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Abstract 

The problem of determining the inertia associated 1vith the nuclear 

spontaneous-fission process and calculating the corresponding half-lives is 

approached by ~:~, semi-empirical method. For the purpose of determining an 

effective fission inertia a test group of (31) known even nuclei, ranging 

from U to Rf /Ku,, is selected. For this group, appropriate fission paths, 

together with the fission-barrier potentials along these paths, are established 

on the basis of potential-energy surfaces which have been obtained by the 

macroscopic-microscopic method. The macroscopic part of the energy is pro-

vided by the liquid-drop model of Myers and Swiatecki, modified however to 

reproduce well the experimentally known second barriers in the actinide region. 

The microscopic correction-energy contribution to the potential-energy sur-

faces is based on the_modified-oscillator single-particle model in which 

allowance has been made for mass-asymmetric (P
3 

and P
5

) as well as axial 

asymmetric (y) distortions. Indications from existing ~ydrodynamical and 

m;icroscopic calculations of the nuclear inertia as well as from the known 

isomeric half-lives are used to construct a s,imple one-pe.rameter smooth 

trial inertia which is then fitted to the half-lives for the test group. 

* Work performed under the auspices of the U. S. Atomic Energy Commission. 
t Presently on leave from Institute of Physics, University of Aarhus, 
Aarhus, Denmark. 
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The equivalent center-of-mass separation r (corresponding to ellipsoidal shapes 

and equal-mass fragments) proves to be a preferable fission-path coordinate. 

The inertia obtained in this way reproduces those half-lives to within a 

factor of 25 on the average which is superior to any other existing method. 

Furthermore, the general trend of the calculated half-lives supports the 

extrapolation of the established inertial function to so far unobserved nuclei. 

Some part of the deviations from the experimental results can be understood 

in terms of certain deficiences in the underlying potential-energy surfaces, 

and refinements of the approach (such as taking into consideration the multi

dimensionality of the fission path, or allowing for more freedom in the trial 

inertia) show no considerate improvement of the fit. Applications (reported 

elsewhere) have been made to several problems of current interest, as for 

example, the predictions of fission half-lives for isotopes of the element 106 

(and heavier elements), the calculation of the hindrance factors associated 

with fission of odd isotopes, and the possibility of a neutron-capture path 

to the superheavy region. 

, 
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1. Introduction 
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'rhe calculation of spontaneous-fission half-lives is a central problem 

in the physics of heavy nuclei and has particular importance for the understand-

1-4) 
ing of the synthesis of heavy elements. However, until recently, calculations ' 

have not been able to reproduce the experimentally known half-lives better 

than to within a factor of typically 105. In recent years, more refined 

calculations have been made of the fission potential barriers 5-7) and this 

part of the problem seems by now rather well understood. In order to calculate 

the fission half-lives, however, also the knowledge of the associated inertial-

mass function is required. Several theoretical calculations of the fission 

inertial masses have been carried out2 •3 •8), but the detailed and unrenormalized 

applications appear to yield rather erroneous half-lives. Here we shall attempt 

the inverse approach to determine an effective fission inertial-mass function 

from the by now rather rich experimental information in combination with the 

theoretical barriers. One may hope by such an approach to determine an inertial 

function with a simple distortion dependence which is able to reproduce well 

the main trends of the known half-lives. This would provide us with a basis 

for what seems a relatively reliable extrapolation to other nuclei. 

The fission inertial masses are expected to exhibit odd-even variations 

and since furthermore the theoretical fission barriers for odd nuclei are 

·• associated with larger uncertainty we shall in this first approach restrict the 

considerations to even nuclei. We are particularly interested in the applica-

tion to the heavy and super-heavy region, hence we shall choose the experimental 

test group of nuclei from the region of transuranium elements. From this region 
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we have chosen 31 even nuclei, ranging from 232u up to 258Ku/Rf. Their measured 

spontaneous-fission half-lives9 ) are displayed in fig. 1. As is seen from this 

figure the half-lives show large variations through the region, as well as from 

.one element to another as within a single element. Thus, these nuclei seem 

to provide a rather crucial test group for the calculations. 

