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Some Nitrogen-14 NMR Studies in Solids

Thomas Kingston Pratum

Abstract

The nitrogen nucleus has the potential to be a valuable probe of

electronic environment and molecular dynamics in chemical systems. This

potential is investigated here via I4N nuclear magnetic resonance (NMR)

studies in high magnetic field. The first order quadrupolar perturbation

of the I4N NMR spectrum yields information regarding the static and

dynamic properties of the surrounding electronic environment.

Observation of the I4N NMR signal in solids is seldom an easy task,

and the methods we have used for this purpose are discussed. Signal to

noise problems caused by long I4N longitudinal relaxation times (TI ) and

small equilibrium polarizations are reduced by rotating frame cross

polarization (CP) experiments betwen I4N and IH• Here a simple theory is

presented in which the three levp.l spin-I system of I4N cross relaxes

along two fictitious spin-1/2 two level systems; one of which is

referred to as double quantum (DQ), and the other as zero quantum. Pure

single quantum (SQ) cross relaxation occurs when these two systems are

simultaneously Hartmann-Hahn matched to the protons, which is only

possible for very small first order quadrupolar shifts (wQ). Large wQ1s

are most effectively matched by employing the DQ condition, where the

I4N radio frequency field (wI) is larger than the rotating frame

effective field of the protons, but smaller than wQ• Broad quadrupolar

powder patterns are most effectively matched when the protons are

prepared via an adiabatic demagnetization in the rotating frame (ADRF)

and wI is adjusted so that the condition for DQ cross relaxation is

satisfied across most of the spectrum. Conversion of the non-observable
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1.0 Introduction.

Nuclear magnetic resonance (NMR) has been the topic of hundreds

of theses in the past few decades. Some have dealt with the develop-

ment of new techniques, while others with the application of the

techniques to a variety of physical, chemical, and biological

problems. Of course, some have handled both development and applica-

tion, and this is the course I will follow here.

The utility of NMR lies in its ability to tell us something about

molecular environment via small perturbations on the already tiny

interaction between a nuclear spin and an enormous external magnetic

field. The nucleus normally dealt with is the common proton, but

here I will consider the slightly less common nitrogen l4(14N). In

the chemical world, the nitrogen atom is nearly ubiquitous. It

frequently occupies key positions in organic, inorganic, and biological

molecules; and, for this reason, its value as a spectroscopic probe

is extremely high. Unfortunately, l4N is difficult to observe

because of its small Zeeman interaction with the external field (HO)

14 -3(the sensitivity of N is about 10 that of protons). Another

characteristic which is generally a great hinderance to NMR observa

14tion is the N electric quadrupole moment. The electrostatic

interaction between this moment and the surrounding electrons leads

to homogeneously broadened lines in liquids and inhomogeneously

broadened lines in solids; reducing the signal to noise ratio (SIN)

even further. Fortunately, if SIN problems could be solved, the

quadrupolar interaction would be an extremely sensitive probe of

molecular environment and dynamics. With this in mind, I embark
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upon my journey, which has involved many hours of machine shop time,

spectrometer time, and cpu time.

Any discussion of technique and observation of nuclear spin

interactions in solids must be preceeded by an introduction to the

basic formalism involved. Prior to diving into this discussion, a

few things should be kept in mind regarding my notation. The first

concerns operators: in this first introductory chapter, the operator

14I wi1l refer to the spins under observation ( N), and the operator

S will refer to the non-resonant spins (protons); in all of the

following chapters this definition will be reversed (i.e., Swill

14 Lrefer to N, I to Iff).

at home with the notation, I hope it doesn't confuse anyone else.

Concerning units; wwill be used to denote angular frequency 2TIv,

where v signi~ies "normal" frequency (i.e., Hz, KHz, etc.). Inter-

action strengths are always given in frequency units. Theoretical

calculations make use of angular frequency units, while experimental

situations refer to normal frequency units.

1.1 Density Matrices

The results observed in any typical NMR experiment derive from

a statistical mixture of quantum mechanical states and are best

described in terms of a density matrix formalism II]. A given

quantum state $ may be defined as a superposition of orthogonal basis

states

..

(1.1)
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where c. is generally a complex number. The elements of a given
~

density matrix p are essentially equal to the average of the

statistical weights for the ensemble under consideration

*p = [c c ]nm n m

The density matrix possesses the following properties [1]:

P is Hermitian,

Tr(p) = 1, and

Tr(Ap) = <A>:

(1.2)

(1. 3a)

(1. 3b)

..

where Tr refers to the trace and <A> denotes the expected value of

the operator A. The diagonal elements of p are known as populations,

and Eq. (1.3a) states the fact that their sum must be conserved.

The off diagonal elements are known as coherences, and given the

property of one state evolving into another in a coherent manner

(such that the ensemble average~~ 0). Equation (1.3b) impliesnm .
2that p may be expanded in terms of N -1 orthogonal operators (where

N is the dimensionality of the quantum system) as:

(1.4)

From the Schrodinger equation

(1.5)
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where ~ is the Hamiltonian or energy operator of the system, one

may easily derive the time evolution of the density matrix as

a iat p = - h [~, P] (1.6) ..

If ~ is time independent, this equation is easily integrated to:

p(t) =
i

- -;]('t
h

e p(O)

i- :Kth
e (1. 7)

while if :K is time dependent

p(t)

t'-~ I :K(t)dt

= e p(O)

. t'

~ I :K(t)dt
e (1. 8)

where the h is dropped in the case that :K is expressed in angular

frequency units. From the time evolution of p, all interesting

properties of the system may be derived; hence Eqs. (1.7) and (1.8)

are extremely important. For the purpose of computing p(t) [2], :K

is diagona1ized to find the eigenvalues Ej and matrix of eigenvectors

U. The time evolution of p is then calculated via a series of

matrix multiplications

p(t) , (1.9)

\

twhere U is the Hermitian adjoint of U. If:K is time dependent and

varying coherently, then it may be replaced by a time independent

average Hamiltonian [38]. Whether:K varys coherently or not, if

•
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its time dependence is known Eq. (1.8) may be solved by breaking

t' into a finite number of intervals ~t on which ~ is assumed to

be time independent. The density matrix evolution is then calculated

each step along the way to produce the final result.

Of course, an initial density matrix is needed, and this will

most commonly result from thermodynamic equilibrium between the

spins and their surroundings (the lattice). In analogy with classical

statistical mechanics, it may be shown that the equilibrium density

matrix is [1):

I (1.10)

where Z is the partition function which satisfies Eq. (1.3a). At

equilibrium, p must commute with the Hamiltonian of the system,

and all off diagonal elements must be zero. The diagonal elements

are given by

-E /kT
n

which, for a nuclear spin system, can be reduced to

-E /kT
ne

= ~2I"""+~1-

(loll)

(1.12)

Further, since the nuclear spin interaction energy E is very small
n

compared to kT, the exponential may be expanded to linear terms:

1 -
E /kT
n

21+1
(1.13)
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Removal of a unit matrix may be accomplished, without altering

any observables, to yield

E
= _ ."....-~n'--~

kT(2I+l) (1.14) ..

This is a convenient point to introduce the concept of temperature

in NMR [3]. Temperature is a property which will be uniform over

all parts of an isolated system at equilibrium. For a nuclear spin

system at equilibrium with its surroundings, p will be described

by Eq. (1.14) with T equal to the sample temperature (usually

around 300 0 K). In order for the spins to reach equilibrium from a

non-equilibrium state, it is necessary for them to exchange

extremely tiny quanta. Because they can do this much more rapidly

between themselves than with the lattice, it is possible for them to

achieve an equilibrium situation described by a density matrix not

corresponding to the lattice temperature. The temperature which would

correspond to this density matrix is known as the "spin temperature",

and can take on any value positive or negative [4], When considering

spin temperature, cool is better; cool spins exhibit large polariza-

tions which can be observed, while hot spins exhibit no polarization

(they are saturated).

1.2 Nuclear Spin Interaction Hamiltonians

One thing which I find appealing about NMR is that the nuclear

spin Hamiltonian actually contains a finite number of terms and

can be written down. I will consider a Hamiltonian consisting of

Zeeman, radio frequency, chemical shift, quadrupole, and magnetic
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dipole terms.

(1.15)

In the following sections, these terms will be defined and elaborated

upon somewhat.

1.2.1 Zeeman

The nuclear Zeeman term, X , will always be the largest in anyz .

NMR experiment; in fact the size of this term defines whether we are

performing a true NMR experiment, or some other type of experiment,

such as nuclear quadrupole resonance (NQR) with a Zeeman perturbation.

The Zeeman term describes the interaction of the nuclear magnetic

moment ~ with the large static magnetic field HO (usually produced

within a superconducting solenoid):

'JC =-~·Hz 0

The axis of HO is defined to be along the z-direction, hence

(1.16)

(1.17)

where y is the gyromagnetic ratio, and I z is the z component of the

angular momentum operator I. Since I obeys all of the standard rulesz

for angular momenta:

m = I, I-I, ••• , -I (l.18)
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These levels of m define the possible energy levels between which we

may induce transitions. The energy splitting for a single quantum

(~m = 1) transition will always equal

..

=who (1.19)

The gyromagnetic ratio will vary from nucleus to nucleus, generally

decreasing with increasing nuclear mass. For 14N:

3 -1 -1Y
N

= 1.9323 x 10 sec gauss rad

while for protons

4 -1 -1YH = 2.6751 x 10 sec gauss rad

The corresponding energy sp1ittings in a 6.3 x 104 gauss field are

26 -251.292 x 10- joules and 1.790 x 10 joules respectively. These

-2energies would equal kT at about 10 oK, so the largest of the

nuclear spin interactions is very small indeed.

1.2.2 Radio Frequency (r.f.)

Continuing with the external magnetic field interactions, the

next largest, at appropriate times, will be that of the radio frequency

field. This field will be transverse to the static field HO' and

its interaction is defined:



..
(1.20)
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where HI signifies the amplitude of the oscillating magnetic field

at frequency w. This linearly polarized field may be decomposed

into two counter-rotating components:

-iwtI iwtI iwtI
= -wI (e z Ix e Z + e Z Ix e

-iwtI
z) (1. 21)

It is now convenient to introduce the rotating frame transformation

in order to remove the time dependence of ~rf. Starting with the

Schrodinger equation (Eq. 1.5), and using a Hamiltonian consisting

of Zeeman and r.f. terms, the time dependence of ~ is removed by

transferring it to W[5J through the definition

..

iwtI W'
Z

W= e

With our Hamiltonian:

(1. 22)

(1. 23)

The Schrodinger equation in terms of the new W (Eq. 1.22) may be

written:



-w I z U W' + i U ~t' =

(-w I - W1(UI UT + U71 U)U',,'Oz x x·'f/ , , (1.24)

10

•
on the left by U', followed by a small amount of algebra, results

iwtI
zwhere I have set U = e Multiplication of Eq. (1.24) through

•

..

in:

(1. 25)

Comparison of Eq. (1.25) and Eq. (1.5) shows that our rotating frame

Hamiltonian is:

.J. ..'.

X = -(wO-w)Iz - W1(Ix+U'U ' l xUU) (1.26)

(1.27)

The term rotating at 2w may be ignored so long as w » w1 (e1sewise,

it leads to a small offset term: the Bloch-Siegert shift [63]),

yielding:

X • -6wlz - w I (1.28)1 x

as our final rotating frame Hamiltonian. Not only has the time

dependence of the r.f. been removed, but along with it went the

large and fairly uninteresting Zeeman term (if Wo = w). Henceforth,

all Hamiltonians will be presented in the rotating frame (unless

•
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otherwise noted).

1.2.3 Quadrupolar

If our Hamiltonian were only made up of Zeeman and r.f. terms,

NMR would be a very boring subject indeed. Fortunately, other magnetic

and electrostatic perturbations yield a wealth of information. The

most important of these for this thesis will be the electrostatic

quadrupolar interaction.

The first observation of the nuclear quadrupolar interaction

was made in connection with a molecular beam experiment in 1939 by

Kusch, Millman and Rabi [6]. This observation of subsidiary minima

in their magnetic resonance spectra was fully explained in terms of

the electric quadrupolar interaction in 1945 by Feld and Lamb [7] •

Any charge distribution may be expanded in terms of its multipQle

moments, and, ~hen this procedure is applied to a nucleus, one finds

21monopole, quadrupole, ••• 2 pole moments which can interact

electrostatically with the appropriate electronic distribution in

the vicinity of the nucleus. The monopole moment obviously is

responsible for the quantum energy levels of the atom, and corresponds

to a very large energy of interaction which does not concern the

NMR spectroscopist. The next non-vanishing term is the quadrupole

(the odd power moments vanish by a parity argument [9J), and it will

be important for any nucleus of spin I ~ 1. The hexadecapole inter~

action will exist for nuclei of spin I > 1, but has been too weak
~

14
to observe thus far; and it would not exist for N in any case.

Classically, a quadrupolar charge distribution is defined as

one in which the quantity p(r) (3z2~r2) (where per) is the charge
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density) integrated over all space is nonzero. It can easily be

shown that such a distribution will have no energy of interaction

in a uniform electric field E = V¢ (where ¢ is the scalar potential),

2but will interact with a gradient field VE = V ¢. This interaction

between a quadrupolar nucleus and its surrounding electrons in zero

magnetic field leads to NQR, which is not dealt with here. In high

magnetic field, it leads to a perturbing energy best described by the

interaction of a spin I with a coupling tensor V:

•

..

j{'Q = C(I •V•1) (1. 29)

where C = 2I(i~-1) is a constant dependent upon the nucleus in

question. The quantity Q is known as the quadrupole moment of the

nucleus. Quadrupole moments, in general, tend to be positive

(indicating a cigar like charge distribution) and to increase with

14 -2increasing nuclear mass. For N, Q = 1. 6 x 10 barns (1 barn =
-24 210 cm ); approximately a factor of six larger than the friendly

deuterium atom. The Cartesian tensor ~ = {Vij } is composed of

electric field gradient (efg) elements resulting from the surrounding

electronic charge distribution, and will therefore be traceless by

2the Laplace equation: V ¢ = O. The tensor can always be transformed

to an axis system in which it is diagonal (the principle axis system

or PAS) [8], and may accordingly be entirely defined by two parameters:

eq = Vzz' and

V -V
n xx yy (1.30)=

Vzz

•



"

Derivation of the representation of ~Q with respect to H
O

is

carried out in appendix A, resulting in Eq. (A.14):

2
~ = e gQ (3 cos 2e - 1+nsin2ecos2$) (31 2-1(1+1»Q 8I(2I-l)h z

which, for spin 1=1, becomes

13

(1. 31)

The quadrupo1ar frequency wQ (see figure 1) will be defined

(1.32)

The truncated highfield Hamiltonian (Eq. (1.31» will remain valid

so long as the high field Zeeman eigenstates hold true (i.e.,

I~zl » !XQJ); when this is no longer the case, the second order

correction term will be (for n = 0) [10]:

"

~ (2)
Q

(1.33)

14A broad N NMR line which is observable via the techniques I

present here will be inhomogeneously broadened due to the orientation

dependence of Eq. (1.32) to approximately 200 kHz. Using a Q for

14 -26 2N of 1.6 x 10 cm, the required field gradient eq would be

16 -2approximately 3 x 10 volts'em This seemingly enormous field



Figure 1. The Zeeman energy levels of a spin one nucleus in the

absence and presence of a first order quadrupo1ar interaction; wQ

is defined by Eq. (1.32).

14

~-
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gradient is the result of many charges being confined to a very

small volume around the nucleus. The maximum second order shift

expected can be calculated with the help of Eq. (1.33). For the

case just described, the shift will be :4 (e~qQ)2 , or 127 Hz at
h \1

\10 • 19.5 MHz (HO • 63.0 kGauss). For a spin Sne, this interaction

will have the same erfect as·a chemical shift (it has a linear

dependence on I). but it is small enough that. it can be s?fe1y
_Z .:..

ignored in all that follows.

Our total Hamiltonian is now:

...

...

(1. 34)

and this will be the form most commonly dealt with in this work. In

order that I might carry out one more interesting transformation,

and introduce' a bit more formalism, I will convert (1. 34) to

fictitious spin 1/2 operators (described in appendix B):

(1. 35)

This Hamiltonian is now conveniently rotated, as described in appendix

B, by n/2 about 11- 3 yielding:
y

, (1.36)

which is a very desirable form when the irradiation is applied very

near to resonance. Now, a modification of the quadrupolar term is

accomplished by modulating the applied r.f. [ll,19a]

r



x = -2w 1
X
2- 3 cosw t + 2wQ(11-2_12-3)

1 m 3 z z
(1.37)

17

where I have set ~w = o. The time dependence of this Hamiltonian

is now removed in the same way as the transformation to the rotating

frame. Redefining ~ in the Schrodinger equation (Eq. (1.5» as

2w t
~' = exp(_m_ (I 1-2+1 2-3».~

3 z z

W t
= exp(-w t I 2-3 + ~(1 1-2+1 2-3».~

m z 3 z z

= U~

and decomposing the modulation into two counterrotating fields

about 12- 3 :
z

(1. 38)

where this is possible because [12- 3 , 11- 2 + 11- 3] = O. Now we carry
x z z

out steps analogous to Equations (1.24) through (1.27) and obtain

(1.40)

.. The second term, which rotates at 2w , may be neglected so long as
m

WI « wm' and Eq. (1.40) becomes

(1.41)



with the reduced quadrupolar interaction ~WQ = wQ - wm' Modulated

r.f. has not been used in this study. As we will see later, its

use would have led to terribly confusing results, not to mention

the technical problems involved [11].

1.2.4 Magnetic Dipole-Dipole

Two nuclei of non-zero spin will interact when placed near

each other due to their magnetic dipolar interaction. This inter-

action will take the form of:

18

..

;}(
1. I.

1. J

3(Iieri·)(I.eri·).. J J J
2 )

r ...
1J

(1. 42)

In the presence of an external magnetic field, we may define e and

~ as the polar angles describing the orientation of the internuclear

vector r with ~espect to HO' and express Eq. (1.42) as [12]:

(A + B + C + D + E + F) (1. 43)

where

2A = (1-3 cos e)lz I
i Zj

C = 3 -i~ (I 1:+1 1+)- - sine cose e
2 zi J Zj i

3 cose ei~ (I 1-:+1 1~)D r:: - 2' sine
zi J Zj
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E = - 3 i 28 -2i~ 1+1+r sn e ij'

and

(1.44)

For integral spin nuclei at low fields, where the Zeeman eigenstates

are no longer necessarily valid, there exists the possibility that

the dipolar interaction will be very much reduced, or vanish

altogether [13]. With regard to the fields in which I work, this

will never be true, and further, ali non-secular terms in (1.44) will

be ignored (since they mix the Zeeman eigenstates). The truncated

dipolar Hamiltonian will contain only the secular terms A and B.

Term A is responsible for a static energy shift and introduces an

inhomogeneous linebroadening, while term B is the so called "flip-

flop" term, inducing the simultaneous flipping of two spins in opposite

directions, and a homogeneous linebroadening.

In order to obtain a rough idea of the order of magnitude of

l4N, consider the magnitude of the quantitiesthj~e dipolar terms for
'YI~ 'YI'Ys

h
----3 and 3 in the typical and well known compound NH4ct. This

r i r
isUDstance crystallizes in a cubic Csct lattice with ammonium ions on

..
each corner of the cube and a chloride ion inthe center; the quadrupole

coupling for such an arrangement must vanish by symmetry arguments.

The lattice constant, characterizing the distance between adjacent
o

nitrogen atoms, is 3.8684 A [14], yielding:

•



= 10.8 Hz (1.45)
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for the homonuclear interaction, and

4y Y hr s
3ZiT r

i

= 597.6 Hz (1.46)

for the heteronuclear interaction between neighboring pairs. The

factor of 4 in the heteronuclear case takes into account the rapid

tumbling of each ammonium ion which averages the intramolecular

dipolar interactions to zero, making each lattice point appear

as four protons. Of course, there are actually many more spins

which contribute to each of these interactions, and their magnitude

may become much larger.

The operator form of the homonuclear Hamiltonian will contain

both static and flip-flop terms, and becomes:

(1.47)

The flip-flop term will become non-secular and generally unimportant

(except for certain relaxation effects) when the coupled spins

have very dissimilar Zeeman energies. From this consideration our

heteronuclear Hamiltonian becomes:

;f('rs = (1.48)
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,
Modulation of this Hamiltonian in the rotating frame will give rise

to decoupling and heteronuclear cross-relaxation effects to be

discussed later.

1.2.5 Chemical Shift

Molecules are defined by their pattern of bonds, their electronic

distribution. This electronic distribution, which is responsible for

the quadrupolar coupling, will also react in various ways to shield

the nucleus from the full effect of the. static magnetic field. This

interaction between the electronic distribution and H
O

is responsible

for the chemical shift dispersion which makes NMR such a useful tool

for chemical identification. It is easiest, once again, to express

the chemical shift interaction in terms of a second rank tensor a

as:

(1.49)

where the Cartesian tensor ~ is composed of chemical shielding

elements in the reference frame of H
O

' For my purposes, I will

neglect any non-secular elements [15J, leaving the tensor symmetric.

It can therefore be decomposed into a scalar

(1.50)

which is the isotropic chemical shift observed in liquids, and a

traceless symmetric second rank tensor
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(1.51)

This symmetric tensor may always be diagonalized.in its own PASt

and thus be described completely by three parameters: ..

and 0zzt (or 0ISO and any two of the others). Conversion to

spherical tensors, and subsequent rotation about Euler angles e

and ¢ with respect to HO' can be accomplished in a manner directly

analogous to that used for the quadrupolar interaction (appendix A)

to produce:

2 2
= O'ISO + 00[(3 cos 8-1) +n sin e cos2¢]Iz (1. 52)

where

° -crxx yy

°ISO

The range of isotropic chemical shifts observed for nitrogen

covers approximately 900 ppm [16], or about 18 kHz at a resonance

frequency of 19.5 MHz. This implies the possibility of a fairly

large anisotropic chemical shift interaction in solids. Fortunately

14
(or, unfortunately, depending 'upon how one views it) the N

quadrupolar interaction has in all cases been observed to be orders

of magnitude larger than the chemical shift. For example: in N2

the ammonium nitrogen

shift to quadrupole coupling (defined as

-310 [17J, while for

the ratio of chemical
2

Y(OISO-Ozz)Ho/(~» is approximately 2,5 x

-4L-histidine it is approximately 2 x 10 for
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-3
and 2 x 10 for each of the heterocyclic nitrogens 118], From

this it follows that I will almost always be able to entirely

neglect the effect of anisotropic chemical shifts •

1.3 Powder Patterns

Orientation dependent interactions, such as the quadrupole or

chemical shift, produce, in solids, sharp resonance lines representing

each inequivalent nuclear site exhibited. In a powder, where all

orientations are represented with equal probability, these lines

merge together to form a lineshape commonly referred to as a powder

pattern. Powder patterns would be useless were it not for the fact

that they can yield information characteristic of the tensor they

represent.

To derive the characteristic powder pattern lineshape, we

need only determine the number of orientations which correspond

to each frequency of our spectrum. As an example, take the

quadrupolar interaction (Eq. (1.31», where the first order

quadrupo1ar shift is defined by Eq, (1,32) as

3 2 2 2
w

Q
= 8\qQ (3 cos 8.,.1 +n sin 8 cos2cj>)

The powder pattern intensity is given by dQ/dWQ = sin8 d8dcj>/dW
Q

• For

the axial case (n=O) , we only need to deal with 8 dependence, givng

-1lew) ~ sin8(sin28) (1.53)
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2
This spectrum consists of shoulders at ± 3

4
eh

9Q and spikes at
2

± 3
8

\ qQ (see FJ.· gure 2). An 1 t' i f th 1a y J.C express ons or e genera

case (n ~ 0) have been known for many years, and are given by

[19]: ..

v -v
lew) "" zz xx

W-Vxx

7T/2

[ (Vyy-Vxx) (Vzz-W) 2 }-1/2
{l - tV -v ) • (w-V ) sin y dy

zz yy xx

(1. 54)

..'

where V < w < V andyy zz'

lew) ""
(V -V )(V -V )zz . xx _zz yy

(V -w) (V -V )zz yy xx

7T/2

f {l-

o

( w-V ) (V -V )
xx ·zz yy i 2 }-1/2d(V -w)(V -V ) s n y y

zZ yy xx

(1. 55)

where V < w < V • andxx yy'

V 3 ~ (1.56a).. (1-11) -
xx 8 h

V 3 ~ (1.56b).. (l+n) -yy 8 h

v =_1~ (1.56c)zz 4 h

are the points which define the principle values of the quadrupole

coupling tensor. The integrals in Egs. (1.54) and (1.55) are

commonly known as elliptical integrals, for which polynomial



Figure 2. NMR powder spectra for various values of the asymmetry
V -V

parameter n = xx yy
Vzz
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Figure 3. NMR powder spectra resulting from a combination of chemical

shift and first order quadrupolar interactions. The two tensors are

assumed to be aligned parallel to one another, and % CS is defined:
Y(O'rso-O'zz)HO% CS = 100 • ( 2 ) •

(e hqQ
)
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approximations are available [20]. With sufficient SIN the

principle values are fairly easily gleaned from such a spectrum.

Problems are encountered with broad spectra since t as the breadth

of the spectrum increases t the SIN (in the absence of instrumental

demands to be discussed later) decreases in approximate proportion.

If the powder pattern is not the result of one interaction t or

if it is perturbed by motion t then the lineshape dQ/dw must be

numerically calculated on a computer. This approach has been

taken in order to generate many theoretical spectra presented here,

such as the combination chemical shift~quadrupole powder patterns

of Figure 3 where we see that the anisotropic chemical shift inter

action would have to be far larger than anyone would ever imagine

in order to noticeably perturb the powder pattern.

In this work t I deal almost entirely with powdered samples, and

hence powder patterns. The primary reasons for this are crystalliza

tion difficulties t and experimental simplicity. Of course, by

following this path I have lost all information regarding the

relationship between the coupling tensor and the crystalline

reference frame. In forthcoming pages I will describe the methods

which have been used to obtain NMR powder spectra of ammonium and

tetraalkylammonium compounds •

29
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Chapter 2: Techniques

2.1 Observation of FID's

Observation of such broad lineshapes

The quadrupolar powder pattern will be quite broad,
2

f f + 3~requency range 0 - '4 h •

covering a ..

has been achieved for many years via aontinuous wave (c.w.) NMR

techniques, however, the time required to obtain adequate c.w. SIN

can sometimes be excessive. Considering the fact that the frequency

response, or spectral density, and the impulse response, or auto-

correlation of a linear system are fourier transform pairs, it

should, at least in principle, be-possible to obtain all frequency

domain information by recording the time domain autocorrelation, or

free induction decay (fid) 124,25,26J. This is the basis of the

fourier transform (f.t,) NMR technique, which has come to dominate

the field in the past two decades. The obvious advantage of the

technique is that the entire spectrum may be "swept" in the time

required to record the fid; usually on the order of milliseconds.

The equation describing the time evolution of the observable

fid following a pulse along y will be:

(2.1)

where X will typically contain every term in Eq. (1.13), with the

exception of the r.f. term; for my purposes ~Q will dominate. In

order to successfully apply the f.t. technique, it is necessary to

digitally sample G(t) undistorted at a rate at least twice its

bandwidth; or, at a rate equal to its bandwidth if quadrature

detection is employed. The sampling process itself is not

..
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difficult using digital circuits presently available, but the

actual observation of the signal presents some difficulty. The

most commonly used method of detecting an fid is via the voltage

produced by its time dependent flux within a tuned r.f. coil. A

conventional LC coil circuit tuned to Wo will have a bandwidth

~w defined by its Q = wO/~w. For simple circuit configurations,

the Q is determined by losses in the circuit (resistive) and its

value will determine both the output voltage available for a given

flux, and the noise voltage produced within the circuit. The

implication here is that the SIN is very dependent upon the Q, and

1/2
in fact, it is commonly thought to vary as Q I27J. Unfortunately,

a tuned circuit, once excited with an r.f. voltage on the order of

one or two hundred volts, will require a time ·of approximately

20 QlwO to ring down before the very small nuclear resonance signal,

on the order of tenths to hundreds of microvolts, may be observed.

At a frequency of 20 MHz and a Q of 100, this corresponds to

approximately 30 lJsec of "dead time". Because information regarding

the broadest part of the lineshape is contained in the initial part

of the fid, loss of the first 30 lJsec of the fid is almost always

intolerable. Various methods of reducing the ringdown time without

reducing the effective Q of the circuit have been introduced I28!29],

but even with these, a few lJsec of deadtime must be tolerated.

Additionally, I will demonstrate later that, even in the total

absence of any ringdown, there exists a dead time for the quadrupolar

fid becuase it begins before the pulse ends •

•
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2.1.1 Quadrupolar Echoes

Fortunately, a very nice solution to the problem has existed

for quite some time. It has long been known that the evolution

of a system governed by inhomogeneous interactions can be reversed

by the appropriate pulse, or sequence of pulses. This reversal at

a time T leads to the formation of an echo at 2T, and was first

observed by Hahn for the inhomogeneous Zeeman interaction in 1950

[30]. The first order quadrupo1ar interaction is also inhomogeneous

and reversible, and the use of quadrupo1ar echoes 13l,32Jpermits

the observation of an undistorted fid, so long as T may be extended

beyond the probe ringdown time. The major limitation of quadrupo1ar

echoes derives from irreversible T2 processes, which will be

discussed in a later chapter.

