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ABSTRACT

An inffared spectrophotometer is modified for the quantitative
study of high pressure spectra. The infrared ebsorption spectra of
naphthalene, n-paraffins, (C23Hh8’ CQAHSO’ C28H58’ 029H60) and poly~-
ethylene are measufed to a pressure of 40 kbar. It is observed that
at least twe pairs of energy levels behave as if they are in resonance.
It is poesible that they are examples of Fermi resonance. The corre-
sponding unperturbed energy levels as well as the coefficients of
mixing at various pressures are calculated. Interaction force constants
between non-bonded hydrogens, in the expression, B = Ar‘(B+2), are
calculated from the éressure dependence of factor gfoup splittings of
n-paraffin rocking modes. Microscopic Grueisen parameters of n-
paraffins are obtained as a function of unit cell volume apd chain
wave vector. Many other aepects of pressure effects are obeerved and
discussed. Additional experiments and theoretical studies are suggested.

A physical model is preposed to distinguish_two types of dynamic
crystalline forces as well as to illustrate how an intramolecular

potential is perturbed by the crystalline potentials which cause pressure

« induced frequency shifts and factor group splitfings.
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I. INTRODUCTION

Exciton theory was first introduced by Frankelllin 1931 and was
applied tojthe electronic lévels of molecular crystals. Since then,
there has been a great deal of work on this topic. vTo date, the theory
has been discussed and expanded in books written'by Davydov,2 Craig
and W’almsley,3 Dexter and Khox,h and in review articles by Fox and
Schnepp,5 and McClure.6
The application of the theory to the vibrational levels of

7 9 extended the

molecular crystal was initiated by Hornig. Hexter
electronic exciton theory to include the vibrational wave function.

T6 date, there are excellent articles on this aspect of the theory by
13

Hass,lo Halford,ll Duyckaerts_,12 Hexter, Vedder and Hornig,lLL and

Dows.15

In exciton theory, the crystalline energy levels are considered as
those of the gas state perturbed by a crystalline potential. By carry-
ing out a pertuﬁbation treatment (mathematically very complicated,
éince there are Avogadro number of molecules in the system to be con-
sidered), the frequency shift from the gas to the solid state is ex-
pressed as a function of a crystalline perturbation potential.

For the electronic energy levels of molecular crystal, great suc-
cess in explaining the frequency shift of gas to solid was achieved by
"assuming that the crystalline force field is simply the dipole-dipole
interaction force. Multipole interactions are taken into consideration
in a refined treatment.

The perturbation potential used tobexplain the shift in eléctronic
levels wés applied to the vibrational energy levels wifh little succeés.

Recently, it was shown that the short range repulsion force alone may

account for the so-called factor group splitting for some of the
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5'etha.ne,CHE,’Clhl

and na.phthza.lene‘.u2 However, the repulsive potential function alone can

vibrational bands of the molecular crjrstals; pza.rza.ffins,5

not explain the frequency shift of gas to solid for the corresponding
energy levels.*

At.fhe present time, several theoretical and experiﬁehtal groups
are attempting to understand the nature of the perturbation potential.

Ih the literature, th¢ frequency shift and Davydov splitting are
often described; the former, as due to a static érystalline ﬁotential
and the lattér‘as due to-a dynémic crystalline potential. The use of
the terminology "static crysfalline potential" in this case is quite
misleading, since it does not follow the usual definitidn, e.g. the
stétic lattice potential defined in the Mei Grueneisen equation of
state.

'The presentation of section B and C in the chapter on theory is
: desighed to clarify the misconception which arose from the loose usage

" as well as to gain

of the terminology "static crystalline potential,
further understanding in the physics pf the crystalline perturbation
on the intramolecular vibrations.

The crystalline potential is usually approximated by the sum of
interﬁolecﬁlar pair potentials. The intermoleculér pair potential is
a power series of infinite terms. Héwever, for a given intermolecular
distance, the pair potential may usually be truncated to two terms.

