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Abstract 

For a wide-class of period doubling flows on R3, we analyze the global structure 

of the invariant manifolds and the topology of the bifurcating periodic orbits. 

We emphasize aspects of the dynamics which are not visible in an analysis of the 

associated Poincare/return map. The global manifold structure implies constraints 

for the subsequent bifurcational behavior of the flow. The period doubled orbits 

are classified using the theory of iterated torus knots. This classification 

reveals an infinite number of topologically distinct period doubling flows. 

This is of experimental interest because distinct flows can generate qualitatively 

different power spectra. Possible implications for the universality theory 

of period doubling flows are discussed. 



I. Introduction 

Period doubling transitions occur in physical systems ranging from 

fluids to electric circuits. 1 They also arise in a host of theoretical 

models, frequently occurring repeatedly to produce period doubling 

cascades. These models include maps, such as the logistic map, and 

differential equations such as the three wave model studied by Wersinger, 

tinn, and Ott, or the Rossler equations. 2 

Most existing theoretical work focuses upon the remarkable universal 

features of period doubling cascades, and most of this work analyzes maps 

in one or two dimensions. 3 In contrast to this extensive literature 

for period doubling in maps, relatively little attention has been devoted 

explicitly to flows; i.e. solutions of differential equations. In part 

this is understandable since, by constructing a Poincare section, a 

period doubling flow in Rn defines a period doubling return map in 

Rn-l ~ . However this reduction of a flow to a map eliminates 

considerable information concerning the global properties of the flow. 

In this paper we undertake a study of the global structure of period 

doubling flows. We are particularly interested in dynamical features, 

common to any such flow, which persist in the presence of gentle 

perturbations. Thus our discussion emphasizes topological and geometric 

properties. 

Two issues motivate the analysis. First, for a flow which exhibits 

period doubling, what is the structure of the invariant manifolds and how 

does this structure evolve as successive bifurcations occur? Second, how 

are period doubled orbits embedded in the phase space" and what 

physically interesting consequences arise from the possibility of 

different embeddings? Neither of these issues can be satisfactorily 
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addressed using only the Poincare return maps for the periodic orbits of 

the flow. For the first question, a detailed knowledge of the flow near 

fixed points and periodic orbits, and the invariance of stable and 

unstable manifolds are the essential tools. 4 For the embedding problem 

we will need simple ideas from the theory of knots. 5 We classify the 

possible embeddings of the period doubled orbits by the type of torus 

knot produced. 

Period doubling flows do not exist in fewer than three dimensions; 

thus to begin with the simplest case, we shall discuss vector fields, 

x (x), on R3 which define a differential equation in the usual 
lJ -

way: 

3 . 
~ E R , lJ E R • x = X (x) 

- lJ -
( 1 a) 

As indicated, X (x) depends on a parameter lJ; for convenience we assume 
lJ 

a fixed point at x = xO. 

\(~o) = 0 (lb) 

As lJ varies, the flow generated by X varies. We consider the 
lJ 

sequence of events shown in Figure 1: a stable node at ~o becomes a 

stable spiral node, the spiral node loses stability through a Hopf 

bifurcation which produces a limit cycle, in a Poincare section for the 

limit cycle, the stable node corresponding to the limit cycle becomes a 

stable spiral node, and finally the Hopf orbit loses stability through a 

period doubling bifurcation. This sequence is observed in both the 

Rossler equations and the three wave equations mentioned above. In 

sections II and III, we analyze these transitions by explicitly 

constructing a simple one parameter family of vector fields, denoted 

v (x), with the desired behavior. This construction is summarized in 
lJ - . 

Table 1. The simplicity of V (x) allows a detailed global analysis; 
lJ -

this is the primary motivation for its construction. 
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The qualitative features of V (x) are shared by many· period 
Il-

doubling flows because it is a structurally stable family.4 This is a 

significant point which we briefly and heuristically elaborate. Imagine 

the space composed of all smooth vector fields on R3; anyone parameter 

family of vector fields determines a curve through this space. We 

construct a particular path, V (x), which connects three different 
Il-

subsets of vector fields, see Figure 2. Our path begins in the subset of 

vector fields with a stable fixed point!o' then crosses into the 

subset of vector fields with an unstable fixed point!o and a stable 

periodiC orbit, and finally crosses into the set of vector fields with an 

unstable fixed point!o' an unstable periodic orbit, and a stable orbit 

(with approximately twice the period of the unstable orbit). The 

boundaries of these sets are bifurcation surfaces corresponding to Hopf 

bifurcation, I l , and period doubl ing, I 2• Our path crosses these 

surfaces transversally. Off Il and I 2, each vector field in our 

constructed family generates a structurally stable flow whose topological 

features will survive under perturbation. On Il andI2, the flows 

are structurally unstable, but the family containing these flows is 

stable because the crossings are transverse. Hence a nearby family, 

V
Il 

+ 6V
Il

, will also crossIl andI 2 and thus qualitatively 

resembl e V (x). 
Il-

After the construction of V (x) we draw the invariant manifolds in 
Il- -

section IV. These manifolds, by virtue of their invariance, organize the 

global flow; they can also constrain the subsequent bifurcational 

behavior of the family. An example of such global constraints is 

described in Section V. In section VI, the topology of the period 

doubled orbits is analyzed, and in section VII, we discuss the physical 

consequences of different orbit topologies. 
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· II. Hopf Bifurcati on 