The classic quadrupolar echo sequence consists of two pulses

of 90° rotation, differing in phase by 90°. and separated by a delay

T. In order to demonstrate the mechanics of this sequence, it is

most convenient to utilize the fictitious spin 1/2 operator

formalism (Appendix B). Initially consider an isolated spin 1

irradiated on resonance; Eq. (1. 36) will become:

describing x irradiation, and

2w
j( = _ 2w S 1-2 + =.q (S 1...2~ 2-3)

1 y 3 z z

(2.2)

(2.3)
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describing y irradiation. It will be assumed here that wI » wQ'

so that the Hamiltonian during irradiation will consist of only an

r.f. term. The

proportional to

equilibrium density matrix (Eq. (1.14» will be

5 1-3, which, in this reference frame, becomes
z

1-3
5 ,and we can employ Eq. (17) and B.6 to determine its evolution.x

Following the first pulse:

2-32iw
l

t 5
e p x 1-3

5
x

-2iw t S 2-3
1 p x

e =

and, for wltp = n/2, this reduces to Syl-2. Before considering the

first delay period, the following useful relations should be kept

in mind:

2w
~ (5 1-2_S 2-3 =

3 z z) (2.5a)

and

W
• -w 5 2-3 + ~ (5 1-2+5 1-3)

Q z 3 z z
(2.5b)

..
Is 1-2

y
S 1-3 + 5 2-3] - 0
z z (2.6a)

Is 2-3
x "

S 1-3 + S 1.-.2Jz z = o (2.6b)

Evolution under the first order quadrupo1ar interaction during

T
1

reduces to:
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8
Y
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The second pulse along y results in:

(2.7)

·2;w
l

t 8 1-2 2 1-2.. 1 2 1 2 .. iwlt 8p Y (8 - .. P Ye y coswQLl - 8x sinWQL1) e =

(2.8)

where wIt = n/2.
P2

calculated as:

The second delay period evolution is easily

=

(2.9)

Equation (2.9) becomes independent of wQ when the first delay Tl

equals the second delay T2; this is the quadrupolar echo we have

been seeking. Certain very useful properties should be noticed at

this time: (1) essentially zero time resolution is obtained for

the quadrupolar fid, and (2) from Eq. (2.7), the phase of the

echo will be invariant to a 180 0 phase shift of the second pulse.

This second property has been very important in my work, allowing

suppression of ringing and other spurious transients (e,g., magneto-
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acoustic ringing [33J) coherent with the phase of the second

pulse.

In nearly all of the experiments I present here, observation of

the fid was accomplished with a quadrupolar echo, making this an

extremely important topic worthy of further discussion. The

preceeding deliberation on the quadrupolar echo, which makes it

appear as a perfect pulse sequence, is not an accurate description

of the actual experimental situation. First and foremost, wI is

seldom much larger than the largest wQ present; and often is

considerably smaller. This effect may be calculated analytically

by retaining the quadrupolar portion of the Hamiltonian during r.f.

irradiation. We proceed by diagonalizing Eq. (2.2) written as

W
X = -2w S 2-3 _ W S 2-3 +:g (S l-2+S 1-3)

Ix Qz 3 z z
(2.10)

for the first pulse via a rotation of -8 about S 2_3 where 8 =y ,

..

W
X • -2 S 1-2 + S 1-2 _ ~ (S l-3+S 2-3)

WI y wQ z 3 z z

1-2for the second pulse via a rotation about 8 to obtainx

for the x pulse, and

W
~ • -w 8 1-2 _ ~ (S 1-3+8 2-3)

e z 3 z z

(2.11)

(2.12)

(2.13)
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for the y pulse, where

(2.14)

I remark here that Eq. (1.35) can always be converted to diagonal

form via a tilt so long as ~ can be neglected in relation to wI;

which is almost always the case. In order to obtain an exact

analytical expression for the effect of the on resonance quadrupolar

echo sequence upon the equilibrium density matrix PO' it is

necessary to carry out the following steps:

1) tilt Po into the frame in which ~ is diagonal

2) calculate the evolution of Po to petl) via Eqns. (1.7)

and (2.10)

3) tilt p(tl ) back to the original reference frame

4) calculate the evolution of pet l ) to petl+Tl) in the

original reference frame

5) repeat steps 1, 2, and 3 using the Hamiltonian Eq. (2.11)

in order that P(tl +Tl +t2) may be obtained

6) the evolution of P(tl +l l +t2) to P(tl +Tl +t2+l2) is

accomplished to obtain the observed signal as a function

Fortunately, the tedious operator algebra has already been carried

out (2, 23, 40), and the resulting expression of the observable

coefficient of S 1-2 as a function of the various times involved
y

may be easily calculated. After some manipulation, it is possible

to obtain:

I
f
I
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W t
- sine sin ~ 1 sinw

Q
(T l +t l /2)·

(2.15)

where I have neglected all density matrix el~ments which are

uninteresting, and will not lead to an observable signal (such as

1 2 1-25 -). The operator 5 in this reference frame corresponds toz y
12 1-2 2-3observable y magnetisation in the laboratory frame (-2 (5 +5 »,y . y

h OI 1-2. d b bl i h i 1w ~ e 5 correspon s to a non-o serva e ant p ase s ng e quantum
x

coherence (12 (5 1-2_5 2-3». The observable may be extracted from
2 y y

(2.15) as

<5 1-2>
y

..

(2.16)



Figure 4. The magnitude of the observable coefficient S following
y

38

a pulse along S for several values of pulse rise time.x
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A few things should be noticed about this equation. Firstly, the

initial pulse gives the fid what is essentially a phase shift of

half the pulse length. .The fid appears to begin halfway through

the pulse and it is impossible to attain absolute zero time

resolution from one pulse no matter how short the ringdown time.

This shift will result in echo formation when L2 equals T
l
+t

l
/2

instead of when T2 equals T
l

; the truth of this prediction has been

demonstrated experimentally without exception. Secondly, Eq. (2.16)

possesses an oscillatory behavior (Figures 5 and 6) which has the

approximate functional form of sin2
W

Q
(Ll +tl /2) [2]. These

oscillations are due to the differing effect of the second pulse

1-2 1-2depending upon whether P(Tl +tl /2) contains more Sx or Sy ;

for very hard (large WI) pulses, the effect will vanish. These

undulations are never observed experimentally. What we will observe

is given by the solid line in Figure 5, which is well described by

the echo sequence distortion function of Bloom ~ al., I34]. It is

possible to see exactly how this comes about by a re-examination

of Eq. (2.16). From this equation it is necessary to extract the

portion corresponding to a time dependence of cos WQ(Tl +t
l

/2-T 2),

which will become independent of W
Q

when T2 equals Tl +t l /2. Using

the identity

we first extract from (2.16)



41

(2.17)

and make use of the identity:

to yield the desired extrication as:

(2.18)

which becomes:

(2.19)

at the echo maximum. This is the function of Bloom et al., and I

have used it to correct computer generated powder patterns for the

effect of finite pulse lengths.

Of course, as I mentioned before, the pulse lengths are not

only finite, but so are the rise and fall times (i.e., the pulses

are not square). The effect of this on density matrix evolution

may be calculated as described in Section 1.1, by breaking the time

dependent pulse amplitude into a finite number of sub-pulses, ea~h

of which has a time independent amplitude so as to describe the
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Figure 5. The magnitude of the observable coefficient S following
y

the quadrupo1ar echo sequence: 90o-T-90o-T. The dotted line is
x y

1-2obtained by computing Tr(p(t1+T+t2+T)Sy ), the solid line is the

fourier transform of the calculated fid starting at the echo maximum,

and the crosses represent values computed from the echo sequence

distortion function of Bloom et a1. [34] (Eq. (2.19».
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Figure 6. The magnitude of the observable coefficient S following
y

the quadrupo1ar echo sequence for infinitesimal and finite pulse

rise time.
1-2Both lines were obtained by computing Tr(p(t1+T+t2+T)Sy ).
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envelope of the pulse:

Hl(t) = HI (l_e-t / Tr) 0 $ t ~ t (2.20a)
max p

•

= H
-t/Tr

t ~ t (2.20b)e1 pmax

and satisfy

t'<t- p

f Hl(t)dt = HI t (2.21)

0
max p

where

Tr = 2Q/wO (2.22)

is the characteristic ringdown time of the tuned circuit. The

result of this calculation for a single pulse (see Figure 4) is

a significant degradation of the observable response following the

pulse as the risetime increases. This is primarily because the

fid begins halfway through the pulse, and the longer in time the

pulse persists, the greater is the evolution at large wQ; in

other words, this is almost entirely a deadtime problem. As Figure

6 demonstrates, this problem is much alleviated in the echo, where

the dead time is removed. I have corrected none of my spectra for

the effects of finite rise and fall times, primarily because I don't

believe it is necessary.

The effect of the probe time constant (Eq. (2.20)) will also

result in the so~alled "phase glitch" 135]; in which a pulse is

II

-

I
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produced of time dependent phase during its rising and falling

periods. This results in a small off-axis rotation during each

pulse, whose cumulative effects may be large for many pulses 136],

but for the simple two pulse sequence it is not likely significant.

I feel that there is one more characteristic of this quadru-

polar echo sequence which is worthyof discussion. Starting with

Eq. (2.4), and assuming the conditions wI » w
Q

and w
l

t
1

= rr/2

are satisfied, the first pulse creates only a coefficient of S 1-2
y

Now, consider the effect of a resonance offset during the first

delay period. The Hamiltonian during this period becomes:

2w
X = -2~w S 1-3 +~ (S 1-2_S 2-3)

x 3 z z (2.23)

The evolution of 1-2 due to (2.23) is easily calculated:Sy

P(tl+Ll )
1-2 1-2 sinwQLl )= cos~WLl(Sy . coswQLl-Sx

2-3 2-3
siDWQLl ) (2.24)+ sinLlWL1 (Sx coswQLl+Sy

The desired echoing effect of the second pulse depends upon there

being S 1-2 and S 1-2 in
y x

1 S 2-3 d S 2-3pu se on anx y

the density matrix, for the effect of this

is to create z ~gnetization and double

quantum-coherence; not desirable from an observables point of view

at all. Therefore, when the cos~WT1 term goes to zero, the echo

vanishes. There does exist some utility in this measurement, for

it allows one to determine, with very good accuracy « 100 Hz) the

off-resonance condition when echoing a broad powder pattern (where an
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accurate frequency domain measurement is all but impossible). So

long as the echo isn't disappearing due to irreversible T2 processes,

one can use the relationship

•
~v (4 -1

(2.25)= Lvanish)

to determine the off-resonance condition. If we are in the

unfortunate situation of having a large anisotropic chemical shift

along with our quadrupolar coupling, then the quadrupolar echo

spectrum may become horribly distorted (Figure 7). I do not expect

to encounter large anisotropic chemical shifts, so this is not

likely to happen.

To close out this section, I should point out that the

frequency response of the echo sequence may be varied through the

use of a composite pulse sequence 171]. In particular, the

sequence 172] 45 -135--135 -45- acts as a compensated 90 0 pulsex x y y

on a spin 1 system, increasing the frequency response near the

center of the spectrum, but causing it to falloff more rapidly

in the wings.

2.2.1 The Nature of Dipolar Broadening

I have demonstrated that the first order quadrupolar

interaction may be refocused fairly easily, giving essentially

zero time resolution with respect to this interaction. The

question now arises as to the other coupling mechanisms in

Equation 1.15; in particular, the dipolar interactions~ both homo

and heteronuclear. These, being perturbations involving many

spins, will not typically add any structure to our powder pattern,



Figure 7. The consequences of chemical shift evolution during the

quadrupolar echo sequence for a powder spectrum broadened by both

first order quadrupole and anisotropic chemical shift interactions.
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but will merely broaden it. The broadening function is most

suitably described in terms of its moments:

fw
n

I(w)dw
Mn = fI(w)dw

where the zeroth moment CM
O

) will be equal to one, the first

moment will be the average frequency, the second moment will

be the average squared frequency, etc. These moments may, at

(2.26)

least in principle, be explicitly calculated, and, with a sufficient

number of moments, a faithful representation of the broadening

function may be obtained. In particular, the second moment may

be calculated, with the aid of Eq. (2.1), as 137]:

(2.27)

where I will consider X to contain only the dipolar terms USS

and XIS' If the broadening takes on a gaussian form, then the

relationship between the full width at half 1I1aximum (fwhm) and

M2 is [38]:

/:,w = 2 36 M 1/2• Z (2.28)

If the broadening takes a lorentzian form, then MZ will exceed

~fwhm by a large amount, because a considerable portion of the

intensity lies in the outer wings.
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This broadening, in whatever form it takes, will tend to wash

out spectral features and is highly undesirable. To get an idea of

its magnitude, it is possible to calculate M
2

l / 2 for NH
4

C2 (see

Section 1.2.4) via 138J:

M 1/2
2

= (1-. 8.5 • 5(.5+1»1/2 Y~3
5 27Ta

(2.29)

o

where a is the lattice constant 3.3684 A. Plugging in all of the

values from Section 1.2.4, I obtain:

M2SS = 34.5 Hz

for the homonuclear interaction, and

(.2.30)

13.8.

M1/ 2 = 1.91 KHz (2.31)
2IS

for the heteronuclear interaction. Homonuclear flip-flops among

the I spins will tend to reduce the fwhm of the heteronuclear

broadening by increasing the fourth moment, giving the 1ineshape

more lorentzian character. The maximum linewidth reduction we

could expect from this mechanism would be a factor of the ratio

of the gyromagnetic ratios; which, in the case of l4N and ~ is

14Experimentally, I observe a N NMR signal in NH4C2 at

room temperature which fits well to a lrentzian curve of fwhm equal

to 550 Hz (the quadrupolar coupling should vanish for NH4C2 due

to lattice symmetry) •

•
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2.2.2 Decoupling

The homonuclear interaction between two l4N nuclei seems very

small, and its consideration will lead to a complicated quadrupolar

echo situation (39), so I will presently ignore it. The heteronuclear

term, by contrast, will be at least an order of magnitude larger and

may be very troublesome. Spectra will not only be broadened, but the

interaction is not refocused by the quadrupolar echo and so will lead

to lower SiN in any echo experiment.

The most common and convenient method of reduction of ~IS is the

application of a large r.f. decoupling field to the I spins. Consider

a Hamiltonian consisting of this field plus ~IS:

~ = -WlI - ~wI + 2 ~bi Ix z ~ Z.
1.

i

where

1-3
Sz

(2.32)

b =
.i

(2.33)

and fictitious spin 1/2 operators are used for the S spins. The first

two terms in (2.32) are consolidated via a tilt about I of S =
w y

atan (-1:) to yield:
~

• if = - WeI z + 2~ bi Szl-3 (I
zi

cosS + I
Xi

sinS)

i

(2.34)

h ( 2 + A 2)1/2were we = WI uW • Since the first term in (2.34) does not

commute with the tilted dipolar coupling, the coupling will become

time dependent as:
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iw tI e -iw tIe z e z
= e j IS e

(2.35)

It is now right and proper to replace (2.35) by its average over one

cycle of w. The time independent coherently averaged Hamiltonian ise

obtained via average Hamiltonian theory [43J, and is given by [44]:

where

, .. (2.36)

S 1-3 I
z zi

2 cose

__1 4 sine
Mis = -w----'-

e

Lb i
i

2
~ S 1-3 b 2
~ Z i

i

, (2.37)

(2.38)

i2 = 8 sine ~ S 1_3
3

b 3 ( ( e)
is w 2 ~ z i P2 cos I Xi

e i

Si~2e I ) • (2.39)
zi

We now wish to eliminate, or discard these terms one by one. The zeroth

order term (Eq. (2.37» vanishes when the I spin irradiation is applied

on resonance. The first order

to the second moment of a spin

term (Eq. (2.38» will not contribute

21/2 nucleus because [S ,S] = 0, butz x

for a spin 1 nucleus this is no longer true, and this will be the most

important term to eliminate. The contribution of (2.38) to the second

•
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moment (Eq. (2.27) will be reduced so long as the I spin irradiation

is applied on resonance, and

2 t= 2

(

Tr[S b
i

I ,
Z zi

(2.40)

•

The reasonable implication here is that the I spin r.f. field

amplitude must be much larger than the rms linewidth (M~i~) due to

the heteronuclear term in order to eliminate the effect of this

term on the evolution of the system. The second order term (Eq. (2.39»

would be the most important term if I were dealing with spin 1/2

nuclei, and this term is slightly easier to eliminate through

decoupling (because of we and bi dependence),

The experimental results of decoupling are shown in Figures 8 and

9. Decoupling really is necessary because some of these compounds

are literally loaded with protons, rendering an M2IS which is much

larger than my simple minded estimates would indicate, I note

parenthetically that the decQupled lorentzian linewidth for NH4Ci

decreases to 370 Hz (from 550 Hz), and I can excite a 90 - 90x y

echo while decoupling. The residual linewidth may be caused by

incomplete elimination of XIS' homonuclear spin interactions, or

residual quadrupolar couplings resulting from small crystal defects.

Because of the estimated extremely tiny size of the l4N_14N homo-

nuclear coupling, and because of the presence of the echo, the most

likely residual broadening mechanism is quadrupolar coupling due to

lattice defects.
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Figure 8. The effect of decoup1ing on the corss~po1arized 14N NMR

powder spectrum of tetrabuty1annnonium bromide at -60°C, Each spectrum

is the result of 200 transients using a mixing field of 50 kHz for both

14 LN and ~, and a 5 ~sec echo pulse,

..
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Figure 9. Decay of the single (S,Q.) and double (D,Q,) quantum

echo as a function of the echo delay time T for ammonium sulfate

powder at room temperature. The single quantum echoes were the

result of quadrupo1ar echo sequences on Zeeman polarization, while

the double quantum echoes were obtained by an ADRF cross~po1arization

14
experiment (section 2.4) using a 5 msec mixing period and a N r.f.

field amplitude of 8.3 kHz.
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2.3 Cross-relaxation

Hopefully, the reader is now convinced that the proton decoupled

quadrupolar echo is the method of choice for observing l4N powder

lineshapes in a relatively undistorted manner. However, one is

left wondering if it is possible to increase the sensitivity of the

experiment over that which is available from a puny Zeeman polarization.

Put in simple terms, the signal available from an ensemble of nuclei,

neglecting the noise, will be primarily dependent upon the equilibrium

Zeeman polarization and the frequency of observation (because of

Faradays law of induction). Both of these factors may be increased

by increasing HO' but this is not often feasible from an economic

standpoint. If one cannot change H , then the frequency being observedo
(wO) is fixed. This leaves us with attempting to increase the

available polarization above that due to the Zeeman interaction.

We have this option at our disposal because of the potential of the

spin system for attaining a temperature (the spin temperature) far

different from that of the lattice.

2.3.1 Relaxation of Spins in High Field

I have, until now, assumed that the spins interact only with

well defined Hamiltonians, resulting in coherent density matrix

evolution. In the real world, there will always be thermal noise

present, and this thermal motion will add a small time dependent

portion to the Hamiltonian of Eq. (1.6). The inclusion of this

small perturbation is most easily accountea for by the incorporation

of the phenomenological relaxation times Tl and T2 145J into

Eq. (1.6) as:

•
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(2.41)

where Po refexs

to the diagonal

to the density matrix at thermal equilibrium, Pdi. ag

elements of P, and Poff to the off diagonal elements.

The longitudinal relaxation time Tl is thought of as the inverse rate

of energy exchange along the high field axis of quantization, while

the transverse relaxation time T2 is related to the inverse rate of

exchange along the perpendicular axis, and is responsible for

equilibrium among the spins. For the simplest case, in which JC in

Eq. (2.41) is nonexistent, the diagonal elements approach equilibrium

as:

-t/TlPdiag ~ 1 - e .

and the off-diagonal elements decay as:

(2.42)

(2.43)

Calculation of Tl and T2 , and comparison with experiment, may

yield a wealth of information (an example is given in the last chapter),

but the most qualitative terms are sufficient for this discussion,

and they were set forth many years ago by Bloembergen, Purcell, and

Pound 146]. Fluctuating local magnetic interactions of the form

JC(t) = yh(H (t)I + H (t)I + H (tlI )x x y y z z

or electric field gradients (for I > 1)

(2,44)



3C(t) = 4e~ (V (t)(.3 I 2...2)+(V (t)-V (t» (I 2....I 2»)
J1 zz Z xx yy x y (2.45)
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Consider, for the moment, Eq. (2.44).

will induce transi~ions between the nuclear spin energy levels.

If H (t) and H (t) have ax y

considerable density of fluctuations (spectral density J) in the

neighborhood of wo' then transitions will be induced along I z and

thermal relaxation will result. Additionally, fluctuations at 2 Wo
will induce transitions because of the rotating frame argument used

in section 1.2.2 (Eq. (2.44) will contain a counter-rotating

component). Therefore, the longitudinal relaxation time will be

related to the spectral density of the fluctuation at the frequencies

(2.46)

The values of kl and k2 will depend upon the relaxation mechanism, and

will contain a factor of the squared coupling operator. Because the

electrostatic quadrupolar coupling has the potential to be much

larger than the magnetic dipolar coupling, Tl's due to quadrupolar

coupling could potentially be much shorter.

Similarly, an equation relating T2 to a fluctuating perturbation

may be derived. In this case we wish to relax along x or y, so the

important fluctuations occur along z, and either y or x. Fluctuations

along z involve operators which are diagonal in the Zeeman eigenstates,

and so cannot exchange energy between spins. These will contribute to

T2 through a static (zero frequency) term. Fluctuations along x or

y involve operators which connect states of differing m , so the
z
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dependence on spectral densities at Wo and 2 wOo The overall result

is

with Cl , C2 , and C3 depending upon the mechanism of relaxation. If

the variation of the perturbation is described by a stationary

Markov process, which seems most reasonable, then J(O) must always

be greater than or equal to J(w > 0). For this reason, T2 is always

less than or equal to Tl ; T2 commonly being on the order of milli

seconds, and Tl on the order of seconds.

Of course, Equations (2.46) and (2.47) are valid only for

liquids and gases, where the motions are isotropic. In solids we

must deal with anisotropic motion and anisotropic couplings, leading

to anisotropic relaxation. To a first approximation, this merely

involves an orientation dependence of the constants in Eqs. (2.46)

and (2.47) [48J. I should also mention that these equations neglect

some other contributions to relaxation, such as chemical exchange,

but they do give us a feeling for. what the world of relaxation is

all about.

2.3.2 Nuclear Overhauser Enhancement (~OE)

The NOE derives from the supposition that coupled spin systems

will likely have coupled relaxation parameters, and thus by perturbing

one spin species, we may be able to polarize the other. The

longitudinal relaxation of two coupled spins will obey the following

set of coupled equations [47J:



d<I >
1 1Z (<Iz>- I

O
) «Sz>~O)=

- TIl - TISdt

d<S >
1 1z

«Iz>-IO) «Sz>-SO)= -- .. -
dt T

SI TSS

(2.48a)

(2.48b)
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where I O and So are the equilibrium values of I z and Sz respectively.

Prior to defining the various relaxation times involved, let uS see

what happens when a resonant r.f. field is applied to the I spins

such that <I > vanishes (i.e., the I spin temperature goes to
z

infinity). Under this condition, Eq. (2.48b) becomes:

1- (<S >...S )
T

SS
z 0

(2.49)

To obtain the-equilibrium S spin magnetization, we set Eq. (2.49)

equal to zero and obtain:

<S >
z (2.50)

or, the relative enhancement

<5 >
z--=

So

(.2.51)

Now we see that the relaxation times TSS and TSI are all important in
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determining whether this experiment yields any enhancement.

Qualitatively, the longitudinal relaxation time TSS will depend

upon the coupling between the S spins and the lattice, and between

the S and I spins; while TSl is only dependent upon the coupling

between the S and I spins, and gives the contribution of TIl to TIS'

So, in order to obtain a large S spin NOE, the I and S spins must

be tightly coupled, while the S spins should be well insulated from

the lattice.

Now, I wish to obtain

for this is primarily that

14a N NOE from protons, and the implication

14the N quadrupolar spin lattice inter-

action must be small in order to al~ow significant relaxation through

14 1the N- H dipolar mechanism. I have experimentally investigated

the utility of this signal enhancement method, with disappointing

results. The experiment is performed in two steps: (a) the protons

are irradiated· on resonance for a t:illle on the order of l4N T (b)l'

either a single pulse, or a quadrupolar echo sequence is given, and

the resulting fid is recorded. A typical result for a single crystal

of (NH4)2HP04 is shown in Figure 10. The NOE is large, approx:illlately

a factor of 7, but anisotropic (as significant enhancement occurs

for only one quadrupolar splitting). The anisotropic effect is not

unexpected, since the heteronuclear dipolar coupling will be aniso-

tropic. Unfortunately, the only compounds which exhibited a

significant NOE were the ammonium salts; a few tetraalkylammonium

compounds yielded a small NOE (on the order of 1.5), but this is

hardly worth mentioning. Failure of this exper:illlent is most likely

14due to a strong coupling between the N quadrupole moment and the

lattice.



Figure 10. The result of the nuclear overhauser experiment on a

particular orientation of a diammonium hydrogen phosphate single

crystal for various proton saturation times. The solid line follows

an exponential relaxation of time constant 670 msec.
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Any cross-relaxation experiment performed in high field is expected

to yield somewhat anisotropic results because of the truncated nature

of the Hamiltonians involved. What is most objectionable about the

NOE, if it works at all, is that it is very slow. This inefficiency

leads to significant sample heating during the experiment. The

NOE is sluggish because it is dependent upon dipolar fluctuation

spectral densities at the sum and difference frequencies of the two

nuclear species [47]. These spectral densities are likely to be

tiny (in the absence of further external perturbation), so the NOE

is a slow process. Fortunately, it is possible to obtain a cross~

relaxaton which occurs more on the order of T2 via rotating frame

experiments to be described in the next section.

2.4 Rotating Frame Cross~relaxation

If it were only possible to have a different static field felt by

each nuclear species in a heteronuclear coupled pair, then these

fields could be adjusted such that wOI ~ wos' and the cross-relaxation

would occur very rapidly for it would depend upon a spectral density

at zero frequency. That this is substantially possible was proven

by Hartmann and Hahn [52]. Their method is to apply resonant r.f.

fields to both the I and 5 spins, thereby transforming the important

properties of the system out of the laboratory frame, and into the

rotating frame; where the "effective field" will be the r.f. field

(so long as the r.f. field interaction strength exceeds that of

other rotating frame interactions, such as homonuclear dipole),

A typical rotating frame cross~relaxation experiment will consist

of the following steps; (1) the strongly resonating I spins are

transferred from high field to a much smaller effective field via

a spin lock (SL), or adiabatic demagnetization in the rotating frame
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(ADRF) [51], (2) a resonant r.f. field is applied to the S spins

in order that they may have an effective field on which to polarize

(1 will refer to this as the mixing period), and (3) after a period

of time (on the order of T2) the S spin r.f. field is suddenly

removed, and the S spin fid is observed directly (direct detection

cross-polarization), or the 1 spin fid is observed (either by sudden

removal of the spin locking field, or via a 45 0 pulse on the ADRF

state [53]) and compared with the equilibrium 1 spin fid in order

to obtain the relative I-S magnetization transfer (indirect detection).

( -1The rate of cross-relaxation, TIS) is very dependent upon the manner

in which step (2) is performed. In particular, when the respective

r.f. field strengths YIH1I and YSH1S are adjusted to equality, which

is only possi~e for SL and known as Hartmann-Hahn matching, cross-

relaxation becomes extremely rapid because equal quanta are exchanged

among the spins.

The most widely used and successful form of this experiment

is known as proton enhanced nuclear induction spectroscopy (PENIS)

{54], and takes advantage of the ever present proton as the I spin,

while observing the S spins directly. The primary virtues of direct

detection are highest available resolution, and simplicity of spectral

interpretation. Spin decoupling during 5 spin observation is

easily accomplished via the common everyday technique outlined in

section 2.2.2. By contrast, in the indirect detection experiment,

the 5 spin frequency domain must be mapped point by point by varying

the S irradiation frequency during the mixing period. One can only

hope that the double resonance lineshape at each frequency takes on

a simple form so as not to grossly distort the desired spectrum
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beyond recognition. Additonally, decoupling the I spins in the

indirect detection experiment is difficult, although it may be

accomplished [55]. The only advantage of indirect detection is an

additional increase in sensitivity which comes from detecting a

higher frequency spin (once again, Faradays law is brought into

play). If the lineshape is amenable to ft NMR at all, then direct

detection is the way to go.

2.4.1 Rotating Frame Spin Thermodynamics

The NOE is not conveniently analyzed in terms of equilibrium

thermodynamics because the I spins are always displaced from

equilibrium by the application of an r.f. field, and the thermal

contact between the two systems is very feeble, being of the same

order as.the contact between each individual system and its surroundings.

By contrast, rotating frame cross-relaxation experiments are most

conveniently described in thermodynamic terms. To a first approxi

mation, spin-lattice relaxation may be ignored, and the entire process

is analogous to two bodies of different temperature coming to equilibrium

by thermal contact.

To begin, assume the existence of two spin systems describable

by the total Hamiltonian:

(2.52)

where I ignore quadrupolar interactions (which are conveniently added

later), S spin homonuclear interactions (which are likely to be

•
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extremely feeble); the dipolar interactions XII and XIS are given

by Eqs. (1.47) and (1.48) respectively. Equation (2.52) may be

transformed easily to a doubly rotating frame representation, using

a method like that of section 1.2.2, to yield:

(2.53)

I now drop the offset terms for they, like the quadrupolar interaction,

are conveniently added later. I will also assume that XIS corresponds

to a very small energy not important in a thermodynamic sense. Our

reduced Hamiltonian becomes:

(2.54)

defining the three thermodynamic reservoirs with which we are most

concerned; the I spin, the S spin, and the I spin dipolar. In a

spin lock experiment, XI » ~, and the I and S spin reservoirs are

brought into thermal contact; while the ADRF experiment equilibrates

the S spin and I spin dipolar reservoirs. Since the system is assumed

to be isolated from the outside world, the energy provided by the

terms in Eq. (2.54) must be conserved. We may invoke this energy

conservation in order to determine the state of the system following

equilibration. The energy is given by:

E • Tr(p X)eq
(2.55)



where the equilibrium rotating frame density matrix
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(2.56)

is related to the laboratory frame density matrix by

(2.57)

-1In equation (2.56), B • (kT) , and I implicitly assume the existence

of a spin temperature in the rotatiIlg frame [49] for each reservoir.