If one hypéthetically decreases the density of a crystal continuously

to that of a gas, the intermolecular distance of the nearest neighbor

is changed from the unit cell dimension (or a fraction of it) to infinite.

ry .
Various types of forces considered by Pimentelh3 in the matrix study

may play a par? in the crystalline force field of single crystals.
Electrostatic dipole-dipole interaction forces have been worked out
by Decius for a number of ionic crystals.
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The force is scanned through all values of the power series. It is
obvious that in order to gain information on fhe intermolecular force,
'the knowledge of frequency for a given crystal structure as a function
of density is necessary; that is, the mere knowledge of;thg frequencies
of the gas and solid state at Qoqm pressure and temperaturg is in-
sufficient. Since larger changes in unit cell dimensions can be achieved
by varying pressure rather than temperature, high pressure studies of
molecular crystals are thus desirable for obtaining information on the
intermolecular force fields. This as well as several other applications
of high pressure IR spectra are presénted in Chapter IV.

In Chapter III an experimental set-up ié described which makes
a quantitative study of IR spectra, under very high pressure, using a

Drickamer type NaCl cell possible for the first time.
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II. ' THEORY

A. Symmetry Consideration and Facfor Grqup Analysis

A ¢£ystél lattice can be constructed from a unit cell by the
translation'operation which carries any unit cell into any other. The
unit cell is the smallest unit in which no atoms are equivélent under
simple transiatiohs. However, some of the atoms in‘é unit cell may be
equiValént uﬁder operations of the symmetry elements of a unit cell
gnqu' The unit cell‘group is isomorphous with one of the 32 point groups
poééiblé in érystals, but may contain such operations as screw axis d?
glide planes in addition to purely point operations. The space group
is defined as the pr;duct of the operations of the unit cell group and
thosé of the infinite group of translation. TheASPace group is then
an infinite group. However, if we define the translations which carry
a poianin é unit cell int§ the equivalent point in another cell as
identity, thé space group 1s reduced to the unit cell group. Thus the
unit cel; group is the factor group of the space group.
| Any point in the lattice is a site, and in certain locations some
symmetry element of the space group passes throughjthe site. The point
group of symmetry operations that leéve the sitevinvariant is called a
site group. The site group must be a sub group of both the factor
group ahd the molecular.point group.

It”is known from the theory of small vibrations that it is possible
to find normal coordinates for any atomic system, such that both the
kinetic and potential energy do not involve cross terms. In mathematical
form, tﬁe kinetic energy T, and potential energy V, of the entire cryétal

may be written as
Y 3ntN-

6
er = » 47 -_ @)
i ,



ov = Z w, Q12 : _ (2)

Where n is the number of atoms per molecule, t molecules per unit cell,
and N 'is tﬁe number of unit cells. In this case, tﬁe motion of the
system (a molecular crystal here) can'be resolved into the motions of
a set of inéependent harmonic oscillators of angular frequency wy and
normal coordiﬁate Qi' The vibrational wave function for the entire

crystal is then
’ . 3ntN-6

o= T] Y, (@) | @

where Wv (Qi) are given explicitly by
i

1

vy (8) = expl-(uy/n)e; "] x Hv1[<2nwi/h>l/2 Q] (1)

where ﬁvi is the‘Hermit polynomial of degree v The gnefgy levels in
the harmonic approximation are given by

E % :E:(vi + %thi 5oy ='0,1,2 *-- | ' (5)

1

Since T and V are to be invariant under all of the operations of the
space group of the crystal, the coordinates Qi must transform as an
irredﬁcib}e representatidp of the space group. The functions Hvi are
odd or even functions of Qi according to whether'vi is odd or even.
Iif Qi belongs to a non-~-degenerate irreducible representation of the
space group, the corresponding Wv. transforms eithér as Qi or the
totaliy symmetric representation ;f the spaée group according to whether
\f is odd or even. The vibrational ground state ¢ZV =0 is non-
degenerate and belongs to the totally symmetric irrezucible representa-

tion of the space group even if there are degenerate as well as



non~degenerate normal modes.
For a pure vibrational spectrum, the electronic state remains un-

changed. The vibrational transition probability is proportional to

the square of the transition dipole moment.l6
v o_ _ ¥ : .
" = foluo, @ (6)

In this equation v and v' stand for the set df vibrational quantum_
numbers in the lower and upper state respectively. If one expands the

dipole moment of the crystal U in a power series of the normal coordi-

- 3 ' .
e (B) wrw

i

nates, then '

When the higher terms in the development of Eq. (7) are neglected, upon
substituting Eq. (7) into Eq. (6), we obtain
[u]X'v = j[@vq)vf at +Z(-g-%i—> /QVT Q@ dt (8)
i o
The first term on the right vanishes if v # v' since the vibrationél
eigenfunction of different states are orthogonal.to‘one another. Ac-
cording to Eq. (3)

