
'·:'I·~,'" " <

I

LBL-16943
Preprint r.)...

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

APPLI ED SCI ENCE
DIVISION

" ". '-AI"nr~"ORY

F f. c; ,~i. 1984

Do LIBRARY AND
CUf\lfNrs SECTION

Submitted to the Journal of Computational and
Applied Mathematics

RECENT ADVANCES IN METHODS FOR NUMERICAL SOLUTION
OF O.D.E. INITIAL VALUE PROBLEMS

T.D. Bui, A.K. Oppenheim, and D.T. Pratt

December 1983

. ..:... . , ~ ~

TWO-WEEK LOAN COpy

This is a Library Circulating Copy
which may be borrowed for two weeks.

For a personal retention copy~ call

Tech. Info. Division~ Ext. 6782.

APPLIED SCIENCE
DIVISION

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL-16943

RECENT ADVANCES IN METHODS FOR NUMERICAL SOLUTION OF O.D.E.

INITIAL VALUE PROBLEMS

BY

T. D. Bui,* A. K. Oppenheim,** D. T. Pratt***

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720

December 1983

*Associate Professor, Dept. of Computer Science, Concordia University,
Montreal, Quebec, Canada

**Professor, Dept. of Mechanical Engineering, University of California,
Berkeley, CA

***Professor, Dept. of Mechanical Engineering, University of Washington,
Seattle, WA

This work was supported by the Office of Energy Research, Basic Energy
Science, Engineering, Mathematics, and Geosciences Division of the U.S.
Department of Energy under Contract No. DE-AC03-76SF00098, and by the
National Science Foundation under Grant CPE-8115163.

2

ABSTRACT

This is a review paper which describes recent advances in numer'ical methods

and computer codes for solving initial value problems of ordinary differential

equations. Particular emphasis is placed upon stiff systems.

,

•

-.

3

1. Introduction

In mathematical modeling of physical systems, we are often required to

solve an initial value problem (IVP), consisting of a system of ordinary dif- .

ferential equations which can be written as:

y' = f(x,y); x Ea,b], y, f RN

yea) given

(1.1)

A typical program (code) steps through [a,bJ and produces approximate solu

tions at certain mesh points. Proceeding from Yn (the approximate value to

y(xn)) it computes Yn+1 at xn+1 = xn + hn+1; hn+1 or simply h is the step-size.

If we define zn(x) as the solution of the following problem:

(1.2)

Then the program will actually approximate this local solution over the step-
:i -'.',

size h by Yn+1. Thus the error Tn+1 = zn(xn+1) - Yn+1 is the local truncation

error. Almost all existing codes try to control this local error so that at

each step

(1.3)

where Tn+1 expresses the prescribed error tolerance.

However, it should be noted, the user is really interested in controlling

the true or global error: Ily(xn+1) - Yn+111

2. stiff phenomena

It is customary to define stiff phenomena in terms of the eigenvalues of the

4

Jacobian of the system (1.1). However, there are difficulties with this

approach, both conceptually and practically. We first define stiffness in terms

of the eigenvalues Ai of the Jacobian as follows:

Definition: The system (1.1) is stiff if:

i) Real Ai < 0; i = 1,2, ••• , N

ii) S = Max I Real A. I ;Min I Real A. I
. 1. 1
1 1

» 1

where S is the so-called stiffness ratio.

Comments on the Definition of Stiffness

a) Condition i) does not cover linear problems with variable coefficients

and nonlinear problems where one or more of the eigenvalues may cross into the

region of the positive real axis temporarily.

b), Condition ii) becomes ambiguous when the real part of an eigenvalue

approaches zero. In this case, the stiffness ratio maybe large yet the problem

is not stiff since it can be solved effectively by methods with bounded region

of stability (explicit methods).

c) In practice, it is desirable to know if a system is stiff in certain

intervals of integration, so that a proper method for stiff equations can be

used effectively. Recently, some interest has been paid to developing type

insensitive codes in which implicit (for stiff) and explicit (for non-stiff)

methods are used alternatively depending on the stiffness of the problem [40,41J.

Monitoring the eigenvalues of the Jacobian at every step of integration is very

expensive. However, an estimate of the Lipschitz constant proves to be a very

practical way to determine the stiffness of a problem.

•

' ..

•

~.

5

d) A proper way to describe stiffness is as follows: it occurs when stabi

lity rather than accuracy dictates the step size. For example, when solving

the constant coefficient linear system y' = Ay + g(x), accuracy may pose a

severe restriction on the step size when g(x) is a nasty function, then stabi

lity becomes less important and the problem is not stiff •

e) In .some c~se~, the system (1.1) can be partitioned into stiff and non

stiff sub-systems. This· partitioning process allows an efficient numerical

approach to the problem, since the stiff and non-stiff components are now

treated separately (see [17J for more details).