Plugging Eqs. (2.54) and (2.56) into (2.55), one obtains:

Y5
2

h
2

5(5+1)

+ 3 (2.58)

where I have made use of the relation [37]:

(2.59)

Equation (2.58) is now simplified, by extracting the Curie constants,

to yield

(2.60)



73

where the local field is defined [50]:

(2.61)

and factors of NI and NS have been incorporated into the Curie constants

to account for the many spin macroscopic observables. Equation (2.60)

will essentially be valid for all time in the absence of spin-lattice

or heteronuclear coupling. However, when we invoke this latter

mechanism, the I and 5 spin temperatures approach equilibrium leaving

the total energy unchanged. Prior to contact, it is not unreasonable

to assume that 85=0, so that the state of the system following

equilibration must satisfy:

(2.62)

where So has replaced SI' and Sf is the final equilibrium spin

temperature. In the ADRF experiment, HIleO, so

or

2
.. I + El1

(2.63)

(2.64)



where

N5 5{5+l)
e: = ~--=-~"='"N1 1{I+l)

and
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..
(2.65)

The 5L experiment is analyzed in a similar manner, with Hl1 replacing

~. We would like to see how this rotating frame equilibrium relates

to the "normal" lattice equilibrium;o so So must be related to SL

(the inverse lattice temperature). Both the ADRF and spin lock

should ideally be isentropic processes. This implies that [50J:

which, for 6w = 0, becomes

(ADRF)

(5L)

(2.66b)

(2.66c)

We may now express Equation (2.64) as

(2.67)
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where, once again, ~ is merely replaced with HI! for SL. The

observable magnetization following an ideal 90° pulse on an

equilibrium density matrix will be:

, (2.68)

so the relative signal enhancement becomes

or, using Eq. (2.65)

(2.69)

(2.70)

This equation indicates the kind of enhancements we might obtain

assuming the equilibration between the two systems is 100% efficient.

The only parameter in Equation (2.70) at the disposal of the experimentor

for adjustment is n; maximizing the enhancement with respect to n

yields:

n =max
(e:)-1/2 (2.71)

at which point

(2,72)



This corresponds to equalizing the heat capacities of the I and

S spins by increasing the S spin r.f. field (because E is almost

always less than one). Unfortunately, this tends to violate the

matching of energy splittings in the rotating frame, resulting in an

inefficient energy transfer which depends upon spectral densities

away from zero. I should note here that this process is not limited

to a single contact, but may be repeated many times (until the

rotating frame proton spin temperature becomes excessive), and the

signals added to give an overall enhancement, for n contacts, of

(n=l) [54]:

76

~ YI n- = - (1 - E)
MO YS

2.4.2 Rotating Frame Spin Dynamics

(2.73)

Obviously, this experiment will yield a large signal enhancement

so long as adequate thermal contact exists between the two systems.

Assuming the absence of spin-lattice couplings, the spin temperatures

of the I and S reservoirs will follow a set of coupled equations of

the form [56]:

dSS (SS-SI)
(2.74a)-- =-dt TIS ..

dS I 2 (BI-SS)
(2.74b)-- =- Endt TIS

•
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where En , the ratio of S to I spin heat capacities, takes into

acco~nt the fact that the spin temperatures will only change at the

same rate if the heat capacities of the two reservoirs are equal.

These equations have the solution:
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(2.75a)

2
-(l+e:n ) t/T

1Se (2.75b)

where SF and So are defined in Eq. (2.64). Since the observable

magnetization _ is linearly related t~ the inverse temperature S,

Eqs.- (2.75) predict an exponential growth of the magnetieation during

the mixing period. That this is indeed observed experimentally is

shown in Figure 11.

Unfortunately, we-cannot always neglect rotating frame spin~

lattice couplings, and I must take a little time now for a brief

examination of these. For the purposes of this discussion, we may

use the same arguments presented in section 2.3.1 to describe

laboratory frame spin-lattice interactions (this is a "weak collision"

argument, which is not always valid in the rotating frame 166J),

First we define the phenomenological relaxation times TIP and TID

through the equation:

elMx
-- =-dt

M -Mx 0
Tlx

x = P or D (2.76)

where p refers to relaxation along the r.f. field HI and D refers
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Figure ll. The heteronuclear cross-relaxation of NH4Cl (20°C) and

N(Bu)4Br (-60°C) for spin lock (SL) and ADRF experiments. The points

for N(Bu)4Br represent echo amplitudes, while those for NH4C1 represent

amplitudes of frequency domain spectra. The lines through the points

represent the best exponential fits to the data, and yield the

following cross-relaxation times (Trs): NH4Cl ADRF = 4.1 msec,

NH4C1 SL = 2.1 msec, N(Bu)4Br SL = 1.1 msec, N(Bu)4Br ADRF =

8.5 msec.

•
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to relaxation along the local field HL due to fluctuating magnetic

dipoles, an equation analogous to Eqs. (2.46) may be derived. However,

we are in the rotating frame, where HI is that "static" field, and

the dipolar interaction (Eq. (1.43» ttakes on a time dependence at

Wo and 2w
O

• These considerations yield [66,691:

1
TIP = klJ(WO) + k2J(2wO) + k3J(2wl ) (2.77)

k k d k f f 4h2 Anwhere l' 2 an 3 are constants containing a actor 0 y •

analogous equation could also be derived for relaxation of a quadrupolar

nucleus due to fluctuating field gradients, but suffice it to say

that Tl 's owing toquadrupolar interactions could be much shorter
P 2

(because(~)2 is possibly much laI;ger than y 4h 2) • Similar arguments

will apply to TID. Because WI will almost always be much smaller

than wo' Tlx will be sensitive to slow motions. The effect of

Tlx is, obviously, a "heat leak" for both the I and S spins which

will compete with cross-relaxation for magnetization. The inclusion

of this spin-lattice relaxation modifies Eq. (2.74) to:

dBS (Bs-B I ) (Bs-BL)
-- =-dt TIS TIP

dBI
2 (BI-BL)En (BI-B s)

-- =-dt TIS TIX

(2.78a)

(2.78b)

where x = P or D (the S spins have only the possibility of relaxation

along their r.f. field). Equations (2.78) may be solved to yield
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a very complicated expression which I will not reproduce here, but

may be found in Appendix B of [59]. I have always tried to neglect

TIX effects; if we are lucky, TIX will be orders of magnitude longer

than TIS. However, this type of relaxation is an excellent indication

of slow motional effects, and also the most common reason for failure

of a cross-polarization experiment. I will defer any further

discussion of this phenomenon· until the next chapter.

Returning to Eqs. (2.75), we notice that the all important

parameter here is the cross~relaxation time TIS' whose derivation

has been the subject of several studies [56,57]. Because of the

importance of this parameter, I will devote considerable space to

its discussion. An expression for TIS may be derived using the

master equation for the rate of change of the density matrix in the

presence of a perturbing coupling [47J as [57]:

-1Tr [XS]

(2.79)

where XIS is the perturbing coupling (defined in Eq. (1.48», and

XI and Xs are the rotating frame Hamiltonians of the I and S spins

respectively (here, XI will generally contain both r.f. and homo

nuclear dipole terms). In the case of on resonance irradiation,

Eq. (2.79) may be explicitly evaluated, and reduced to the following

[59]:



(2.80a)
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for the S1 case, and

(2.80b)

..
for the ADRF case. In these expressions', W • and ware th.e rotating

e;L es

frame effective fields of the I and S spins respectively, and use has

been made of the relationship between rotating and laboratory frame

homonuclear interactions;

(2.8il

where e = atan(wII/~wI)' M2IS is the dipolar second moment of the

S spins due to' the I spins, and is defined

(2.82)

The spectral density Jp(w) is defined

(2.83)

where C (t) is the autocorrelation function of the I spins due to
p

homonuclear flip-flop processes; and may be expressed as 168]:

C (t) =
p

where
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~IS(t) represents the heteronuclear Hamiltonian which has become

time dependent owing to dipolar flip-flops. Evaluation of the traces

(over the I spins) yields

(2.84)

where, for ADRF p=z, m=l; while for SL p=x, m=-1/2. It is not often

convenient to evaluate Eq. (2.84), so it is commonly replaced with a

simple analytic function such as a lorentzian or gaussian. I feel

compelled here to point out that this "random" flip ...flop process may

be reversed [70], leading to a seemingly forbidden growth of the

correlation from zero; this is in sharp contrast to the correlatibn

of a thermally fluctuating dipole (for which there is no known reversal

mechanism).

We are now in a position to make some rather general statements

-1
regarding the cross~relaxation rate TIS' Note that Eqs. (2.80)

consist of two terms: a coupling term which registers the coupling

between the I and S spins in the rotating frame, and a spectral

density function whose purpose is similar to that of section 2.3.1.

Neglecting spin-lattice relaxation, the cross-relaxation rate will

be large so long as the coupling between the two spin species is

strong, and the spectral density samples frequencies near zero.

For the spin lock experiment, the I and S spin effective fields may

always be adjusted so that (somewhere in the spectrum) the spectral

density attains its maximum value. For the ADRF state, the homo-

nuclear flip-flops are ineffective at modulating ~IS in a coherent

•manner, hence the spectral density is sampled at the S spin effective
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field; and this may be reduced to zero only with disasterous results

(i.e., n in Eq. (2.70) becomes zero, and the enhancement vanishes).

So, in general, the SL cross-relaxation rate will be larger than

that due to the ADRF process. Even so, the ADRF experiment is often

preferable because nis usually large (leading to a large equilibrium

magnetization), and only one r.f. field is required during the mixing

period.

142.4.3 N Cross-Polarization

Prior to my arrival on the scene, two limiting cases applicable

14 Lto N-~ cross-polarization had been treated in the literature.

When the r.f. field is very much larger than WQ, we may ignore the

14latter, and N behaves very much like a spin 1/2 nucleus. When the

r.f. field is much smaller than W
Q

, we find ourselves in the situation

of double quantum cross-polarization [59,60J. The much more common

intermediate wl~~Q situation had never been investigated. Further,

a quadrupolar broadened powder pattern had not been cross-polarized

(although, an indirect detection dynamic polarization experiment had

been achieved [61]). Because of the tremendous advantages of this

experiment, and because it is not always possible to find oneself in

a purely single or purely double quantum regime, I took it upon

myself to investigate this intermediate process. The results are

not at all disappointing.

Considering the nature of powder patterns (section 1.3) it is

not in the least bit surprising to realize the existence of problems

inherent in their cross-polarization. The powder pattern is

orientationally inhomogeneous, and so are the homo and heteronuclear

dipolar interactions, which are ever so important in the

..



cross-relaxation.

powder pattern.

-1
This results in a TIS which varies across the

If it were possible to carry out the contact for
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infinite time, this would make no difference. For a realistic

experiment however, powder pattern distortion is the likely result.

This distortion has been previously observed for the cross-polarization

of a chemical shift powder pattern [54], and has been attributed to

the orientation dependence of M2IS • In principle, the correlation

function may also possess an orientation dependence, and this too

has indeed been observed [40,57,58J. These orientation dependencies

may be theoretically unravelled only in fairly simple spin systems

for which detailed structural data are available. In my formulation

of this problem I choose, as a first approximation, to ignore the

orientation dependence of M2IS . and J(w). All that is left is the

orientation dependence of 14 frame effective field(s)the N rotating

which enter into Eqs. (2.70) and (2.80). Justification for this

simple approach is provided by its sufficiency in explaining our

results.

2.~.4 Rotating Frame Effective Fields

Derivation of the rotating frame effective field(s) for a spin

one nucleus is fairly easily accomplished starting with Eq. (1.36):

Generally, I will be interested in the case where ~w is small, but

for now I include it in order to obtain an estimate for when it

may be neglected. Consider:

•



W
~ = -2~w S 1-3 _ 2w Sx2- 3 + w

Q
S 1-2 _ ~ (S l-3+S 2-3)

x IS z 3 z z

(2.85)

1-2and consolidate the first two terms via a tilt about S of 2¢,
y

where ¢ = atan(~w/wlS)' The last term emerges from this transforma-

tion unscathed, and we find

W
_ ~(S 1-3 + S 2-3)

3 z . z

86

..

where

W
_ ~ (S 1-3 + S 2-3)

3 z z (2.86)

(2.87)

It is necessary at this point to neglect the term in Eq. (2.82)

1-2corresponding to S , because its inclusion results in ax

Hamiltonian which cannot be diagonalized by simple tilts. The

coefficient of this term

(2.88)



will be small only if ~w « wls ' so for the present, 1 will assume

Eq. (2.88) vanishes entirely and 1 have
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if = - 2wez (2.89)

where wez - W18 (1 will return to the case where wez ~ w18 later).

Equation (2.89) may now be put in diagonal form via a tilt of -8

2-3about 8y ,where 8 = atan(2w
l

lwQ) , to yield an expression exactly

like Eq. (2.12)

Wif = - W 8 2-3 + ~ (8 1-2+8 ~-3)
e z 3 z z

2-3The effective field along 8 is defined by Eq. (2.14) as
z

(2.90a)

Taking advantage of the linear dependence of the z operators (Eq.

~.l)), Eq. (2.90a) may be rearranged to yield two degenerate

expressions:

and

w+w 2w w+w
~ = (e Q) 8 1-2 + (::Q + (e Q))(8 1-3+8 2-3)

2 z 3 2 z z

•

, (2. 90b)

(2.90c)



Figure 12. The rotating frame energy levels of a spin one nucleus

experiencing r.f. irradiation as a function of its first order

quadrupo1ar interaction (WQ).
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The eigenvalues of this Hamiltonian are plotted in Figure 12 as

a function of wQ• The eigenstates x, y, and z are defined:

/2,Ix> = 2 ( +1>-1-1»

12 8 8 I 12 8 IIy> = 2 cos 2 1+1> - sin 2 0> + 2 cos 2 -1>

and

90

Iz>
12 8 8 fl 8= "2 sin 2 1+1> + cos 2 10> + 2 sin 2 1...1>

The three rotating frame energy splittings (effective fields) are:

W (2-3)
e

W -w
e Q (1-3)

2

We+WQand 2 - (1-2)

Naively, one might think that, during the mixing period, magnetization

grows along the three diagonal operators in the tilted frame in

accordance with their effective fields. That this is not the case

will be shown in the next section.

2.4.5 Hartmann-Hahn Conditions

Modulation of the heteronuclear dipolar interaction by the

rotating frame I and S spin Hamiltonians will induce time dependent

flip-flop terms in the rotating frame whose effect will be rapidly

averaged (i.e., decoupled) unless the I and S spin parts of XIS are

modulated at the same frequency. This, we must remember, is the

basis for the Hartmann-Hahn condition [63]. At the Hartmann-Hahn

match, time dependent flip-flop terms become time independent



(like term B of Eq. (1.44)), and the cross-relaxation process is

completely analogous to a group of homonuclei coming to "equilibrium"

via their mutual dipolar coupling.

The starting point must, of course, be the heteronuclear

Hamiltonian (in terms of fictitious spin 1/2 operators):

91

(2.91)

where bi is defined in Eq. (2.33). Straightforward tr;nsformfftio~_~f

+ 1 "2" I 1"2 S
this i2!~ the tilted frame via U ~IS U, where U = eYe Y.
-18S

e Y ,yields

~ ~ (8 1-3 sin ~ S 1-2)IS = 2 ~bi I
X1

cos "2 Sx + 2 x
i

(2.92)

where it is implic1ty assumed that the I spin irradiation is applied

on resonance. We now wish to find the effect of the Hamiltonian:

(2.93)

.on ;T~s. The I spin term in Eq. (2.92) will become

ilifte

= I coswIt - I sinwIt
xi Yi

while the S spin term will become

•

(2.94)



_i~Tt ( a S 1-3 + . a S 1-2) i~t= e cos 2 x S1n 2 x e (2.95)
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After performing the operator algebra and a bit more manipulation,

Eq. (2.95) becomes:

~~(t)
a W -wQ 1-3= cos 2 (cos( e2 )t Sx

a we~O 1 2 W +WQ 1 2
+ sin 2 (cos( 2 ,)t Sx - + sine e2 )t Sy - ) (2.96)

in which it is clear, from Eqs. (2.90), that only the fields
W -w W +w

- ( e
2

Q) along Szl-3 and e
2

Q along Szl~2 are effective in

cross~relaxation. The Hartmann-Hahn matching conditions, obtained

by multiplying Eq. (2.96) by Eq. (2.94) are

W -w
1. w

lI = e Q
2

2. W =
We+WQ

II 2

When wQ = 0, both reduce

is much larger than wlS'

(2.97a)

(2.97b)

to wlI = wlS (as they must), and when wQ
2

condition 1 becomes wlI = wlS/wQ (the

double quantum matching condition' [59]). Conditions 1 and 2 are

plotted as a function of wQ in Figure 13.

Through Eqs. (2.76), (2.90), (2.92), and (2.96), we can calculate

the relaxation rates in analogy with Eqs. (2.80). Relaxation due to

1-3condition 1 occurs along S in the tilted frame, and will have az



Figure 13. Hartmann-Hahn matching conditions 1 and 2 as a function

of wQ ( Eq. (2.97».
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relaxation rate, for the ADRF case:

w ~

T-l 2 e 1-3 (e Q)
IS = cos 2 M2IS J z 2 (2.98)

1-2while that due to condition 2 occurs along S ,and is characterized
z

by

It is to be noted that the second moments

~ I S 1-3, S·1-3]2Tr[2 LJbi1-3 i xi x z
M

2IS
= -----.;;;'-----"~--=--::-----

Tr[S 1-3]2
:z

and

(2.99)

1-2
M2IS =

will be equal. Therefore, the ratio of the two relaxation rates

will be:

=
2 e

cos "2
2 e

sin 
2

w -w
J (e Q)

z 2
w+w

J (e Q)
z 2

w+w
= ( e . Q)

w -w
e Q

w-w
J (e Q)

z 2
w+w

J (e Q)
z 2

(2.100)
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2 2Incidentally, the cos and sin factors are commonly referred to

as efficiency factors [63]. Since the two effective fields are

opposite in sign, and because the relaxation rates become equal

when WIS » WQ, full overlap of conditions 1 and 2 results in a

2-3polarization along S in the tilted frame which is charac~erizedz

by

W
-1 2-3 (_e)

TIS = M2IS J z 2 (2.101)

Whenever WQ is small relative to WIS ' but not extremely small, the

two matching conditions will overlap partially. In this situation,

my preceeding treatment is not quite correct, since it corresponds

to a neglect of cross terms (between the 1-2 and 1-3 transitions)

which become important in this region. These ~ross terms will be

multiplied by efficiency factors of sine, and will have a tendency

to bolster the cross-relaxation rate (i.e., make it larger than we

might expect) in this region. This situation of overlap is very

difficult to deal with, and I shall not consider it in detail.

2.4.6 Polarizations Produced

The rotating frame cross-polarization experiment yields a

coherence in the x-y frame which mayor may not be observed; depending

upon which operator has been polarized under what conditions. In

order to determine which operator(s) in the laboratory frame result

from this rotating frame experience, it is necessary to return to

the laboratory frame. 1-3 observable coefficient SS returns as an
z x

of sine = 2w
lS

/w
e

(which will appear as an fid immediately following



Table 2.1

Polarizations Resulting from Cross~Po1arization Process

Operator Polarized (tilted frame)

Laboratory
2-3 1-3 S 1~2Frame S S

Polarization z z z

cose 3 2 e 3 2 e
Z.Q. --2- - sin - - cos 22 2 2

97

D.Q.

S.Q.

cose
--2-

sine

1 2 e- - (1 + cos -)2 2

sine

1 2 e- - (1 + sin -)2 2

- sine

e
2w1S

= atan (-w-)
Q

1 S 2-S (S+l»Z.Q. = - (32 z

D Q = 1:. (S 2-S 2)•• 2 x y

S.Q. = Sx
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1-2the mixing period), while S produces an observable coefficientz
2-3of -sine. In the case of full overlap, S generates only Sz x

because e must be nearly 90°. The remainder of the polarization
3S 2 _ S{S+l)

in each case lies in [ z 2 ] (zero quantum or quadrupolar
S 2_S 2

order), and x 2 y (double quantum order). The proportion of

double and zero quantum coherence is dependent upon the matching

condition. Condition 1 leads to a preponderance of double quantum

order, and condition 2 to zero quantum order; when wQ is much larger

than wlS ' condition 1 becomes a purely double quantum matching

condition and condition 2 becomes purely zero quantum. Because a

purely zero quantum second moment ~anishes (the efficiency factor

in Eq. (2.99) becomes zero), the situation of zero quantum cross-

polarization will never exist. By contrast, it is possible to obtain

a considerable double quantum cross~polarization; the result of

which is not directly observable, but may be rendered observable,

most efficiently, via a h~rd (WIS » wQl 90° pulse 45° out of phase

with the mixing field.

2.4.7 Cross-Polarized Echoes

The cross-polarized fid, as explained in section 2.1, will generally

not be observable due to instrumental dead time. The solution

to this problem, once again, is to use a quadrupolar echo. In order

that the observable x magnetization may be echoed, it is only

necessary to apply an x pulse (Pr, in general, a pulse in phase with

the mixing field). The frequency response of the echo will be

distorted due to the finite length of the echo pulse, and a distortion

function may be derived as:



W t
D( ) = sin2e sJ.'n2 ~wl,wQ 2

This function is exactly the same as that for the second pulse

of a two pulse sequence (see section 2.1.1).

99

(2.102)

Of cours~, we will always obtain some double quantum coherence,

and this if of little value unless it too may be directly observed.
8 2-8 2

In terms of fictitious spin 1/2 operators, x y = 8 1-3 (see2 x

appendix B), and, in the "on resonance" reference frame, this becomes

1-38 . Now, we wish to investigate the effect upon this operator of
x

a Hamiltonian:

2w
~ 2-3 1-2 ~-n (8 1-2_

8
2-3

<11. = -2w (8 cos¢ + 8 sinA» + ~ )
1 x Y If' 3 z z '

(2.103)

where ¢ is the relative phase of the r.f. In order that this equation

might become somewhat more manageable, we take note of the relation

[2] :

1-3
-2i¢ 8x 2-3

e 8
x

2i¢ 8 1-3
xe = cos¢ 8 2-3 + sin¢ 8 1~2

x y
(2.l04a)

2iep 8 1-3
xe 1-2

8y

-2i¢ 8 1-3
x

e = cos¢ 8 2-3 + sin¢ 8 1-2 .(2.l04b)
x y

Thus, in place of Eq. (2.99), we may use:

2 3 2WQ 1-2 2 3
j( = -2w 8 - + (8 ~ 8 -)

1 x 3 z z (2.105)

so long as we perform the following transformation prior to evolution



p' (0) += u p(O) u

100

(2.106)

and, following evolution

(2.107)
J

2i4> S 1-3
where U = e x This allows us to consider the effect of pulses

of arbitrary phase. Initially, consider the effect of a hard x pulse

on the double quantum coherence:

2iwl
tSx

2- 3 2i S 2-3
1-3 - wIt x

e S e
z

iSS 2-3 -iSS 2-3
x S 1-3 e x= e z

= S 1-3
z .

. 2 S S 2-3 + sinS S 2-3- s~n - ----2 z 2 y
(2.108)

where this evolution must be (and, has been) calculated using the

rotation matrices of Table B.II. Similarly, the effect of a hard y

pulse may be calculated

2iw
l

tS 1-2 -2iw tS 1-2
e y S 1-3 ely

z =

S 1-3 _ sin2 ~ S 1-2 + sinS S 1-2
z 2 z 2 x

(2.109)

In each expression (Eq. (2.108) and (2.109», only the final operator

is observable, corresponding to antiphase single quantum coherence. A

maximum of 1/2 of the double quantum coherence is transferred to this

operator, and this occurs when S • n/2, or for a 45° pulse. Application
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of a second pulse, in phase with the first, leads to the formation of

an antiphase quadrupolar echo (see Figure 14). As mentioned in the

last section, observation of the double quantum coherence is more

efficiently accomplished via a pulse of 45 0 phase. We apply the

transformation of Eq. (2.106):

2iepS 1-3
xe 1-3

S
x

-2iepS 1-3
xe = S 1-3 cos2ep + S 1-3 sin2ep, (2.110)

z y

and note in passing that the phase shift ep takes on twice its value in

the double quantum reference frame. For a TI/4 phase shift, Eq. (2.110)

i B S 1-2sn-
2 x

B 1-3
cos "2 Sy=

directly a~ply (2.105) (wI

2-3-2iwl tSx
e

1-3becomes S ., and we mayy

2-3
2iw.tS 1 3

1. X -e Sy

(2.111)

and we see that, for a 90 0 pulse (B=TI), all of the double quantum

coherence is transferred to antiphase single quantum coherence as

1-2S • The application of Eq. (2.106) yields
x

-2iepS 1-3 2iepS 1-3
e x S 1-2 e x = 12 (S l-2_S 2-3)

x 2 x y
(2. 112)

12"2 of the double quantum coherence appears in each phase dEtector

channel. In order that all of this coherence may be echoed, a 45 0

12phase hard pulse should be applied; "2 of the echo will now appear in

each channel. The entire echo will appear in one channel if a 45 0

phase mixing field is

appears in y channel;

used, followed by a 90 0 -90 0 echo sequence (echox y

see Figure 14), or a 90 0 -90 0 echo sequence (echo
y x
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Figure 14. The calculated effect of various echo pulse sequences on a

density matrix which would likely result from cross-polarization. The

calculation assumed a 14N r.f. mixing field of 20 kHz, and an ADRF

prcton state (yHL/2TI = 4 kHz, gaussian correlation function, Tc =

48 ~sec).

•
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appears in x channel). In all of my experiments I have employed a

45 0 phase mixing field, followed by a 90 0 -90 0 sequence. Of course,x y

my pulses do have a finite length, so an echo sequence distortion

factor must be obtained. From Eq. (2.110), we have a coefficient

1-3of S representing the double quantum coherence following the 45 0

y

mixing period. After a single pulse on such a density matrix, it is

found that:

pet)
wet wQt W t wQt 1 3

= (cos -2- cos -2- + cose sin ~ sin -2-)Sy ...

W t wQt W t wQt 1-3
+ (cose sin -.!.....2 cos -2- .. cos _e_ sin --) S2 2 x

wet wQt 1-2
- sine sin -- sin -- S2 2 y

(2.113)

1-3 1-3The operators Sand S commute with the quadrupolar Hamiltonian,
y x

and their evolution will not contribute to the echo. The other two

operators will contribute to the echo, and they have taken on a form

analogous to that following an x pulse on an equilibrium density matrix.

Therefore, the double quantum echo distortion factor is the same as

that derived in section 2.1 (i.e., Eq. (2.19»:

2.4.8 Observed Echo Signals

In order that the usefulness of the cross-polarization scheme may
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be tested experimentally, ammonium sulfate was chosen as a model

compound. Its room temperature crystal structure gives rise to two

inequivalent nitrogen nuclear sites with the following quadrupole

couplings [65]

site I:

site II:

e
2

qQ/h c 154.55 kHz, n = 0.684

2e qQ/h = 115.71 kHz, n = 0.749

A standard proton decoupled quadrupolar echo spectrum is shown in

Figure 15. This compound is convenient for study due to its long

proton TIP (> 80 msec) and TID (> 1 sec) at room temperature. The

general method of sample preparation and experimental set~up will be

given in the next chapter.

Figure 16 shows the two experiments used to observe the density

matrix coherences produced during the mixing period. These are

merely the cross-polarized echo sequences discussed in the last section.

In the single quantum experiment, a single pulse yields a single echo.

This would also be the case for the double quantum experiment, if a

purely double quantum density matrix were present following the mixing

period. In reality, the density matrix contains double, single, and

zero quantum. The simultaneous presence of double and zero quantum

coherences complicates the pulse response of the system somewhat, but

it may be easily shown that the effect of a 90° pulse of 45° phase is

to rotate only double quantum into single quantum; zero quantum is

partially rotated into double quantum, but will not contribute to any

echoes. By contrast, a 45° pulse (Blong x or y) has the effect of

rotating a mixture of zero and double quantum into single quantum (the



Figure 15. A room temperature proton decoupled quadrupolar echo

spectrum of ammonium sulfate. This signal is the result of 3000

acquisitions using 3.7 ~sec 90 0 pulses and an 80 ~sec interpulse

delay. The dotted line represents the rigid lattice spectrum

calculated on the basis of the quadrupole coupling parameters given

in section 2.4.8, and multiplied by the echo sequence distortion

function (Eq. (2.19)).
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Figure 16. A schematic representation of the cross~polarization

108

-

~

quadrupolar echo sequences, In our experiments, all of the pulses

are of 90° and ¢ in the double quantum experiment is 45°,
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complicated effect of this is responsible for the difference between

the two 45° pulse sequences in Figure 14), With these considerations

in mind, application of the double quantum echo sequence is expected

to result in three echoes. The first occurs L
l

following the second

pulse and is the result of observable x magnetization being stored

along z during L2 due to the 45° out of phase pulse at Ll ' The next

echo is expected to occur at L2~Ll' and is the stimulated echo of

observable x magnetization (reduced by a factor of ~). The final echo

occurs at L2 and is due to magnetization created by the pulse at Ll:

double quantum coherence. In Figure 17 we observe 3 echoes, but they

occur at L2-Ll' L2' and L2+Tl , The ~cho predicted to occur at Ll has

been subtracted away by the phase cycling technique used in order to

minimize transient instrument response caused by the final echo pulse

(i.e., the initial pulse of the sequence is alternately phase shifted

by 180°, while'the resulting echoes are alternately added and subtracted--

see section 2.1.1). The echo at L2 manifests a derivative character,

clearly showing it as the double quantum echo. We observe an unpredicted

("forbidden") echo at L2+Tl , In order that we might be enlightened

on this matter, a computer simulation was performed in which an initial

density matrix is populated in accordance with Eq. (2,75a) along the

two matching conditions, carried through an evolution corresponding to

our experimental pulse sequence, and integrated over a weighted

distribution of quadrupolar frequencies (i.e., a powder pattern) to

give a time domain response signal (the simulating program, DQTP, is

discussed a bit later and presented in Appendix C), The result of

the calculation, in Figure 18, shows that the echo is indeed predicted

theoretically. Forbidden echoes have been mentioned in previous

..

..
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Figure 17. The experimental result of the double quantum SL experiment

on ammonium sulfate. A 43 kHz 14N r.f. field, 24 kHz IH r.f. field

and 3.5 ~sec 90 0 pulses were used to elicit this response. The first

delay Tl was 80 ~sec and the second delay T2 was 140 ~sec. The

phases were cycled as described in section 2.4.8 to eliminate the

transient response of the final echo pulse •

•
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Figure 18. Calculated response to the experimental parameters of

Figure 17; a gaussian spectral density function with a correlation

time of 65 ~sec was used to represent the dipolar flip-flops of the

protons.
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literature [31], and are generally thought to result from pulse

imperfections. Because of the time dependence of this third echo,

it seemed likely to be a product of first pulse imperfections. In

order to examine this hypothesis, a series of calculations were

carried out (via DQTP) in which the amplitude of the first pulse was

increased. The result in Figure 19 indicates that a "perfect" pulse

will indeed produce no third echo. Although this echo manifests a

derivative character, its time dependence indicates that it must

result from single quantum evolution. This statement is further

fortified by the observation that this echo and the stimulated

single quantum echo bear a strong amplitude relationship to one

another (for various mixing field amplitudes),

In the double quantum experiment, it is generally desirable to

eliminate all but the double quantum echo. This can be satisfactorally

approached in the following manner. The echo at T
l

follows the

phase of the final pulse (so long as the mixing field and first pulse

phase are held constant), and is easily subtracted out as mentioned

previously; this echo may easily be moved away from the double quantum

echo by making Tl short, and so presents no problems in any case. The

stimulated echo can be suppressed, and the echo at T2+Tl made to cancel

by the following sequence: [(mixing field phase, first pulse phase,

second pulse phase)] (45,0,90) add, (45,180,90) subtract. The

stimulated echo does not occur for the same reason that two pulses

of the same phase do not produce a quadrupolar echo from a system

initially characterized by a Zeeman polarization, The "forbidden"

echo at T
l
+T2 is subtracted away as it follows the phase of the mixing

field. The echo at T
l

depends upon the phase of both the mixing

field and the second pulse, and so does not cancel in this sequence.