*
[cpv, 00 at = T quv! Y, < f\y ;9 (9)

J#i
The integrals, .icy W dQ » are different from zero only when v, —vj,
i.e. Av ‘O Whlle J{Q ,Q W dQ is different from zero
only when Avi= tl.. The trans1t10n energy is the same for all different
\ initial states and the intensities.differ by Boltzman factor
exp—Ev /kT. Therefore, the allowed difference bands can not be observed

i 1
experimentally. Thqé, we shall see that when both electrical
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anharmonicity [higher terms in Eq. (7)] and.mechanical anharmonicity
[higher terms in Eq. (E)j are neglected. Only fﬁndaméntals are allowed
transitions.

Whether a certain fundamental Vi of the-crystal is IR active can

be decided on whether (%%—) is different from zero or whether the
) i ©

integral in Eq. (6) is non zero. Such an integfal can exist only if

the reducible representation of its integrand contains the totally
symmetric répreéentation of the space group.

Since ﬁranslational operations leave any vector invarient, they
do not change the magnitude and the orientation of y. That is, ﬁhe
dipole moment of the crystal U belongs to the totally symmetric repre-
sentation of the translation group. Namely, it belongs to the unit cell
group. It is a theorem of group theory that irreducible representations
of the factor group, U, aré also irreducible repre$entations of the
space group, S. In these particulgr irreducible representations,'the |
elements of the ihvariant sub-group, T, are all given by identity.

Consequently, the set of irreducible representations Fz R Pi . Fz

X Yy z
which' are totally symmetric with respect to translation are given by

rS(u) = r(y) | (20)

Therefore, in order for [U]X' to exist, FS(QVT)Fu(u)FS(Qv) must contain
Ai. We are interested especially in the case v=0 (Zvi=0), the repreé
sentation of the initial state FS(QO) belongs to_Als species and
v'=1l (Zvi' =.l), the representafion of the final state is FS(QV.)=TS(Qi)-
This demands that |

. .FS(Qi) belongs to I'*(u) ' (ll)
That is, only those normal coordinates of the crystal whiéh are totally

symmetric with respéét to translation may be active, and the selection

rules are given by
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N

r(Q,) = I¥(n). | -_ (12)

Theréforé, ﬁé the harmonic approximation, the total numbér of the ob-
servered frequencies in the infrared and, in the Raman spectrum must
be the same as the number and symmetry types/determined'by the molecules
in a single unit cell. | |

The wave length of a photon in a medium of refractive index n=2,
is one half of its wvacuum value, and is of the order of 1 to 10 microns
in the infrared. This is substantially infinite relative to unit cell
dimension, so that for all practical purposes one cén assﬁme thét the
wave vector of aﬁ infrared photon K is equal to zera. In the process
of transforming a photon into an excitation wave packet of the crystal,
not only energy, but also momentum has to be .conserved. That is,
K =.kv'-kv=0 = 0. BSince the ground state of a crystal belongs to the
totally symmetric representation of the space grqup,_the wave vector
k .o of the ground (initial) ecrystal state of thebtransition is simply
zero. Therefore, the wave-vector of the excited state must be zero.
Tﬁis leads to the‘same conclusion as Eq. (12). Namely, only those
normal coordinates of the crystal which are totally symmetric with

respect to translation may be active in the infrared.  Explicitly, we

may write the infrared active modes as

N
a; (k=0) =" [q,"], (134)
m=1

Where (qiu)m is the ith normal coordinate of the mth unit cell. Phys-
ically, this motion is such that equivalent atoms of all unit cells are
in‘phase.

