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ABSTRACT 

This is a review paper which describes recent advances in numer'ical methods 

and computer codes for solving initial value problems of ordinary differential 

equations. Particular emphasis is placed upon stiff systems. 

, 
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1. Introduction 

In mathematical modeling of physical systems, we are often required to 

solve an initial value problem (IVP), consisting of a system of ordinary dif- . 

ferential equations which can be written as: 

y' = f(x,y); x Ea,b], y, f RN 

yea) given 

(1.1) 

A typical program (code) steps through [a,bJ and produces approximate solu­

tions at certain mesh points. Proceeding from Yn (the approximate value to 

y(xn)) it computes Yn+1 at xn+1 = xn + hn+1; hn+1 or simply h is the step-size. 

If we define zn(x) as the solution of the following problem: 

(1.2) 

Then the program will actually approximate this local solution over the step-
:i -'.', 

size h by Yn+1. Thus the error Tn+1 = zn(xn+1) - Yn+1 is the local truncation 

error. Almost all existing codes try to control this local error so that at 

each step 

(1.3) 

where Tn+1 expresses the prescribed error tolerance. 

However, it should be noted, the user is really interested in controlling 

the true or global error: Ily(xn+1) - Yn+111 

2. stiff phenomena 

It is customary to define stiff phenomena in terms of the eigenvalues of the 
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Jacobian of the system (1.1). However, there are difficulties with this 

approach, both conceptually and practically. We first define stiffness in terms 

of the eigenvalues Ai of the Jacobian as follows: 

Definition: The system (1.1) is stiff if: 

i) Real Ai < 0; i = 1,2, ••• , N 

ii) S = Max I Real A. I ;Min I Real A. I 
. 1. 1 
1 1 

» 1 

where S is the so-called stiffness ratio. 

Comments on the Definition of Stiffness 

a) Condition i) does not cover linear problems with variable coefficients 

and nonlinear problems where one or more of the eigenvalues may cross into the 

region of the positive real axis temporarily. 

b), Condition ii) becomes ambiguous when the real part of an eigenvalue 

approaches zero. In this case, the stiffness ratio maybe large yet the problem 

is not stiff since it can be solved effectively by methods with bounded region 

of stability (explicit methods). 

c) In practice, it is desirable to know if a system is stiff in certain 

intervals of integration, so that a proper method for stiff equations can be 

used effectively. Recently, some interest has been paid to developing type­

insensitive codes in which implicit (for stiff) and explicit (for non-stiff) 

methods are used alternatively depending on the stiffness of the problem [40,41J. 

Monitoring the eigenvalues of the Jacobian at every step of integration is very 

expensive. However, an estimate of the Lipschitz constant proves to be a very 

practical way to determine the stiffness of a problem. 

• 
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d) A proper way to describe stiffness is as follows: it occurs when stabi­

lity rather than accuracy dictates the step size. For example, when solving 

the constant coefficient linear system y' = Ay + g(x), accuracy may pose a 

severe restriction on the step size when g(x) is a nasty function, then stabi­

lity becomes less important and the problem is not stiff • 

e) In .some c~se~, the system (1.1) can be partitioned into stiff and non­

stiff sub-systems. This· partitioning process allows an efficient numerical 

approach to the problem, since the stiff and non-stiff components are now 

treated separately (see [17J for more details). 

3. Measuring Stiffness 

In this section we describe a quantitative approach to determine stiffness 

of a given problem. Unfortunately, the concept of stiffness is rather vague 

because in practice it involves a number of phenomena. As mentioned earlier, 

classical measures of stiffness are useful but are known to ignore several 

important factors. This section presents an approach to refine these 

measures [4zJ. We distinguish two kinds of methods for solving the initial 

value problems of O.D.E.'s: explicit methods and implicit methods. 

Most methods of order p have local truncation error at xn of the form: 

(3.1) 

where -2; is a constant. The numerical problem also involves a tolerance Land 

a norm in which error is to be measured. We demand that 

(3.2) 

The largest step-size, which would satisfy the local accuracy test (3.2) 

is given by: 
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(3.3) 

Approximation (3.3) is not valid when y(p+1) (x) vanishes or h is not suf­

ficiently small. In the latter case, the leading term in (3.1) does not 

dominate the remaining terms. 

