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INTRODUCTION 

These notes are based on a set of statistics lectures delivered at Imperial College to the first-year 
postgraduate students in High Energy Physics. They are designed for the professional experimental 
scientist. 

We begin with the fundamentals of probability theory, in which one makes statements about the 
r " set of possible outcomes of a experiment, based upon a complete a priori understanding of the experi­

ment. For example, in a roll of a set of (fair) dice, one understands a priori that any given side of each 
die is equally likely to tum up. From that, we can calculate the probability of any specified outcome~ 

We finish with the inverse problem, statistics. Here, one begins with a set of actual data (e.g., the 
outcomes of a number of rolls of the dice), and attempts to make inferences about the state of nature 
which gave those data (e.g., the likelihood of seeing any given side of any given die tum up). This is a 
much more difficult problem, of course, and one's solutions often tum out to be unsatisfactory in one 
respect or another. Hopefully, the reader will come away from these notes with a feel for some of the 
problems and uncertainties involved. Although there are standard approaches, most of the time there 
is no cut and dried "best" solution - "best" according to every criterion. 

Even though the audience was composed of high energy physicists, the contents should prove to 
be useful in other fields as well. Since these notes were originally prepared for oral delivery, they may 
be somewhat terse in some places. The author would appreciate any comments which might result in 
an improvement. In particular, of course, if any factual errors, misprints, or mistakes in the equations 
could be quickly caught, it would be a real service. 
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SECTION A. PROBABILITY 

Chapter 1. First Principles 

The Calculus oj Probabilities 

Let us perform some experiment which has outcomes. The probability space n consists of the set 
of all possible outcomes or events E. We assign a probability P(E) to each event. We insist on an· 
intuitive meaning for P(E) s:t.(such that), if the identical experiment were to be repeated a large number 
of times, P(E) would tell us the fraction of times we could expect to find E. This is the frequency defin­
ition of probability. Some experiments cannot be repeated, (e.g., a certain patient with a certain 
disease), but the probability represents in some intuitive sense the chances of each possible outcome. 

Axioms oj Probability 

The following axioms lead to a model for probability that intuition would demand: 

1. 
2. 
3. 

p(n) = 1; Something has to happen. 
o .;;;; P(E) .;;;; 1; E E n 
P(UE.0 = ~ P(E.); 

1 1 
for any set of disjoint Ej • This is the 
Axiom of Countable Additivity. 

The following theorems are easy to prove. 

1. P(E) = 1 - P(E*); 
E* is defined by n = E U E*, E* and E disjoint. 

2. P(O) = 0; 0 == null set. 

3. IfEI' E2 E n, and EI CE2, then P(E1) .;;;; P(E2). 

4. EI' E2 E n, not necessarily disjoint, 

P(E1 UE2) = P(E
1
) + P(E2) - P(E1 nE2)· 

Proof of 4: EIUE2=EIU(E~nE2)* .} 
unions of disjoint sets 

E2 = (ElnE2)U(EI nE2) 

=> P(E1 U E2) = P(E1) + P(E~ n E2) 

and P(E2) = P(E1 nE2) + p(E~nE2) 

If the outcome of an experiment can be expressed by a single number X (i.e., the outcome is 
either a number directly or can have a number assigned to it), then X is a random variable (r.v.). 
"Random" means only that the information available to us is inadequate to predict the exact outcome. 
"Random" does not necessarily mean "with equal probability," contrary to its use in everyday speech. 
We will still sometimes use "at Random" to mean "with equal probability". 

.' ~ 

• ,0 



'. 

. ~ 

If A ~ n, then 
P(A) = P(X E A), X a r.v. 

3 

If the outcome of an experiment is an ordered set of numbers Xi' (e.g., a vector), then 

P(A) = P[(XI' ... .xn) E A]. 

We will use capital letters, X,Y, ... to refer to r.vo's, lower case letters x, y, ... to refer to particular 
values of those r.vo's. Thus we can speak of, e.g. 

P(X =s;;; x), etc. 

Restriction to Real Numbers 

We will restrict ourselves to two types ofr.vo's encountered in problems in the natural sciences. 

1) Discrete type. The sample space n consists C?f a set of discrete points, which may be 
countably infinite. 

Examples: Throw of dice 
Sex of child (M = 1, F = 2 or whatever) 
Ages of a set of people 
Serial numbers of German tanks in N. Africa 
Names of people (Frances = 762, George = 1001, etc.) 

2) Continuous type. 

Examples: Distribution of mass within a body 
Momentum-transfer distribution 

Thus, for both types, n = segments of, or points on, the real number line. 

Sampling 

We will always be dealing with the outcomes of experiments. These outcomes consist of a finite 
number of values. These values represent the sampling which has been made of the parent population, 
which may be continuous. The parent population represents the set of values available. The problem 
confronting the scientist is how to draw inferences about the parent population from the finite set of 
measurements in the sample. 

Probability Density Function 

In the discrete case, we can associate a function f(x) to each point, s.t. 

~f(x) = 1 ; 

P(A) = P(X E A) = ~f(x). 
A 

f(x) is called the probability density function (p.d.f). In the discrete case, the p.d.f. actually represents a 
true probability rather than a density. 
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In the continuous case, we can associate a function ftx) with the probability distribution S.t. ftx) 
has at most a finite number of discontinuities in any finite interval and 

ftx) dx = P(x .;;;; X .;;;; x + dx), with 

I ftx)dx = 1. (This is a Riemann integral.) 
!l 

Hence, ftx) is also a p.d.f. Here, the term "density" has significance, since we must multiply by dx to 
obtain a probability. The p.d.f. must be ;;a.oO everywhere within n. 

The normalization to 1.0, a consequence of the first axiom of probability, must always be satisfied 
for both discrete and continuous cases. Note that although the word "density" suggests its application 
to the continuous case, we use the term p.d.f. to refer to the discrete case as well. 

If we know the p.d.f., we can completely d~scribe the probability of any outcome or range of out­
comes. In specifying a p.d.f. for a r.v., i~ is important that the range n be given or clearly understood. 

Examples: 

1) n = {x; x = 0, 1,2, 3, 4} 

4! 1 4 
ftx) = x!(4-x)! (2)' XE n; Note O! == 1 

p(n) = };ftx) = 1 
!l 

Now, let A = {x; x = 0, I} be a subset ofn; then 

P(X A) - 4! (1)4 + 4! (1)4 _ 5 
E - 0!4! 2 1!3! 2 - 16 

2) n = {x; 0 < x < oo} 

ftx) = e-x; x E n then P(X E A) = I e-Xdx . 
A 

1 

Now, let A = {x; 0 < x < I}, then P(X E A) = Ie-xdx = 1 - e- 1 

o 

Cumulative Distribution Function 

For the special interval covering all allowed values below (but including) a specified value x, the 
total probability of that interval is expressed by the cumulative distribution function (c.d.f). We will use 
upper case letters to refer to the c.d.f. 

Remember, x is a real number. Let W be a r.v. 

Discrete case: 

F(x) = }; ftw) 
w~x 

• • u 

-." 
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Continuous case: 
x 

F(x) = J ~w)dw 
-00 

This is the cumulative probability for w to lie ~ x. Note that the interval specifically includes x. Note 
that F(oo) = 1, F( -00) = O. 

Then in the continuous case F'(x) = ~x) [at each point of continuity of ~x)]. In the discrete case, 
we have the analogue of the derivative - the Radon-Nikodym derivative with respect to the counting 
measure - which recovers this same relationship, but it's not particularly useful. 

Properties of the c.d.f.: 

o ~ F(x) .;;; 1 
F(x) is non decreasing. 
P(a ~ X ~ b) = F(b) - F(a) 

If x is a discontinuity point of F(x); then 

P(X=x) is equal to the size of the jump. 

If x is a point of continuity of F(x), then 

P(X=x) is O. 

Example: Discrete case 

~x) = x/6, x = 1, 2, 3 only; 
F(x) =0 x < 1 

= 1/6 l~x<2 

= 3/6 2~x<3 

= 1 3~x 

In many ways, the c.d.f. is more fundamental than the p.d.f., because it refers to an actual proba­
bility rather than a probability density. Nevertheless, most applications demand the p.d.f., which is 
sometimes most easily derived by deriving the c.d.f. first. 

Expectation Values 

.. ~ Consider some single-valued function u(x) of the random variable X. "u" is just some function 
we are interested in; it is not a p.d.f. (necessarily), or any other special function. Then the expectation 
value of u(x) is defined as 

E[u(X)] = ~u(x) ~x) 
x 

or 
00 

E[u(X)] = J u(x) ~x) dx 
-00 
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Example: 

A gambler realizes winnings u(x) upon outcome x (u(x) can be negative). Then his expected win­
nings are the winnings for each possible outcome x times the probability of that outcome, summed over 
all possible outcomes. 

Properties of Expectation values. 

a) If k is a constant, E(k) = k 

b) If k is a constant, v a function, then 
E(kv) = kE(v) 

c) Ifk!, k2 are constants, vI' v2 functions, then 

E(k,v, + k2v2) = k,E(v,) + k2E(v2). 

i.e., E is a "linear operator". 

Sometimes we write, for the continuous case,. 

E(x) = Ix dF(x) 
since ftx)dx = dF(x). 

Sometimes these integrals or sums don't exist, i.e., they don't converge to a finite value. We will see 
some cases. 

Moments 

Moments are certain special expectation values. 

By analogy with mechanics, (for example, moments of inertia), the mth moment is given by 
00 

E(xm) = J xmftx)dx 
-00 

or 

= the mth moment of x, or the mth moment of the distribution. 

The m th moment is said to exist if it is finite. Again, it doesn't always exist. 

The most commonly used moment is the mean 
00 

E(X) == f.L = J x ftx)dx. 
-00 

From now on, we will specifically mention the discrete case only if it somehow requires special han­
dling. 

The mean is used as a general measure of location, because it often tells roughly where most of the 
probability is located. In a statistical approach to estimation of the properties of an underlying 

"'," 
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distribution, the sample mean can be used as an estimate of the true population mean. 

Examples: 

f(x) 

+-----L---- x 
IL 

Central Moments 

IL useful as 
a measure of 
location 

The mth central moment is given by 
00 

E[(X-IL)m] = f (X-IL)m f(x)dx, if it exists (i.e., is finite). 
-00 

f(x) 

x 
IJ.. 

IL not especially useful as 
a measure of location 

The central moment is the moment about the mean. For a symmetrical distribution, all odd cen­
tral moments are zero. For any distribution with a finite mean, the first central moment is zero. 

Some of the most useful: 

E[(x - IL)2] == Variance == ,,2. Clearly, ,,2 ~ 0, since f(x) ~ 0 everywhere. The square root of the 
variance, ", is called the standard deviation, and is often used as a measure of the spread of the distri­
bution about the mean. Just as in the case of the mean, there are some distributions for which it is not 
a particularly apt descriptor of the shape. 

Note that: 

E[(X-IL)2] = E[x2_2xIL+IL2] 

= E(x2) - 2ILE(x) + IL2 since E is a linear operator 

Since all symmetrical distributions have all odd central moments = 0, we can get a measure of 
asymmetry by looking at the third central moment, the lowest order odd moment (excluding the first): 
E[(x - IL)3] = I(x - IL)3f(x)dx. This has dimensions which depend upon the units employed. A more use­
ful moment is skewness, defined as 
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Examples: 

1]=0 

__ -_...1]<0 

A measure of sharpness of peaking is given by kurtosis 

= E[(x-~tl _ . 
1'2 - 4 3 , 

(f 

The" - 3" makes it 0.0 for a Gaussian. Therefore, 1'2 > 0 => more peaked than a Gaussian, 
and 1'2 < 0 => less peaked than a Gaussian. 

It can be shown that, if all the central moments and the mean exist, the distribution can be com­
pletely characterized by them, i.e., we can reconstruct the complete p.d.f. if we just know all the 
moments. 

Other General Attributes of a p.d.! 

Mode 

Median 

peak location (a p.d.f. can be multi-modal) 

defined as that point x s.t. the c.d.f. 
F(x) = 1/2, i.e., 1/2 of the probability lies 
above and below x. 

More Measures 
of Location 

.~ .. 



F(x) 

1 

MEDIAN 

Fex) 
1 

~ 
I 
I 
I 
I 

MEDIAN 
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F(x) 

x 

x 

MEDIANS 

Any number in the continuous 
range here may be used as the 
"median". 

This distribution is part 
continuous, part discrete. 

If the distribution is discrete, the median may lie between two of the allowed values. In this case, 
many people put it rather arbitrarily mid-way between them. 

Useful Things to Remember 

E(aX) = Jaxf{x)dx = aE(X) 

V(aX) = E[(aX)] - [E(aX)]2 

= E(a2X2) - [aE(X)]2 

= a2E(X2) - a2[E(X)f 

= a2V(X) 

V(X+Y) = E[(Z-#i]; Z == X '+ Y 

"a" a constant, X a r.v. . 

= E[(X + Y - #x - #/] = E[«X - #x) + (Y - #y»2] 

= E[(X - #/] + E[(Y - #/] + 2E[(X - #x)(Y - #y)] 

= V(X) + V(Y) + 2E[(X - #x)(Y - #y)] 

The last term, called the covariance, has a special significance. It will be discussed in the next 
chapter. 

x 
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The Chebychev Inequality 

If IL is the mean of the p.d.f. for X, k is some arbitrarily specified positive number, and (1 is the 
standard deviation of X (IL and (1 both assumed to exist), then 

1 
Prob[IX - ILl ~ k (1] ~ k2 . 

This gives a limit to the probability that X Will differ from IL by more than a specified number of stan­
dard deviations. This is true for any p.d.f. whatsoever, satisfying the conditions. Often this limit is too 
conservative to be really useful in specific cases. 

Proof: 

00 

~ = J (x-IL)2f{x)dx 

Therefore 

-00 

f ; (x -1L)2f{x)dx + J (x -1L)2f{x)dx 
IX-I'I';;kO' IX-I'I;"kO' 

break the J up into "inside" 
and "outside" the region. 

~ J (x-IL)2f{x)dx 
IX-I'I;"kO' 

delete the non-negative "inside" part. 

~ J k2(12f{x)dx 
IX-I'I;"kO' 

replace (x -1L)2 by its minimum. 

= k2(12 . J f{x)dx = k2(12p[lx-lLl~k(T]. 
~-~;"b . 

There is more discussion of the Chebychev Inequality in Chapter 3, by way of introduction to the 
normal distribution. 

" . 

i) • 
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Chapter 2. More on Probability 

Conditional Probability 

Let us assume we can restrict our sample by eliminating from consideration any events not 
belonging to some subset A ~ flo Then the probability of any event in A is increased because there are 

• • some events (those in A*, the complement of A) which are excluded (unless A* is empty). In other 
words, the integrated probability of all events in A is now normalized to 1.0; we wish to ignore the rest 
of n, if any. We speak of the probability of an event E, given A; we write this as P(EIA). A is some res­
triction on n; it usually represents the restriction due to some fact which we believe to be true. For 
example: we now believe the murderer to be a man, eliminating women and children; we restrict our 
search for glueballs to all events containing a kaon; etc. 

A:, • 

We wish this symbol to have the properties: 

P(AIA) = 1 

P(A2IAI) = P(AI nA2IAI) . 

Probabilities change when we restrict the probability space, but the ratios of probabilities within 
the accepted set (satisfying the conditions) should not change. In particular, we require 

P(AI nA2IAI) P(AI nA2) 
P(AIIAI) P(AI) 

Imposing these conditions, we come to a suitable definition: 

p(A l nA2) 
P(A2IAI) == P(A

I
) . This assumes P(AI) > 0 . 

P(A2IAI) is the probability 
of the shaded area. 

It can be shown that P(A2IAI) satisfies the axioms of probability. 

Now we have the multiplication rule 

P(AI n A2) = P(AI)P(A2IAI) 

The Joint p.df, 

For two or more variables XI' X2, the joint p.df, is written f{X\,X2). 

Suppose now we want P(a < XI < b), and we don't care what value X2 has. Then we want 
P(a < XI < b, - 00 < X2 < (0) = 
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b 00 

J J f(xhx2)dx2dx, 
a-oo 

or 

~ ~f(XhX2) 
a<xl<b X2 

The Marginal p.d! 

This leads to the definition of the marginal p.d.f, 

00 

f,(x,) = J f(xhx2)dx2 This is the distribution of xl' 
-00 

with all the x2-dependence integrated out. 

similarly, 
00 

f2(x2) = J f(xhx2)dx, 
-00 

The Conditional p.d.f, 

Now we are ready to look at the conditional p.d.f, 

Let Xl' X2 be two r.v.'s on the real axis. 

e.g., a Dalitz plot 

Choose xI' (a particular value of X,) as shown. This restricts the range of x2• 

If f,(x,) > 0, then (discrete case first): 

p(E2 nE,) 
f(x2Ix,) == P[X2=X2IX, =xd = P(E,) (conditional probability) 

E2 EI 

P[X2=X2'X, =xd 
P(X,=x,) 

- " 

. . 
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This motivates us to define a conditional p.d.f. for the continuous case in the same way. There­
fore we write 

== the conditional p.d.f. for x2 given a fixed xl. It can be shown that this satisfies the axioms of 
probability. This is a function of one r.v., x2' in the sense that xl is fixed. Of course, if xl is changed, 
we obtain a different function. 

b 

P(a < X2 < blXl = Xl) = IftX2IXl)dx2, etc., is sometimes written 
a 

P(a < X2 < bIXl). We can compute expectations: 

00 

E[u(X2)IXd = I U(X2) ftx2lXl)dx2 , 
-00 

e.g., 

E(X2IXl) is the mean, 

E{[X2 - E(X2Ixl)]2Ixl} is the variance, both given Xl = Xl. 

These are called the "conditional mean" and "conditional variance", respectively. 

For multiple variables, we can generalize, as for example: 

I 
ftXi>X2,X3,X4,XS,X6) 

ftx2,X4,X6 Xi>X3,XS) = f ( ) 
l3S Xi>X3,XS 

where 

Correlation 

Assume X, Y, Z are random variables with joint p.d.f. ftx,y,z). Then, e.g., 

ILx = E(X) = I I I xftx,y,z)dxdydz 
!l 

We can obtain a useful measure of the dependence of, for example, X on Y if we write 

E[(X -lLx)(Y -lLy)] = E(XY -lLyX -lLx Y + ILxlLy) 

= E(XY) - ILxlLy 

This is called the covariance of X and Y, COV(X,Y). Thus, 

V(X + Y) = V(X) + V(Y) + 2E[(X -p,y)(Y -p,y)] 
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= VeX) + V(Y) + 2COV(X,Y) 

We can construct a dimensionless quantity analogous to the covariance by defining the correla­
tion coefficient 

= COV(X,Y) 
Pxy , (1x(1y . 

assuming (1 , (1 > O. This is scale invariant. x y 

For example 

y 
P>O 

--~t=~~~-------x 

contour of 
constant 
p.d.£, e.g., 
boundary of 
region p.d.f. > O. x 

P is a measure (an imperfect one) of how well Y and X depend upon on one another. It is most 
useful when the contours of constant p.dJ. look as above, more or less elliptical. 

y 

To prove this last case, we note that if 

X and Yare clearly related in 
probability. Here, p is 
not very revealing as a 
characterization of the 
variation of X with Y. We 
could always define higher­
order correlation terms, 
but this is not often done. 

E[(X - ~x)IYl = f (x - ~;~~;,y)dX = 0 for all y (i.e., the mean X is independent of y), 

then since 

COV(X,Y) = f(Y-~Y) f(x-~x)f(x,y)dx dy, and the above gives us 

f(x-~x)f(x,y)dx = 0 for all y, we establish 

COV(X,Y) = O. 

We could change variables to a correlated set: 

- ; 



,~ -
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y' 

p;;/= o. 

---4----~---------------------x' 

The zero correlation coefficient in the previous case was an "accidental" consequence of the 
genuine symmetry of the p.d.f. and the alignment of the axes. 

We can establish that -1 ~ p ~ 1: 

Let U = X - /-Lx; Y = Y - J.Ly; choose some constant, k. 

Then 

This is a quadratic in k, which has zeroes only if 

4[E(Uy)]2 - 4E(y2)E(U2) ~ o. 

But E[(U - ky)2] ~ 0 for all k, i.e., it cannot pass through zero; therefore any roots are degenerate 
and occur at [E(UY)j2 = E(y2)E(U2). Everywhere else, [E(Uy)]2 - E(y2)E(U2) < O. Since E(UY) = 

COY(X,Y), E(U2) = a'; and E(y2) = (1~, the theorem is proved. 

The case p = ± 1 occurs if and only if E[(U - ky)2] = 0 for some k, and therefore U = kY every­
where with probability 1.0; thus X - /-Lx = k(Y - /-Ly) is just a straight line. The slope k cannot be 0 or 
infinite unless all of the probability of U or Y is concentrated at a single point. 

The correlation p is a measure of the average linear change in the marginal p.d.f. of one variable 
for a specified change in another variable. In the upright horseshoe-shaped case we saw earlier, the 
correlation is zero, but the variables clearly depend upon one another. That is, if we make some small 
change in one variable, the marginal p.d.f. for the other will change, but only in shape; the change in 
the average is zero. Another concept is needed to discuss this sort of variation. 

Dependence and Independence 

We know that 

!tX\,X2) = !tx2Ixl)fl(Xl). 

Suppose !tx2Ixl) has no dependence on Xl. Then 

f2(x2) = f!tX2I xl)fl(Xl)dxl 

= !tx2Ixl) ffl(Xl)dxl 

= !tx2Ixl), 
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Therefore, 

Definition 

The r.v.'s XI and X2 are independent if 

f(XIoX2) = fl(x df2(x2). 

Otherwise, they are dependent. 

In order to be independent, the domains 01 and 02 also have to be independent. In the 
horseshoe-shaped example above, the variables are dependent, even though their linear correlation is 
zero. 

Theorem 

Take two r.v.'s XI' X2 with joint p.d.f. f(XIoX2). Then XI' X2 are independent if and only if we can 
find functions g and h s. t. 

f(xl,X2) = g(xl)h(x2), where 

g(xl) > ° for XI E AI; h(x2) > 0, x2 E A2, zero elsewhere. 

The proofs of this theorem and the next are left as an exercise. 
Hint: We can show g(xl) = cll(xl); h(x2) = clix2)' with cl' c2 constants such that CIC2 = 1. 

Theorem 

Let XI and X2 be independent with marginal p.d.f.'s fl(x l) and ~iX2)' respectively. Then 

E[u(X)v(X2)] = E[U.(XI)]E[v(X2)]' 

u and v functions, provided all these expectations exist. 

A consequence of these theorems is that: If XI and X2 are independent, 

E[(XI- JL I )(X2 
- ~2)] = E(XI- JL

I
)E(X2 - ~2) and therefore 

COV(X,Y) = 0. Hence 

V(X+Y) = V(X) + V(Y) + 2COV(X,Y) 

= V(X) + V(Y) if (not only if) independent. 

Bayes'Theorem 

First, the law of total probability. Let Bj be a set of mutually exclusive subsets of 0, and let 
n 
~P(Bj) = 1. Then the B. are said to be exhaustive, i.e., all of the probability is covered by the B .. ~ 1 1 

j=1 

Now take some A EO. "A" mayor may not be one of the Bj • Then the law of total probability states 
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n 
P(A) = ~ P(A!Bj)P(Bj) . 

j=l 

That is, partition A up into the pieces in each Bj. Then the total probability of A is the sum of the 
probabilities of the pieces. Technically, the Bj only have to cover the whole ofn which has non-zero 
probability. Pieces which have zero probability, e.g., isolated points for a continuous p.d.f., can be 
excluded. 

This law follows from the multiplication rule (Chapter 1). 

We saw earlier that ftx2!xl) was a p.d.f. for x2' in the sense that Xl is fixed. But if we change xl' we 
get a change in ftx2!xl) (unless Xl and X2 are independent). We will be seeing how, if we already know 
x2' we can turn this around and make probabilistic statements about Xl. Bayes' Theorem is one 
approach. 

Theorem 

. Let Bj be a set of mutually exclusive and exhaustive events. Take any event A s.t. P(A) > O. 
Then 

P(A!Bj)P(Bj) 
P(A) 

This shows us how to reverse the order of the statement in a conditional probability. The first 
part follows from 

P(Bj n A) = P(A!Bj)P(Bj) = P(Bj!A)P(A) 

(the part of A that is in Bj is the same as the part of Bj that is in A). The second part follows from the 
law of total probability. 

In our use of Bayes' Theorem, we normally have a situation in which A represents a certain set of 
data. We want to evaluate the respective probabilities of a certain set of explanations or models Bj' in 
order to select one of them, or at least eliminate some as unlikely. In other words, given the outcome 
A of our experiments, can we say anything about the different models or theories represented by Bj? 
The Bj are most frequently some set of parameters whose values we desire. Since we can in principle 
evaluate the probabilities of the A for any assumed Bj' P(A!Bj), the job of the statistician would be done 
if we only knew what to use for P(Bj). 

A simple example: 
1/1000 adults has a certain disease (we restrict ourselves, if necessary, to some subsample of adults 
where the probability is constant and known). A certain diagnostic test has the following properties: 

if the person has the disease, the test gets a positive result 99% of the time. 

if the person doesn't have the disease, it gets a positive result 2% of the time. 
You test positive - what is the probability that you have it? 



·------------------------------------------------------------------------------

Data: A == positive test 
Models: Bl == D (diseased) 

B2 == D* 

Want: . p(B11A) 

Have: P(B1) = 1/1000 
P(B2) = 999/1000 
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~ 

! 

exhaustive 
and exclusive 

general statements made 
before the data is taken 

This information gives us our prior distribution, which is 

P(BJ 

We also know: P(AIB1) = .99 
P(AIB2) = .02 

These don't have to add to 1, 
since each isjust the fraction of 
Bj covered by A. Their sum is 
bounded from above only by 

P(B1IB1) + P(B2IB2) = 2. 

We can now compute P(A) = 0.990 X 0.001 + 0.020 X 0.999 = 0.02097, from the law of total 
pro babili ty: 

P(A) = P(AIB1)P(B1)+ P(AIB2)P(B2) 

Then, 

P(B11A) = .99 X .001 = .047 
.99 X .001 + .02 X .999 

P(B
2
1A) = .02 X .99 = .953 

.99 X .001 + .02 X .999 

These do add to 1, since the Bj are 
exhaustive and exclusive, and 
together they cover A exactly. 

This is our posterior distribution. The data have increased our estimate of the probability that 
you have the disease from .001 to .047. It's still small. Why? Because so many more people don't have 
the disease, the small chance that they will test positive anyway leads to more than 20 of them testing 
positive for each one that actually has the disease (and tests positive). 

This can be calculated from a tree diagram without referring to Bayes' Theorem. But most cases 
of interest to us will have continuous variables, or a large number of discrete variables, so a tree 
diagram is not convenient. 

Another example: in the case of ambiguity between Cabibbo-favoredand unfavored decays of 
observed charmed particle candidates, a certain experiment chooses to report the favored decays. The 
unfavored decays are a priori considered to be unlikely. 

We use Bayes' Theorem to modify prior beliefs by incorporating the information of the data to 
obtain better educated beliefs. Frequently, as in these examples, our prior beliefs are based upon an 
understanding of the general population and we are interested in using that plus some measurements to 
get the best possible understanding of some particular case. 

We will normally use this to help us find (), some parameter of nature. Thus, we treat the state of 
nature () as a random variable to which we assign a prior p.dJ. P«() if we can. Ifwe then do an 

-, . 
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experiment which has outcome z, and if we know the p.d.f. of any z as a function of 0, ttziO), then we 
can get the p.d.f. of z, 

or 

f1(z) = ~ttziOi)P(Oi)' 
i 

Since we treat 0 as a r.v., it makes 
sense to talk about marginal 
p.d.f.'s 

Then we can improve our ideas about the state of nature 0 by 

h(Oiz) = f(ziO)p(otrior 
i f1(z) 

posterior 

In the continuous case, P is a 
p.d.f., not a probability. 

Bayes' Theorem is mathematically impeccable. However, there is much controversy about the 
choice of prior, in some cases. Most workers in the sciences feel it is best to stick to safe cases, where 
the prior is really understood. 

It is said that more statistical literature is published about the choice of prior than about any other 
subject. If the prior is unknown, what can we do? The good Reverend Bayes is responsible for: 

Bayes' Postulate. If we are completely ignorant about 0, express this ignorance by setting P(O) = 1. 
So each 0 is a priori equally likely. Notice, first of all, and least important, that this is what is called an 

improper prior, because Jp(O) * 1. That turns out to be okay, anyway. What is not okay to most 
{l 

scientists is the attempt to get something for nothing. If we don't know anything about 0, how can we 
turn around and say P(O) = I? That is information which gives us a different posterior h(Oiz) than some 
other choice of P(O). But what if we decided we were completely ignorant about 03/2, or 1/0, or (02 + the 
speed of the current on the west coast)? Are we more ignorant or less ignorant about these? A little 
ignorance can be an arbitrary thing. 

In these notes we will express our ignorance by ignoring Bayes' Postulate. But watch for its head 
to appear when we discuss Maximum Likelihood. 

In some cases, the complete 

P(A) = ~P(AiBi)P(Bi) 
i 

cannot be found because, although we know some of the terms, we don't know them all. In this case 
we can still find relative probabilities for P(BiiA): 

P(BiiA) ex: P(AiBi)P(Bi) 

or 

h(Oiz) ex: ttziO)g(O) . 
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Change of Variables 

Let X be a discrete r.v., with p.d.f. f(x), X E A. Let y = u(x) define a one-to-one transformation 
A _ B, y E B. We want to find the p.d.f. ofy. Find the inverse transformation x = w(y) which maps B 
back onto A. Then the events 

Y = y : Y assumes the value y ; 

and 

X = w(y) : X assumes the value w(y) ; 

have the same probability. Therefore 

g(y) == P[Y=y] = P[X=w(y)] = ~w(y)], Y E B, discrete. 

= 0 elsewhere 

Example: X has the p.d.f. 

f(x) = 3! ( 2 )X( 1 )3-x X - 0 1 2 3 . 
x!(3-x)!"3"3 ' - '" , 

we want Y = X2. Such a transformation is not usually one-to-one, but here, there is no negative x, so 
it's okay; the inverse is X = fl, and not - fl. 

( ) 3! ( 2 )v'Y( 1 )3- v'Y - 0 1 4 9 
g y = Vy!(3- Vy)!"3"3 ,y - ",. 

In the case of joint p.d.f.'s oftwo or more r.v.'s, we must have as many variables in our new set as 
there were in our old set. Later we can reduce the number, if desired, by obtaining the marginal p.d.f. 

Example: 

Take two r.v.'s, X and Y, with 

f(x,y) = 
JL:J.lJe -/.I'e -/.I, 

x!y! 

o 

; X,y = 0,1,2,3 ... (joint Poisson) 

elsewhere 

We want the p.d.f. of Z = X + Y, a single variable. We must have a second variable as well, 
because we started with two. Choose something simple, e.g., Y itself. 

Z, = X + Y 

Z, and Z2 must be different; they also must not be functions of each other; i.e., if you know one, 
you cannot obtain the other without knowing something else such as the values of X or Y. 

Then 
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B = {(ZI>Z2),ZI = 0,1,2, ... ; Z2 = 0,1, ""ZI}; 0 ~ Z2 ~ ZI 

The inverse functions are 

These are unique. 

Then 

This gives us the joint p.d.f. What about ZI? 
z, 

gl(zl) = ~ g(ZI>Z2) 
Z2=O 

(~x+~yY' e- Il
·-

Il
• 

ZI! 
ZI = 0,1,2 ... (by the Binomial Theorem) 

=0 elsewhere 

This is a Poisson also, as we will see when we study the Poisson. 