3. Measuring Stiffness

In this section we describe a quantitative approach to determine stiffness

of a given problem. Unfortunately, the concept of stiffness is rather vague

because in practice it involves a number of phenomena. As mentioned earlier,

classical measures of stiffness are useful but are known to ignore several

important factors. This section presents an approach to refine these

measures [4zJ. We distinguish two kinds of methods for solving the initial

value problems of O.D.E.'s: explicit methods and implicit methods.

Most methods of order p have local truncation error at xn of the form:

(3.1)

where -2; is a constant. The numerical problem also involves a tolerance Land

a norm in which error is to be measured. We demand that

(3.2)

The largest step-size, which would satisfy the local accuracy test (3.2)

is given by:

6

(3.3)

Approximation (3.3) is not valid when y(p+1) (x) vanishes or h is not suf

ficiently small. In the latter case, the leading term in (3.1) does not

dominate the remaining terms.

For explicit methods based on polynomial approximations the region of abso

lute stability is bounded by a half-disc of radius r. Thus, for a stable

integration with step-size h we must have:

I hI. Is r (3.4)

for all eigenvalues A of the Jacobian fy(xn,y(xn)) ~ f~ which have non
positive real parts.

Let PL(fn) = max I A I, then the largest stable step size, hstab ' is:
y Re(X) < 0

h _ r
stab - (fn)

PL y

A suitable measure of stiffness is then [4zJ:

Remarks: (a) Reducing T decreases stiffness.

(b) Lowering the order p, increases stiffness.

(c) Along the integration curve.s and r remain unchanged,

while P (~) II /p+l)(x) 11-1/p+l
L y n computed along the

solution curve gives a fair measure of stiffness.

(d) The above criterion is also applicable when one wish

(3.5)

to compare

•

'"

7

stiffness of two problems if both are integrated within the same

tolerance using the same class of methods.

For implicit methods, eq. (3.4) is no longer valid since they have no

stability restrictions. The implicit equation defining Yn+l can be

written asz

(3.7)

where y is a~onstant and IDn lumps together information at the previous steps.

In order for the simple iteration

m+l m 10
Y = hyf(xn+l,y) + ~n (3.8)

to work·forall starting values yO near a solution y*, it is required that:

:' -:
(3.9)

or [421: hlylL<l (3.10)

where L = II f / xn' y (xn)) II

hence

(3.11)

thus:

(3.12)

4. Runge-Kutta methods: .

The Runge-Kutta methods (explicit, semi-implicit, and fully implicit) are

one-step methods. An s-stage RK method is given by the following formula:

b. k.
1 1

s'

8

(4.1a)

k. = f(xn+Cihn'Yn+hn .2 6i.k.); i = 1,2, ••• , s (4.1b)
1 J=1 J J

An explicit RK method has s' = i-I and kl = f(xn,Yn); a semi-implicit

method has s' = i; and a fully implicit method has s' = s. This means that

the matrix 6ij has a strictly lower triangular form for explicit RK methods, a

low triangular form for semi-implicit, and a full matrix for fully implicit

cases.

4.1. Schemes for local error estimates:

The RK method is said to be of order p+l if the local truncation error

Yn+l - z(xn+l) is O(hnP+2), where z(x) is the local solution to the system:

z' - f(x,z); z (xn) = Yn' (4.2)

An imbedded procedure uses a pair of formulae, one of order p+l and the

other order p. The two formulae have the same set of ki'S so that the

solution Yn+l of order p is calculated with very little extra work:

s*

2 b. k.
. 1 1 1 1=

Note that s* may be different from s - the number of stages for the

formula of order p+l. The estimated error is

est - ~ Yn+1 - Yn+1 ~

(4.3)

(4.4)

•

9

This scheme has the advantage of a built-in error estimating capability.

Another approach, which was very popular in the past, and recently has

received further attention, is the step-halving procedure. This involves

solving the differential equation using step size hn to obtain Yn+l, then

solving it again twice with the step size hn/2, to obtain Y*n+l. The difference

between Y*n+l and Yn+l gives an estimate of the local truncation error. It is

a general belief that the step-halving procedure requires more work than the

imbedded approach. However, it has been shown recently that this is not always

trUe (see [33] for details regarding single-step methods).

4.2 Explicit Runge-Kutta methods:

For n'on-stiff or mildly stiff problems, the explicit RK methods have been

very useful. This is because they require very little overhead. One of the

most popular methods in this class is Fehlberg's imbedded pair of fourth and

fifth-order formulae which requires six stages per step. A good implemen-

tation by Shampine and Watts [43,44] called RKF45 was published in 1977. Recently,

this code was revised to include some additional capabilities and improvements

This new code DERKF forms part of a new package DEPAC developed at Sandia

National Laboratories by a group led by Shampine and Watts [45J.

The second code of this class is OVERK (available in the IMSL Library) [30].

This code was written by Hull, Enright, and Jackson [29J" based on verner's

fifth- and sixth-order imbedded pair of formulas which require eight stages

per step.