For explicit methods based on polynomial approximations the region of abso­

lute stability is bounded by a half-disc of radius r. Thus, for a stable 

integration with step-size h we must have: 

I hI. Is r (3.4) 

for all eigenvalues A of the Jacobian fy(xn,y(xn)) ~ f~ which have non­
positive real parts. 

Let PL(fn) = max I A I, then the largest stable step size, hstab ' is: 
y Re(X) < 0 

h _ r 
stab - (fn) 

PL y 

A suitable measure of stiffness is then [4zJ: 

Remarks: (a) Reducing T decreases stiffness. 

(b) Lowering the order p, increases stiffness. 

(c) Along the integration curve.s and r remain unchanged, 

while P (~) II /p+l)(x ) 11-1/p+l 
L y n computed along the 

solution curve gives a fair measure of stiffness. 

(d) The above criterion is also applicable when one wish 

(3.5) 

to compare 

• 
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stiffness of two problems if both are integrated within the same 

tolerance using the same class of methods. 

For implicit methods, eq. (3.4) is no longer valid since they have no 

stability restrictions. The implicit equation defining Yn+l can be 

written asz 

(3.7) 

where y is a~onstant and IDn lumps together information at the previous steps. 

In order for the simple iteration 

m+l m 10 
Y = hyf(xn+l,y ) + ~n (3.8) 

to work·forall starting values yO near a solution y*, it is required that: 

:' -: 
(3.9) 

or [421: hlylL<l (3.10) 

where L = II f / xn' y ( xn) ) II 

hence 

(3.11) 

thus: 

(3.12) 

4. Runge-Kutta methods: . 

The Runge-Kutta methods (explicit, semi-implicit, and fully implicit) are 

one-step methods. An s-stage RK method is given by the following formula: 



b. k. 
1 1 

s' 
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(4.1a) 

k. = f(xn+Cihn'Yn+hn .2 6i.k.); i = 1,2, ••• , s (4.1b) 
1 J=1 J J 

An explicit RK method has s' = i-I and kl = f(xn,Yn); a semi-implicit 

method has s' = i; and a fully implicit method has s' = s. This means that 

the matrix 6ij has a strictly lower triangular form for explicit RK methods, a 

low triangular form for semi-implicit, and a full matrix for fully implicit 

cases. 

4.1. Schemes for local error estimates: 

The RK method is said to be of order p+l if the local truncation error 

Yn+l - z(xn+l) is O(hnP+2), where z(x) is the local solution to the system: 

z' - f(x,z); z (xn) = Yn' (4.2) 

An imbedded procedure uses a pair of formulae, one of order p+l and the 

other order p. The two formulae have the same set of ki'S so that the 

solution Yn+l of order p is calculated with very little extra work: 

s* 

2 b. k. 
. 1 1 1 1= 

Note that s* may be different from s - the number of stages for the 

formula of order p+l. The estimated error is 

est - ~ Yn+1 - Yn+1 ~ 

(4.3) 

(4.4) 
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This scheme has the advantage of a built-in error estimating capability. 

Another approach, which was very popular in the past, and recently has 

received further attention, is the step-halving procedure. This involves 

solving the differential equation using step size hn to obtain Yn+l, then 

solving it again twice with the step size hn/2, to obtain Y*n+l. The difference 

between Y*n+l and Yn+l gives an estimate of the local truncation error. It is 

a general belief that the step-halving procedure requires more work than the 

imbedded approach. However, it has been shown recently that this is not always 

trUe (see [33] for details regarding single-step methods). 

4.2 Explicit Runge-Kutta methods: 

For n'on-stiff or mildly stiff problems, the explicit RK methods have been 

very useful. This is because they require very little overhead. One of the 

most popular methods in this class is Fehlberg's imbedded pair of fourth and 

fifth-order formulae which requires six stages per step. A good implemen-

tation by Shampine and Watts [43,44] called RKF45 was published in 1977. Recently, 

this code was revised to include some additional capabilities and improvements 

This new code DERKF forms part of a new package DEPAC developed at Sandia 

National Laboratories by a group led by Shampine and Watts [45J. 

The second code of this class is OVERK (available in the IMSL Library) [30]. 

This code was written by Hull, Enright, and Jackson [29J" based on verner's 

fifth- and sixth-order imbedded pair of formulas which require eight stages 

per step. 