Example - Continuous Case 

Let ftx) = 2x, O<x<1 

=0 elsewhere 

Define Y = 8X3 and find g(y). This transformation is one-to-one. Go back to basic probability. For all 
o < a < b < 00, the event a < Y < b will occur if and only if 

~ 3va < X < ~ 3v'i), since Y = a implies that X = ~ 3va, etc. Therefore 

P[a < Y <b] = P[ ~ 3va < X < ~ 3v'i)] 

3&2 
= f 2xdx = G(b) - G(a), where G is the c.d.f. of Y, by the definition of the c.d.f. 

3Vaj2 

We can derive the p.d.f. for Y from this if we change the variable of integration to dy: 

dx . 1 
- - -- from x = -2 3yY; dy - 6y2/3 ' 

Therefore: 



dx = d?/3 Now we can write 
6y 
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b [3yy ) 1 b 1 
P[a<Y<b] = f 2 T --rtf dy = f --wdy, and 

a 6y a 6y 

1 
g(y) = 6yl/3 . We never actually had to do the integral. 

The steps were: 

1) find the inverse transformation x = w(y). Here, w(y) = ; 3Vy. Note that XE A and y E B. Of 

course, both are subsets of the real axis. 

2) Assume w'(y) continuous and *" 00 for all y E B. Then g(y) = ~w(Y)]lw'(Y)1 ' because we must 
take the absolute value of w' to change variables in an integral. Because the p.d.f. is a density, i.e., a 
probability per unit length, we must do this step of multiplying by Iw'(y)l, which is called the Jacobean, 
to take account of the change in the size of the unit of length. 

A Mnemonic: w'(y) = ~;, therefore think of g(y)dy = f(x)dx where dy and dx are both set to be 

> 0, since lengths are taken positive. 

We will write the Jacobean, expressing the change in the unit of length, as 

J = dx 
dy . 

For multiple variables, we must use the multidimensional equivalent: 

Look at (Xl' X2) - (Y l' Y 2)' a one-to-one transformation. 

We wish to map A _ B. "a" is a small subset of A which maps onto the small subset "b". That 
is, the events (Xl' X2) E a and (YI' Y2) E b are equivalent and occur with the same probability. 
Then 

P[(YI> Y2) E b] = P[(Xb X2) E a] = f ff(xl>x2)dxldx2 . 
a 

Now change variables of integration. First, invert: IfYI = uI(xl' x2), Y2 = u2(xl' x2), then XI = wI(YI' 

Y2)' x2 = w2(YI' Y2)· 
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The transformation must be one-to-one, so these exist and are unique. We must also assume all 
the first derivatives of WI and w 2 exist. Both of these conditions can be relaxed for certain directions of 
transformation in certain cases, with sufficient care. 

new unit of area 

aWl aWl This is a determinant, 
-- which is non-singular aYI aY2 

J= because the 
aW2 aW2 transformation is one-to-
aYI aY2 one. 

This is proved in calculus. 

Then g(YI' Y2) = ~wI(YI' y2), w}YI' y2)]IJI· 

There is some additional discussion about change-of-variables in Chapter 9, "Propagation of 
Errors." 

From this theory, we can calculate the expectation of functions of random variables. Assume a 
r.v. X with p.d.f. f(x). We wish to find E[u(X)], where u(X) is some function of X which is continuous 
and has a unique inverse. Then u(X) is itself a r.v., Y = u(X), with X = w(Y). The p.d.f. ofY is g(y). 

E[u(X)] = E(Y) == J yg(y)dy == J u(x)f(x)dx 

Therefore we can evaluate E[u(X)] in either of two ways, whichever is more convenient. Ifwe 
have Y and g(y), we can use the first form. Alternately, we may have f(x) and be able to express Y as a 
function ofx. Then we don't need to get the p.d.f. ofY. 

In the case of two or more variables, u = g(x,y), we have 

E(u)= J J g(x,y)f(x,y)dxdy. 

For example, 

E(X + Y) = J J (x + y)f(x,y)dxdy 

= J J xf(x,y)dxdy + J J yf(x,y)dxdy 

= E(X) + E(Y) 
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Chapter 3. Some Special Distributions (Mostly Univariate) 

Uniform 

1 U(x) = f(x) = a ; 0 ~ x ~ a 

a 

E(x) = - dx = -I 
x a 
a 2 

1 a a2 a2 
V(x) = - r x2dx - - = -

a -b 4 12 

Bernoulli Trials 

A Bernoulli Trial has just two outcomes, e.g., the toss of a coin. We assign a r. v. k of 0 or 1 to 
each outcome, with probabilities as follows: 

{ 

.k Probability 

Outcomes 0

1 

q 

p=l-q 

f(k) = pkql-k ,which returns the above probabilities. 

The only parameter is q (or p). 

Moments: 

E(xm) = E(X) = 1 X P + 0 X q = p 

Binomial 

Suppose we have n independent Bernoulli trials. Define a "success" to be a result of 1. For all n 
to be "successes," the probability is pn. If there are k = n - 1 successes, the probability is n X pkq 
(there are n ways to have the "failure"). In general, if there are k successes, 0 ~ k ~ n, P(k successes 
in n trials) = 

(n) k n-k. (n) _ n! 
k p q 'k - k!(n - k)! . 

We will write B(k;n,p). This is the binomial distribution for k successes out of n Bernoulli trials, with 
probability of success p on each trial. k is the sum of the outcomes, each of which is either 0 or 1. 

- . 
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E(k) = nE(k = 1) = np since E is a linear operator and the trials are independent. 

It is a trivial exercise to show that the variance of the sum of trials is 

V(k) = CTf = npq = np(l - p) , 

since the trials are all independent, and therefore uncorrelated. 

Reproductive Property of the Binomial 

Take X,Y independent r.v.'s distributed according to binomial p.d.f.'s with parameter q as above. 
Then 

f(x,y) = [:x ) px q(nx-x) [~y ) pY q(ny -

y) 
What is the distribution of X + Y? The change of variables technique is described in the preceding 
chapter. Take: 

Zl = X + Y, Z2 = Y, 

Now the distribution for X + Y will be the marginal of this, summed over z2 from 0 to nu We can see 
immediately from inspection (since the p and q terms come out of the' sum) that this p.d.f. must have 
the form 

gl(Zl) = C(nzl , Zl) pZt q(nz,-zt) , 

where C is some coefficient which does not depend upon either p or q. Since this must be a p.d.f., 

C(nzl , Zl) = [~:,) , 

otherwise it's not properly normalized. Therefore Zl = X + Y is also a Binomial. This is a very useful 
property many distributions have, called the Reproductive Property. The sum of two or more indepen­
dent r.v.'s with certain p.d.f.'s is itself distributed according to that p.d.f. (usually with different parame­
ters). 

Example of use of the Binomial 

Consider three independent r.v.'s Xl' X2, X3, each with the same p.d.f., f(x), which could be any­
thing, discrete or continuous. Let Y be the middle value, that is, whichever of the Xi'S that lies 
between the other two in value. Determine the p.d.f. ofY. 

We begin with the c.d.f., which is easily defined. The total probability that the middle value lies 
below some chosen number y is equal to the probability that at least two of the X's do, simultaneously: 
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Gy(y) == P(Y ~ y) = P(2 or 3 ofthe Xi ~ y) 

We will adopt the notation Gy and F x' in a few cases where confusion could arise from the arguments. 

One Bernoulli trail is ~o see if one Xi ~ y. If so, count one success. The probability of one suc­
cess is 

p = Fx(Y) = P(Xi ~ y) 

for any Xi' since they all have the same F X. Then 

Gy (y) = B(2 ; 3 , p = Fx(Y» + B(3; 3 , p) 

= (~) p2q + n) p3 = 3p2q + p3 

= [Fx(y)]2 [3 - 3Fx(Y) + Fx(Y)] = [FX(y)]2 [3 - 2Fx(Y)] 

We cannot evaluate this any further until we know Fx. ~ut we can do: 

dGy(y) 
g(y) = dy = 2Fx(Y) fx(y)[3 - 2 Fx(Y)] + [Fx(YW [-2fx(Y)] 

= 6Fx(Y) fx(y)[1 - Fx(Y)] . 

Multinomial 

Consider a histogram with k bins. The probability that a given event will fall in bin "i" is Pi. 
Then, for a fixed number of events, the distribution of events among the bins is 

n! M(x . p n) - , Plx·P2X2 ... PkXk , i, i, - , , XI. X2· ... xn. 

k 
where n = number of events, Xi = contents of ith bin, and ~ Pi = 1. We will not write k as an explicit 

I 

parameter; it is evident in the number of terms in the products. For a given bin, an event is either in it 
(success), or out of it (failure). Therefore the marginal for that bin is a Binomial, and 

E(Xi) = npi , 

V(Xi) = a} = npi(l - Pi) 

This is a multinomial distribution. 

k-I 
Note that these xi are not independent, because Xk = n - ~ Xj. 

j=1 

Normally one thinks of the distribution of the number of events in a given bin as a Poisson 
(below). This is indeed the case once we remove the stipulation that n is fixed in advance. 

Another application is in the case of a particle or nucleus which has k - 1 different decay modes. 
"xk", the number in the last bin, might represent those which do not decay in the observing time. Then 
M describes the number of decays into each mode. 

- . 
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Poisson 

This is a very important model. We can look at a certain process which develops as a function of 
time or space. We consider discrete events, which either happen or don't. As a function of the param­
eter x (space or time), if we can assume 

1) the number of events in any interval of x is independent of the number in any other (non­
overlapping) interval; 

2) in any small interval Ax, the probability of one event is proportional to Ax and the probability 
of two or more events vanishes as Ax _ O. That is, 

PJ.~) = AAx + O(Ax) as Ax - 0 , 

where O(AX) is defined by 

lim 'O(AX) = 0 
ax_o Ax 

and 

~ P>.Ax(n) = O(Ax) as Ax - 0 
n>1 

3) This relationship is independent of x. In particular, A does not depend upon x. 

Then 

Then 

-IJ. n 
== ~;J,L = Ax,n = 0,1,2 n. 

J,L is the Poisson parameter. 

00 n 
~ PIJ.(n) = e-IJ. ~.!!:-, = 1 as needed. 

n=O n. 

The Poisson is very asymmetrical for small J,L, but becomes more symmetrical as J,L increases. It has 
fairly good symmetry even by J,L = 5 or 6. The outcome of any experiment observing a Poisson process 
must be an integer. The Poisson parameter, however, may be any non-negative real number. 



i i 
Note the changes in the 
limits of summation. 

28 

In a similar fashion, we can establish (exercise) that V(n) = Il. It is the same as the mean. 

We have already shown (Chapter 2) that if X and Yare Poisson, then 

(Ilx + lly?+Ye- Il'-IlY 
g(x + y) = (x + y)! ' 

which is PIl'+IlY(X + V), and therefore the sum of two Poisson r.v.'s is also Poisson, and the Poisson 
possesses the - Reproductive Property. 

This means that if we observe signal X and background Y in an experiment, each of which is an 
independent Poisson, then the sum is also Poisson. This has important applications for background 
subtraction, in which we must be able to estimate errors. 

It can be shown (exercise) that the interval size s is distributed as f(s) = Ae-xs, a distribution 
known as the exponential, which will be covered shortly. This is the interval in time "s" from one 
event to the very next, or its analogue if the parameter s represents a space dimension. The derivation 
does not actually depend upon starting at the previous event-we could have started anywhere, and just 
timed to the first event after starting. 

Here, we could substitute distance for time, and look for the distribution of e.g., single scattering 
collisions of angle greater than "something" along a track. The use of the Poisson there, of course, 
assumes that no process (e.g., slowing down) changes the scattering probability appreciably, since the 
probability must be the same in each small interval. 

Poisson Approximation to a Binomial Problem 

Consider the case of a collection of n radioactive atoms. In any particular time interval, T, some 
of them will decay and others not. Therefore we will have a binomial distribution of the number "r" 
which decay: 

n! P(r) = B(r ; n , p) = pTqn-T 
r!(n - r)! 

p = some probability for one atom which depends, of course, on T. The difference between this case 
and the Poisson is the limit "n" to the number of atoms: as more and more decay, there are less and 
less left to decay. Therefore the Poisson proportionality A depends on T, and so the number of decays 
per unit time interval, or in time interval T, is not Poisson. But if there are a lot of atoms, and 
pn « n, then this depletion is not noticed over the time interval of a given experiment. Then r < < 
n with high probability, and 
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n! 
(n-r)! = n(n-I)(n-2) ... (n-r+ 1) r terms 

:;;;;;: nr , since each term is about equal to n. Also, 

2 
qn-r = (1 - p)n-r = 1 - p(n ,-- r) + L (n - r)(n - r - 1) + 

2! 

2 
:::::: 1 - p(n - r) + i! (n - r)2 + 

= e-p(n-r) ~ e-pn . 

Therefore, 

nr (npY B(r· n p) -- - pre-np = e- np 
, , = , " r. r. 

which is a Poisson of parameter np. 

NOTE: As soon as n changes noticeably, the Poisson approximation is no longer valid. This is 
equivalent to saying that we are approximately Poisson as long as we are on the flat portion of 
the exponential decay law. 

The only difference between the true Binomial and the Poisson laws governing the number of 
decays in T is that the Poisson has no depletion of the source of events, so if the source is very large, 
and depletion is slow, the Poisson is fine. 

Exponential 

We can derive the exponential decay law from the binomial: Let "p" be the probability that any 
given atom decays in time dt (p is a constant of nature), let "r" be the actual number of decays in dt, 
and "n" be the total number of atoms at the moment. Then 

P( ) r! r n-r 
r = r!(n - r)! p q , 

where n is the current number (at the start of dt). Now, r is just the current value of Idn/dtl. Therefore 
E(dn/dt) = -E(r) = -np (the negative sign reflects, of course, that positive r decreases n), and 

E(n) = noe -pt . 

We shall see, from the law oflarge numbers, that the probability that n differs from its expectation by 
more than a small amount decreases as n increases. Therefore we usually say 

n = noe-pt . 

The true meaning of this expression is that n is intended to represent the expected number of events. 

The exponential p.d.f., describing the distribution of individual decay times, is given by 

f(t) = 1- e-t/to • E(t) = to; V(t) = t5 . 
to 
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As mentioned previously, the exponential also describes the distribution of interval lengths 
between events in a Poisson process. 

Gamma 

Start from the above exponential distribution of interval lengths in a process accurately (or accu­
rately enough) described by a Poisson: Suppose we want the distribution of the time T to k events. 
The r.v. T is the sum of the individual tj (the length ofthe ph interval), each of which is exponential. 
Each of the tj is independent. Choose a value t. 

G(t) = P(T ~ t) = 1· - P(T > t) . 

Note that the case T > t means that there are fewer than k events in t. 

Now we use the property of the c.d.f. that 
k-l 

P(T > t) = ~ P(X = x) = ~ all probabilities to have < k events 
x=o 

k-l (Xt)Xe-Xt 
= ~ , ,where X is the appropriate parameter. 

x=o x. 

From calculus (mathematical induction) it can be shown that 

k-l (Xtte-Xt 00 zk-le-z 

x~o x! = £ (k - 1)! dz 

Therefore 

00 Zk-le-z 

G(t) = 1 - £ r(k) dz. 

r is the gamma function: r(k) = (k - 1)!, for k an integer. 

Xt k-l-z 

I z e 
= 0 r(k) dz. 

If t ~ 0, G = O. Change variables to y = z/X so that the upper limit of the integral is just t, and 

t Xk k-l -Xy 

G(t) = £ y r(k~ dy 

Therefore the p.d.f. of t is 

O<t<oo 

=0 elsewhere. 

This is called a gamma distribution. It is the distribution of the total time to exactly k events. 

We just quote without proof: 

E(t) = k/X 
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V(t) = k/'A2 

The exponential is the special case k = 1. 

The Normal or Gaussian Distribution 

To help motivate this, will study the Central Limit Theorem first. By way of introduction, we 
have the Weak Law of Large Numbers. 

Ifwe have n identically distributed, independent random numbers Xi' and if the mean J.L and vari­
ance (J2 of the underlying distribution exist, then the r.v. 

1 
Y n = n (X 1 + ... + Xn) 

converges (in probability) to J.L as n _ 00. (The strong law says the same thing, but holds under more 
general conditions than what we shall show, and also shows a stronger form of convergence than "in 
probability"). 

Proof: 

Since all the X. are independent, V(Y n) = l. ~ V(Xi) = (J2 
1 n ~ n 

Therefore, by the Chebychev Inequality, the probability that Y n differs from J.L by more than a 
pre-specified amount shrinks to zero as n increases: 

1 (J2 1 
P[IY n - J.LI ~ E] ~ "2 - = "2 V(Y n) . EnE 

This converges to any arbitrarily small probability for a given E by increasing n. This type of conver­
gence is called convergence in probability. (The strong law has convergence "almost surely," or 
"almost everywhere"). 

In fact, there is convergence even if (J2 is not finite in certain cases, but we won't go into this. 

The law of large numbers means that the sample mean is a useful quantity to use in the statistical 
problem of estimating the true population mean. As n increases, the sample mean converges to the 
true mean. 

Because Chebychev's inequality must hold for any distribution, it is usually very conservative for 
specific cases. Therefore convergence in this theorem may be more rapid than implied by the proof. 
This law implies a certain long-run stability in the relative frequency of occurrence of any event in a 
sequence of trials of the experiment. Look at a rather extreme case: a coin toss. This is a Bernoulli 
process: 

p = 1/2 (H), q = 1/2 (T). 

o 
T 

JL=P 1 
H 

All the probability is concentrated at the 
ends. But the mean of one trial is in the 

middle. 



The expectation value of 

1 n 
Yn = - ~ Xi 

n i=1 
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is np = 1/2 (= p), for n tosses, where X. = 0 or 1 for each toss. n I 

By the Chebychev inequality, how many trials do we need in order to have the average Y n within 
a specified interval about p with some specified probability? We want the probability P that Y differs o . n 

from p by < f, where f is some specified positive number. That is, 

P[IYn - pi < f] ~ Po , 

Therefore 

1 (J2 
P[IY n - pi ~ f] ::s;;; 1 - Po ,which means we must set 1 - Po = 2" - ,by Chebychev. 

f n 

We therefore need the variance: 

(J2 = pq for one toss . 

By the addition law for variances for independent tosses, 

V(Yn) = V [! ~Xi) = ~2 ~V(Xi) = ~2 n X pq = Pn
q

; and 

Let f = 0.05 and Po = 0.68: 

n = pq 1 1/4 1 310 
f2 1 - Po (0.05i 0.32 --

tosses needed to get Y
n 

within ±0.050f 1/2 with probability 68%. Check: 

P[0.45 ::s;;; Y n ::s;;; 0.55] 

= P[310 X 0.45 ::s;;; r::S;;; 310 X 0.55] = P[140 ::s;;; r::S;;; 170] , 

where r is the .Binomial parameter = the number of heads; 

[ )

310 170 =; (310)! 1~ r!(31d - r)! 

Take logs, using Stirling's approximation: 
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1 
fnx! :;;:;;: -x + x fnx + "2 fn(21rx) 

and find P :;;:;;: 0.92. Clearly, even in this rather extreme case, Chebychev's Inequality was 
overly conservative (0.92 instead of 0.68) 

We can also relate this to the standard deviation: 

Demand that u(Y 0) = 0.05, i.e., 0.05 is one standard deviation (about 68% of the probability if 
Yo were Gaussian); 

Therefore 

.. fN
n
q 

= 0.05 ,hence n = pq 100 V n (0.05i 

This should be more reasonable. 

Although it is commonly assumed that ± one standard deviation should cover about two-thirds 
of the probability, for the Binomial this may be far wrong. For one toss, there is exactly probability 1.0 

that Y 1 is within ± vpq = ~ of I.L = ~. For two tosses, this changes to a probability of ~ that Y 2 is 

within ± 1/(20) of ~. As the number of tosses n increases, the probability that n is within 

± Vpq/n of ~ converges fairly quickly to 68.3%, which is appropriate for the Gaussian distribution we 

are about to consider. It is this sort of convergence to a Gaussian, and the consequent importance of . 
the Gaussian, that is the subject of the: 

Central Limit Theorem 

This theorem is "central" to statistics. It tells us more than that the average converges to the 
population mean. It tells us how the average is distributed. 

We know that the average becomes arbitrarily tightly distributed about the true mean. Therefore, 
we standardize to a variable that will neither shrink to a a-function nor expand to an infinite blob: 

First, define Yo = 1.. ~ Xi , 
n 

Xi a r.v. distributed according to almost any p.d.f. with mean I.L and finite variance u2• Then take 

Y - II Z = --=.0=-----,;::::""_ 

o u/Vn 

since E(Y 0) is I.L, this has mean O. Since V(Y 0) = u2/n, 

V(Zo) = V [~) + V (_I.L_) 
u/Vn u/Vn 

n 
= 2" V(Yo) = 1 . 

u 

Therefore Zo has fixed mean and variance independent of n, and we can examine Zo as n - 00 . 
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Then the statement of the CL.T. is 
Z 

lim P(Zn :s;:;; z) = _1_ I e -1/2u'du == erf(z) 
n':"'oo ~ -00 

The function erf(z) defined by this equation is called the error function. We will not prove the CL.T. 
Almost any of the texts mentioned in the back will supply a proof. The proof requires the use of 
characteristic functions, which, in the interest of brevity, we do not cover in these notes. 

NOTE: the error function is sometimes defined as 

2 z , 
¢(z) = y;. £ e- t dt . 

The relationship of this form to ours is: erf(z) = ~ + ~ ¢(z/ V2) 

The error function is the c.d.f. of the standard normal, whose p.d.f. is therefore 

1 ' f{z) = -- e-z /2 
~ 

Since this is symmetric about 0, the mean = 0; we have already derived that the variance = 1. We can, 
of course, have non-zero mean JL and variance u2 not equal to 1: 

- (x-I')' 
1 2 2 f{x) = -- e (J == N(x ; JL ,u) . 
~u 

This is the distribution law obeyed by the average, Y n' above, as n - 00. We will use the terms 
"Gaussian" and "normal" interchangeably to refer to this distribution. 

Lots of measurement distributions seem to be approximately normal; e.g., in measuring the length 
of a table there are contributions to the errors from lots of small effects, such as the behavior of indivi­
dual muscle fibers, effects due to surface roughness of the table as our ruler slides along it, random 
vibrations, etc. Any time an error can be regarded as due to the sum over lots of small effects, expect 
the final measurements to be approximately normal. 

Even though each type of effect may be described by a different normal in the CL.T. limit, the net 
effect equals the sum of these, and we will see that the sum ofa set of normal r.v.'s is itself a normal 
(reproductive property). Hence, the fact that there is a variety of contributions to the error is not 
important-what is important is that each type of contribution contributes a small amount a large 
number of times to each measurement. 

The case when there exists a few large effects changes this; for example, the penetration of charged 
particles in matter, undergoing lots of small energy-loss collisions. This yields a fairly tightly distri­
buted range. A few particles undergo large energy-loss deflections, which are more catastrophic colli­
sions. This gives straggling. Early tests (before track detectors) for the nature of rays-a, {3, 'Y-were 
based on this fact. That is, neutral particles tend to undergo only the large collisions or none at all, giv­
ing a wide distribution of ranges. The ex and {3 particles had tightly defined ranges; the x-rays did not. 

The angular deflection in multiple scattering works this way also. If the net deflection is small, 
then it is likely due to a very large number of small scatters. If the net deflection is large, then we prob­
ably have the same small scatters plus a few large scatters, and we expect deviations from the Gaussian 
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shape, due to the small number of large angle scatterings. 

What we have then is a lot of scatters in any small range 0 to 0 + dO, 0 small. Each of these gives 
us a Gaussian. The result is the sum of all these which also yields a Gaussian, even though the u2 is 
different for each value of 0 [the number of scatters in (0 to 0 + dO) is Poisson, with parameter depend­
ing upon 0 according to the laws of Rutherford scatteringj. However, for large 0, there are very few 
scatters, for example, none or 1 or 2. Therefore, the distribution of the end result of large angle scatters 
only might look like: 

e 
(omitting the case of no such scattering) 

There are not enough of these per track to approach a Gaussian. Therefore the final net deflection 0 
might look like: 

,..-__________ nearly Gaussian here, where the few I large-angle scatters are swamped by the 
many tracks which have only small-angle 

~ ::~:IS in ilie re~on where it is less ~ probable to get from the many small-angle 

Caution, or Murphy's Rule of Real Life 

e scatters than from the occasional large-angle 
scatter. 

This is often true, i.e., that we get longer tails than we expect, because of rare contributions of 
large magnitude to our process. Therefore, simulations of, e.g., detectors, should take account of possi­
ble non-Gaussian tails in any random process. If what goes on in the tails of our random processes is 
important (for example, as a source of background to some other process), we need to be aware that 
there can be many more occurrences there than Gaussian models would predict. Depending on where 
we consider the "tails" to lie, this effect can be an order of magnitude or more. 

To recapitulate, the standard form of the Gaussian or normal is 

N(x' 0 1) = _1_ e-x2/ 2 
" y'2;;: 

Then 
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N(x ; JL , 00) = ! N [ x : JL ; 0 , 1 ) 

Also, 

J N(x; JL , 00) dx == erf [z - JL) , 
-00 00 

since erf is defined for the standard form. The standard form is found in tables. 

Some useful numbers. The probability of a Gaussian r. v. exceeding ± k standard derivations from 
its true mean is: 

1/2 ifk is 0.67 
.317 1 
.046 2 
.0027 3 
.00006 4 

These numbers come from the error function. 

Gaussian Approximation to the Poisson 

It is· often important for what we do that the Poisson can be approximated by the Gaussian in the 
limit of large numbers. Begin with 

-p. 
Pp.(n) = ~ JLn • 

n. 

The mean ofn is JL. Assume JL » 1, and look at n close to JL, i.e., look at x = n - JL; n » Ixl. We 
will also require x > > 1, which is usually satisfied if JL is really large. 

e-P. JLx+p. 
Pp.(n) = Pp.(x + JL) = (x + JL)! • 

__ e -p. JLp. { __ JL_. __ JL_ JL} ... -- if x> 0 
JL! JL + 1 JL + 2 JL + x 

(We could do this similarly for x < 0.) Stirling says JL! - (27rJL)1/2 JLp. e-P., and so 

e -p. JLp. 1 if JL» 1 . 
JL! :;;;; V27rJL 

Also 

JL • _JL_ _JL_ = 1 
JL+ JL+2 JL + x 1 + 1/ JL 1 + 2/ JL 1 + x/JL 

. . 
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and so, finally, 
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[
I 2 x] 1 • - -+-+ ... +- --~i 

P ( +) 1 I' I' I' _ 1 I' i-I I'x IL ~--e ---e 
V27r1L V27r1L 

1 x 
1 --I(x+l) 1 -x2/2 

= -- e I' -- -- e I' since x» 1 , 
V27r1L - V27r1L 

which is the Gaussian, if n is interpreted as continuous, 

1 
= V27r1L e with mean = IL and u2 = IL also. 

Therefore if we have a bin in a histogram which filled by a Poisson process, then the number of events 
is approximately Gaussian about its expected number, and the expected variance in that number is the 
same as the expected number itself. 

Reproductive Property of the Gaussian 

A reproductive property is to be expected because the Poisson is reproductive. Let X and Y be 
independent r.v.'s distributed as 

N(x ; ILx ,u;) and N(y; lLy ,ui) ,resp. 

Then we can show that Z = X + Y is distributed as N(z ; IL + IL , u; + uy2) (this implies also that the x y . 

average of two Gaussian r.v.'s is Gaussian). We know already that ILz = ILx + lLy and u; = u; + ui 
(that's true for any p.d.f., for independent r.v.'s); what we don't know already is that Z is normal. 

z 
y 

The proof is tedious, but straight forward. The same result holds for Z = X - Y. 

By extension, the sum of any n Gaussian r.v.'s is Gaussian. That is, the C.L.T. holds for any n, in 
this case. 

Higher moments: 

= (2k - 1)!!u2k n = 2k 

Remember: (2k - I)!! == 1.3.5 ... (2k - 1), 



e.g., E[(X - ~)4l = 30"4 

(=> Kurtosis = 0) 

Bivariate Normal 
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Take 2 variables which are themselves normal, but not necessarily independent. Then the distri­
bution of these is 

This is the bivariate normal. It is a function of five variables: ~I' 0" l' ~2' 0"2' and p; it is necessary that 
0"1 and 0"2 be> 0 and Ipl :0;;;; 1. If p = 1, the variables are degenerate, being linear combinations of each 
other. 

If we want a contour of constant probability density, i.e., ftxl' x2) = constant, then define 

G = 1 [(XI - ~1)2 2p(xl - ~1)(X2 - ~2) + (X2 - ~2)2 ] 

(1 - p2) O"r 0"10"2 0"1 

and set G = a constant k. 

These contours are ellipses. 

J..i-2 

. We will show that it is useful to make 
probability statements of the form P[(X I ' 

X2) E ellipse 1 

. . 
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----l------"~=-.+_-.--.-

It is clear that p plays the role of a correlation coefficient, and it can be shown that it is. 

In general, 

11-2 

keep (11 and (12 constant; 
change p. 

This is the bounding rectangle. 
Ifk = 1, then (11 and (12 

are as shown. 

(11' (12' ""1' and ""2 define a bounding rectangle as shown. Then p describes the orientation and 
thin-ness or fat-ness of the ellipse within it. If the two variables are more highly correlated, the ellipse 
tilts more (one way or the other, depending on the sign of p) and also becomes slimmer, so that the pro­
bability is more highly concentrated. Note that the angle of the diagonal of the rectangle is not 45 0 

unless (11 = (12' i.e., this angle depends on the relative errors. 

The angle ofthe major axis of the ellipse is given by 8 where 
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Note that 0 = ± 45° for all p "* 0 if u l = u2• If, in addition, p = 0, the ellipse degenerates into a circle 
whose axes are, of course, undefined. If p = ± 1, the major axis is a diagonal of the bounding rectangle 
[easily demonstrated from tan 20 = 2 tanO/(l - tan20)]; otherwise neither axis lies along a diagonal 
unless u l = u2• To invert the above for 0, viz: 

_ 1 -I { 2pUIU2 } 
01 - "2 tan uf - Uf ' 

one must pay careful attention to quadrants. Since one usually defines the arctangent function to lie 
between -7r/2 and +7r/2, it is customarily said that 01 is the angle of the major axis if u l > u2' other-
wise it is the angle of the minor axis. ' 

The ellipses at G = k are called covariance ellipses. The meaning of these ellipses is that the pro­
bability that a point (XI' x2) sampled from this bivariate normal will lie within the ellipse is given by 

I 1 --G 
P[G ~ k] = V 2 r f e 2 dXldX2. 

27rUIU2 1 - p d";;k 

The ellipses depend upon p, as shown in the preceding figure for k = 1. Even though, as ipi increases 

the area obviously decreases, the probability within the ellipse remains constant (note: ~ 
I-p 

increases as ipi increases) for constant k. The probability just becomes more concentrated. It can be 
shown in fact that the probability of lying within the ellipse depends only on k and not on Ill' 1l2' p, or 
even u l or u2 (of course, our ellipse will move or change shape if we change those parameters, but the 
probability of finding a point within it depends only on k). This fact should become clear when we dis­
cuss the x2 later. 

Useful numbers, two-dimensional case: 

0.39 1 
0.63 2 
0.78 3 
0.86 4 
0.92 5 
0.95 6 

Notice that these probabilities are quite a bit less than the single-variable case we saw before. They are 
also less than the product of two single-variable cases. This is a k standard deviation ellipse, but it is 
not the same as saying that both XI and X 2 are within k standard deviations. The case in which XI 
and X2 are measured in an experiment, and it is assumed that the random measurement errors are such 
that the two variables are sampled from a bivariate normal, is a very important application of this 
model. In this case the covariance ellipse is often called the error ellipse. Error analyses involving 
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Gaussian variables are discussed in Chapters 10 and 11. 

