 

relative probability for addition or subtraction is given by the different 

1 1 level densities at 5i -"2" and 5i +"2". Expanding the level 

density around 5i , the average change in the angular momentum introduced 

by the spin is then 

(A.19) 

Inserting the results (A.17) into expressions (A.3) and (A.4), and 

keeping the main terms, we obtain for the changes in the average spin 

magnitude and of the tensors: 

( 
., ...... ((:2 1 R~ 

S 1 <. ,.. __ -+ ~ .,.. m ) 
i-l - 3 T 3:t 41" 3- 5i-1 

<p~ (Sj : 5i-l ) ) 
:t 

1 -
J:r ml( 3 ,.... 

Si~ -- 4 Si~ S, SI-1 

(p~(S;: L) <. 
5 

1 - -<.0 1"'mR (A. 20) '::::: 
S·:l. -

:t Si~ SI 51- 1 :3 
I-I 

. 

.' 
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The change in angular momentum due to the evaporation of neutrons has 

also been considered by Blau and Moretto. 34 ) When the condition (A.18) is 

fulfilled, the first two terms of their expression read 

which is very similar to our result. Also our expression for the change in 

the tensors of second order can be related to their expressions in the same 

way. 

One advantage of the present derivation relative to the derivation by 

Blau and Moretto is that it is more direct and compact. Another advantage is 

that it rests upon the traditional detailed balance principle, which has been 

implemented in statistical decay codes and used to discuss data and determine 

parameters for level densities. 35 ) This permits a direct comparison between 

our expression~ and the results of statistical decay code calculations, as we 

will show below. 

The treatment by Blau and Moretto, on the other hand, is more general and 

can be applied for the emission of large fragments also •. The occurrence of 

the moment of .inertia of J. + mR2 of the transition shape instead of just 

the moment of inertia of·the daughter nucleus, is thus more correct. 

The temperature changes down a decay chain. Assuming that each neutron 

roughly takes away the same amount of energy, a summation over decay steps can 

be replaced by an integral over the excitation energy of the daughter nuclei. 

The highest excitation energy is the one in the first daughter nucleus, El , 

and bYTl we denote the corresponding temperature. For a complete neutron 

decay chain down to the entry line for y- decay, the lowest excitation energy 

above the yrast line in the daughter nucleus is zero. Inserting these limits, 

we obtain for a complete decay chain: 
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<7) ~ f',J£ '*'lSe, ~~, = :z. 
:: '31", de,G.Y c.ha.i n 3 Gt o d.E 

0 (A.22) 

< ~ > o.t(.Q'1 c..ho.in ~ tE' -{f ciE / S>.E : ~ 

T1 

By repeated use of the addition theorem for spherical harmonics, we 

obtain the following approximate result, for A = 2,4 

(A.23) 

Products of the above type, where the factors differ little from unity, 

may to a good approximation be replaced by exponential functions. Therefore, 

(5",) ~ 
~ ~ < ~(So' Sn)' 
So~1-\ '/ 

(A. 24) 

The amount of excitation energy removed by neutrons is equal to the 

original excitation energy minus the entry energy in the last daughter 

nucleus. The average entry energy is approximately equal to the yrast energy 

plus half a neutron binding energy. The average excitation energy taken away 

by the ilth neutron is equal to B + 2T i , B being the neutron binding 

energy and T. being the temperature in the ilth daughter nucleus. So the 
1 

average number of neutrons emitted is 

n ':::: 
s:t B "4-1 

( Eo - rt - "3: ) ( B + 3 Ii ) (A.25) 

1: 

. -
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where the temperature in the first daughter nucleus is given by 

(A.26) 

In accordance with the approximative treatment of level densities and 

transmission coefficients some approximations have been made for the 

calculation of nand L I . Thus the yrast energies in both (A.25) and 

(A.26) are just represented by the original yrast energy at spin So in the 

nucleus leaving the collision, and the average energy removed by the first 

neutron in (A.26) is just represented by B instead of B - 2LI . 