Figure 19. Calculated effect of varying the amplitude of the first

90° pulse on the size of the "forbidden" third echo in the double

quantum echo experiment. The single quantum echo which preceeds

the double quantum echo does not appear on this plot since it forms

in the other phase detector channel.
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Figure 20. The experimental result of the double quantum SL

experiment using the same parameters as Figure 17, but here the

phases were cycled (45,0,90) add, (45,180,90) subtract {the notation

is defined: (mixing field phase, first pulse phase, second pulse

phase)]
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Figure 21. Experimental single quantum (S.Q.) and double quantum

(D.Q.) echoes resulting from the experimental parameters of Figure

17.
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The double quantum echo will appear entirely in the quadrature

channel (as noted previously), and 100% of this polarization is

echoed by this sequence (in the limit that we use ideal hard pulses).

Also, all pulses and mixing periods may be cycled through 90 0 phase

increments in order to equaliz-e the two channels in quadrature phase

operation (i.e., QPD in the Nicolet software package NTCFTB). The

successful result is presented in Figure 20, and compared with the

single quantum echo acquired under the same mixing conditions in

Figure 21.

2.4.9 Observed Frequency Response of the Cross-Polarization

Upon fourier transformation of tpe second half of the aforementioned

echoes, we will obtain a frequency domain spectrum which will always

consist of two lobes, except for the single quantum situation wlI=wlS '

where the center of the spectrum is preferentially enhanced. The

width of the lobes may be dependent upon several factors: which

condition is matched (or, which operator is populated in the tilted

frame), the single or double quantum nature of the polarization produced,

and the width of the spectral density function.

In Figure 22 is shown single quantum frequency domain spectra as a

function of proton r.f. field amplitude using the spin lock experiment.

Solving the matching conditions for wQ' we find that, for fixed wlI

and wlS we should have rotating frame effective field equality (~.e,

a Hartmann~Hahn match) between the I and S spins at

(2.ll4a)

for condition 1, and



Figure 22. Frequency domain response of the single quantum SL

experiment as a function of proton r.f. field amplitude for ammonium

sulfate. The sequence used a l4N r.f. field amplitude of 33 kHz,

2 msec mixing time, a 3.5 ~sec 90 0 pulse, and a T of 100 ~sec.
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(2.ll4b)

for condition 2. It is observed that the separation of the two lobes

decreases with increasing WlI in accordance with Eq. (2.ll4a). As w
lI

is increases above wlS ' the lobes once more separate and follow Eq.

(2.ll4b). The reason for the rapid SiN degradation was alluded to

in section 2.4.6. The relaxation rate for this transition (~q. (2.99»

contains a sin2 ~ efficiency factor which decreases precipitously toward

zero with increasing wQ. Therefore matching condition 2 is of no practical

interest in the enhancement of large quadrupolar splittings.

An important difference between "the two matching conditions may

be readily seen in Figure 13. For large wQ' condition 1 has a very

small negative slope (i.e., it becomes nearly independent of wQ),

while condition 2 has a very large positive slope. This causes spectra

due to relaxation according to condition 1 to tail off toward large wQ'

and that due to condition 2 to have a sharp cutoff at large wQ• The

best advantage may be taken of condition 1 in the ADRF experiment, where

the effect is one of broadening the cross-polarization greatly (we can

reduce wlS to move into a region where the slope of the matching condition

is smaller). It should be mentioned that the observed difference between

SL and ADRF experiments (see Figure 23) could be due to a broader spectral

density for the ADRF. Indeed, in simulations of the echoes performed

with DQTP, the SL experiments fit to a dipolar correlation time of about

67 ~sec, while the ADRF echo seems to fit best to about 50 ~sec. This

is probably not a significant difference, especially in light of the

simple treatment which the simulation makes of the cross~polarization



Figur~ 23. 5L and ADRF double quantum frequency domain spectra of

ammonium sulfate. In each case a 2 msec mixing period was followed

by a D.Q. echo sequence using 3.5 usec 90° pulses, a T
l

of 80 usec,

and a T2 ~f 140 usec. For the 5L experiment the l4N r.f. field

amplitude was 18.5 kHz and that of the protons was 23 kHz; while for

the ADRF experiment the l4N r.f. field amplitude was 18.5 kHz.
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14 1
process. In every N- H cross-polarization experiment I have

performed, the ADRF gives the broadest matching.

Figure 24 shows the resulting fourier transformation of single

and double quantum echoes. As expected, the double quantum echo has

greater SIN overall, and much greater response in the wings of the

spectrum. Of course, there is also a corresondingly lesser response

near the center (at frequencies less than 2wlS)' The full width of

the cross-polarization is best realized by observing the double quantum

response. Of course, as I explained in section 2.4.7, the distortion

factor for the double quantum echo will be smaller (i.e., more distortion)

than for the single quantum echo; the. former generally being the latter

raised to the three halves power.

Because of the dependence of the equilibrium spin temperature on

the S spin effective field (see Eqs, (2,64), (2.70), and C2.75)}, the

spectrum will always suffer some distortion, even for infinitely long

mixing times. The result of this for matching condition 1 is that

the center of the spectrum is preferentially enhanced even though TIS

in the wings may be shorter. This fact is demonstrated in Figure 25.

2.4.10 Some Quantitative Results from Simulations

I will now attempt to answer the question of whether anything

quantitative may be said as a result of one hundred cpu hours of

cross-polarized echo simulations. In Figure 26 I show a typical

series of double quantum echoes along with the computer generated

(DQTP) fit to each. All three echoes are reasonably well reproduced

14with only the N r.f. mixing field varying from one simulation to the

next (the same parameter which is experimentally varied). Assuming an



Figure 24. Frequency domain response of single (S.Q.) and double

(D.Q.) quantum echoes for ammonium sulfate. Proton order was

129

established via an ADRF. 14
The N r.f. field amplitude was 8 kHz,

mixing time was 2 msec, and 3.5 ~sec 90 0 pulses were used. For

the S.Q. case, Twas 140 ~sec, while for the D.Q. case Tl was 80 ~sec

and T2 was 140 ~sec. The spikes near the center of these spectra

represent the inner inflection points V for sites I and II; which
~~

occur at 18.3 kHz and 10.9 kHz respectively.
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Figure 25. The effect of the mixing time upon the double quantum

frequency domain spectrum of ammonium sulfate. The double quantum

ADRF experiment was used with an 8 kHz l4N r.f. field amplitude t

3.5 ~sec 90° pulses, a Tl of 80 ~sec and a T2 of 140 ~sec. The

comment in the caption of Figure 24 as to the origin of the spikes

near.the center of the lineshape applies here also.
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ADRF on the protons. there are four critical parameters to be set in the

calculation (see Eqs. (2.40) and (2.75)) the 14N r.f. field. the local

field of the protons (H
L
). the dipolar correlation time (and correlation

function). and the relative mixing time. As mentioned previously. I

ignore spin-lattice couplings TIP and TID' Of the critical parameters.

the r.f. field should be known from the experimental conditions. and

the calculation is fairly sensitive to this parameter. The local field

may be determined from the second moment of the proton resonance line

using [50]:

(2.115)

We may now employ Eq. (2.28) to relate the second moment to the fwhm.

and derive:

l::.wfwhmyH = --.,;~~

L 4.09
(2.116)

..

assuming a purely gaussian lineshape. The (NH4)2S04 proton resonance

line observed using the magic echo technique [67.70] fits fairly well

to a gaussian of fwhm 18.9 kHz (using the Nicolet NTCFTB subroutine

LF) at 20 o e. This implies a local field YHL/2TI of 4.6 kHz. The

calculation used the value 4 kHz. but the result is not extremely

sensitive to this parameter (4 and 4.6 kHz calculations are

indistinguishable). The dipolar spectral density is obviously a very

important consideration. and I have found that the data for both SL

and ADRF experiments cannot be fit using a lorentzian correlation

function (an exponential spectral density) for any set of parameters.

The results of the calculation seem to indicate a spectral density



Figure 26. Experimental (solid line) and calculated (dotted line)

double quantum echo responses to an ADRF cross-polarization for

various values of the l4N r.f. mixing field. The experimental echoes

were all the result of a 5 msec contact timet and this was represented

in the calculation by a relative mixing time (Eq. (2.119)) of 1,5.

The proton dipolar state was represented in the calculations by a

local field (YHL/2TI) of 4 kHz t and a gaussian correlation function of

correlation time 48 ~sec. The l4N rtf. field amplitudes, used both

experimentally and in the calculation t were: (a) 14.3 kHz t (b) 16.7

kHz. and (c) 22.7 kHz.
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which approaches zero much more rapidly (i.e., has a smaller fourth

moment), and a gaussian function gives a reasonable result. This

result is in disagreement with previous studies, which indicate a

lorentzian dipolar correlation function for the ADRF state f57,58,68].

I shall not dwell upon this further, since the aforementioned studies

were considerably more quantitative than this, but merely mention that

this is possibly the first observation of a non-lorentz ian ADRF correla~

tion function. As for the correlation time, it may be estimated using

the formula f68]:

1 M2I1
~=-9-K

c

(2.117)

where K is a constant depending upon the geometric arrangement of nuclei

in the lattice (also, note that Eq. (2.117) was derived under the

assumption of a'lorentzian correlation function, but will also be valid

for a gaussian since the first two terms in the Taylor expansion of

each are equal). The constant K is most commonly defined in terms of

lattice sums f40,58,68] as:

K = (2.118)

Assuming K is equal to one (which is not exactly reasonable), and

using the second moment derived from the proton linewidth, I obtain

a correlation time of 375 ~sec. The value used in the calculation is

a factor of seven lower than this, implying K ~ 0.2. This is not an

unreasonable value, but tedious lattice sums would need to be calculated

in order to verify it. The relative mixing time entered into the

•

•
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calculation represents a lumping together of several parameters from

Eqs. (2.75a) and (2.80b):

(2.119)

where the factor of T comes from the fourier transform of the gaussianc

correlation function:

C(T)

as

J(w)

(2.l20a)

(2.l20b)

Using a value of M2IS from Eq. (2.31) (which is applicable to NH4Ci,

and a very rough estimate for (NH4)2S04), a value of Tc equal to 50 ~sec;

and an experimental tmix of 5 msec; the relative mixing time turns out

to be equal to 1.0. The value which has found to best represent the

data is about 1.5. So, all of the parameters used in the calculated

fits are more or less justified. This lends some credence to the simple

treatment of rotating frame cross-relaxation laid out in the preceeding

sections.

2.4.11 Large Off~Resonance Effects

In section 2.4,4 I showed that the cross-polarization situation

will become extremely complicated when Aw is of the order of wlS and

wQ' The experimentally observed result of this is shown in Figure 27a.

As can be seen, if we irradiate one satellite line of a quadrupolar



Figure 27. Large off resonance effects in cross-polarization, (a)

Experimental result of the off resonance (w1S ~ ~w) cross-polarization

of a quadrupolar doublet for a particular orientation of a (NH4)2HP04

. 1 1 f i of the l4N f . i fi ld Ii ds~ng e crysta as a unct on r .• m~x ng e amp tu e.

14
The N resonances were saturated prior to the experiment, so the

signal amplitude in the absence of cross-polarization would be near

zero. (b) Calculated parameters corresponding to the situation in

14(a); Veff is the N energy splitting in the rotating frame, and the

efficiency factor is the square of the coefficient which multiplies

XIS in the diagonal reference frame (see section 2.4.11).
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split doublet under these conditions, its mate on the other side of

the spectrum is significantly enhanced over a broad range of l4N r.f.

field amplitudes. Initially, this seems to violate our common sense;

but, after calculating a few of the quantities involved in the cross~

relaxation (Figure 27b), our senses (~r, at least mine) are restored.

We see that the effective field for the on resonance 1~2 transition

varies rapidly with l4N r.f. amplitude, while that of the off resonance

2-3 transition varies much more slowly. The efficiency factors, which

result from the tilt of XIS into the diagonal frame, indicate that both

transitions will cross~relax, although the 1~2 transition is more

efficient. The overall result is the observed broad but inefficient

cross~polarizationof the off resonance transition, and the narrow,

fairly efficient cross~polarizationof the on resonance transition.

This situation, not commonly encountered experimentally, will be dealt

with no further~

2.4.12 Practical Considerations

I have used this direct detection cross-polarization technique to

great advantage in my studies of tetraalkylammonium salts. As I will

discuss in the next chapter, many of these compounds exhibit exceedingly

14long N Tl's, which the cross-polarization will alleviate so long as

the proton T
l

is much shorter (which, I find, is usually the case).

From the preceeding discussion, the relevant experimental considerations

for successful cross~polarization should be obvious. When attempting

to cross-polarize a fairly narrow powder pattern, it is most feasible

to match WlS=WlI ' with each being as large as possible. For powder

patterns of any breadth, one should decrease wlI below wlS ' and even

use ADRF if TID allows. In the latter case, most of the signal

•



appears in the double quantum echo and, upon fourier transformation,

yields a totally asymmetric spectrum. If necessary, this asymmetry

can be overcome via a magnitude calculation, or preferably integration

of the fid prior to fourier transformation. Unfortunately, TID is

almost always less than TIP (because the spectral density samples

lower frequencies in Eq. (2.77)), so ADRF is not always possible. In

cases where both TIP and TID are sufficiently long, it is best to view

the center of a broad line via a single quantum SL experiment with

wl1=wlS ' and the wings via a double quantum ADRF experiment.

Onward, into the fog of experimental results.
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Chapter 3:

14N Studies of Tetraa1ky1ammonium Compounds

Studies of NMR couplings in solids have yielded a wealth of

14information regarding their chemical structure. My study of N

14quadrupo1ar couplings is motivated by the increased use of the N

quadrupo1ar interaction as a probe of order in model membrane systems

[74-80]. The required efg parameters may be estimated from the

isotropic phase spin-lattice relaxation time T1 using [47]:

145

222
J:.. - 1 (e JlQ) (1 + n

3
)T

cT
l

- 8 11
(3.1)

if the correlation time for molecular reorientation is known, or from

the residual quadrupo1ar splitting in a partially ordered phase using

[107]:

2 n 2}+ Sll[sin B+ 3 (1 + cos B)] (3.2)

..
if the order parameters Sll and S22' and the angle between the

principle axis of the efg and the axis of reorientation Bare known •

Unfortunately, in order to use Eqs. (3.1) and (3.2), assumptions must

be made regarding the dynamics of the system, which is not always a

valid procedure (unless, of course, the dynamics are known from other

types of measurements).
2

Therefore, I have chosen to determine e qQ

and n via the measurement of the inflection point frequencies of
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a rigid powder (Eqs. (1.56». In order to determine whether I am

observing completely rigid lattice effects, the spectra are observed

at a number of different temperatures, any temperature dependent

effects being noted.

3.1 Experimental Procedures

All compounds were purchased from one of a variety of sources,

including Eastman Kodak, Sigma and Calbiochem. Tetraethylammonium

triiodide was prepared from an equimolar mixture of tetraethylammonium

iodide and iodine in methanol. An elemental analysis was performed

on the resulting rust colored crystals, and they were found to deviate

little from their expected composition. All compounds, with the

exception of phosphorylcholine chloride, were recrystallized from an

appropriate solvent; either methanol/diethyl ether, or isopropanol.

Ammonium compounds possess a marked propensity to attract water. Some,

such as choline chloride, are observed to become completely saturated

with atmospheric water in a time of the order of one minute. Therefore

all compounds, regardless of their hygroscopic nature, were dried in

-5a drying pistol in vacuo (3 x 10 atm) over P20
5

at 85°C for at least

12 hours piror to being sealed in 5 mm glass tubes in an argon dry

box. Dimyristoyl phosphatidylcholine samples were prepared in a variety

of ways prior to drying. The compound was either taken directly from

the manufacturers (Calbiochem) bottle, precipitated from chloroform

solution with diethyl ether [81], or prepared by slow evaporation of a

chloroform-methanol solution [81]. The samples were all analyzed by

TLC after drying and found to be of high purity. A powder x-ray

diffraction pattern of the sample precipitated from chloroform showed

the Bragg spacings to be similar to those which had been reported

•
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previously [81].

14
All N NMR spectra presented here were acquired at 19.507

(± 0.007) MHz using a spectrometer whose basic design features have

been described in detail [82], any modifications which I have made to

the spectrometer are described in appendix D. Software control of the

spectrometer is provided by the Nicolet Instrument Corp. program

NTCFTB through a Nicolet 1180 computer and 293 B programmable pulser.

The actual lineshapes have been obtained by fourier transformation

of the second half of the quadrupolar echo, a finite amount (200-2000 Hz)

of lorentzian linebroadening being applied prior to the ft. The NTCFTB

routine QPD was always employed in order to minimize the effect of

differing instrumental channel characteristics upon the observed

spectrum. Acquisition was triggered at least 10 ~sec prior to the

expected echo maximum, and the data were then left shifted prior to

fourier transformation. This procedure required that the echo be

sampled at several times its bandwidth in order that the echo maximum

not be missed. In this regard, the sampling was executed by a Nicolet

Explorer IIIa digital oscilloscope with a maximum data acquisition rate

of 50 nsec/point (most data was sampled every 0.5 to 2 ~sec). The

echo pulse amplitude was usually in the range of 60-75 kHz (with 1-1.5

kWatt of r.f. into the probe). The proton decoupling field strength

was almost always 50 kHz. The cross~polarization was carried out

according to the prescription of section 2.4, and favorable results

14
were almost always obtained. The r.f. field amplitudes (for both N

and ~) were computed by measuring the time required to invert the

magnetization (a 180 0 pulse), or by giving a train of 90 0 pulses and

looking for a null every two pulses. This measurement was always
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performed on a solid compound with a fairly narrow resonance, such as

NH4ct. The r.f. field amplitude thus obtained was correlated with an

attenuator setting in the transmitter amplifier train, and this was

checked for drift every few experiments. I would like to note in

passing that the peak voltage amplitude entering the probe in volts

was nearly always equal to the r.f. field amplitude in gauss (see also

Appendix D).

Temperature dependent effects become important for some of these

compounds, and so temperature control is important. In this regard,

the sample temperature was measured with a copper constantan thermo

couple placed directly beneath the sample. From experiments performed

on samples with calorimetrically known phase transitions, it is

estimated that the thermocouple and sample temperatures differed by

at most ZOC (see Figure Z8). The sample temperature was regulated via

boiling LNZ from dewar with a resistive heater, whose current was

provided by a programmable power supply (Kepko KS36-15) controlled

through the NTCFTB subroutine VT (a slight modification of VT was

required, as described in Appendix D). Above O°C, the temperature was

regulated by blowing NZ through a gas trap wrapped in heating tape.

The lower temperature limit which I have been able to attain is

approximately -150°C (123 K), and this would certainly be surpassed

were more current passed through the resistive heater in the LN2 dewar.

The upper temperature is limited by the melting point of the wax used

to seal the sample tubes; generally paraffin was used and its melting

point is about 54°c (327 K). This upper temperature limit could

easily be increased by using a different method to seal the sample tubes.

At lower temperatures (below -90°C) I would have benefitted by the use

•
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Figure 28. Proton decoupled l4N NMR spectra of NH
4
Br through its order

disorder phase transition at -38°C. The spectra acquired below -36°c

employed a quadrupolar echo sequence.
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of a different cooling gas, since nitrogen gives an NMR signal which

did interfere with weak signals which were of interest.

l4N . 1· 1 d fsp~n- att~ce re axation times were measure rom echo

amplitudes using the progressive saturation technique. Transverse

echo relaxation times (T~e) were similarly measured from echo

amplitudes by varying the interpulse delay. It should be emphasized

that the T2e experiment must be performed on resonance, for otherwise

the signal amplitude will decrease simply because of off resonance

effects (section 2.1.1). The data were then fit to one of the

following equations:

-tiT
A = Ao (1 - e 1)

e

A A
-2T/T2= e

e 0

(3.3a)

(3.3b)

using the NTCFTB subroutine LF, except for noted occasions where the

IMSL subroutine ZXSSQ was used [83]. Measuring relaxation times from

echo amplitudes eliminates the possibility of observing anisotropic

relaxation effects, with the exception of a non~exponential relaxation

which will result in the anisotropic case from the sum of exponential

terms which contribute to the echo decay (the echo maximum reflects

contributions from all orientations).

Proton spectra are not a major topic of discussion here, but those

which are discussed were recorded using the magic echo sequence [67,70]

which was found to be far superior to the two pulse dipolar echo.

Quoted proton linewidths are the result of fits to either a lorentzian

or gaussian function using the NTCFTB subroutine LF. Proton Tl's were
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measured by the application of a sequence of saturating pulses (usually

10 90 0 pulses) followed by a variable delay and an echo. The resulting

echo amplitudes were then fit to Eq. (3.la). Spin lattice relaxation

in the rotating frame (TIP) was measured via the technique of spin

locking the magnetization for a variable period of time and measuring

the fid (or echo) amplitude. The dipolar relaxation time (TID) could

be measured by a variety of methods. The technique of Jeener and

Broekaert [53] was always a possibility, but it is about twice as

efficient to perform an ADRF followed by a variable delay T and a

45 0 pulse. The height of the derivative fid was then taken as the

amount of dipolar order which remain~d at time T. Unfortunately, as

dipolar order relaxes to Zeeman order, an fid is excited by the readout

pulse which interferes with our measurement of the dipolar order.

This problem may be removed by proper adjustment of the phase detector,

but this was difficult in my experiments since I use the same phase

detector for both l4N and~. I have chosen to eliminate the problem

by destroying the Zeeman order during the delay period with

pulse (i.e., the sequence: ADRF-T-90~Tl-45-acquisition;T is varied).

The 90 0 pulse has the effect of converting the dipolar order to -1/2

its previous value (see Eq. (2.81», so this method is not as useful

as adjusting the phase detector. It is always necessary to use the

Jeener-Broekaert technique when TIp is too short to perform the ADRF.

14The N powder lineshapes were analyzed ~ successively fitting

the experimental data to a rigid lattice powder lineshape convolved with

a broadening function (generally the same as the linebroadening applied

prior to fourier transformation) and multiplied by the echo sequence

distortion function ~ither Eq. (2.19), or Eq. (2.102), The cross-
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polarized spectra showed further distortion resulting from anisotropic

cross-relaxation rates and heat capacities (see section 2.4.3), but

no attempt was made to correct the theoretical lineshape for these.

When cross-polarization was employed, the expeiimental parameters

were adjusted to minimize the distortion present (this is more or

less an empirical process). The errors quoted in Table 3.1 give the

range of quadrupole coupling parameters which appear to adequately

fit the data. Aside from SIN considerations, the accuracy of the data

is limited by two factors: (1) the amount of distortion introduced by

the cross-polarization, and (2) T2 broadening mechanisms not accounted

for by the l4N_la heteronuclear dipolar interaction (e.g., slow motion,

lattice defects, etc.).

3.2 Overview of Experimental Results

The data in Table 3.1 reveal that the range of quadrupole coupling

constants for these compounds is approximately 10-200 kHz. This

implies a fairly symmetric electronic environment, as would be

expected for a tetrasubstituted nitrogen. The asymmetry parameters

cover the entire range from 0 to 1.0. This result is rather surprising

since it would be expected that a tetraalkylammonium ion would have at

least a three fold intramolecular symmetry axis. The non-zero

asymmetry parameters could be explained by the presence of a rapid

anisotropic jumping motion which would superpose two axial tensors

of differing orientation to form a non-axial tensor [84,85,86]. By

performing the measurements over a range of temperatures, we have
~

attempted to either confirm or rule out such effects. As I will

discuss in the next chapter, thermally activated motional effects will

result in a characteristic variation with temperature of the observed
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Table 3.1

14 2N Quadrupole Coupling Constants (e qQ/h) and Asymmetry Parameters (n)

2
Compound e qQ/h (kHz) n T(K)

..
Tetraa1ky1ammonium Salts

TMA Br 26.6±0.2a 0.00±0.02 290

TMA I 31.5±0.2a 0.00±0.02 293

THA I 34.0fO.2 0.00±0.02 223

TMA I 35.7±0.2 0.00fO.02 193

TMA C1 17.3±0.2a 0.00±0.02 293

TMA Cl 17.4±0.2 ·0.00±0.02 187

TMA C1 17.2±0.2 0.00±0.02 185

TMA C1 24.9±0.2 0.31f O.03 183

TMA C1 26.4±0.8 0.36±0.04 181

TMA C1 31. 8±1.0 0.47±0.02 175

TMA C1 37.3f1.0 0.55±0.03 163

TMA Cl 40.0±2.0 0.60±0.04 155

TEA C1 '" 65
d 273-188

TEA Br 68.0±1.0 0.40fO.05 292

TEA Br 69.0±1.0 0.37fO.03 238

TEA Br 78.2fO.5 0.40±0.03 193

TEA I 40.5fO.2 0.00±0.0l 292

TEA I 41.3±0.2 O.OO±O.Ol 238

TEA I 42.3±0.2 0.00fO.01 173

TEA 13
49.0±1.0 0.66±0.02 292

TEA 13
52.0f2.0 0.61fO.02 248

TEA 13
63.0f1.0 0.45fO.02 213



Table 3.1 continued

TEA 13
65.0±1.0 0.42±O.02 198

TEA 13
68. O±1. 0 0.44±0.O3 178

TPrABr 47.0±0.5 O.OO±0.02 293

TPrABr 49.2±0.3 O.OO±0.03 238

TPrABr 51. O±O. 3 O.OO±0.O3 198

TPrAI 99. 0±1. 0 0.54±0.02 198

TPrAI 102.0±2.0 0.55±0.O2 183

TBA Br 26.4±0.2 O.44±0.02 293

TBA Br 24.4±0.2 . O.55±O.Ol 213

TBA Br 22.S±O.3 0.6S±0.Ol 175

TBA Br 21. 8±0. 3 0.68±O.Ol 164

TBAI 11. 8±O. 2 0.70±0.O2 293

TBA I 11.4±0.2 O.60±0.O2 273

TBA I l1.4±0.2 0.SO±0.02 239

TBA I 12.1±0.2 0.36±O.02 188

TPnABr 40. O±1. 0 O.79±0.O3 292

TPnABr 39. O±l. 0 0.8S±O.03 233

TPnABr 37.0±O.4 0.92±O.O3 193

TPnABr 36.l±O.6 0.9S±0.04 177..

Choline Halides

choline C1 40.0±0.Sb 0.31±0.02 321

choline Cl 40.0±0.5b 0.33±0.O3 291

choline Cl 48.0±1.0b O.34±0.O6 213

choline Cl S1.0±2.0 0.24±0.O2 l7S

155



Table 3.I continued

choline Cl 50.0±2.0 O.22±0.04 155

choline Br 156.0±1.0 0.31±0.02 290

choline Br 172.0±l.0 O.48±0.02 223

choline Br 179.0±2.0 O.52±0.02 193

choline I 46.3±0.3 0.04±0.Ol 313

choline I 46.7±0.4 O.08±0.02 290

choline I 48.0±0.4 0.12±0.02 273

choline I 47.8±0.4b 0.17±0.O2 253

choline I 48.3±0.4b . 0.22±0.O2 233

choline I 48.5±0.4b 0.27±0.02 214

choline I 48.5±0.6c 0.29±0.O2 203

PCC . '" 120d 190-158

Amphiphiles

DTAB 116.0±l.O O.85±0.02 293

DTAB 106.0±l.0 0.98±0.O2 223

DTAB 10l.0±1.0 l.00±0.O2 193

DTAB 104.0±2.0 l.00±0.02 175

HTAB 98.0±1.0 0.90±0.O2 293

HTAB 95.0±l.O l.00±0.02 223

DDAB 190.0±3.0 0.73±0.O3 293

DDAB 177 .O±4. 0 O.64±0.04 178

DML '" 90
d 190-158

156



Table 3.1 continued

TMA = tetramethylammonium

TEA = tetraethylammonium

TPrA = tetrapropy1ammonium

TBA = tetrabuty1ammonium

TPnA = tetrapenty1ammonium

DTAB = decy1trimethy1ammonium bromide

HTAB = hexadecy1trimethy1ammonium bromide

DDAB = didodecy1dimethy1ammonium bromide

PCC = phosphorylcholine chloride

DML = dimyristoy1phosphatidy1cho1ine

aThese values have been reported previously in reference 79.

bThe spectral 1ineshapes appear to have some motional

contribution.

cThe spectral 1ineshapes appear to be dominated by motion.

dThe spectra are completely washed out and featureless.
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spectrum. While we do indeed observe such variations for some compounds

(see Figure 29), for most of these substances no thermally activated

motional effects were observed.

A small nearly linear temperature dependence of the efg parameters

is observed for most of the compounds studied (see Table 3.1 and Figure

30). This phenomenon is clearly not due to large amplitude motions,

and probably originates in thermally activated field gradient averaging

mechanisms involving small amplitude torsional motions [87], or variation

of the crystalline field due to expansion or contraction of the unit

cell with temperature [88,89]. That these small variations are not the

result of large amplitude motions of-the efg is supported by the

observation of T2e which are not strongly temperature dependent for

these compounds.. For example, choline bromide, which exhibits no

obvious motional contribution to its lineshape, exhibits the following

T2e : oOe = 2.4 msec, -20o e = 2.2 msec, -40o e = 2.0 msec, -60Ge =

2.0 msec, and -80 Ge = 1.2 msec. Over this same temperature range

the choline bromide quadrupole coupling constant increases by 10%,

and the asymmetry parameter registers a 40% increase.