As p increases, there is more and more area inside the box which is not included in the ellipse. 
Therefore, it is a bit misleading to quote as the outcome ofa measurement of Xl and X2 the one stan­
dard deviation limits on each of Xl and X2 separately without stating p. This is sometimes done, any­
way, as a conservative approach (it means one is quoting a larger area of Xl - X2 space as the "one 
standard deviation" region, but in a way which depends upon the choice of variables and is therefore 
not entirely logical), or out of ignorance. We might conclude that points such as 

}CT2 p>O 

k=l box 

are much more likely than they really are. If p is fairly close to ± 1, such points could be 5 or more 
standard deviations from (Ill' 1l2), yet lie within the quoted "one standard deviation" limits. In any 
case, where p is fairly close to ± 1, we should give p, or draw covariance ellipses, when quoting errors. 
If p is near zero, the error ellipse will nearly fill the one standard deviation box, and the box is a rea­
sonable approximation to the ellipse. This suggests that we should consider a change of variables to an 
uncorrelated set. However, that often is impractical, because we want to quote our results in terms of a 
physically meaningful set, and the correlation is an artifact of the measuring process not necessarily 
related to the underlying physics. 

Conditional Distributions for the Bivariate Normal 

Any straight slice through a bivariate normal gives a univariate normal. Therefore, any condi­
tional p.d.f. is normal, with conditional expectation and variance, for example: 

~ vertical slices, i.e., the marginal 

The profile of the p.d.f. (which is the conditional 
p.d.f. for X2) along any slice is the same (in 
shape), even though the ellipse may be wider or 
narrower, and even though we may move as far 
from the central region as we please, because 
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Dividing by fl(x l) compensat~ for the fact that we may draw our slice as far from ILl as we choose. Of 
course, unless p = 0, the position of this p.d.f. for x2 changes with xI' but its shape is unchanged, since 
the variance does not depend upon the XI value of the slice. As always with a Gaussian, the mean suf­
fices to describe the location, once the variance is known. The mean, E(X2Ixl) lies along a straight line 
of slope p(u/u l ), which is neither of the ellipse axes nor the diagonal of the bounding rectangle (for 
P :1= ± 1, of course). It passes through (ILl' 1L2) and two of the points at which the ellipse is tangent to 
the bounding rectangle. With Ipi < 1, this line has smaller slope, in absolute value, than that diagonal 
ofthe bounding rectangle most nearly aligned with the major axis (which has slope ± u2/u l ); from this, 
the two points of tangency in question are obvious. 

We could take a slice at any angle and still get a univariate normal. The normal we get can be 
found by making a change of variables such that the slice is along one axis. 

Covariance Matrix 

Let us now define the covariance matrix as 

x = [~~) 

~ = [:~) 
We shall use the notation for the determinant 

det(V) = IVI . 

We assume that V is non-singular, so IVI :1= O. Then it is easy to show, in matrix notation, 

{(XI, X2) = 2~ IVI- 1/2 exp [ - ; ex - mT V-I(x - m ] , 

which displays the formal similarity to the univariate normal. The notation "T" represents "tran­
spose." 

Note that V non-singular requires p :1= ± 1. That is, the two variables must not be linear combi­
nations of each other. Otherwise we should make a change of variables and take the marginal distribu­
tion, i.e., collapse down to a one-dimensional space, for most purposes. 

We may also refer to this as the variance matrix. 

Theorems 

i) If X and Yare bivariate normal r.v.'s, then it is always possible to find a change of variables to 
U and V, the new variables being a linear combination of the old, s.t. the new variables are uncorre­
lated. 

. . 
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To do this, we just diagonalize V, using results from matrix theory. This produces a rotation 
through an angle 8, without a scale change. 

y 

, 

x 

The standard errors will change. The semidiameters will become the standard errors, given by (the 
square roots of) 

o,;o}(1 - p2) 
rJ = ~--~--~~--~~--~--~ 

u; sin28 - pUxuy sin28 + u; cos28 ' 

for this choice ofU and V axes (of course, p refers to the X-V correlation). 

If p > 0 and therefore sin28 > 0 (since the ellipse tilts up to the right in that case, and 0 < 8 < 
7r/2), then rJ increases with increasing p and rJ decreases with increasing p. Pictorially, the covariance 
ellipse becomes longer and thinner. Recall from earlier that 8 may be computed from 

_ 1 _\ [ 2puxuy ) 8--
2 

tan 2 2 
Ux - Uy 

(provided we are careful about quadrants). 

Note that, if we simply make a rotation, the areas don't change. Therefore, P[(U,V) inside ellipse] = 

P[(X,Y) inside ellipse] 

ii) In particular, we can always find a linear transformation 

U = ex + .5, C a matrix, s.t. the components of U are standardized independent normals 
(mean 0, variance 1, correlation 0). The value ofG (defined earlier) does not change at the 
transformed point corresponding to the old point. This transformation takes an ellipse into a circle. In 
general, this requires a rotation until p = 0, a translation until J.L = J.L = 0, and a scale change to make 

u v 
the variances unity. 

iii) If X is bivariate normal with diagonal variance matrix, then the components of X are 
independent. That is, that the correlation is zero is necessary and sufficient for the components of X to 
be independent. This is not true in general for other distributions, as we saw. 
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Multivariate Normal 

Let (XI' ... 'Xn) be a vector of normal r.v.'s, and let ut be their variances, ILj their means, Pij their 
pair-wise correlations, and define 

V= 

(Note, Pij = Pji' therefore V is symmetric). Then 

f(XI, ... , xn) = (2:)n/2 IVI- 1
/2 exp[ - ; (x - ;)T V-lex -;) ] 

is their distribution. This is the multivariate normal distribution. 

The above three theorems apply here, as well. This assumes V is non-singular, i.e., none of the 
variables Xj can be expressed in terms of linear combinations of the others. If V is singular, it is often 
best to make a transformation down to a linearly independent set of variables. 

In general, V is positive-definite, so that any quadratic form y = XTVX, X a column vector of 
coordinates, is positive, and any contour y = constant is an ellipse. 

This form for the multi-variate normal suggests a useful generalization of a single-variable prob­
lem. Much of the statistics we shall do depends upon the Gaussian. It will often be true that we can 
generalize from a single-variable problem if we replace 

XbyX 

IL by JL 

u2 by V 

u- 2 by V-I (V non-singular) 

u by IVI I/2 

1 
yI2; by (27r)n/2 

This is a rule of thumb, not a law. 

The Xl Distribution 

Let XI ' ... , Xn be independent normal r.v.'s (hence, uncorrelated), each with mean ILj and vari­
ance uj • Then 

n 
f(Xj ; JLj , ui) dXj = II 

j=1 

[ 
1 [x. - J.L" ) 2] exp -"2 1 Uj 1 dXi 

y27ru? 
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[
In [Xi - JLi ) 2 ] n 1 

= exp - - ~ II ,~dxi . 
2 i=! O'i i=! V 27r0'? 

We define the variable called chi-squared as 

x2 = i [Xi ~ JLi ) 2 . 
i=! 0'1 

The x2 has a parameter, n. "n" is called the number of degrees offreedom (d.o.f.) of the x2, since each 
Gaussian variable xi is free to vary independently according to the dictates of its own distribution. The 
x2 is a single variable, not the square of a variable; one does not usually refer to a variable "x" = V;;:, 
but it can be done for certain purposes. 

X-JL Examples: For n = 1, let z = --. Then 
0' 

! 2 1 - - z 
f(z)dz = . f'\ e 2 dz (our normal). 

v27r 

Let Q = Z2 (== x2) 

dq = 2zdz therefore dz = dq = dq 
, 2z ±2vQ 

This is not a 1-1 transformation, because the ±Z region goes into the +Q region only 

-IZI +IZI Q 

The probability that Q is between Q and Q + dQ = the probability that Z is between Z + dZ around Z 
= YO and between Z and Z + dZ around Z = - YO. Therefore 

f(q) dq = _1 {e - + q [~ + ~) } 
y'2; 2vQ 2vQ 

(the intervals dq or dz are always taken to be positive only) 



1 1 --q 
=--e 2 dq 

V271"q 

1 , 1 - - x 
Q = x2 => f(x2) = e 2 

V271"X2 
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This distribution is the x2 with one degree of freedom. 

x' - J.L' 
For n = 3, Zj = J J, standardized normal variables. x2 = Zr + zi + zl = R2. It is con-

O'j 

venient to think of a 3-dimensional volume whose Cartesian axes are Zl' Z2' Z3' Then R 2 is the radius 
of a sphere. If is left as an exercise to show that 

f(R)dR = _2_ R2e-R'/2dR . 
y'2; 

Change variables to x2 = R2.· Again, x2 is a random variable, whereas R2 is the square ofa random 
variable. That is, 

dx2 
= 2RdR, and 

2 x2 , (",2)1)I//L.2, 
f(x2)dx2 = -- --- e-x /2 dx2 = ~ e-x /2 dx2. 

y'2; 2v? y'2;. 

This is the x2 with three degrees of freedom. 

In general, 

r( ~ ) is the Gamma function: 

r(n + I) = nr(n) 

_ (n - 2)!! . I . 
- 2(n - 1)/2 V7I" , n odd, > 1 

Recall, (n - 2)!! = (n - 2) X (n - 4) X ... X 5 X 3 X 1. 

. . 
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I 

:2 
i 

n= 50 

6 12 18 24 30 36 42 2 
A 

Using r functions, we can show 

E[x2(n)] = n 

CT~(n) = 2n 

Mode (peak) = n - 2 (at 0 for n = 1 or 2). 

If we have n Gaussian variables X. which are not independent, (i.e., they are correlated), we can 
1 -

do a change of variables S.t. the variance matrix is diagonalized, without changing the value ofx2. That 
is, we remain on the same covariance ellipse G == x2 = k. G is defined in the above discussion on the 
Gaussian. Then the new variables are independent, and therefore we see that (x - ~TV-l(x - ~ is 
still a x2(n) even in the case of non-independent variables, unless V is singular. If V is singular, there 
exists a linear relationship among some of the variables. This is very important in the case of con­
strained fitting, where the constraints may provide just such a relationship. In this case, if there exist 
m < n independent variables, where m is the dimensionality of the largest such set, then 

~ [Xi -. lLi ) 2 ~ is x2(m) (note: the sum goes to "n") . 
i=1 CT1 

There are other derivations of the x2, but we see it most often as a sum of variables of this form. 

Reproductive Property 

Let x? be a set of variables, each of which is x2(ni). Then ~xr is x2(~ni)' The proof is straight­
forward. 

Sometimes one sees x2 In quoted as a figure of merit in a test of a hypothesis (e.g., least-squares fit­
ting, to be discussed in Chapter 11). That is, we wish to convey a feeling for the probability of a certain 
x2 value we have observed, in a manner which removes some of the dependence upon n. This is 
flawed, because values of x2 In ~ a few are of high probability at low n, whereas at high n, a value of, 
say, 1.5 may be highly unlikely. For example, the probability that x2/n > 2 is: 

-- 15% for n = 1 
9% for n = 4 
3% for n = 10 
1/2% for n = 20 
< 10-2% for n = 50. 
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One more distribution: 

The Cauchy (the Breit- Wigner) 

1 1 
C(x; 1-£, a) = - 1 + ( )2/ 2 -00 < x < 00 

1!"a X - 1-£ a 

like a long-tailed Gaussian 

00 1 00 

E(x) = J x C(x;l-£,a)dx = - J 
-00 _ 1!"a_oo 

= 1-£ + 00 - 00, 

which is indeterminate. Higher moments likewise do not exist. We can define a mean as 
L 

E(x) = lim J x C(x;l-£,a)dx 
L_oo -L 

= 1-£ + .1 lim _1_ t'n[1 + (x - 1-£)2 JI L 
2 L-oo 1!"a a 2 _ L 

This is the bad boy of all the distributions in common use. No trick will enable us to define a finite 
variance. 

The Cauchy has a strange reproductive property. 

Let X. be a set of independent r.v.'s distributed as C(x-,I-£,a). Then x = .1 ~Xi is also C(X;I-£,a) i.e., 
lin 

the same Cauchy as each one separately. Therefore the mean of n Cauchy variables does not converge 
to anything - because of the long tails. It violates the C.L.T.! The reason is, it has no finite variance. 

. . 



An example of the Cauchy: 

1 
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l"2r 
1 

C(M;Mo'"2 r) = -;- l' 
(M - Mof + ("2r)2 

the familiar Breit-Wigner. In physical problems the long tails are truncated by energy conservation or 
something and the resultant distribution is well-behaved in the sense that all moments exist. However, 
the mean and variance may be sensitive to the exact manner in which the tails are cut off. Since the 
tails are usually the least interesting and least well-measured portions of the distribution, one frequently 
uses the peak location and the "full width at half maximum" (FWHM) for measures of location and 
width. The peak occurs for x = f.L, and the p.d.f. is half its peak height at x - f.L = ± a (yielding FWHM 
= 2a), so that these are rather satisfying measures of location and width. For a Gaussian, the peak is of 
course likewise at x = f.L; the curve falls to 1/2 peak height at x - f.L = ± 1.1774 u so that the FWHM is 
2.355 u. 

This is the end of the discussion on distributions. There are other distributions which are useful in cer­
tain cases-we will discuss them at the appropriate time. (They are less familiar.) 
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Chapter 4. Monte Carlo 

Let us digress for a moment into Monte Carlo. Many of the results of this section may be found 
in Rubenstein (1981), to which we are indebted for most ofthe examples. Rubenstein should be con­
sulted for further details and additional topics. 

Any statistical problem for which probabilities can be estimated (or, in some cases, at least 
guessed at) can be simulated on a computer. In principal, this includes problems of arbitrary complex­
ity, in which the probabilities at one stage depend upon exactly what happened at earlier stages. The 
creation of high energy physics reactions and subsequent propagation of the particles through a detector 
with a complex configuration is an example. One can then study the response of the detector as a func­
tion of physical quantities of interest at the moment of creation. Another example involves the physics 
of the creation of these events. One may have a probabilistic model for creation in terms of certain 
variables and need to look at its predictions in terms of a large number of other variables: One may 
need to do this after removing certain portions of the data necessitated by the experimental conditions 
(e.g., portions with large backgrounds), and after incorporating the characteristics of the detector. 

The correct p.d.f. 's for such processes are typically completely unobtainable by direct calculation. 
Monte Carlo programs for extremely complex cases may sometimes take time to set up, and often still 
involve assumptions untestable except by the final result. However, it is often true that even 
moderately complex cases can be set up quickly, perhaps using already-available program sub-units. 
Even in simple cases a one-page Monte Carlo can provide valuable insight into a problem, for example 
revealing sources of errors in attempts at direct calculation. 

These processes must be broken down into a number of separate random processes. Each sub­
process is simulated with the use of random numbers "generated" according to a certain distribution. 
The basis of this in most cases is a "pseudo-random" number generator, a function which returns a 
number (a "uniform deviate") claimed to be sampled from a uniform distribution on the range 0 to 1. 

Definition: pseudo-random: The numbers satisfy various statistical tests for random numbers uni­
form between 0 and 1, but they are generated by a reproducible process. The chain of numbers is ini~ 
tiated by some starting number Xo' which may be kept the same from run to run or changed (e.g., to 
the time of day in milliseconds) to provide a "random" starting point. The starting number Xo is not 
used as one of the random numbers, but is used in the calculation of the first random number. That 
first number is then usually used in the calculation of the second, and so on. 

All pseudo-random number generators will fail a "truly randomness" test somewhere-i.e., they 
all have problems. For the most part, these problems are tolerable, but it's worth checking one's results 
closely. It is not uncommon to find errors due to lack of randomness. In some cases, you may need to 
switch to a slower but better generator. Truly-random number generators can be constructed. They are 
based upon naturally-occurring random processes, e.g., radioactive decay. These are very difficult to 
make, and can be wrong. Numerous psychics have built such devices and claimed extra-ordinary 
powers based upon their ability to interrupt them more frequently at certain numbers than statistics 
would predict. In spite of this testimonial, correct devices have been built and used for certain applica­
tions. 

Our problem is to transform this uniform deviate to a number sampled from some other distribu­
tion on some other range. There are three basic methods employed: 

.• :. 
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Inverse Transform Method 
Composition Method 
Acceptance-Rejection Method 

Single- Variable Case 

Inverse TransJorm Method 
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In the change-of-variables discussion, we considered a p.d.f. as a function of one variable u and 
re-wrote the problem in terms of a p.d.f. for a functionally-related variable x. There we saw that to go 

from u - x, where If(u)du = 1, g(x) is (almost) any p.d.f., we wrote g(x) = ~w(x)] ~: ,where if x = 

v(u), then u = w(x). 

For the continuous case, if G(x) is the c.d.f. of the desired variable x, then, for u a random deviate 
uniform on [0,1] returned by our generator, let us choose 

x = G-1(u) . 

Therefore u = G(x) and G is our inverse function w. This is the general solution if G -I is a one­
to-one transformation, because f(u) = 1. Then g(x) will be the uniform p.d.f. times the Jacobean, that is 

1 X ~: = I ~~ (at least, where everything is > 0), as desired. So, if we have a uniform random 

deviate u, choose x = G-1(u) to get a random deviate x distributed according to g(x). Then P(X :s;;; x) = 
P[G-1(U) :s;;; G-1(u)] = P[U :s;;; u] = u (since u is uniform on [0,1]) = G(x). 

We choose u 
uniformly along 
here. Then, 

G(x) 
1 

that gives x along here, 
according to g(x). 

x 

If the slope of G is large, then a fairly large range in u on the vertical axis will choose values from 
a fairly small region of x, and vice versa if the slope is small. This is just what we want because if the 
slope is large, a small increase in x increases the c.d.f. by a lot, which means there is a lot of probability 
in that range. 
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If G is not one-to-one, we define 

x = G-1(u) = smallest {x: G(x) ~ u} . 

u=G(x) 

x 
e.g., the case with plateaus 

/ 
We choose this x ifu happens 
to put us on the plateau 

The Inverse Transform Method is the most straightforward approach. It is usually, but not 
always, the fastest approach in terms of computer time. 

Example: Exponential. 

f(x) = ~ e -x1fJ; 

F(x) = 1 - e- x1fJ 

o ~ x < 00; {3 > 0 

F(x) must be chosen with equal probability in each equal interval dF. We will set F(x) = u, a uni­
formly distributed r.v., and solve for x. Then u = 1 - e- x1fJ and~tn (1 - u) = -x/{3. Therefore, 
x = - {3 tn (1 - u) will be exponential. 

Note: 1 - u is just another uniform deviate on the same range. Therefore, we can save a little 
effort by using x = - (3 en u. This yields the same distribution for x. 

Example: Cauchy. 

1 1 
C(x;~,a) = ;; 1 + (x -...: ~f/a2 

The c.d.f. of the Cauchy is F(x) = ~ + tan -I [ X :~ ). Therefore, set u = F(x) and solve for x, which 

means we generate 

x = F-1(u) = ~ + atan [1r(u - 21)] = ~ _ a 
tan(1ru) , 

since tan (; ± a) = + cot a. 

For discrete distributions. 

Let P(X = xk) = Pk, k an index = 0, 1, ... Then the c.d.f. of this discrete distribution is 

01 'll 



" . 
Then 

k 
Gk = P(X ~ Xk) = ~Pi ~ 1 . 

i=O 

0. 
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Note that this summation 

includes i = k. 

P(Gk- 1 < U ~ G0 = l,du = Gk - Gk- 1 = Pk . 

G 

L 

~ 
I 

~~ -~r.- ----- ---
, I }~ .. --, ' 

'l:---oj;.,: - -- - -l-- -- - --
I I 
I 

--~------~--~~-----------------X x
k

_
1 

x
k 

It means we have to 

(Note: G_
1 

= 0) 

P k is precisely this jump, the probability 
that x is less than xk but greater than or 
equal to Xk_1• 

1) generate u (think of it as being along the vertical axis, as in the continuous case); 

2) compare u with Gk until we find the correct interval (Gk_1 < u ~ Gk), then take the 
appropriate xk (it's the upper one). 

(There's always a Gk ~ any u you take, since u ~ 1 and Gk - 1 for some k.) 

Step 2) may require a lot of comparisons. You can often save computer time by starting, not at k == 0, 
but at some value in the mid-range, e.g., the mode (the most popular value), and then working up or 
down according to u and Gk• We won't cover any examples here, because they are time-consuming, 
and not especially enlightening. Most of the important distributions have tricks which are unique to 
their own cases. 

This concludes our discussion of the inverse transform method. For cases which are, or can be 
represented as, sums of p.d.f.'s, we can use the 
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Composition Method 

Here, we decompose the desired distribution, which may be difficult or time-consuming, into two 
or more others which are relatively easy to do. For example: 

f(x) = 152 [1 + (x - 1)4]; 0 ~ X ~ 2 

Use the composition method to generate this distribution. We will de-compose this into a sum of 
2 other p.d.f.'s. 

Write fa(x) = ;; fb(x) = ; (x - 1)4; 0 ~ x ~ 2 

Each of these is a p.d.f. (including normalization). 

Then f(x) = ~ fa(x) + ~ fb(x). This is still a p.d.f. The coefficients must sum to 1. 

This procedure is like adding two curves, e.g., Gaussians: 

area A 

The net result must be the sum of the two. Since this net result must be normalized to unit 
area, the areas must sum to 1.0. We can choose our random numbers separately out of each 
one. For each random number, we must choose it from Curve (1) with probability A and from 
Curve (2) with probabilityl - A. 

Now, back to our example, we generate two uniform random deviates, u1' u2 uniform on the inter-
val [0,1]: 

u1 chooses between fa or fb; 

u2 inverts the chosen fa or fb, using the inverse transform method. 

Thus, 

if u1 < 5/6, x = 2 u2 (inverting fa) 

if u 1 ~ 5/6, x = 1 + 5 y2 U2 - 1 (inverting fb) 

Note: Since F = Fa + Fb, we could have done it in one step, but the two-step process means we 
only have to evaluate the 5th root l/6th of the time. If we had to do this millions of times, it 
might save significant amounts of computer time, even though we must generate two random 
numbers to get one out. 

. . 
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Example: 

00 

f(x) = n I y-ne-XYdy; n ~ 1 . 
1 
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The variable y is a dummy, which we shall make use of, as we shall see. Inverting this directly is very 
difficult or impossible. We will write this f as a proHability mixture of selected density functions, each 

1 

of which we can do. The key step is to write f(x) = £ g (xiy) dF (y). This is a marginal p.d.f. Referring 

back to the discussion on marginal p.d.f.'s (Chap. 2), we have 

f(x,y) = f(xiy) f2(y) . 

Therefore f1(x) = If(xiy) f2(y) dy 

= If(xiy) dF (y) , 

which is a marginal p.d.f., displaying the desired form. We have changed (dummy) variables from y to 
F, using dF/dy = fly) as the Jacobean. F is the c.d.f. for y. 

Whereas in the previous example we had two curves and we chose one or the other, here we have 
a continuously variable family of curves, g. Instead of an area A which tells us the probability with 
which to choose a given curve, we have a continuous probability function dF which tells us the proba­
bility of choosing the parameter y in any certain interval. The parameter y, which we will choose 
according to this prescription, selects the exact curve g. The integral over dF, then, replaces the sum 
over a countable number of curves. 

We choose a value for y first. This tells us what g to use. Then from g we choose x. 

Here, we can take dF(y) = ;~~; 1 < y < 00 , and g(xiy) = ye-YX. We put a factor ofy into 

g(xiy) so we would have a nice exponential p.d.f. for x (once y is known). Then F(y) = y-n. When 
changing variables from y to F, we use the absolute value of the Jacobean so that dF is positive. If we 
wanted to avoid this complication, we could use F'(y) = 1 - y-n, so that F' goes from ° to 1 as y goes 
from 1 to infinity. This gives the same dF and the same random variables. When going from an 
integral over y to an integral over F, we must change the direction of integration because y = 1 => F = 

1; y = 00 => F = 0; i.e., positive increments in y result in negative increments in F - but dF must 
represent a probability increment, which must therefore be positive. Here is what happens to the 
minus sign: 

00 0 1 

nIy-ne-XYdy = Iye-XYd(y-n) = fye-xYdF. 
1 1 -b 

The minus sign is swallowed by changing the direction of integration, i.e., by integrating in the -y 
direction. 

Choose u1 uniform on [0,1] and set it equal to F = y-n; then, since F is the c.d.f. of the marginal 
for y, we can set y = Ul-1/n by the inverse transform method (in terms ofF' = 1 - F, the same selec­
tion will do, since both u1 and 1 - u1 are equally valid uniform r.v.'s on [0,1]). We have now selected 
our dummy variable y which chooses the particular exponential p.d.f. from which we are going to select 
x. We just want the next random number from this family of curves. Therefore, having selected y and 
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therefore a particular curve, select x: 

g(xIY) = ye-YX exponential with decay constant y, therefore 

x = - 1 jy in U2 will do the trick. 

Discussion 

In the general case, the integral over dF is a sum over all the possible functions g. Each g is 
weighted by its probability. If we pick enough random numbers, we will have an accurate representa­
tion of the integral. Even if we pick only one random number, we will have a representation of the 
integral-how accurate will depend on how much g varies over the region of y for which the probability 
of selection is large. This in turn will depend upon x, so some regions of x will be more accurately 
represented by a given number of random numbers than other regions. We will see later (Chapter 7) 
that y corresponds to a sufficient statistic, because picking y is sufficient to completely specify the 
member of the family; then we pick x from that member of the family. 

:.t 

This has fundamental parallels with the general problem in statistics (parametric statistics, really). 
The situation is reversed: we start with all the x's known. We want to determine the underlying p.d.f. 
g, which is evaluated at fixed y because y is a constant of nature. To determine g we determine y, 
assuming g belongs to a certain family of p.d.f.'s with y as a parameter. The difficulty occurs because 
the x's have all the randomness coming from nature's selections of u2' a completely uninteresting vari­
able. We must find ways of seeing through this disorderliness to find a range of values of y which have 
reasonable probability of covering the true value of the constant of nature. 

Acceptance-Rejection Method (Von Neumann) 

This is the most important method for problems which are complex, that is, not easily represented 
by a single p.d.f. which one can write down. For example, studies of detector efficiency, of complex 
theoretical shapes, etc. often fall in this category. It,applies to cases with continuous variables. 

y 

_c_ 
b-d 

r---------;oo..------,~ a constant X a uniform p.d.f. 

I~_----_-our p.d.f., ftx); or, a function not 
normalized, but proportional to ftx). 
We desire a r.v. X distributed accord­
ing to this p.d.f. 

~~L-------------------~---x 
d b 

Choose a p.d.f. uniform on the interval (a,b), the limits of our p.d.f. If a and b are not known, we 
must bracket them by an interval which is large enough. Find a constant C such that C times this uni­
form p.d.f. is everywhere ~ ftx). Again, if the maximum of ftx) is not explicitly known, we must 
choose a constant large enough. Then, first, generate an x uniformly on (a,b). Then generate a y uni­
formly on (O,Cj(b - a», as shown. So far, our (x,y) points will populate the box uniformly. Evaluate 
ftx). If y ~ ftx), accept x as the next value of the random number. If y > ftx), reject x and try again. 

. . 

... 
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In this way we carve the desired p.d.f. out of the uniform p.d.f. by accepting only (x,y) pairs which lie 
under the curve. We accept a·fraction 

efficiency = ..:;a:::..cre:.:;a;.,.u::..:n::..:d=..;e:.::.,r../ip;..::...d:::':'.;..:£.;..:o:.:;r--=fI,-"x=) 
area under bounds 

of our trials. 

Importanc~ Sampling 

This is the complete method. However, sometimes the efficiency is very low. We might not 
know the maximum of fIx) and therefore have to take an inefficient bound. Or, fIx) may have sharp 
peaks such that the rectangle leaves out a lot of area: 

y 

x 

Then we do better by choosing some other bounding p.d.£ (other than uniform). For example: piece­
wise uniform: 

y 

~
ThiS is proportional to the 
p.d.£ we use to choose the 

r-~=--, initial x. 

i-----c:~--------:---_;_---=lI..---x We generate a higher density of 
__________ x's here. 

or a curve, if one can be found which we can invert easily: 

y 

K > 1 if f is normalized. 

h(x) is a normalized p.d.f. 

x 

Now we choose x according to the p.d.f. represented by this curve, h(x). Once chosen, we then choose 
y uniformly as before except on the interval (0, K . h(x», and test as before. If y ~ fIx), deliver x. The 
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method of sampling x in a variable way, responding approximately to the variations in f{x), is called 
importance sampling. It is left as an exercise to prove Von Neumann's 

Theorem: Let X be a r.v. distributed with a p.d.f. f{x), x defined on some range. Represent f as 

f{x) = Cg(x)h(x) , 

where C ~ 1 is some constant, h(x) is a p.d.f. (chosen such that we can easily generate random 
numbers from it), and g(x) is some function, ° < g(x) ~ I. That is, Ch(x) ~ f{x), and g is the fudge 
factor to correct Ch(x) into f{x). Let U and V be independent r.v.'s distributed as uniform on [0,1] and 
as h(v), resp. Generate a (u,v) pair. Then the distribution ofv under the condition that u ~ g(v), is 
identical to the distribution of x: 

h(vl u ~ g(v) ) = f{v). 

If u ~ g(v), then v is returned as the "next value of x"; otherwise we try again with a new (u, v) pair. 
The proof requires Bayes' Theorem (q.v., Chapter 2): 

h( I ,,;:::: ( » = P(u ~ g(v)lv = x)h(x) 
v u ~ g v P(U ~ g(V» . 

The denominator is the integral of the numerator over all possible values of V = x, which we must 
show is given by 

P(U ~ g(V» = .1/C . 

This is the probability of acceptance of v, taken over the set of all possible v's. Therefore the efficiency 
is p = I/C, which reflects the fact that we want to choose h(x) as close to f{x) as possible, so that C is as 
close to 1 as possible. If n is the number of trials before a successful one (i.e., we are successful on trial 
n + 1), the p.d.f. of n is 

P(n) = p(l - p)D ; n = 0, 1, 

and E(n) = C - 1 (not an integer). This is called the geometric distribution or the negative binomial 
distribution. 

Multiple Variable Case 

For the multivariate case, we can use the appropriate extension of any of these three methods for 
generating random variables. For example, for acceptance-rejection, if we want to generate x and y 
according to f{x,y): 

tc.>st and dCC(?pt 

If u3~ f(xJy) 

-----<> 

_--------------_x 

needs 3 random numbers, up u2' u3 
for the two-dimensional case. u1 
and u2 pick x and y and may be 
generated uniformly or according 
to some importance-sampling 
technique; u3 is generated uniformly 
on the appropriate range and is the 
test variable. 
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SECTION B. STATISTICAL INFERENCE 

Chapter s. Properties of Estimators 

So far, we have considered probability theory. Once we have decided which p.d.f. is appropriate 
to the problem, we can make direct calculations of the probability of any set of outcomes. Apart from 
any possible uncertainty about the p.d.f., this is a very straight-forward and mathematically well-defined 
procedure. 

The problem we are now faced with is the inverse of this. We have a certain set of data which 
have already been sampled from some unknown parent p.d.f. We will try to infer from the observed 
frequency distribution of the data what this parent p.d.f. looks like. We may have a model restricting 
the form of this p.d.f. to a certain family with one or more parameters 0.. In this case, called 

1 

parametric inference, we want to determine the OJ. There is another common form of inference, non-
parametric inference, in which we admit that we don't know much about the family of the p.d.f. We 
then concentrate on general statements about the p.d.f., such as its mean, width, or whatever, without 
assuming anything for its parametrization. In these notes, we will concentrate mainly on the problems 
of parametric inference, which are certainly formidable. 