The nuclear distortion energy forms a multi-dimensional surface in the 

space spanned by the distortions parameters. Hence, the proper treatment of 

the fission problem requires the knowledge of the corresponding complete 

inertial-mass tensor. However, we shall here assume that the situation may be 

reasonably well described as a one-dimensional barrier-penetration problem. 

Thus, we consider a one-dimensional fission path through the multi-dimensional 

distortion space and the associated effective inertia for motion along this 

path, as illustrated in fig. 2. Furthermore, we shall assume that the 

corresponding half-lives may be obtained within the framework of ordinary 

WKB theory. Thus,· denoting the fission-path coordinate by s, the action 

integral along the fission path is 

2 [sexit 
K=h 

so 
j2B(s) (V(s) - E .b) ds 

v~ 
(1) 

E .b denotes the fission-mode vibrational energy in the initial nuclear state 
v~ 

and V( s) - E . b is thus the potential barrier along the fission path; B·( s) is 
v~ 

the corresponding inertial-mass function. In terms of tbe action integral K 

the half-life is simply given by
1

) 

(2) 

' ·l 

i 

t 
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Here n is the number of assaults per unit time and has been taken to correspond 

to the standard choice of the vibrational energy: Evib = 1 MeV. Since n 

enters only as a multiplicative factor, its value is not critical in the 

present context. 

It m~ be useful to keep in mind how errors in the potential and/or 

the inertia will affect the corresponding half-lives. We find from (2) the 

following expression 

[
o(V - Evib) + BoB] 

olog t ~ 1/2 V _ E . 
Vlb 

(28.04 +log t), tin years ( 3) 

from which such estimates can be made. Thus, for example, an error of 10% in 

either the barrier or the inertia will typically give rise to a factor-of-error 

of 102 in the half-life . 
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2. Fission Barriers 

The fission potential barriers applied in the present investigations 

are based on the macroscopic-microscopic method in which the smooth part of 

the distortion energy is obtained from a macroscopic model while the fluctuating 

part is associated with the shell structure. It is obtained from the appli-

cation of the Strutinsky smoothing procedure to the single-particle level 

scheme calculated ~or the nuclear shape in question. 

The macroscopic model was chosen as the standard liquid-drop model of 

MYers and Swiatecki
10

), however with the surface-energy parameters modified 

to reproduce the experimentally known heights of the second barriers in the 

actinide region. SuQh a modification has been suggested by Pauli and 

ll Ledergerber }. Thus, the shape dependence of the macroscopic energy is 

assumed to be 

ELD (shape) 
2 l/3 z2 

= a 2 (l - Ksi ) A Bs(shape) + c3 Al/3 Bc(shape) (4) 

3 2 
where the nuclear asymmetry is I = (N - Z)/A and c = - ~ 3 5 r 0 

B and B represent 
s c 

the shape variations of the surface and Coulomb energies relative to a spherical 

shape. 12 Here we have used the modified values of a
2 

and Ks obtained in ref. ) : 

K = 4.02 MeV (from 1.68 MeV) 
s 

c
3 

= 0.720 MeV (assumed unchanged) 

• I 
I 

, 
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In the determination of these values the microscopic model described below 

has been used, and they yield an exceilent fit to the experimental data, see 

Fig. 2 of ref. 12). One should observe the large change in the surface 

symmetry-energy coefficient K • It may be mentioned already here that the 
s 

transition from the standard coefficients to the modified ones improves the 

half-live fit considerably, especially the isotopic variation. 

For the microscopic model we have used the modified-oscillator single-

13 . particle model introduced by Nilsson et al. ). Basically we have initially 

only considered the (E2s 4) degrees of freedom, but, as will be described 

below, we h~e subsequently taken into account the essential effects of other 

significant distortions. 