The physics leading to Eq. (12) can easily be illustrated with a
one dimensional model. For a one-dimensional crystal, the out of

phase modes may be written as

«



fy

 o-

N
Q (k) = Zqiu exp ikma (13)
. m

where a 1s the unit cell dimension. The dipole moment corresponding

to this normal motion of the crystal could be written as

TNCSIERTS +<§§i—>o Q (k) + -+ (14)

Substituting Eq. (13) into Eq. (14) and writing the time dependence of

qiu explicitly, we have : ’ :

N |
m

At any instant, e.g., t=to, the second term in the right hand side can

be represented graphically. For example k = é%' as

1, t 11
SRR NTINY

a

It is éeen that to the harmonic approximatién the time depeﬁdent part
of ui(k) is practically zero at any instant unless the wéve length of
the normal coordinéte of the crystal is the order of the crystal_.
dimension which is in the order of 1 micron for the polycrystaliine
sample in fhe actual study. That is, unless the wave vector of the

normal motion of the crystal is nearly zero, there is no change of

dipole moment accompanying this normal motion of.the crystal. Thus,

there is'ﬁo emission or absorption of radiation, according to classical
electrodynmaics. |

In order to find the spectroscopically. active modes of the.érystal,
one heeds to gonsider only the unit cell and thus, the unit cell group.

The analysis below will be based on the relationship between the
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representations of the various groups. Iﬁ is aiways possibievto write
linear relations between the.irreducible representetions of the unit
cell group(end those of the site groﬁp. Irredueibie representations
which are so related are called corresponding irreducible representa-
tions. The correspondence may be determined in any specific case by
comparing the character tables of the site group aed the unit cell
group. In this way, correlatior charts17 can be éet up between the
various siﬁe éroups and the unit cell group. It is a simple matter
then tolpreceed via these tables to analyze a given cryStal>strueture
for spectroscopic activity.

The determination of the spectroscopic activity of naphthalene will

be used as an example.

Naphthalene Spectra

The crystal structure of naphthalene is described by the space

group P (Cghs)’ with two molecules per unit cell. The site sym—

21/; v
metry is Ci' Figure 1 shows the unit cell and symmetry elements of the
naphthalene crystal., The relative orientation of the molecular axis

to the unit cell axis is analytically shoﬁn in Table 1. To analyze the
spectrum, one makes use of the correlation connecting the molecular
symmetryvgroup (D2h) with that of the site group (Ci), and connecting
the site group with that point group isomorphoué of the unit cell group

(C The correlations are shown in Table 2. Also shown are the

on)e T
symmetry gpecies of the translations (and thus, the dipole moments)
along the;x, ¥, z axis of the molecule (z is perpendicular to the
molecular plane, y is the long axis; also see Fig. 1) and along the a,
b, e, crystal axis. In the site group, translations are all Au.

The ﬁormal coordinates and their symmetry classes as well as the

fundamental frequencies of the gas state molecule are necessary for the
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Qy

XBL7110-7363

Fig. 1. Naphthalene has a monoclinic unit cell and has cell
dimensions at room temperature and pressure as: a = 8.2LA
b= 6.008 ¢ = 8,668 B =122.9° o =7y = 90° (the angle
between b and ¢ is denoted by o, between ¢ and a by B8,
and b by Y). The two molecules in a unit cell which have
coordinates (0 0 0) and (1/2 1/2 0), are interchanged by
symmetry operations of screw axis 2 which lies along
(1/% o 0), and a-glide (a 1/4c).

[after D. P. Craig, Ref. 3].
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Table 1.  Directional cosine of the Naphthalene‘ molecular axisvin its
crystal; cosines of the angle between the molecular axis and the

monociinic a and b axis and c¢', perpendicular to the ab plane.

z X : Yy
a +0.8399 ~0.3207 . -0.4379
‘ b ‘ . -0.Lk25 - -0.8718 -0.2103

c! © +0.3143 v-o.37oh‘ | -0.871

, (after Cruickshank, Reference 32)

s o e——— e
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Table 2. The correlation tabie'

for naphthalene.

Degrees of Molecular Site Factor group Degrees of
freedom symmetry symmetry symmetry freedom
| Doy el Con
A
A b
u
\_
x B2u B a,c
. u
y B3u \

(After G. C.. Pimentel, et al. Reference 34.)
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study of the molecule in the solid state. These are available in the

33 ‘'The condition for infrared activity in

literature for naphthalene.
the gas phase is that the normal coordinates of the molecule have the
symmetry of a component of the molecular dipole moment. Therefore, the
inrared-active modes of the naphthalene molecule are those belonging
10 B2u and B3u of the molecular point group.

The correlation table is simply the expression of the retention in -

to the classes, B

the sub group (the site group, Ci) of a part of the symmetry elements

of the group (either the unit cell group C or the molecular point group

2h

D2h)' ‘Thus, all of the symmetry classes that have the character -1

under the inversion operation in D correlate with A.u of the site

2h

group. All those symmetry classes of the factor group, , Which are

Con
asymmetric with respect to the inversion operation correlate with Au
of the site group.