The study of calculations made using probability is sometimes called direct probability. Statistical 
inference is sometimes called inverse probability. 

In parametric inference, we will usually try to make some sort of statement of the form "0 = a ± 
b". The intended interpretation (unless otherwise indicated) is that our know/edge of 0 is somehow dis­
tributed in probability such that our data favor the value "a" for it, but with high probability it could 
be between a - b and a + b. "b" is often called the "estimated error" and appears on plots of the data 
as a bar from a - b to a + b. In fact, most people assume that this "knowledge" of 0 is a Gaussian of 
mean a and standard deviation b. The phrase "with high probability" then becomes "with 68.3% pro­
bability", and we know precisely how to compute the probability that 0 lies in any given interval. Even 
in more complex cases, for example with unsymmetric error bars, we assume by analogy with the Gaus­
sian that the true value of 0 lies within the "one standard deviation" error bars with (roughly) 68.3% 
probability. This is usually only an approximation; in addition, "two standard deviations" may be con­
siderably different than twice "one standard deviation," if probability levels corresponding to the Gaus­
sian case are intended. 

The idea of a probability distribution must here be understood with care. The parameter lies at 
some exact point; it does not have a p.d.f. except a Dirac 0 function (think of saying: "you are 68.3% 
pregnant"). What is meant is sometimes more properly stated in terms of "confidence". We hope that 
in a large number of identically-performed measurements, the statistically-determined error intervals 
(using the same techniques every time) will cover the true value the stated fraction of the time. This 
probability to which we refer reflects our confidence that the true value actually occurs in the given 
interval. 

Finally, we shall see that error bars are difficult to estimate. Just as our best estimate for 0 has an 
error, the error bars have errors. Any confidence intervals which neglect this source of uncertainty are 
therefore very approximate, and should not be taken too literally. In addition, there are often sys­
tematic errors. These are contributions to the measured results which come from sources whose exact 
effects are unknown. They usually push all the measured data systematically in one direction or 

" 
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another, but they may vary with time or with some of the experimental conditions. After making one's 
best attempts to estimate and correct for systematic effects there is usually a residual uncertainty which 
must somehow be incorporated in the confidence intervals. Some experimenters choose to be conser­
vative and quote errors which may be somewhat larger than the true errors. This protects science from 
drawing overly strong conclusions which might tum out to have been based on an accidental underesti­
mate of the error. However, the value to science of a perfectly valid measurement is reduced when the 
errors are increased (and the errors may have been accidentally overestimated anyway), so one should 
exercise discretion about this sort of precautionary increase in the errors. 

Suppose we have a set of numbers x. which are sampled from some population with parameter e. 
1 

For example, we measure some quantity n times. e is the true value of the quantity. The Xi in this 
example are clustered about e in some way which depends upon the measuring process. We often 
assume that the Xi are sampled from a Gaussian of mean e and width determined by the accuracy of the 
measurement. We wish to estimate e. To begin, we construct a function of the x. 

Definition: A statistic is any function of the observations in a sample which does not depend 
upon any of the unknown population characteristics. 

Example: x = l.. ~Xi 
n 

If you can calculate it purely from the data sample plus known quantities, it is a statistic. 

We want to construct an estimator for e: 

Definition: An estimator is any statistic which is going to be announced as our guess at the value 
of some constant of nature, e. (e may be a vector, i.e., represent several unknown quantities.) 

We will usually write estimators as: O. Most of the time we will be interested in finding a single 
point which represents our best estimate of the true value of e: 

Point Estimation 

There are certain useful properties which an estimator should have. There are, in general, 
numerous (for example, (0) estimators one could construct for any e. We want to choose the one which 
is likely to be best. Most of the possible estimators are obviously stupid, but there may be a surprising 
number which are not. Choosing often involves a trade-off. 

Examples of desirable properties (not necessarily in order of importance): 

Unbiased; minimum variance (the variance of an estimator expresses how well it repro­
duces itself in repreated experiments. If unbiased, it also measures how well it clusters around 
the true value in repeated measurements); minimum variance (i.e., efficiency); consistent; suffi­
cient; robust (insensitive to errors in our assumptions); minimum loss of information; 
minimum loss if the estimator is not close to the true value; minimum computer cost, etc. 

We will discuss most of these in what follows. 

We won't cover information theory here, but there can be cases where information is lost in order 
to improve the variance; e.g., if m < 0, where m is known from theory to be positive, we can set 
m = 0 and quote an upper limit. The best course is probably to do both - quote m as measured and 
m = O. Then people who wish to average experiments, for which one usually needs m, can do so. 
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Let us consider estimators oflocation. If we have n observations of a quantity, e.g., 

mass of a stable particle 

lifetime of a particle 

mass of a resonance 

- the spread in the data is due to measurement errors alone, 
e.g., a Gaussian distribution; 

- the spread is due to the intrinsic spread in the quantity 
(i.e., individual decay times), sometimes with additional 
spread due to measuring error; 

- the spread is due to the Breit-Wigner (Cauchy) plus a con­
tribution due to the mass resolution (i.e., the error in 
measuring the mass). 

We can suggest several estimators, even for the simple case where we are just interested in loca­
tion. Each of these might be best under certain circumstances: 

For example. 

A_I ~ 
J.t = X = ~ ",xi mean 

median 

- Probably the most heavily used estimator oflocation. It 

is also the best under many circumstances, but it can be sen­
sitive to mismeasured data 

- not very sensitive to fluctuations in the tails, or to the 
presence of heavy-tailed contributions to the distribution; it 
is therefore more robust than x but it has a larger variance 
than the mean if the data are well-described by a common 
Gaussian 

J.t average of the two extreme values: [min(xi) + max (xi)]l2 

J.t = Xtrimmed, the trimmed mean: 

- This one is very sensitive to the tails of the distribution, 
but it may be the best estimator if the underlying distribu­
tion is uniform. 

discard the smallest and largest y% (e.g., 10%) and 
then average. 

- This is relatively insensitive to problems in the tails. 
May not be the "best" estimator if there are no problems in 
the tails, but it works reasonably well in many real cases. 

We will study ways of constructing estimators with reasonable properties. First, let us discuss 
these properties. 

Bias 

Since a statistic is a function of random variables, it is itself a random variable. Therefore we can 
speak of its expectation value. If E(O) = 8, the true value, the statistic is unbiased. To calculate this 
expectation, we need some assumptions about the underlying distribution. 

For example, for the binomial, let us try jL == p = .l2;Xi. This is just kin, where k = number of 
n 
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successes. Since we assume the binomial~ E(;L) = .1 ~E(Xi) = .1 ~p = p. Therefore;L constructed as 
n n 

above is an unbiased estimator for p. 

In general, the sample mean, ;L == x = .1 ~xj, is an unbiased estimator of the true mean /J-: 
n 

assuming each measurement has the same expectation value /J-. That is, over a large number of similar 
experiments, the average value of;L will be /J-. 

Now look at the sample mean square. 

S~ = ..!. ~(Xi - X)2. Is this an unbiased estimator for the population variance (i.e., the variance 
n 

on a single observation, not on the mean)? Assume the population variance is finite. 

E(S~) = .lE[~X~ _ (~Xi)2] 
n 1 n (because x == .1 ~Xi) 

n 

= ! {~(u2 + /J-2) - ! E[(~Xi)21} (see below) 

= ! {nu2 + n/J-2 - ! [V(~Xi) + [E(~Xi)121} . 

These follow from: 

We are assuming each measurement Xi is independent and has the 
same true mean /J- and true variance 002, i.e., that it is sampled 
from the same parent population. 

E(A2) = V(A) + [E(A)j2, (where here A = ~Xi); 

V(~Xi) = ~V(Xi) (by independence). 

Therefore 

E(S~) = .1 {nu2 + n/J-2 - .lnu2 - .l(n/J-f} = .l(n - 1)002 '* 002 , 
n n n n 

and S~ is a biased estimator for 002• 

The key step here, causing the bias, is that we used x, the sample mean, in calculating S~. Since this is 
determined by the sample, it "moves around" a bit to follow the sample. 

For example: 

!" j 
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The center of mass of the sample 
distribution is pulled a little to the left by 
random fl~ctuations. The average 
distance (in absolute value) of the x. from 

I 

the sample mean is less than from the true 
mean; the average squared distance is 
therefore usually also less. Therefore, 
since the variance is the average squared 
distance from the true mean, the sample 
variance is less than the population 
variance on average (in individual cases it 
could be larger). 

If n is large, this bias is very small, and the sample mean square is often used to estimate the vari­
ance because it is convenient. But to get an unbiased estimator, one needs to use 

S2 = [_n_] S~ = _1_~(xi - X)2 
n-l n-l 

This calculation does not depend upon x. being Gaussian or any other particular distribution. If 
I 

the x/s are Gaussian, orif n is large enough that the C.L.T. applies, we can see that 

~zr = ~ ~(Xi - x2
) will be a x2• We have one relationship among the z.'s: a . I 

~Zi = l. ~(Xi - X) = 0, since.L ~Xi = X ; 
an· 

therefore, ~zr will be x2(n - 1), since there are only n - 1 independent Gaussians in the sum. 

E[x2(n - 1)] = n - 1, which is another way of seeing that E(S2) = E [n~ 1 X2] = a2. This is of 

more than passing interest: If we have n measurements x. of a quantity, with k ~ n relationships (con-
I 

straints) among them, then the number of degrees of freedom of the x2 constructed from ~~xr], where f 
is the appropriate standardizing function, will be (n - k). 

For example: if we constructed our sample mean square as Sr = ~(Xi - Ili, where Ii- is now the 
true mean rather than something extracted from the data, then Sr /n would be an unbiased estimator 
for a2, the population variance. 

Variance 

Having constructed an estimator, we want to know its variance. Again, we need to make assump­
tions about the underlying distribution. Having made those assumptions, we can calculate the expected 
variance of our estimator. If the variance is small, and the estimator unbiased, we can expect the esti­
mator to cluster closely around the true value if the experiment is repeated a large number of times. If 
the estimator is biased, a small variance means that repeated measurements will yield {J's which cluster 
tightly around the biased (i.e., wrong) value. 
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For example, the variance of the sample mean we already know: 

[
1 ) 1 ~ V -~Xi = 2~V(Xi) = -. 
n n n 

How about the sample variance? 

V(S2) = v{~ i(Xi - X)2} 
n 1 i=! 

In the case of normal variables or the asymptotic limit where the C.L.T. applies, 

V(S2) = V [ u2x2(n - 1) ] = u
4 

V[x2(n -1)] 
n-l (n-l)2 

u4 2u4 

-(n---l)-=-2 2(n-l) = -n---l . 

Thus, S2, which we can use to estimate the population variance, itself has an error. How can we 
estimate this error if we don't know u? The usual procedure is to put in our best guess for u2:S2• 

V(S2):;;;; 2(S2)1
2

. 
n-

Caution: Because this is itself an estimate, it is only approximate. If S2 is too large, then our 
guess at the error is too large; if too small by the same amount our guess for the error is too small. 
This might (probably would) lead us to deduce that an experiment which measured a low value was 
more precise than one which measured a high value. 

Proposition. The best estimator for a quantity is that unbiased estimator with minimum variance. 

This proposition is by no means obvious. In many cases, we might decide to choose an estimator 
that violates it, because we fear that the assumptions upon which we based our study of bias or vari­
ance are questionable, or for some other reason. In many cases, we won't be able to use the best esti­
mator in this sense because the "best" one has some undesirable other properties (see earlier list of 
desirable properties). We will now discuss some of the implications, and the pros and cons, of this pro­
position. 

There is usually a trade-off of some kind involved. For example, we might be tempted to trade a 
small bias for a large gain in reducing variance. But this is a risky business. For example, if 0 is 
unbiased, then Of is biased, where f is a number * 1. V(:W) = f!V(8). Therefore, by choosing f < 1 we 
improve the variance by f2, but introduce a bias. In the limiting case of this, we could simply use as an 
estimator a fixed number, e.g., 5. If somebody asks our guess as to the value of a parameter, announce 
"5". This is very clever because the variance = 0 (5 never changes, no matter how many experiments 
we do). However, except in rare cases, the bias is enormous. 
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Mean Squared Error 

The question of willingness to accept.a bias is tricky. Statisticians introduce another figure of 
merit, the mean squared error, which incorporates any bias into its definition: 

Definition. The mean squared error is 

MSE = E[(O - 8)2] (calculating this requires knowing 8, for the moment) 

= V(O) + [E(O) - 8]2 . 

Here, E(O) - 8 is the bias bo(O); bias is always the expected bias, which mayor many not be a 
function of 8. This is just an expression of what we said before. If the bias = 0, estimate the 
error in our estimator just by looking at its variance. 

We could use the MSE as a criterion for selecting estimators. In some cases, we might choose a 
biased 0 with smaller MSE than a certain unbiased 8. 

For example, look at estimators for the variance u2 of a normal population. Try the form 
Z2 = A ~ (Xi - X)2 and find the constant A such that the MSE is minimized. 

MSE = V(Z2) + b2 ; b = E(Z2) - u2 • 

from the analysis of S2 above 
V(Z2) = V[A(n - 1 )S2] = 2A 2(n - 1 )u4

, (for normal Xi) , 

E(Z2) = E[A(n - 1)S2] = A(n - 1)u2 • 

Therefore, 

Now we can minimize: 

aMSE = ° 
aA 

. A 1 reqUIres = n + 1 . 

Therefore, even with the bias, we can improve our mean squared error if we estimate (J2 by 

&2 = n! 1 ~(Xi - X)2. This comes about because ~(Xi - X)2 is proportional to a x2, which is asym­

metrical. Although any particular measurement is more likely to be below the mean than above (i.e., 
the mean lies above the median), if it is above, it may be far above (the x2 has fairly long tails toward 
high values). Since large values weigh heavily in averages ~f squared errors, we can reduce the MSE 
somewhat by deliberately reducing our estimate slightly in all cases. As n increases, the x2 becomes 

. more nearly symmetrical, and also n! 1 approaches n ~ 1 and the bias disappears. 

Should we do this? People are sometimes willing to accept a biased estimator for a number of 
reasons. One of the most frequent is convenience. But we always insist that any bias be small com­
pared with the other errors in the problem. It is not worth going to a lot of trouble refining an estimate 
if the refinement results in a correction which is much less, for example, than one's uncertainties in the 
systematic errors. If we accept the principle that the bias must be small, then the improvement in the 
MSE by taking a biased estimator is probably also small, and it may not be worth introducing a small 
bias to get such an improvement in the MSE. If the bias is difficult to get rid of, as in some maximum 
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likelihood problems, that is a different matter. In any case, one must exercise judgment based upon the 
specific problem. Often, a Monte Carlo investigation is the only way to study the situation. 

One important reason for avoiding bias where possible is that it must be possible to combine the 
results of different experiments in some sort of average. This can only be done with some reliability if 
the experiments quote the same sort of result, which usually means unbiased. Averaging experiments is 
somewhat like going to higher n (collecting more data), except that some biases disappear at large n, as 
we have seen and will discuss further shortly. However, if we average, say, five experiments of similar 
size and bias, the bias remains in the average, which otherwise appears to be much more precise than 
any of the individual experiments. One could, of course, remove the bias at the averaging stage if the 
bias is known. 

Another problem with using MSE as sole figure of merit in choosing among estimators is that if 
the distributions of two estimators are of different shapes, the MSE may not be a fair basis for com­
parison. For example, it may be that an estimator with infinite MSE may be acceptable if the diver­
gence is produced by an effect of very small probability. 

Still another problem with using the MSE as the sole judge of estimators is that there may be no 
estimator with uniformly better MSE. For example, let Y be the number of successes in n Bernoulli tri­
als, with probability p of a success on each trial. We wish to estimate p .. Consider the two estimators: 

PI = Y/n 

P2 = (Y + 1)/(n + 2). 

We can compare the MSE's of these two estimators without actually knowing their p.d.f.'s, since 
we know that V(Y) = npq (q = 1 - p) and E(Y) = np. Then 

MSE(PI) = pq/n ; 

MSE(P2) = [n ~ 2 f[npq + 1]. 

For n = 4, the MSE's look as follows: 

MSE 

o p-

To choose the one with smallest MSE, we would need to have some pre-conceived notion as to the 

,. it 
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likely range ofp. For example, if we expected p :;;;; 1/2 from theory or earlier experiments, we might be 
led to choose ih. This is a Bayesian decision. However, we should consider other facts, as well. Most 
importantly, P2 is biased, PI is not. Most physicists would normally prefer PI for that reason, unless 
some compelling reason otherwise should present itself. 

are: 
Some problems with unbiased estimators, other than the fact that they may not be convenient, 

a) Unbiased estimators may not exist. If so, that's a real problem for someone who 
always insists on unbiasedness in estimators. 

b) They may not have the smallest MSE. 

c) The property of unbiasedness is not necessarily invariant under change of variables. 
For example, S2 is unbiased for u2, but S not unbiased as an estimator for u: 

An unbiased estimate for u, looking like v's2, is 

UI = 

Yo r[t(n - 1)] 

1 V2 r("'2n) 

(2m - 1 )!! . '7r •. recall that, for m an integer, r(m + 1) = m! and r(m + 1/2) = 2m V7r 

Then it may be shown that E(o.I) = u if the distribution of xi is normal. For n = 1, no 
distribution whose width we could estimate exists. For n = 2, 0.1 = 1.77 X RMS, where 
RMS is the root-mean square width of the sample; the RMS is given by the radical. As 
n increases, 0. 1 converges from above to the RMS. For n = 10,0.1 is less than 10% more 
than the RMS. 

An old dispute (1920's) concerned whether or not 0.1 above was better, or 

0.2 = V 2(n7r~ 1) . ! ~Ixi - xl . 
Also, E(o.2) = u in the normal case. 

It turns out that 0.1 has uniformly better MSE than 0.2, if normality is satisfied. However, if there 
are departures from normality, 0.2 can be much better, because it doesn't weight the tails as heavily (it is 
therefore more robust) .. 

Consistency 

When we take more data, we expect our ability to estimate parameters () to improve, provided the 
data is relevant. If the estimator is biased, it will converge to the biased value, unless the bias disap­
pears as the data sample increases. If the bias does not vanish in the asymptotic limit, either we agree 
to change to a more sophisticated estimator if we get more data, or we should use an estimator from 
the outset which is consistent. 

Definition: An estimator 8 for () is said to be consistent if 



68 

lim P(18 - 81 ~ E) = 0 for any E > 0 . 
n_oo 

Clearly, if8 is an average of the data, then, by the law oflarge numbers (when it applies), 8 is a con­
sistent estimator for the population mean: 

P [I ! ~Xi - ~I ~ E) ~ E~ : . 

Now we can drag out our favorite counter-example, the Cauchy: Zn = l ~Xi is not a consistent 
. n 

estimator for the population parameter ~. 

C(x;~,a) = _1_ 1 1 
'll"a + (x - ~i/a2 

We have earlier shown that the distribution of zn is the same as that of x: C(zn; ~,a), i.e., there is 
no convergence to anything at all, much less to ~. 

The biased estimators we have looked at so far are consistent, e.g., 

n! 1 ~(Xi - xi:;;:;; n ~ 1 ~(Xi - xi as n - 00 . 

Next, we want to investigate the conditions under which we might find a uniformly minimum 
variance estimator, and how we might recognize one if we have one. 

. . 
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Chapter 6. The Rao-Cramer-Frechet Bound 

It turns out that there is a lower limit to the variance of an estimator under certain general condi­
tions. Therefore we can recognize when we have found an estimator of the smallest possible variance. 

Theorem. Rao-Cramer-Frechet Inequality 

Let Xl' ... ,Xn be sampled from some population ~x,~), 0 a parameter. 0 is whatever is being 
estimated, which might be a function of some fundamental parameter of the p.d.f. Note that the Xi are 
independent and identically distributed. Assume the range of x, n = {x:~x,O) > O}, does not depend 
upon O. Choose an estimator 8 for 0, with bias bo(O) = E(8) - 0, such that 

V(8) < 00 For all O. Then 

[1 + ab]2 
A ao 

V(O) ;;. 1(0) 

where 1(0) is called the Fisher information number. 

The Fisher information number is given by 

a n 
1(0) = E{[ ao i~tn ~xj,O)j2} 

Note: :0 tn ~x,O) is defined as the score function, written S(x,O). 

Since the score is a function of a r.v., it is a r.v. The score function is very important for max­
imum likelihood analysis (Chapter 10). 

Proof 

We will prove this theorem for continuous variables. First, we assume that we can interchange 
the order of integration and differentiation for the expectation of any statistic T(x) of finite variance: 

00 00 

-i I T(x)~x,O)dx = I T(x)-i~x,O)dX . a -00 -00 a 
This is called the regularity condition; it is quite generally true for statistics of physical interest. Then, 
if we set T(x) = 1, 

I a a I 1 . an~x,O)dx = an ~x,O)dx = 0 , 

since ~x,O) is normalized for all 0, and therefore 

E[ :0 tn ~X,O)] = E[S(x,O)j = I[ :0 tn ~x,O) ]~X,O)dX 

= I ~~,O) [ :0 ~x,O) ]~X,O)dX 
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J a a J = -gxO)dx = - gxO)dx = 0 ao ~\ , ao ~\, . 

Therefore 

E {[ :0 ftn I(x"O) n ~ E {[ f :0 tn I(x"O) n 
[

a ] {[ a ] }2 since E is 
= V raofn f{xi'O) + E raofn f{xi'O) , a linear operator 

~ fV[ :0 tn I(x"O) ] , since the x, are aU independent 

= n V [ :0 fn f{x,O) ] , since the Xi are identically distributed. 

II = information from one observation. 

The last equality follows from the same sequence of steps being applied to 11(0). The Fisher informa­
tion contained in n independent, identically distributed measurements is n times the information con­
tained in anyone. Similarly, 

E[O :0 rfnf{Xi,O)] = I' .. IO[ :ofn llf{xi,O) ]1l[f{xj,O)dXi] 

S 

o is a function of all the x.'s; hence we have to look at a multiple integral here. 
I 

= I ... Io [IIf{~i'O) :0 IIf{xi'O) ]II[f{Xj,O)dXi] 

o is a statistic 
and therefore does 
not depend upon 
o 

; . 
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a . a 
= -[0 + be(O)] =. 1 + -b(O) ao ao 

Now, we know that both 0 and the quantity ~1tn f(xj,O) are r.v.'s, and we can calculate their correla-
i a . 

tion: 

COY [ t: :a tn f(xi,O),O(x;) J Covariance between the score and the estimator. 

= E[ f :0 tn f(xj,O) . O(Xi) J - E[ f :0 tn f(xj,O) JE[O(Xi)] 

~ E[Ot: :0 tn f(x;,O) J ~ [1 + :0 b J 
Therefore the correlation coefficient is given by 

{COV[ f :0 tn f(xj,O),O(Xi) J}2 

p2 = which must be ~ 1 , 

V [ f :0 tn f(xj,O) J V[O(Xi)] 

and therefore 

[1 + :0 b J 
Q.E.D. 

This is called the Rao-Cramer-Frechet Inequality (perhaps the more usual name is the Rao-Cramer Ine­
quality, but Frechet actually had precedence). 

~ 

Since we don't know the bias a priori, we would have to search all possible biased estimators to 
find the best one, and the inequality is not as useful as it might be: we don't know when to stop look­
ing. In particular, note that the bias of a constant C is C - 0, and therefore the RCF bound = O. 
That's not a useful lower bound for a variance, a positive quantity. But if we restrict ourselves to the 
class of unbiased estimators, we have a very useful bound: 

2 A 1 _ 2 
U (0) ~ - Urnin • 

E{[f :0 tn f(xj,O) T} 
For the multi-variate case (i.e., 0 is a vector of more than one component), we write an information 
matrix: 
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In general, 

Itm - E {[ f a!,tn I(x"O) ] [ f a:
m 

tn I(x"O) ]} . 

Then we could use 

r? A 1 
(0 1) ~ 111(0) 

• but a stronger (higher) limit is 

q2(01) ~ [1(O)]tll, the (1,I)th element ofl- I 

which takes account of the correlations between the variables. 

For unbiased estimators, we define the efficiency of an estimator 0: 
A q~in 

E(O) = -A- ~ 1 . 
r?(0) 

This is a generally useful quantity, although it may well be that an unbiased estimator of efficiency 1 
may not exist for a particular problem. Or it may be efficient only if the true value of 0 lies in some 
limited range, not for others-Le., not uniformly efficient. 

In terms of the MSE, 

[1 + .i.- bij(0)]2 
MSE(O) = V(O) + bi(O) ~ :~) + bi(O) (biased case) 

A A 1 
and MSE (0) = V(O) ~ 1(0) (unbiased case) . 

Example 

x' 1 --
Let itx, 0) = . M£. e 28 ; 0 == r? 

v27r0 

i.e., N(x; 0, YO), the mean is known. (We can also do this with vector 0, e.g., "8 = (Jl"q2), similarly. 
This will be touched upon later.) Now, 

1 1 x2 
fn f = - "2fn(27r) - "2fn 0 - 202 • 

The score = :0 fn f = - io + ;;2 . Therefore, 11(0) == information in a single observation 

= E{[ :ofn fJ} = E{[ - io + ;;2 J} 
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Exercise for the reader 

Now note that with J.L known (even if not 0), the estimator: 

o = 1.. ~(Xi - J.L)2 has E(O) = ,;., and therefore 
n 

V(O) = 1.. V[(X - J.L)2] = l..{E[(X - J.L)4] - (E[(X - J.L)2j)2} 
n n 

2(P 1 2(P 
=-~--=-

n nl1(0) n' 

Therefore 0 = 1.. ~(Xi - J.L)2 is efficient. Note that, in these calculations, the true 0 appears. 
n 

We make these calculations as if we knew 0; then we know the conclusions hold even when we 
don't. 

An alternative formulation of the ReF bound: 

o 
Let S = score = aotn ((x,O). 

Then 1(0) = E[( :0 tn f)2] = E[S2]. 

for one observation 

= - E[Ltn{(xO)] =- E[~]. 
002 ' 00 

The proof is left as an exercise. For more than one variable, the (t, m)th element of the informa­
tion matrix becomes 

Itm(O) = - E[ oO::Om tn ((x,O) ] . 

Letus look at a distribution other than the normal. The normal often hides important points 
because of its symmetry. 

Example. The exponential. 

Let Xl"'" Xn be independent, identically distributed from the exponential, f{x, p,) = 

l..e-x/1' ;J.L ~ O. We must estimate J.L. Then 
J.L 

Sj = score of jth value 

Therefore 
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IjCP) ~ -{ ~:] ~ -{:, [I - ~j )] 

= __ 1 [1 _ 2l!.) = _1 . 
1L2 IL 1L2 

2 
Therefore I(IL) = nl 1(1L) = n2 , requiring t?(it) ~ L (if unbiased). 

IL n 

Notice that, so far, we haven't talked about any specific estimator. Try it = .1 ~Xi = x. 
n 

E(X) = IL ; unbiased. 

V(X) = J!... V(x) = .1 [r x2 .1 e -x/I'dx - 1L2] 
n2 n -6 IL 

Therefore it = x is an efficient estimator for IL. 

The full score function is 

n ~Xi 
S = ~Si = - - + -2 . 

i IL IL 

Note that our estimator is a linear function of the score: 

A 1 1L2 
IL = n ~Xi = -n-S + IL • 

This is not a coincidence, as we show now. 

Efficient Estimators 

The R.CF. bound was obtained from 
A 2 

2 = [COV(S,~)l .,,;;;; 1 
p V(S) V(O) 

We have seen that p = ±,1 corresponds to a straight line. Therefore we can construct an efficient 
estimator, under the conditions of the theorem, if and only if 8 is a linear function of S, with probabil­
ity 1. This can be violated at isolated points whose probability is zero. 

Now write A'(O), B'(O) as the derivatives of some functions of 0, but not functions of x (Note: the 
covariance in p above is with respect to x). 

Then, for 8 an unbiased efficient estimator, 

S = A'(O)'O + B'(O) = :0 in ~x,O). 
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Then fn ftx,8) = A(8)'O + B(8) + K(x), 

where the arbitrary constant K may depend upon x, but not 8. Remember that 8 is a statistic and there­
fore not a function of 8; 8 = 'O(x). 

Then 
ftx,8) = exp {A(8)'O + B(8) + K(x)} over some interval which 

is independent of 8. 

The normalization is included inside the exponential, usually in B(8) and/or K(x). 

The Exponential Family 

Any p.d.f. of this form is said to belong to the exponential family. Thus, in order to find an effi­
cient estimator, the p.d.f. for x must belong to the exponential family, and the estimator must enter it 
in a certain way. 

In general the exponential family is of the form 

ftx,8) = exp {A(8) C(x) + B(8) + K(x)} 

Thus only if 8 = C(x) is 8 efficient. 

The converse is also true. If ftx,8) is of the above form, with 8 = C(x), then 8 will be efficient. 
The product A(8) C(x) can often be factored into A(8) and C(x) in more than one way. For example, let 

n 
A(8)C(x) = Q(8) ~Xi • 

i=1 

Then one could take A(8) = Q(8), C(x) = ~Xi> or, alternatively, A(8) = nQ(8) and C(x) = 1.. ~Xi. Thus, 
n 

in general, A,B,C, and K are not uniquely specified for a given p.d.f., and 0 ne may be able to find effi-
cient estimators for several different quantities. 

We may have x be a vector; e.g., a number of data sampled from a certain exponential family. 
Thus, if 

are independent, identically distributed from an 
exponential family, then 

is an exponential p.d.f. in n dimensions. 

We may also have 8 multidimensional. 

For example, 

N(x;,.", O') = 1 exp [ _ 1.. (x - ,."f ] 
Vh 0' 2 0'2 

= exp {.E...x - £ - 1.. [,.,,2 + fn(211"~)]} 
~ 20'2 2 0'2 

Then 8 = (,.",0'), and A and C are vectors, and A(8)C(x) is a vector dot product: 

A1(8) = ,.,,/0'2 C1(x) = x 
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A 2(0) = - 2q2 

B(8) - - ~ [~ +In(2 .. .,2)] 
K(x) = 0 
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If either JL or q is fixed, i.e., known at the outset of the problem, then the normal can be regarded as a 
I-parameter distribution belonging to the exponential family. 

Discrete distributions can belong to exponential families, also. For example, the Binomial: 

f(x,O) = (~) OX(l - o)n - x; n fixed 

= exp {x In [ I ~ 0 ) + n In(l - 0) + In (~) } 

A( 0) = In [I ~ 0 ) C(x) = x 

B(O) = n In(1 - 0) K(x) = In(~) 

Many others also belong to this family: 

Bernoulli: 

Geometric: 

The geometric distribution describes the number of failures x before the first success in 
a Bernoulli process. 

Negative Binomial: 

The negative binomial distribution describes the total number of trials x necessary to 
reach exactly r successes in a Bernoulli process. 

Poisson: 

Exponential: 

Gamma: 

Rayleigh: 

-/l J.Lx e -
xl 

.ie-x//l 
J.L 

All of these examples are one-parameter distributions. 

, . 
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Chapter 7. Sufficient Statistics 

Under certain circumstances, it is possible to start with any old unbiased estimator and improve it 
with one step to the best we can do (this means to the estimator with least possible variance, but not 
necessarily one that achieves the R.c.F. lower bound). This works at least for the exponential family, 
where the estimator is going to be some function,not necessarily linear,of C(x) (if it is not linear, it 
can't be efficient, but that may be the best we can do). 

Example 

The Poisson. The No-Count Probability. The probability of zero counts in a certain sample or 
sub-sample is given by 

(J = e-I', since 

x 
L = 1 if x = o. 
x! 