Runge-Kutta codes with variable orders seem to be useful. A complete set

of imbedded RK formulae with order 1 through 6 requiring 9 stages was developed

by Bettis of the University of Texas [3]'. Recently, Verner [49J developed

10

complete sets of formulae with orders 1 through 5, requiring six stages,

orders 1 through 6 requiring eight stages, orders 1 through 7 requiring ten

stages, and orders 1 through 8 requiring thirteen stages. Verner's develop

ment seems to be optimal as far as the number of stages per step is concerned.

However, no computer code was developed based on these formulae.

4.3 Fully implicit Runge Kutta methods:

For stiff and very stiff problems, it is obvious that explicit RK methods

are inefficient as a consequence of their bounded regions of stability. It is

well-known that fully implicit RK methods could be developed for high orders of

accuracy and possessing strong stability properties. However, a straightfor

ward implementation of these implicit methods involves solving large systems of

nonlinear algebraic equations. For a system of N differential equations, the

modified Newton method for solving eq. (4.1b), in the implicit case, is as

follows:

Let

s
~. = k. - fey + h 2 a .. k.) (4.5)

1 1 n n j=l 1J J

here for simplicity, we assume an autonomous form. The modified Newton method

requires solving repeatedly the linear system:

(4.6)

where G = I - hn(A ® J) is the so-called iteration matrix.

I = Is ~ IN with Is = s x s unit matrix.

IN = N x N unit matrix.

A = matrix of Bij (dimension s).

J = Jacobian matrix evaluated at the previous step.

k = (kl, ••• ,ks)T.

i = (il'···'~s)T.
The solution of the linear system (4.6) by LU decomposition requires

11

• s3 N3 + s2 N2 operations (multiplications and divisions). This is excessively

large. Recently, some ingenious approaches have been devised to overcome this

drawback [4,7J. The main idea of these schemes is to decouple the system of sN

nonlinear algebraic equations to s systems of N equations each. To accomplish

this, we define a similarity transformation T so that T-l A T is a lower

triangular matrix. Therefore, the transformed system is clearly uncoupled

into s systems of N equations. Further computations can be avoided if all

the diagonal elements of the lower triangular matrix are the same, as the

same iteration matrix G occurs for each of the s systems. Butcher [7J was

the first to notice this. He defined a similarity transformation T based on

the Laguerre polynomials so that the transformed system has a bi-diagonal

structure having constant A for each entry in the main diagonal, and -A for

each element in the subdiagonal. A code, STRIDE, developed by Burrage,

Butcher and Chipman in 1979 ~J is based on these ideas. The code contains a

set of s-stage formulae of order s with s varies from 1 to 15. Some formulae

are not A-stable; however, they are all damped at infinity and the stability

regions are quite acceptable. The code was constructed to be of collocation

type and output values are produced by interpolating the underlying colloca

tion polynomials. This code is believed to be suitable for stiff problems.

Another idea, which seems to 'be even more efficient than Butcher's trans

formation, is to transform the system into Hessenberg matrix. Let T be a

similarity transformation so that

12

A = T-1 A T = (4.7)

,.,.
where Ai can be complex and distinct. Therefore G = I-h(A x J) is a block
diagonal matrix with the ith block being (I-hnAiJ). If LU decomposition is

used, we need s decompositions for each iterative step. The idea is

then to form a Hessenberg matrix in the following way:

Let (I-h A.J) = h A'(h1, I-J) = ~.-I(~.I_J) where ~. = hI, ,
n 1 n 1 nAi 1 1 1 nAi

then (~iI-J) can be factorized into Hessenberg form:

(4.8)

This is done only once since

(J-~. I) = L [j,-(~ '-~I)IJ L -1 •
1 1

Therefore we just factorize (J-~II), then for other blocks we only need to

calculate H-(~i-~I)I, and the LU decomposition of the Hessenberg matrix H will

be done only once. This approach is much more efficient than the decomposition

of s blocks into LU forms. It was first suggested by Enright [ISJ and later

advocated by Varah [48J for possible effective implementation of implicit RK

methods based on Gauss quadrature formulae (Gauss-Legendre, Gauss-Radau,

Gauss-Lobatto). The advantage of this scheme is that methods based on Gauss

quadrature are of order 2s or 2s+1 while Butcher's method discussed before is

only of order s or s+l. The disadvantage is due to the fact that complex arith-

metic is involved.

•

"

13

4.4 Semi-implicit Runge Kutta methods

In this class, the drawback of having to solve sN nonlinear equations is

avoided by requiring that the matrix A be lower triangular form. This automati

cally results in s systems of N nonlinear equations. Further, by choosing

6ii = 6 for all i, the same iteration matrix is obtained for each system,

resulting in the diagonally implicit RK methods. A code called DIRK based on

this class for s = 1,2, and 3 was developed by Alexander [1]. This code

uses the step-halving procedure for error controls. The underlying formulae for

DIRK are .. due. to Crouzeix G.2] and Alexander [1]. They are all A- or L-stable.