Under the assumption that we are observing rigid molecules, we must

consider two factors responsible for the observed quadrupole coupling

parameters: (1) the deviation from tetrahedral symmetry of the nitrogen

electronic distribution due to intramolecular effects, and (2) the

contribution of the lattice or extramolecular crystalline field to

the field gradient at nitrogen. The former effect is expected to

dominate over the latter simply because of the much closer proximity

of the perturbation. In ionic compo~nds such as these, antishielding

effects will increase the extramolecular contribution greatly [90].
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Figure 29. Proton decoupled quadrupolar echo spectra of choline

iodide as a function of temperature. The echo sequence in all spectra

used 3.7 ~sec 90 0 pulses and 80 ~sec interpulse delays. The recycle

time was 2 sec in all spectra; T
l

was found to be much less than 2

sec at all temperatures.
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Figure 30. The observed variation of the asymmetry parameter with

temperature for several tetraa1ky1ammonium salts.
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Edmonds, et al., were able to rationalize the quadrupole coupling

parameters of some tetrahedral ammonium salts by considering only the

bonds existing within the ion itself [91] (i.e., this is a completely

intramolecular argument). Their argument will not suffice to explain

the results presented here, particularly those of the tetramethyl

ammonium halides, as I will discuss in the next section.

3.3 Discussion of Specific Compounds

Of the compounds listed in Table 3.1, complete structural informa

tion is available for tetramethylammonium (TMA) chloride, bromide, and

iodide [9]], tetraethylammonium (TEA) iodide [93], tetraethylammonium

triiodide [94], tetrapropylammonium (TPrA) bromide [95], choline

chloride [96], and choline iodide [97]. In addition, partial

structural information is available for cholin£ bromide [98] and

hexadecyltrimethylammonium bromide (HTAB) [99]. A discussion in

some detail is warranted for these compounds.

3.3.1 Tetraalkylammonium Salts and Choline Halides

For the TMA compounds in particular, the explanation of the

observed quadrupole coupling parameters seems rather clear-cut. The

available room temperature structural data indicate that the intra

molecular nitrogen symmetry in these compounds is strictly tetrahedral,

implying that the intramolecular field gradient vanishes. Proton NMR

studies have shown that the TMA halides undergo isotropic reorientation

at room temperature (isotropic here presumably means a motion in which

all of the methyls are able to exchange positions), and that this

motion persists to a temperature between 250 and 200 K, depending upon

the halide [100,101]. This motion would tend to greatly reduce, or

average to zero any intramolecular effects present. The temperature
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dependence of the quadrupole coupling parameters for these compounds

(see Table 3.1) indicates that this motion has no effect upon the

observed parameters. For example, TMA iodide exhibits a small linear

temperature dependence of 43 Hz/K for its quadrupole coupling constant

over the temperature range investigated. This is not the type of

behavior we expect to see over a temperature regime in which a field

gradient averaging mechanism is quenched, and is much easier to

explain in terms of a variation of the unit cell dimensions (and hence

the crystalline field) with temperature [88]. More revealing are the

data for TMA chloride which are plotted in Figure 31. Here we see

that the efg parameters are static down to the A point at 184.9 K

[102]. In this regime the efg is axially symmetric and of small

magnitude while the lattice is tetragonal. Below the A point both

the coupling constant and asymmetry parameter increase rapidly

indicating that the electronic symmetry at nitrogen decreases with

further lowering of the temperature. At the A point the symmetry of

the lattice will change abruptly, while the displacement of the ions

begins a continuous change which extends over a large temperature

range. The symmetry of the lattice in the low temperature phase is

nearly always lower than that of the high temperature phase, although

Landau [103] does give the counter example of Rochelle salt (potassium

sodium tartrate), so it is not unreasonable to assume that the symmetry

of TMA Cl below 184.9 K is lower than tetragonal. It is not possible

from our data to determine whether the low temperature phase is

orthorhombic or monoclinic since the efg tensor will always possess

three twofold symmetry axes, while orthorhombic is the lowest symmetry

lattice to possess these properties. The observation (see Figure 31)

•
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Figure 31. 14N NMR observation of the second order phase transition

in TMA C1.

(a) The efg parameters e2qQ/h and n as a function of temperature.

The solid line through the upper points follows the equation n =

phase transition, while that through the

is theT
c

+ 47.66 I(T
c
-T)/T

c
]0.41.

184.9 K.temperature at the y point;

0.93[(T -T)/T ]0.24 below the
c c

2lower follows e qQIh = 17.3

(b) From top to bottom: the field gradient components V •zz

V ,and V as a function o£ temperature; the algebraic signs arexx yy

arbitrary. The solid line through the upper points follows the

equation V = 12.98 + 36.23 [(T -T)/T ]0.41 below the phase transition,
zz c . c

while that through the lower points follows V = -6.49 - 36.30
yy

[(T -T)/T ]0.41. V is invariant within experimental error at
c c xx

-6.49 kHz.
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that one field gradient component is static (within experimental

error) through the phase transition invites the incorrect conclusion

that, below the Apoint, the lattice is displaced in two dimensions

while the third remains fixed. This conclusion cannot be drawn

from our data because the Laplace equation requires all three

principle values to change in such a transformation (assuming, of

course, that the efg is crystalline in origin). An interesting

contrast between TMA C1 and TMA I is given by their respective

temperature behaviors. From the temperature dependence of the efg

parameters it appears that the TMA I lattice remains tetragonal

while the unit cell dimensions vary .(no phase transitions are reported

for this compound in the temperature range investigated [102]).

Concurrently, the efg parameters of TMA C1 indicate that its' lattice

remains static until it becomes unstable at the A poirit. An analysis

similar to that given for TMA C1 may also be applied to ammonium

bromide (Figure 28) where no quadrupole coupling is observed in the

cubic B phase, while a small axial coupling is observed in the

tetragonal y phase [104,105].

TPrA bromide and TEA iodide (Figure 32) show axially symmetric

efgs at all temperatures investigated. Proton NMR studies indicate

that it is unlikely that longer chain tetraa1ky1ammonium compounds such

as these undergo isotropic reorientation in the temperature range

studied [106], but the high degree of intramolecular symmetry present

in these two compounds leads us to believe that here too the efgs may

be ascribed to the tetragonal lattices both compounds possess.

TEA triiodide and choline chloride show definite deviation of

the intramolecular environment from that of tetrahedral symmetry;



Figure 32. Proton decoupled quadrupolar echo spectrum at TEA

iodide at -90°C. The signal is the result of 280 acquisitions using

an ADRF cross-polarization technique. The mixing time was 10 msec,

the echo delay was 80 ~sec, and a 3.5 ~sec 90° echo pulse was used.

The dotted line represents a rigid lattice powder spectrum with

e2qQ/h = 42.3 kHz and n = 0.0; this has been convolved with 300 Hz

of lorentzian line broadening and multiplied by Eq. (2.102) to

account for the finite duration of the single echo pulse.

168
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these compounds also possess orthorhombic lattices. Whether the

efg parameters are dominated by intramolecular or crystalline field

effects is unknown, but it is likely that the crystalline field has some

effect. In TEA triiodide, an interesting discontinuity of the efg

parameters occurs between 248 and 213 K. Perhaps a differential

scanning calorimetry or x-ray study would confirm the existence of

a phase transition in this temperature region. In choline chloride,

we have the added complication of motion at room temperature, which

I will discuss in detail in the next chapter. At the lowest temperature

investigated the spectrum appeared to arise from rigid molecules,

although the SIN at this temperature is low owing to a rather long

l4N T f 1 (1 0 severa minutes both the proton TIP and TIn are too short

at this temperature,to permit an effective cross-polarization).

For choline iodide the x-ray structural data are insufficient to

describe accurately the intramolecular nitrogen environment. The

situation here is very similar to that of choline chloride; the

efg parameters are such that they could be determined entirely by

crystalline field effects (the lattice here is monoclinic), but there

may also be some intramolecular contribution. Here again there are

complications arising from the presence of motion which apparently

is rapid at room temperature, but slows as the temperature is

lowered (see Figure 29). This motion will be analyzed in detail in

the next chapter, but I wish to point out that the variation of the

quadrupole coupling parameters (in particular, the asymmetry parameter)

with temperature (see Figure 31) appears to occur independent of the

motion, presumably through the temperature variation of the unit cell

dimensions •

..



Figure 33. Proton decoupled quadrupolar echo spectrum of choline

bromide at -80°C. This signal is the result of 4196 acquisitions

using 3.7 ~sec 90° pulses and an 80 ~sec interpulse delay. The

171

dotted line represents a rigid lattice powder spectrum with

2 -e qQ/h = 178.9 kHz and n =0.52; this has been convolved with 1000 Hz

of lorentzian linebroadening and multiplied by Eq. (2.19) to account

for the finite duration of the pulses employed.
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The quadrupole coupling of choline bromide differs substantially

from that of the other two halides (see Figure 33). It is unfortunate

that no detailed structure is available for this compound; the

dimensions of its orthorhombic unit cell differ considerably from

those of choline chloride (both compounds have four molecules per unit

cell), and this may have some effect upon the crystalline field. In

contrast to the other two halides, choline bromide shows no noticeable

14temperature dependent motional effect upon the N NMR spectrum over

the temperature range investigated; although it is possible for

motions similar to those present in the other two halides to be

present here, but to have no noticeable effect because of the range

of quadrupolar couplings involved (this will become clear in the

next chapter).

3.3.2 Amphiphiles

The long chain amphiphilic molecules studied (HTAB, decylrimethyl-

ammonium bromide [DTAB], didodecyldimethylammonium bromide {DDAB])

exhibit very large asymmetry parameters (see Figures 34a, 35), with

DDAB having the largest quadrupole coupling constant of those we

have studied. The observed asymmetry parameters may be the result of

a flip-flop motion of low activation energy, but I was not able to

observe any temperature dependent effects over the temperature range

studied. It is also possible to disperse DDAB in water (0.5 gm/ml)

to form a lyotropic lamellar mesophase in which a residual quadrupolar

splitting of 8.85 kHz is observed (see Figure 34b). This splitting is

of the same order as that observed for dimyristoyl phosphatidylcholine

(DML) dispersions at room temperature [77,79]. It should be emphasized

that, in the presence of a nonzero rigid lattice asymmetry parameter,

•
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Figure 34. Solid and dispersion spectra of didodecyldimethylammonium

bromide (DDAB). (a) Proton decoupled quadrupolar echo spectrum of

the solid powder at 20°C. This signal is the result of 54,000

acquisitions using 3.7 ~sec 90° pulses and a 70 ~sec interpu1se

delay. The dotted line represents a rigid lattice powder spectrum

with e2qQ/h = 190 kHz and n = 0.73; this has been convolved with

2000 Hz of lorentzian 1inebroadening and multiplied by Eq. (2.19)

to account for the finite duration of the pulses employed. (b) Proton

decoup1ed quadrupo1ar echo sepctrum of a DDAB dispersion (500 mg/ml)
. 2

at 20°c. The dotted line represents e qQ/h = 11.8 kHz, n = 0.0

convolved with 300 Hz of lorentzian. 1inebroadening.

•
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Figure 35. Proton deceupled quadrupolar echo spectrum of decyltrimethyl-

ammonium bromide (DTAB) at -50°C. This signal is the result of 12000

acquisitions using 3.7 ~sec 90° pulses and a 60 ~sec interpulse delay.

The dotted line represents a rigid lattice powder spectrum with

2 -e qQ/h = 106 kHz and n = 0.98; this has been convolved with 800 Hz

of lorentzian line broadening and multplied by Eq. (2.19) to account

for the finite duration of the pulses employed.
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the oreitnational order of the system is not uniquely described by

the residual quadrupolar splitting and at least one other independent

measurement is required [107].

The efg parameters in HTAB could be due entirely to the crystalline

field (the lattice is monoclinic), but this material is known to give

rise to quadrupolar relaxation in isotropic phases. This relaxation

leads to a linebroadening which may be analyzed by calculating the

spin-spin relaxation time in the rapid motion limit (T-l » V ,
c 0

2
T2 = Tl , and ~wfwhm = T

2
) via Eq. (3.1). This type of analysis leads

to a quadrupolar coupling not inconsistent with our measurements in

the solid [74]. Thus we know that there must be some contribution to

the efg from intramolecular effects. It is interesting to note that

in the related compound hexadecyltrimethylammonium dichloroiodide

the crystal structure reveals [108], within experimental error, no

deviation from tetrahedral symmetry at nitrogen.

The experiments on DML and phosphorylcholine chloride (PCC)

yielded disappointing results. Each compound gave what could more

or less be described as a gaussian curve (see Figure 36) upon fourier

transformation of its echo (note that a similar type of spectrum is

also observed for HTAC). For DML, the lineshape was independent of

the method of sample preparation. For PCC, and some preparations of

DML, the room temperature SiN was nearly 60 times lower than at 158 K

(based upon echo amplitudes), while for other preparations of DML

just the opposite was true (i.e., the room temperature SiN was much

greater than at low temperature). Since this observation is

independent of recycle delay it must be a T2 rather than a T
l

effect,

Unfortunately, a systematic measurement of T2e as a function of

temperature was not carried out, although TID was found to be fairly



Figure 36. Proton decoupled quadrupolar echo spectrum of dimyristoyl

phosphatidylcholine (DML) at -80°C. This signal is the result of

87,960 acquisitions using 3.7 ~sec 90° pulses separated by a 60 ~sec

interpulse delay •

•
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short (under 30 msec) at all temperatures investigated for both

compounds. Because it is likely that the protons on each molecule

do not form a single thermodynamic reservoir (differing motions on

different portions of the molecule likely decouple them from one

another) any proton measuremems are difficult to interpret and I

choose not to present them here. The observed lineshapes can also

be explained by motional arguments, but there is probably also a

contribution from a disordered crystalline field as the powder

x-ray diffraction pattern of DML shows fairly diffuse lines indicating

a lack of long range order, a distribution of efgs (assuming the

efg is highly dependent on local order), and hence a featureless

spectrum. I tend to favor this latter explanation since the T 's2e

which I did measure were much longer than I would expect for such

14a washed out spectrum (e.g., the N T2e for the sample whose spectrum

is shown in Figure 36 was 440 ~sec, indicating a homogeneous line-

width of 4.5 kHz).

Insufficient data are available to warrant detailed discussion

of the other compounds listed in Table 3.1. I would, however, like

to point out some observations with respect to TEA chloride. This

compound was prepared four times (the first three were not recrystallized,

while the fourth was recrystallized from acetone) and a distinctly

14different N NMR spectrum was observed for each preparation. The

first three were probably hydrated to varying degrees (TEA Cl is

extremely hygroscopic) for they were not subjected to the rigorous

drying treatment of the final sample. The first three samples gave

rigid lattice lineshapes indicative of an axially asymmetric efg,

but the efg parameters differed considerably between samples. The
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Figure 37. Result of single and double quantum ADRF cross~polarized

echo sequences on tetrapropylammonium iodide (TPrAI) at -90°C. In

both cases the dotted line represents a rigid lattice powder pattern

2
with e qQ/h = 102 kHz and n = 0.55. convolved with 800 Hz of lorentzian

line broadening and multiplied by Eq. (2,102) (single quantum) or

Eq. (2.19) (double quantum) to account for the finite duration of

the pulse(s). (a) Single quantum frequency domain spectrum resulting

from a 5 msec, 29 kHz mixing period followed by an 80 ~sec delay

and a 3.5 ~sec 90° pulse. This signal is the result of 400 acquisitioRs.

(b) Double quantum frequency domain spectrum resulting from a 5 msec,

30 kHz mixing period followed by an echo sequence consisting of 3.5

~sec 90° pulses, a first delay of 80 ~sec and a second delay of 200 ~sec.

This signal is the result of 280 acquisitions. Two theoretical spectra

are plotted (dotted lines), each being scaled to a different point

in the experimental spectrum.
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Figure 38. Single quantum SL cross-polarized echo spectrum of

tetrabutylammonium bromide (TBABr) at -60°C. This signal is the

result of 280 acquisitions employing a 2 msec contact time, during

which the l4N and ~ r.f. fields were matched at 50 kHz, followed

by a 90 ~sec delay and a 5 ~sec 90° pulse. The dotted line

2represents a powder pattern with e qQ/h = 24.4 kHz and n = 0.55,

convolved with 200 Hz of lorentzian 1inebroadening and multiplied

by Eq. (2.102) to account for the finite duration of the single echo

pulse.
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final sample gave a featureless spectrum (very similar to that of DML)

from which we can only estimate the range of quadrupolar coupling,

Interestingly, I was able to cross-polarize this final sample using

both ADRF and SL methods, while neither DML nor HTAC (which also

exhibit washed out lineshapes) showed significant cross-polarization.

Additionally, by varying the matching condition, it was possible for

the spectrum to take on virtually any shape (as though it were made of

silly putty). I believe this final observation to be indicative of

a large amount of static disorder in the crystal lattice; emphasizing,

once again, the importance of extramolecular effects in this study.

3.4 Concluding Remarks on EFGs

The origin of the observed efg parameters can only be stated with

certainty for the TMA halides, TEA iodide, and TPrA bromide. For these

compounds a small axial quadrupolar coupling is associated with a

tetragonal crystal lattice. I find it extremely satisfying that the

asymmetry parameter always shows some relation to the symmetry of the

unit cell (where this is known). For a purely ionic field gradient

this should be the case [109]. The other compounds which have been

discussed exhibit efgs which probably originate from some combination

of intra- and extra-molecular effects. It is not unreasonable that

the intramolecular structure may dictate the extra-molecular structure

(and vice-versa) so the two effects may not be strictly separable. In

this regard, it would be interesting to investigate the NQR of the

halide counterions since this should be sensitive only to the extra

molecular crystalline field.

,
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Finally, it should be pointed out that the crystalline field

effect arguments presented here have been used in the past to

rationalize efg parameters in ammonium hydrogen oxalate [110],

ammonium dihyrodgen phosphate [Ill], and ammonium aluminum alum [112].

For these compounds, the averaging of the intramolecular efg would

no doubt be complete due to ammonium ion reorientation, and the

agreement between the observed efg symmetry and the crystalline

field symmetry is good.

3.5 A Few Remarks on the l4N T
l

14
I have alluded several times to the observation of long NT's

1

for the tetraalkylammonium compounds.. In an attempt to elucidate a

spin-lattice relaxation mechanism for these compounds, I performed

14a measurement of the TMA Cl N T
l

between 160 and 300 K (see Figure

39). All of my previous evidence indicates that the field gradient

in this salt is of ionic origin, therefore a likely relaxation mechanism

would be quadrupolar coupling through optical and acoustic phonon

modes [113].
-2

This relaxation mechanism is expected to follow a T

dependence above the Debye temperature which my data clearly do not

exhibit (this region is well above the Debye temperature, as may be

seen from the data presented in ref. [102]). Instead, the high

temperature region of the 10g(T
l

) vs. 1000/T plot is nearly linear

(linear least squares fit slope = 105~ correlation coefficient = .998)

indicating that a thermally activated reorientational mechanism is

responsible. Rotational reorientation of the TMA ion would not.lead

to relaxation in an ionic field gradient through a quadrupolar

14
mechanism, so it appears that N relaxes through a dipolar mechanism.



Figure 39. 14Semilog plot of the TMA Cl N Tl as a function of the

190

l

inverse temperature. The Tl values were determined from echo

amplitudes using the progressive saturation technique. The error

bars were estimated from the errors in the best exponential fits

to the data.
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This contention is supported by the observation of TMA Cl proton TI'S

which are between 2 (high temperatures) and 10 (low temperatures)

times shorter than those for l4N (simple mindedly, protons should

relax more rapidly via a dipolar mechanism because of their larger

gyromagnetic ratio). The activation energy determined from the slope

of the straight line proton of Figure 39 is 4.8 kcal. This low

activation energy probably corresponds to methyl group rotation,

although it is about 25% lower than that obtained from proton second

moment [100] and relaxation time [115] studies of TMA Cl.

The plateau region (175-213 K) around the A point and the cusp

at the A point are apparently the result of cooperative effects near

the phase transition and corresponding features have been observed

in other second order phase transitions [114]. Proton relaxation

studies of TMA Cl [115] indicate that the second order phase transition

has no effect on the reorientational motion of the TMA ion, so it

would appear that the plateau region and cusp are due to quadrupolar

relaxation from low frequency critical fluctuations of the lattice [116].

Although these data are difficult to generalize, I do in most

cases observe a l4N T
l

which is much longer than the corresponding

proton Tl • This is most easily rationalized by invoking a dipolar

relaxation mechanism. Those tetraalkylammonium compounds in which one

or more of the alkyl groups is a methyl are observed to have much

14shorter N TI's than the corresponding unmethylated tetraalkylammoniums.

This rather indirect evidence would seem to indicate that methyl

group rotation is an important relaxation mechanism for l4N•

Additionally, the observation of small NOE's for many of these

compounds indicates that spin-lattice relaxation, to a small extent,

1



occurs through the protons •

•
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Chapter 4

Effects of Motion in the Choline Halides

4.0 Previous Work

The choline salts are extremely unusual in their sensitivity to

ionizing radiation [117]. Upon irradiation choline chloride rapidly

4
decomposes exhibiting G values as high as 5.5 x 10 (the G value is

defined as the number of molecules destroyed per 100 eV absorbed).

whereas G values for most compounds are in the range of 0.1 to

10 [118]. Choline bromide also exhibits radiation sensitivity.

although only to half the extent of the chloride, and choline iodide

appears completely normal with respect to ionizing radiation. The

temperature dependence of the radiation sensitive behavior shows that

it begins at about O°C and climbs in a sigmoidal manner until it

reaches a maximum just below the order-disorder phase transition

(transition temperatures: chloride 351 K. bromide 363 K. and iodide

367 K; the low temperature phase is referred to as the a phase. and

the high temperature phase as the a phase) Il17.ll9]. Thereafter. the

enhanced radiation sensitivity falls off rapidly. being non-existent

in the high temperature disordered phase.

The major radiolysis products are trimethylamide hydrochloride

and acetaldehyde. This observation has lead to the proposed mechanism

of C-N bond cleavage through a free radical chain reaction involving

ethylol and hydrogen radicals [117]. Attempts to rationalize this

through x-ray studies [96,98,120] have yielded only the observation

of a somewhat longer C-N bond in the a phase of choline chloride than

194
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transition temperature.

normally encountered (1.56 A vs. 1.50 A), and the presence of a large

amount of disorder in the high temperature B phase of choline chloride.

Additionally, an x-ray study of the radiation normal choline iodide

shows that a certain anisotropic disorder is present at room temperature

[97] which apparently results from a flip-flop motion about an axis

passing through the nitrogen and oxygen atoms (see Figure 46),

Unfortunately, a detailed structure is not available for choline bromide.

The association of dynamic disorder with the absence of radiation

sensitivity in choline iodide and the B phase of choline chloride

indicates that NMR may be useful for investigating the dynamic

properties of the solid. To this end, a number of studies have been

accomplished. A proton second moment study of all three salts from

77 K to 400 K [121] showed that three types of motions occur (in order

of appearnace from low temperature): methyl group rotation (~140 K),

. +
reorientation about the C-N (Me)3 bond (~ 250 K), and isotropic

reorientation of the choline ion (~ 360 K). The presence of isotropic

reorientation in the radiation stable high temperature phase of the

bromide and chloride was confirmed, but nothing could be said as to

the difference in radiation sensitivity between the three salts (no

tremendous differences are observed between the second moments of the

three compounds). Proton spin-lattice relaxation time measurements

(T
1

,T
1P

) in the three salts [122,123] show, in addition to the

previously mentioned motions, a slow reorientational motion with low

activation energy occuring between room temperature and the phase

13Recent solid state C NMR spectra [97]

indicate further the presence of this motion and lend credence to

the idea that the rapid decrease in radiation sensitivity just below

•
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the phase transition is associated with the onset of motion.

In the previous chapter, I alluded to the observation of

14
motionally distorted solid state N NMR spectra for choline chloride

and iodide. These spectra clearly show anisotropic distortion which

must be the result of anisotropic motion. The motion affects the NMR

spectrum by making the quadrupolar frequency time dependent. I

will attempt to analyze the distorted spectra by assuming that the

efg undergoes thermally activated random rotational jumps about a

fixed axis. This is a reasonable model only if the efg is of intra-

molecular origin; a point to which I will return later.

4.1 . Anisotropic Motion and Anisotropic Interactions in NMR

In liquids it is reasonably assumed that any ordering due to

intermolecular interactions is weak and the potential seen by the

molecule is isotropic. This leads to isotropic Brownian motion

which averages the anisotropic spectral features of the quadrupolar

interaction but retains its relaxation properties through rapid random

modulation. In crystalline solids the ordering potential is aniso-

tropic and isotropic Brownian motion is highly unlikely. Instead the

molecule jumps between discrete orientations in the lattice at a rate

(K) such that the time between jumps (11K) is much shorter than the

residence time at each orientation. In the rapid motion limit ( K»

2e qQ/h) the observed efg is the partially averaged result of the

static efg; the observed tensor depending in detail upon the manner

in which the static tensor was modulated (see Figure 50). When the

2
motion slows to the intermediate exchange region ( K ~ e qQ/h),

interesting effects occur which have been previously discussed [124,125,

126,127], and it is these upon which I will concentrate. The additional

l
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distortion caused by the use of the quadrupolar echo sequence has

been discussed by Spiess and Sillescu [127], but it is appropriate

to go over this one more time.

To begin, it is most reasonable to assume that the motional

process is of a stationary Markov nature. In other words, the

molecular orientation n at time t is dependent only upon its value

at a previous time t' and upon the time difference ~t = t-t'.

Because of this, the occupation probability of orientation n,

p(n,t), will satisfy:

(4.1)

where r
n

is now referred to as a time independent Markov operator

(the symbol r is usually used to describe diffusion, while A is used

to describe jumping, but I will not make this distinction here). The

time evolution of the density matrix CEq. (2.41», upon which all of

our observable reality is based, may now be written [128]:

(4.2)

.. where it is assumed that the phenomenological relaxation times Tl and

T2 are due to perturbations other than those described by rn , and are

orientation independent. The solution of Eq. (4.2) is in general a

formidable problem, but may be simplified as follows: (1) neglect Tl ,

(2) assume no motion occurs during the periods in which r.f. fields

are applied, and (3) assume the molecule performs planar jumps of fixed

•



angle. The fid:
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l

may now be expressed in matrix form as [129]

(4.3)

g(Q,t) = G(O) ° (exp(iw - ~ 01 + rr)t)ol
- ~ T2 ~ - -

(4.4)

where G(O) is a row vector containing the ~ priori occupation

probabilities of the sites (orientations) which are in exchange, w

is a diagonal matrix whose elements .are the frequencies of the sites

which exchange, ; is the identity matrix, ~ is the matrix form of the

Markov operator, and 1 is a column vector whose elements equal one.

Fourier transformation of the fid described by Eq. (4.4) followed by

integration over all angular space, will yield the powder spectrum:

co

I(w) = 1~(O) f
Q 0

exp{(i(w-wI) - ~ I + rr)t}dt dQ
~ ~ T2 ~ ~

where

(4.5)

(4.6)

In order that the fid resulting from the quadrupolar echo sequence

may be cauculated, I will initially assume that the pulses perform
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90° rotations in an infinitesimal period of time (i.e., ideal pulses),

and so the effect of the echo pulse at time T is to cause those spins

possessing frequency wen) at time t < T to have frequency -wen) at

time t > T. Now, Eq. (4.4) becomes

g(n, t) = ~(O)· (exp(i~ - ;2 I + ~)T).

1
exp(-i~ - T

2
= + ~)(t+T))·~ (4.7)

which may be fourier transformed, starting from the echo maximum at

t=O, to yield

I -1
lew) = ~(O) ~(T) ~ ; dn

n

where

(4.8)

E(T)

and

= exp(iw - ...!... I + TI)T"
ll:: T

2
111$ s:::

exp(-iw - ...!... I + TI)T
.. T2 '" ..

(4.9)

-1
A... = [-i(w + wI) _...!... I + TI]T

~ .. T2 ~ '"
(4.10)

As a first approximation to the effect of finite duration pulses,

we may alter G(O) such that
:::
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(4.11)

where Wi is the ~ priori probability of site i, Wi is the quadrupo1ar

frequency of site i, and D(W
1

,W) is given by Eq. (2.19). The spectra

I am considering here are sufficiently narrow that I may safely neglect

this type of spectral distortion (discussed in detail in section 2.1.1).

The solution of Eq. (4.8) is best accomplished by utilizing the fo110w-

ing procedure [129J, which in general must be carried out numerically

(i.e., on a digital computer). First, the matrix describing the time

evolution is diagona1ized to determine its eigenvalues and eigen-

vectors. The matrix of eigenvectors is then inverted to yield the

following expression:

(4.12)

where S is the matrix of eigenvectors corresponding to the eigenvalues
~

A. This step need only be performed once at each orientation. Now,
~

Eq. (4.7) becomes

g(Q,t) = G(O)oSoexP(AT)S-l •- ~-

(4.13)

where the superscript * should be taken to denote the complex
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conjugate. Fourier transformation of Eq. (4.13), followed by

integration over angular space, yields:

(4.14)

where E(T) is the same as Eq. (4.9), but may also be expressed as-
E(T) = Seexp(AT)S-le
~ ~ --

* * *~lS eexp(A T)S

- --
(4.15)

Note that inversion of the diagonal matrix A-iwI trivially reduces to- -
inversion of each of its elements. The problem with using Eq. (4.14)

is that there is no guarantee that all of w space is represented by A.

This results' in the appearance of false spikes in the lineshape if

I(w) is evaluated at improper points. It has therefore been suggested

that the fid (Eq. (4.13» be integrated over angular space prior to

performing a numerical fourier transform [130]. This procedure is

always stable, and I have found it to be the more useful of the two

methods. The numerical transform takes almost no time, but the

integration of the fid will take more time than the evaluation of

Eq. (4.14) because more points need to be calculated in the fid to

prevent its truncation (and corresponding wiggles in the transform),

and also because the amount of cpu time required to evaluate the

complex exponential is much greater than that required to invert a

complex number.