Runge-Kutta codes with variable orders seem to be useful. A complete set 

of imbedded RK formulae with order 1 through 6 requiring 9 stages was developed 

by Bettis of the University of Texas [3]'. Recently, Verner [49J developed 



10 

complete sets of formulae with orders 1 through 5, requiring six stages, 

orders 1 through 6 requiring eight stages, orders 1 through 7 requiring ten 

stages, and orders 1 through 8 requiring thirteen stages. Verner's develop­

ment seems to be optimal as far as the number of stages per step is concerned. 

However, no computer code was developed based on these formulae. 

4.3 Fully implicit Runge Kutta methods: 

For stiff and very stiff problems, it is obvious that explicit RK methods 

are inefficient as a consequence of their bounded regions of stability. It is 

well-known that fully implicit RK methods could be developed for high orders of 

accuracy and possessing strong stability properties. However, a straightfor­

ward implementation of these implicit methods involves solving large systems of 

nonlinear algebraic equations. For a system of N differential equations, the 

modified Newton method for solving eq. (4.1b), in the implicit case, is as 

follows: 

Let 

s 
~. = k. - fey + h 2 a .. k.) (4.5) 

1 1 n n j=l 1J J 

here for simplicity, we assume an autonomous form. The modified Newton method 

requires solving repeatedly the linear system: 

(4.6) 

where G = I - hn(A ® J) is the so-called iteration matrix. 

I = Is ~ IN with Is = s x s unit matrix. 

IN = N x N unit matrix. 



A = matrix of Bij (dimension s). 

J = Jacobian matrix evaluated at the previous step. 

k = (kl, ••• ,ks )T. 

i = (il'···'~s)T. 
The solution of the linear system (4.6) by LU decomposition requires 

11 

• s3 N3 + s2 N2 operations (multiplications and divisions). This is excessively 

large. Recently, some ingenious approaches have been devised to overcome this 

drawback [4,7J. The main idea of these schemes is to decouple the system of sN 

nonlinear algebraic equations to s systems of N equations each. To accomplish 

this, we define a similarity transformation T so that T-l A T is a lower 

triangular matrix. Therefore, the transformed system is clearly uncoupled 

into s systems of N equations. Further computations can be avoided if all 

the diagonal elements of the lower triangular matrix are the same, as the 

same iteration matrix G occurs for each of the s systems. Butcher [7J was 

the first to notice this. He defined a similarity transformation T based on 

the Laguerre polynomials so that the transformed system has a bi-diagonal 

structure having constant A for each entry in the main diagonal, and -A for 

each element in the subdiagonal. A code, STRIDE, developed by Burrage, 

Butcher and Chipman in 1979 ~J is based on these ideas. The code contains a 

set of s-stage formulae of order s with s varies from 1 to 15. Some formulae 

are not A-stable; however, they are all damped at infinity and the stability 

regions are quite acceptable. The code was constructed to be of collocation 

type and output values are produced by interpolating the underlying colloca­

tion polynomials. This code is believed to be suitable for stiff problems. 

Another idea, which seems to 'be even more efficient than Butcher's trans­

formation, is to transform the system into Hessenberg matrix. Let T be a 

similarity transformation so that 
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A = T-1 A T = ....... (4.7) 

,.,. 
where Ai can be complex and distinct. Therefore G = I-h(A x J) is a block 
diagonal matrix with the ith block being (I-hnAiJ). If LU decomposition is 

used, we need s decompositions for each iterative step. The idea is 

then to form a Hessenberg matrix in the following way: 

Let (I-h A.J) = h A'(h1, I-J) = ~.-I(~.I_J) where ~. = hI, , 
n 1 n 1 nAi 1 1 1 nAi 

then (~iI-J) can be factorized into Hessenberg form: 

(4.8) 

This is done only once since 

(J-~. I) = L [j,-(~ '-~I)IJ L -1 • 
1 1 

Therefore we just factorize (J-~II), then for other blocks we only need to 

calculate H-(~i-~I)I, and the LU decomposition of the Hessenberg matrix H will 

be done only once. This approach is much more efficient than the decomposition 

of s blocks into LU forms. It was first suggested by Enright [ISJ and later 

advocated by Varah [48J for possible effective implementation of implicit RK 

methods based on Gauss quadrature formulae (Gauss-Legendre, Gauss-Radau, 

Gauss-Lobatto). The advantage of this scheme is that methods based on Gauss 

quadrature are of order 2s or 2s+1 while Butcher's method discussed before is 

only of order s or s+l. The disadvantage is due to the fact that complex arith-

metic is involved. 