Norsett C3a] has derived an L-stable, second-order formula with imbedded error

estimate requiring three stages. Houbak and Thomsen [281 implemented this

method into a code called SPARKS, which is specifically designed for large

systems having sparse Jacobians.

4.5 Rosenbrock methods

The Rosenbrock method can be viewed as one iteration of the semi-implicit

RK method. In an autonomous form, it is given by

or

i-I
k . = f(Y n+ hn 2 6·· k .) + 6 h J k .

1 j=1 IJ J n n 1

(I-6h J)k. n n 1

for i = 1, •••• , s.

(4.9a)

(4.9b)

This is a linear system of equations. However, there are s systems of N

linear equations. It is important to note that in the implicit or semi-

14

implicit case, the Jacobians are not required to be exact, since they are

only needed for the convergence of the modified Newton iteration. However, in

the Rosenbrock methods, the Jacobians appear in the order conditions.

Therefore, approximate Jacobians (via finite differences) will directly affect

the order of Rosenbrock methods.

There are some computer codes based on this class. Villadsen and Michelsen

[soJ wrote a code called STIFF 3, which implements a 3-stage third-order L

stable method. Bui [6J has written a program called LSTIFF which imple-

ments s-stage formulas of order s for s = 2, 3, 4; they are all L-stable.

Both codes Lise the step-halving procedure for error estimates and step-size

control.

The' 'original Rosenbrock procedure has been modified by Wanner, called

ROW-methods, by adding an extra term. This extra term was added to extend the

stability properties of the Rosenbrock methods. ROW-methods are given by:

i-I i-I

(I-ShnJn) ki = f(Yn+hn j~1 Sijkj) + hn In j~1 'Yij kj for i = 1, ••• , s (4.10)

Codes based on ROW-methods have been developed by Kaps and Rentrop C32J called

GRK4A and by Gottwald and Wanner [2OJ called ROW4A. They both contain a pair of

imbedded 3rd-and 4th-order formulas (for error estimate); however, only the

third order formula is damped at infinity. Actually, ROW4A uses the same pair

of formulas in GRK4A but a "back-step" strategy was included. This back-step

strategy is to avoid stepping over sharp peaks or quasi-discontinuities.

Recently, Kaps and Wanner C31,34J have been active in developing high order

ROW-methods. They have also developed order conditions of ROW-methods for non-

'.'

15

autonomous systems. This is, however, not a trivial problem since the number of

order conditions increases drastically for non-autonomous ROW-methods. To faci

litate the development, they have used Hairer's concepts of monotonically

labelled trees and partitioned trees (L- and P-trees), which are very useful for

developing order conditions in many classes of methods (see [21,22J for

details) •

5. Multi-step methods

The general linear multistep method may be written as

k

= hn i~O aki f(xn_i+l , Yn-i+1) (5.1)

where '\0 + a and

The two best known subclasses are: the Adams class with Oko = -Ok1 = 1, Oki =
a for all i > 1 and the backward differentiation formulas with ako + a and

aki = a for all i > o. One disadvantage with variable order codes based on

multistep methods is that they always start the integration with low order

formulas. This makes restarting (over discontinuities) more expensive.

5.1 Codes based on Adams method:

The Adams-Bashforth formula of order k can be expressed as

k

Y 1 = Y + h 102=1 OklO f 0 1 n+ n n P n-l+ (5.2)

This is an explicit formula which is generally used as a predictor for the

implicit Adams-Moulton equation of order k + 1:

16

k

Yn+l = Yn + hn(i~l aki fn_i +1 + aka fn+1) (5.3)

Current Adams codes would perform as follows: predict Y~+l by (5.2),

evaluate fn+l • f(xn+1, Y~+l)· Then correct the value Yn+1 by (5.3) and follow

with another evaluation of f(xn+1,Yn+l). This scheme is referred to as PECE
(Predict, Evaluate, Correct, Evaluate) method, and it is intended for nonstiff

problems. Shampine and Gordon [43J have written a variable order code with for

mulae up to order 12 based on this approach. This code was published in their

book [43]. A new version of the code called DEABM was written as part of DEPAC

developed at Sandia Laboratories mentioned earlier.

Gear's well-known code, DIFSUB (1971) [19J, and its successors, GEAR (1974),

l23J, EPISODE (1975) [27J, and LSODE (1980) [25J, written by Hindmarsh, contain

different implementations of the Adams formulas which are available in the

. nonsti ff option of the code selected by the user. The stiff option of these

codes will be discussed below. The code DGEAR in the IMSL library EJoJ is based

on the GEAR code.