In order to evaluate Eq. (4.13), it is necessary to determine

f
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the frequencies which are exchanging due to the jump process

(w. = w(n.», and the jump probability matrix TI. The frequency
~ ~ ~

w(n
i

) may be deduced from the relationship between the quadrupolar

frequency and the angular rotation about the flipping axis at a

particular orientation with respect to the static field, This

relationship is obtained by transforming the secular part of the

quadrupole interaction (AZO in Appendix A) to the molecular flipping

frame, rotating by an angle 0 (the flip angle) about the z axis in

this frame, and then transforming to the laboratory frame (i.e" with

respect to H
O
)' This transformation is easily accomplished using

the rotation properties of spherical tensors. Fortunately Mehring

[130] has already given us the result in the case of a chemical shift

interaction, and this result may be applied to quadrupolar coupling

with only the change of a few constants. The resulting expression is:

+ ¥ [Pz(cos8)sinZS cosZa + sinS sinZ8·

• (cosS cosZa cos(Y+~O) - sinZa sin(y+~o»

Z 1 Z+ sin 8(2(1 + cos S)cos2a cos2 (y+~o)

- cosS sin2a sinZ(y+~o»]} (4.16)

where (a,S,y) are the polar angles which relate the PAS of the efg

to the molecular flipping frame (see Figure 40), 0 is the angle of



Figure 40. The relationship between the principle axes of the

electric field gradient tensor (defined by V ,V ,and V )xx yy zz

and the molecular flipping frame (defined by Xli, y", and Zll).

Rotational jumps occur about the Zll axis. The angle y has not

been included since it is of no importance when a powder average

is calculated.
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the flip about z" (Figure 40), and (e,~) relate the flipping frame to

HO' Note that the angle y in Eq. (4.16) will drop out of the

calculation (i.e., become unimportant) when we average over ~ in the

angular integration.

The matrix TI is constructed as follows: the off diagonal elements

(TIij , i#j) equal the probability per unit time that site i jumps to

site j, and the diagonal elements are chosen to satisfy the relation

~ TIij = a
j

(4.17)

which must be true in any equilibrium situation. We may construct

TI in any way we wish so long as Eq. (4.17) is satisfied, but two

limiting cases are of interest. In the so called "hard collision"

limit all sites are equally accessible from any other site, and so

all of the off diagonal elements are identically equal to the jump

probability K, while the diagonal elements equal -(~-l}K (where

n is the number of sites sampled by the process), In the "soft

collision" limit only neighboring sites are accessible, so the off

diagonal elements equal K if li-j I = 1, equal 2K if \i-j I = 1 and

i or j equal n, and the diagonal elements equal -2K (all other

elements are zero). Of course, other models are also possible in

which various sites have various probabilities of occupation, but I

will not consider these here. Utilizing this approach we can

calculate the spectra which would result from many simple types of

motion, but other methods are probably better for more complex

diffuse type motions [125,131,132,133,134],
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4.2 Experimental Results

The experiments were performed in accordance with the general

description of section 3.1. An attempt was made to acquire spectra

at several echo delay (T) values for each value of the temperature.

As pointed out by Spiess and Sillescu [127], the lineshape should

change in a characteristic way as we varyT in the intermediate

exchange Ils l ow motional" region (K '" e
2
qQ/h). Unfortunately, in

some temperature regions the echo completely disappears because T2e

(the characteristic echo amplitude decay time) is drastically

shortened as a result of the motion, This effect may be calculated

by integrating Eq. (4.13) over n for each T value at t=O and I have

performed such calculations to see if my proposed motional models

could" be responsible for the observed T2e , Additionally, the l4N

T
l

for these compounds seems to increase greatly at low temperature.

For example, at -98°C the choline chloride Tl is about 30 seconds,

while at -120°C it is estimated to be in the neighborhood of 5 minutes.

Long Tl's equal low SIN per unit time, so that the lineshapes

obtained in the low temperature region are nothing short of

pitiful (see Figure 42). It should be noted that lineshape distortions

may also be caused by anisotropic T
I

effects, but the experiments I

present here were run at several recycle delays. and significant

differences in the results were not observed (also, anisotropic

T
l

will not cause anisotropic lineshape distortion as T is varied).

In Figure 41 I present TZe data for all three salts. I would

like to emphasize that these data are only presented to indicate

general trends. In many cases, especially when T
2e

is less than

100 ~sec, the SIN was low enough to give the data a large error

..



Figure 41. 14N quadrupo1ar echo decay times (T2e) as a function

of the inverse temperature for the three choline salts. In each

case the data were fit to Eq. (3.3b).
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(I have made no attempt to fit error bars). Also, the echo amplitude

decay was, in many cases, observed to be non-exponential (as we

would expect), but the T2e given is the best fit to a single

exponenential.

4.2.1 Assumptions Made in the Analysis

Unfortunately, many assumptions had to be made prior to embark-

ing upon the analysis of the lineshapes. These assumptions reflect

an ignorance of the system under study, and I feel that they should

be presented and discussed at this time.

The absence of effects relating to C
3

reorientation about the

+C-N 0~e)3 bond in these salts is very puzzling. This type of

motion, which is clearly indicated by proton NMR studies 1121,122],

would result in an axial intramolecular efg in the rapid motion

limit. If the jump site are not quite related by C
3

symmetry the

resulting efg may be slightly nonaxial. The proton second moment

data in particular indicate that at room temperature the rate of C3

reorientation is on the order of 50 kHz to 500 kHz and this is

supported by the proton TIP data. Therefore we should either observe

an axial efg, or a motionally distorted spectrum, depending upon the

. magnitude of the static efg parameters. At 200 K the proton second

moment study indicates that this motion has essentially ceased and

we should observe a rigid lattice efg. The choline bromide efg

parameters in particular clearly show no effect from this motion,

even though I was able to reproduce the proton linewidth of

reference 1121] (so the motion was apparently occurring in my

samples.) The most reasonable rationalization for this observation

is that which was invoked in the last chapter: the efg is of
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intermolecular (crystalline) origin. For the chloride and iodide

salts this explanation is not completely consistent with the observed

14
N spectra since they clearly show the effects of efg motion (see

Figures 42-51). Most likely, the efg's for all three compounds

possess contributions from both inter- and intramolecular effects.

On this basis, the only proper method to analyze the motional effects

would be to separate the inter- and intramolecular field gradient

components; applying the motion to only the intramolecular efg.

Such a procedure would increase the number of independent variables

greatly for we must now consider the relative magnitude, asymmetry,

and orientation of the two tensors~ There is no justification for

embarking upon such an analysis when all of my experimental observa-

tions derive from powder patterns, and the analysis appears to have

no precedent in the literature which I have surveyed. A single

crystal study of the orientation dependence of the efg to determine

the relationship between the observed efg and the molecular reference

frame, coupled with a point charge model calculation fl09] to

determine the approximate magnitude and orientation of the crystalline

efg, may shed some light upon the present perplexing situation. Since

this laborious procedure has not been accomplished, I will here

assume the efg's of the chloride and iodide salts to be entirely of

intramolecular origin. This assumption further requires me to ignore

+the effects of C
3

reorientation about the C-N (Me)3 bond, since such

motion is not consistent with the spectra I observe.

4.2.2 Choline Bromide

As Figure 41 indicates, this compound shows no large T2e

deviations over the temperature range studied. The 1ineshapes which



I have obtained at each temperature show no obvious motional

distortion, although the SiN is low enough to mask small distortions

(see Figure 33). It is possible that any motion present is either

22·
too slow (K » e qQ/h) or too rapid (K » e qQ/h) to noticeably

affect the lineshape. In this regard it may prove useful, at some

time in the future, to monitor the decay of the quadrupolar order

(TlQ) [135] so that the presence of extremely slow motion may be

checked. This experiment has not been performed and I will discuss

this compound no further.

4.2.3 Choline Chloride

In Figure 41 we see that the T2e for this salt passes through a

minimum at about 250 K, below which it increases rapidly to what

appears to be a rigid lattice value at about 175 K. On the high

temperature side of the minimum T2e increases, but does not reach

2
a rapid motion (K » e qQ/h) value at the highest temperature

investigated (321 K). Not much weight should be given to the

linearity of the T
2e

data between 250 and 321 K since the T2e values

in many cases result from exponential fits to non-exponential data

(I do not believe that there are sufficient data to justify a

multiexponential fit).

In Figure 42 we observe the effects of anisotropic motion on

the powder patterns at various temperatures, This is further

reinforced in Figure 43, where the variation of the lineshape with

T is illustrated. At high temperatures the center of the lineshape
3~2nn

(between the points ± Vyy = (l+n) 8~) appears to collapse (see

Figure 44), while at low temperatures the wings of the spectrum
2

(near ± V = 4
3 ~) seem to be washed out. Unfortunately the

zz h
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Figure 42. Proton decoup1ed quadrupo1ar echo spectra of choline

chloride as a function of temperature. 3.5 ~sec 90° echo pulses

were employed in each case; the number of acquisitions were: 48° =

2400, 38° = 2400, 25° = 8000, 20° = 5400, -69° = 2000, _80° =

1300.
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Figure 43. Proton decoup1ed quadrupo1ar echo spectra of choline

chloride as? function of the interpu1se delay T. (a) At a temperature-

of 25°C, each spectrum results from 8000 acquisitions. (b) At a

temperature of 48°C, number of acquisitions as follows: T = 50,

2400 acq.; T = 200, 9600 acq.; T = 300, 7840 acq.
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Figure 44. The T = 300 ~sec spectrum from Figure 43b with a rigid

lattice powder spectrum (e 2qQ/h = 40 kHz, n = 0.31) superimposed.

3~It appears as if the infection points at ± V = - e (l+n)yy 8 h

have grown in magnitude relative to the rest of the spectrum•

This is an illusion caused by the relative scaling of the experimental

and calculated spectra. Actually, the inflection points at

3~± Vxx = 8" h (l-n) have collapsed relative to those at ±Vyy
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SiN at low temperature is too low to make a definite statement

regarding this last observation. The experimental data seem to

immediately indicate that either the motion occurs about an axis

near V , or is of low amplitude, for otherwise the lineshape wouldzz

be expected to vary to a much greater degree over this temperature

range. The least distorted region of the powder pattern occurs near

the inflection point corresponding to V ,indicating that the axisyy

about which the motion occurs is probably near V This motionyy

apparently occurs to a significant extent at room temperature, and

should show up in room temperature crystal structure data unless it

occurs by a mechanism in which th~ molecule flips between indistinguish-

able (symmetry related) positions. The crystal structure data

[96,98] show very little symmetry in the molecule; even the axis

+passing through the C-N (Me)3 moiety is not truly a C3 axis. The

crystallographic symmetry of the unit cell allows for a two fold

rotation coupled with a translation (a 21 screw axis), but an

actual molecular motion corresponding to this is very unlikely.

Taking this information into account, it is nearly impossible to

conceive of the molecule flipping between symmetry related positions.

It has therefore been suggested that the motion is "hidden" in the

anisotropic thermal parameters [136]. Fortunately Hjortas and

Sorum [96] determined the anisotropic thermal parameters for all

non-hydrogen atoms in their detailed crystallographic analysis of

choline chloride. The motion may be inferred from such data by

examination of the anisotropic thermal ellipsoids, but is more

straightforwardly extracted by performing a rigid body analysis

on the crystallographic data [137,138]. Such an analysis was

•



performed on the data of Hjortas and Sorum using the computer

program THMV-l [138]. One major axis of rotational libration

with a rms amplitude of 100 (i.e., peak to peak amplitude 280)

was found passing close to the nitrogen and oxygen atoms (see

Figure 45). Another smaller rotational motion of rms amplitude 30

+was found approximately along the C-N (Me)3 axis. This latter

motion is probably associated with "C
3

" rotation and I will

consider it no further. Not much weight should be given to the

exact orientation of the axis in Figure 45, since the program

which determined it treated the entire molecule as a rigid body,

when this may not be a totally adequate description. However, this

axis does nearly coincide with the 1800 flipping axis of choline

iodide (see Figure 46). It therefore seemed reasonable to perform

the lineshape calculation based upon a motion of total magnitude

300 along an axis nearly coincident with Vyy ' Later it was found

that moving slightly off V (i.e., decreasing a in Figure 40) would
yy

account for the apparent increase in e2qQ and decrease in n as the

temperature is lowered, and also give computer simulations which

are in somewhat better agreement with experiment. Initially a

simple two site flip-flop model was chosen, although this certainly

isn't a realistic model. The result of this calculation for various

overall flip-flop rates is presented in Figure 47. There are

similarities between the observed and calculated spectra, but there

are also differences. The major difference is the overall more

washed out appearance of the observed spectra, where the sharp

spikes of the calculated spectra are not observed. This is not

surprising on the basis of the unrealistic model assumed for the

220



Figure 45. ORTEP plots of the thermal ellipsoids of all non-

hydrogen atoms in choline chloride. The methyl groups are

represented by Cl , C2 , and C3, and the chain by C4 , C
S

' and 0

+(formula: (CH3)3 NCH2CH20H·Cl). The axis passing close to the

nitrogen and oxygen atoms is that which was determined by performing

a rigid body motion analysis as described in section 4.2.3 .

•
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Figure 46. The axis of the 180 0 flip-flop motion in choline

iodide as determined by Wemmer, et al. [97]. The atoms are

defined as in Figure 45.
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motion. Since the molecule is probably reorienting in a potential

well, a more realistic model would be one in which a large number

of angular jumps were accessible to the molecule with the probability

of the jump decreasing as its angular amplitude increased. This

type of model is not easily calculated using the method presented

in section 4.1, and a much better approach would be the asymptotic

expansion method [133,134]. Nevertheless, I can try to approximate

it with the method of section 4.1 by breaking the 30° jump angle

into many equally spaced increments and calculating the spectrum in

the hard collision limit (this is referred to by Wemmer [139] as the

rotational random jump model). As the number of angular divisions

increases, this model begins to approximate rotational diffusion in

a square potential well. Figure 48 would seem to indicate that this

model does not approximate the observed data any better~ in fact it

is worse. The agreement between experiment and this model would be

better if the total jump angle were increased from 30°, but this

diverges from the crystallographic data. If the potential well were

smoothed out such that it extended well beyond 30°, but with low

probability, this would probably simulate the experimental data

better and would not necessarily disagree with the crystallographic

data. Such a calculation, as I pointed out previously, is best done

utilizing the asymptotic eXpansion method [132,133,134]. I should

also mention that the T2e 's calculated by integrating Eq. (4.13)

for various T values using the two site 30° jump model are of the

same order as those observed experimentally, so that this model

appears to adequately account for the variation of T2e with

temperature.

225



Figure 47. Simulations of a 30° restricted flip-flop motion in

choline chloride using the parameters: e2qQ/h = 48 kHz, n = 0.3,

a = 60° and S = 90°. (a) Spectra as a function of the jump rate

K. (b) Spectra as a function of the interpulse delay T; note

that in the absence of an echo (T=O) the spectrum appears almost

as it would in the rapid motion limit.
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Figure 48. Simulations of a 30° restricted flip-flop motion in

choline chloride using the same parameters as Figure 46, but the

30° were divided into 5 equal intervals and the molecule was

assumed to jump between the 6 sites in the hard collision limit.
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4.2.4 Choline Iodide

As Figure 41 indicates, the T
2e

of choline iodide steadily

decreases as the temperature drops, until at about -90°c (183 K),

the echo signal disappears completely. Prior to the disappearance

of the signal a broad component appears to grow in at the center

of the spectrum (see Figures 29 and 49). Presumably, the signal

disappears due to the presence of slow motions, and should reappear

upon lowering the temperature sufficiently. At about -116°c (157 K)

the signal reappeared, but the l4N T
l

had increased to about 30

seconds (from 600 msec at _85°C), the T2e was still very short,

and a spectrum with good SiN could. not be obtained. S,e spectrum

which was obtained at this temperature appeared as a "blob': of about

100 kHz breadth. This indicates that e
2qQ/h has increased by about

50%, but we are still in an intermediate motion region (short T2e ,

distorted spectrcm.) As the temperature was lowered further, it

was increasingly difficult to obtain reasonable SiN, presumably

because T
l

was increasing rapidly. At -148°c (125 K) it was

impossible to obtain a reasonable signal, even with recycle delays

of 5 minutes. Note also that at this temperature the proton spectrum

appeared as the characteristic triplet of a rigid methyl group.

Unfortunately, both TIP and TIn of the protons appeared to be very

short (~ 100 ~sec), and a cross polarization experiment would have

been useless. I cannot completely disregard the possibility that

this behavior has some connection with a phase transition, but I

certainly would be surprised if this were the case since this

behavior diverges greatly from that observed in NH
4
Br and TMA Cl

(see section 3.3.1). From proton resonance studies the only known

•



Figure 49. Proton decoupled quadrupolar echo spectra of choline

iodide. (a) at various temperatures for a fixed T; 2400 transients

232

were acquired at each t~mperature. (b) at various T'S for a fixed

temperature. All spectra result from 2400 acquisitions.
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motion which could be quenched in this low temperature region is

methyl group rotation, and it is-difficult to imagine how this might

14hav.e such a large effect on the N efg, especially when it does

not seem to have much effect in choline chloride (~ther than

increasing the l4N T
l
). The 180° flip-flop motion inferred from

the x-ray crystallographic study [97] is therefore assumed to be

the" cause. If we assume the static efg to be axially symmetric and

of 50% larger magnitude than that observed in the rapid motion limit,

it becomes possible to calculate the orientation of the molecular

flipping axis relative to the principle axis of the static efg

(see Figure 50). It was found that the observed spectra (Figure 51)

could not be simulated by assuming an axially symmetric efg. The

flipping of an axially symmetric efg always leads to a collapse of

the center of the lineshape in the quadrupolar echo spectra (see,

for example, references [86] and [127]) while the observed spectra

show sharp spikes at V ,V ,and V • It was found that this type
" xx yy zz

of distortion is easily simulated if the static efg is assumed to be

axially asymmetric, and if the flipping axis is situated near the

V direction, or if the flipping axis is nearly 90° relative to V
xx xx

(i.e., nearly along V ). Since V ,V ,and V are two-fold axes,
yy xx yy zz

flipping about any of these will not alter the spectrum. Therefore,

the angles a and B (see Figure 40) must be chosen such that a is

.. nearly 90° and B is between 0° and 90°. If the static value of Vzz

is assumed to be 50% larger than the motionally averaged V ,thenzz

the required angle Bmay be determined and also the value of the

static asymmetry parameter. The required static efg is given by

2
e qQ/h = 67 kHz, n = 0.5, where a = 90° and B = 25°. The results of
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Figure 50. Calculated variation of the quadrupole coupling constant

and asymmetry parameter (as observed in the rapid motion limit) as

a function of the angle between the principle axis of the efg and

the axis of 1800 flip-flop (see Figure 40). The static asymmetry

parameter is assumed to be zero, so this plot would be of more use

in 2H NMR. Values for a > 45 0 are a reflection of the data for

,

The angle ~ (Figure 40) has no meaning here since V =xx

V in the static efg.yy
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Figure 51. Proton decoupled quadrupolar echo spectrum of choline

iodide at -50°C with a rigid lattice powder spectrum Ce
2

qQ/h =

48 kHz, n = 0.24) superimposed. Note how the infection points V
yy

and V appear as spikes.zz
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a 180° flip-flop calculation using these parameters are shown in

Figure 52. The spikes at the inflection points are reproduced,

but there are differences between the observed and calculated

spectra. The intensity between the ~ points decreases in the

calculated spectra in a way which is not observed experimentally.

Instead, the center of the observed spectra seems to fill in; and,

as I mentioned before, the lineshape eventually becomes entirely

washed out. This behavior cannot be simulated by any type of 180°

flip-flop motion; the echo spectra resulting from such a mechanism

will always have a '~ole" near the center because T2 here is very

short (frequencies near the center. result from exchange between

widely separated parts of the spectrum). The easiest way to

simulate this behavior with a jump model is if the jumps occur

about V (3 fold jumps about this axis seem best). This immediatelyzz
+brings to mind 3 fold jumps about the C-N (Me)3 axis, but the

proton NMR studies show that this motion is completely quenched

by -40°C [121J. An additional discrepancy is the observation

that the shoulders of the calculated spectra wash out as the

frequency drops, while this is not observed in the experimental

lineshape prior to its disappearance at _90°C. It is easily

understood why the shoulders of the calculated spectra wash out: as

the flip-flop frequency decreases the static V is ineffectivelyzz

averaged and begins to reappear, thus washing out the higher

frequency parts of the powder pattern. Decreasing the value of

the static efg will cause this washing out effect to become less

important, and this observation led me to assume that the efg

being averaged by the flip-flops is nearly the same as that observed

,



,

Figure 52. The calculated effect of 180° flip-flops in choline

2iodide. The static efg was assumed to be given by e qQ/h = 67 kHz

and n = 0.5, and relationship between the flipping axis and the

efg was given by a = 90° and a = 25°. The calculation was run at

low frequency resolution to save cpu time; in a higher resolution

calculation the spikes at V and V would be more prominent.
yy zz

•
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at higher temperatures. Making such an assumption leads to the

simulations of Figure 53, which seem to approximate the observed

data somewhat more closely. The axis about which this flip-flop

motion occurs has very nearly the same relationship to the efg as

does the axis which I determined for choline chloride. Since the

crystallographic evidence indicates that the relationship of the

two axes in the reference frame of the choline ion is nearly

coincident (see Figures 45 and 46), this observation makes some

sense. The T2e 'S which were calculated based upon this model, by

integrating Eq. (4.13) for various T values, were found to approximate

those observed experimentally, but.this model does not predict that

T2e will become so short as to cause a disappearance of the echo

signal. Additionally, the rate of the motion in Figure 52 is too

14slow to be an effective N spin-lattice relaxation mechanism, while

. 14 ,
the very short N T

l
s observed indicate that a very effective

relaxation mechanism is active above -90°C. For this reason I

must assume that two motions are present, a relatively slow 180 0

flip-flop motion and a much more rapid motion of undefined nature

which acts as an effective Tl mechanism and also causes a filling

in of the center of the echo spectra, This is yet another enigma

upon which some light may be shed by a single crystal study (the

single crystal lines could probably be observed throughout the

temperature range since a quadrupolar echo would be unnecessary).

4.3 Conclusions

Unfortunately, I have been required to make so many assumptions

here that the validity of any conclusions is difficult to assess.

Nevertheless, I do believe that a few strong statements can be
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Figure 53. The calculated effect of 180° flip-flops in choline iodide.

2
The static efg was assumed to be given by e qQ/h = 48 kHz and n = 0~3,

and the relationship between the flipping axis and the efg was given

by a = 90° and 6 = 85°. Note that an identical result is obtained

for a = 90° and 6 = 5° since a plane of reflection exists with respect

to this calculation at 6 = 45°.

(a) Spectra at various flip-flop rates (K) for a fixed T =

100 ~sec.

(b) Spectra at various T'S for a fixed K = 60 kHz (compare this

with Figure 49b). The calculation here was done at lower resolution

than (a) in order that cpu time might be saved.

,
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made.

The assumption of a substantially, or entirely intramolecular

efg seems justified, although a truly rigorous approach to this

problem may lead to a different conclusion. Invoking this assumption

leads to the conclusion that the observed choline chloride spectra

can be approximated by assuming a restricted motion about a fixed

axis of total approximate amplitude 30°. The agreement between

experimental and theoretical spectra would no doubt be helped by the

assumption of a distribution of jump angles with a total width of

There appear to be a number of ways in which the observed

choline iodide spectra could come about, and these should be

narrowed prior to making any definite statements. Still, the appearance

of spikes in the lineshape near V , V , and V indicate that 180°xx yy zz

flip-flop motions are occurring on a tensor which would be axially

asymmetric were it not flipping. The mounding of the lineshape

and its disappearance at low temperature must, for the present, be

classified as due to unknown processes,

In a global context, it appears that bothcboline chloride and

iodide have a tendency to flip, but the potential barrier is too

high in the chloride, permitting only torsional oscillations in

its potential well. In this context, an x-ray crystallographic

study is clearly indicated for choline bromide to determine whether

it too has a tendency to flip; as well as to seek the origins of

its vastly different quadrupolar coupling parameters. The rapid

flip-flop motions present in choline iodide (whose rate must exceed

500 kHz at room temperature) may explain the radiation insensitivity
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of this salt by preventing chain propogation steps necessary for

radiolysis .from occurring. If this is true, then any such motions

present in choline bromide must be restricted, as they are in the

chloride.

14I have several times mentioned that a single crystal N NMR

study is in order for these salts. As far as elucidating the

molecular dynamics of the ion are concerned, a much easier

procedure would be to perform deuterium NMR on a series of deuterated

analogues. 2Wemmer et al. [97] have performed H NMR on these compounds---
substituted at the hydroxyl position (which are easily prepared by

exchange with D20),and it is not surprising that few interesting

2observations are made. The most useful position to locate H in

order to investigate the motions which have been proposed, would be

C(4) (see Figure 45). By employing ~ NMR one would not have to

deal with the difficult interpretation of the l4N efg in these ionic

salts (the ~ efg in aliphatic compounds is almost always axial,

2has e qQ/h ~ 110 kHz, and is almost entirely intramolecualr).

Additionally, it has been shown [118] that choline chloride deuterated

at this position has nearly the same degree of radiation sensitivity

as the non-deuterated salt.

•

..
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Appendix A

Spherical Tensors

It is generally assumed that all nuclear spin interactions

in solids can be represented by second rank Cartesian tensors as

[41]

- == -

= (I I I)· A A A • Sx' y' z xxxy xz x

A A A Syx yy yz Y

A A A Szx zy zz z

(A.1)

where I and S are tensors of the first rank and A is a tensor of the--
second rank. A will relate to the dipolar, quadrupo1ar, or chemical

.:::

shift coupling of the molecule, and will contain all of the geometrical

information relating the principle axis system (PAS) of the tensor

to the outside world. (The PAS defines the reference frame in which

the tensor is diagonal). It is most convenient to derive a relation

between the tensor and the static field HO' with respect to which

the interaction is generally truncated. This relation may be obtained

.. by construction of a spherical tensor ;k from A, and rotation of that
III

tensor about the Euler angles (a,B,y) as [42]:

k, ..1 L k
Tkq = R(a,B,y) TkqR (a,B,y) =- TkpDpq(a,B,y) (A.2)

p=..k
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kwhere D (a,B,y) represent Wigner rotation matrix elements. Thepq

spherical tensor ;k may be constructed from ~ via the product rule

for two irreducible tensor operators [42]:

Tkq{X,y) = ~ <klmlk2m2Ik,ml+m2>Tklml{X)Tk2m2 (y)
ml m2

(A.3)

where Tk (x) and Tk (y) represent first rank irreducible tensors
lml 2m2 .

and <klmlk2m2Ik,ml+m2> is a Clebsch-Gordan coefficient. The components

Tkq of the spherical tensor derived from a Cartesian tensor ~ will

be

1 (A.4a)TOO = - - (A +A +A )3 xx yy zz

i (A.4b)TID = - - (A -A ).2 xy yx

'Ii. = - .! (A -A ±i <A +A ) ) (A.4c)±l 2 zx xz yz zy

1 (A.4d)T20 =l"6 {3 A - (A +A +A »zz xx yy zz

T2±1 ... ± .! (A +A ±i{A +A » CA,4e)2 xz zx yz zy

..
1 .

(A.4f)T2±2 ... - (A -A ±iCA +A »2 xxyy xyyx

Equation (A.l) may be expressed as

•
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j(=A IS +A IS +A ISxx x x yx y x zx z x

+A IS +A IS +A IS
xy x Y yy Y Y zy zy

+AIS+AIS+AISxz x z yz y z zz z z

= (A.5)

i,j-x,y,z

which, in terms of spherical tensors, becomes

2 k

j(= L L
k=O q=-k

(-l)q A.T
-lcq kq . . (A.6)

tensors I S.

Here, ~q are the spherical tensor elements derived from the Cartesian

tensor ~, and Tkq are derived from the product of two first rank

Under geometrical rotation, the ~q only are rotated;

Tkq will be rotated in "spin space".

To see how this works, consider the all important quadrupole

coupling interaction:

eq
2I(2I-l)h ... .. ... (A.7)

Here, ~ refers to the Cartesian electric field gradi~nt (efg) tensor,

which is diagonal in its own PAS. There ar~ therefore, only two

irreducible spherical tensor elements which are non-zero
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1A = - (V -V )2±2 2 xx yy

From .(A.6) it is apparent that the only irreducible spin tensor

elements needed are

=~ (3 I 2 - 1(1+1», and
y' 6 z

T2+2 = 21 (I 2_1 2±i(1 I +1 I »
- x y x y yx

to yield

2
= e qQ (3 I 2-1(1+1) + n(1 2..1 2»

41(21-l)h z x y , (A.9)

V -V
where n· xx YY and eq • V • For our application to high field,V zz

2 zz
the term I -I 2 will mix the Zeeman eigenstates 1+1> and 1-1>x y

(i.e., it is non-secular)and needs to be lopped off, giving the truncated

Hamiltonian:

eQ 2 (
3CQ • 41(21-l)h Vzz(J 1z -I 1+1» (A.lO)



To obtain the orientation dependence of XQ with respect to HO' we

need only rotate Vzz =~ A20 about the Euler angles (a,B,y) using

Equation (A.2):

253

(A. 11)

kThe D· (aBy) may be determined using the relation [42]:
pq

kand any standard table of d to yield:pq

2 2
(3c~s B-l)V + sin B cos2a (V -V )

2 zz 2 xx yy

(A.12)

(A.13)

..

2e qQ 2 (l( 20 ) n . 2·= 41(2I-l)h(3 1z -1(1+1» 2 3 cos ~-l + 2 sin B cos2a)

(A.14)

This expression is introduced in chapter 1, and used extensively

throughout this work •
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Appendix B

Fictitious Spin 1/2 Operators

the dynamics of a spin 1/2 particle may be completely described

by the three angular momentum operators I , I and I ; while, for ax y z

spin one particle, eight orthogonal operators are required. We may

choose these to be the three angular momentum operators, plus linearly

independent quadratic combinations of them. On this basis it is

possible to construct the fictitious spin 1/2 operators. Our purpose

in constructing them is to have three pseudo-two level angular momentum

operators in each of three pseudo-Cartesian reference frames. The

name "fictitious spin 1/2" derives from the supposition that a

perturbation at resonance on one transition of a ml,lltilevel system will

allow us to ignore all other transitions and consider a fictitious

spin 1/2 system [3].

The double quantum operators [23] I i (p = x,y,z; i=1,2,3) have
p, .

been constructed solely for the purpose of describing the dynamics of

spin 1 nuclei, while the single transition operators [21] I i -
j

p

(p - x,y,z; i,j=1,2,3) have been constructed for use on any multi-

level spin system. With regard to spin one nuclei, the I operatorsp,i

will lead to more efficient computation when the system is very near

to Larmor resonance, but the I i - j operators are somewhat easier to
p

visualize in terms of the spin 1/2 operators and I will present them

here.