The application of the expressions (A.24) to (A.26) requires four 

parameters to be inserted, B, mR 2, ~, a. Of these, the binding energy 

B can be taken directly from tables. 

The level density constant a and the moment of inertia l enter the 

expressions through the approximation (A.8) to the level density around some 

set of values. For energies not too close to the yrast line, the 

approximation is very accurate over a quite wide range of energies and angular 

momenta, both for numerically calculated level densities on the basis of 

independent particle levels, and for standard analytic expressions for the 

level density. Often the effect of shell structure in the single particle 

levels and the pairing energy are taken into account in terms of one 

additional parameter besides a and l for calculating the analytic level 

density, namely the back shift energy. For the high exictation energies and 

angular momenta we are mainly interested in here, the back shift should just 
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be subtracted from the energy Eo in the calculating of the temperature, 

and this does not affect the quality of the approximation (A.8). 

The effective barrier radius R enters the expressions (A.24) to (A.26) 

through the sharp cut-off approximation to the transmission coefficient. The 

calculation of optical potential transmission coefficients is, in contrast to 

the calculation of level densities, rather involved, and the sharp cut-off 

approximation is crude. 

To be able to use the analytic expressions (A.24) to (A.26), we therefore 

determine the effective barrier radius R by fitting the values of <lIi~ and 

o~ (A.17) to calculations by a statistical decay code. 

We use the statistical decay code GROGI 2, and perform the calculation 

for nuclei with mass number A = 50, 100, 150, 200 and with various 

excitation energies and angul ar momenta. In the calculation we apply the 

level density constant. as A/(9 MeV) and the moment of inertia for rigid 

rotation of a spherically symmetric mass distribution with rms radius 

1.25 A1/3fm. These values are in accordance with experiments for nuclei in 

the mass range around 60. 35 ) The optical pote~tial for neutrons is, apart 

from inessentialdetans, the one used in the newly developed code MBII. 36) 

Table A.1 gives the parameters for the optical potential. 

Figure A.I shows the result of the statistical decay code calculation 

together with the results of expressions (A.I7) for (lII> and 

the value R = 1.95 AI/ 3 for the effective barrier radius. 

2 . 
01' uSlng 

For the neutron 

binding energy a common value was inserted in (A.25) and (A.26). So, the four 

parameters are: .-

B -= 8 MeV 
(A.27) 
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The figure displays a consistency beeween the two analytic expressions 

2 for (61) and 01' and shows that the analytic expressions with an 

overall common value for R proportional to Al/3 accounts well for the 

result of the statistical calculation. 

By enforcing a common value proportional to Al/3 for the barrier 

radius, we neglect some dependencies upon the excitation energy and the mass 

number. With individual fits of R to the statistical code calculation, the 

coefficient in front of Al/3 in the effective barrier radius will show a 

decrease with increasing excitation energy and a slight decrease with 

increasing mass number. 
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Appendix B. 

In this appendix we discuss the fission decay probabilities and angular 

distribution coefficients, taking into account fission in competition with 

neutron emission in all decay steps. 

First we give a description of our schematic calculation scheme. 'For 

given excitation energy and spin E. l' S. 1 1- 1-
in the i'th decay step, 

the temperature r is calculated at energy and angular momentum E. 1 -
1-

Bn, Si_1 according to the expression (A.9). Next, the ratio between the 

fission probability and the neutron decay probability is calculated according 

to (4.22). For fission the angular distribution coefficients (4.19) are 

calculated, multiplied by the dealignment factors, (A.20) accumulated along 

the previous decay steps. The angular momentum in the i'th daughter nucleus 

is picked at random from a gaussian distribution with first and second moments 

given by the main terms of (A.17). The kinetic energy of the neutron € is 

then calculated in two steps. First the orbital angular momentum 1 of the 

neutron is picked randomly according to the distribution exp ( - 12/2 TmR2) 