5.2 Codes based on backward differentiation formulae

As mentioned earlier, well-known codes, such as EPISODE, contain two

families of formulae, one for non-stiff and the other for stiff systems. The

formulae are Adams methods and the stiff formulae are given by

k

Yn+l = .2 ~i Yn-i+l + hnako fn+l •
1=1

(5.4)

This equation can be solved easily for fn+l in terms of the previous and

current values of y; thus, it is called backward differentiation formula

'.

17

(BDF). For k = 1, 2 the formulae are L-stable, for 3 ~ k ~ 6, the formulae

are stiffly stable of order k. Therefore, the main drawback of the BDF's is

when they are used to solve problems having complex eigenvalues lying near the

imaginary axis (for example, problem B5 in the stiff test sets proposed by

Enright et ale [161). The unstable regions extended into the left-half plane

get substantially larger for higher k so that most codes implementing BDF

restrict k S 6.

The codes DIFSUB, GEAR, LSODE, and DGEAR (in IMSL) are all similar in

the stiff option of the packages. In these codes, the stepsize hn is fixed for

a prescribed number of steps. The values of Yi at points which are not former

mesh points are obtained by interpolating the previously calculated values of

Yi. A modified version of LSODE, called DEBDF, was developed as a member of

the Sandia DEPAC package [45].

EPISODE is different from other packages, in that the step-size hn is

allowed to change at each step. This feature makes EPISODE much more effec

tive for problems with sharp fronts (for example, problems involving chemical

kinetics systems with diurnally varying reaction rates, which vary. like a

square wave). GEAR and DIFSUB are completely unreliable for such problems.

The fixed stepsize-interpolation strategy does have the advantage that the a's

and a's for each family can be computed and stored in tables once and for all,

since they do not vary with n. Whereas, in EPISODE, at each step, the a's and

a's must be calculated for the formula in use. Furthermore, in EPISODE the

iteration matrix involved in the modified Newton scheme for solving the BDF's

must be frequently computed and decomposed because the scalar coefficient of

the Jacobian has become out of date; whereas other packages would not require

18

this since the coefficient is varying less frequently. In summary, the

variable step strategy of EPISODE permits it to solve certain class of

problems effectively. However, the additional overhead involved in computing

the coefficients a's, a's and in reevaluating the iteration matrix can cause

EPISODE to perform less efficiently than GEAR (DIFSUS, LSODE) for smoothly

decaying or linear systems.

Some special codes, EPISODES, GEARS C24J and an option of the code DEBDF are

developed for systems with the Jacobian matrix having a banded structure.

These systems appear for example in the method of lines and finite differences

to solve P.D.E.'s. These packages take advantage of the structure of the

Jacobian and reduce both time and space complexities of the modified Newton

method for solving the SDF's, therefore EPISODES could solve a larger banded

system than EPISODE.

For large stiff systems of ODE's having a sparse Jacobian structure the

code GEARS written by Sherman and Hindmarsh (1980) [46] uses the Yale sparse

matrix package. The code GEARZ written by Carver (1979) [10] uses the

Curtis-Reid sparse matrix routines and finally the code FACSIMILE developed by

Curtis (1978) [13J uses DUff's MA28 sparse matrix routines.

Recently Hindmarsh [26] put together a collection of codes called ODEPACK.

One of the most recent additions to ODEPACK is code LSODA. This code auto

matically determines whether or not a problem is stiff and switches to the most

appropriate set of formulae.

6. Other multi-step methods:

The cyclic composite multistep method described by

i

1 a .. y j = .. k IJ ms+ J=l-

19

i

h 1 a .. fms+' for i = 1, •.. , s
j=l IJ J .

was studied by Tendler, Bickart, and PIcel [47]. These formulas define a

block of s forward values of y: Yms+l, ••• , Y(m+l)s with each application of

the procedure. The matrix aij has a lower triangular form, thus we have to

solve s systems of N nonlinear equations instead of solving sN nonlinear

equations. A code named STINT was written by the authors which uses stiffly

stable formulas of orders 1 to 7 with better stability properties than BDF's.
, . ~ , "

The multistep, second derivative methods were investigated by Enright [14].

Formulas of orders 2 to 7 based on the form:

k

Yn+l = Yn + h i~O aki fn_i+l + h
2

Yko Y~+l
were developed and implemented in a code SDBASIC. These formulae are all

stiffly stable with better stability properties than BDF codes.

Cash [11] uses an extended BDF of the type

k

Yn+l = 1 ~i Yn-i+l + h(ako fn+l + akl fn+2)
i=l

His program includes the conventional BDF's as a predictor and the above

extended BDF as the corrector. He was able to develop L-stable schemes of

orders up to 4 and A(a)-stable schemes of orders up to 9. Recently, he ex

tended the above formula to include second derivatives. He was then able

to obtain L-stable formulas up to order 6 and A(a)-stable for formulas order

7 to 9.

'>, .:

20

The major drawback of multistep methods in general is that they are more

expensive to get started. All of the codes mentioned in this section start with

a low order method and a very small step-size, then gradually increase the order

and the step-size as the integration progresses.