Our prototypical family of vector fields will be defined by giving a 

coordinate representation of Y (x) for each interval in ~ shown in 
11 -

Figure 3. The coordinate systems we require appear in Figure 4. 

To begin let Y (x) be a vector field on R3 with a stable node at 
~o-

! = O. This means the eigenvalues of the matrix 

ayi 
(DY (0)) .• = --.b (0) 

~o lJ axJ 
i,j = 1,2,3 

are real-valued and negative. For x = 0 to lose stability in a Hopf 

bifurcation, DY (0) must have a complex conjugate pair of eigenvalues 
~ 

which cross the imaginary axis into the right half of the complex 

p1ane. 4 ,6 To produce such a pair, two of the initially real 

eigenvalues must collide .nd leave the real axis; let ~ = 111 be the 

parameter value for this collision. In coordinates, for 11 ~ 111' 

Y (x) can be simply taken to be linear. 
11 -

x = A1(~)x ),'~1'A2 < 0 

11 ~ 111 Y = A2(~)Y ),1 = A2 at Ii = 111 

z = A(I1)Z 

After the coll ision ),1 an'd A2 form a conjugate pair of 

eigenvalues, V(I1) ~ iU(I1), and the node becomes a spiral node; polar 
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coordinates are now convenient. We normalize time so that for ~ ~ ~2 

the angular velocity w(~) is unity. Thus on ~l ~ u ~ ~2' V~ is 

r = v(~)r 

Q = W(ll) 

i.= A(~)z 

v = ReAl <0 

w= 1m AI; w(~l) = 0, w(~2) = 

A < a 

When v(~) changes sign, if the Hopf bifurcation is to produce a 

stable limit cycle, the r equation needs an r3 term to balance the 

repulsion at r = O. Such a term can be "spliced" into V (x) using the 
~ -

simple device of turning on r3 with a smooth step function, S(~), see 

Figure 5. Once the r3 term is in pl~ce, allowing v(~) to increase 

through zero yields the desired Hopf bifurcation. These extensions of 

V (i) are explicitly made as follows: lJ - . 

r = v(lJ)r-r3 

i = A(ll)Z 

Q = 1 

-{a lJ ~ lJ2 

1 lJ ~ lJ3 

V(lJ) <0 for lJ ~ lJ3 

v(lJ) > a for ~ ~ lJ4 

VI(~»O for ~3 < ~ < ~4 • 

The flow obtained from V~(!) for ~ ~ ~4 is shown in Figure 3a. The 

Hopf bifurcation occurs for some value ~ = ~H in the interval 

(lJ3' ~4)' The above assumptions about v(lJ) on this interval assure 

the curve of vector fields V~ will cross the surface Il transversally, 

see Figure 2. 
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In the next section, the period doubling of the Hopf orbit will be 

discussed. To simplify the local analysis of this bifurcation, we 

introduce new coordi nates near the 1 imi t cycl e and IIfreeze ll the flow away 

from the limit cycle. For V(I1) > 0 the Hopf orbit has radius rH = yv, 

if we shift to coordinates centered on the orbit, r ~ p + rH, then 

VI14(!) can be rewritten, 

z = ).z 

9 = 1 

To clearly single out the flow near p = 0, choose two concentric tori 

which enclose the orbit. In terms of the local radial coordinate, 
1/ 2 2 i 

a = V p + Z , denote the i nteri or radi i of these tori by cr1 and 

cr2with cr2 > cr1 as shown in Figure 6. Now use a smooth step 

function, S(cr), to split Y (x) into two pieces for 11 > 114: 
11- -

Y (x) = (l-S(cr»Y (x) + S(cr)yT(x) 
11 - 114 - 11 -

where 

Seal = t 
and yT is given by Eqn. (2). At 11 = 114' Eqn. (3) obviously 

114 

reduces to Y (x) as previously defined. As 11 increases past 114 only 
11 -

yT(x), the piece of Y (x) on the intertor of the toroidal region 
11- 11-

T, will be allowed to vary. Thus the period doubling behavior will be 

contained in yT, leav~ng the exterior flow unperturbed. This 
11 

arrangement facilitates the global analysis of section IV. 
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III. Period Doubling 

As a preliminary step, the nonlinearity of yT(x) in Eqn. (3) is 
1.1. -

removed using the (now familiar) device of a smooth step function S(I.I.). 

p. = -2vp-S(I.I.)(3~+p)p2 v>O, A<O 

z = AZ 1 

9 = 1 o 

At 1.1. = 1.1.5' the Hopf orbit is a global attractor; its linear stability is , 
determined by the Floquet multipliers of the linearization of y:(~) at 

p = 0, or equivalently by the exponents of the linearized Poincare return map. 