and with lower limit lSi - Si_l l • This neglects the spin 1/2 of the 

neutron. Secondly the energy is picked according to the distribution 

exp(- f), with a lower limit given by 12/2 mR2. In this way it is 

assured that the average neutron kinetic energy is approximately twice the 

temperature. Each particular decay chain simulation is stopped at the 

i-11th step if the average excitation energy in the i'th nucleus, E. - B - 2T 
1 n 

would drop below the yrast energy in the i'th nucleus for spin S. 1. 
1-

This is a crude way of taking into account the takeover of the decay by y-rays 

close to the yrast line. 
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The total fission probability and angular distribution coefficients for 

given excitation energy and spin E , So is found by averaging over the 

accumulated simulations of decay chains. 

The parameters entering the calculations are of three types. First we 

need the level density parameters an and af , which we typically take 

as ,AII0 Mev-I, A being the mass number. Secondly, we need the smooth 

neutron binding energy Bn and fission barrier Bf , together 

with their variation down the neutron decay steps for which we just 

include a linear dependence with the derivatives 
dBn dBf 

d ( -N ), d ( -N) • Fi na lly the 

effective moments of inertia must be specified, le for the neutron-to

fission competition, '3-eff for the fission saddle shapes and mR 2 for the 

neutron at the barrier radius. For mR 2 we use the parameter (A.27) 

determined in Appendix A. 

The parameter values not already specified are detived from the liquid 

drop model, with the Lysekil parameters. This readily yields the neutron 

separation energies, and the fission barriers and moments of inertia of the 

saddle shapes are calculated by using figures from ref. 10). The moments of 

inertia change with increasing spin, and we use the average of the two values 

obtained at spin 20 and 50. For the moment of inertia of the daughter nucleus 

after neutron emission, we use the value (A.27) for spherical nuclei. 

To test the calculation against more complete calculations, which include 

barrier penetration and which do not approximate the level densities as 

crudely as we do, we apply the present calculation scheme to the well studied 

case of fission of the nucleus 198pb as formed in fusion reactions of 182W 

with 160 at various bombarding energies. Taking into account ~he shell 

correction energy of 198pb , which is approximately -5 MeV, we obtain the 
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values E* = 50 MeV and 73 MeV for the excitation energy above the liquid drop 

model ground state for the lowest and highest bombarding energies of 90 MeV 

and 117 MeV, respectively. 

Fi gure B1 shows the fi ss ion probabil ity and angul ar di stributi on 

coefficients for these two extreme values of the excitation energy as function 

of angular momentum for the whole cascade and for the first decay step only. 

It is apparent from the figure that it is important to take into account 

fission at all decay steps, especially for the fission probability. The 

angular distribution coefficients obtained for the first stop only, on the 

other hand,deviate from those obtained for an entire cascade by less than 25 

percent in most cases. 

The fission probabilities display an almost step-like behavior, being 

small and almost constant for the small spins and rising sharply within a 

rather narrow interval towards the asymptotic value of one. For an entire 

angul ar momentum distribut ion corresponding· to a compound nucl eus formed in a 

fusion reaction, almost all the angular momenta above a certain value will go 

to fission. The properties of the fission probability for the case of a 

fusion reaction is then best characterized by the average maximum spin SER 

remaining in evaporation residues, defined by 

Here 0ER is the evaporation residue cross section, t is the reduced 

wavelength in the entrance channel, Smax is the maximum angular momentum 

for fusion, and Pf is the fission probability for the whole distribution. 