We wish to find the best possible estimator for (J, this probability. Assume that we have n categories, 
which may be bins in a histogram, and further that each bin is filled by a Poisson process with parame-

ter J.I" common to each bin. We now observe x. events in the ph bin. It can be shown that x = ..!. ~Xi 
1 . n ~ 

is the best estimator for J.I" given a random sample ofx.'s. We are tempted, therefore, to use 8\ = e-x. 
. 1 

We have no guarantee that 8\ is unbiased, or minimum variance. In fact, it is neither. 
-

In the discussion about Monte Carlo techniques, we saw that it is sometimes possible to pick the 
particular member of the family of distributions first, with one random number, then to pick from that 
family member second, with a second random number. Here, we just want to know which member of 
the family best describes the data, essentially the reverseofthe first step. Nature has done the second 
step for us. So we will pick a statistic which is sufficient to describe the family. Then we will use it to 
construct a best estimator for e-I'. 

Before we do that, let us construct some unbiased estimator for (J. Look at our sample xi' i = 1, ... , 
n. Xi is the number of counts in the ph bin. We can make an unbiased estimator for (J if we look just 
at the first of the xi' namely Xl. Ifx\ = 0, set our estimator = 1. Ifx\ "* 0, set our estimator = O. The 
quantity we are estimating, (J, is, after all, a probability. That is , let T be an estimator for (J, where 

T _ {1 ifX\ = 0 You don't always need an algebraic 
- 0 ifX\ "* 0 function to specify an estimator; 

sometimes just a table of values. 

We estimate the probability of zero events in every bin to be certainty if just x\ = 0; otherwise, we 
throw up our hands and estimate that there is zero probability that any bin will be empty. This is not 
very sophisticated, since we have some events, and they have to go somewhere, even if the first bin 
happens to be empty. Is T biased? 

00 x 00 x 
E(T) = ~Te-I' ~ = e-I' + ~ O· e-I' ~ = e-I', inserting for T. 

x=o x. x=\ x. 

Therefore T is unbiased, and will give the correct value on the average over a large number of 
experiments. 
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We are surely do better than this, since we have neglected all of the information contained in x2, ••. ,xn' 
whose values are known. Looking at n bins tells us as much as n whole experiments in which we look 
only at the first bin. The next step is to find a reduction of the data to as simple as possible a statistic 
V which contains all the information about 0 which can be obtained from the sample. That is, given a 
statistic V (which may be multi-dimensional) fixed at a certain value, the distribution of any other 
function of the random variables does not then depend upon O. In particular, f(xIV) no longer depends 
upon o. Since f(XiV) doesn't depend upon 0, we can't extract anything about 0 from it. Therefore all 
the information that is to be had about 0 is in V. There are lots of possible choices of V, because any 
1 -1 function of V, such as V3, etc., satisfies the requirement: fix it, and we remove all 0 dependence 
from the distribution. The same is true for any multi-dimensional extension of V, U = (V,Q,R,S, ... ), 
where Q,R,S, ... denote other statistics. Obviously, one prefers to work with the greatest possible reduc­
tion of the data which will satisfy the conditions, and therefore dispense with the superfluous Q,R,S, .... 

V itself may not be an estimator for the unknown parameters, but it seems clear that we want 
some function of V for our estimator. 

If V satisfies the above requirements, then V is sufficient. It is also a statistic, by construction. If 
V is the greatest possible reduction of the data, it is minimal sufficient. Note: In the Poisson example, 
T is not sufficient, but we were able to construct an unbiased estimator for 0 using it, anyway. 

If V is sufficient, then f(x;O) can be factored: f(x;O)dx = f(xlv)f,(v)IJldydv where f(Xlv)IJI is a func­
tion which doesn't depend upon 0; f,(v) depends upon O,but its x-dependence occurs only through v: 

f(x;O)dx = h(X) g(v,O)dydv 

f(Xiv)IJI f,(v) 

We represent by dy the (n - I)-dimensional differential left after v (here, I-dimensional) is extracted. 
This is a change of variables, e.g., from x" ... , xn to xl' ... 'xn_1' v, or some other change of variables 
from (X) to (y,v), where v is one of the new ones. IJI is the Jacobean for this change of variables. 
Remember IJI is not needed for discrete distributions. 

The choice of V will depend upon the distribution f which we assume describes the data. If this 
model is accepted, then two sets of data which result in the same value for V will lead to identical con­
clusions about o. 

Selecting a sufficient statistic V is an example ,of data reduction. There may be a vast amount of 
information in the data; we may be able to extract all the information about 0 that the sample contains 
by calculating one or a very few numbers, e.g., a mean. Just as in the Monte Carlo case, once the value 
of V is known, the family member is specified and the rest of the information in the sample may be 
regarded as having been generated by some random mechanism which has no dependence upon o. This 
(sometimes very large) amount of information which is not needed to determine 0 has been rendered 
superfluous by the power of our assumption, that f is the proper p.d.f. After 0 has been determined, the 
actual data points could be used if desired to perform a test of this assumption. 

The above factorization of the joint p.d.f. for all the x's is a necessary and sufficient condition for 
V to be a sufficient statistic. Therefore it may be used to select and/or verify a sufficient statistic. 
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In most cases, one is primarily interested in minimal sufficient statistics. In our no-count exam­
ple, we can use the number of events v = ~Xi (or any I - I function of that). Let us show that this v 

is sufficient: 

We know that the Poisson is reproductive. 

Therefore, 

e-n"(n )V 
V = ~x· is P (v) = f..L = f (v) ~ 1 nIl v! I, 

since each Xi has the same Poisson parameter, f..L. Now, 

XI (~Xi) e -nIl "v 
f(x;f..L) = II e-" L = e-n" _f..L __ = ...::....-_.!:.:.,..-

i Xi! IIXi! IIXi! 

Therefore, 

f(XJv) = f(x;f..L) = t fl(v) 

function of n - I 
variables, since 
V is fixed at v 

v! 
-":"":""--, (no IJI in the discrete case) 
(IIxi!)nV 

which does not depend upon f..L, with V fixed at v. 

Therefore, V is sufficient for f..L. The total number of events is not an estimator for f..L but it is all 
we need to know to construct an estimator for f..L, or any function of f..L, such as e-". Now what? 

The trick is to take the expectation of the unbiased estimator T at a fixed value of the sufficient 
statistic V. This gives a new r.v. which we will show combines the unbiasedness ofT with the informa­
tion content of V: 

U = E(TIV) = !Tf(XJV)IJldx (continuous case). 

The integral over all x means that all x-dependence is removed from U except that contained in V: if 
we have a different V, we will get a different U. But U is a function only of that one variable V, and 
therefore represents a considerable reduction in the complexity of the problem. It is the fact that V is 
sufficient that assures us that U is a statistic, i.e., does not depend upon 8. This is because f(XJV) does 
not depend upon 8; none of the other terms in the integral do, either. 

In two dimensions, the integral over all space reduces to the integral over the line of constant V: 
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In general, this is an (n -1) dimensional integral, for one-dimensional V. 

If V is a sufficient statistic, it contains all of the information about () that is available from the 
sample. If T is an unbiased estimator, it contains at least some of that same information. Therefore 
the two statistics T and V must be correlated. If, for the purposes of illustration, T and V are sampled 
from a bivariate normal, then: 

v 
2 JVAR(T) 

r'-~-~/\.'---""'" 

: 2 JVAR[E(T\V)] 
~ , , 
I I 

E(T) =8 
~'----~vr---~/ 

2 JVAR (Tlv) 

II ne of 
U= E(Tlv) 

T 

If T is a function of V only, T = T(V), then the correlation is 100%, T is itself sufficient, and U = T, 
since to fix V at its measured value is to fix T at its measured value. 

U is an unbiased estimator, since calculating its expectation value requires integration over all V; 
for continuous variables we have: 

E(U) = E[E(TIV)] = f[[TftXlv)IJldX ]f'(V)dV; 

but ftXlv)f,(v)IJldxdv = ftx;()dx, and therefore 

E(U) = fTftx,()dx = E(T) = () , 

since T is unbiased. The proof for discrete variables follows straight-forwardly from this. It is given 
below for our example. 



The variance ofU is less than (or equal to) that ofT, because of the condition V fixed. If V and 
T belong to the bivariate normal sketched above, with means JLv and JLT, variances u~ and uf, and 
correlation coefficient p, then 

U = E(TiV) = ILT - PJLVUT/UV + puTV/uv, 

which is the line sketched in the figure. It is trivial to confirm that E(U) = JLT = E(T) in this simple 
case. We can further easily verify that 

so the conditioning gives us 
an improvement as expected. 

In our example, since T = 1 only if there are no events in bin 1, and U is E(TiV), U is the 
expected frequency that a given number of events v, with Poisson parameter JL in each bin, will distri­
bute themselves among n bins such that there are no events in the first bin. The p.d.f. for finding xI 
events in bin 1 for fixed v is a binomial, with the number of "successes" equal to the number of events 
in the first bin; i.e., 

v! _----.:-'--_ pXI(1 - pr-X1 , 
XI!(V-XI)! 

where p = the probability of one event going into bin 1; this is l/n since all bins have the same p.d.f. 
Therefore, 

00 1 
U = E(Tiv) = ~ Tf(xliv) = (1 - pr = (l - -r (inserting the value ofT) . 

~=O n 

Therefore 

E(U) = ~(l - ..!..r e-nl'(~JLt = e-I' ~e(n-I)I' [(n-~)JLlv = e-I'. 
v=o n v. v v. 

Therefore, U is an unbiased estimator for e-I', as planned. 

V(U) = e-21'[el'/n - 1]- 0 as n _ 00. 

As an exercise, it can be shown that this estimator, U = (l - ..!.. )V, is asymptotically efficient (but not 
n 

for any finite n). It can be shown also that it is unique, in being unbiased with this property. 

Now we will state a general result for exponential families (and a few others). 

Theorem: Let xl' ... ,xn be a sample from a p.d.f. f(x,O), where 0 may be multi-dimensional. Let f 
be a member of the exponential family, f(x,O) = exp {A(O)C(x) + B(O) + K(x)}. Assume that we wish to 
estimate some function g(O). Find any unbiased estimator for g(O), let's say gl' so E(gl) = g(O). Then 
C(X) is a sufficient statistic for o. If 0 is a multidimensional vector, so is C(x), with the same dimen­
sioI).s. Then the quantity U = E(gliC) is independent of 0, and is therefore a statistic. 

Further U has the properties that 

a) E(U) = g(O) 

b) U is the unique estimator of uniformly minimum variance. 

All this is very well. How do we construct estimators? 
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Chapter 8. Constructing Estimators I .....-- Substitu.tion Methods 

Frequency Substitution 

This is useful in cases in which the population parameter to be estimated is a frequency or is a 
function of a frequency. In the method of frequency substitution, we simply replace unknown popula­
tion frequencies by the experimentally observed frequencies. 

Example - The Binomial 

B(x; n,p) = (~) pX(1 - p)O-X 

If we wish to know some function ofp, e.g., g(p), we replace p by x/n, since E(x) = np. This works well 
for fairly large samples, where the law of large numbers says that the difference between E(x) and np is 
a very small fraction of the true value. The advantages are simplicity and that the estimator is usually 
consistent. The disadvantages are that the answer may be biased and may not have minimum vari­
ance. However, the bias may be small relative to other errors. We may be able to reduce this bias, or 
at least estimate its size, by a series expansion: 

Bias Reduction 

Suppose we begin with an unbiased estimator 0 for 8. We wish to estimate g(8). We can try 
8 = g(O), which will often have a slight bias. Then 

A A 1 A 

g(8) ~ g(8) + (8 - 8)g'(8) + 2(8 - 8)2g"(8) + ... 

assuming g is twice differentiable, g' = ~ , etc. 

A 1 
Therefore E[g(8)] ~ g(8) + 2 V(O)g"(O) + ... 

since E(O) = 0 by assumption. Thus there is a bias in g(O) equal to ; V(O)g"(O), to lowest order. We 

cannot calculate this term since we don't know o. But if 0 is sufficiently close to 0, we can often satis­

factorily estimate it by ; V(O)g"(O). 

If we can calculate V(8), and if V(O)g"(O) is reasonably small, then we can make a bias-reducing 
correction to g(O): 

1 A A 

81(0) = 8 - 2 V(O)g"(O) . 

In the multivariate case, 0 = (01' O2, ••• , 0
0

), 

A A ap 1 A A a2g 
8 = g(O) ~ g(O) + ~(~ - OJ)M':" 10, + 2 ~(~ - OJ)(Oj - OJ) ao.ao.lo"Oj + 

1 1 IJ 1 J 

and 
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from which we deduce that 

gA _ gA _ l~v .. ~I" 
I - 2 ff 1J oOjoOj 81,8j 

has reduced bias, provided the second term is not large and not rapidly-varying. If that proviso is not 
satisfied, it is not obvious that going to higher-order terms will help, since the problem may come from 
t V(O)gll(O) :#: t V(O)g"(O). In that case a more detailed analysis ofthe specific problem may be neces­

sary, perhaps employing Monte Carlo techniques to help develop and test improved estimators. 

If the correction is small, and its expectation value is small, it won't change the variance of g very 
much (probably). If it does affect it, it will often increase it; however, the MSE may be lower. 

In the no-count Poisson example of the previous chapter, if we started with iL = x and therefore 
set 0 = e-x, then V(iL) = p,/n, and 

E(e-X
) Q:: e-" [1 + {n) . 

Therefore we can make a correction such that 

[ - ) -A - X X 
01 = e-x 1 - - assuming...1!:... Q:: - ; 

2n ' 2n 2n 

further errors approach zero faster than l/n as n _ 00. 

Our best estimator was 

8~[l-!r 

Q:: e-x [1 - ;) 

since v == nx 

and we have recovered our 
best estimator to order 1/n2. 

Note: In frequency substitution, the estimators are not always unique. We can choose from among 
them on the basis of MSE, lack of bias, or whatever. 

Method of Moments 

This is another substitution method. To estimate a function q(O), we express q(O) as a function of 
the population moments, then substitute sample moments for population moments. If all we want is 
the first moment, and that happens to be a frequency, this is same as above. Thus, we write 

q(O) = g(ml' m2, ... , mn), where mj = E(Xj). This assumes that the necessary moments exist. 

E.g., m l = mean 

m2 = E(X2) = V(X) + [E(X)]2 = V(X) + m
1
2, 

Thus, to estimate the population variance, V(X), by the method of moments, we write 
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q2 = m2 - mr. Therefore we try 

,,2 = m2 - mr = ! ~x? - x2 = ! (Xi - X)2 . 

We saw that for the normal n~ 1 ~(Xi - X)2 was unbiased. Therefore,,2 above has a slight bias. For 

the Poisson, 0 is both 'the population mean and the population variance. Therefore for the Poisson, we 
could use either 

8 = m1 or 8 = m2 - mr as an estimator for the variance. 

Therefore the method of moments does not necessarily provide a unique estimator. 

Variance of the Moments 

It can be shown in general that 

V(m-) = ..!.(m2· - m·2) for moment m· . J n J J J, 

In practice, moment mj+k, etc. can be estimated by mj+k, etc. We must realize that high-order moments 
are seriously affected by the tails of the distribution; therefore if we require high order moments, we 
may get very bad answers using the method of moments, e.g., answers with very high variances. 

By the law of large numbers, the average of anything tends to its expectation value, under the 
assumption that its variance is finite. Therefore moments estimators are at least consistent, i.e., they 
approach the right value as n _ 00. 

Generalization of the Method of Moments 

Instead of expressing q(O) as a function of the simple moments E(Xj) we could write the p.d.f. in 
terms ofa set of some other functions (other than the moments) of the data points xi' Then we could 
solve for each element of q (if q is a vector of more than one element) in terms of the expectation 
values of these functions. That is, don't use the moments mj, which are the expectation values of poly­
nomials, but the expectation values of some other functions of x which we choose by inspection of the 
p.d.f. We write the p.d.f. in terms of the unknowns 0 and a set of functions of\. We calculate the 
expectation values of those functions in terms of the unknowns. Finally, we estimate those expectation 
values as the sample means of the functions, and solve forthe unknowns. 

Example: 

Decay of a vector meson into two pseudo-scalar mesons. The data consist of sets of angles (cosOi' 
ifJJ We know the p.d.fis 

f( 3[1 ) 1 2 cosO,ifJ) = 411" 2"(1 - Poo + 2"(3poo - l)cos 0 

. . 
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- Pl,_lsin20 cos2e/> - V2 ReplO sin20 cose/>]. 

The unknowns are 

(POO' PI,.!' ReplO)· 

Choose three functions so that we can estimate three unknowns. These functions might be 

gl = cos20 

g2 = sin20 cos 2e/> 

g3 = sin 20 cos e/> 

Then, e.g., 

E(gl) = fg/ dcos 0 de/>. 

Since the trigonometric functions tend to be orthogonal, we are a bit lucky here. The expectations 
of our functions are trivially solved for the unknowns, viz, 

E(gl) = 1/5 (1 + 2Poo) 

E(g2) = - 4/5 Pl,-l 

E(g3) = - 4/5 V2 Repoo 

Each expectation value depends on only one of the unknowns. Now we estimate these moments 
from the data: 

and we solve for the p's. We can estimate the errors in them from V(&) using the techniques below and 
propagation of errors, which we will study in the next chapter. 

To recapitulate, we attempt to construct functions gk such that 

Then we estimate these functions from 

where 0 has m components we wish 
to estimate, and the qk are the ap­
propriate expectation values. 

Having done so, we solve for 8. Obviously, we need the same number of gk's as there are elements of o. 
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Covariance of q 

We also estimate the covariance matrix for q the same way, from the sample variance: 

. Vkk(q) == V(qJ = (1. )2V[~gk(Xi)] = 1. V[gk(X)] , 
n i n 

since the x/s are independent, identically distributed, 

1 1 --2 
=:; - • --1 ~[gk(Xi) - gk(X)] . 

n n- i 

The factor _1-1 comes from the unbiased estimator of the sample variance, as we have studied 
n-

earlier. The data sample is here regarded as a set ofnXm points gk(x.) rather than the x. themselves. 
1 1 

The general term is 

1 1 ---- . 
Vkj(q) =:; ~ • n -1 ~(gk(Xi) - gk(X))(gj(Xi) - gj(x)) 

1 

We usually interpret V(q) = u'1 as the "square of the expected error" of q. We sometimes write 
q = q ± ~q, with ~q = (1, an error symmetric about q as though q were normally distributed. If the 
error is known to be significantly skewed, as is often the case with maximum likelihood estimators 
(Chapter 10), this fact should be indicated in the error. 

There are other expressions we could use to represent an error. For example, one could use the 
average of the absolute value of the error. The variance is conventional because (1) it is low order, 
therefore easy to calculate; (2) it is sufficient in the case of a Gaussian, because a Gaussian is completely 
described by J.I. and (1; (3) it is often consistent, because, for example, an exponential family will 
approach a Gaussian in the asymptotic limit, thanks to the C.L.T.; (4) it can be easily converted to a 
probability in the Gaussian (C.L.T.) limit. We will, however, see a case in the next chapter in which 
this estimate of the error is very flawed. 

We now need to know how to convert our covariance matrix for q into a covariance matrix for O. 
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Chapter 9. Propagation of Errors 

General 

This is a technique needed for substitution methods of estimation, wherein one estimates some 
variable q and its variance or MSE, but one then substitutes q into some function 8(q), obtaining 
o = 8(q). The true value of q is qt' and the corresponding value of 8, the desired object of our investi­
gation, is 8(qt)' q is distributed about qt according to some p.d.f. We wish to approximately evaluate 
the variance of 0 from the estimated variance of q. We will assume q is an unbiased estimator of q. 

Expand 0 about qt: 

o = 8(q) =::: 8(qt) + j! I (q - qt) + 
aq q=q, 

Therefore 

E(O) =::: 8(qt) + second and higher order terms [since E(q - qt) = 0] 

The removal of the first-order term justifies using O(q) = 8(q). 

Now, [0 - E(ojf '" [6(q) - 6(q,)f ~ [;~ I. J (q, - q)' + 

and hence we can estimate the variance of 0: 

E{[8 - E(8)['} = V(O) ~ [: I. J V(Q) + 

This is the technique of propagation errors. 

Note that V(B) is not the MSE unless the bias ofB is zero. In the technique of bias reduction we 
saw a little earlier (Chapter 8), we had to go to second order in the Taylor series. Here, we only need to 
go to first order, for most applications. This technique works well only when second and higher order 
terms are small. 

Example 

8(q) = A + Bq. 

Propagation of errors derives V(B) = B2V(q), which is the exact result we have derived before. Any 
bias depends upon the bias of q and the correctness of A and B for the problem at hand. Since 8 is a 
completely linear function of q, all higher order terms in the propagation of errors drop out, which is 
why we achieve the exact result. 

The general case bears a close resemblance to the change of variables problems we have already 
discussed. Here, however, it is assumed that it is not possible or not convenient to do a full change of 
variables analysis; nevertheless we require a reasonable approximation to the true variance. 

Geometrically, 
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dq <q> 

'Sq' 

q 

In the sketch, we write (q) as the expectation value of q .. The shape of g(B), the p.d.f. for 0, is 
altered from f(q) by dO/dq, the Jacobean. In regions where dO < dq, the probability piles up faster for 0 
than for q, so the p.d.f. for 0 is higher than for q. Thus, in the sketch; the peak in g(O) occurs below 
0, = O«q»). 

If f(q) is normal, g(O) is not normal unless 'O(q) is linear. This is the source of possible biases in O. 
Iff(q) is symmetric about (q) (let's say (q) happens to be the true mean), then t of the probability lies 

above 0 = 0" t below, i.e., 0, is at the median. In the above figu~e, the mean of g(O) is probably above 

0,. If O(q) curves rapidly, higher terms are important, the bias may be large, and errors in 0 may be 
quite asymmetric. This is an important case. ' 

The multidimensional version of the above is as follows: 

q =(q" ... ,qn). 

(A frequent case involves the multivariate normai, where q has n X'n covariance matrix V.) The 
dimensionality of 0 may be smaller than that of q; if it is larger, we don'lhave adequate data. Now 

A (A) (_ ) 80j A 80j A 
OJ = OJ q ::;: OJ qt + -(q, - qit) + -(q2 - q2t) 

8q, 8q2 

80j A • + ... + -(qn - qnt) + second and hIgher order terms. 
8qn 

As written here, OJ is the ith component of a multi-dimensional vector. Therefore 

E(O) ::;: O(qt) (dropping the subscript on theta), and 

[8 - 8(qJf - tr [ :~ ) [:~) (<Ii. - Q,)(qj. - cj;) 

Therefore 

V(O) ::;: OT(O)V(q) 0(0) , 

. . 
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where D( 0) = 

This is a congruence transformation [Basilevsky (1983), Theorem 4.6] which carries the positive 
definite matrix V(q) into another positive-definite matrix V(O). If our change of variables is linear, it 
will carry a multivariate normal into another multivariate normal; otherwise not. However, if 8 is an 
arbitrary coordinate vector in O-space, the quadratic form y = OTV(O)8 is still positive and the contour 
y = constant is still an ellipse. We still write the covariance matrix V as the error matrix even though q 
may not be a multivariate normal. If 0 is multi-dimensional, we can do this for each element 
separately. 

Let's look at a bad case for propagation of errors: F. James (1983) analyzed the data of an experi­
ment measuring the mass of the neutrino. The variable 0 is represented by R: 

R= a 
d K2d ' 

K2e (b - c) - 2(1 - Ke)a 

where a,b,c,d, and e are measured and K is fixed. If R < 0.420, we must conclude that the neutrino 
has a non-zero mass, otherwise it is consistent with having zero mass. They measured R = 0.165. Cal­
culating the errors with propagation of errors, the experiment arrived at ~R = 0.073, a symmetric error 
of course. Therefore 0.42 is 3 standard deviations away from the measured value, with about 1 chance 
in 1000 that R ~ 0.42. Therefore, there appears to be strong evidence for a non-zero mass. 

But R is highly non-linear in the measured quantities. Some of the variables appear twice and 
therefore there may be large correlations, even if each of the a,b,c,d, and e are independent. Also, some 
of the errors are large (-30%). In particular, and perhaps most troublesome, some of the terms in the 
denominator have large errors. James set up a Monte Carlo calculation, which assumed independent 
normals for a,b,c,d, and e with u's as quoted by the experimenters. He found that 1-1/2% of the time 
(incorrectly quoted at 4% in the James reference) R came out ~ 0.42. This is a quite reasonable level 
of probability. There's a big difference between 0.1% and 1-1/2%. A correct calculation would take 
account of correlations and possible deviations from the normal for the input variables. However, all 
that is usually quite simple to do ina Monte Carlo calculation, and is a tremendous improvement over 
propagation of errors. 

The point is, the p.d.f. of R comes out with a long asymmetric tail just where it would be signifi­
cant for our conclusions (the high side); therefore neglect of the asymmetry has serious consequences, 
even if there is no net bias. 
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A general rule of thumb: if your transformation depends on 1/qi in some way, watch out! It may well 
be both biased and improperly handled by propagation of errors (unless the errors on the denominator 
are small). This case may be better handled by quoting an asymmetric "confidence interval" for R, 
rather than symmetric errors. 

We can go to a higher order in the propagation of errors expansion, which is sometimes useful. 
But if g(O) is skewed, we've got to be careful lest all we compute is corrections to the covariance matrix 
which we still interpret as giving symmetric errors. There is a nice discussion of higher-order correc­
tions to propagation of errors in Meyer (1975). 

This is more than an example of propagation errors, it is also an example of an hypothesis test. 
In this particular test, we ask for the probability that R is equal to a certain value "or worse," i.e., or 
greater. Hypothesis testing is covered in detail in the references at the back. 

The principle use for an error estimate in general may be for some such hypothesis test (which 
may occur in the future). For example, is this theory (or maybe that one) consistent with the data? 
Another form of this same problem: given such and such a theory, our measurement is used as an 
input parameter, from which a prediction for some other quantity with error will be derived. This 
derived quantity is then to be compared with an experiment. 

Discussion of Errors 

Error estimates provide a feel for the range of values in which 8 could be found, with "reasonable" 
probability, in light of the data. They are therefore probabilistic statements, which are usually inter­
preted on the basis of a normal p.d.f. That is, the interval is assumed to cover the true value of 8 with 
a probability determined by a normal of mean value 0 and error as specified. 

Often we are in a situation where we want to know whether or not some particular model, which 
predicts a certain value 81 for 8, is in agreement with the data. Many people phrase this in the form of 
a question about the consistency of "8

1 
or worse (i.e., farther away from the estimate 0)," because if we 

were to accept one of these worse values of 8 we would surely accept 81, If 0 is Gaussian with an error 
which does not depend upon 8, we can perform a simple integration over the region in question (giving 
us an error function). We can also extract the term (0 - 81?/U2 out of the Gaussian and look this up in 
a table of x2 cumulative distribution functions. These are available in most statistics books. Note, 
however, that the x2 takes the same values for 81 greater than 0 as for less than; we therefore do not dis­
tinguish one side from the other with the x2

, except that we can recognize the symmetry of the Gaus­
sian and divide the c.d.f. by two if we are only interested in one side. 

If 0'2 is unknown and must be estimated from the data, we naturally want to increase the size of 
the region in 8 which we consider to be in "good agreement" with the data. This must be done to allow 
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for the fact that we may have underestimated c? In this case, one no longer assumes the distribution 
of the error about 8 to be Gaussian; the "student's t distribution," similar to a Gaussian but with long 
tails, is used instead (if u2 is assumed not to vary with 0). This case is discussed in Chapter 11. 

It may also, very frequently, be true that u2 will vary with 0. For example, if a bin of a histogram 
is filled by a Poisson process, the variance equals the mean. To assess the agreement between the 
observed number of counts and some predicted number, we need to recognize that, if the predicted 
number is to be assumed to represent the expectation value of the Poisson, it also represents the vari­
ance expected in an observation. This we do in such procedures as least-squares fitting to a histogram. 
Otherwise, even in the limit of large numbers in which the normal approximation to the Poisson is ade­
quate, if we happen to underestimate 0true we will quote errors which are too small, and conversely if 
we overestimate 0true' 

That is, we assign errors on the basis of the assumed 0true rather than the observed data. 

In more complex cases, it may be impossible to do this. In the example studied by James, there is 
no way to choose from among the infinite number of sets of values of a, ... ,e which could give R = 0.42. 
We also are not told how u;, ... ,u; might be affected by changes in the associated parameters, 
although the original experimenters might be able to estimate that. 

The lesson to be learned is that it is wise to take error estimates, and their implied probabilities, 
very cautiously. Most physicists would probably not regard probabilities like 0.1% as being convincing 
evidence against a model. It is suggestive, but needs confirmation. 

In addition to the problems we have touched upon, there are possible systematic errors. These 
may be loosely defined as reproducible but unknown inaccuracies in the apparatus or procedures which 
would lead to a bias, even if the experiment were capable of being repeated a large number of times so 
that random statistical errors were reduced to any desired level. Systematic errors are characteristically 
extremely difficult to estimate. They do not have a distribution except in the sense that similarly 
prepared experiments may have different values for the same type of error. Systematic errors may also 
vary through an experiment in a (possibly unknown) way, depending upon operating conditions or the 
age of components. For these reasons, many experimenters quote their statistical and systematic errors 
separately, for example, as 

A = B ± C(stat.) :t D(syst.). 

Since systematic errors vary in character with the experiment, there is no generally-accepted technique 
for calculating probabilities from them. Some people just add the systematic errors in quadrature with 
the statistical errors, but one must recognize that this (and any other technique) is probably wrong and 
therefore be very conservative in interPreting the results if systematic errors are large. 
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Chapter 10. Constructing Estimators II - Maximum Likelihood 

This technique is very generally used because it is ,often the simplest method - perhaps the only 
, approach in complex cases - and because it provides estimates which have certain desirable properties. 
The basic idea is that we suppose that a measurement x is the result of a sampling of some p.d.f. which 
depends upon a set of parameters 0'= (01) ... ,Ok), i.e., ftx;O). Let us for the beginning assume 0 is only 
one-dimensional. Now we argue that nature has provided us with our sampling, which depends only 
upon fixed but unknown O. The probable range of 0 is assumed to be restricted by the assumption that 
if our specific sample were unlikely to have arisen from some value of 0 = 01' then conversely it is 
unlikely that 01 is the true value. We pick as our best guess for 0 that value such that the joint probabil­
ity of our sample is maximized. 

That is, if. X' = (xl""'xn) is our sample, the joint p.d.f. is 
n 
II fj(Xj;O) 
j=1 

if the Xj'S are independent, or, more generally, g(X';O) if they are not independent. This normally means 
"the probability ofX' given fixed 0." We now reverse the interpretation to fix X' at the measured values, 
and allow 0 to vary. The real 0 doesn't vary, of course, but our estimate of it does. 

Note: 0 is allowed to take ona continuous set of values, or may just refer to one of a finite set of 
models which we are testing. 

We construct a likelihood function 

2(0) = IIfj(Xj,O) (Xj independent) 
j 

=g(X',O) (Xj not independent) 

The likelihood is equal to (or proportional to, see below) the joint p.d.f. of the x., but it is evaluated at 
1 

fixed x., the measured values of the r.v.'s, and varies as a function ofO. It is not a p.d.f. for 0; if it were, 
1 ~ ~ 

we would take its expectation value as O. Instead, we evaluate 0 from: 

The Principle of Maximum Likelihood 

The best explanation for a set of data is provided by that value of 0 which maximizes the likeli­
hood function. 

This is not capable of proof without a definition of "best". We will show that the M.L. value for 0 
has a number of desirable properties; however, it is often slightly biased. The Principle of Maximum 
Likelihood should be treated as a heuristic principle. That is, we use it where it works well, but we 
should be prepared to use another technique (where possible) or to modify the M.L. estimator in the 
event of an unacceptable bias or other problem. 