The fission potential has (usually in this region) a first and a 

second minimtim, (I and II, respectively), separated from each other by the 

first saddle (A) and from the exit region (X) by the second saddle (B). 

The actual fission path through this multi-dimensional landscape is assumed 

to be that yielding the least action2 ) and is thus not well determined a 

priori. We expect, however, that the fission path passes in close vicinity 

to the mentioned stationary points. (One should bear in mind that only 

these stationary energies have a unique character, i.e. are invariant under 

a coordinate transformation). We shall therefore characterize the fission 

barrier by the four extremum points (I, A, II and B) together with a fifth 

point in the exit region (chosen to lie approximately on the liquid-drop 

fission path). 
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Having obtained these five points in the multi-dimensional distortion 

space we project onto the axis of spheroidal deformation in order to reduce 

the problem to one dimension. The fission-barrier potential curve is then 

subsequently generated from these points by a simple spline method as 

illustrated in fig. 3. However, the E coordinate has a singular behaviour 

for large distortions and thus the corresponding method seems not ideally 

suited for a physically lucid description of the fission problem. Following 

a suggestion by Swiatecki14), we choose instead the equivalent center-of-mass 

separation r; obtained from £ by the simple transformation 

r = 3 R (1 + 1/3£)2/3 
4 0 1 - 2/3£ Al/3 = ro ( 6) . 

This formula is valid for purely ellipsoidal shapes and equal-mass fragments; 

the inclusion of other degrees of freedom in this transformation is straight-

forward but turns out to be unimportant for the normal fission half-lives. 

The r coordinate has a more intuitively appealing asymptotic behaviour. As 

can be seen from fig. 4, the transformation from E to r gives rise to a 

stretching of the barrier, giving an appropriately larger weight to the region 

of large distortions. One might argue that an even better choice of metric 

is one in which the inertial mass is independent of the distortion. 

The positions of the five characteristic points are obtained fron1 a 

calculation in (E
2

c 4) space. Other degrees of freedom may then be taken 

reasonably ~ell into account by just correcting the relevant characteristic 

points before the splining is performed. It is well-known that the second-

saddle energy is lowered significantly when allowance is made for asymmetric 

-'j 

• ! 

•· 
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distortions (in this model described in terms of the E
3 

and E
5 

coordinates). 

The effect of these distortions has been studied extensively by P. Moller6), 

and we have used his results for correcting EB. These corrections are of 

the order of 1 MeV, typically, and it should be mentioned that this lowering 

of the saddle energy was taken into account when the liquid-drop parameters 

were refitted. In the first-saddle region, axial asymmetric (y) distortions 

are important. This phenomenon has been studied by S. E. Larsson7 ' 15 ), and 

---~-

we have used his results for correcting EA. The corrections are 0.5 - 1.5 MeV 

throughout the actinide region and exhibit strong shell fluctuations. Furthermore, 

the possibility of P6 distortions in the ground state has been investigated, 

16 but was found to be less important (they are always smaller than 0.75 MeV ). 
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3.. Fission Inertias 

We now· turn to the problem of determining an effective inertial-mass 

function by fitting some suitable trial inertia to the experimental half-lives 

of the nuclei in the test group. 

Hydrodynamical calculations of the fission inertia4•17 ) (in terms of 

the r coordinate and under the assumption of y-family shapes) yield an 

inertial function which decreases from the value of i~ ~ for spherical shapes 

to the asymptotic value ~ throughout the barrier region ( cf. fig. 4), ~ being 

the reduced mass of the final two-fragment system. Since these calculations 

have been based on the assumption of irrotational flow of the nuclear matter, 

they underestimate considerably the true inertial mass. However, we expect 

that the suggested gross shape of the inertial function is more reliable. 

More realistic indications of the absolute magnitude of the inertial 

mass are provided by microscopic (cranking-model) calculations8 •3 •18 •19). 