7. Exponential-fitted methods

Liniger and Willoughby 136J coined the term "exponential-fitted" to

describe a class of algorithms designed to exactly satisfy the stability test

equation y' = AY for systems having one or more large negative eigenvalues -

that is, for stiff systems of ODE's. The derivation presented here is a con

siderably modified version of Liniger and Willoughby's concepts, drawing on

subsequent work of Lambert 135J, Brandon [2,5] and Pratt 139J.
Following Lambert, we derive some simple exponential-fitted algorithms the

method of curve-fitting, that is, by assuming an interpolating function and

determining the free parameters by the method of undetermined coefficients.

Let us assume a three-parameter exponential interpolant.

ex lex) = A + Be (7.1)

which interpolates the solution of (1.1) over the interval (xn,xn+h) as

follows:

'() __ .9Y() I a - fn - dx xn

l(h) = Yn+l = y(xn+h)

(7.2a)

(7.2b)

(7.2c)

The first two requirements determine two of the three free parameters:

A=y -f/c n n

B = fn/C

21

(7.3a)

(7.3b)

So that, with (7.3) substituted in (7.1), together with (7.2c), there
follows:

(7.4)

Miranker (1981) C37] refers to (7.4) as a "filtered Euler ll approximation.

We note that the free parameter Chas yet to be determined.

Three possible ways for determining C are of interest~

I'(-h) = fn_1 + C = h~:1ln(fn/fn_1)

III (0) = f' + C = f 'If n n n

(7.Sa)

(7.Sb)

(7.Sc)

With the substitution of (7.Sa), Eq. (7.4) is an implicit, single-step

integration algorithm. With either (7.Sb) or (7.Sc), Eq. (7.4) is an A ... stable,

explicit integration algorithm.

Note that the explicit stiffness measure (3.6) does not apply to (7.4)

because it has an infinite stability radius for negative C

It is also interesting to note that, for the conventional assumption of a

three-parameter polynomial interpolant in place of (7.1), the requirements (7.2)

and (7.5) result in three familiar second-order integration algorithmsl (7.5a)

gives the implicit Adams~Moulton method or trapezoidal rule, whereas (7.Sb) and

(7.Sc) result in the explicit Adams-Bashforth and Taylor's methods, respec

tively.

22

A conservative strategy is to take advantage of the filtering or damping

factor in (7.4) only when the parameter C is negative, and to use conventional,

low-order "polynomial-fitted" methods when C is positive. To achieve this, we

define a .. tunable trapezoid" approximation,

(7.6)

where the component-specific "tuning factor" U is a degree-of-implicitness fac

tor, which is permitted to vary between one-half (trapezoidal rule) and unity

(implicit Euler approximaton).

Equating (7.6) to (7.4) and solving for U, there results

1 1
U = Ch + 1 _ eCh , C < 0 (7.7)

when C ~ 0, we use U = 1/2, and revert to the trapezoidal rule.

With (7.7) to define U in (7.6), together with either of the two explicitly

determined constants C, (7.5b) or (7.5c), this yields an exponential-fitted implicit

method, in which the degree-of-implicitness factor U is determined explicitly.

Liniger and Willoughby [36J give an estimate of the leading-term local trun

cation error for (7.6),

LTE - h2 f'(9)(1/2-U) ; U + 1/2, 0 < 9 < h (7.8)

When U = 1/2 (C > 0), the trapezoidal rule leading term LTE estimate,

LTE - h3 f" (9)/12, applies.

A predictor-corrector version of the XFTR (exponential-fitted trapezoidal

rule), (7.6) and (7.7) is appropriate when the system is nonstiff: Equation

(7.4) is used as a predictor, with C determined by (7.5b or 7.5c); the correc-

•

'.

•

23

tor, (7.6) with U determined by (7.7), is iterated to convergence by some form

of functional iteration::'; "Jacobi, Gauss-Siedelor Jacobi-Newton.

Accuracy is f!lOnitored by.(7.8),similar to (3.!), with haec given by

, 1/3
{_ T }

11h2f' (e)(1/2-U~ II
(7.9)

and hiter is determined by the rate of convergence of the particular convergence

method chosen.

Brandon [5] uses the full-step!half-step algorithm to find hacc' but also

conservatively assumes effective second-order accuracy to determine hacc •

When (hacc!hiter) is greater than unity, Newton iteration is used directly on

(7.6) without a predictor, to achieve convergence.

With C determined by (7.Sb), it is unnecessary to evaluate the Jacobian

except for occasional updating if Newton iteration is used to converge (7.6).

If (7.Sc) is used to determine C, the Jacobian must be computed at the

beginning of each timestep, as ,with implicit or semi-implicit RK methods.
,

Brandon evaluated the Jacobian at every iteration of every step in order to

improve the accuracy of U by recomputing (7.7), with the implicit approximation:

, ,
1 f n f n+1

C=-{-+ }
2 fn fn+1

(7.10)

However, the LTE estimate (7.8) is not significantly improved by the use of

w (7.10), so that this practice does not appear to be computationally efficient.