• 
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4.4 Semi-implicit Runge Kutta methods 

In this class, the drawback of having to solve sN nonlinear equations is 

avoided by requiring that the matrix A be lower triangular form. This automati­

cally results in s systems of N nonlinear equations. Further, by choosing 

6ii = 6 for all i, the same iteration matrix is obtained for each system, 

resulting in the diagonally implicit RK methods. A code called DIRK based on 

this class for s = 1,2, and 3 was developed by Alexander [1]. This code 

uses the step-halving procedure for error controls. The underlying formulae for 

DIRK are .. due. to Crouzeix G.2] and Alexander [1]. They are all A- or L-stable. 

Norsett C3a] has derived an L-stable, second-order formula with imbedded error 

estimate requiring three stages. Houbak and Thomsen [281 implemented this 

method into a code called SPARKS, which is specifically designed for large 

systems having sparse Jacobians. 

4.5 Rosenbrock methods 

The Rosenbrock method can be viewed as one iteration of the semi-implicit 

RK method. In an autonomous form, it is given by 

or 

i-I 
k . = f( Y n+ hn 2 6·· k .) + 6 h J k . 

1 j=1 IJ J n n 1 

(I-6h J )k. n n 1 

for i = 1, •••• , s. 

(4.9a) 

(4.9b) 

This is a linear system of equations. However, there are s systems of N 

linear equations. It is important to note that in the implicit or semi-
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implicit case, the Jacobians are not required to be exact, since they are 

only needed for the convergence of the modified Newton iteration. However, in 

the Rosenbrock methods, the Jacobians appear in the order conditions. 

Therefore, approximate Jacobians (via finite differences) will directly affect 

the order of Rosenbrock methods. 

There are some computer codes based on this class. Villadsen and Michelsen 

[soJ wrote a code called STIFF 3, which implements a 3-stage third-order L­

stable method. Bui [6J has written a program called LSTIFF which imple-

ments s-stage formulas of order s for s = 2, 3, 4; they are all L-stable. 

Both codes Lise the step-halving procedure for error estimates and step-size 

control. 

The' 'original Rosenbrock procedure has been modified by Wanner, called 

ROW-methods, by adding an extra term. This extra term was added to extend the 

stability properties of the Rosenbrock methods. ROW-methods are given by: 

i-I i-I 

(I-ShnJn) ki = f(Yn+hn j~1 Sijkj ) + hn In j~1 'Yij kj for i = 1, ••• , s (4.10) 

Codes based on ROW-methods have been developed by Kaps and Rentrop C32J called 

GRK4A and by Gottwald and Wanner [2OJ called ROW4A. They both contain a pair of 

imbedded 3rd-and 4th-order formulas (for error estimate); however, only the 

third order formula is damped at infinity. Actually, ROW4A uses the same pair 

of formulas in GRK4A but a "back-step" strategy was included. This back-step 

strategy is to avoid stepping over sharp peaks or quasi-discontinuities. 

Recently, Kaps and Wanner C31,34J have been active in developing high order 

ROW-methods. They have also developed order conditions of ROW-methods for non-
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autonomous systems. This is, however, not a trivial problem since the number of 

order conditions increases drastically for non-autonomous ROW-methods. To faci­

litate the development, they have used Hairer's concepts of monotonically 

labelled trees and partitioned trees (L- and P-trees), which are very useful for 

developing order conditions in many classes of methods (see [21,22J for 

details) • 

5. Multi-step methods 

The general linear multistep method may be written as 

k 

= hn i~O aki f(xn_i+l , Yn-i+1) (5.1) 

where '\0 + a and 

The two best known subclasses are: the Adams class with Oko = -Ok1 = 1, Oki = 
a for all i > 1 and the backward differentiation formulas with ako + a and 

aki = a for all i > o. One disadvantage with variable order codes based on 

multistep methods is that they always start the integration with low order 

formulas. This makes restarting (over discontinuities) more expensive. 