Calculations of such type yield inertial masses exhibiting fluctuations with 

distortion, reflecting the specific single-particle structure of the particular 

nucleus under consideration. Since these wiggles are difficult to parametrize, 

and in addition m~ tend to cancel because of their relatively short period, 

we have confined ourselves to considering only a smooth trial inertial function. 

In fig. 4 we show an example of such microscopic inertias (obtained recently 

by Krumlinde, ref. 
18

), together with the corresponding hydrodyn~ical inertia. 

Figure 5 also displays recently calculated values obtained by Sobiczewski19 ) 

in a quasi-self-consistent model. It should be observed how well these latter 

calculations agree with the semi-empirically determined magnitude of the inertial 

' 
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mass. From these figures we get a clear indication of the general behaviour 

of the fission inertial mass: it is considerably larger than the irrotational 

mass, but has the same type of gross decrease. This common indication of a 

relatively small inertial mass in the second-barrier region is also supported 

by the shortness of the fission half-lives of the shape isomers in the actinide 

region. 

These considerations lead us to consider a trial inertial function of 

the following tY,pe 

B = Brigid + k(Birrot _ Brigid) 
r r r r (7) 

where Brigid = ~ is the mass corresponding to a rigid separation of the two 
r 

fragments, and Birrot is the mass corresponding to irrotational flow during the 
r 

fission process. Thus k is an adjustable parameter describing the contri-

bution of the inertial mass from the internal nuclear motion, k being unity 

for purely irrotational flow. As mentioned above, we expect from the micro-

scopic calculations k to be considerably larger than that. This inertial 
/ 4 

function is of the same type as was used by Nix et al. ·). For simplicity 

we shall here assL~e equal-mass fragments and furthermore approximate the 

diffe.rence multiplying k by an exponential. The explicit form of B thus 
r 

becomes 

(8) 

Here M is the mass of thE· fissioning nucleus and accounts for the general 

scaling property of the inertial mass. The fall-off parameter d is taken 

to be that of the irrotational inertia, d = R0/2.452. 
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With this trial inertial function the half-lives for the nuclei in 

the chosen test group were calculated, varying k to obtain the best overall 

fit. The least mean logarithmic deviation, 6, of the calculated half-lives 

from the experimental values was obtained fork= 6.5 (cf. fig. 4). For 

this value of k, 6 is 1.4 corresponding to a factor of 25. In fig. 6 we show 

these calculated h~lf-lives together with the experimental results as function 

of N and in fig .. 7 as function of Z. An alternative way of representing the 

results is provided by fig. 8 in which the individual deviations from the 

experimental values are plotted. 

From these figures it is seen that the overall trend of the half-lives 

throughout the entire test region is well reproduced. Rowever, some systematic 

deviations exist, as we shall now comment on. The most severe deviations 

occur for the U isotopes. Rere the isotopic variation as well as the 

absolute magnitude of the results are wrong. (The same tendency is present 

for Pu, but to a much less extent.) In part, this discrepancy may be due 

to fact ignored in this treatment that the U barriers are really three-peaked 

(the second barrier contains a shallow ternary minimum.for several of the 

Th and U isotopes 6 ). In part it may be due to the larger sensitivity of the 

half-lives for these nuclei to the correct description of the exit region. 
.~ : 

I 

Hence, it seems difficult to improve on this point until the nuclear models 

have been made reliable for larger distortions. In the center region of the 

test g~oup, the half-lives are reproduced best; in particular we observe that 

the N = 152 kink comes out qualitatively correct. However, it is too smooth 

as compared with the experimental one. This is probably due to some syste-

matic deficiencies in the underlying single-particle levels. One should 
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relate this to the fact that also the theoretical ground-state masses exhibit 

a less pronounced kink than was experimentally observed. Furthermore, the 

decline of the second barrier when going away from N = 152 proceeds too 

slowly. In particular this has the consequence that the large drop in 

half-life, experimentally observed for 258Fm and explained as the decline 

below the ground-state energy
12

), does not show up in the calculations until 

f 260Fm or . 