Computer codes based on this class of methods were written by Brandon [5]

called IMP and by Pratt l59] called CREK-ID, the latter codes developed only for

24

solving chemical kinetic problems.

In conclusion, we note that when the partial derivatives are expensive to

evaluate, we don't recommend the use of either the implicit exponentially-fitted

nor the Rosenbrock method. However, there are situations in which it is quite

convenient to obtain these partial derivatives, particularly in solving chemical

kinetic problems.

We first observe that all the problems of the test set by Enright et ale .

[16J have simply computed partial derivatives. The chemical kinetics

problems can be written in general as:

,
y = Ap, yeO) given

M roo
where A is an M x N matrix and PJo = kJo n YiJ1 j = 1, ••• ,N

i=1

while rij ~ a and kj > a are rate constants.

For problems of this kind, the computation of partial derivatives is quite

·simple, since

The Rosenbrock and implicit XFTR methods do not require, therefore, much extra

work associated with the construction of the Jacobian matrix.

.. -

25

REFERENCES

[1] R. Alexander, Diagonally implicit Runge-Kutta methods for stiff ODEs,
SIAM, J. Numer. Anal. 6(1977), 1006-1021.

E2J P. D. Babcock, L. F. Stutzman, and D. M. Brandon, Improvements in a single
step integration algorithm, Simulation, 33(1979), 1-10.

E3] D. G. Bettis, Efficient embedded Runge-Kutta methods, Numerical Treatment
of Differential Equations, Lecture Notes in Mathematics 631,
Springer-Verlag, New York, 1978, 9-18.

[4] T. A. Bickart, An efficient solution process for implicit Runge-Kutta
methods, SIAM J. Numer. Anal., 6(1977), 1022-1027.

[s] D. M. Brandon, A new single-step implicit integration algorithm with
A-stability and improved accuracy, Simulation 23(1974), 17-29.

[6] T. D. Bui and T. R. Bui, Numerical methods for extremely stiff systems of
ordinary differential equations. Appl. Math. Modeling 3(1979), 355-358.

[7] J. C. Butcher, On the implementation of implicit Runge-Kutta methods, BIT
16(1976), 237-240.

[8] J. C. Butcher, A transformed implicit Runge-Kutta method, Math. Comput.
26(1979), 731-738.

[9] J. C. Butcher, K. Burrage, and F. H. Chipman, STRIDE: Stable Runge-Kutta
integrator for differential equations, Report 150, Dept. of Mathematics,
Univ. of Auckland, Auckland New Zealand, 1979.

[10] M. B. Carver, In search of a robust integration algorithm for general
library use: some tests, results, and recommendations, working papers for
the 1979 SIGNUM meeting on numerical (DEs, Report 963, Dept. of Computer
Sciene, Univ. of Illinois, Illinois, 1979.

[11] J. R. Cash, The integration of stiff initial value problems in ODEs using
modified extended backward differentiation formulae, Dept. of Math.,
Imperial College, London, England, 1983.

[12J M. Crouzeix, Sur la B-stabilit~ des m~thodes de Runge-Kutta, Numer. Math.
32 (1979), 75-82.

[12] A. R. Curtis, The FACSIMILE numerical integrator for stiff initial value
problems, AERE-R.9352, A.E.R.E. Harwell, Oxfordshire, 1978.

[14] W. H. Enright, Second derivative multistep methods for stiff ordinary
differential equations, SIAM J. Numer. Anal. 2(1974), 321-331.

[15J W. H. Enright, Improving the efficiency of matrix operations in the numeri
cal solution of stiff ordinary differential equations, ACM Trans. Math.
Software 4(1978), 127-136.

26

[16] W. H. Enright, T. E. Hull, and B. Lindberg, Comparing numerical methods for
stiff systems of ODEs, BIT 15(1975), 10-48.

[17] W. H. Enright and M. S. Kamel, Automatic partitioning of stiff systems and
exploiting the resulting structure, ACM Trans. Math. Software 5(1979),
374-385.

[18] G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, Englewood cliffs, New Jersey,
1977.

[19] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential
Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1971.

C20] B. A. Gottwald and G. Wanner, A reliable Rosenbrock integrator for stiff
differential equations, Computing 26(1981), 355-362.

[21J E. Hairer and G. Wanner, Multistep-multistage-multiderivative methods
for ordinary differential equations, Computing 11(1973), 287-303.

C22J E. Hairer and G. Wanner, A theory for Nystrom methods, Numer. Math. 25
(1976), 383-400.

[23] A. C. Hindmarsh, GEAR: Ordinary differential equation system solver,
Report UCID-30001, Lawrence Livermore Laboratory, Livermore, California,
1974.