The multipliers are e2~A and e-4~v; both are real and less than unity. In 

the associated return map, the orbit appears as a stable node. 

A period doubling bifurcation requires a multiplier to leave the unit 

disk of the complex plane through _1.4 Producing a negative multiplier 

requires that the positive multipliers collide, move into the complex 

plane as a conjugate pair, circle the origin, and collide again on the 

negative real axis. Let the first collision occur at 1.1. = 1.1.6' i.e. 

A(~6) = -2v(1.I.6); denote by ~7 the parameter value of the second 

collision. For 1.1. > 1.1.6 the stable node in the return map becomes a 

- 8 -



stable spiral node, and it is simplest to work in the local polar 

variables: a 2 = z2 + p2 and ~ = tan-l(z/p). On 

T 115 ~ Il ~ 1l7' VIl (~) has the form, 

p = -2\1p 

z = AZ 

9 = 1 

fS = tdll) 

9 = 1 

a = n(1l7)a 

fS = 1/2 

Q = 1 

A,-2\1 < 0 

n<O, n(1l6) = A(1l6) 

~(1l6) = 0, ~(1l7) = 1/2 

~~(Il) ~ 0 

Note that the linearized Poincare map at~6 and 117 has the form 

(& ~). Small perturbations can make this ~~~) but this does not 

qualitatively change the flow. 

At Il = 1l7' the Hopf orbit is still attracting, but now the flow 

near the orbit executes a half twist in fS for every full revolution in 

9. The multipliers are both equal to _e2wn • 

As for the Hopf bifurcation, the period doubling bifurcation requires 

nonlinear terms to balance the repulsion from the Hopf orbit and allow a 

stable period doubled orbit to appear. An appropriate form for these 

terms can be derived by considering the period doubling bifurcati~n as it 

appears in the local two dimensional flow for z and p with 9 fixed at' 

9 = 0, see Figure 3b. (Figure 3b shows invariant curves for the Poincare 
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map, but it is also useful to consider the flow which would produce 

them.) This flow is simply given by 

Z = aZ a < ° 
9 = ° 11 < ° 

For 11 < ° there is one (stable) fixed point at (z,p) = (0,0) 

corresponding to the (suppressed) Hopf orbit. For n > 0,(0,0) is 

unstable and new stable fixed points appear at (0, % ~). These 

correspond to the period doubled orbit. In terms of a and 6, this two 

dimensional flow is 

a = 11a + a[(a-11)sin26 - a2cos46J 
. 2 2 6 = 1/2(a-11 + a cos 6)sin26 • 

Finally as this two dimensional flow is swept around the Hopf orbit in 

the coordinate 9, the angle 9S is rotated by 9/2: 6· ~ 6 - 9/2. Thus 

putting ~ = 1 back in yields, 

. 1 1- 2 2( 9) J' ( 9 6 = Z + 2~a-ll+a cos 6-Z sln2 6-Z) 

~ = 1 

~hich gives the form of the desired nonlinear terms for period doubling. 
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Again these nonlinear terms are added using a step function so we extend 

V T (x) by, lJ 

o = n(lJ)o. + S(lJ)o[(a-n)sin2(t>-i)-icos4(t>-i)] 

~ = i + ¥[a-n+o2col(t>~)]sin2(t>~) 
Q = 1 

with 

and 
n, a < 0 

Note that the multipliers are _e2wn and ~e2wa. 

Period doubling oc~urs when n increases through zero. For lJ ~ lJa 

define iJT{x) by 
lJ -

o· 

o = [ 02 Q 2 4 Q]' no + 0 {a-n)sln (~z)-o cos (t>z) 

011 22 Q 0 Q 
t> = 2 + 2[a-n+o cos (t>z)]sln2{t>;2) 

G = 1 

. where n{lJa) < 0, n{lJg) > 0, n'{lJ) > O. These conditions on n ensure 

that the bifurcation surface I2 is crossed transversally. 

IV. Local to Global 

(4) 

In the previous two sections a strictly local analysis guided us in 

the construction of V (x). By virtue of this construction the flow is lJ 
well understood in the neighborhood of each fixed point or periodic orbit. 