5.1 Codes based on Adams method: 

The Adams-Bashforth formula of order k can be expressed as 

k 

Y 1 = Y + h 102=1 OklO f 0 1 n+ n n P n-l+ (5.2) 

This is an explicit formula which is generally used as a predictor for the 

implicit Adams-Moulton equation of order k + 1: 
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k 

Yn+l = Yn + hn(i~l aki fn_i +1 + aka fn+1) (5.3) 

Current Adams codes would perform as follows: predict Y~+l by (5.2), 

evaluate fn+l • f(xn+1, Y~+l)· Then correct the value Yn+1 by (5.3) and follow 

with another evaluation of f(xn+1,Yn+l). This scheme is referred to as PECE 
(Predict, Evaluate, Correct, Evaluate) method, and it is intended for nonstiff 

problems. Shampine and Gordon [43J have written a variable order code with for­

mulae up to order 12 based on this approach. This code was published in their 

book [43]. A new version of the code called DEABM was written as part of DEPAC 

developed at Sandia Laboratories mentioned earlier. 

Gear's well-known code, DIFSUB (1971) [19J, and its successors, GEAR (1974), 

l23J, EPISODE (1975) [27J, and LSODE (1980) [25J, written by Hindmarsh, contain 

different implementations of the Adams formulas which are available in the 

. nonsti ff option of the code selected by the user. The stiff option of these 

codes will be discussed below. The code DGEAR in the IMSL library EJoJ is based 

on the GEAR code. 

5.2 Codes based on backward differentiation formulae 

As mentioned earlier, well-known codes, such as EPISODE, contain two 

families of formulae, one for non-stiff and the other for stiff systems. The 

formulae are Adams methods and the stiff formulae are given by 

k 

Yn+l = .2 ~i Yn-i+l + hnako fn+l • 
1=1 

(5.4) 

This equation can be solved easily for fn+l in terms of the previous and 

current values of y; thus, it is called backward differentiation formula 

'. 
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(BDF). For k = 1, 2 the formulae are L-stable, for 3 ~ k ~ 6, the formulae 

are stiffly stable of order k. Therefore, the main drawback of the BDF's is 

when they are used to solve problems having complex eigenvalues lying near the 

imaginary axis (for example, problem B5 in the stiff test sets proposed by 

Enright et ale [161). The unstable regions extended into the left-half plane 

get substantially larger for higher k so that most codes implementing BDF 

restrict k S 6. 

The codes DIFSUB, GEAR, LSODE, and DGEAR (in IMSL) are all similar in 

the stiff option of the packages. In these codes, the stepsize hn is fixed for 

a prescribed number of steps. The values of Yi at points which are not former 

mesh points are obtained by interpolating the previously calculated values of 

Yi. A modified version of LSODE, called DEBDF, was developed as a member of 

the Sandia DEPAC package [45]. 

EPISODE is different from other packages, in that the step-size hn is 

allowed to change at each step. This feature makes EPISODE much more effec­

tive for problems with sharp fronts (for example, problems involving chemical 

kinetics systems with diurnally varying reaction rates, which vary. like a 

square wave). GEAR and DIFSUB are completely unreliable for such problems. 

The fixed stepsize-interpolation strategy does have the advantage that the a's 

and a's for each family can be computed and stored in tables once and for all, 

since they do not vary with n. Whereas, in EPISODE, at each step, the a's and 

a's must be calculated for the formula in use. Furthermore, in EPISODE the 

iteration matrix involved in the modified Newton scheme for solving the BDF's 

must be frequently computed and decomposed because the scalar coefficient of 

the Jacobian has become out of date; whereas other packages would not require 
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this since the coefficient is varying less frequently. In summary, the 

variable step strategy of EPISODE permits it to solve certain class of 

problems effectively. However, the additional overhead involved in computing 

the coefficients a's, a's and in reevaluating the iteration matrix can cause 

EPISODE to perform less efficiently than GEAR (DIFSUS, LSODE) for smoothly 

decaying or linear systems. 

Some special codes, EPISODES, GEARS C24J and an option of the code DEBDF are 

developed for systems with the Jacobian matrix having a banded structure. 

These systems appear for example in the method of lines and finite differences 

to solve P.D.E.'s. These packages take advantage of the structure of the 

Jacobian and reduce both time and space complexities of the modified Newton 

method for solving the SDF's, therefore EPISODES could solve a larger banded 

system than EPISODE. 