We will throughout only be interested in relative values of the likelihood, such as its maximum. 
Therefore the likelihood can always be multiplied by an arbitrary constant which is independent of 0, 

but which is allowed to depend upon x. 
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Example 

A certain experiment has just three possible outcomes, ZI' Z2' and Z3. There are three different 
models or theories to explain the physical process which determines the outcome. These models are 
labeled 81' 82, and 83• For each model the probability of observing each of the outcomes is listed in this 
table: 

Possible 

Outcomes 

£,(8IZ \) -
£,(8IZ2) -
£,(8IZ3) -

P(ZI8\) 

8\ 

.4 

.2 

.4 ---
1.0 

Probabilities 

P(ZI82) 

82 

.6 

.3 

.1 

1.0 

P(ZI83) 

83 

.2 

.1 

.7 ---
1.0 

_ competing models 

_ the sum of the 

probabilities 

The likelihood function starts with a certain fixed outcome and varies with 8. The M.L. principle 
asserts that we should be able to work back from a measured outcome and choose as our "best" 8 that 
value which maximizes £'. If we get outcome Z2' for example, we should argue that 82 is our max­
imum likelihood estimate. In no case would we choose 8\. Notice that the rows don't add up to 1, i.e., 
the £"s are not p.dJ.'s. Notice that £,(8IZ\) = 2 X £,(8IZ2). We will therefore draw exactly the same 
conclusion about 8 from Z\ and Z2. That is, the likelihood technique cannot distinguish outcomes with 
proportional likelihood functions. 

In M.L. calculations, we usually work from f == fn£', rather than £' directly, because it is usually 
simpler to work with. It converts products ofp.d.f.'s into sums over the logarithms ofp.d.f.'s, and it 
removes exponentials, e.g., in Gaussians. The maximum of f is at the same 8 as the maximum of £': 

afn£' = .!. a£' = 0 
a8 £' a8 

gives us O. This is called the likelihood condition. This finds an extremum which may be a minimum; 
therefore it is important to check. There may also be > 1 local maximum; we usually take the highest, 
if we can find it. But this leads to ambiguities, i.e., multiple solutions. Multiple solutions usually go 
away in the asymptotic region, i.e., for large amounts of data. We might even have saddle points in 
special cases: £' as a function of continuous 8\ and 82 might attain a maximum for 8\ but at a 
minimum for 82, for example. It can also happen that the maximum occurs at a boundary, e.g., 

local 
max 

trUe? 
mdx 

-limits of the?_ 8-­
phYSiCdl region 

In this case, the 
likelihood equation 
does not suffice to 
find the maximum 

We might hope that as n _ 00, a unique, clear maximum in the physical region asserts itself; this is 
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usually, but not always, the case. 

Cases in which we don't want to use tn.:? are encountered in complex problems. For example, a 
subroutine full of IF statements and complex equations or Monte Carlo estimates is used to return a 
normalized p.d.f. for x given (). This p.d.f. is used as a likelihood. The normalization is only needed to 
the extent that it has a () dependence, otherwise it just goes into the arbitrary constant by which we can 
multiply 2. . 

Example: Normal N(x j ; ILj' 0) 

2= IT 1 e 
j=i ...j2; O'j 

()j = (ILj,O'i) , all xi's independent. 

Notice that we construct 2 out ofp.d.£'s, not probabilities, except in the discrete variable case. We 
could convert these density functions to probabilities by multiplying by the product of dx/s, but since 
that small volume element in x space doesn't depend upon (), we can ignore that complication. Con­
tinuing, 

t = ~{- ; tn (211") - tn O'i - (Xi ~tf } . 

The ignorable multiplicative constants in 2 become ignorable additive constants in t = tn.:? 

We ignore here the case in which all observations are equal, which gives problems because finding 
the maximum requires that O'j - 0 and 2 - 00 (if we are estimating O'J 

Solving the likelihood equations: 

at +1 (Xi - ILi) 
=0 

aILi 2 O't 

at 1 2 (Xi - ILi)2 
=0 --+-

O'? aO'i O'i 2 

This gives us 2n equations in 2n unknowns. An important case occurs if we assume ILj = IL for all i, and 
that all the O'/s are known. Then 

at = ~ [Xi - ILi) = ~~ _ ~L 
aIL O'r O'r . O't 

The M.L. principle asserts that this = 0 if IL = ~: 

Xi A 1 h fi 
~2 = IL~2' and t ere ore 

O'i 0'1 

~xi/ur 
IL = --- .. This is a weighted average. 

~_1 
O't 



Check for bias: 

For example: 

95 

1 
'I • 

: t-I ---------i 

~~ ~---
~: ----------~---

I 
I 
I 
I I 

1 
• 

x 

mostly determined by 
these 2 data. 

all the xi's are independent, therefore 

i * j 

Therefore, 

V(ft) = 

1 1 
~-+~--

q .4 .. q.2q .2 
1 I*J 1 J 

[~_l )2 
q? 

[~_l )2 
q? 
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The R.C.F. Inequality (Chapter 6) says 

V(iJ,) ~ I(~) ; 

I(IL) = - E[ a~2 ~tn ftXj,IL) ] 

96 

We already know at, which equals zero at IL = iJ, by the likelihood principle. Therefore 
aIL 

I(IL) = - E[~ [~~ - ~L)] 
aIL fIr fIr 

= _ E[ _ ~_1 ] = ~_1 . fIr fIr 
Therefore the M.L. solution iJ, is completely efficient, and we have found the best possible estimator, 
assuming the Gaussian model is correct. This is no accident. The method of maximum likelihood will 
find the efficient estimator if one exists. This will be demonstrated now. 

Let us assume that there exists an unbiased, efficient estimator T(x). Then we have proved earlier 

(Chapter 6) that T(x) is linearly related to S(x,O) = :0 tn ftx,O), the score function . . This relationship 

must be of the form 

S(x,O) = C(O)T(X) + D(O), 

The likelihood condition gives us 

:0 tn ftx,O) 18=0 = S(x,O) = 0 . 

where C and D are not functions· of X, 
and T is not a function of O. 

(Here, we obviously restrict ourselves to cases in which the maximum of £lis not at a boundary.) This 
alone tells us only that O'is such that T(X) = - D(O)/C(O). We also know that the score function has 
the property that 

E[S(x,O)] = E[ :0 tn ftx,O) ] = :0 Jf dx = :0 (1) =0, 

. under certain very general conditions on f. This holds for any 0 in the allowed range; it doesn't have to 
be the true O. In other words, this holds for all members of the family of the p.d.f. In particular, it is 
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true at 8 = 0, the M.L. estimator: 

E[S(x,O)] == E[SiO] = C(O)E[TiO] + D(O) = 0 . 

Hence, E[T(X)iO] = T(X). (This requires proving, because, even though T doesn't depend upon 8, the 
expectation does.) We assume that a solution 0 satisfying this condition exists in the allowed range. At 
first glance, the condition seems paradoxical, because 

E[T(X)iO] = fT(Y) f(y,O)dy (ya dummy variable) 

doesn't appear to be a function ofx. The paradox is resolved if we remember that 0 is chosen by the 
condition T(X) = - D(O)/C(O); i.e., 0 itself depends upon the data x (after all, 0 is a statistic). 

Now we do the final step: 

By construction, fT(Y) f(y,8)dy = 8, since T is an unbiased estimator for the family f(y,8) for any 
8. Since this is just a mathematical statement not dependent upon the actual value of 8, it must be true 
for 8 = 0, the M.L. solution. Therefore 

E[T(X)iO] = T(X) = 0 , 
and the Likelihood Principle finds the unbiased, efficient estimator T(X). 

A few remarks: 

(a) Evidently, 0 = - D(O)/C(O); therefore D(O) = - 0 C(O) and D(8) = - 8 C(8) (this is true 
because 0 = - D(O)/C(O) must hold for any 0 which may be selected by T(x) = 8); hence 
S(x,8) = C(8)[0 - 8]. This is a general result for efficient, unbiased, estimators. If the estimator 
is biased but efficient, S(x,8) = C(8)[0 - b(8) - 8], where b(8) is the bias: E(O) = 8 + b(8). 

(b) The variance of 0 may be obtained from the R.CF. Inequality, which becomes an equality here 
by assumption: 

A 1 1 -1 
V(8) = 1(8) = E[S2] = -as 

E[ao] 

From (a) we obtain: 

aS
8 

= C'(8)0 + D'(8) = C'(8)0 - C(8) - 8C'(8) , a . 

where the prime denotes differentiation. In this calculation, 8 is the true value of the parame­
ter, assumed known. This derivative expression is a linear function of 0, and E(O) = 8. There­
fore, 

E[ ~~ ] = -C(8) (since E is a linear operator); 

therefore V(O) = 1/C(8) > O. We will later see that we will estimate V(O) by 1/C(0) in experi­
mental situations. 

( c) At any value of 8, not necessarily the true value of the parameter, 
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a
2
tn£' = ~ = C'(0)(6 - 0) - C(O) 
a02 ao . 

= - C(O) at 0 = 0 . 

From (b), this must be negative, as long as-O is reasonably close to 0t . Therefore the solution 
A ~ 

o of the likelihood equation S = 0 is a maximum as desire". 

(d) From the form of the score function in (a), the M.L. solution 8 is unique, since (b) assures us 
C(O) ::1= O. 

(e) all of the above assume the data x are relevant to estimating O. This assumption is (almost) 
guaranteed by the premise, that there exists an estimator TOO unbiased and efficient. 

In the Gaussian case again, suppose both Il and u are unknown, but ui = u for all i. 

at [Xi - Il) - = ~ =0 all i u 

at = ~ [_ 1. + Xi - Il) = 0 
au i u u3 

From the first one, we get 

it = 1. ~Xi. Substituting in the second one, we get 
n· 1 i', 

this is a biased estimate for u. An unbiased estimate is _1 -1 ~(Xi - X)2, as we have shown earlier 
n-

(Chapter 5). Note: If Il were known, not having to be estimated, we would get, from the likelihood 
condition, 

0.2 = .l~(Xi - 1l)2 • 
n 

This is almost the same thing, but now this is unbiased, because Il is known. 

Asymptotic Properties 

Maximum Likelihood estimates are, in general, neither unbiased nor efficient. However, they are 
(usually) both asymptotically, again because of the connection of the M.L. estimator to the score: Let us 
look at the form of t = tn£': 

- . 
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a A as I A Score S(x,8) = ao~fnilxj,8)==: S(x,8) + iii '8(8 - 8) + 
I 

s s 

C?xpdndC?d VIC?W 

o ~--------~-----e ~------~~-----e 

(N a2fn f as 0 hI' b hI" . ) H . ote: ~ = iii < near t e so utlOn, ecause t e so utlOn IS a maXImum. ere, agam, we 

make our calculation as if we knew 8. We want to find results good for all (), if possible. Under suit­
able conditions, the higher order terms in this expansion of the score _ 0 as n - 00. Therefore, 

... as I A S(X,() :::: iii '8«() - () (since S(X,8) = 0 by choice of 8) 

a
2 

I A = a()2 ffn ilXj,() /() - () 

'" E[ [:; ~fnfl/)}o -6), 

where the approximation in the last step is to use the expectation value for the sample mean (i.e., the 
sample mean _ expectation value as n _ 00, provided only that the variance is finite). 
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- 1(8)(0 - 8) :::::: - 1(0)(0 - 8) , 

where the last step is exact in the limit we are considering, of a linear score function. This result holds 
because of the law of large numbers. Therefore in the asymptotic limit, if the law of large numbers 
applies, the score is a linear function of O. Hence, in this limit, 8 is efficient, unbiased, and therefore 
consistent. Further, since 

a A A 

aoln£'= S(x,O) :::::: 1(0)(0 - 0) , we can write . 

In£':::::: - I~) (8 - 0)2 + In k, k a constant, and 

2(0) :::::: k exp( -(8 - 0)2 1(8)/2) . 

That is, .2' is a Gaussian whose peak is at 8 with variance 1/1(0). The latter occurs because the estima­
tor is efficient. Notice that we are talking about the experimentally observed likelihood, where 8 is 
fixed by the data and 0 is a variable; in spite of its form, .2' is not a p.d.f. However, we estimate the 
true mean with 8, and likewise we will now estimate the true variance with 1/1(8). In the limit of a 
truly linear score, 1(8) = I(0true), but we often assume this is approximately true even if the score is not 
linear. More on this later. 

If .2' is Gaussian, I = In£' is parabolic: 

1/1\ 
~\ e e 

Therefore, under suitable conditions, 0 is unbiased and of minimum variance, asymptotically. It 
should be obvious that one example of "unsuitable" conditions is the case in which the true maximum 
occurs at a boundary: 

e 
In general, for the conditions to be suitable requires the following: 

that 0 E Q which is finite dimensional and closed, and 0 is not on the boundary of Q. 

that the p.d.f.'s defined by different values of 0 are distinct. 

that the first three derivatives of I = In£' exist in the neighborhood of the solution. 
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that the information is finite and positive definite. 

In case 0 is a vector, we replace 1/1(0) by 1-1(0) as the covariance matrix. 

This property of symptotic normality alld efficiency is an important reason for the use ofM.L. 

Change of Variables 

Another convenient property of M.L. estimators is as follows. If we change variables from 0 to a 
function of 0, then the M.L. estimate changes to that same function of O. 

g(O) = g(O) because a.2 = a.2 .E! 
, ag ao ag' 

. ao. d h £'. a.2 O· 1· h a.2 0 h 0 Th .gh b dd· assummg -a eXIsts, an t erelore -0 = Imp Ies t at - = at t e same. ere mI tea 1-
g a ag 

tional solutions if :: = 0 at any points in the physical region .. That will normally not happen if g is a 

one-to-one function of 0 unless points of inflection occur: 

e 
Therefore M.L. works like the method of substitution in going to a function of a parameter. 

This is another illustration that M.L. estimators are often biased, since if 0 is unbiased for 8, g(O) 
may be biased for g(8). However, as n _ 00, M.L. provides unbiased and efficient estimators for both g 
and 8 under the "suitable" conditions listed above . .2 approaches the normal shape differently, at a 
different rate, depending on whether g or 8 is the variable being estimated. 

For functions g of a multivariate 0, the transformed information matrix is 

[ 
agk)T _ age 

I(gkt) = To I(O)To ; 

o and g do not need to have the same dimensions. 

More on Errors 

As mentioned above, if I actually depends upon 8true, an unknown, we can use 1(0) for purposes of 
estimating the error of an experimental statistic. 

It is possible to compute higher-order corrections to improve the estimate of the errors in 0 or g 
for finite n. 

To estimate the error on the M.L. estimate for finite n, we again use the square root of the vari­
ance. Since.2 = IT f(xirO), it is a joint p.d.f. for x (not h and we may be able to evaluate a covariance 

i 

matrix as 
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(we must normalize since 2' is defined only to within a multiplicative constant). 

If 0 is efficient, and therefore 2' takes on the form ofa Gaussian, this covariance matrix = 1- 1(8). 

Therefore, (1- 1(8))i; gives the value of V ... , IJ 

For a single 0: 

I = E[S2] = - E [~~ ] 

= E[( a tn2')2] = _ E[ a2 tn2'] 
ao a02 

The last equality is independent of 0 and follows from lJ a
2 

lJ Ifdx = /2 lJ (1) = O. 
aUi aUj aUi aUj 

If the estimator 

is efficient, then we have exactly 

_ E[ a2 tn2'] = _ a2 tn2' 
ao2 a02 

8=8_ 8=8 

(the "expectation" operation has no effect, since the score is perfectly linear and therefore the slope of 
the score is independent of 0). 

To estimate this for a real sample, we replace the expectation value by the sample mean and 
evaluate at 8: 

The expectation form is useful for estimating the error we expect from a measurement, e.g., prior to the 
experiment, as part of the design study for the experiment. This assumes, of course, that we can make 
an initial guess at 0 when the estimator is not efficient. 

We have already derived the variance for our weighted mean M.L. example, using first considera­
tions. From the above, we can estimate the same quantity: 

~xil u? at Xi J.L 
we have it = and - = ~- - ~- . 

~l/u? aJ.L (J[ (J[ , 

therefore 

- . 
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which is the same answer we got before. It is independent of the data xi and therefore it; it depends 
only upon the data errors (1., known in advance. That is, since the estimator it is efficient, the "expecta-

1 

tion" operation had no effect. 

Geometrical Method of Estimating Errors 

In many problems, the solution to the M.L. problem has to be found numerically, In this event, 
we can find the errors from the above in the large sample case, where the estimator becomes efficient. 
In the small sample case, we can make a graphical analysis: 

I 

First, go back to the case in which 2 is Gaussian. Then 2 = 2 (max)e -"2
Q

, where 

Q = (8 - O)2jr?; r? = [I(O)r l ; I = In:? = In:?(max) - ; Q.' Then the point at which (8 - 0)2 = r?, 

i.e., one standard deviation, can be read off just as if 2 were truly a Gaussian p.d.f. for 0: 