Because V (x) is defined on all of R3, we can now patch together 
lJ • 

these local pictures and obtain a global description. 14 One of the 
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most important global aspects of a dynamical system is the structure of 

the stable and unstable manifolds of the hyperbolic fixed points and 

closed orbits. Recall that a fixed point is hyperbolic if the matrix of 

the linearized vector field has no eigenvalues on the imaginary axis and 

a closed orbit is hyperbolic if the ma~rix representing the linearized 

Poincare map has no eigenvalues on the unit circle in the complex plane. 

For hyperbolic fixed points (or closed orbits) the stable manifold is the 

set of points which asymptotically approach the point (or orbit) as time 

goes to positive infinity. The unstable manifold is the set of points 

which have this asymptotic approach as time goes to negative infinity. 

One of the key mathematical results of dynamical systems theory is that 

these sets are in fact smoothly immersed submanifo1ds. 7 For the case 

of fixed points they are tangent to the corresponding stable or unstable 

.1 inear eigenspace and have dimension equal to that of the eigenspace. 

For periodic orbits the relevant linear eigenspaces are those associated 

with the linearized Poincare map. The intersection of the invariant 

manifolds with the Poincare section defines surfaces which are tangent to 

and of the same dimension as the appropriate eigenspace. The invariant 

manifolds themselves are one dimension larger than this intersection. 

In the case at hand, V (x), we have one unstable fixed point P 
Ilg 

and two periodic orbits: the unstable Hopf orbit H and the stable period 

doubled orbit L (see figure 7). Since L is stable, its stable manifold 

is all of R3 except for the stable manifolds of Hand P. L~s unstable 

manifold is just L itself. It is easy to determine piS manifolds outside 

the region T because the flow there has not changed since the Hopf 

bifurcation at Il - 1l4. As in figure 8, P~s stable manifold is just the 
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z axis. Outside of T its unstable manifold is a 2-dimensional disc in 

the x-y plane which intersects the boundary of the toroidal region T in a 

circle Cl • 

Before considering piS unstable manifold inside the region T we will 

describe the manifolds for the unstable orbit H insideT. The Poincare 

section of the flow inside T was determined earlier for the single slice 

9 = 0 (figure 3b). At any other value of 9 we get the same picture 

rotated in 4> by an angle 9/2 (figure 9). Thus a full rotation in 9 

produces a half twist in 4>. Within each Poincare section defined by a 

given 9 the fixed point of the Poincare map corresponding to H has stable 

and unstable manifolds. The unions over 9 of these manifolds yield the 

corresponding stable and unstable manifolds for the entire orbit H. Thus 

in figure 10 we see that the unstable manifold of H is a Mobius strip, 

contained in T, whose boundary is the stable orbit L. S The portion of 

HiS stable manifold contained in T is also a Mobius strip, perpendicular 

to the unstable manifold (figure 11). We would like to know what happens 

to it as it protrudes out of T. Note that it intersects the boundary of 

T in a circle C2 that winds around T twice in the 9 direction. 

The key notion which allows us to complete these descriptions is that 

the stable and unstable manifolds are invariant under the flow. This 

invariance is clear from their definition. Invariance implies that the 

portion of piS unstable manifold that lies inside T is exactly the 

surface swept out by the circle Cl under the fl.ow. In figure 12 we see 

how Cl intersects the plane defined by 9 = 0 as it evolves under the 

flow. Point A is already in this plane. The orbit through B hits the 

pl ane at a poi nt B I which di spl aced radi ally inward and rotated in 4> • 

Similarly, orbits through C and 0 hit the plane at CI and 01
• Finally 
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the orbit through A returns to the plane at A~; this is of course the 

image of A under the Poi ncare map. 

In figure 13 we continue to follow the image of Cl under the flow 

and show the intersection of piS unstable manifold inside T with the 

plane 9 = O. At any other 9 we get th~ same picture rotated by 9/2. As 

before the entire unstable manifold in T is the union of these fixed 9 

slices. Half-of the resulting Ilpie_crustU structure is shown in figure 

14. Notice that piS unstable manifold wraps around and limits on the 

whole Mobius strip (His unstable manifold). 