In the Zeeman basis 1+1>, 10>, 1-1> we can construct nine operators

which span the space of a spin one nucleus as [22]:

..
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1-2 1 G
1

D 1-2 1 ( 0
1

D 1-2 1 C0 ~)I =- 0 1y = - '2 -~ 0 I =- o -1x 2 0 0
z 2 o 0 0
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0 D . 2-3 1 (0 0 n .

Go 0)2-3 1 2-3 1I =- 0 I = - -' .0 0 I =- 1 0
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1-3 1 G
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x 2 0 y 2. -1 0 z 2 0 o -1

where the i-j operators are linearly dependent throughI z

1-3 11- 2 + 12- 3 (B.1)I =z z z

Obviously, these operators are meant to perform as Cartesian angular

momentum operators I , I and I for the 1+1>-10>, 10>-1-1> and
x y Z

1+1>-1-1> transitions. Their relationship to the spin 1 angular

momentum operators

1 (0 10)I =7';f 1 0 1
x y~ 0 1 0

is

i (0 1 0)I = - 72 -1 0 1 ,
y 2 .. 0 -1 0

I = (~ ~ ~)
zOO -1 .

I .. 2 11- 3
z z

,

,

and

(B .2a)

(B.2b)

(B.2e)
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Additionally, the double quantum 1-3 operators are given by

and (B.2d)

11- 3
:0 1 I I +1 I )

Y 2 x y y x (B .2e)
•

"
i-j i-j

The operators 1+ and 1_ are formed in complete analogy with the

spin 1/2 case.

In the case of Cartesian angular momentum operators we know that

e
-ieI

p I
q

ieI
e p:o I cose + i[.1 ,I ]sine

q q p
(B.6)

Thus, knowledge of the cyclic commutators [21]:

[I i - j I i - j ] = i I i - j (B.7a)x 'y z

[Ii - j I j - k ] i i-k (B.7b):0 - Ix 'x 2 Y

[Ii - j I j - k ] i j-k (B.7c)=--1y 'y 2 Y

[Ii - j I j - k ] i i-k (B.7d)= - - Ix 'y 2 x

and the non-cyclic ones (see Table B.I) allow one to determine the

evolution of any operator due to any other, and thus the evolution

of any density matrix expanded in terms of these operators. In the

case of the I i - j operators, their linear dependence (Equation (B.l»
z

..
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precludes the use of Eq. (B.6) and the rotation matrices of Table B.II

must be used

e e
-i8I

P I
q

i8I
P = (B.8)

the form of the I i operators via
p,

The correspondence between the two

"

•

When considering a system on resonance, it is desirable to

i-j
condense the I operators to

p .
. 1-3

a rotation about I of ~/2.
y

sets of operators in this frame becomes:

I 2-3 (B.9a)= Ix,l x

I 1-2 (B.9b)= Iy,l y

I 1-3 (.B.9c)= Iz,l x

I
. 2-3

(B.9d)= - Ix,2 y

I
1-2 (B.ge)y,2 = I x

I = I 1-3 (B.9f)z,2 y

I I 2-3 (B.9g)= -x,3 z

I 1-2 (B.9h)y,3 = - I z

I = I 1-3 (B.91)z,3 z

These relations allow us the possibility of using the large volume of

work already

calculations

•

present regarding the Ip,i operators [2,23,40J for

involving the I i-j operators,
p
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Appendix C

Computer Programs

Several times I present computer simulations which are intended to

link my ideas with the 'observable world. It is probably not inappropriate

here to present two of the programs which were used for simulating

purposes dn the Laboratory of Chemical Biodynamics VAX 11/780.

The program DQTP is a derivative of Jim Murdoch's DQC [2]. DQTP

performs a number of useful calculations pertaining to isolated spin

one nuclei. Time domain signals may be generated for arbitrary pulse

sequences by integrating over ideal powder lineshapes (which must be

supplied externally). Additionally, the simple cross~polarization

theory outlined in section 2.4 is employed to calculate cross-polarized

echo signals such as those which are presented in Figures 18, 19 and

26. The time domain signals which are generated are easily Fourier

transformed using the IMSL routine FFT2C [83].

The program RJUMP integrates Eq. (4.13) over all orientations to

produce a time domain echo signal which begins at the echo maximum.

This signal is then numerically transformed using the IMSL routine

FFT2C [83]. If the imaginary part of the time domain signal is retained

in the transform, then a chemical shift type of powder pattern will

result, while if this channel is zeroed then a spin one quadrupolar

powder pattern is produced. Two other programs were often used which

are simple extentions of this program. T2JUMP was used to calculate

echo decays (T2e) caused by jumping motions via integration of Eq. (4.13)

for various L values at t=O FTJUMP was used to calculate frequency

domain spectra by integrating Eq. (4.14) over orientations.
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program dqtp
c
c calculates evolution in a spin 1 system
c
dimension yy(2048,4),xx(2048,4),sumyy(2048,4),ixx(4),iyy(4),
lwt(2048,2)
character*l joff,yyy,ans,ans2,hans,ansq,ansr,ansp,ansn,typps
l,ansswp,dmflag,typcp
data yyy/121/
data sumyy,wt/8l92*0.O,4096*0.0/
integer rl im
COOlp1ex dm
common n,woff,wq,vl(20),ph(20),t(20),as(3,3),dm(3,3),

1 idm/ksfx/ivar,nvar,nvinc,vinc/test/hans,yyy,typps,dmflag,typcp
l/bdpar/wt/MIXDM/NOP,IDMM(9),COEFX(9)/cppar/omegh,bdeff,tmix,epsln

c
isumwq=O
nsum=1
wqnot=O.O
noff=1
woffinc=O.O
wqinc=O.O

c
type 500

500 format(t2,'Evolution of an initial density matrix is calculated ' /
It 2, Iposs lbl e 10M s: IIt 10, Ixl=l ,x2=2,x3=31It 10, Iy1=4,y2=5,y3=6 1I
It10,'zl=7,z2=8,z3=9'/t10,' mixture=10,cp dm=ll'/)
type 489

489 format(t2,'do you want to use the X,y,z(y) I,
l',or the +l,O,-l(m) basis?',$)
read(5,10)hans
if(hans.ne.yyy)then
type 490

490 format(t2,'-in this basis we start with Z, 3(z**2)-s(s+1) (=9)1,
l'or cp din')
end if
type 501

501 format{/,' what is the initial density matrix? ',$)
accept *, idm
if(idm.eq.l0)call mixset
if(idm.eq.11)call predm(ncpstp,pdmf)
type 502

502 format ( I how many steps in your pul se sequence? ',$)
accept * ,nsteps

c
type 460

460 format(t2,'do you wish to at some point swap/zero dm elementsI ,
11(Y/n)?' ,$)
read (5,10) ansswp
if(ansswp.eq.yyy)call swapp
type 450

450 format(/t2,'do you wish to average a parameter over many quadrup',
l'ole frequencies(Y/n)?' ,$)
read(5,10) ansq

•
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if(ansq.eq.yyy}then
wqnot=O.O
end if

c
type 470

470 format(t2,'do you wish to read the intensities out of a pporg4',
l' fi1e(Y/n}?',$}
read (5, 10 }ansn
if(ansn.eq.yyy}then
call ppread (wqc ,mpts,11im)
wqc=wqc*I.0e-03
go to 475
end if

c
type 508

508 format(' what is the limiting quadrupole frequency',
1 ' in kHz? ',$}.

accept *,wqc
475 type 509
509 format (' how many different quadrupo1 e frequencies do you "

1 'want?' ,$)
accept *,nwq

c
if(nwq .eq. I} go to 160

. type 50S
·505 format(t2, 'do you want +1- Omega-q(y}, or just one side(n}?' ,$)

read( 5, 10} ans
type 511

511 fonmat(' does voff vary with vq ? (YIn) ',$}
read(5,10}joff

10 fonmat(al)
if(joff.ne.yyy} go to 160
type 512

512 fonmat(/,' voff. a * vq + b (b in kHz}'/tl0,' enter a:'$)
accept *,a
type 506

506 fonmat(tl0,'enter b:',$}
accept *,b
go to 170

c
160 type 513
513 fonmat(/,' what is the fixed or initial voff in kHz? ',$}
accept *,woff
woffO=woff
if(nwq .gt. I} go to 170
type 514

514 fonmat (' how mc.1y voff val ues do you want ? ',$)
accept *,noff
if(noff.eq.l}go to 170
type 515 .

515 fonmat(' what is the increment in kHz? ',$}
accept *,woffinc

c
170 do 525 i=l,nsteps

•
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type 516,i
516 fonnat{/,' Enter the pulse magnitude for step' ,lx,i2,'(khz):',$)

accept *,v1(i)
if(v1(i).eq.0.0)go to 524
type 517

517 fonnat(t10,' pulse phase (in degrees) ',$)
accept *,ph(i)

524 type 518
518 fonnat(t10,' time 1nterval (in usee) ',$)
525 accept *,t (i)
type 400 .

400 fonnat(t2, 'do you whh to vary a pulse sequence parameter(y/n)?'$)
read(5, 10) ans2
if(ans2.eq.yyy)call vpsp

c
if(hans.eq.yyy)then
type 519

519 fonnat(t2,'possible output parameters:'/t10,'xl=1,x2=2,x3=3'/
It 10,'y1=4,y2=5,y3=6' /t 10,' zl=7 ,z2=8,z3=9' /t10,' omega q=10,'
l'omega off=ll'/tl0,' rf field=12,phase=13,time=14'/t10,
I' x2+yl=15, xl+y2=16, wq+woff=17')
·else
type 521

521 fonnat(t2,'possible output parameters:'/tl0,'x=1,x2=2'/
It 10,' y=4.y2=5' /t 10, , z=7 ,3( z**2)-s( s+l )=9' /t 10, t omega q=10,'
l'omega off=11'/tlO,'rf field=12,phase=13,time=14 1/t10,
11 wq+woff=17 , )
end if·
type 530

530 fonnat(t2,'how many parameters do you want to save?'$)
accept * ,npsv
do 550 i=l,npsv
type 520, i

520 fonnat(t2,'x output in file' ,12,'??' ,$)
accept *, ixx( i)
type 522,i

522 fonnat(t2,'y output in file',12,'??',$)
accept *, iyy( i)

550 continue
c
c

1f(idm.eq.ll)then
type 300

300 fonnat{/t2, '1s th1s an ADRF( a) or SL(s) experiment?' ,$).
read (5,10 )typcp
type 301

301 fonnat(t2,'what is the I sp1n mixing field(khz)?',$)
accept * ,omegh
type 302

302 fonnat(t2,'is the power spectrum of the lattice lorentzian(l),'/
It3,'gaussian(g), or exponential (e)?' ,$)
read(5,10)typps
type 303

303 fonnat(t2,',what 1s the correlation time(usec)l,
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11 of the dipolar state?I$)
accept *,bdeff
bdeff=bdeff*I.0e-03
type 307

307 fonnat(t2,I,and what ;s the relative mixing time l ,
11. 11.$)
accept *.tmix
type 310

310 fonnat(t2. l ratio of S spin to I spin energy states l
•

11 (eps 11 on )1I • $)
accept *.epsln
type ·305

305 fonnat(t2,l a look at the dms(y/n)1 1.S)
read (5.10 )dmfl ag
end if

c
c

if(nwq .gt. l)isumwq=1
if(ans2.ne.yyy)then
nmx=maxO(noff.nwq)
else
nmx=nvinc
end if

c
c

do 201 i=I,np
do 201 j=I,npsv
yy( i.j )=0.0

201 xx(i,j)=O.O
c

if(nwq .eq. 1) go to 202
c
cset up wqinc paraneters. fppf=ratio of pporg4 points to desi red points
qnwq=nwq-l
wqinc=abs(wqc-wqnot)/ qnwq
if(ansn.eq.yyy)fppf=float(mpts-l)/qnwq
if(ans.eq.yyy)then
nwqd=nwq
wq:a-wqc
if(ansq.eq.yyy)fppf=fppf*0.50
wqinc=2.0*wqinc
else
wq=O.O
end if

c
if(ansn.eq.yyy)wqinc=wqinc*sign(I.0.wqc)

c
if(ansq.eq.yyy)then
type 554

554 format(/t2,l you can see how fast the calcns progress ••• l
,

l/t3 1••• only if you want(y/n)?I$)
read (5, 10) ansr
end if
go to 203



c
202 wq=wqc
c
c
203 wqs=wq
nsfw=ll im
np=nmx

c
do 280 iq=I,nmx

c
if(ansq.eq.yyy)then
wq=wqs
nsum=1
nsf=ll im
end if

c
206 if(joff.eq.yyy) woff=a * wq + b
sex=I.0
l=iq

210 n=O
c

if(idm.eq.ll.and.iq.ne.l)then
n=n+ncpstp-l
i st rt=ncpst p
else
istrt=1
end if

c
c step through the pulse sequence
do 215 in= ist rt ,nsteps
n=n+l
if(ans2.eq.yyy.and.in.eq.nvar.and.lq.ne.l.and.nsum.eq.l)then
goto(401,402,403),ivar

401 vl(nl=vl(n)+vinc
go to 405

402 ph(n)=ph(n)+vinc
go to 405

403 t(n)=t(n)+vinc
else if(ans2.eq.yyy.and.iq.eq.l.and.in.eq.nvar)then

c save the density matrix from the period prior to the variation, so
c not to waste time calculating it many times over
call savdm(nsum,l)
end if

405 if(ansq.eq.yyy.or.ans2.eq.yyy)then
if( iq.gt .1. and. in.lt .nvar)then
go to 215

else if(iq.gt.l.and.in.eq.nvar)then
call savdm(nsum,2)
call igor( iq ,nsum, ansswp ,ncpstp ,pdmf)

else
call igor( iq ,nsum, ansswp ,ncpstp ,pdmf)

end if .
el se
call igor(n,nsum,ansswp,ncpstp,pdmf)

266

..



..

..

end if
if(n .ne. nsteps) go to 215
do 214 k=l,npsv
call specify(yy(l,k),iyy(k»
i f( ansn .eq .yyy. and. ansq .ne.yyy)yy(-l, k)=yy(l , k)*wt( nsfw,2)
if(ansq.eq.yyy.and.nsum.lt.nwq)then
if(ansn.eq.yyy)then
sumyy( 1,k)"=sumyy( 1,k)+wt (nsf ,2)*yy( 1,k)
el se
sumyy(l,k)=sumyy(l,k)+yy(l,k)
end if
go to 214
end if
call specify(xx(l,k),ixx(k»

214 continue
215 cont inue
c

if(ansq.eq.yyy)then
nsum=nsum+l

c
if(nsum.le.nwq)then
if(ans.eq.yyy)then
if(mod(.float(nsum),2.0).eq.0.0.and.nsum.ne.1)then
wq=-wq
sex=-sex
else if(nsum.ne.l)then
wq=wq+wqinc*sex
if(ansn.eq.yyy)nsf=nint(float(llim)+float(nsum-l)*fppf)
end if

else
if(ansn.eq.yyy)nsf=nint(float(llim)+float(nsum)*fppf)
wq=wq+wqinc
end if

go to 210
else
if(ansr.eq.yyy)type 220,1

220 format(t5,' calculation ' ,lx,i3,lx,'done!')
do 440 kn=l,npsv

440 yy(l ,kn)=sumyy(l ,kn)/float(nsum)
end if
end if

c
if(noff .gt. 1) woff=woff + woffinc
if(nwq .gt. l.and.ansq.ne.yyy)then.
wq=wq + wqinc
nsfw=nint(float(llim)+float(iq)*fppf)
end if

280 cant inue
c
c

if(idm.eq.l0)idm=18
if(idm.eq.ll)idm=19
do 602 k=l,npsv
open(unit=l,name='DQC.DAT ' ,type- ' new ' )

267



write(l,580)nsteps,np,ixx(k),iyy(k),idm,ivar,nvar
580 fonnat(7(i4,lx))
if(idm.eq.18)write(l,585)nop,(idmm(i),coefx(i),i=l,nop)

585 fonnat{t2,i2,lx,6(i2,lx,f7.5,lx))
i f{ idm.eq .19)write( 1,590) anegh ,bdeff ,typps, tmix ,typcp

590 fonnat(t2,flO.5,l~,flO.5,lx,al,lx,flO.5,lx,al)
write(1,560)woffO,a,b,wqc,hans,ansq,nwq,wqnot

560 fonnat (t2,4e13. 6, lx ,al,Ix ,.a1,lx, i3, lx ,e13. 6)
do 599 j=l,nsteps,2

599 write(l,600)(vl(i),ph(i),t(i), i=j,j+l)
600 fonnat(t2,6e13.6)

do 601 j=1,np,3 .
601 write(1,600)(xx(i,k),yy{i,k), i=j,j+2)
602 close(unit=l)
stop I Thats all fol ks I

end
c
c
c
c
c
subroutine specify(aa,m)
canpl ex dm{ 3,3)
COlTlTlon n,woff ,wq,vl (20) ,ph (20),t (20) ,as (3,3) ,dm, idm
l/ksfx/ivar,nvar,nvinc,vinc

c
aa=O.O

c
if(m .ge. 10) go to 50
l!I11=m-1
i i=ItII1/3 + 1 .
jj=mod{nm,3) + 1
aa= as ( i i ,j j )
return

c
50 if (m •eq • 10) aa=wq

if(m .eq. 11) aa=woff
if (m •eq .12 )aa= vI (nv ar )
if(m.eq.13)aa=ph(nvar)
if(m.eq.14)aa=t(nvar)
if(m.eq.15)then
aa= as (1,2)+as (2, 1)
else if{m.eq.16) then
aa= as (l, 1)+as (2 ,2)
end if
if(m.eq.17)aa=wq+woff
return
end

c
c
c
c
c
subroutine igor(iq,nsum,ansswp,ncpstp,pdmf)
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c
c does the dirty work for CQTP
c
parameter pi=3.14159265, rooto=.70710678
dimension heg(3),isdm(10),fsdm(10)
complex h(3,3),u(3,3),dm(3,3),s2,r(3)
character*1 hans ,yyy ,typps, ansswp ,dmfl ag ,nnn ,typcp .
data nnn/110/
common n,woff,wq,vl(20),ph(20),t(20),as(3,3),dm,idm
l/test/hans,yyy,typps,dmflag,typcp/cppar/omegh,bdeff,tmix,epsln
l/swap/isdm,fsdm,nsswp .

c
wq3=wq/3.0
twopi=2.0*pi
cst=O.OOl * twopi
rad57=360.0 / twopi

c
wl=vl(n)
phr=ph( n) / rad57
wlx=wl * cos(phr)
wly=wl * sin(phr) .

c
if(hans.eq.yyy)then

cHin the x,y,z basis
h(l,l)=wq3
h(I,2)=cmplx(0.0,-woff)
h(1,3 )=-wly
h(2,l)=-h(l,2)
h(2,2)=h(l,l)
h(2,3)=-wlx
h(3,1)=h(l,3)
h(3,2)=h(2,3)
h(3,3)=-2.0 * h(l,l)
else

cHin the +1,0,-1 basis
h(1,1)=-woff+wq3
h(l,2)=rooto*cmplx(-wlx,wly)
h(l,3)=0.0
h(2,2)=-2.0*wq3
h(2,3)=rooto*cmplx(-wlx,wly)
h(3,3)=woff+wq3
h(3,l)=O.0
h(3,2)=conjg(h(2,3))
h(2,l)=conjg(h(I,2))
end if

c
c di agonal ize H
call heigen(h,u,3)

c
do 20 i=1,3
do 20 j=1,3
if (i •eq. j) go to 15
h(i,j)=O.O
go to 20
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15 heg(i)=real(h(i,i))
h(i,i)=cexp(cmplx(O.O,(-cst * t(n) * heg(i»)))

20 continue
c
c
c transfonn Hback to prey rep
call umua(u,h ,3,r) .

c
c set up cp dm

if(idm.eq.ll.and.n.eq.ncpstp)then
call mixfld(heg,u,nsum,iq,typps,typcp,dmflag,hans,ncpstp)
if(ansswp.eq.yyy.and.n.eq.nsswp)call swapdm
return
el se if( idm.eq.ll.and.n.lt.ncpstp)then
if(n. eq.l )t hen
call matzoo(dm,3,0)
sl=0.5
s2=cmplx(0.0,sl)
dm( 1,2 )=s2*pdmf
dm(2,1)=-s2*pdmf
end if

go to 30
end if
if(n .gt. 1) go to 30

c
c set up initial density matrix
c
c
sl=0.5 .
s2=cmplx(0.0,sl)
call matzoo(dm,3,0)

c
if(hans.eq.yyy)then

c dm in the x,y,z basis
go to(I,2,3,4,5,6,7,8,9,10),idm

1 dm(2,3)=sl
go to 25

2 dm(2,3)=-s2
go to 25

3 dm(2,2)=sl
dm(3,3)=-51
go to 25

4 dm(l,3)=51
go to 25

5 dm(I,3)=s2
go to 25

6 dm(l,I)=-51
dm( 3,3 )=51
go to 25

7 dm(l,2)=s2
go to 25

8 dm(l,2 )=51
go to 25

9 dm(I,l)=sl
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dm(2,2)=-sl
go to 25

10 call mdm
25 dm(2,1)=conjg(dm(I,2»
dm(3,1)=conjg(dm(I,3»
dm(3,2)=conjg(dm(2,3»
else

conly z, or 3{z**2)-s{s+l) possible in this basis for now
i f( idm.eq.7)then
dm(I,I)=sl
dm(3,3)=-sl

else if(idm.eq.9)then
dm( 1,1 )=51
dm(2,2)=-2.0*sl
dm(3,3)=sl

end if
end if

c
c
c transform density matrix in accordance with H
30 call umua(h ,dm,3,r)
c

i f( ansswp.eq .yyy. and.n.eq.nsswp) call swapdm( ; sdm)
c calculate expectation values of operators

if(hans.eq.yyy)then
as(l,1)=2 * real (dm(2,3» .
as(I,2)=-2 * aimag(dm(2,3»
as(1,3)=rea1(drn(2,2) - dm(3,3»
as(2,1)=2 * rea1(dm(I,3»
as(2,2)=2 * aimag(dm(I,3»
as(2,3)=rea1(dm(3,3) - dm(I,I»
as(3,1)=2 * aimag(dm(l,2»
as(3,2)=2 * rea1(dm(1,2»
as(3,3)=rea1(dm(I,1) - dm(2,2»
e1 se

c in the +1,0,-1 basis
as(I,I)=rooto*(rea1(dm{2,1)+dm(1,2)+dm{3,2)+dm(2,3»)
as(1,2)=rooto*(aimag(dm{2,1)+dm{2,3)-dm(I,2)-dm{3,2»)
as(2,1)=-rooto*{aimag(dm(I,2)-dm{2,1)-dm{3,2)+dm{2,3»)
as(2,2)=rooto*{rea1{dm{I,2)+dm(2,1)-dm{2,3)-dm(3,2»)
as(3,1)=rea1(dm{I,1)-dm{3,3»
as{3,3)=rea1(dm{I,1)+dm{3,3)-2.0*dm{2,2»
end if

c
return
end

c
c
c
c
c
subroutine heigen{h,u,nm)

c
c this subroutine diagonal izes an nm by nm hermitian matrix h by
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c the Jacobi method and outputs h and the unitary transformation
c matrix u. the procedure is adapted from subroutine "eigen"
c in the IBM system/360 scientific subroutine package.
c
complex h(nm,nm),u(nm,nm),u11 ,u1m,um1 ,umm,th,tu
nmm=nm-l
qn=nm
range=5.0e-7

. do 20 i =1,·nm
do 10 j=l,nm

10 u( i ,j )=0.0
20 u(i,i)=1.0
c

anorm=O.O
do 30 i=l,nnm
ii=i+l
do 30 j=ii,nm

30 anonn=anonn + rea1(h(i,j)*conjg(h(i,j»)
if(anonn .1e. range) return
anonn=sqrt (2.0 * anorm)
anormx=anonn * range / qn
ind=O
thr=anorm

c
40 thr=thr/qn
c
50 do 80 l=l,nmm
11=1+1
do 80 m= 11 , nn:t
if( cabs(h(l,m» .1t. thr ) go to 80

c
ind=l
diff=rea1( h(m,m) - h(l,l) )
if(diff .eq. 0.0) diff=1.Oe-15
ar=0.5 * atan( 2.0 * rea1(h(1 ,m» / diff )
ai=0.5 * atan( 2.0 * aimag(h(l,m» / diff )
sini=sin(ai)
cos;=cos( ai)
sinr=sin(ar)
cosr=cos( ar)
u11=cmplx( cosr*cosi, sinr*sin1 )
u1~=cmp1x(-sinr*cosi,-cosr*sini )
um1=cmp1x( sinr*cosi,-cosr*sini )
unm=cmp1x( cosr*cosi,-sinr*sini )

c
do 60 j=l,nm
th= ul1*h(1,j) + ulm*h(m,j)
h(m,~)=uml*h(l,j) + umm*h(m,j)
h( 1,J )=th

60 cont inue
c

do 70 i=l,nm
th= unm*h(1,1) - um1*h(i ,m)
h(i,m)=-u1m*h(i,1) + ul1*h(i,m)
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subroutine mateq(a,b,n)
c
c this subroutine sets the nxn complex matrix b equal to a
c

complex a(n,n),b(n,n)
do 10 i=1,n
do 10 j=l.,n

10 b(i,j)=a(i,j)
return
end

c
c
c
c
c

subroutine matzoo(a,n,k)
c
c this subroutine sets all elements of an nxn complex matrix equal
c zero, or creates an nxn identity matrix, depending on the value
c

compl ex a(n,n)
do 20 i=1,n
do 10 j=1,n

10 a(i,j)=O.O
20 if(k .ne. 0) a(i,i)=1.0

return
end

c
c
c
c
c
subroutine umua(u,b,n,v)

c



c performs unitary transformations: b= u * b * u-adjoint
c
complex u(n,n),b(n,n),v(n)

c
call matrml(u,b,n,v)
call mataml(b,u,n,v)
return
end

c
c
c
c
c
subroutine mataml(a,b,n,rv)

c
c a matrix multipl ier: a = a * b-adjoint
c
complex a(n,n),b(n,n),rv(n),s
do 14 i=l,n
do 12 j=l,n
s=O.O
do 11 k=l,n

11 s=s + a(i,k)*conjg(b(j,k))
12 rv (j )=s
do 13 j=l,n

13 a( i ,j )=rv. (j )
14 continue
return
end

c
c
c
c
c
sub rout i ne mat rml (a,b,n ,cv)

c
c a matrix multipl ier: b = a * b
c
complex a(n,n),b(n,n),cv(n),s
do 14 j=l,n
do 12 i=l,n
s=O.O
do 11 k=1,n

11 s=s + a(i,k)*b(k,j)
12 cV(1)=s
do 13 1=1,n

13 b(1,j )=cv( i)
14 cont inue
return
end

c
c
subrout ine vpsp
COOll1onlksfxl iv ar ,nv ar ,nv inc,v inc
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type 10
10 fonnat{t2, 'W'1ich parameter do you want varied:' /t10,
l'l=rf field,2=phase,3=time?',$}
accept *,1 var
type 20

20 fonnat{t2,' at which step do you wish this varied?' ,$}
accept *, nv ar
type 30

30 fonnat {t 2, 'how many increments do you wish to generate?',$}
accept *,nv1nc
type 40

40 fonnat{t2,'and W'1at is the increment (in khz,deg,or usee)?' ,$}
accept *, vine
return
end

c
c
subroutine mixset
common/mixdm/nop,1dmm{9},coefx{9}
type 10

10 fonnat(t2,'density matrix is to consist of how many operators',
l'?',S}
accept *,nop
type 15

15 fonnat{t2,'enter number corresponding to operator{previously'
1,' defined}'/t2,' and fractional composition:'}
do 100i=1,nop
type.20

20 fonnat {t 5, I operator?' ,$ }
accept *,idllli1{1}
type 25

25 fonnat{t5, I fraction: I ,S} .
100 accept *,coefx{1}
return .
end

c
c
subroutine mdm
complex dm(3,3},s2
common n,woff,wq,vl{20},ph{20},t{20},as{3,3),dm,1dm
1/m1xdm/ndme,1dmm{9},coefx{9}
s1=0.5
s2=cmplx{0.0,s1)
call matzoo{dm,3,O}
do 25 1=l,ndme
px=sqrt{coefx(1}}
call dmas{px,idmm{1}}

25 cont inue
return
end

c
c
c
subrout i ne mix fl d(eigenv,u ,ndm, iq,typmf ,typcp ,dmfl ag,h ans ,ncpst p)