Since the symmetry of a molecule in a érystal is actually that of
the site, one simply correlates each molecular vibration with its
proper class under Ci and predicts ité Spectrél activity by using se-
lection‘fules appropriate to Ci (i.e., that those.vibrations falling
under Au will be infrared-active). The procedure to this point is
called thé site analysis.18 For example, Vgs Yq and 65 are of the
respectively in the isolated molecule.

symmetry classes b, , a, and b

lg 2u

v8(blg) is infrared inactive in the gas phase. In the crystal it falls
under class Ag of the site group and remains inactive. Yl(au) is
inactive in the gas phase. In the crystal, it belongs to class Au-
of the site group and can be active. Its intensity will be expected
to be low, since it c%gfonly be active because of the small crystal

W .

field perturbation. S; b2u) is gas phase acﬁive. In the crystal it

remains active. The résult is obvious that any degenerate vibration
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of a molecule'which is in a site of a symmetry gréup Cl’ C2, Ci or
D2, may sblit, sipce there is no degenerate class iﬁ theée groups.
This splitﬁihg is the so-called site group splitting. Symmétry, of
course, tells us nothing about the magnitude of the site group splitting.
Site éroup splitting is a first order effect, and the change in in-
tensity ié sécond order. This will be discussed later in this chapter.
Having>considered the effect of the lowering of symmefry due to
the local’field at the site,/one must now take into account the fact
that the coupling may occur between two naphthalene.malecules of the
unit cell, i.e., the factor group analysis.8 This involves the con-
structibn of the symmetry coordinates qau and un of the unit cell
from the normal coordinates qa and qb of the molecules at the two sites

of the cell. Considering only one normal motion of the molecules, we

haVe
’ u
Aqa Baa Bab qa
- | . (16)
qu B B ab : :
=B Ba "BDb

B is a unitary matrix similar to the transformation matrix_for the
transfprmation>of internal coordinates into symmetry coordinates in the
theory of molecular vibrations.

The correlation table shows that for each Au vibration of the
molecules at the two-Ci sites, there will be two unit cell vibrations,
one each of species A.u and Bu' Of these gnit cell vibrations, those
" in class Au will be infraféd active with the transition dipole parallel
to the b axis. Those in class Bu will be infrared active with the

transition dipole perpendicular to the b axis. The symmetry coordinates

of the unit cell are obviously
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G (et < =7z_— (o, -9) D

Since qg and q; are Ofthonormal and sb are qazand G+ The B matrix is,

11 |
B = ( ' ) - (18)
S\ o/

Equation (17) tells us that the molecule in site a vibrates either in

thus

phase wiﬁh, 6r exactly 180° out of phase from thé molecule in site b
for thé spectroscopic active modes of the crystal.

In summary, from symmetry considefations, sife.group and factor
group splittings are expected in the spectra of molecular crystals. The
major purpose of the next two sections is to illustrate the nature of
the crYstalline férce field causing these splittings and the ac-

companying frequency shifts.

B. The Pertrubation of the Crystﬁlline Force
o Field on the Internal Vibration

One may describe the displacement of the center of gravity of
each ion or molecule as well as the displacemenﬁ of the angles which
' definé the orientation of a set of axis fixed to'each molecule with
respect to an axis fixed in the entire crystal by the coordinates S?.
Here the superscript and subscript represent the ith coordinate of the
Jth molecule. These coordinates are lattice coordinates, and they are
anglogous to the coordinates which define the translation and rotation
of a free molecule. The distortion of the molecular configuration, rel-
ativé to the center of gravity and body axis of the jth molecule is to
be deéigpated by the ihternal coordinates Rg. These are the internal

coordinates in the same sense as in the usual molecular vibration

problem.
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In theée coordinates, the potential energy of ﬁhe solid is given

by 6,6

tW,tN

-V - i1t 4 i jg: 5L 4 gr qm
V—Vo+ Z ij's.j Sj'+ Jjj'j" Sj S',Sj,,+.... |

ii'33" i1'i"33'3"

3n-6,3n-6
tN tN-

iit i i
+ M,., R, R,, + *+-"
:E: J3av 3 Ty

i1'33!