A similar construction for the exterior of T gives the stable 

manifold of the unstable orbit H. Here though we take the curve C2 and 

iet it evolve backward in time. The resulting stable manifold is shown 

in figure 15. A first, it may be surprising that the stable manifold has 

a spiral structure in <1>, while the flow outside T spirals only in the e 

direction. This is however a simple consequence of the fact that the 

Mobius structure inside T spr1als in <I> as you rotate in in e. Note 

that this manifold limits on the whole line of p~s stable manifold. The 

tightly bunched structure of His stable manifold near P means that small 

changes in the initial conditions of orbits passing near P lead to large 

differences in the "phase"l with which these orbits approach L. To see 

this consider the square of the Poincare map for the section 9 = 0, the 

two points where L intersects this plane are attracting fixed points for 

this map. The basins of attraction for these fixed points are separated 

by the i ntersecti on of W s unstabl e manifol d with thi s pl ane. 
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In-figure 16 we draw the two manifolds simultaneously and see that 

they do indeed intersect transversally. Their intersection is a 

heteroclinic orbit (figure 17) sprialling out from P and limiting on H 

from two sides. 

It may be helpful to the reader to think of the Mobius strip formed 

by L and His unstable manifold asa squasheA version of a torus (figure 

18) with the toral flow in 2:1 phase locking. This shows geometrically 

how period doubling resembles a secondary Hopf bifurcation resonant with 

the primary Hopf bifurcation. 

Similar arguments to the above apply to subsequent period doubling 

bifurcations of L. To construct the kth period doubling surround the 

limit cycle produced by the k-lst period doubling bifurcation by a 

toroidal region. The Grobman-Hartman theorem lets us choose this region 

small enough that the interior flow is topologically the same as that of 

. equation 4.4 Now, as described in section 3 change the flow only in 

this toroidal neigborhood. For example, after two period doublings we 

get Figure 19. 

V. Implications for Subsequent Bifurcations 

In this section we briefly indicate how the global structure just 

discussed can influence the subsequent bifurcational behavior of the 

period doubled orbit. We.have a particular class of systems in mind: 

flows in R3 with strong dissipation, i.e. 

div V (x) < 0 
J.I 

3 . 
, X E R , (5) 

which have undergone a period doubling bifurcation, and therefore possess 

the Mobius strip invariant manifold structure described above. Examples 
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of models in this class are damped, driven oscillators and the three wave 

system. 2,9 

As the parameter ~ is varied, in the absence of special symmetries or 

other "non-generic" properties of V (x), what subsequent bi~urcations 
~ 

are expected from the period doubled orbit? (One uninteresting 

possibility is that the orbit could "back up", and collapse onto the Hopf 

orbit in an inverse period doubling bifuration. We assume this does not 

happen.) The possible bifurcations may be enumerated by the behavior of 

the Floquet multipliers of the period doubled orbit. These possibilities 

are threefol d: 

1) A complex conjugate pair of multipliers, PI = P2' crosses the 

unit circle. 

2) A real multiplier crosses the unit circle at +1. 

3) A real multiplier crosses the unit circle at -1. 

The first possibility is ruled out by the strong dissipation 

assumption. This follows from the relationship between the two 

nontrivial Floquet multipliers, PI and P2' and the trace of DV~(x) 

averaged over the orbit; 
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Here x(t) represents the period doubled orbit with period T. lO Since 

we have 

which precludes a conjugate pair of multipliers from reaching the unit 

circle. It is clear at this point that the assumption in Eqn. (5) could 

be weakened to, 

T 

fdiV V~ (X(t)) dt < 0 
o 

In this form our discussion also applies to the Rossler system. 2 

(6 ) 

The second possibility generically yields a saddle-node bifurcation 

in which the stable orbit (the node) collides with an unstable orbit (the 

saddle) and both disappear. 4 For this bifurcation the twisted 

invariant manifolds, associated with the stable period doubled orbit, 

play an important role. The twisted structure of the Mobius band forces 

the stable period doubled orbit to link the Hopf orbit. Hence any 

unstable orbit which merges with the period doubled orbit must also link 

the Hopf orbit. This is a global constraint which is not visible in the 

Poincar~ map. An unstable orbit existing a "distant" region of phase 
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space, away from the initial period doubling event, will not link the 

Hopf orbit. This prevents such an unstable orbit from drifting onto the 

- period doubled orbit and facilitating a saddle-node bifurcation. 

Obtaining the unstable orbit required for a saddle-node bifurcation 

is thus somewhat involved because no correctly linked orbits exist 

initially--they must be created in separate bifurcations. One way this 

could happen is ,for the Hopf orbit to period double again, producing an 

unstable period doubled orbit which is correctly linked with the Hopf 

orbit. Then the stable period doubled orbit and the newly created 

unstable period doubled orbit could annihilate each other in a 

saddle-node bifurcation~ If we represent the orbits involved by their 

Floquet multipliers, this sequence of events is diagrammed in Figure 20. 

It is amusing to note that this process results in an attracting torus, 

enclosing the Hopf orbit. For the systems we are emphasizing, this 

mechanism for producing a correctly linked unstable orbit is not feasible 

because of the strong dissipation assumption in Equation 6. From Figure 

20, the Floquet multipliers of the Hopf orbit would have to satisfy 

at criticality. This req~ires 

which violates Equation (6). 