Figure B2 shows the Smax value put into the calculation together with 

SER as calculated with our schematic calculation together with the results 
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of the calculation of ref. 24). Also shown are the angular distribution 

coefficients for fission of the entire distribution, defined as 

S""~ 

$~ (totaL) 
L (:2.S+1) JrJiSSio.,(S) ~).(S) 

.:: 5.= 0 (B.l) 
S"'G.)( 
E (~~"1) JY'jiSsion(S) 
s .. o 

For compound nuclei formed in a fusion reaction between spinless nuclei, the 

statistical tensors in the classical interpretation (4.2) are independent of 

the size of the angular momentum and are equal to PA~(S) = PA(O)O~O' 

and the angular distribution as function of the angle to the beam axis will be 

'W" ( '" ) = '41,. ~ 93,. ( total) p~ (0) p~ ( (OS 19 ) 
). 

(B.2) 

from which ~A(total) can be extracted from experimental or calculated 

angular distributions. Taking into account that the scales are quite 

expanded, our calculation gives a good account of the more detailed 

cal c u 1 at i on . 

Our angular distribution coefficients have slightly larger absolute 

values than those extracted from ref. 24) This may be related to the 

neglect of the quite pronounced shell energy in lead-nuclei which, when 

included, probably would suppress the fission relative to the neutron emission 

during the latest decay stops. 

In ref. 24) the dealignment due to neutrons is not taken into account, 

and fig. B2 shows that inclusion of the dealignment produces variations of the 

same order as the deviations between the different parameter sets. 

To test the calculation against "data, we calculate total angular 

distribution coefficients for the decay of the nucleus 211Rn , as formed in 
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fusion of 14N with 197Au37). Although these nuclei are not spinless 

their spins are very small compared to the angular momentum in the compound 

nucleus, so the relation (B.2) can be applied with good accuracy. Figure B3 

shows the angular distribution coefficients extracted from the data of ref. 7) 

together with our calculated values. The maximum spins for the various 

excitation energies entering our calculation are taken from ref. 21). 

The first chance fission makes a stronger selection of the highest spins 

than fission including neutron delayed fission. So, although the angular 

distribution for a definite value of the spin becomes more anisotropic when 

neutron delayed fission is included, the angular distribution integrated over 

spin becomes less anisotropic, except for the' lowest excitation energy. 

Apart from the excitation energy 80 MeV, the calculated values of the 

total angular distribution coefficients are in very good agreement with· data. 

(The level of agreement may be somewhat fortuitous since the parameters 

entering the calculation are not that well defined.) 
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Table Caption 
. . 

Table 1 an and af denote the level density constants the for first decay 

-step for the fission and neutron decay, respectively. Bn and Bf denote the 

smooth (excluding shell energies and odd-even mass differences) neutron

separation energy and fission barrier, respectively, and do Bn and ciS, 
cH- N) . c;(.(- N) 

denote their changes per step in a neutron ca'scade. 3.Ljj. hand 3-11/,1. denote 
sf sp~ . 

the moments of inertia of the saddle shape relative to a spherical nucleus. 

The moment of inertia for a spherical nucleus is ~SPh and mR 2 is the 

effective moment of inertia of a neutron at the barrier radius for the first 

step of the decay. The parameters an' af , 3-SPh are 

chosen according to standard prescriptions identical for all parameter sets, 

and they scale slightly with the decreasing mass along the neutron decay 

cascade. The parameters are extracted from refs. 10,25-28) The authors 

are grateful to Arnold J. Sierk for providing the fission barriers and moments 

of inertia shown in the third column. 
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Table 1 

F" t f' 208p lSSlon parame ers or 0 

. Liquid drop model Yukawa plus -
Parameter Lysekil parameters Droplet model Exponential . 

an(MeV-1 ) 
~ 

20.7 20.7 20.7 

af(MeV-1 ) 20.8 20.8 20.8 

-Bn (MeV) 7.10 6.98 6.81 
,.,. 

dB n (MeV) 0.15 0.14 0.15 d(-N) 

Sf (MeV) 11.3 11.06 10.2 
.... 

dB f (MeV) -0.19 0.05 -0.14 d(-N) 