-------~.--~ 

~~~~~~------

a l = 1 st.d. (standard deviation) 

a
2 

= 2 st.d. 

In this case, a
2 

= 2a
l
, 

1 
II = Imax - 2' (Q = 1) 

12 = Imax - 2 . (Q = 4) 

In general, for I = Imax - a or 2= 2maxe-a (so a = tQ), the 1,2, and 3 st.d. confidence intervals 

may be obtained geometrically from: 
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v'Q a P(IO - 01 < aa) comment 

1 
1 

68.3% a 1 = V(O) if 0 unbiased -
2 "2 

2 2 95.4% 

3 4..!.. 
2 

99.7% 

Now, if ..2"(0) is not normal, imagine a one-to-one transformation g(O) to a new parameter g such that 
..2"(g) is normal (such a g may not exist - see below). Now g(O) = g(O) as we have already shown. Let 
h be g-I, i.e., 0 = h[g(O)]. Then P(lg - gl < ag) = P(IO - 01 < ae) ifg = g(O), and aeis the transformed 
interval, both corresponding to the same a: 

a g = g interval corresponding to ± [t max(g) - a]; ae = 0 interval corresponding to ± [t maiO) - a]. 

Whether as a function of g or of 0, we can estimate the errors if we drop down an amount "a" from the 
top. We use the same a, since this is not a change of variables - xi is still the variable - but just a 
change in parameters, i.e., 

2(Olx) = ..21g(O) Ix] , for all o. 

This is a non-trivial point. For fixed X, ~X) must be unchanged whether we write the p.d.f. as a 
function of 0 or of g. 0 only chooses the member of the p.d.f. family. g(O) must choose the same 
member. The likelihood certainly has a different shape graphed versus g than versus 0, but must have 
the same value at g(O) as at the corresponding parameter o. The likelihood, a function of the parame­
ters for fixed data x., is a function of a point; it is not a p.d.f., which is a function of an interval. That 1 . 

is why we multiply by a Jacobean when we change variables for a p.d.f. No Jacobean is needed for a 
likelihood function. 

, , 
I __ I __ 

, 

# • 
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Since.:? has the same value at corresponding values of g and (), we can construct the "errors" in the 
same way for either one. These may not be symmetric, as shown above.' Notice that we can find the 
errors on 8 without actually finding g. 

A problem is that no such g may exist. However, it does exist asymptotically. Therefore there 
probably exists some transformation to a parameter nearly normally distributed. Since we never need 

. ~ to actually perform the transformation, we adopt the hypothesis: 

A Y% confidence interval for () has limits at values of () where t max - t = a, where a and Y 
correspond as in the table above. This statement means: in a large number of similar experi­
ments, the frequency that a Y% confidence interval constructed according to the above 
prescription contains the true value of () is :;;;;: Y%. 

In some cases, this hypothesis leads to disjoint intervals, infinite intervals, or other difficulties. 
Even in ordinary cases, the statement may be only roughly true. If the estimator is not efficient, the 
information may depend upon (); since we must estimate it at 8, we may make an error in estimating 
the errors. In any case, this method (or any other method) of estimating errors from the likelihood 
function should be regarded as a heuristic principle - it is not well grounded in grand mathematical 
theorems. 

Multivariate Case 

If all variables are efficient, then the likelihood will be a multivariate normal. 

Example: 2 Dimensions 

1\ 

e c. 

~-----':' 

I 
9"2 
~ 

1 
tn.:? = tn2(max) - "2Q 

To get the correct error on ()l' we must 
allow ()2 to vary, and vice-versa. 
Otherwise we get only the reduced 
(conditional) error uf or uj. 

Q is the factor in the exponential for the bivariate normal p.d.f. In fact, Q is x2(2), as we have dis­
cussed before. 

1 
a P(-Q ~ a) 

2 

0.5 39.3% Q = 12 
2.0 86.5% Q = 22 
4.5 98.9% Q = 32 

as we discussed in the bivariate normal case. In general, for n parameters (), Q is x2(n), and we can 
look the corresponding probabilities up in a table of x2 c.d.f. 'So 
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If things are not this regular (the parameter estimators are not all efficient), it is common (there 
are several approaches possible) to adopt a hypothesis similar to that of the univariate case: 

0:-
1 

r~--~A,-_~ 

LJ::==~:::±=:~----8, 
§, 1 

1 
1 constant' = , - a 'a = - . 

max ' 2 

We must solve for these extrema numerically. This must be done for one variable at a time while 
allowing the other variables to move. Thus, we first guess at a value for 01' i.e., 81 + ufuess = ol, so 
that ol is a guess at the maximum value ofO I giving' = 'max - a; re-maximize' with 02 and check if it 
is still true that' = 'max - a; repeat using techniques of numerical analysis until ut is found. Then 
repeat for UI-, ut, U2-' We must re-maximize with respect to the other variables at each stage, other­
wise we will just find the conditional errors V(01182), etc. Then we can define separate confidence inter­
vals for °1 and 02' 

If this box doesn't describe the joint probability reasonably well, then we may want to give the full 
shape of the likelihood function, e.g., 

82 

0=2 

/\ 

82 

1\ ~ ~ 
Sometimes there is more than one maximum with disjoint regions around each, defined by some set of 
contours. 

Some comments on M.L. estimation: 

1) If the sample is large, M.L. gives a unique, unbiased, minimum variance estimate, under cer­
tain general conditions. However, "large" is not well defined, and for finite samples, the M.L. 
estimate may be neither unique, unbiased, nor minimum variance. In this case, other estima­
tors may be preferable. Alternatively, one may begin with the M.L. estimator and make vari­
ous bias-reducing or variance-reducing corrections. 
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2) M.L. estimates are often the easiest to compute, especially for complex problems. In many 
practical cases, M.L. is the only tractable approach. 

3) M.L. estimates are sufficient (Chapter 6), that-is,-they use all the information about 0 which is 
contained in the data. In particular, for small samples they can be very much superior to 
methods which rely upon binning data, since the binning loses information. Estimators based 
upon the populations of bins are for this reason not sufficient. Likelihood estimators use every 
bit of data at face value. 

4) M.L. estimates are not necessarily robust. They can sometimes perform very poorly in the 
presence of deviations from the assumptions. For example, if the true distribution for Xi is a 
"heavy-tailed Gaussian" and we have assumed a pure Gaussian form, M.L. estimators may 
have a much larger true variance than some other estimator. 

5) M.L. gives no way of testing the validity of the underlying theory, i.e., whether or not the p.d.f. 
we have assumed is the correct one. 

6) The justification for likelihood procedures lies only in the nature of the results, i.e., it usually 
works. Note that in constructing confidence intervals (errors), we treated the likelihood as if it 
were a p.d.f. for o. But this can't be justified theoretically, because, by Bayes' Theorem, iff{xiO) 
is a p.d.f. for x given 0, and g(Oix) is a p.d.f. for 0 at a given x, then 

g(Oix) Q( f{xiO) P(O) Q( .2(0) P(O) (for one observation). 

To use 2' (0) as a p.d.f. g(Oix) requires assuming P(O) = 1. See the section on Bayes' Postulate 
(Chapter 2) for a discussion. Briefly, there is no mathematical justification for this assumption. 
If 2'(0) were a p.d.f., we would have been tempted to use its expectation value as an estimator 
for 0, rather than its maximum. 

7) To use M.L., we must know the p.d.f. of our measurements about their true values. This will 
be seen to be not necessary for the Method of Least Squares; we will only need certain assump­
tions regarding the p.d.f. 
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Chapter 11. Constructing Estimators III - Method of Least Squares 

Starting From Maximum Likelihood 

In the example of the previous chapter, the case of the sample of xi' N(xi; JL, 0), we constructed 

.:? = IT 1 e (Xi - JL)2 

i Yhui 2u[ 

(Xi - JL)2 
fn2' = C - ~[-fnui - 2 2 1, C a constant. 

i Ui 

That is, each x. is one measurement with known error u. of a fixed but unknown quantity' JL, which we 
1 1 

wish to estimate. An important assumption is that uj does not depend upon JL. Otherwise, we must 
estimate its true value; normally one evaluates it at ft, which introduces non-linearities, a subject of 
later discussion. 

I 
I 

I I I 

...--: q 
.....+---! 

II 

The quantity IXi - JLI is one useful way to measure the distance of x. from JL, namely, in terms of a 
~ 1 

number of standard deviations. Then any points which are, e.g., k standard deviations away, are 
weighted equally. 

T .. CL' • •• h f h' ~ (Xi - JL)2 Th' . ld b o maXlmlze..z; , we must mmlmlze t e square 0 t IS, ~ 2 IS quantIty wou e 
i Ui 

x2(n), assuming each point is independent, if JL were known. If JL is unknown, we set JL = ft and esti­
mate it from the data. Then there is one relationship among the terms of the x2

, and therefore the 
quantity 

Z ~ [Xi - ft(x}f. 2 ( 1) = ~ 2 1Sx n - . 
Ui 

The method of Least Squares replaces the maximum of the likelihood function with the minimum of 
this quantity, the sum of the squared distances of the measurements from the final estimate. The 
minimum value of this x2 occurs at 

~xJU[ 
JL = as we have seen earlier. 

~ l/u[ , 

In this case the method of Least Squares and the Principle of Maximum Likelihood find the same 
estimator. This would not be true, in general, if the distribution of the data about JL is something other 

-. 
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than Gaussian. We will show that, although we have arrived at the Method of Least Squares (L.S.) 
from the Principle of M.L., L.S., is much more solidly based than M.L. It is also, perhaps as a conse­
quence, less widely applicable. 

The result of a M.L. or L.S. procedure is often called a "fit" to the data. 

It would also be possible to minimize ~IXj - ~I, or some other measure of distance, to find an 
estimator for~. We will show that under certain general circumstances the least squares estimator has 
smallest variance. But if, for example, some of the data have problems such that the assumed values of 
O'j are too small (e.g., many data points are in the notorious long tails of the Gaussian), we may desire a 
more robust estimator. We will not discuss this here, but it can be shown that ~IXj - ~I is minimized 
by setting p, equal to the median. The median throws away some of the information in the distribution 
but it is very insensitive to long tails on Gaussians. 

We can now substitute p, into the above for Z and calculate the x2 we get. If we repeat the experi­
ment a large number of times, the distribution of Z is expected to look like a x2 (n - i), provided the 
theory is correct, i.e., that the x/s are normal with true mean equal to ~, and each has true variance O'? 

We can make a test of this theory by comparing the value of the x2 we get with the x2 c.d.f. for n - 1 
degrees of freedom. If the value of Z is low enough, this doesn't prove the model, but doesn't rule it 
out. If the value of Z is larger than some pre-determined, or mutually agreed-upon, value, we say that 
the data are inconsistent with the model. This value could be "t" such that P(Z > t) is < 1 %, or 

< 1~ %, or perhaps we don't want to reject the theory unless still lower values are reached. If the 

theory being tested says "the neutrino has no mass", we want to be very sure before we reject. If the 
theory says "this track is well described by this curve fitted to these measurements", we can afford to 
reject at 1 % or maybe even 5%, because we know tracks do have kinks sometimes, or that there are 
sometimes bad measurements. 

If we reject the fit, it just means we don't believe the theory describes the present data. This could 
be just due to some bad data, e.g., outliers at great distance due to some background process - or it 
could be due to a fundamental error in the theory. 

Thus, unlike the general M.L. problem, in this example we have a way of testing for goodness of 
fit. 

If we accept that the data are consistent with the model, we now want to estimate the error in p,. 

Clearly, we want the error to decrease with increasing n, the number of measurements. We also 
want the error to increase as the O'j are increasing, in some way. Do we want the error to increase if the 
points are farther away, i.e., as the x2 increases? 

We can estimate the error using propagation of errors (Chapter 9). We are in this example free of 
the flaws of that technique, because we are starting from a normal variable, Xj' and making a transfor-
mation linear in x. to p,: . 

V(p,) = [_1_]2 ~ V(~j) = _1_, 
~_1 O'j ~_1 

0'( 0'( 

as we saw before. This is independent of the value of x2, which depends upon the particular measure­
ments x .. That is, the same set of O'.'s, known before the fit is done, will result in the same V(p,) 

1 1 
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regardless of where the data points lie or what the final it is or the final x2 is. V(iJ,) is also independent 
of J.L for the same reason. We will see later that if we had to estimate u2 as well as iJ" then the errors 
would depend on the value of the x2• In the meantime, we can qualitatively understand the fact that 
the error should not depend upon the x2 as follows. Assume the following four measurements, which 
happen to find iJ, = the true value of J.L: 

The above, which predicts the correct J.Lt ,has the same errors as this case: . rue 

0---1"""1' c: 
--';-"d 

d 
t5 

(Through an accidental fluctuation, the 
points cluster better about some value 
than they did above, but we don't know that 
it's the true value.) 

which predicts iJ,. The second case has the same real probability of occurrence as the first case (b' and c' 
are reflected about J.L

true 
and have exactly the same true error as b and c), but has lower x2 (about iJ" 

remember); we don't know the true value of J.L any better in the second case than in the first case. 

But we note that the variance of iJ, depends upon the shape of the x2
: 

(x. - iJ,)2 
Z= ~ I. ur 

az 
aiJ, 

~2(Xi - iJ,) 
~-----,:--- = 0 by choice of iJ, . ur 

All higher derivatives = 0, a consequence of the efficiency of the estimator. Thus the x2 is a perfect 
parabola: 
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-x,2 

-----v -x, 2 
min 

A fJ.. ..... 
fJ.. 

Corresponding to what we did for the likelihood case, for this way oflooking at the same problem 
we can construct the errors in it by drawing lines of constant x2• For a given value of p" 

u1 = V(it) = (it - p,)2 
p. Z(p,) - Z(it) 

In particular, if we can find values of p, such that Z(p,) = Z(it) + 1, then (it - p,)2 = uff and 
(it - p,) = ± u;;. 

Therefore ± 1 standard deviation is observed at the points where the horizontal line Z(p,) = 

Z(it) + 1 intersects the x2 parabola. ± 2u occurs at Z(p,) - Z(it) = 4, etc. 

-x2 
+1 

min 

C?xpC?rlmC?nt 

A The estimator for P,B is more tightly 
determined, because the x2 

gets worse much more rapidly as we go 
away from itB' 

We will now look at more general cases, and also see what we can learn if the measurements are 
not Gaussian but still unbiased. 

The Two- Variable Case: the Linear Model 

In the preceding example, we made a number of measurements of a fixed quantity. Now let us 
suppose we make a number of measurements of a quantity y which varies with some characteristic x of 
the measurement. We will assume for now that x (position, time of day, amount of a chemical, price of 
an item, etc.) is chosen by the experimenter and is known without error. At each x. we find a measured 

1 

Yj which has known expected error uj • The variable x is called the independent variable or predictor 
variable, and y is called the dependent variable or response variable. We will assume u. is a constant 

1 

which does not depend upon y at any given x. 

One of the reasons for doing a fit to a curve is to enable us to predict the most likely value of 
future measurements at a specified x. For example, we wish to calibrate an instrument, such as a ther­
mometer. Then the predictor variable x would be the. value the instrument reads. The response vari­
able y would be the actual value (here, the actual temperature). We do a curve fit in order to average 
out the fluctuations of individual data points as much as possible. This only works, of course, if the 
model used for the curve is at least approximately correct. A more general example of this type of 
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problem is any case in which the y.'s themselves, rather than the 8's (the parameters ofthe curve), are 
1 

the parameters of interest. In this case, we improve our understanding of the y. by using Yi in place of 
1 

Yi' provided we believe our model is correct. 

We will as.sume that we have a model for y versus x in terms of certain parameters 8 which are 
coefficients of known functions of x, i.e., of the following form: 

This is the curve to which we fit. There are "k" parameters to be estimated. The important features of 
this model are that the h/s are any known (frequently, one of them is a constant), distinguishable, func­
tions of x, single-valued over the allowed range of x, and that y is linear in the 8i's. Our task is to esti­
mate the 8i's. Therefore, this is called a linear model, even though y is not necessarily linear in x. In 
some cases, the linear model is just an approximation arrived at by retaining only the first few terms of 
a Taylor series. None ofthe hi'S may be expressible as a linear combination of any set of the others; 
otherwise, the corresponding 8. will be indeterminate. 

1 

We wish to determine the values 8. such that the model provides the best "fit" to the measure-
1 

ments. We assume that any deviations of Yi from this curve must be due to random measurement 
error or some other unbiased effects beyond our control, but whose distribution is known from previ­
ous study of the measuring process to have variance ur It need not be Gaussian. We will take as our 
measure of the distance of Yi from the hypothesized curve the squared distance in units of ui' as above. 

The general term for this fitting procedure is Regression Analysis. This term is of historical origin 
and is used even though nothing is thought to "regress". 

y 

~truecurve 

p.d.f. of Yi at Xi 

x 

We assume that our actual measurements are described by 
k 

Yi = ~8jhj(xi) + Ei, 
j=l 

where the unknown error E. has the properties: E(Ei) = 0, V(Ei) = up is known (and sometimes E. is 
1 1 

Gaussian). We will state when we need the Gaussian assumption. We don't need that assumption for 
most of what we will do; only after the fit when we test goodness of fit. Note: If at each x., the y. are 

. 1 1 

not normal, we may be able to transform to a set of variables which is, for when we need the Gaussian 
model. We are implicitly assuming that each y. is an independent measurement; ifthe errors on the y. 

1 . 1 

are correlated we will need a non-diagonal m X n error matrix, as will be discussed. The x. may be 
1 

chosen any way we wish, including on top of one another. We shall see, however, that we will need at 
least k distinct Xi'S to determine k parameters (Ji' We will continue to denote by "n" the number of 
measurements (\' yJ 

"':"", . 
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The deviations from the true curve are Ei ; therefore our x2 is 

n 
x2 = ~E?-I(1t 

i=1 

(This is not a true x2, i.e., it does not come from 
a x2 p.d.f., unless the Ei are normal [see Chapter 
3]. In some references this is called "SS" for 
"Sum of Squared deviations.") 

We don't know the actual value of this, since we don't know the actual values of the elements 
ofO. The L.S. method tells us to estimate Oby that 0 which minimizes x2• Hence, writing 

ax2 1 
aO

e 
= 2 ~ (1.2 [Yi - ~Ojhixi)][ - he(Xi)] 

1 1 J 

=0 for all t = 1, ... , k provides the solution for 
the k components of 0 at minimum x2• 

Therefore 

These are called the normal equations for OJ- Their solution is the L.S. solution to the problem. It's a 
bit easier in matrix notation, because these are a set of k linear equations in k unknowns: 

YI 01 EI 

• • • 
• • • 

Write y = • 0= • 1= • 
• • • 

Yn Ok En 

(nXl) (kX 1) (nX 1) _ dimensionality 

It is customary in L.S. analysis to define vectors as being column vectors. The matrix we need is: 

• 
H= (n X k) . • 

• 
• 

• 
Then HO = (n X 1) , • 

• 
• 

and our model is 
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Y=HO+1. 

Since E(E) = 0, we obtain E(Y) = H 8, assuming the model is correct. This is just the statement that 
the expectation value of each measurement lies exactly on the theoretical curve. 

The errors al may be incorporated into a variance matrix: 

y= [~l ~] 
o a~ 

(n X n) symmetric. If we approximate this by Y 
= Iul (i.e., fixed ul for all measurements), we still 
get an unbiased estimator, but not minimum 
variance (unless all the (If are really equal, of 
course). 

Note that HO is fixed (once the data have been taken), therefore Y(Y) = Y(E), which is Y. We are talk­
ing about the variance in y due to measurement error about the true curve. Note that we can drop the 
assumption of independence of the measurements here, if we want, by using non-zero off-diagonal V . .'s. 

1J 
Now our x2 (or "SS") is 

x2 = -:r y-I 1 (1 X 1) 

Therefore 

8x2 
= .. - 2HTy- 1 (y - HO) = 0 implies 

80 
(kXI) 

(kXk) 

HT y-I .. - HT y-I H 0 
(kXn) (nXn) (n~ 1) - (kXn) (nXn) (nXk) (kX I) 

(kX 1) 

the normal equations, which may be formally solved by inverting the square matrix HT y-I H. This 
matrix is symmetric, since V is symmetric: 

8 = (HT y-I H)-I HT y-I Y . 

Note: 8 is a (kX 1) vector, even though we don't have room for the "_" above it. 

It is useful to note at this point that the actual sizes of the errors don't need to be known to find 8; 
only their relative sizes. Thus, if we write Y = a2W, where a2 provides the dimension and scale and W 
just provides dimensionless relative weights, we can see that 

8 = (HT W- I H)-I HT W- I y, 

with no mention of a2• We will, of course, need to know the scale a2 to estimate the errors on 8. 

Note: 

E(8) = E[(HTy-IH)-IHTy-Iy] = (HTy-IH)-IHTy-IE(y) = (HTy-IH)-I(HTy-IH) 0 = O. 

Therefore 8 is unbiased for 8, always assuming the model is correct. 

Procedures exist for solving the normal equations without the intermediate step of taking the 
inverse. 



115 

In some cases, it is more convenient to solve these equations by numerical approximation 
methods rather than the exact formulation· above. Very clever programs exist as pre-packaged routines 
for finding the minimum ofax2 (or a~y other) function. One usually codes a subroutine which calcu­
lates x2 for a given set of trial values of the parameters. The program needs a set of starting values sup­
plied by the experimenter. It evaluates the x2 at numerous points in 8 space, determines the most likely 
direction in this space to find the minimum, and proceeds to search until the minimum is found. If 
analytical derivatives are available, more rapid convergence can usually be attained. For simple cases 
like the linear problem we have considered here, such a numerical approximation method is not very 
wasteful of computer time, and its simplicity decreases the probability of an experimenter's error and 
usually saves him or her time as well. If the problem is not linear, as in cases we shall discuss, numeri­
cal approximation techniques, with or without explicit calculation of derivatives by the experimenter, 
are often the method of choice. 

If there exists a linear relationship among some of the h/s, then the columns of H are not all 
independent, and since V is symmetric, HTV-IH will be singular. The best step then is to eliminate 
some of the h's and their associated 8's until a solution can be found. Also, there must be at least k dis­
tinct x's, or the same term will be singular. 

Note that if n = k, and there are only as many (distinct) x's as there are parameters to be 
estimated, then 

(HTV-IH)-I = H-IV(HT)-I (k = n) , 

and 0 = H-Iy independent of the errors, since the curve will then try to go through all the points [if the 
above conditions are satisfied to provide non-singular (HTV-IH)]. However, it may not be able to go 
through all the points; for example, if there is no constant term in the h's. 

What is the error of our estimator? We want the covariance rpatrix: 
(kXk) (kXn) (nXn) (nXk) --------- --------------­V(O) = [(HTV-IH)-I HTV- I] V(Y) [(HTV-IH)-I HTV-I]T . 

This can be demonstrated by working out a simple example. Alternatively, it follows from propagation 
of errors (Chapter 9), since we are converting from y to 8, and 

and V(O) = DTV(y)D, hence the above form. 

Proceeding, we note that V(Y)= V. Also V-I is square symmetric; therefore (V-I)T = V-I. 

Similarly [(HTV-IH)-I]T = (HTV-IH)-I. Therefore 

V(O) = (HTV-IH)-IHTV-IVV-IH(HTV-IH)-I 
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Derivative Formulation 

We note that 

X2 = (y - HO? V-I <y - HO) , 

ax/ A _ - 2 HT V-I (y - HO) ,and 
ao 8=8 

a2X2 A + 2 HT V-IH = 2 V-I (0) (a constant) , 
a02 

8=8 

a very useful way to calculate this same matrix. We established the same result for the earlier simple 

case of repeated measurements of a fixed quantity. In these relations, note that aX
0

2 

is a (kX 1) vector . a 
whose ith element is ~~~ and a:~2 is a (kXk) matrix whose ijth element is :O~~;j. 

We can, in fact, re-write the solution 0 completely in terms of derivatives of the X2 without the 
necessity of constructing H, V, or the associated matrix products. Begin with 

o = (HTV-IH)-I H TV-1.y . 

Now evaluate the X2 and its derivatives as above, except at some convenient point 80, since we don't 
yet have O. This point is usually chosen as close to the location of the final solution as possible (i.e., we 
try to make a reasonable first guess), in case the linearity of the problem is only an approximation valid 
over a small range. Then 

o = 2 [a2x2 ) -IHTv- 1", 
a02 y 

= [a2x2 ) -I [ [a2x2 ) . 8 _ ax2] (all derivatives evaluated at 80 ) 

a02 a02 ° ao 

This formula expresses the Newton-Raphson method for finding the solution of the equation a~2 = o. 

The solution is exact in the linear problem because the form of the x2 is exactly a parabola, i.e., a2~2 is 
ao 

a constant. As we shall see, in a non-linear problem in which 80, the starting value, is sufficiently close 
to the final solution, the solution may be found by repeating the procedure substituting 0 as the value of 
80 for the next iteration. One terminates the iterations when some suitable convergence criterion is 
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satisfied, perhaps involving the size of the change in 8 from the last iteration, or the size of the deriva­
tive, which is 0.0 at solution. 

The derivative formulation for the L.S. solution is frequently the most convenient technique in 
practical problems. We note that, by the linearity assumption, 

iJx
2 

= -.L ~~/ uf = 2 ~~ OEk 
iJ8j iJ8j k k uf oOj 

and 

02E !IE 
. k . AI uk h .. 

sInce oOjoOj vamshes. so, oOj = - j(Xk). Thus the denvatlves are easy to compute. 

Finally, the value of the x2 at the solution, useful for testing our belief in the model as we shall 
see, is 

One must be careful to observe the dot and matrix products, as indicated. 

Just as in the first example of this chapter, we can show, by expanding x2 in this same way but 
about the solution 8, that the set of values 8 such that 

x2(8) = X~in + 1 [X~jn = x2(8)] 

defines one standard deviation errors in the same way that the geometrical method found the same 
errors in maximum likelihood analysis (Chapter 10). More on this later. 

So far, we have not used the Gaussian nature of E.. All the results so far therefore apply for any E. 
1 1 

satisfying the simple conditions E(Ej) = 0; V(Ej) = U[ known. 

Gauss-Markov Theorem 

We state without proof the Gauss-Markov Theorem, which provides L.S. analysis with the firm 
'- mathematical foundation lacking in M.L. analysis. If E(E.) = 0 and V(E.) is finite and fixed (V doesn't 

All 

have to be diagonal), then the least squares estimate 0 is unbiased and has uniformly minimum vari-
ance among all linear unbiased estimates, regardless of the p.d.f. for the Ej • To estimate the errors 
correctly V(E) must be known. 

Notes: 

a) It may be possible to do better than this by using non-linear unbiased estimators. 

b) Least Squar~s does not in general give the same result as M.L. (unless the Ej are Gaussian) even 
for linear models. In this case, linear least squares fits are often to be preferred to linear M.L. 
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fits where applicable and convenient. An exception may occur in small sample cases where the 
data must be binned in order to do least squares analysis, causing a loss of information, and in 
certain other cases. 

Let us work a simple example which will lead us into the study of errors and residuals. We will 
use this example throughout, but state more general results also, as we go along. 

A Straight-Line Fit 

Model: y = a + bx; () = (b); H = [1 : XI] 
1 Xn 

(nX2) 

Yj = a + bXj + Ej 

n 
x2 = ~EjTVEj 

j=i 

(i.e., uncorrelated measurements) 

Note: This is not a true x2 unless the Ej are Gaus­
sian.· 

a 2 1 [Y' - bx· ) a~ = 0 and therefore a = ~ 1 ~ 1 u? 1 

u? 

Note: If u? = u2 for all i, neither of these terms depends on u2• In general, as we have seen, we could 
write V = u2W and eliminate the scale u2 entirely. 

Solving, we find 

Remember: u. is an error in y, not in x, which has negligible error. 
1 

We could now substitute back for a, but let's simplify for didactic purposes: 

.. . 
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let O"j = 0" for all i. Therefore V(y)· = a21. 

(exercise for the reader) 

= y - bx . The overbar refers to the mean. 

Notice that we have to have at least two of the x/s different or the denominators collapse to O. This is 
one of the conditions we discussed earlier for a non-singular (HT V-I H) [i.e., there must exist at least 
two distinct xi' since we are estimating two parameters; -0 = (a,b)j. 

A more general comment: when the h's are polynomials, the round-off error in the computations 
often becomes serious if the degree of the polynomials becomes larger than, say, 6 or 7. One approach 
to help is to re-write the problem in terms of orthogonal polynomials so that the matrix (HT V-I H) 
becomes diagonal (if V is diagonal), and therefore the matrix inversion is trivial. Most of the round-off 
error comes from the various matrix operations, including, principally, the inversion. Similar con­
siderations apply elsewhere - whatever functions we are using, things are numerically more tractable if 
we can diagonalize HT V-I H by choosing orthogonal functions. The same is true for the non-linear 
case. 

Errors 

-I 

[ 
~xr -~Xj] 
-~Xi n [ ~xr -~Xj] 

-~Xi n 

Therefore 

a2 ~xr 0"2 ~ ~ O"~ 
V(a) = 2 ; V(b) = 2 ; Cov(a,b) = - 2 

n ~(Xi - X) ~(Xj - X) ~(Xj - X) 

It is possible to design our experiment in advance such that the points are chosen to minimize these 
error terms. Here, we clearly want to maximize the denomina.tor, which is done by taking data only at 
the two extrema of the possible range of x. This is fine, but it reduces our ability to test "goodness of 
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fit" to nil, as we shall· see. 

If the y.'s are Gaussian, then 0 is also, since a linear transformation of a multivariate normal is 
I 

also a multivariate normal. 

If we plug a and b back into the equation, we get Yo = a + bxo ",;, y + b(xo - X) as the predicted 
value of y at some point x [note that this line passes through (X, Y)] and V(Yo) = V(a) + x~V(b) + 
2xoCov(a,b) = V(Y) + (xo

o
_ X)2V(b) + 2(xo - X) Cov(y,b). IfV(y) = all then Cov(y,b) = O. [In the 

general linear case, y = HoO is the predicted response and V(y) = HoV(O)HJ = Ho(HTV-IH)-IHJ 
(V = V(y), variance of the individual parts) by reversing the same propagation of errors analysis as 
before]. V(Yo) is the variation expected for the predicted response, which may be much less than that of 
any measurement we could have made. Thus, if we believe our linear model, then we get a smaller 
error for Yo at a given value of x, say xo' if we measure a lot of responses at x/s varying around - on 
both sides of - Xo and use Yo as predicted by the line, rather than if we take one measurement of Yo 
right at Xo and use that. This does depend upon the linear model being correct. Just how much the 
error is reduced depends upon 2;(Xj - X)2 in the denominator. The more spread out the measurements 

are, the more leverage we get and the more well-determined a and b will be. 

Rewriting, assuming V(y) = all, 

2 (x - X)20'2 . 
V(Yo) = !!...... + 0 2 '(exercise for the reader). 

n 2;(Xj - X) 

Therefore, the closer Xo is to X, the smaller the error in Yo will be. If we are right at X, there is no con­
tribution to V(Yo) from the uncertainty in the slope; all the uncertainty comes just from the uncertainty 
in a, which equals the uncertainty in the average y at that point. 

If the Yj are normally distributed, then so are the 0, in the general case, and the quantity referred 
to earlier is a true x2. We can draw contours of constant x2 for a and b 

d 

A 
d 

--.....~-i= -x,2 + 9 (99%) 
min 

b 

These are ellipses, negatively 
correlated. They are contours of a 
bivariate normal (Chapter 3). 

It is sometimes of interest to know the distance from the best estimate to the "one-standard-deviation" 
ellipse, x2 = X~jn + 1, parallel to one of the axes: 

A 0'2 1 
(5 )2 = V(alb = b) = - = ~ (HTV-IH)III 

a n (HTV-IH) . II 

. . 
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Note: The notation (HTV-1H)li I refers to the iith element of (HTV-1H)-I. Note that the correlation 
between a and b is negative as in the above figure only if "X > 0, otherwise it is positive. Physically we 
can draw the following picture to understan.d this correlation: 

-a/+bX 

x 

If we want to increase a to ai, a straight 
line with the same slope b quickly becomes a 
bad fit. But we can achieve a much better fit 
by decreasing b to b' as shown, so the line 
still passes by the bulk of the points. 

If we convert these errors into errors in y, we get a picture like this 

y 

{ 

u2 
~hyperbola: y = y ± -;- + 

x 

which corresponds to sliding a up and down by 
~a or twisting the slope b thru ±~b' 
or a combination of these motions on some other 
part of the X~in + 1 ellipse. 

The first term in the equation for the hyperbola corresponds to varying a only, leaving b fixed. 
Since this just changes the "y" of the line at each xi by an equal amount, the error in this direction is 
u / Vii, the error in y of the data points. The second term corresponds to pivoting the line about the 
point (X,y), which requires a simultaneous change in a and b. At a given x,one standard deviation due 

to such pivoting corresponds to ± (x - X)u . The errors of these two modes of motion add in 
v'~(Xi - X)2 

. quadrature. 

This error envelope, represented by the bounding hyperbolas, is larger at the ends than at the mid­
dle because the curve is more uncertain there, due to the error in the slope. The true line is 39% likely 
to fall within these bounds. The hyperbola corresponding to a different error ellipse in (a,b) space, e.g., 
the ellipse X2 = X~in + k2, are found by multiplying the term in curly brackets at the above figure by k. 
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Residuals and Goodness of Fit 

Let us define the residual as ri = Yi - Yi. This is an analogue of the true error Ei. Since Ei is not 
accessible to us, we study rio If our model is correct, the distribution of the residuals should follow a 
certain form. Therefore, we look at the residuals in order to test the model. A plot of residuals can tell 
us if something is wrong with the fit or the data. In particular, a region of anomalously large residuals 
suggests that the model is not valid in that region of x. For example, if the errors E. are normal, then 

• 1 

the residuals r. should follow a normal distribution, each with its own x-dependent variance, derived 
1 . 

from the above error hyperbolas. From the normal equations, 

~ri = ~(Yi - Yi) = ~[Yi - H(Xi)8] = 0 , 

if there is a constant term in the model for y as a function of x and if the (1? are all identical, since, 
writing things out, 

A A 8x2 1 
Y = ~hj(x)~ , and 80k = - 2 ~ (1.2 [Yi - ~hj{xi)Oj]hk(Xi) . 

J 1 1 

Now let hl(xi) = 1 (as in our straight-line example here) and find the x2 minimum: 

8x2 1 A 

- = 0 = ~ -(Yi - Yi) X 1 801 . (1.2 
1 1 

r· . 
Therefore, if (1? = (12 for all i, ~ri = O. Otherwise, ~--+ = 0 for diagonal V. It is more complicated 

(11 

for general V. 

In matrix notation, we write 

r = y - Y = y - H 8 = y - H(HTV-1H)-IHTV-1y 

and therefore 

r - Em = (I - R)(y - H 0) = (I - R)"E. 

This follows from E[(I - R)Yj = (I - R)E(y) and E(y) = HO if the model is correct. Of course, 
RHO = HO and Em = 0 (whether or not there is a constant term); the above expression enables us to 
casts what follows in terms of7. Now, 

since the variance matrix of any vector A is E{[A - E(AW [A - E(A)]}. If A - E(A) = BE, B a fixed, 
known, matrix, V(A) = BTE(ETE)B. . 

Note that: 

(I - R)T = IT - RT =1 - RT = IT - [H(HTV-1H)-1 HTV-1]T 

IfV(E) = 1(12, RT = R = H(HTH)-I HT and 

. " 
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V(f) = V(Y> - COV(y,y) - COV(y,y) + V(y) 

= (I - R) Ia2 (I - R) = (I - R)(I - R) a2 

= (I - R - R + RR) a2 = (I - R) a2 [= V(Y> ...:. V(y) in this examplel. 

The last line follows since R is indempotent, i.e., RR = R: 

RR = H(HTH) -I HT H(HTH) -I HT = H(HTH)-I HT = R , for diagonal V. 

[In this example, it follows from V(ri) = V(Yi) - V(Yi) and the middle equation in the above set that 

COY(YhYi) = Y(Y)j. 

We note that Y(f) has off-diagonal elements even though V(E) has none, i.e., there are correlations 
among the residuals. This is because a given point will tend to pull the curve towards it, thus affecting 
the other residuals. In the study of residuals, these correlations can usually be neglected, unless the 
number of points is not much more than the number of parameters being estimated. 

We can take the error in one residual, ri, as being y(1 - Rii)O.2. When we speak of plotting the 
residuals, one should divide by this to arrive at standard normal variables. Many programs use just (I. 
In fact, this is probably okay most of the time, unless k :;;;;: n. 

IfV(E) is not = (121 (i.e., the errors are not all expected to be identical, and/or there are correla­
tions), then we must weight the residuals by a term expressing the error in the Ei. We can always find a 
matrix P which looks like VV in the sense PP = V. This follows from the symmetric, positive definite 
nature of V [Basilevsky (1983)1. P will be symmetric, like V, i.e., pT = P. If 

Y = [~[ . . . ~], i.e., diagonal, P = [~I . . . ~], 
o . . . (I~ 0 . . . (In 

which expresses the error of each Ej' Then we should study? = p-Ir; [i.e., r{= (p-Ir)i, at a given xl, 
divided by its error. For diagonal P, r{= rJ (Ii. The variance of r' does not depend upon (I, and 
r{ / yiY(rO will look very similar to rJ yiV(ri). Let us write: 

? = P-I[I - H(HTy-IH)-1 HTy-lly 

== P-I[I - R1Y; where, as above, R = H(HTV-IH)-I HT V-I. Then 

? - E(f') = p-I [I - Rl [y - H OJ 

= p-I [I - RJE. 

Therefore 

V(f') = p-I [I - R1T E(ETE) [I - Rl·p-I 

= p-I [I - R1T V[I - Rl p-I 

= p-I [I - R1T PP[I - Rl p-I . 
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IfY is diagonal, R = H(HTy-IH)-1 HT y- I = H(HTH)-I HT, and 

Y(f') ~ [I - R]T [I - R] (not a function of U or ofY, since r'j = ri/Uj) 

= [I - R] since, as before for this case RT = Rand RR = R. 

Thus we sho~l1d study, for di.agonal Y (independent measurements), 

r'i/ yY(r'j) = ri/ Uj yV(r'j) 

to look for goodness of fit i.e., to see if there are any areas of significant deviation of the model from 
the data. It can be shown that if the Ej are normal: N(Ej ; 0, y'v;;), then the (p-I E)i are also normal: 
N[(p-I E)j ; 0, 1] (recall that the u's are included in the p term). Then the rj are normal (multivariate) 
with variance given above. 

Outliers 

One of the things a study of residuals can do is detect the presence of outliers. 

y 

® 

" ~ (strd Ight 
down) 

x 

We should examine the circled point for possible rejection as bad data. The only really safe cause for 
rejection is if we can detect some malfunction in the apparatus when the point was taken. Otherwise, 
the outlier may just arise from the long tails we have talked about. Such a point can be deadly, because 
in L.S. analysis the important quantity is the distance squared. 

The Gauss-Markov Theorem tells us that a L.S. fit is optimal even in the presence of outliers aris­
ing from the famous long tails appended to a Gaussian characteristic of many measuring processes, pro­
vided these long tails satisfy the assumptions of being unbiased. The problem arises because outliers 
are often badly biased. 

The study of outlier rejection is not very mature. Frequently we reject if (a) the point is very 
unlikely according to our model of the distribution of the measurements, and (b) if there is a large gap 
in the distribution of residuals between the location of the one point and the rest of the data. Point (b) 

. ~ 
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runs into trouble if there exists more than one outlier. 

Goodness of Fit 

Once we have studied our data. for the presence of outliers, and have decided what to do about 