- 18 -



If the desired unstable orbit cannot come from the Hopf orbit, it 

must be created in an independent saddle-node bifurcation. Such a 

bifurcation could produce a stable orbit and an unstable orbit; both 

linking ,the Hopf orbit. The new orbits would be connected by the 

unstable manifold of the new unstable orbit. Following this preparatory 

bifurcation, the new unstable orbit could undergo a saddle-node 

bifurcation with the stable period doubled orbit, eliminating both of 

them. If this happened, the surviving stable orbit would become the 

boundary of the unstable manifold of the Hopf orbit. The net result 

would be to preserve the Mobius structure of the global flow with the 

stable orbit replacing the stable period doubled orbit as the attractor. 

Experimentally, one might observe this transition as a jump in the 

frequency and amplitude of the oscillation. 

The bifurcati,on process just descri bed, though certai n1y feasi b1 e, is 

elaborate, and its complexity is a direct consequence of the global 

constraints imposed by the period doubled flow. The third and final 

bifurcation open to the stable period doubled orbit is simple: it could 

period double as well. This would create a second l~er of Mobius flow 

within the first. Consequently in considering what the ~ period 

doubled orbit could do, we have only to reiterate the analysis of this 

section. 

In summary, the stable period doubled orbit could under~o a 

saddle-node bifurcation or it could period double. The saddle-node 

bifurcation is hindered (though not prohibited) by the global structure 

of the flow near the period doubled orbit. In this sense the second 

period doubling bifurcation is easier, and we have the result that a 

period doubled orbit is "pre-disposed" to period dOUble again. 
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VI. Implications for Topology of Orbits 

Next we would like to understand how the resulting stable multiply

period-doubled orbit is embedded in R3. In particular are more exotic 

embeddings than those described in the previous section possible? For 

this discussion we will need some concepts from elementary knot theory.5,13 

A torus knot, denoted Tp,q' is a closed curve embedded in R3 

on the surface of a torus, winding p times around toroidally and q times 

around meridinally. 

(1 + icos 211'qt, 211'pt, i sin 211'qt) It E [O,lJ and 

(r,G,z) E R
3! 

Figure 21 shows the everyday trefoil to be T2,3 and the beautiful 

"Solomon'sSeal" to be T2,5 •. If p and q are relatively prime integers 

then one may construct a T q. A theorem of O. Schreir shows that all p, 

torus knots with 1 < p < q are topologically distinct. 5 

An iterated torus knot is obtained by: 1) thicking the "string" of a 

torus knot to a "rope" (solid torus) figure 22. 2) considering a torus 

knot drawn on the toroidal surface of this rope and 3) iterating this 

procedure a finite number of times. 

In this language the stable period doubled orbit L constructed in the 

previous sections is topologically equivalent to the torus knot T2,1; 

see Figure 3b. Repeating the construction, to get successive period 

doublings as indicated at the end of section IV, will produce a stable 

orbit which is an iterated torus knot of type T2,1 at each stage of 

iteration. By changing the sense of in figure 4 one easily sees 
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how to construct T 2,-1 at any stage. We now demonstrate that in fact 

there is a sequence of bifurcations which produce a stable orbit that is 

any iterated torus knot which is of type T 2,n with n any odd integer at 

each stage. 

The trick is to alter the flow (for ~ between ~4 and ~5) so that 

the eigenvalues rotate around the origin n/2 times as in Figure 23. It 

is easy to see geometrically what is happening to the flow as we do 

this. Imagine taking the toroidal bag T, slicing it at 9 = 0 and 

twisting the two pieces relative to one another by an angle of n~, see 

Figure 24. The flow keeps track of how much rotation we have performed 

because the integral curves twist around the central axis of the toroidal 

bag. The induced map on a Poincare section, however, does not notice the 

difference between rotation by 2~ and no rotation at all. The 

one-parameter family of maps induced from such a family of highly twisted 

flows would be unstable to perturbation were it not for the fact that 

they arise as Poincare sections. The family of maps could be perturbed 

to Figure 25 since eigenvalues are indistinguishable; however such a 

perturbation is clearly prohibited topologically in the family of flows. 

Thus a structurallY unstable one-parameter family of maps may be 

stabilized by regarding it as Poincare sections of a one-parameter family 

of flows. This is a general phenomenon to be aware of, and indicates a 

danger in forgetting the flow origins of Poincare maps. 

One may also apply this multiple twist construction at the kth stage 

of period-doubling. As described at the end of section 4 we choose a 

toroidal bag surrounding the k-lst period doubled orbit within which the 

flow is topologically the same as that at the first stage. We allow our 
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one-parameter family to alter the flow only within this bag and follow 

the prescription of the first stage. 

