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Abstract 

A large N analysis of the renormalizable interactions (.p2)M 2MIM-1' M 2! 3 is 

reported, generalizing a recent work of Bardeen, Moshe and Bander. At "multi-

critical" points, each theory is perturbatively scale invariant. Each member of the M 

odd sequence exhibits a non-perturbative ultra-violet fixed point, spontaneous 

breaking of scale invariance and a dilaton. 
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Some of the most beautiful theories of physics are classically scale invariant, 

and nature is not. The question of quantum breakdown of scale in variance (running 

coupling, B :;c 0) is therefore physically relevant. In contrast to QCD, in which B :;c 0 

by perturbative renormalization, certain finite theories, like N 4 Yang-Mills, 

exhibit B 0 to all orders [1]. It is important to know whether such theories will 

experience non-perturbative breaking of scale in variance. As a prelude to this, it may 

be important to have models of the phenomenon. Recently, Bardeen, Moshe and 

Bander [2] (BMB) have found precisely this phenomenon in large N .p6
3 

at the 

tricritical point: there is a non-perturbative ultra-violet fixed point, associated with a 

spontaneous breakdown of scale invariance, and a dilaton. In this note, I report that 

the infinite sequence of theories (.p2)2n + 12 + n _ 1, n 2! 1, enjoys the same phenomenon. 

Scalar interactions of the form (.p2)v in D = 2\>1\1-1 dimensions are 

characterized by dimensionless 'couplings, even for non-integer \I and D, and are 

presumably renormalizable theories. I restrict myself here to the conventionally 

renormalizable polynomial subset, \I = M 2! 3, so 

2.< D :::; 'Zf"\ <: 3 
11-' -

Cl ) 

As seen below, for this range of NI, the dimensionless couplings experience no 

perturbative renormalization at large N. Any running of these couplings will be 

purely non-perturbative. 

The large N computations ultimately involve solution of the gap equation. 

Since these are quadratic building-block theories, many equivalent techniques are 

available [3]. I follow here the Hartree-Fock method of Ref. [2] The Hamiltonian is 

'r\:; t 
~ 0 

\(A.t>-~) ~T,-1f~ + t.'OCPcr..-t:>CPA-+N [ ~~ 1~)t\1 
,,:\ 2h ~N • 

(a = l...N) 

(2) 
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The trial wave functional,Fl , 
~-t-r, ... \ IV ~l( l> t -~ ~ V.~-~ ) tfQ. t --a"'+~"" 11 fa.J 

(3) 
results at large N in the trial energy/volume W, 

W =. k+V 
N 
k(""l.)=-~ 

M 0 

V=-L.~ 
'f\:::q ~'" 

~"2, '1 

~ ct.}'-~ ]A-1. ~ 1. < ii)r-
0". ']) 

, 10 k <r,> (~k. < 1i )~ , '" '/ = )(?1f)l' 

t 4- ) 

R 2. .... '-' "l. 

where m is the variational mass. For 2 < 0 < 4, a Euclidean momentum cutoff A 

gives 

~ 
1-1 . :)-1. ")-'t 1 n ~ -\\.\ r +'M~~ + ... 

))-2 't-1l (~/:= 
N 

D 

_ i llt.1T) 2: r ( r;. ) I F {D) ~ ~ esc. [.!f lD-l)1 'Q-\ll) 

SLF 
, '_1> 

~ lLTtr)·1 r t \ - ~) 
l'5 ) 

Both nand F are positive for 2 < 0 < 4. Renormalized couplings g2n are defined as in 

[21, 

'\f-
t1 

YO + L 
h:1 

. .' ~ 

~ ("\ h r _ ~-lF + ~ 'l. ,,1>;' 1 
2 ~l. l ",- ... 
~ 't-l>. 

((., ) 

v 0 is independent of m, and irrelevant, while from (4), (5) and (6), 

~ ~ 

~l.\,\ 
2.~ 

Y\ 
;2 

,(-=t\ 

~ (~) ( .n.~ 1)-1 )t-r\ 
\ J>-1. 
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(1- ) 

. Note that g2M g2M 0; the dimensionless coupling is not (perturbatively) 

renormalized. A perturbatively scale-invariant "multi-critical point" is defined by 

setting all dimensionful renormalized couplings to zero, g2n 0 (n < M). After a 

little algebra, the resulting trial energy is 

") F 1'\ ., If. 1)-'4-" ~ a.,~ 
!! := ~ (H.(-\) 9'1M 1-, ~ f\ ..l~ {t +(-\) ~ 1 
N 2M \ . ~1~ , .' 2l"-~) , ~'1t'\ 

\- "" 
9~ : (.n.. f ) . (i ) 

For even M, the only cutoff-independent minimum is afm = O. For all g2M > 0 

(M even), these theories are therefore in an expected massless (perturbative) 'phase, 

with 82M = 0 (M even), In what follows, I ~ssume Mis odd. 

