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Abstract

A large N analysis of the renormalizable ';nt(~ractions (¢2)M2M|M-1’ M= 3is
reported, generalizing a recent work of Bardeen, Moshe and Bander. At "multi-
critical” points, each theory is perturbatively scale invariant. Each member of the M
odd sequence exhibits a non-perturbative ultra-violet fixed point, spontaneous

breaking of scale invariance and a dilaton.

This work was supported by the Director, Office of Energy Research.
Office of High Energy and Nuclear Physics, Division of High Energy Physics
of the U.S. Department of Energy under Contract DE-AC03-76SF00038.
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Some of the most beautiful theories of physics are classically scale invariant,
and nature is not. The question of quantum breakdown of scale invariance (running
coupling, B = 0) is therefore physically relevant. In contrast to QCD, in which B = 0
by perturbative renormalization, certain finite theories, like N = 4 Yang-Mills,
exhibit B = 0 to all orders [1]. It is important to know whether such theories will
experience non-perturbative breaking of scale invariance. As a prelude to this, it may
be important to have models of the phenomenon. Recently, Bardeen, Moshe and
Bander {2} (BMB) have found precisely this phenomenon in large N ¢63 at the
tricritical‘ point: there is a non-perturbative ultra-violet ﬁ);ed point, associated with a
spontaneous breakdown of scale invariance, and a dilaton. In this note, [ report that
the infinite sequence of theories ($2)21+ 12+n_ 1, n = 1, enjoys the same phenomenon.

Scalar interactions of the form (¢2)" in D = 2v[v—1 dimensions are
characterized by dimensionless couplings, even for non-integer v and D, and are
presumably renormalizable theories. [ restrict myself here to the conventionally

renormalizable polynomial subset, v = M = 3, so0

1< D=2 ¢3 ()

As seen below, for this range of M, the dimensionless couplings experience no
perturbative renormalization at large N. Any running of these couplings will be
pureiy non-perturbative.

The large N computations ﬁltimately involve solution of the gap equation.
Since these are quadratic building-block theories, many equivalent techniques are

available [3]. I follow here the Hartree-Fock method of Ref. {2] The Hamiltonian is
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The trial wave functional,F1

Yoo~ exp -4 W@ o e ]

results at large N in the trial energy/volume W,
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where m is the variational mass. For 2 < D < 4, a Euclidean momentum cutoff A

gives »-2 . P-4
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Both @ and F are positive for 2 < D < 4. Renormalized couplings g2n are defined as in
(21, c h
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VO is independent of m, and irrelevant, while from (4), (5) and (8),
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-Note that gy = gZMO; the dimensionless ‘coupling is not (perturbatively)

renormalized. A perturbatively scale-invariant “multi-critical point” is defined by
setting all dimensionful renormalized couplings to zero, g, =0 (n < M). After a

little aléebra, fhe resulting trial energy is
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For even M, the only cutoff-independent minimum is at m = 0. For all Zop > 0
(M even), these theories are théréfore in an expected massless (perturbafive) vphaée,
with B,y = 0(Meven). in'what follows, I éssume M'is odd.

For odd'M, Som” Becomes a crltlcal couplmg, ’
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For gy <'gyy*, the correct mini}num isatm = 0 This vs.'eak-cc:mplin-g phase-is again

massless, perturbative and B?M ='0. For gzv[ > goy*s however a new minimum is

|

seen, proportional to the cutoff(B\AB instability [2]) . —
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Therefore a new massive strong-coupling phase is obtained if 8oy —> Boy ™ from above
as the cutoff is removed. The correct rate of approach, for arbitrary fixed m is, from

(10),

lmﬂ) : #G-'z) (%-2) +-l .
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In the continuum limit, gy, = g4y * and the mass m is arbitrary, the entire odd-M
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sequence of theories exhibiting dimensional transmutation.

The B-functions are immediately computed from (11),
' ? ' *
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valid for g,,, from zero through a neighborhood of g,\*. The couplings run non-

perturbatively in the massive strong coupling phases (8o > 8yy*) toward the ultra-
violet fixed points gy *.

In order to compute physical amplitudes in the continuum limit at the multi-
critical points, it is convenient to work in terms of “effective” couplings §2n, induced

by normal ordering,

M
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(13)
The effective couplings are determined as follows. Wick’s theorem at large N is
("= T )t (m) <6
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So, using Egs. (4) and (14),
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At the multi-critical points, Eq. (7) can be solved for the bare couplings in terms of
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Together with Eq. (15), the effective couplings are finally determined. After some

algebra, M-n
2
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As an example, I construct the four-point functions for the odd-M sequence,
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Rotating to Minkowski space, | obtain, with (9} and (17),
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so every theory in the sequénce shows a dilaton as a pole with positive residue; scale
invariance is realized in the Goldstone mode.

[ have also e‘cammed the physical 2M-point function. At large N, the surviving
graphs consist ofM strmgs of effectlve bubbles, as above, joined. either by a single 2M-
point coupling, or by an M—sided polygon of 4-point couplings. The bubbles (B), and
the polygon vanish at large momentum, so [y — 8oy in the ultraviolet, as expected.
Finalliy, I ‘have. r:her:ked the existence of the nev;/ -ﬁxed poihts in dimehéiéﬁal
regularization (D, = @MM-1-¢, € > 0l With Sovt = Zoy MEMT (gyy

dlmenswnless) the dominant effect at the multi-critical point is the stablhzatlon of
the potentlal term bv a factor (u/m)s(M D Itis clear that Som = gzM* as e - 0"' but
it seems difficult to compute the physical dlrectly in this approach. Curiously, the

sequence is also st'abilized, with the same results, by a smail amount of go.\s , ).F2

perturbatwely scale mvarlant theorles con51dered undergoes a non- perturbdtlve -

breakdown of scale-invariance. The other half (M even) does not. The issue in other
finite theories, such as N = 4 Yang Mills, remains open.
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In summary, approx1mate1y one- half (M odd)"the infinite claés -of .
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Footnotes

F.1. [t;i_s' well know_rr trlat Hértrée—ﬁock:gives the correct result in the large N limit |
for quadratic building-block theories. Note that (3) i.s :r&t the true ground state
wave functional of the syéfém, even at large N,. anri at the mirximum.
Evidently, many trial functions can give correct results at large N, perhaps
even for matrix models. In the quz;dratic building-block case, the phenomenon
is ea51ly traced to master fields. .

F.2. ThlS was worked out ina conversatlon w1th M. Moshe.
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