1 2.34 2.4 2.39 
j.Sf~ 

b 0.52 0.5 0.55 
l-s.pt, 

Jsph (MeV·t'J2) 109.5 109.5 109.5 

mR~ (Mev.1;2) 3.19 3.19 3.19 

I 
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Table A 1 Optical potential parameters for neutrons employed in the 

calculations with the statistical decay code GROGI2. The parameters are 

essentially the same as those employed in ~he code MBII36). The depth of 

the central potential is obtained by inserting a neutron kinetic energy En = 

4 MeV into the energy dependent potential depth V = 47.01 - 0.267 En' 

employed in MBII, and simi1arly for the depth of the imaginary potential. 
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Table A 1 

Opti cal potential parameters for neutrons 
" : " 

Spin-Orbit 
Mass Real Potential Imaginary Potential Potential .-. 

V ry ay W rw aw Vso rso aso 
~; .... '. 

A = 50 46.00 1.293 0.66 9.30 1. 252 0.48 7.00 1. 252 0.48 

A = 100 46.00 1.278 0.66 9.30 1.245 0.48 7.00 1.245 0.48 

A = 150 46.00 1.271 0.66 9.30 1.242 0.48 7.00 1. 242 0.48 

A = 200 46.00 1.266 0.66 9.30 1.240 0.48 7.00 1.240 0.48 
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Table B 1 See caption to Table 1 for the definitions of symbols. Parameter 

set II and the level density constants for both parameter sets are taken from 

ref. 24 ). 
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Table B 1 

Fission parameters for 198pb 

Liquid drop model -. 
Parameter Lysekil parameters Parameter set II 

an(MeV-1) 20.74 20.74 

af (MeV-I) 20.84 20.84 

,., 
Bn(MeV) 8.00 8.00 

~ 

dB n (MeV) 0.19 0.19 d(-N) 
.... 
Bf (MeV) 12.30 11.30 

..... 
dB f 

d(-N) (MeV) 0.26 0.00 

1.1. 
l.sp,", 

2.66 3.13 

1 .. 0.525 0.49 
1"p~ 

1-sph (MeV·1;2) 100.9 93.4 

mR2 (MeV·t;2) 3.09 3.09 

I' 
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Figure Captions 

Fi g. 1 Illustration of the spherical geometry relevant for describing the 

change in the directional distribution of the spin caused by the emission 

of the iJth unobserved dec~y product. 

Fig. 2 Number of decay products and the angular distribution coefficients 

for bump region y-rays (full curves~ left hand scale) shown together with 

the averge angular momentum left in the nucleus after neutron evaporation 

(dashed' turves, right hand scale)~ calculated as function of angular 

,momentum for the deformed nucleus 165Ho at three different exictation 

energies. The value 1.2 is used for the parameter cA;tat' denoting the 

number of isotropic statistical y-rays within the bump region (cf. eq. 

(4.16)). 

Fig. 3 Decay probability and angular distribution coefficients calculated as 

functions of angular momentum for fission of the nucleus 208po at 

three different excitation energ-ies. The parameters from the three 

columns of table 1 were applied in the calculation for the three columns 

of the figure. 

Fig. 4a Average spin magnitude < S > and dispersion Os as functions of 

TKEL for the reaction 610 MeV 86Kr + 154Sm • The dashed lines 

correspond to calculated spin distributions right after the collision, 

and the full curves include the correction for neutron emission prior to 

the emission of y-rays. The data points are extracted from the 
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y-multiplicity data of ref. 2) using the following relations between 

spin magnitude moments and y multiplicity moments: < S > '; 2 ( < M > - 3) 
y 

(open circles), <S> = 1.6<M > (solid circles), aS = 20'M 
y y 

(open triangles), aS = 1.6 aM (solid triangles) •. ' The TKEL of 
y 

the data points has been corrected for neutron evaporation, which 

decreases the kinetic energy of the krypton-like nucleus pri6r td its 

measurement. 

Fig. 4b Same as fig. 4a, for the smaller bombarding energy 490 MeV. 