C24] A. C. Hindmarsh, GEARB: Solution of ,ordinary differential equations having
banded Jacobian, Report UCID-30059, Lawrence Livermore Laboratory,
Livermore, California, 1976.

[25] A. C. Hindmarsh, LSODE and LSODI, Two new initial value ordinary,' "
di fferential equation solvers, ACM-SIGNUM Newsletter 15(1980), 10-11..;'

C26] A. C. Hindmarsh, ODEPACK, A systematized collection of ODE solvers, to
appear in Numerical Methods for Scientific Computation, R. S. Steplemen,
ed., 1983.

[27] A. C. Hindmarsh and G. D. Byrne, EPISODE: An effective package for the
integration of systems of ordinary differential equations, Report UCID-
30112, Lawrence Livermore Laboratory, Livermore, California, 1977.

C28] N. Houbak and P. G. Thomsen, SPARKS: A FORTRAN subroutine for the solution
of large systems of stiff ODEs with sparse Jacobians, Report NI-79-02,
Institute for Numerical Analysis, Tech. Univ. of Denmark, Lyngby, Denmark.

C29J T. E. Hull, W. H. Enright, and K. R. Jackson, User's guide to DVERK -- a
subroutine for solving non-stiff ODEs, Report 100, Dept. of Computer
Science, Univ. of Toronto, Toronto, Canada, 1976.

C30J International Mathematical and Statistical Library, Houston, Texas.

I~

•

27

en] P. Kaps; Rosenbrock type methods~Numerische V.erfahren zum.·Losen von
steifen Anfangswertproblemen,'Mathematisches,ForschungsinstitutOberwolfach
(1981) •

132J P. Kaps and P. Rentrop, Generalized,Runge-Kutta methods of order four with
step size control for stiff ordinary differential equations ,Numer. Math.
33(1979), 55-68.

133] P. Kaps,S. Poon' and T. D. Sui, Rosenbrock methods for stiff ODEs -...: a
comparison of Richardson extrapolation and embedding technique, Computing

(in press).

134] P. Kaps and G. Wanner, A study of Rosenbrock-typemefhods of high order,
Numer. Math. 38(1982), 279-298.

135] J. D. Lambert, Computational Methods in Ordinary Differential Equations,
John Wiley Sons, London, England, 1973.

136] W. Liniger and R. A. Willoughby, Efficient Integration methods for stiff
systems of ordinary differential equations, SIAM J. Numer. Anal. 7(1970),
47-66.

137] W. L. Miranker, Numerical Methods for Stiff Equations and Singular
Perturbation Problems. D. Reidel, Hingham MA., 1981.

138] S. P. Norsett, Semi-explicit Runge-Kutta methods, Mathematics and
Computation Report 6, Univ. of Trondheim, Trondheim, Norway, 1974.

139] D. T. Pratt, CREK-ID: A computer code for transient, gas-phase combustion
kinetics, Dept. of Mech. Eng., Univ. of Washington, WA., 1983.

[40] L. F. Shampine, Type-insensitive ODE codes based on implicit A-stable
formulas, Math. Compo 36(1981), 499-510.

[41] L. F. Shampine, Type-insensitive codes based on implicit A(a)-stable
formulas, Math. Compo 39(1982), 109-123.

[423 L. F. Shampine, Measuring stiffness, Sandia National Lab. report SAND 83-
119, 1983.

[43] L. F. Shampine and M. K. Gordon, Computer Solution of Ordinary Differential
• Equations: The Initial Value Problem, W. H. Freeman, San Francisco,

California, 1975.

•. [44] L. F. Shampine and H. A. Watts, The art of writing a Runge-Kutta code, II.
Appl. Math. and Comput. 5(1979), 93-121.

[45] L. F. Shampine and H. A. Watts, DEPAC -- Design of a user oriented package
of ODE solvers, Report SAND 79-2374, Sandia National Laboratories,
Albuquerque, New Mexico, 1980.

[46] A. H. Sherman and A. C. Hindmarsh, GEARS: A package for the solution of
sparse stiff ordinary differential equations, Electric Power Problems:
The Mathematical Challenger, A. M. Erisman et al., eds., SIAM, 1980.

28

[47] J. M. Tender, T. A. Bikart, and Z • Piel, A stiffly stable integration
process using cyclic composite methods, ACM Trans. Math. Software 4(1978),
339-368.

[48] J. M. Varah, On the efficient implementation of implicit Runge-Kutta
methods, Math. Comput. 33(1979), 557-561.

[49] J. H. Verner, Families of imbedded Runge-Kutta methods, SIAM, J. Numer.
Anal. 16(1979), 857-875.

[sO] J. Villadsen and M. L. Michelsen, Solution of Differential Equation Models
by Polynomial Approximation, Prentice-Hall, Englewood Cliffs, New Jersey,
1978.

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

... i..--- • "f,,...

TECHNICAL INFORMATION DEPARTMENT

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

~..-.~