For large stiff systems of ODE's having a sparse Jacobian structure the 

code GEARS written by Sherman and Hindmarsh (1980) [46] uses the Yale sparse 

matrix package. The code GEARZ written by Carver (1979) [10] uses the 

Curtis-Reid sparse matrix routines and finally the code FACSIMILE developed by 

Curtis (1978) [13J uses DUff's MA28 sparse matrix routines. 

Recently Hindmarsh [26] put together a collection of codes called ODEPACK. 

One of the most recent additions to ODEPACK is code LSODA. This code auto­

matically determines whether or not a problem is stiff and switches to the most 

appropriate set of formulae. 

6. Other multi-step methods: 

The cyclic composite multistep method described by 
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1 a .. y j = .. k IJ ms+ J=l-
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i 

h 1 a .. fms+' for i = 1, •.. , s 
j=l IJ J . 

was studied by Tendler, Bickart, and PIcel [47]. These formulas define a 

block of s forward values of y: Yms+l, ••• , Y(m+l)s with each application of 

the procedure. The matrix aij has a lower triangular form, thus we have to 

solve s systems of N nonlinear equations instead of solving sN nonlinear 

equations. A code named STINT was written by the authors which uses stiffly 

stable formulas of orders 1 to 7 with better stability properties than BDF's. 
, . ~ , " 

The multistep, second derivative methods were investigated by Enright [14]. 

Formulas of orders 2 to 7 based on the form: 

k 

Yn+l = Yn + h i~O aki fn_i+l + h
2 

Yko Y~+l 
were developed and implemented in a code SDBASIC. These formulae are all 

stiffly stable with better stability properties than BDF codes. 

Cash [11] uses an extended BDF of the type 

k 

Yn+l = 1 ~i Yn-i+l + h(ako fn+l + akl fn+2 ) 
i=l 

His program includes the conventional BDF's as a predictor and the above 

extended BDF as the corrector. He was able to develop L-stable schemes of 

orders up to 4 and A(a)-stable schemes of orders up to 9. Recently, he ex­

tended the above formula to include second derivatives. He was then able 

to obtain L-stable formulas up to order 6 and A(a)-stable for formulas order 

7 to 9. 

'>, .: 
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The major drawback of multistep methods in general is that they are more 

expensive to get started. All of the codes mentioned in this section start with 

a low order method and a very small step-size, then gradually increase the order 

and the step-size as the integration progresses. 

7. Exponential-fitted methods 

Liniger and Willoughby 136J coined the term "exponential-fitted" to 

describe a class of algorithms designed to exactly satisfy the stability test 

equation y' = AY for systems having one or more large negative eigenvalues -­

that is, for stiff systems of ODE's. The derivation presented here is a con­

siderably modified version of Liniger and Willoughby's concepts, drawing on 

subsequent work of Lambert 135J, Brandon [2,5] and Pratt 139J. 
Following Lambert, we derive some simple exponential-fitted algorithms the 

method of curve-fitting, that is, by assuming an interpolating function and 

determining the free parameters by the method of undetermined coefficients. 

Let us assume a three-parameter exponential interpolant. 

ex lex) = A + Be (7.1) 

which interpolates the solution of (1.1) over the interval (xn,xn+h) as 

follows: 

'() __ .9Y() I a - fn - dx xn 

l(h) = Yn+l = y(xn+h) 

(7.2a) 

(7.2b) 

(7.2c) 

The first two requirements determine two of the three free parameters: 
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(7.3a) 

(7.3b) 

So that, with (7.3) substituted in (7.1), together with (7.2c), there 
follows: 

(7.4) 

Miranker (1981) C37] refers to (7.4) as a "filtered Euler ll approximation. 

We note that the free parameter Chas yet to be determined. 

Three possible ways for determining C are of interest~ 

I'(-h) = fn_1 + C = h~:1ln(fn/fn_1) 

III (0) = f' + C = f 'If n n n 

(7.Sa) 

(7.Sb) 

(7.Sc) 

With the substitution of (7.Sa), Eq. (7.4) is an implicit, single-step 

integration algorithm. With either (7.Sb) or (7.Sc), Eq. (7.4) is an A ... stable, 

explicit integration algorithm. 