A special problem is constituted by the shape-isomeric nuclei. This 

special group of nuclei was not included in the sample employed when fitting 

the inertial-mass function. As is seen from fig. 9, the obtained semi-empirical 

inertial function yields isomeric half-lives being too long by six orders of 

magnitude on the average. However, the s 4 degree of freedom is expected to 

have a relatively large influence on the isomeric fission. In fig. 9 we have 

displayed the isomeric half-lives when the s 4 dependence of the r coordinate 

is taken into account. It is seen that indeed this brings the calculated 

values ir1to much better agreement with experiment. It should be added thc-.t 

a consistent inclusion of this effect does not appreciably change the good 

overall fit to the ground-state half-lives. We shall, therefore, continue 

to disregard the influence from this and other degrees of freedom in the 

evaluation of the penetrability integral. 

To allow for the possibility of the inertia having a slope different 

from that of the irrotational inertia we have tried also to vary the parameter 

d in (8). Figure 10 shows the contour plot of b. corresponding to thi.s 

two-parameter variation. We see that there is a slight preference for a 

less steep variation with r of the inertia, but the net gain in b. is little 
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(~ 0.1). Actually the best two-parameter fits are obtained for k = 4.0, 

d = 0.6, and for comparison we show in fig. 8 the corresponding scatter 

plot of the half-lives. Thus, this analysis reveals an ambiguity as to 

where in the valley displayed in fig. 10 the inertia should be positioned. 

This is important to keep in mind when applying the inertia to heavier elf•ments 

for which the barrier region is restricted to small deformations and the 

half-lives thus rather sensitive to the actual choice of k. However, the 

shortness of the isomeric half-lives points to a preference of the upper-

right part of the valley, hence we shall assume the previously discussed best 

one-parameter inertia to represent rather well the effective inertia. 

Thus, it seems as if the present level of accuracy cannot be improved 

within this simple approach. Rather, more precise calculations will require 

more accurate energy surfaces together with a more detailed knowledge about 

and treatment of ~he associated nuclear inertial tensor - including shell 

effect in the latter. Finally, possiblyalso the effect of the nuclear 

viscosity may have to be taken into account. 

An estimate of the uncertainty associated with the inertial-mass 

function may be obtained as follows. One may for each individual nucleus in 

the test group dete:~ine that value of the free parameter k which reproduces 

exactly the experimental half-life for that particular nucleus. This procedure 

yields a group of k values scattered around the mean value. The shaded 

region in fig. 5 is the ensuing inertial band corresponding to the width in 

the mentioned k distribution and thus indicates the uncertainty associated 

with the obtained semi-empirical inertial-mass function. The uncertainty 

defined in this way is found to be aroUnd 20%. 

_, 
i 

.• I 

• 
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Since the main trends of the calculated half-lives throughout the 

test region agree with experiment, the method seems rather reliable for 

extrapolations to neighbouring, so far unobserved nuclei. Such applications 

12 are in progress and will be reported elsewhere, see for example ref. ). 

Here we shall as an example shortly mention the results for the element 106, 

12) •· ref. In fig. 6 we have displayed the calculated half-lives for some 

even isotopes of this element. It is seen that the isotope with N = 152 is 

predicted to be the most stable one, having a half-life of around 100 )lsec 

(which is only a factor of three shorter than that of 258Fm). The strong 

isotopic variation of the half-lives for the lighter elements was mainly 

due to the gradual disappearance of the second barrier. For the displayed 

even isotopes of the element 106, there is no second barrier at all and 

consequently the isotopic variation is expected to be very much smaller, 

as it also appears in the figure. Thus, we may predict that there should 

be one or several even isotopes of this element with spontaneous-fission 

half-lives not much shorter than that of 258Fm. Investigations12 ) of the 

hindrance of element 106 associated with an odd particle suggest that some 

odd isotopes might exist with a half-life larger than that by one or a few 

orders of magnitude. 
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4. Conclusion 