This procedure clearly works for a finite number of stages of period 

doubling. Given an infinite sequence which forms the well known cascade, 

it is not clear whether one obtains a smooth 1-parameter family of vector 

fields. Work of Beiersdorfer, Wersinger, and Treve indicates that for a 

parametrically driven oscillator and forced Duffing Oscillator the orbit 

sequence begins T2,1' T2,_1' T2,1' T2,_1 , ••• and these equations 

define smooth fami1ies. 11 Which sequences appear in smooth families is 

an open question. If two sequences of period doub1ings differ at any 

stage in the knots produced they are topologically different flows. This 

demonstrates the existence of a countab1 ei nfi nity of topologically 

distinct period doubling flows. If all sequences of knots arise in 

smooth families of vector fields then in fact there is an uncountable 

infinity of such period doubling flows. Under this assumption we may 

develop the following intriguing picture. If in analogy to the theory of 

period doubling maps one could define a renorma1ization group type 

operator R in the space of flows then conceivably these knotted period 

doubling sequences are represented by: 

1) an infinite number of fixed points of R (where the knot is T2,n at 

each stage for different n~s) 

2) an infinite number of periodic orbits of R of each period 

(eg. period 2 is T2,n; T2,m; T2,n; T2,m; ••• m ~ n) 

3) Chaotic renorma1ization orbits 

(T2,n
k 

where nk is a random sequence). 

Notice that all these different flows have the same Poincare section. 
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VII. Power Spectrum for A Knotted Orbit 

Period doubling bifurcations which produce different torus knots are 

in principle distinguishable by physical measurement. An important tool 

is the power spectrum of the system obtained by Fourier transforming the 

temporal behavior of physical observables. Here we consider how the 

spectrum of a knotted orbit T2,n depends on the index n. 

For arbitrary n = 1,3,5 ••• , Equations 4 become 

a = no + 0 [(a_n)Sin2(~_~Q)_02cos4~ ~Q)J 

~ = ~ + ~ [a-n + i cos
2 (~-;)] sin 2 (~-;) 

G = 1 

Here, along the period doubled orbit, the twists in ~ are equally spaced 

in Q: 

so the angular motion is easily solved. 

Q = t ~ = (n/2)t 

Now the (x,y,z) coordinates of the orbit are 

x(t) = [rH + 00 
cos p( t)] cos Q(t) 

y(t) = [rH + 00 
cos p( t)] sin Q(t) 

z(t) = aO sin t>( t) 

where rH is amplitude of the Hopf orbit and aO the amplitude of the 

period doubled orbit relative to the Hopf orbit. 
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All the basic frequencies of the T2,n orbit are exhibited by x(t) 

which can be rewritten, 

x(t) = rH cos t + ~ [cos (1-~)t -COS(1 +~) tJ 

There are three Fourier components; one at the original frequency 

(JO = 1 with amplitude rei' and two "sidebands'~ at (J = 11 % n/2\ with 

amplitude °0/2• The resulting power spectra are shown in Fig~re 26 for 

T2,1' T2,3' T2,5' and T2,7. 

One interesting feature of/Figure 26 is that,although the basic 

period of all these knotted orbits is 4v, the corresponding frequency of 

1/2 does not appear in the spectrum for n > 5. Of course in applications 

the vector fields are not written in such simple coordinates and the 

relationship to our coordinates is likely to be highly nonlinear. This 

nonlinearity will inevitably cause a Fourier component at (J = 1/2 to· 

appear as a beat frequency of the fundamental dynamical frequencies. 

Nevertheless it is clear that torus knots T2,n with n > 5 will tend,to 

produce larger Fourier amplitudes at frequencies 1 % n/2 than one 

might expect if these frequencies were simply higher harmonics of (J = 1/2. 

If we assume for the moment that smooth one-parameter families of 

vector fields can exhibit period doubling cascades in which successive 

torus knots are not equivalent, then well known self-similarity of the 

associated Poincare map would not imply an analogous self-similarity for 

the flow. In particular the self~similar structure of the power spectrum 

described by Feigenbaum would not be observed. 12 
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Tabl e I 

Parameter 
Range Form of Vp Comments 

11 .. ~..l.l1 x=>'1(I1)x >">'1'>'2<0 
.. 