For odd'M, g2M' becomes a critical couplin'g, 

*' glM 
M ,,\-M 

- (4-tr) [rt ~)1 (~) 

For g2M <g2M', the corre~t minimum is at m '= O. This weak-c~upliu'g phase. is again 

massless, perturbativ'e and 82M =0. For g2M > g2M*' however, a new minimum is , 
seen, proportional to the cutOlffCBMB instabi!ty [21l 1M 

M ::." l~'2.Jo\ - ~'U') ~ (1)-2. )Llf- -:D) 

t~'ltl\ -i. ~~t'\) If (t 0 ) 

, .. """\.~ , 
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Therefore a new massive strong-coupling phase is obtained if g2M -> g2M * from above 

as the cutoff is removed. The correct rate of approach, for arbitrary fixed m is, from 

(10), 

32.~ 
't-") 1 * W\ 2. + ... ~t"" L 1. + l,,) F l'~~1.' (It-~) . " (Il ) 

In the continuum limit, g2M gZM* and the mass m is arbitrary, the entire odd-M 

sequence of theories exhibiting dimensional transmutation. 

The S-functions are immediately computed from (11), 

~l.M :: " Cl32.M 

~" 
llt-J>)(9i'"l\- 9lt1)e(~tt\- 3~) 

(11.) 

valid for g2M from zero through'a neighborhood of gZM*' The couplings run non-

perturbatively in the massive strong coupling phases (g2M > g2M *) toward the ultra-

violet fixed points g2M *. 

In order to compute physical amplitudes in the continuum limit at the multi-

critical points, it is convenient to work in terms of "effective" couplings g2n' induced 

by normal ordering, 

M . D \1 

~~\ 3~~ t~) - v + o 

M 
'" 92.W\ 
L '2.~ 
~-=\ 

n 
l~) : 

N 
{l3 ) 

The effective couplings are determined as follows. Wick's theorem at large N is 

t'\ 
('fl.) N 

~ h\ 

1:.. : ('f1.) (~) <<t).)h_~ . 
M"'-o 

(1'4-) 
So, using Eqs. (4) and (14), 

CJ2.h 
2.Y\ 

t:L • 

I-'\.:J .e. 
L 9u (..t) < ~ ~=V\ IT n N /. 
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At the multi-critical points, Eq. (7) can be solved for the bare couplings in terms of 

g2M*' 

o • ~2." = ~2.'" l ~-:.II) (-..nl?' )t'\-tl \ >-1. . In.,) 

Together with Eq. (15), the effective couplings are finally determined. After some 

algebra, 

~2,t'\ 
*' ~2M \ h-\ 2.) 

f t1-' ) t",l>-l. r( \ - ~ lM

-

h 

l'tow) 012. 

('~) 

As an example, I construct the four-point functions for the odd-M sequence, 

-l 
r,.. = 2.J.! [1 + ~ .. B(v)1 

N 
( ~])" 

~(r) = }(2.1f )~ R'l.+",,"2. (P_,,)l.+ "" ~ 

Rotating to Minkowski space, I obtain, with (9) and (17), 

1I t) 

»\2. 2. l-~h. I ¥--2 -l 
-2(~1f) (b\) {l _ ~ All( (\ --q I-el)~] } 
"Nr(1.-~)· . 

ll, ) 
r't 

Forp2«m2, 
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r" ~ 
1>11.. 3- ~ 

\ 2. ('t-rr) (",,1.) 1.. 

N r(l-~) tZ-
(20) 

so every theory in the sequence shows a dilaton as a pole with positive residue; scale 

invariance is realized in the Goldstone mode. 

I have also e'xamined the physical 2M-point function. _At large. N, the surviving 

graphs consist of M strings of effective bubbles, as above,joined,either by a single 2M-

point coupling, or by an M-sided polygon of 4-polnt couplings. The bubbles (B), and 

the polygon vanish at large momentum, so r 2M -> gZM * in the ultraviolet, as expected. 

Fina]]'y, I have checked the existence of the new fixed points in dimensional 

regularization [D (2MIM-1)-E:, E: > 01. With g2M gZM jJE:(M-lI (gzM 

dirriensionless), the dominant effect at the multi-critical point is the stabilization of 

the potential term by a factor (jJ/m)£IM-U It is clear that gZM -> g2M* a; £ -> 0'1', b~t 

it seems difficult to compute the physical fJ directly in this approach. Curiously, the 

sequence is also stabilized, with the same results, by a small amount of g2(M + 1 r F2 .. , 

In summary, approximately one-half (M od!i) the irifinIte class.' .of 

perturbatively scale-invariant theories considered undergoes a non-perturbative 00-

breakdown of-scale-in variance. The other half (M even) does not. The issue in other 

finite theoties, such as N = 4 Yang Mills; rerriains open. 
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Footnotes 

F.l. ltis well know~ that Hartree-Fock 'gives the c~rrect result in the large N limit 

for quadratic building-block theories. Note that (3) is not the true ground state 

wave functional of the sy~'tem, e~en at large N, and at the minimum. 

Evidently, many trial functions can give correct results at large N, perhaps 

even for matrix models. In the quadratic building-block case, the phenomenon 

is easily traced to master fields. 
. . ' ~, ... 

F.2. This was worked out in a conversationwithM. Moshe. 
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