Fig. 5 Average' spin magnitude (top) and out of plane anisotropy of bump 

region y-rays with energies between 600 and 1200 keV (bottom), shown as 

functions of TKEL for the reaction 1400 MeV 165Ho + 165Ho . The 

dashed curves correspond to calculated spin distributions right after the 

collision, and the full curves include a correction for neutron 

evaporation prior to the y-ray emission. The data points are taken 

directly from ref. 4) 

Fig. 6 Average value and dispersion of the spin magnitude (top) shown 

together with the values of statistical tensors (bottom), calculated for 

the heavy nucleus as functions of TKEL for the reactions 7.5 MeV/n 208pb + 

58Ni , 90Zr • The data points and arrows denote absolute lower limits 

to the alignment Pyy extracted from data as described in the text. 
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Fig. 7 Polar angle dispersion (top) and fission probability (bottom) as 

functions of TKEL for fission of the heavy nucleus produced in the 

reactions 7.5 MeV/n 208pb + 58Ni , 90Zr • The curves labelled a, b 

and c are calculated with the theoretical values for the averge mass and 

charge of the heavy nucleus, corresponding to small, medium and maximum 

TKEL, respectively, and the curves are fully drawn in that region of TKEL 

where they apply. The data are from ref. 7}. 

Fig. 8 Same a~ fig. 6, but now with 238U as the projectile. 

Fig. 9 Same as fig. 7, but now with 238U as the projectile. The crosses 

show polar angle dispersions as obtained with the precession determined 

angular correlation (see section 5.5). 

Fig. 10 Angular correlation in the reaction plane for fission of the heavy 

nucleus produced in the reactions 610 MeV 86Kr + 209Bi and 730 MeV 

86Kr + 238U• cp = 90 0 corresponds to the beam axis. The open arrow 

for each TKEL shows the target recoil direction in the lab~frame and the 

solid arrows point to the directions of principal axes of the in-plane 

components of the spin variance tenser. The data points are taken from 

refs. 6,31}, and they cover an interval 40 MeV wide in TKEL for each 

data set. Some of the error bars in the left hand part of the figure 

correspond to the size of the dots in the figure in ref. 6}, and should 

thus actually be somewhat smaller. 
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Fig. 11 Average value and dispersion of the spin magnitude (top) and 

alignment (bottom), calculated for the heavy nucleus as function of TKEL 

for the reactions 1400 MeV 165Ho + 165Ho , 610 MeV 86Kr + 

154Sm , 7.5 MeV!n 238U + 90Zr . The maximal TKEL, used to define . 

the relative scale for the energy loss, is picked as 200 MeV for the Kr 

+ Sm and U + Zr reactions and as 340 MeV for the Ho + Ho reactirin. 

Fig. 12 Average spin magnitude < S > and dispersion Os as functions of; 

TKEL for the reaction 610 MeV 86Kr + 154Sm • The data points and the 
" 

thick full curves are identical to those shown in fig. 4a. The thick 

full curves show the results of the calculation with the standard 

prescription for the neck dynamics, and the thin full curves are obtained 

with the density in the neck equal to half its standard value. Dashed 

and dot-dashed curves show results obtained with a neck wall dissipation 

rate determined by the motion of the effective neck radius (instead of 

the geometric neck radius); the dashed curves are obtained including the 

standard reduction factor of the neck wall dissipation for elongated neck 

shapes. whereas this reduction is removed for the results denoted by the 

dot-dashed curves. 

Fig. 13· Contour plots of the ratio between the joint fission angular 

distribution PA(~,i) and the product of the two individual fission 

angular distributions PA(~) and PB(i), for the reaction 8.5 

MeV!n 238U + 238pb at an energy loss of TKEL = 140 MeV. The 

fission direction a of the target-like reaction product B has been 

fixed at either (Ds = 45°, ~s = 60°) (a) or (~s = 45°, ~s = 

_30°) (b) and the ratio is displayed as a function of the fission 

direction for the reaction partner A. 

r 
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Fig. 14 The absolute joint fission probability PAB(;,i) for the U + Pb 

reaction. The direction a has been fixed at either (19'a = 45°, 

~ = 60°) (a) or (Da - 45°, CPa = _30°) (b), while the 
A 

direction a is moved from the north pole, through the point 
A A 

a = a, 

and down to the south pole. Two energy losses have been considered, TKEL . 