'. ' ~my we find, we have done much of what we can do from a statistical point of view to ensure we are fit­

ting to reasonable data. We now wish to study goodness of fit to see if the model is a reasonable 
description of the data. 

If we reject outliers, our fit procedure corresponds to fitting to a truncated Ej distribution. If there 
is no large gap, we have some difficulties identifying outliers because we need to know the parameters 
of the fit, to give us the distribution of the residuals, before we can truncate. One approach to this 
problem is to make a first guess, truncate, fit, then re-examine the residuals and do a new truncation 
and a re-fit, etc. hoping the procedure converges. Because of the Gauss-Markov Theorem, L.S. works 
even with a truncated normal, so this is okay. One must adjust the variance, since V of the un­
truncated normal no longer represents the true variance ofY. The true varianceofy will have smaller 
diagonal elements than in V. This does not mean that V(O) is reduced, because the loss of information 
from discarding some points (which means we have to be prepared to reject some perfectly valid points 
hidden among our outliers) will more than compensate for the reduction ofV. The derivative formula­
tion will give the correct errors. 

In a computer program, one approach frequently taken is to (a) examine the overall x2, (b) if the 
x2 is improbably large, reject the point with largest rt, (c) re-fit with the point gone and test the rejected 
point again. The test statistic to see if the point should have been rejected can be taken to be the new 
residual squared for the point, i.e., distance squared from the new line. Compare this with x2(l) and 
see if it was unlikely. This works okay ifn »k. If we test just on rt from the overall fit to all the' 
points, any outliers will affect the fit in their favor, because they are so important; therefore we might 
never reject a point. In any case, the overall x2 has contributions from every data point, and an unusu­
ally large contribution from one particular point may not be noticed if we don't look at the residuals; 
we might conclude that we should accept the fit even though one bad data point has affected the fitted 
parameters appreciably. 

The danger with rejection of outliers is that we may be throwing away a real effect, e.g., a reso­
nance. Important discoveries have come from careful study of outliers. 

If our model for the measurements.is that they should be normal, then we can look at the overall 
00 

x2• Or, perhaps better if we are doing a lot of fits, to plot P(x2) = J. x2(n - k)dx2 for all the fits. 
x obs 

This should be uniform. Often there is a peak at low P(x2) because the measurements are "heavy-
tailed" normals rather than true normals. When this occurs, we should bear in mind that the least­
squares fit will still be unbiased provided only that all the measurements, including especially those in 
the heavy tails, are unbiased. The point at which we should become suspicious of that situation will 
depend on the experiment. The point at which we should reject a fit, biased or not, will also depend on 
the experiment, including our considerations such things as the distribution of P(x2

) which we find and 
the possible presence of competing fits with much higher P(x2). 

There are other approaches to estimation designed to alleviate this sort of problem. "Robust" 
statistics are insensitive to heavy tails. Although not usually as precise if there are no heavy tails, 
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robust estimators can be much better than those we are discussing if, say, the normal distribution we 
assume for the measurement errors is "contaminated" at the 10% level by a much broader normal. 
Rey (1983) is a good reference for a discussion of this. 

By plotting the residuals, or, better, the residuals divided by their error, we can also look for pat­
terns, e.g., 

y 

C?rror 

-- J:t" 
n;C?d hlgh<?r 'IS, 
ord<?r t<?rms ' 

I ncrC?asC?s with x or 
d discontinuity 

x 

These types of pattern suggest a failure of the model to describe the data. (Remember, we can never 
prove a model to be correct; we can only prove that a competing model is highly unlikely to be correct). 

The more residuals, the more powerful our test of the model. 

Note: To optimize our test of the model against arbitrary alternatives, we need points, and therefore 
residuals, more or less evenly distributed along the curve (obviously, if we are suspicious of a particular 
region of x, we obtain a better test if we concentrate points in that region). However, to optimize our 
measurement precision (Le., to minimize the variance of 0) we want to cluster all our measurements at 
the extreme two points for two-dimensional 0, at the properly-chosen three points for three-dimensional 
0, etc. This provides tis with little or no power to evaluate the model. Clustering points at a particular 
x does, however, allow us to test the measurement process independent of the model, since we can 
compare the distribution of Yj with expectations. That is, at a fixed xi' the distribution of Yj cannot 
depend upon the model assumptions; it can only depend upon the measuring process, which we believe 
we understand. This sometimes reveals an unsuspected dependence on some variable neglected in the 
model, e.g., temperature of the sample, or whatever. 

Unknown r? 

If (}'2 is unknown, then we must estimate it from the data. If there are n data points, and we were 
estimating k parameters, then an unbiased guess for the value of~, assumed to be the same for all i, is 

:1 " 
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the last equality holds iff = O. Then we plot r/[(l - Rii) S2j1/2 when we study residuals. 

Then, as well, our variances acquire a dependence on the x2 = (n - k)S2: 

V(1) = S2 
~(Xj - X)2 

S2 ~xr 
V(a) = , for a straight-line fit. 

n ~(Xj - X)2 

This doesn't change the L.S. estimates of a and G, since V(E) could be expressed as a weight matrix X 
u2, and u2 divides out in O. 

Up to now, we have not discussed the relationship of the variance to a probability for the true 0 to 
lie in a certain interval, except for the Gaussian .. In that case, the true value lies within 1.0 u, where 
u = VV, 68% of the time, within 2.0 u 95% of the time, etc (Chapter 3). Now we have a more complex 
case, and it is appropriate to discuss confidence intervals. 

Confidence Intervals . 

Let us set up confidence intervals for the OJ' We pick limits ot and OJ- such that 
P(Oj- :s;;; OJ :S;;;Oj+) = 100a%, a a pre-selected number < 1. "a" is a proability, called the confidence 
level, which expresses our estimate of the probability that the interval we specify actually includes the 
true value. We can often do this only approximately. If the o. are Gaussian (which requires E. Gaussian 

1 1 

with known uh we usually choose a symmetric interval: 

P(thls ,ntervaD = 0.5 
.---_~A~_---... 

~ 

We could choose an un symmetric interval: 
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,,---v-··· 
ct.2 =p >0.5(1 - ct.) 

We must include the error in S2 when we want to estimate a confidence interval for our parame­
ters, for example a and G. That is, the probability that the line can vary by a certain amount must take 
account of the variation of our error estimates as we vary the parameters of the line. This introduces a 
broadening in the distribution for a and G, which would otherwise be Gaussian. This broadening is not 
very substantial if n - k is large. 

The limits of the confidence interval, OJ- and OJ+, are obtained by using the cumulative distribu­
tion function (c.d.f.) to evaluate the probabilities. If the c.d.f. for 0 is F, and a, al' and a 2 are as defined 
on the figure,' 

F(Oj+) = al + a and F(Oj-) = al ; 

If we choose a symmetric interval, then a l = t(1 - a) and OJ+ is chosen from F(Ot); similarly for OJ-. 

There are not many general guidelines for selecting from the infinite possible choices of confidence 
intervals, but an unsymmetric interval is longer than a symmetric interval if the underlying distribution 
is symmetric and peaks at OJ. Usually, the shortest interval for a given confidence level a is the interval 
of choice. 

To set up confidence intervals for the unknown u2 case, we will need: 

Student's t Distribution 

If the Gaussian model (or whatever model we are using for the distribution of the points) is 
correct, note that we will be wrong about 0 a fraction 1 - a of the time, i.e., the a confidence level 
interval we specify will not contain 0true that specified fraction of the time. It can be shown that we can 
set up lOOa% (a < 1) confidence intervals (e.g., 68%, 95%, etc.) for OJ' for Gaussian errors of unknown 
(but equal) size in the Yj' from 

~ 1 , /UIiJ"\ 
OJ ± T[""2(l + a); n - k] X V V(Oj) , e.g., 

a ± T[ ~ (1.68); n - 2[ X S x V '1:; xt 
n ~(Xj - X)2 

for the intercept of the 
straight line at a 68% 
confidence level. 
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and something similar for y. That is, one standard deviation in OJ' yV(Oj), does not in this case 
represent 68% of the probability; it represents somewhat less. In the limit n - k » 1, 
T[-}(1.68), n - kj_ 1. T is related in a manner we shall show to the c.d.f. oft, which is a p.d.f. we 

haven't yet studied, called Student's t distribution: 

(V;l)! 
t(x; v) = ---=---­

v-2 .r=. 
(2 )!V7rV 

v an integer parameter = n - k. 

[ ] 

v+! 
x2 ---=-2 

1 +-
v 

t(x; v = (0) =- Gaussian 

The t is the distribution of a· variable 

z 
x = -Vt=X~2(=v=)/=v 

x 

where Z is a standardized normal [N(z;O,l)j, and x2 is an independent x2 r.v. ofv degrees offreedom. 
As v increases (i.e., we get more data points), the distribution becomes very nearly the same as a nor­
mal because the estimate S2 for ~ becomes more accurate. 

The function T is not the c.d.f. of t, but is derived from it. The value of T is the limit of integra­
tion of the p.d.f. up to a specified probability, i.e., the argument of the c.d.f: 

T[; (1 + a), n - kj is defined as y such that 

y 1 
f t (x; n - k) dx = "2(1 + a) . 

-00 

Note that T is a dimensionless number, since x is; the scale is set by u = VV. If n » k or if u2 is fixed 
in advance, T becomes the argument of the error function: T is chosen such that erf(T) = t( 1 + a). 

For example, a 95% confidence level interval: 

30 points, k = 2, 100a = 95% - T(.975, 28) = 2.04 
10 points, k = 2, 100a = 95% _ T(.975, 8) = 2.23 
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5 points, k = 2, 100a = 95% _ T(.975, 3) = 2.78 
3 points, k = 2, 100a = 95% _ T(.975, 1) = 12.71 

whereas, if we just assumed that our OJ was Gaussian, a 95% c.L. would give exactly 2.0, i.e., two stan­
dard deviations, independent ofn (since we don't then need the data to estimate ( 2). Ifn IS only k + I, 
the necessity of estimating·u2 extends this interval to 12.71. That is, the probability that the symmetric 
interval from 8 - 12.71 VV to 8 + 12.71 VV contains the true value is 95%. 

Up to now, we have assumed that the predictor variable x is determined without error. Ifwe 
relax that assumption, things get a bit more complicated. 

Errors in Both x and y: Point Fit 

Let us now suppose we have a set of n independent measurements Zj = (Xj, Yj), where both x and 
y have errors, with variance matrix Vj(2 X 2) for each point. Let us discuss the simple model that 
these are all measurements of the same quantity, i.e., the model is not a curve or a line but a single 
point. Then the true value of that quantity is 

-.I' •• 
Z = (x ,y ), and 

x2 = ~~ - "t? Vj-l (Zj - "t), 
j 

which is a x2, of course, only if the Zj are bivariate normals. This is a generalization of our previous 
results. If we regard "t as an unknown variable which we must evaluate from the data, 

8~ = 2 ~~ - "t)T Vj-l = 0 at"t = z for the L.S. solution. 
8z j 

We assume that Vj is a sufficiently slowly-varying function of x and y that we can neglect its variation 
in all derivatives compared with the other terms. 

Each measurement has two components. Now we write, solving the above, 

z = (~Vj-l Zj) (~Vil)-l , 

which is clearly a generalization of our earlier result in one dimension: 

A ~xJ ur Th . . A· I I 
J.L = ~ '].. e vanance 10 z IS a so ana ogous: 

~I/Ul 

V(z) = (~Vil)-I[~Vj-l V(Zj)Vj-ll(~Vil)-1 

= (~Vj-l)-l (~Vil) (~Vj-l)-l 

= (~Vil)-l 

This follows from propagation of errors, since V(z) will be a sum of terms from each independent Zj 

and each term will be 8Z) T V(Zj) 8Z, where 8z is a 2 X 2 symmetric matrix equal to 
8zj 8zj 8zj 
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Obviously, there was no requirement that all the zi were measured by a single experiment. We 
might have several experiments which measure the same two-component vector quantity; this shows us 
how to combine these experiments. 

The same equations hold, of course, in any number of dimensions, not just two .. 

Graphically, we have something like this 

~ Q2 fixed, e.g., Q2 = 1 

x 

[Q2 = value of x2 from one 
data point; contours of constant Q2 
shown] 

Ellipses if the errors on (xi' y) 
are Gaussian. If these errors are not 
Gaussian, the above error formula is the 
leading term in the propagation of errors 
expansion. We may still get ellipses in 
that case, also, but the probability 
enclosed by the ellipses would differ from 
the Gaussian case. 

For just two measurements (n = 2), the solution will occur at the point where the equivalent 
ellipses (i.e., same value of Q2) first touch: 

y 

x 

x2 
= Qr + Qi; 

minimum at x2 = 2k 

If we consider the x and y residuals separately (each one is in a different dimension), in each case we 
have n = 2, k = 1. Then, we will have rx'/ur., = rXl/ur" and similarly for y. This is a special case: 
n - k = 1. This is called a one constraint fit because we have one measurement more than the 
minimum necessary (which is one) to determine the parameter of interest, x or y. In a one constraint 
fit, each measurement contributes equally to the x2• 



132 

Errors in Both x and y: Line Fit 

Now, let's suppose we have to determine a line instead of a point. Each measured point will con­
tribute to the x2 according to the following picture: 

..... ..------ y = i{x), a candidate for the best fit 
to the points 

x 
If the model is correct, each point of 
contact is our best guess at the true 
value which we were trying to measure 
when we actually obtained zi. 

The generalized distance squared to the line is dr = (Ii - zt)T Vi-I (Ii - zt) where Zi = (Xj,Yi) and zt 
is the point on the line. The x2 is 

x2 = ~dr = ~~ - zt? Vi-I (Zi - zt) , 
if the points are uncorrelated (Vi is two-dimensional, as above, representing the two-dimensional error 
ellipse about Zi). So far, we haven't said anything about z. 

We must satisfy the condition that y = fIT 0, where now H can vary too, i.e., fI = H(x). This is 
still the linear model. But whereas before we wrote Y as a vector, one element for each xi' let us now 
write Y as a one-element scalar function, a function of x, and 

H(x) = • 
• 
• 

i.e., as a vector function of x. Then y(x) = HT(x)O. 

How many unknowns do we have? We need k fJ's and, in some cases, we also want to know the 
(Xj,Yi) = [xj,HT(Xi) 0], which gives us just 2n more unknowns. Then we have 2n + k unknowns, alto­
gether. The best approach to solve for these unknowns is to use Lagrange's undetermined multipliers. 
We wish to minimize x2 subject to the constraint y = HT(x)O. Thus, we set up n unknown multipliers 
X., one for each z .. These are n new unknowns, but they come with their own n equations. We minim-

1 1 

ize 

.. 
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x2 = ~[~ - Zt)T Vj-1CZj - zt) + 2 Aj(yt - HT (xt) 0)] 
j 

i 
for convenience later 

with respect to the k O's and the n A'S. (We use the "*,, to represent some arbitrary value. The "*,, is 
replaced by a "/\" at minimum. The measured point is Zj.) The first term is the contribution due to the 
fact that we insist on a value z* which is different from the measured value (except in unusual cases) 
when the constraints are satisfied. The second term allows us to incorporate the constraints of the 
model into the x2 minimization by requiring the x2 to be minimum in the new A. dimensions. 

1 

Okay, now 

ax2 az' - = ~[_2V:-l'i. - z·) _1 - 2 A' H .. (x·)] = 0 f - 1 k' ao, "f' 1 \L'i 1 ao, 1. 1 , -, ••• , , 

~~: = 2 (Yj - HT (Xj) 8) = 0, i = 1, ... , n . 

The second equation just recovers the constraints, i.e., that the model be satisfied. We see that the 
arbitrary factor of 2 does not affect the x2 at the solution, since the term being multiplied becomes zero. 
In these equations, we will need: 

::; = a!, [~:) = a!, [HT~~j)8) = [ H}(Xj) ) 

We have k unknown O's 
n unknown x/so 
n unknown y/s. 
n unknown \'s. 

So far we have n + k equations. 

Finally, 

ax20· A( .) d --. = at x = x, n equatlOns ; an ax 

ax2 0 • A ( .) --. = at y = y, n equatlOns . 
ay 

These two conditions yield 

- 2[Vj-I(Zj - Zj)]1 - 2Aj H/T(Xj)8 = 0 (H' = aH) and ax ' 

- 2[Vj-I(Zj - Zj)12 - 2Aj = 0 . 

The symbols [ 11 and [ b refer to the first and second components, respectively. These are 2n equations 
which just express the fact that for a given line, i.e., a given 8, (xj,Yj) is that point at which the covari­
ance ellipse, xC = (Zj - Zj)TVj- 1 (Zj - Zj) is, just tangent to the curve. We can solve for \ easily 
enough: 



134 

Then we can plug in )\ = HT(xj)O and solve the other equation immediately above for Xj as a 
function of O. If there are any H functions which are non-linear in x (i.e., something other than" 1" or 
"x"), these equations are a set of coupled, non-linear equations. Having solved for x as a function of 0, 
and A. as above, we now plug these expressions into the remaining equation (for 8x2/80t) and solve for 
A I 

0. This is obviously very complex, and we shall not cover it here in full generality. Most experi-
menters will solve the problem numerically. But there are some very useful cases we can cover in more 
detail. 

Let us suppose we have an unbiased set of measurements of different quantities (0,,02, ... ,On)' which 
we suppose to be the quantities of direct interest. That is, we are not interested in finding a curve that 
fits them and then publishing the parameters of the curve. We will fit a curve, but it's the values of OJ 

that lie on the curve that we are after. The O.'s play the role of the x. or y. in the above discussion; we 
1 1 1 ~ 

use the notation OJ so that ° continues to represent the quantities of physical interest. ° may be a vector 
of arbitrary dimensionality with components OJ' Let us suppose that we have a set of k constraint equa­
tions which are linear relationships among the O's which must be satisfied: 

B 0 = b ; k constraints for nO's. 
iii 

(kXn) (nX I) (kX I) 

Example 

3-dimensions (n = 3). 

k ~ I: (B1 B, B,) [::] ~ b . 

Hence BIOI + B202 + B383 = b. This is the general equation ofa plane. The solution is constrained to 
lie upon this 2-dimensional surface. 

Hence BIlOI + BI202 + BI303 = b l and simultaneously B2101 + B2282 + B2303 = b2. For the constraints to 
admit of a solution, it must lie upon the one-dimensional line defined by the intercept of these two 
planes. 

k = 3: Clearly if the solution space is not empty, it consists of a single point which is the point of 
intersection of the three planes defined by the constraint equation. No fitting is necessary in this case; 
there is no freedom in chosing the solution to satisfy any statistical considerations. 

For formulas relevant to planes which intersect, see, e.g., Bartsch (1974), Chapter 4. 

, 
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Example. 

The Table. The straight, parallel legs of an ordinary table have lengths 8j. Let the table have it 
legs. Then for the legs to have lengths all equal to b, the constraint equation is 

10 = b , 
where bT = (b, b, ... ,b). If we wish to specify that the legs must be equal in length, but we don't care 
what that length is, then 8

1 
= 82 = 83 for n = 3 legs. This suggests three planes 81 - 82 = 0, 82 - 83 = 0, 

8
1 

- 8
3 

= 0, of which any two will suffice to define a straight line by their intersection; the third is trivi­
ally shown to be redundant. Then, for example, 

is the constraint equation. 

No construction technique can cause these constraints to be satisfied exactly. We depend upon 
minute deformations in the table-top, the legs, and the floor to compensate. But if the 8j's are too far 
from satisfying the conditions, the data are inconsistent with the model-the table is not level, or it 
rocks. 

For a physics example, the 8's might be the three-momenta of a set of tracks, and the constraint 
equations are just the equations of momentum conservation. (If we add energy conservation, it 
becomes non-linear, to be discussed later.) If 0 is viewed as a point in n-space, then the constraint 
equations restrict us to a hypersurface of n - k dimensions in which the true point must lie. In the 
presence of non-zero measurement error, 0 as measured won't satisfy the constraint equations, in gen­
eral. We want to find 8 satisfying these equations, such that the 8's are as "close" to the O's as possible, 
where we define "closeness" in a Least-Squares sense. Then we can use the x2 we obtain to decide if 
the data are close enough that we can say the model is consistent with the data. 

constrdlnt surfdce? 

(k-dlme?nslondl 

hYPe?rsurfdce? ) 2 out of n dimensions displayed 

The relationship with the preceding discussion is that there we had n two-dimensional points Zj; 
here we have one n-dimensional point O. There we had a functional form y = HT8 whose vector of 
coefficients 0 was to be determined from the measured quantities Yj and HT(xj). Here we have a pre-
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determined functional form BO = b and we don't need to find anything more than the value of 0 satis­
fying that equation which lies closest to the measured 8, in the L.S. sense. 

If the model is correct, it is only random measurement error that causes 0 to be away from the 
constraint surface. If we adjust the O's until we satisfy the constraints, with a resultant improved set of 
estimates 0 for the true O's, we have a physically consistent set of measurements with errors reduced by 
the condition that the constraints be satisfied. For example, 

e (8. e) m<?dSu r<?d 
J I.J J 

Bivariate Normal (). and (). 
1 J 

c -+------*--'--..,.L 
I I 

'--v--" 
0[, 

If the constraint equation is (). = C = 
constant, then ()j is described ks a 
Gaussian with variance V(().I().) = 

1 J Uf(1 - p2) ~ uf, 

~ 
as we have seen before. 

We will use Lagrange's multipliers. Let us define 0 as being the originally-measured values. Then, 
at some other value ()*, 

x2(()*) = (0 - ()*)T V-I (0 - ()*) + 2AT (B()* - b). (There are k A'S) 

V is the full covariance matrix for 0, including any correlations. The normal equations become 

ax
2 

= _ 2 V-leO - 0) + 2 BTA = 0 at ()* = 0 . therefore 
a()* , 

ax2 ~ ~ 8>:' = 2(B() - b) = 0 at ()* = () recovers the constraints, as before. 

(involving A as the only unknown) . 

Therefore A = (BVBT)-I (BO - b), and therefore V-I (0 - 0) = BTA gives us 

o = [I - V BT (BVBT)-I B] 0 + V BT (BVBT)-I b. 

This gives us the correction to the measured 0 to satisfy the constraints at minimum x2• Let us recall 
here that B is not square and has no inverse unless k = n. Otherwise we would have 
V BT(BVBT)-IB = B-I(BVBT)(BVBT)-IB = I, and 0 = B-Ib. Ifk = nand B is non-singular, the 
problem is completely determined without error. The measurements are irrelevant, except to test good­
ness of fit. For k < n, 

E(O) = E(IO) - V BT (BVBT)-IE(BO - b) 

= ~rue , since BE(O) = b ; therefore 0 is unbiased. 
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It is ~asily demonstrated that the form A = I - VBT(BVBT)-lB is idempotent (i.e., the matrix 
product A . A = A), which is a necessary and sufficient condition for A to be a projection operator 
[Basilevsky (I983), Section 4.8]. A projects 8 onto the hypersurface represented by the constraint equa­
tion. If V commutes with the symmetric factor BT(BVBT)-lB, which is the case if(among other possi­
bilities) V is a multiple of the indentity matrix, V = t?I, i.e., the measurements are independent and 
identically distributed, then A is symmetric and the projection is orthogonal. 

The situation is illustrated by the figure below. In two dimensions the linear constraint reduces to 
a straight line upon which the solution must lie. An orthogonal projection of the measured point is 
shown by the dashed line. But the error ellipses, contours of constant x2, are inclined at an angle to the 
line. A better x2 is obtained by the apparently longer non-orthogonal projection to 0, which lies at the 
point at which the smallest possible ellipse (smallest x2) touching the line is just tangent to it. In the 
case of independent, identically distributed measurements OJ' these ellipses become circles with no pre­
ferred direction and the orthogonal projection is best. If the ellipses happen to lie with one axis orthog­
onal to the constant line, an orthogonal projection will also be best. 

82 2~ 
I( )1 
I I 

1 Do I 

I~-:-e-
~t, I 

N - . 

tangent elll pSC? 

K=l ellipse 

From propagation of errors we get 

V(O) = [I - V BT (BVBT)-l B]T V (8) [I - V BT (BVBT)-l B] 

If the projection operator in brackets is symmetric and therefore orthogonal, this reduces to 

= V - VBT (BVBTr:- 1 BV. 

These errors are represented by the projection of the error ellipse upon the constraint surface. 
Because of the condition represented by the constraint, the new errors are less than or equal to the old, 
i.e., the diagonal terms Vjj(O) ~ Vjj(8). The off-diagonal terms, the correlations, may be increased or 
decreased. In particular, if the measurements O. were uncorrelated, the OJ may now be correlated. On 

1 

the figure above we see how the k = 1 ellipse, corresponding to ± O"j for the multi-variate Gaussian 
representing the original measurements, is projected onto the constraint plane. 



. I 

138 

The projection operation, which is linear, preserves the probability. That is, in two dimensions as 
in the figure, the projection operator A projects a whole line of points in (81' 82) space onto a single 
point on the constraint surface (on the figure, a line). Ifwe integrate over the probability ellipses of the 
original measurements and obtain the probability for Otrue to lie between any two such lines, that total 
probability is preserved on the constraint surface. On that surface, it still represents the probability to 
find Otrue between the two boundaries represented by the limits of integration. The usual one-standard 
deviation limits are the projections of the extremes of the k = 1 ellipse, and so on. If the constraint sur­
face is perpendicular to one of the axes, the constrained variance in that direction is zero. 

This type of problem is encountered when we have a set of measurements which we want to· 
improve by imposing the constraints implied by a certain model. For example, we have a set of 
momentum measurements and we wish to try as a hypothesis a certain reaction. Conservation of 
momentum provides constraints which must be satisfied. If, after using some of the conservation equa­
tions to calculate any missing quantities, we have one or more of the conservation equations left over, 
the problem is sometimes referred to as "over-determined". Then imposing the constraints enables us 
to reduce our errors by the above procedure. It also guarantees that the solution will satisfy the model. 

The Non-Linear Problem 

. Let us consider a more general case. Let us suppose we have a set of momentum and angle meas­
urements of the tracks on an event, Yi' i = 1, ... ,n with full variance matrix V. In addition, there are 
some f unknown momenta and angles, 1/i' and a set of k constraint equations expressing momentum 
and energy conservation at each vertex (so now the problem will be non-linear). We will use a general 
notation not specifically tied to the kinematics example; the results will be very general. We will write 
the constraint equations in the form 

fj(YI> ..• , Yo, 1/1> ... , 1/t) = 0 ,j = 1, ... , k; k ~ f 

(not necessarily linear in the y's and 1/'s). 

Note that, in our kinematic problem, expressing conservation of energy requires making an 
assumption about the masses. In fact, in practical cases, the momentum measurement often depends to 
some extent on the particle mass, through the rate of energy loss. 

We want to find the values y and ~ such that 

x2 = (y - y)T V-I (y - y) = minimum and f(y, ~) = O. Note that the 1/'S do not contribute 
directly to the x2• We could opt to find all f of the 1/'S in terms of some of the y's using the constraint 
equations, assuming that the constraint equations will do that (they may not, in which case, we can 
proceed no further). Then we could find k - f of the y's in terms of the other y's using the rest of the 
constraint equations; then x2 would come from the differences between these "solved" y's and the 
measurements of them. But this leaves some of the y's at their measured values and relatively large 
changes in the others; since x2 depends upon the squared deviations, we can do better (i.e., lower x2) by 
spreading out the changes among all the y's. The method of Lagrange's multipliers treats all parameters 
on an equal footing. Introduce knew unknowns\, i = I, ... k, one for each constraint. Our unknowns 
are now 
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n y.'s with nXn variance matrix V 
1 

t .,.,/s 
k \'s corresponding to k fs. 

We minimize x2 = (y - y?V- 1 (y - y) + 2 AT f(y,~): 

ax
2 

= _ 2 V-I (y - y) + 2 AT li = 0 
ay ay 

a 2 af [ af ) T (the last form gets rid of the 
ax.,., =2AT a.,., =0=2 a.,., A inconvenient transpose of the lambda) 

Remember that ax2/ ay is an n-component vector, etc. 

Since the fs are not necessarily linear, we solve by iteration. The key step is to "linearize" f, by 
expanding it in a Taylor series about the current values of y and ~, then solve this linear problem as in 
the preceding problem for improved values, then repeat until no change is observed in the x2 from one 
step to the next, or some other convergence criterion is satisfied. We must start, of course, by finding 
values for the unknowns~. We can start at any reasonable values found from a subset of the constraint 
equations, and hope that the procedure converges. If it doesn't converge very quickly, which can be 
because the problem is too non-linear and we are far from the constraint hypersurface, we may assume 
that the ultimate solution will be of high x2 (and therefore fail a goodness-of-fit test) and we terminate 
the iteration. We do ~his because unsuccessful iterations consume vast amounts of computer time. 

In more detail, the iteration procedure can be as follows (techniques which don't rely explicitly on 
evaluation of the derivatives of the x2 are also very popular, although they are often slower than this 
more direct method-if the problem is well-behaved). We start by finding reasonable starting values 
for the unknown TJiIS, using t of the constraint equations as convenient. 

The final result is sometimes sensitive to the starting values for both y and.,.,. They may be so far 
wrong that the non-linearities of the problem mean that a good fit cannot be found. Another problem 
is that the x2 may be a complicated function of the variables, with more than one minimum. In some 
cases the starting values are close to a local minimum which is not the lowest minimum actually avail­
able; the iteration tends to find the local minimum rather than the global minimum. 

Expand f(y, .,.,) in a first-order Taylor series about the current trial values for y and .,.,; let us call 
them Yc and ""c' Let y and ~ be new values which are reasonably close to y and.,." and which we hope 
will prove to be points at which the constraints will be satisfied (f = 0) with the lowest x2

• We attempt 
to predict y and ~ from the expansion: 

£(y~ .,.,~) - £(y .,.,) + ~ afj I (y~. - y.c) + ~ afj I (.,.,~. - .,.,.C). J' = 1 k J ' - J c, c .~ a. • 1 1 .~ a. • 1 1, , ... ,. 
1=1 Yl y; 1=1 ""1 'I; 

Setting this equal to 0.0 gives linear constraints on y and~, There are only k - t independent con­
straints here, because t of the constraint equations are used to get the .,.,'s (i.e., t of the constraint equa­
tions are satisfied by construction of the .,.,'s). This is a linear approximation to f, which we can use in 
the manner of the linear constraint equation of the linear problem. That constraint equation in the 
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form BO = b is recovered (because of the complication of the f unknowns, we don't recover exactly the 
same equations) if we write or = (y 1' ••• , Y n' 111' ... ' 11{) (remember the convention that vectors are written 

in column form), and the jth row of B as [ afj , ... , afj ) . B has k - f rows and n + t columns. 
aYI a11{ . 

Then, the constant b is a k - f component vector with element bj = -~(Yc,11c) + BOc)j. Let us proceed. 

The plan is to find y and ~, the improved values of y and 11, satisfying the linearized constraints 
above: fj(y,~) = O. We may have to iterate the following procedures several times until the derivative 
of the x2 is within a specified tolerance of 0.0 and simultaneously the value off(y,~) (from an exact cal­
culation, not the Taylor series prediction) is within a certain tolerance of 0.0. To carry out this plan we 
write, using the rest of the normal equations, 

V-I(y - y) = [::) T A, and the~efore y = y _ V [:: ) T A 

which will yield the improved value for yonce we have the vector A. The y that appears here is still 
the original measured y. The derivatives are evaluated at the current Yc and 11c 

At this point we recognize that in the kinematics problem and perhaps many others, the variance 
matrix V may not be a constant throughout the space containing y and 11, but in general depends upon 
the true values of y and 11. At each stage of the iteration, therefore, we should in this case replace V by 
our current best estimate of V, using Yc and 11c. If V varies rapidly over the space between the measured 
y and the final y satisfying the constraints, our stepping procedure may fail to improve the x2; indeed it 
may get worse. However, it is always true that the x2 will improve over a small enough distance Yc -
y, over which distance V (and f as well) is close enough to a constant. Therefore, we may decide to 
reduce the size of the step below that predicted by the procedure we are in the course of demonstrating, 
if we find the x2 has worsened. Many algorithms exist to attempt to find the swiftest convergence in 
highly non-linear cases like this. 

Let us complete the problem. 

y = y _ V [:: )T A, 

which means that 

f(y,~) ~ 0 ~ f(Yc,11c) + Fy(y - VFiA - Yc) + F~(~ - 11c) 

where F is the matrix of derivatives of f, evaluated at the current best values of y and 11: 

afi I . afj I . 
(Fy)ij = aYj yo' (k X n); (F~)ij = a11j ~" (k X f) 

In these expressions, Yc is the current best guess at the true value of y; at the outset this is identical with 
y but on subsequent steps is replaced by the value ofy obtained on the previous step, namely, they we 
found the last iteration. 

We now have a matrix equation involving only A and ~ as unknowns. As this equation represents 
k coupled linear equations, it is not by itself adequate for the k A'S plus the f ~/s. We can, however, 
now express the A'S in terms of known quantities and the Ws: 

,.r 
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\ 

where the k X k symmetric matrix FyVFl is assumed to be non-singular. We note that X is no longer a 
constant but varies with the fit, a consequence of the non-linearity. When we began, we used t of these 
equations to find starting values for the 1'/s. But at this stage we do something different. We can solve 
for the Ws using the t equations, 

Bx
2 

= 2FTX = O· inserting X above we get 
B71 " , 

and finally Y = y - VFIX. 

Note that, upon convergence, f(yc' 71c) Q:;; 0, in the above expression. We then test for convergence 
ofx2 to a minimum within a pre-selected tolerance. We could instead check and see ify and '11 have 
changed by more than a specified amount (or a specified %, but in this case we must be careful in the 
event one or more/ofthe y's or 71'S is near zero), and use that as a test for convergence. 

Only after convergence can we make a test for goodness-of-fit (we could decide to make prelim­
inary tests before convergence, to see if we are making satisfactory progress). This test, possible only if 
the y's have a known p.d.f., which we will here assume to be normal, consists of comparing the final x2 

with the p.d.f. for a x2 of k - t degrees of freedom. If the probability of getting a worse x2 than the 
one we observed is too small, we might assume that something is wrong with the data, model, or both. 
The meaning of "too small" is not well defined. In the kinematic case, one often rejects if 
P(x2 > X5bs) < 1 %, but that is because other hypotheses may be readily available, and also, it is known 
that the various momenta are easily mismeasured. However, before accepting or rejecting a model, it is 
worthwhile to check the residuals, (Yi - Yi)/ yV(Yi) - V(Yi) (also called "pulls" or "stretches" in cases 
like this where the measured quantities are the ones of direct physical interest). As before, if the 
number of degrees offreedom (also called, paradoxically, the "number of constraints", since it 
represents the number of constraint equations in excess of the number needed to determine the unk­
nown 71'S, i.e., the degree to which the problem is overdetermined) k - t is equal to 1, the condition for 
x2 + 2 f X to be minimum implies that all the residuals are equal in absolute value (provided the corre­
lations among the y/s are negligible). 

If the number of constraints is 0 (k = t), then we can just determine the unknown 71'S, and the 
L "best fit" values of Yi consist of the measured values - no improvement is possible from this source. 

The x2, of course, is zero. However, there may exist k = t type cases in which the measured y's and 
calculated 71'S are outside the boundary of a physical region. In this case, one might decide to improve 
the measurements by moving them to the nearest (lowest x2) point on the boundary of the physical 
region. Again, a x2 test at the conclusion of this procedure should be made to see if this is at all reason­
able. 

The ability of the x2 test to discriminate among models should not be taken too seriously. If the 
variance matrix V is constant throughout the region of interest, and if the measurements are all per­
fectly Gaussian, one can have faith in the probabilities the x2,s imply. This is rarely more than approx­
imately true in practice, and one should be aware of the possibility that, in individual cases, this faith 
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may be grossly misplaced. 

Regarding errors, our best guess for the dependence of y and ~ upon y comes from the last step in 
the iteration. This usually involves small changes in y and 7/ from which we can estimate reasonable 
derivatives. We regard the next-to-Iast values ofy and 7/ as being merely parameters in the dependence 
ofy and ~ upon y. Then we approximate Fy, F", and V as constants, evaluated at y and~, and use pro­
pagation of errors. The validity of the errors calculated this way depends upon the validity of these 
approximations. Write 

y = g(y) ; ~ = h(y) ; 

g and h being functions which we know, as follows. First, 

g = y - VFIX [g is (nX 1)] [Note: V(y) == V] . 

= y - VFl (FyVFl)-1 [f(yc,7/c) + Fy(y - Yc) + Fi~ - 7/c)]. 

The values ofyc and 7/c are the known former y and ~ of the next-to-the-Iast step. We must substitute 
now for~: 

g = y - VFl(FyVFl)-1 {I - F[Fl (FyVFl)-IF"rIFl(FyVFl)-I} 

Similarly, 

h = 7/c - [Fl(FyVFl)-IF"r l {Fl (FyVFl)-1 [f(yc,7/c) + Fy(y - Yc)]} ; 

h is (I X 1). Then 

V(y) = (~)T V(y)(~); (n X n) 
dy dy 

V(~) = (dh)T V(y) ( dh ) ; (I X I) 
dy dy 

COV(y,~) = (~)T V(y) (~~); (n X I) 

The derivative matrices ~ and ~~ are (n X n) and (I X n), respectively. Write 

P = Fl (Fy VFl)-1 Fy ; (n X n) 

Q = Fl (Fy VF1)-1 F" ; (n X I) .i 

S-I = Fl (Fy VFl)-1 F" ; (I X I) 

Then 

V(y) = V(y) [I - (P - QSQT) V(y)] ; 

V(~) = S; and 
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COV(Y,~)' = - V(y)QS . 

The residuals 7 = y - y have variance matrix 

V(f) = V(y) + V(y) - 2 COY (y,y) 

Q;: V(y) - V(y) = V(y)(P - QSQT) V(y) . 

We could also have obtained these relations from 

Vj"(y) = 2 [ a
2
x

2 
) -1 ,etc. 

~ aYiaYj 

If the linearity assumptions are strongly violated, the x2 will have significant higher derivatives, and we 
can use the graphical method described before: construct the plane x2 = X~in + a, where a = 1,4, 9, 
etc., and determine the extreme values of each of the y's and 1/'S which intersect this plane. This is very 
time-consuming, and in the case in which large numbers of such fits must be done, as in the kinematics 
example, one usually doesn't do this. 

Finally, if the problem is strongly non-linear, this technique for finding the X2 minimum via suc­
cessive approximations to the derivatives may "blow up" (i.e., find a "local" minimum at infinity 
rather than the global minimum nearby), take an unreasonable amount of time to converge, find an 
unphysical solution at some local minimum in a disallowed region (e.g., negative momenta), or suffer 
from some other problem. In this case a slow-but-sure minimization is recommended which calculates 
X2 at selected points about the current trial values of the parameters and proceeds carefully using that 
information. 
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