We have introduced a simple scheme for obtaining realistic one-

dimensional fission barrier potentials and calculating the corresponding 

spontaneous-fission half-lives. On the basis of indications from hydrodyna-

mical and microscopic calculations it has proved possible to establish a 

fission inertial~mass function which reproduces the transuranium fission 

half-lives (for even nuclei) to within a factor of 25 on the average, although 

the deviations for the light isomers measure is considerably larger. The 

overall trends of the calculated half-lives agree with experiment and further-

more some part of the deviations from experiment may be associated with certain 

deficiencies in the underlying potential-energy surfaces, while some part 

reflects neglected shell structure contributions to the inertial mass. The 

described scheme for calculating fission half-lives seems the most reliable 

one available at present for extrapolation to neighbouring regions and appli-

cations have been made to various problems of current interest, as will be 

reported elsewhere. For example, it is predicted that certain even isotopes 

of the element 106 have spontaneous-fission half-lives of the order of 100 ~sec, 

while some odd cases could be one or a few powers of ten longer. 
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Figure Captions 

Fig. 1. Experimental spontaneous-fission half-1i ves as taken from ref. 10 ). 

Fig. 2. Illustration of the reduction from the multi-dimensional fission 

problem to a one-dimensional barrier penetration. 

Fig. 3. Illustration of the method for obtaining the fission barrier potential 

from the five characteristic points. 

Fig. 4. Comparison of various inertial-mass functions B (here shown for some 
r 

Fm isotopes). The lower curve represents the irrotational-flow calculation
22

), 

while the three kinked upper curves are the cranking-model results obtained 

. 18 
by Krumlinde ). The smooth curve in between is the determined best one-

parameter semi-empirical inertial-mass function; the shaded region indicates 

the associated uncertainty as estimated from the spread in theoretical 

values around the experimental ones. For comparison the corresponding E 

values are shown on the upper scale. 

Fig. 5. Comparison of various inertial-mass functions Br (here shovm for 254Fm). 

The lower curve represents the irrotational-flow calculation22 ), while the 

kinked upper curves correspond to various microscopic models: 

Upper dashed: Cranking model, G = constant23 ) 

Lower dashed: Quasi-self-consistent model, G = constant29 ) 

Dot-dashed: Quasi-self-consistent model, G ~ S 29) 

The smooth curve in between is the determined best one-parameter semi-

empirical inertial-mass function (corresponds to k = 6.5 in eq. (5)). 

Fig. 6. Spontaneous-fission half-lives. Full circles:. experimental values9). 

Open circles: calculated values with the determined semi-empirical inertia 

shown in fig. 4. The mean logarithmic deviation isl. 4. Also half-lives 

predicted for the element 106 are shown. 

I •: 



-17- LBL-1699 

Fig. 7. Experimental and ca.:l.culated spon ta.neous fission half -lives as a 

function of proton number Z for given values of neutron number N. 

Fig. 8. Plot of the logarithmic deviations of the calculated half-lives 

from the experimental values. Full dots represent the best one-parameter 

inertial function, open dots the best two.,-parameter function (when also 

the slope is adjusted). 

Fig. 9. Deviations of calculated half-lives from experimental values. In 

addition to the normal half-lives (full circles) alsO the results for 

some isomeric states are shown (open circles). 'l'he br.oken li. nes connect 

results obtained by including the effect of c 4 on the r-coordinate, while 

all other points are calculated without this refi.nement. 

Fig. 10. Contour map of the mean logarithmic deviation of calculated half-lives 

from experimental values, corresponding to the variation of as well magni

tude k as slope c. 
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r-----------------LEGALNOTICE------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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