3n-6,6
tN tN

K vt gt gt ... ‘
DA A 1)

ii'j3!
where L,_J,vM, and N are force constants. Since S§ and R§ are not
normal coordinates of the grystal, cross terms may éxist for all pairs
of 3ntN éoordinates (6tN lattice coordinates and (3n-6)tN internal
coordinates for the crystal of non-linear molecules). The terms in the
first pareﬁthesis represent the potential which yields the lattice
motion -of rigid molecules. The termé in the secoﬁd'parenthesis are the
sum of the potential.for the internal motions of ali of the individual
molecules which are in the crystal field of the site symmetry. These
terms also include the interaction amongvinternal motions of the various
molecules. In general, the amplitude of intramolecular motion is very
much smaller then that of the lattice vibrations, therefore only the
limit 5f small intramolecular vibrations will be  considered below. The
terms in the third parenthesis reﬁresent the igteraction between lat-
tice and internal vibrationms.

In terms of these same coordinates, the kinetic energy is of the

form
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V 3n-6 SR
\ tN 6 . 3n-6 3n-6,6 ,
2 {10 ei eit i1t i it
T= ) igle o E ‘YURT RD 4+ E ¢t Rt S 2
Z AJSJ BJ J J J (20)
gL ii? ' it '

Where éé.and ﬁ; are thé veloéities correspondiﬁg to.SE and R} dis-
placementé. The coefficients A, B and C are fuﬁétions of the coordinates
chosen and masses of constituent atoms of fhe crystal. The first term

is the translational ahd rotational energ& of the molecules considered
-as rigid bodies. The second is the internal kiﬁeﬁic energy of the
molecules and is aﬁalogous to that encéﬁntered in‘any molecular vibra-
tion'problem.  The third term does not vanish whenever R§ and S§ are

not orthogonal.

If the cross terms between lattice'coordihates and internal co-
ordinateé in bqth'T and V are neglected, the problem would be separable
inﬁo the problems of lattice vibrations and internal vibrations of the
crystal.: This is usually a satisfactory assumption since the large
frequency separation between intramolecular vibration and lattice
vibfation‘prevents the two classes of motion from interacting appreciably.
The lattice vibration will not be treated here, and ﬁhe internal vibra-
tion will be treated by the theory of small vibrations. To this 1imit,

we have the potential and kinetic energy of internal vibrational motion

as
~ ~ E RN S LR
Vinternal motion E Miat B Rj' E (21)
| 13133 '
o i i ait
Tinternal motion = :E:: B By By . (214)
ii'g

Following the procedure of vibrational analysis in molecular
spectroscopy, one substitutes Eq. (21) and Eq. (21A) into Lagrange's

equation:
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mor t =0 | - (22)
3R 3R :
J J

‘A set of (3n—6)tN equations is obtained. If we wish to determine
whether there are any normal vibrations of the entire crystal, namely,
motions in which all particles move with the same frequency of simple'

harmonic motion,

1 1,0 1
+
Rl (Rl) cos (2mvt 61)

(R;)o cos(2mvt + 63) _ | (23)

=]
H

3n-6_ ,.3n-6.0 3n-6
vRtN = (RtN )~ cos(2mvt + etN )

One has to see whether the above condition expresséd by Eq. (23) for
simple harmonic motion can be fulfilled simultaneousiy for all internal
coordinates with the same frequency. That is, one tries to substitute
the R;’s'of Eq. (23) and their derivative into the set of (3n-6)tN

number of equations obtained above. In doing so, a system of linear
and homogenous equations for (Rll)o, < e (Rj s vt e (RtN3n—6)o

is obtained. In principle, from these equations, (3n-6)tN number of

normal vibrational frequencies of the crystal could be obtained as

ii!

.
functions of ij, and lel .  They are exactly those internal fre-

quenciés of the crystal in Eq. (5). The relative values of

l)o,-. . (R.i)o, . . (R 3n~6

(Rl J tN .

)o thus form the normal vibrations

of the crystal, the Q. of Eq. (2), could also be obtained in principle.
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It is shown in Séction B that only in-phase modés could be -
observed spectroscopically; that is, a maximﬁm of (3n-6)t normal
frequencies ére observable. Therefore, the'obsefvable frequencies
could never be sufficient for the evaluétion‘of ﬁhe'[(3n-6)tN]2 '
_number of f@rce constants, ij,ii'. | |

Sihce the molecular-normal-coordinstes qi and its frequency
violafe usually known, one would like to express the normal frequency
of the cfystal vi as_vio plus a crystal perturbation term. »To clarify
the.effécts'of the crystalline force field, one may transform the
interngl coordinates in Eq. (21)‘into molecular—normél-coordinates,

thus
- _ iit i i
Vinternal motion - z ij' %5 9y

ii'3g!