•
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z,3
x,3
y,3

(we-wq)/2
we

(we+wq)/2
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complex dm(3,3),u(3,3),tdm(8096),r(3),cdm(3,3)
dimension eigenv(3)
character*l typmf,dmflag,yyy,hans,nnn,mmrn,typcp
data yyy,nnn,mmm/121,110,109/
common n,woff,wq,vl(20),ph(20),t(20),as(3,3),dm,idm
l/cppar/wheff,ewidth,tmix,epsln
incdm=(ndm-l)*9
ndmt=incdm+l
if(iq.gt.l)go to 50
call matzoo( cdm,3,O)

c
c populate the dm in accordance with the matching conditions;
c once we have rotated ourself into the proper interaction representatio
c two operators get populated in this simple two effective field
c treatment, there is the possibl1 ity that a third may al so
c
c in the +1,0,-1 basis

if(hans.eq.mmm)then
wneffl=eigenv(3)-eigenv(1)
wneff2=eigenv(2)-eigenv(1)
wneff3=eigenv(3)-eigenv(2)
omegf= abs (wneff2)
wneff=wneffl
coefdm=dmc (13 ,wq ,omegf ,wneff ,wheff ,ewidth ,epsl n,tmix ,typmf ,typcp)
dml=sign(l.O,wneffl)*coefdm

c we coeff of SZ(2-3) is ineffective in cross relaxation
dm2=O.O
wneff=wneff3
coefdm=dmc(l2,wq,anegf ,wneff ,wheff ,ewidth ,epsln,tmix,typmf ,typcp)
dm3=sign(1.0,wneff3)*coefdm

c
c popul ate Sz(l-3)
cdm(1,1)=-dml*O.50
cdm(3,3)=dml*0.50

c populate SZ(1-2)
cdm(2,2)=-dm3*O.50
cdm(3,3)=cdm(3,3)-cdm(2,2)

c popul ate Sz(2-3)
cdm(2,2)=cdm(2,2)+dm2*O.50
cdm(1,1)=cdm(1,1)-dm2*0.50
go to 10
end if

c
c x,y,z effective fields
wneffl=eigenv(I)-eigenv(2)
wneff2=eigenv(2)-eigenv(3)
wneff3=eigenv(3)-eigenv(1)

c
c for xyz, check for irradiation along x or y
c
rul=real (u (l, 1)
ru2=real (u(2,2»

c in the x,y,z basis
if(max(rul,ru2).eq.rul.and.hans.eq.yyy)then



c irradiation along x
omeg f= abs (wneff2)
wneff=wneffl ! (we-wq)/2
coefdm=dmc(13,wq,omegf,wneff,wheff,ewidth,epsln,tmix,typmf,typcp)
dml=sign(I.0,wneffl)*coefdm

c we coeff of x,3 is ineffective in cross relaxation
dm2=O.O
wneff-wneff3 ! (we+wq)/2
coefdm=dmc(12,wq,omegf,wneff,wheff,ewidth,epsln,tmix,typmf,typcp)
dm3=sign(I.0,wneff3)*coefdm

c populate y,3 then x,3 for x irradiation
cdm(3,3)=(dm3-dm2)*0.50
cdm(1,1)=-dm3*0.50
cdm(2,2)=dm2*0.50

c irradiation along y, or at 45 degrees
else
omegf=abs(wneff3)
wneff=wneffl ! (we-wq)/2
coefdm=dmc(13,wq,omegf,wneff,wheff,ewidth,epsln,tmix,typmf,typcp)
dml=sign(I.0,wneffl)*coefdm
wneff=wneff2 ! (we+Wq)/2
coefdm=dmc(12,wq,omegf,wneff,wheff,ewidth,epsln,tmix,typmf,typcp)
dm2=sign(I.0,wneff2)*coefdm

c we coeff of y,3 is ineffective in cross relaxation
dm3=O.O

c populate x,3 then y,3 in~his frame
cdm(3,3)=(dm3-dm2)*0.50
cdm(2,2)=dm2*0.50
cdm(I,I)=-dm3*O.50
end if .

c
c popul ate S(z,3)
cdm(I,I)=cdm(I,I)+dml*0.50
cdm(2,2)=cdm(2,2)-dml*0.50

c
10 if(dmflag.eq.yyy)type 999,wq,eigenv(I),eigenv(2),eigenv(3),
lwneffl,dml,wneff2,dm2,wneff3,dm3

999 form at (t2, 'wq=' ,ell. 4,lx, 'ela ' ,ell. 3, 'e2=' ,ell. 3, 'e3=' ,ell. 3/
It4,'wlea ',ell.3,'dml a ' ,ell.3,lx,'w2e=',
lell.3,'dm2=' ,el1.3/t4,'w3e=' ,el1.3,'dm3=',ell.3)

c
c transform density matrix back to previous representation
c
call umua(u,cdm,3,r)

c
c add on the previous evolution period, if it exists
do 15 i=I,3
do 15 j a l,3
if(ncpstp.ne.l)then
dm( i ,j )=dm( i,j) +cdm( i ,j)
el se
dm( i ,j )=cdm( i ,j)
end if

15 cont inue
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c
if(dm f1 ago eq •yyy) then
do 900 i-1,3

900 type 998,(dmCi,j),j-1,3)
998 formate t5 ,3(e11. 3 ,Ix ,ell.3 ,3x»

end if
do 20 i-ndmt,ndmt+8
l111118i-incd~l

ii-mml3+1
j j-mod(tIID, 3)+1

20 tdm(i)-dm(ii,jj).
. return
50 do 60 i-ndmt,ndmt+8

I11III8 i - incd~ I
ii-mml3+1
j j-mod (tIID, 3)+1

60 dm(ii,jj)-tdm(i)
return
end

c
c
c

function fcnm(fuv,fcnz,hh,bd,typcp)
character*l bd,lll,eee,aaa,typcp
data 111,eee,aaa/108,lOl,97/
parameter pi-3.141592654

c calculates lorentzian, gaussian, or exponential function values
. c for random inputs

fua-abs( fuv) .
if(typcp.ne.aaa)then
afuv-2.0*pi*abs( fua-fcnz)
else
afuv-2 .O*pi* fua
end if
if(bd.eq.eee)go to 200
if(bd.eq.lll)go to 100

c this is fully converted to the correlation time format
c gaussian ••••••••

fu-afuv*hh
arg-- fu**2 /4 .0
if(arg.le.-30.0)then
fcnm-O .0
return
end if

c fcnm-qz*exp( arg)
fcnm-exp( arg)
return

100 fu-afuv*hh
c lorentzian •••••••

arg-1 .0+ fu**2
if(arg.gt.1.0e+09) then
fcrnn-O .0
return
end if
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c fcnm-qz*(1.0/arg)
fcnm-1.0/ arg
return

c exponential for ••••whatever you want to use it for
200 fu-afuv

arg--fu*hh
if(arg.le.-30.0)then
fcnm-O.O
return
end if
fcnm-exp( arg)
return
end

c
c
c
subroutine predm(ncp,pdmf)
character*l ans,yyy
data yy.,/121/
complex dm(3,3)
common n,woff,wq,v1(20),ph(20),t(20),as(3,3),dm,idm

c gets data for pre cp period/sets up idm for this period
type 10

10 format( t2,' do you wish a pre-cross polarization evolution( y/n)?' ,$)
read( 5,12) ans

12 format< a1)
if(ans.ne.yvy)then.
ncp-1
return
end if
type 20

20 format< t2, 'how many steps in the pre-cp period?' ,$)
accept *,nsteps
type 30

30 format(t2,'by what factor do you wish the pre-cp dm elements'
I'multiplied?' ,$)
accept *,pdmf
ncp-nsteps+1
return
end

c
c
c

function fexp(sd,epsln,wes,wei,tmix)
c calculates amplitude due to exponential relaxation for dm elements
c assuming TId and T1rho are infinite
c includes thermodynamically lUniting polarization as alpha
c tau-1.0/ sd
c arg-tmix/ tau
eta-abs( wes/wei)
alpha-1.0+epsln*eta**2
arg- tm ix*sd*al pha
if(arg.le.0.01)then
fexp-arg*eta/ alpha

•
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else if(arg.ge.IO.Ohhen
fexp-eta/ alpha
else
fexp=eta*(l.O-exp( -arg» / alpha
end if
return
end

c
c
c
c

subroutine savdm(nsum,iflag)
complex tdm{1024,3,3),dm(3,3)
common n,woff,wq,vl(20),ph{20),t(20),as(3,3),dm,idm
save tdm

c either saves the dm elements for a particular value of wq, or retrieve
c them from tdm; depending upon the value of iflag
if{iflag.eq.l)then
do 10 ii-l,3
do 10 jj=1,3

10 tdm{nsum,ii,jj)-dm(ii,jj)
else
do 20 ii-l,3
do 20 jj-l,3

20 dm(ii,jj)-tdm{nsum,ii,jj)
end if .
return
end

c
c
c

function dmc(itrans,wq,omegf,wneff,wheff,ewidth,epsln,tmix,
1typnf , typc p)
character*l typmf,typcp
ct-abs{ wq)/ omegf

c determine Which transition we are polarizing and figure the appropriat
c reduction factor for tis due to the tilting of His
if{itrans.eq.13)then
dmfact=(1.0+ct)*0.50
else if(itrans.eq.12)then
dmfact-(1.o-ct)*0.50
else
dmfact-l.O
end if

c of course, this assumes we are damn near on resonance ••••••
c now calculate 1.0/tis

tisinv-fcnm(wneff,wheff,ewidth,typmf,typcp)
tisinv-tisinv*dmfact
dmc-fexp(tisinv,epsln,wneff,wheff,cnix)
return
end
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program rjump

c
c exchange matrix formalism calculation of a jumping quadrupole
c

complex zl(32,32),z2(32,32),omeg(32,32),pii(32,32),p1(32,32),
1p2(32,32),p1i(32,32) ,p2i(32,32),g(1024),r(32),w1(32),w2(32),summel.
real amegj(~2),work(4096),kappa,kappa2

real nu,nual,inot,nnot,iwl,iw2
character*l ansdg,yyy,anscp,ansrs,rrr,anslp,ansln,aaa,bbb,anscol,
Isss, hhh
common/jangle/alpha,beta,gamma,alpha2,beta2,delta/qcpar/eqqs,eta,eqqr
data yyy,rrr,aaa,bbb,sss/121,114,97,98,11S/
parameter pi-3.141S926S4,radS7-1.74S3293e-02,twopi-6.28318S308
type 10

10 format(t2,'Calculates effect of rotational jumping upon the spectrum'
1,' of a spin-1 nucleus'//tS,'enter eqQ/h(kHz), eta:' ,S)
accept *,eqq,eta
type 11

11 format(tS,' fraction of tensor which is static(ionic!intra)?' ,$)
accept *,pcts

c static and varying Vzz
eqqs·pcts*0.7S0*eqq
eqqr-(1.0-pcts)*eqq*0.7S0
type 12

12 format(t3,'rotational hop (r), or restricted flip-flop(f)?',S)
read (S, 60) ansrs
if(ansrs.eq.rrr)then
type 20

20 formate tS, 'number of steps in the rotational hop? ' ,S)
accept *,nhop
delta-twopi/nhop
else
type 22

22 formate tS, 'number of step~ in the fl ip- flop?' ,$)
accept *,nhop
type 23

23 format(t5,'angle (degrees) between flops?' ,S)
accept *,delta
delta-delta*radS7
end if
type 24

24 format(t3,'hard(h) or soft(s) collision model?' ,S)
read(S,60)anscol
type 2S

2S format(tS,'enter Euler angles relaing tensor and motional axis'/
It5,'(alpha[z], beta[y-prUne], gamma[z-double prUne]:' ,$)
accept *, alpha, beta, gamma
alpha-alpha*radS7
beta-beta*radS 7
gamma-ganma*radS7
alpha2-alpha*2.0
beta2-beta*2.0
type 30

30 format(t2,'A quadrupolar echo sequence is assumed'/

•



It5,'what is the delay between pulses (usec)?' ,$)
accept *, tau
type 35

35 format{t5,';umping rate (kHz)?' ,S)
accept *,kappa
type 38

38 format{t5,' {sotropic T2 (msec)?' ,$)
accept *,t2
t2i-l.01 t2

c
i f{ anscol. ne. us) then

c set up jump probability matrix pi, assume any jump orientation is
c equally probable
kappa2-kappa*nhop
do 40 i-l,nhop
do 40 j-l, nhop
piH i, j )-kappa
if{i.eq.j)pii{i,j)-pii{i,j)-kappa2-t2i

40 continue
else

c soft collision assumes only neigboring positions are accessible
c to the jump
kappa2-kappa*2.0
do 41 i-l,nhop
do 41 j-l, nhop
i f{ i •eq • j ) then
pii{i,j)--kappa2-t2i
elSe
srel-abs{ float{ i-j»
if{srel.gt.l.O)srel-O.O
pii{i,j)-srel*kappa
end if

41 continue
c include endpoints of motioR
if{ansrs.eq.rrr) then
pii{l,nhop)-kappa
pii{nhop,l)-kappa
else
pii{1,2)-2.0*kappa
pii{nhop,nhop-l)-2.0*kappa
end if
end if

c
c loop over phi fo.r each nu
type 42

42 format{t2,'enter integration lUDits for phi{x), nu{y)'1
lt5'[phi limit-2*pi/x, nu limit-2*pi/y] ??' ,$)
accept *,x,y
phial-twopi/x
nual-twopi/y
type 45

45 format< t2, 'How many points< time domain) do you wish to calculate?' ,$)
accept *,nptst
type 50
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50 format(t5,'at what time resolution(usec)?' ,$)
accept * ,deltim

c put all time variables in millisec
delti~deltim*1.0e-03

tau=tau*1.0e-03
hzp-l.O/(deltim*nptst)

c approximate no. of integration steps required
c this is a fairly bogus method of est~ating integration steps
c and is really best done away with
nptnu-nint(l.125*eqq*nual/hzp)
nptphi-nint(0.375*eqq*eta*phial/hzp)

c
c if we allow for flopping, we need to integrate over phi

if(nptphi.eq.O.and.(gamma.ne.O.O.or.beta.ne.O.O»nptphi-1
c

type 55,nptnu,nptphi
55 format(t2,'you need at least' ,lx,i4,lx,'nus and' ,lx,i4,lx,'phis'/
It3,'enter multiplicative factor for more(less) nus, phis:' ,$)
accept *,pnu,pphi
nptnu- pnu*nptnu
nptphi-pphi*nptphi
delnn-nual/nptnu
if(nptphi.ne.O) then
delpu-phial/nptphi
dtpadel pn*delnn
else
dtp=2.0*pi*delnn
end if
nu-de lnn*O. 50
type 56

56 format(t2,'do you wish to see calcn progress??' ,$)
read(5,60)anscp
type 58

58 format(t2,'do you wish to see diag. info.?',$)
read(5 ,60) ansdg

60 formate a1)
c
c loop over nu

itp-O
do 200 while (nu.le.nual)
if(anscp.eq.yyy)type 899,nu

899 formate t2, 'nu-' ,e13. 6)
phi-delpn*0.50
asn-abs( sine nu»
inot-asn*dtp

c loop over phi
do 100 while(phi.le.phial)
call jumpf(nhop,omegj,nu,phi)
if(ansdg.eq.yyy)then
type 900,phi

900 format(/t2,'phi-' ,eI3.6)
do 901 jjk-1,nhop

901 type 902,amegj(jjk)
902 formadt2,' jump orientation-',e13.6)

•
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end if
c create complex jump matrix for forward and reverse evolution periods,
c store in zl and z2, I assume z2 is the conjugate of zl

do 75 i-l,nhop
do 75 j-I,nhop
zl(i,j)-pii(i,j)
i f( i •eq • j) then
zl{ i ,j )-zl{ i ,j )+cmplx(O.O, (anegj (i)*twopi»
end if

75 continue
c find eigenvalues and eigenvectors of zi and z2

nnh-2*(nhop*nhop+nhop)
call eigen(zl,pl,p2,wl,w2,work,nhop,nnh,ansdg)

c calculate component of fid due to this orientation
c invert matrix of eigenvalues pI once for each orientation, use its
c conjugate for p2-inverse since all jump orientations are a priori
c equally probable
c
call invert(pl,pIi,nhop,work)
do 76 i-I,nhop
do 76 j-I,nhop

if(i.eq.j.and.tau.eq.O.O)then
zl{ i ,n-l.O
else if(i.eq.j)then
zl(i,j)-cexp(wl(j)*tau)
else
z1(i , j ) -0 ~ 0
end if

76 p2i(i,j)-conjg(pli(i,j»
c
c the following calculations are done prior to the time loop:
c zl-pI * zi * pI-inverse * p2
c

if(tau.ne.O.O)then
call umui(pl,zl,pIi,nhop,r)
else
call matzoo(zl,nhop,l)
end if
call mtraml(zl,p2,nhop,r)

c
t-O.O
call matzoo(z2,nhop,0)
do 85 j-I,nptst

c z2 is zeroed at the end of this loop by subr nsum
tau2-t+tau
do 80 k-I,nhop

80 z2(k,k)-cexp(w2(k)*tau2)
c
call mdraml(z2,p2i,nhop,r)

c sum all matrix elements in zi * z2 to find this component of fid
c [assuming all orientations are equally probable]
call nsum(zl,z2,nhop,summel)
g(j)-inot*summel+g(j)

85 t-t+deltim
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c continue angular integration b s
100 phi-phi+delpn
200 nu-nu+delnn

open( un it-I, type-' new' , form-' format ted' ,name-' s fid .dat' )
write(1,225)eqq,eta,tau,deltUn,t2,anscol,nhop,nptst,ansrs,
lalpha,beta,gamma,kappa,delta

225 format(t2,3(flO.5,1x),e13.6,lx,f10.5,lx,a1/t2,2(i4,lx),al,lx,'t'
1ft2,S(e13.6,lx»
write(1,250)(g(kk),kk-l,nptst)

250 format(t2,6e13.6)
stop'Thats all folks'
end

c
c
c

subroutine nsum(a,b,n,s)
complex a(32,*),b(32,*),s

c sums all of the elements of a complex matrix: a * b ,
c then zeroes the matrix b

saO .0
do 14 j-l,n
do 12 i-l,n
do 12 k-l,n

12 s-s+a(i,k)*b(k,j)
do 13 i-1,n

13 b<i,j)-O.O
14 continue
. return

end
c
c
c
subroutine matzoo( a,n, k)
complex a(32,*)

c zeroes a complex matrix, or creates an identity matrix;
c depending upon the value of k

do 20 i-l,n
do 20 j-l,n
aU,j)-O.O
if(k.ne.O.and.i.eq.j)then
aU,j )-1.0
end if

20 continue
return
end

c
c
c
subroutine mtraml(a,b,n,cv)
complex a(32,*),b(32,*),cv(32),s

c a matrix multiplier: a - a * b
do 14 i-l,n
do 12 j-l,n
saO .0
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do 11 k-l,n
11 s-s+a(i,k)*b(k,j)
12 cv( j )-s
do 13 j-1,n

13 aCi,j)-cv(j)
14 continue
return
end

c
c
c

subroutirte mdraml(a,b,n,cv)
complex a(32,*) ,b(32,*) ,cv(32),s

c a matrix multiplier: a - a * b
c where a is diagonal

do 14 i-1,n
do 12 i-1,n
s·O .0

12 cv( j)-aCi , i)*b( i, j)
do 13 j-l,n

13 aCi,i)-cv(i)
14 continue
return
end

c
c
c
subroutine matrml(a,b,n,cv)
complex a(32,*),b(32,*),cv(32),s

c a matrix multiplier: b - a * b
do 14 i-I, n
do 12 i-l,n
s-O.O
do 11 k-I,n

11 s- s+a( i, k)*b( k,j)
12 cv(i)-s
do 13 i-I,n

13 b( i ,j )-cv( i)
14 continue
return
end

c
c
c

subroutine madrml(a,b,n,cv)
complex a(32,*),b(32,*),cv(32),s

c a matrix multiplier : b - a * b
c where b is diagonal

do 14 j-I,n
do 12 i-I,n
s-O.O

12 cv(i)-a( i, O*b( i ,i)
do 13 i-I,n

13 b( i ,5 )-cv(i)

286
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14 continue
return
end

c
c
c
subroutine jumpf(n,omega,nu,phi)
real nu,nu2,omega(32)
common/jangle/alpha,beta,gamma,alpha2,beta2,delta/qcpar/eqqs,eta,eqqr
parameter pi-3.l4l592654,rad57-l.7453293e-02

c
c loads array omega with frequencies which exchange due to jumping
c
deltn-O .0
nu2-nu*2.0

c
c if a static part of the tensor exists, calculate it and add it to
c the rotationally time dependent part
c the formula assumes that the two tensors are aligned and have the same
c symmetry

omegas-eqqs*( p2( nu)+O. 50*eta*sin( nu)**2*cos(2.0*phi»
c
do 90 i-l,n
ang13-gamma+phi+deltn
ang132- ang13*2.0

c calculate symmetric part (formula from Mehring p" 37)
omegal-eqqr*( p2( beta)*p2 (nu)-O. 75*( sine beta2 )*sin( nu2 )*cos( ang13)
1 "-(sine beta) *sin( nu»**2*cos( angl'32»)

c calculate asymmetric part
if(eta.eq.O.O)then
omega2-0.0
else
omega2-0.5*eqqr*eta*(p2(nu)~sin(beta)**2*cos(alpha2)+sin(beta)*sin(nu2)

1*(cos(beta)*cos(alpha2)*cos(ang13)-sin(alpha2)*sin(ang13»
1+sin(nu)**2*(0.50*(1.0+cos(beta)**2)*cos(alpha2)*cos(angl32)
l-cos(beta)*sin(alpha2)*sin(ang132»)
end if
omega(i)-omegal+omega2+omegas

90 deltn-deltn+delta
return
end

c
c
c

function p2(theta)
c calculates P2(cos(theta»
ct-cos( theta)
p2-(3.0*ct**2-1.0)*O.5
return
end

c
c
c

subroutine eigen(a,c,d,el,e2,work,n,nn,ansdg)
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complex a(32,*),c(32,*),d(32,*),e1(32),e2(32)
real work( nn)
character*l ansdg,yyy
data yyy/121/

c calculate eigenvalues and eigenvectors, use eigenvectors for
c transformation matrix •••••
c general laziness dictates the use of IMSL routines

ijob=2
call eigcc(a,n,32,ijob,e1,c,32,work,ierr)
if(ansdg.eq.yyy) then
do 902 jjk-l,n

902 type 901,jjk,e1(jjk)
901 fonnat(t2,'eigenvalue l' ,lx,i2,lx,'-' ,e13.6,lx,el3.6)

type 903,work(l)
903 fonnat(t3,'I was this good">' ,el3.6)

end if
c
c since the jump matrix is symmetric, then
c the eigenvalues and eigenvectors for the period following the echo
c pulse are merely conjugates of those preceeding it, elsewise the
c following call statement is necessary:
c call eigcc(b,n,32,ijob,e2,d,32,work,ierr); b has been removed from the
c subroutine and needs to be replace~

c
do 50 j-1,n

50 e2(j)-conjg(e1(j»
c
cnormal ize eigenvectors

do 100 j-l,n
sumzl-D .0
do 90 i-1,n

90 sumzl-sumzl+real(c(i,j)*conjg(c(i,j»)
sumzl-sqrt(sumzl)
do 100 i-l,n
c(i,j)-c(i,j)/sumzl

100 d(i,j)-conjg(c(i,j»
c
return
end

c
c
c

subroutine invert(a,ai,n,work)
complex a(32,*),ai(32,*),da(32,32),r(32)
real work( n)

c inverts a general complex matrix using an IMSL routine
ijob-O
call matzoo(ai,n,l)

c input matrix a is destroyed, set up dummy matrix da
do 10 i-1,n
do 10 j-l,n

10 da(i,j)-a<i,j)
c
call leqtlc(da,n,32,ai,n,32,i;ob,work,ierr)

...



•c
return
end

c
c
c

subroutine umui(u,a,ui,n,cv)
complex a(32,*),u(32,*),ui(32,*),cv(32)

c performs complex transformations: a • u * a * u-inverse
c When the ,inverse matrix is supplied externally
c a is assumed to initially be diagonal
c
call mdraml(a,ui,n,cv)
call matrml(u,a,n,cv)
return
end
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Appendix D

Spectrometer Modifications

The design details of the spectrometer which was employed to

perform the experiments I describe here have been discussed profusely

in reference [82]. For the first several years of it's life, this

machine performed only high resolution NMR in liquids, but it's

extremely versatile design allows it to perform many other experiments.

Several modifications have been made, which almost entirely involve the

addition of peripheral equipment, and these are presented here for

the interested reader.

D.l Pulse Programmer

The addition of a Nicolet Instrument Corporation 293B programmable

pulser has added new dimensions to the experiments which can be performed.

With this device, pulse programs of up to 256 steps may be executed

( this is currently software limited to 128 steps), and each interval

in the sequence may gate as many as twenty different devices simultaneously.

The outputs of this instrumeNe require a certain amount of decoding, and

their current carrying capability must also be increased to enable them

to drive the gates present on various pieces of peripheral equipment.

The Nicolet 293B Auxiliary Logic box ('Joe') has been constructed for

this purpose, and is described in detail in LBL print number 26X140.

The following special features have been built into this interface:

(1) an interlock to the power supply of the 293B to prevent indeterminant

output states from gating high power amplifiers and destroying sensitive

equipment, (2) phase indicator LEDS which flash for approximately 30 msec

when a particular phase is gated, and (3) a time out on the HI gate which
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limits the longest high power pulse to 24 msec (just in case an

inexperienced user enters a pulse length of several seconds instead

of several ~sec).

D.2 Amplifiers

The amplifiers present on the spectrometer during the time of

Willy Shih [82] were, unfortunately, insufficient to provide enough

14
HI to rapidly rotate low y nuclei such as N. Several solutions to

this problem were attempted, but the best by far has been the addition

of a high power Bruker pulse amplifier between the single sideband

generator and the existing power amplifier (LBL print number 10X229).

This one-two punch provides about 27Q volts into 50n at 19.5 MHz, and

this translated into nearly 260 gauss in the rotating frame using the

probe described in Figure 54. The extreme non linearity of the

Bruker amplifier necessitates the use of extreme care when attempting

to vary the output by attentuation of the input (the input is best

attenuated in 0.1 db steps).

The amplifiers used for ~ irradiation are exactly as described

in reference [82J, except for the replacement of the final stage of the

270 MHz driver amplifier (LBL print number 10X225) with one employing

a higher frequency Motorola MRF326 transistor. The total proton power

amplifier combination generally yielded about 100 volts peak at

270 MHz (this has now been exceeded by Sun Un).

D.3 Probe

Not surprisingly, the probe turned out to be the most critical

part of the entire spectrometer system, and considerable time has been

spent playing with various designs. The final design is based upon a

simple single coil double tuned design [140] in which high frequency

•
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Figure 54. 14N- IH double resonance NMR probe
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A/4 lines are used for isolation purposes, and the tuning for the high

frequency (In) side is performed outside of the probe body (see Figure

53). The optimum coil design was found to be a 15 turn coil of 5 mm

diameter and 25 mm length set in epoxy. The high frequency Q is

rather low (~ 75) because of lead lengths and the proximity of the

turns, but the low frequency Q had to be reduced from about 110 to 60

14with a short piece of nichrome wire so that the broad N powder line-

shapes could be more easily observed.

One rather severe problem which is encountered when operating at

low frequency is that of magneto-acoustic ringing [33], and I am not

the recipient of any special immunity to this spurious disturbance.

The solutions given in references [33b] and 133c] were tried, but neither

worked. I found that the only solution to the problem is to keep metal

objects as far from the coil as possible (as is suggested in [33b]).

This necessitated removal of the shield from the outside of the probe

to a distance approximately 2 inches below the center of the coil. In

this way, and employing the alternating 180 0 echo phase shifts of section

2.1.1, the total dead time was found to be less than 40 ~sec for most

samples at room temperature, and had a tendency to increase as the

temperature was lowered.

D.4 Preamplifiers

Next to the probe, the preamp is the second most important piece

of equipment in determining the SIN of the spectrometer system. On the

14low frequency N side, low noise, high gain, and rapid recovery are

all very important. The preamp design which was finally settled on is

described in Figure 55. The presence of the many PIN diode switches

(described in Figure 56) is necessary in order to prevent the very high

•
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voltage present at the XMIT port from overloading the preamp and

downconverter. The first stage of the preamp is merely a retuning of

a design previously used by Willy Shih (LBL print number 16X903) for

observation of 15N at 27 MHz. It was found that this amplifier, in

combination with a Motorola MHW592 wideband module, formed an

extremely stable high gain (~ 50 db) pair with a reasonable noise

figure of about 2 db. The recovery time of the preamp is about 10 ~sec,

and due almost entirely to the recovery time of the PIN diode switches.

The SiN of this combination has been measured repeatedly using a sample

of powdered NH4C1, and employing the NTCFTB subroutine SN to perform the

calculation, and is usually in the neighborhood of 150 for 16 pulses.

The high frequency observation employed the same preamp described

in [82] (LBL print number l6X955); with the addition of two A/4-PIN

switches (the PIN switch design is similar to Figure 56, but the PIN

diode used is a HP5082-3040, and the values of the capacitors are

obviously much smaller). This preamp, even with the PIN switches,

which cut the pulse breakthrough to less than 500 mv. has a severe

saturation recovery problem and apparently is not a good design for

high power NMR in solids.

Many simple peripheral devices were added to the spectrometer to

enable it to perform experiments involving ADRF, bilevel pulses, 45 0

phase shifts, etc. The implementation of these functions was performed

by switching in an appropriate element (such as an attenuator, or

A/8 line) while simultaneously switching out the other path available

to the r.f. (an ANZAC HV-50, or Minicircuits ZFSC-2-l power combiner

was used to split the input signal). A complimentary pair of LM3ll

comparators were used to drive either a Relcom Sl switch or a HP mixer
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(used as a switch). This circuit is so straight-forwadd that I choose

not to present it here.

It was found that a surprisingly simple ADRF switch is sufficient

for my experiments (see Figure 57). In this circuit, a decaying RC

transient is summed with a constant (but variable) voltage (to account

for non linear amplifier cutoff) and used to drive the X port of a

mixer (HP10514A). With proper adjustment, good ADRF's could be obtained

even for the most non linear of amplifiers. The only problem with the

circuit is its fari1y long recovery time (since the RC circuit must be

given time to charge), but this has seldom been annoying.

D.6 Additions to NTCFTB

The only unusual modification made to NTCFTB is that shown on the

next page to operata the Temperature Control device (LBL print number

16X950). This modification of the VT subroutine increases the DAC

voltage output as the temperature increases (i.e., is meant to boil

LN2 from a dewar), and statement 4650 should be changed to 4661 from

123000 for normal heater operation (when 4650 ~ 4661, 4651 ~ 0),



Modified NTCFTB USR overlay (VT)

4571/ 0603111
4572/ 0643114
4573/ 0643112
4574/ 0735322
4575/ 0670400
4576/ 1503060
4577/ 1473060
4600/ 0262002
4601/ 0044611
4602/ 0111654
4603/ 1436605
4604/ 0216207
4605/ 2000206
4606/ 0004603
4607/ 072;!622
4610/ 0002666
4611/ 0216003
4612/ 1413061
4613/ 1603050
4614/ 0722",02
4615/ 0701.003
4616/ 1221050
4617/ 1421050
4620/ 0722604
4621/ 0262017
4622/ 1621050
4623/ 1535061
4624/ 0004615
4625/ 1117060
4626/ 143~~050

4627/ 1217054
4630/ 1413060
4631/ 0216003
4632/ 1413061
4633/ 1217050
4634/ 3657060
4635/ 1535061
4636/ 0004634
4637/ 1735053
4640/ 0062666
4641/ 1217055
4642/ 1223056
4643/ 0701002
4644/ 1221055
4645/ 0701001
4646/ 1223057
4647/ 1225047
4650/ 1230C,OC'
4651/ 0004661
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