= 140 MeV and 280 Mev. The dashed curves indicate the product of the 

indivi~ual fission probabilities, PA(;)PB(;). The curves have been 
A A 

normalized so that isotropy would yield the value one for all a,a. 

Fig. 15 -+A Effect on the projectile-like fragment spin S of the bias 
A 

introduced by detection on target fission fragment in the direction a. 

The figure shows the distribution of SA projected onto the plane 
A 

containing the reaction normal (the V-axis) and fission direction a, 

which in turn has been chosen as either (~a = 45°, f{>a = 60°) (a) 

or(t9a = 45°, CPa = _30°) (b), corresponding to the directions 

considered in figs. 13, 14. The LHS shows the unbiased mean spins and 

the one-sigma contour for SA while the RHS shows the hiased mean 

spins (6.39) and (6.40) and the associated one-sigma contour (as 

determined from (6.42)). 

Fig. 16 Similar to fig; 14 but calculated with a statistical model. The 

settings of the fission direction i correspond approximately to the 

associated major and minor principal directions and are (~a = 45°, 

CPa = 0°) (a) and (t)a = 45°, fa = 90°) (b). 
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Fig. Ala Change in average spin magnitude and dispersion caused by the 

emission of one neutron from typical nuclei of mass number A =50 

(left) and A = 100 (right), with a sharply defined spin value. So' 

shown as function of So for two values of the excitation energy E*. 

The full curves result from a calculation with the statistical decay code 

GROGI 2 with. standal','d parameters, and the dashed and dot-dashed curves 

result from analytical approximations as developed in the text. The 

dot-dashed curves present tbe full result (A.17)~ whereas the dashed 

curves present the result without terms of the order of the parameter 

(A.18) . 

Fig. Alb Same as fig. Ala, but now for typical nuclei with mass numbers A 

= 150 and A = 200. 

Fig. B1 Decay p~obability and angular distribution coefficients calculated 

as functions of angular momentum for fission of the nucleus 198pb at 

two different excitation energies. The dashed curves show the values for 

the first chance fission and the full curves include also fission delayed 

by the evaporation of one or more neutrons. The left-hand part of the 

figure is calculated with the parameters given by the liquid drop model 

with the Lysekil parameters, whereas the right hand part of the figure is 

calculated with the parameters used in ref. 24) (cf. ·Table B,l). 

Fig. B2 Upper spin limits (top) and angular distribution coefficients shown 

as function of the excitation energy in the compound nucleus 198pb as 

formed by fusion of 182W with 160• S denotes the maximal max 

spin entering the calculation, and SER denotes the average maximum 

spin leading to evaporation residues. Circles denote results extracted 

,r 
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from the calculation presented in ref. 24), triangles denote results of 

the present approximate treatment of the fission, applying the same 

parameters as in ref. 24), and squares denote results obtained with the 

parameters given by the liquid drop model with the Lysekil parameters. 

For the open triangles the dealignment of the spin direction due to 

neutrons is taken into account, whereas this is ignored for filled 

symbols. 

Fig. B3 Angular distribution coefficients shown as function of the 

excitation energy in the compound nucleus 211Rn as formed by fusion 

of 197Au with 14N•· Circles show results extracted from the data 

shown in fig. 4 of ref. 37) Squares denote calculated results obtained 

by restriction to first chance fission only, whereas fission delayed by 

neutron evaporation is included in the calculated results denoted by 

triangles. The dealignment caused by the neutrons is included in the 

calculation leading to the closed triangles and neglected for the open 

triangles. 
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