Note that the explicit stiffness measure (3.6) does not apply to (7.4) 

because it has an infinite stability radius for negative C 

It is also interesting to note that, for the conventional assumption of a 

three-parameter polynomial interpolant in place of (7.1), the requirements (7.2) 

and (7.5) result in three familiar second-order integration algorithmsl (7.5a) 

gives the implicit Adams~Moulton method or trapezoidal rule, whereas (7.Sb) and 

(7.Sc) result in the explicit Adams-Bashforth and Taylor's methods, respec­

tively. 
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A conservative strategy is to take advantage of the filtering or damping 

factor in (7.4) only when the parameter C is negative, and to use conventional, 

low-order "polynomial-fitted" methods when C is positive. To achieve this, we 

define a .. tunable trapezoid" approximation, 

(7.6) 

where the component-specific "tuning factor" U is a degree-of-implicitness fac­

tor, which is permitted to vary between one-half (trapezoidal rule) and unity 

(implicit Euler approximaton). 

Equating (7.6) to (7.4) and solving for U, there results 

1 1 
U = Ch + 1 _ eCh , C < 0 (7.7) 

when C ~ 0, we use U = 1/2, and revert to the trapezoidal rule. 

With (7.7) to define U in (7.6), together with either of the two explicitly 

determined constants C, (7.5b) or (7.5c), this yields an exponential-fitted implicit 

method, in which the degree-of-implicitness factor U is determined explicitly. 

Liniger and Willoughby [36J give an estimate of the leading-term local trun­

cation error for (7.6), 

LTE - h2 f'(9)(1/2-U) ; U + 1/2, 0 < 9 < h (7.8) 

When U = 1/2 (C > 0), the trapezoidal rule leading term LTE estimate, 

LTE - h3 f" (9)/12, applies. 

A predictor-corrector version of the XFTR (exponential-fitted trapezoidal 

rule), (7.6) and (7.7) is appropriate when the system is nonstiff: Equation 

(7.4) is used as a predictor, with C determined by (7.5b or 7.5c); the correc-

• 
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tor, (7.6) with U determined by (7.7), is iterated to convergence by some form 

of functional iteration::'; "Jacobi, Gauss-Siedelor Jacobi-Newton. 

Accuracy is f!lOnitored by.(7.8),similar to (3.!), with haec given by 

, 1/3 
{_ T } 

11h2f' (e)(1/2-U~ II 
(7.9) 

and hiter is determined by the rate of convergence of the particular convergence 

method chosen. 

Brandon [5] uses the full-step!half-step algorithm to find hacc' but also 

conservatively assumes effective second-order accuracy to determine hacc • 

When (hacc!hiter) is greater than unity, Newton iteration is used directly on 

(7.6) without a predictor, to achieve convergence. 

With C determined by (7.Sb), it is unnecessary to evaluate the Jacobian 

except for occasional updating if Newton iteration is used to converge (7.6). 

If (7.Sc) is used to determine C, the Jacobian must be computed at the 

beginning of each timestep, as ,with implicit or semi-implicit RK methods. 
, 

Brandon evaluated the Jacobian at every iteration of every step in order to 

improve the accuracy of U by recomputing (7.7), with the implicit approximation: 

, , 
1 f n f n+1 

C=-{-+ } 
2 fn fn+1 

(7.10) 

However, the LTE estimate (7.8) is not significantly improved by the use of 

w (7.10), so that this practice does not appear to be computationally efficient. 

Computer codes based on this class of methods were written by Brandon [5] 

called IMP and by Pratt l59] called CREK-ID, the latter codes developed only for 



24 

solving chemical kinetic problems. 

In conclusion, we note that when the partial derivatives are expensive to 

evaluate, we don't recommend the use of either the implicit exponentially-fitted 

nor the Rosenbrock method. However, there are situations in which it is quite 

convenient to obtain these partial derivatives, particularly in solving chemical 

kinetic problems. 

We first observe that all the problems of the test set by Enright et ale . 

[16J have simply computed partial derivatives. The chemical kinetics 

problems can be written in general as: 

, 
y = Ap, yeO) given 

M roo 
where A is an M x N matrix and PJo = kJo n YiJ1 j = 1, ••• ,N 

i=1 

while rij ~ a and kj > a are rate constants. 

For problems of this kind, the computation of partial derivatives is quite 

·simple, since 

The Rosenbrock and implicit XFTR methods do not require, therefore, much extra 

work associated with the construction of the Jacobian matrix. 
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