Y=>'2(I1)Y >'1(111)=>'2(111) 

Z=>'(I1)Z 

111-~11 ~112 r=v(l1)r v=Re>'1 <0 

9=W(I1) w=Im>'1;w(111)=0;w(112)=1 

Z=>'(I1)Z >.<0 

" 3 >',v<O 112~11 ~113 r=vr-S(I1)r 
Z=>'(I1)Z S(I1)= {~ 11~112 

9=1 11~113 

" 3 X<O, vl>O 11~11~114 r=v(l1)r..;.r 

z=>.z v<O for 11 ~113 

9=1 v>O for 11~114 

For 11~114 
T 

V =(1-S(a))V +$(a)V 11" . 11 11 4 
Form of VT 

11 

11=114 p=-2v(l1)p_p2(3 v+p) 

Z=>'(I1)Z 
9=1 

11~11~115 p=-2vp-S ( I1)P 2( 3.j;+p ) v>O,>.<O 

z=>.z 5(.)= {~ 11~114 

9=1 
11>115 

11~11~116 p=-2vp >.,-2v<0 

z=>.z >'(116)=-2v(116) 

9=1 
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Parameter 
Range form of VII Comments 

1l~<J.l7 a::n{Il)O' n<O, n{1l6)=).{1l6) 

tS=A(Il) 
1 

A{1l6)=0' A{1l7)=~ 

9=1 A 1>0 

1l7~~J.la a=nO'+S{ J.l) 0'[ ( a- n) si n2 (tS-t) - O'2cos 4{; 1-) ] n, a<O 

~=}+S{Il)Sin2{tS-t)[a_n+O'2cos2{tS_t)] 
2 

Ti{ J.l7)=a( 117) 

8=1 S(.)= {: 1l~1l7 

1l>lla 

1l~1l~llg a:nO'+O'[{ a-n) s i n
2

{ tS-!)-O' 
2 
cos 

4 (tS-~)] n{lla)<O 

6=}+ si n2 (tS-~) [( a-n)+ O'2cos2{ tS-i)] 
2 

n{ Ilgl>O 

8=1 n 1 {1l»0 

a<O 
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Figure Captions 

Figure 1: The qualitative features of Hopf bifurcation and period doubling. 
a) a single attracting fixed point, b) invariant plane with spiral flow, 
c) recently born Hopf limit cycle~ d) flow spirals around limit cytle, e) 
recently born period doubled orbit lies on the edge of a Mobius strip and 
original Hopf orbit (dashed) is unstable. 

Figure 2: Schematic representation of the infinite dimensional space of vector 
~ fields with one~parameter family shown puncturing the Hopf and period doubling 

bifurcation surfaces 2J and ~ . 
I l.J~ 

Figure 3a: The eigenvalue spectrum of the linearized vector field at the fixed 
point and key features of the flow for parameter values,'\o to Ali 

Figure 3b: The eigenvalue spectrum of the linearized POincare/ return map and 
invariant curves in the surface of section for parameter values As to f{., . 

Figure 4: The four coordinate systems used: (x, y, z) , (r, 9, z) , (f' e, z), 
(0-, rp, 6).· 

Figure 5: The smooth step function S(K) constructed from the bump B(X). 

Figure 6: The toroidal region T. 

Figure 7: The fixed point P, the Hopf orbit H and the period doubled orbit L. 

Figure 8: piS stable manifold, its unstable manifold outside T, and its intersection 
Cl with Tis boundary. 

F . 9 P . It· I!. 0 'tT' ~ 31l". . d T 19ure : Olncare sec lons at.,= 'i' '"i'"lnsl e . 

Figure 10: HiS unstable manifold. 

Figure 11: HiS stable manifold inside T and its intersection C2 with Tis boundary. 

Figure 12: The circle Cl evolves under the flow and the first points of intersection 
with 9 =0 are indicated. 

Figure 13: The intersection of e =0 with the surface swept out by Cl IS evolution. 

Figure 14: piS unstable manifold. 

Figure 15 : HiS stable manifold. 

Figure 16: piS and HiS stable and unstable manifolds showing transversal intersection. 

Figure 17 : The heteroclinic orbit from P to H. 

Figure 18: 2:1 phase-locked flow on a torus being compressed to the Mcibius str~p 
unstable manifold of an unstable periodic orbit with stable period doubled orbit. 

Figure 19: The invariant manifolds at the second stage of period doubling. 
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Figure 20: A bifurcation path after period doubling. 

Fi gure 21: The trefoil and Solomon I s sea 1 knots as torus k'nots. 

Figure 22: The trefoil is expanded into a "rope" and an iterated torus knot 
is drawn on its surface. 

Figure 23: The path of eigenvalues for a knotted orbit with three half-twists. 

Figure 24: The effect of twists on the toroidal bag T. 

Figure 25: The effect of a small perturbation to the family of Poincare/maps 
on the eigenvalue paths. This is prevented topologically in the family of flows. 

Figure 26: Possible power spectra for the flows with period doubled orbits 
T2,1' T2,3' T2,5' and T2,7. 
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Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
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Department of Energy to the exclusion of others that 
may be suitable. 
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