1,11, 1,1',3,3"3

) A 442 CANNF IUP RN v BN LR BUE &
i3 |

3 o' s
In general, Kjl’1 # 0, since qjl are not normal c¢oordinates of the

s ey .
moleculefwith site symmetry. ,¢jl’l # 0, since qj1 are not

X5,

normal coordinates of the entire crystal. Kjl #* (Ajl)o, (le)o is

the force constant of an isolated molecule. The potential function

for an isolated molecule is

= i_ N i i2 '
V= Do vis Z (b, (@) (25)
1

i .
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Substituting Eq. (25) into Eq. (24), one has

= i 41 iy2
Vinternal motion ~ Z Vj * E [Kj - (xj )o] (qj)
_ J £

o 14 i 4v iiv 4 i .
* Z Ky gy Z Kygr 93 9 (26)
C A1 11'33'#3

In this equation, the existence of the 2nd, 3rd,'and 4th terms is
,obviously due to the crystal field perturbation on the intramolecular
‘vibrations. It is interesting to see (and will be shown below morg
explicitly) that Eq. (26) tells us: First--the lowering of the
molecuiar s&mmetry to thé site symmetry causes g frequency shift of
l/2ﬂ'VK§ - (Aji)O and is expressed by tﬁe second term. Second--the
crystal field causes the coupling of the molecular normgl modes
within a molecule and among differept molecules. Therefore, one
éhéuld regard the molecular-normel-coordinates as a set of internal
coordinates of the crystal. The coupling of a given molecular=-
normal-mode among tN molecules of the crystal splits the tN-fold
degeneracy. Each of the resulting tN normal modes of the crystal

is cﬁéracterizéd by a certain phase relation among neighboring_
molecules. The sign and magnitude of the frequency shift and splitting
are dependent on the crystal structure as well as the nature of the
crystalline force fields. The crystalline forces are the repulsion
forces, hydrogen bonding, London forces and Cpulombicbforces. In
general all these forceS‘egist at the same time. _Névertheless, one

type of the force field may be dominant among all the others for a
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small range of intermolécular distance.

We ﬁill proceed further toward the correlatipn of the molecular
normal frequency with the normal frequency of the crystal, keeping
in mind'the previous assumption that the cross term between lattice
motion and internal modes of the crystal is neglected. The total
potential of the crystal, i.e., Eq. (19) may be rewritten to the

limit of infinitesimal intramolecular vibration as

B < - i .4 1,2 BRI Y
+ E Vj + E [KJ - (Aj)o] (qj) + E . Kj qj qj
3 o :

: iiv i v
+ E ij. 9y 9 (27)_
111335

Therefore, . the crystal potential energy is that of the isolated

molecules plus a perturbation U. Namely,

ZVJ +U - | (274)
: _

| 4 i 4v 104" 4 it i
S = e + J. S, S,, S.p+ . . .
v=5% Z Lysr S5 Sy z : A R B R A
1it33" R AR LE RN A

P 2B - b 3 5 IR

ii'#ig ii'35"#S
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Uo is the static lattice potential and is identical to that
in the Mei Gruneisen equation of state. It is a funetion of'crystal
structuré énd unit celi dimension. If one divides_thé crystalline
potential U into a Qtatic potential Uo plus dynamic potentials. Each
of the other terms on the right hand side of Eq. (28) represent a
dynémic potential.

C. Internal Vibrational Energy Levels (vibrational exé¢iton
levels) of Molecular Crystals

The vibrational energy levels of the ith normal mode of the

jth isolated molecule is the eigen values of the Schredinger equation.

/

i i_ i i .
where
i_ L1 i
HJ = Tj + Vj

(&) + 03 (g

The solution for this equation is well known, namely:

v J

R (ot myal x i, \1/2 i (298)
K qy) = expj-(m O/h)qj ijl (2mw” /h) q (29

1y | | (29B)

i

i
eJ = hv O(1/2 + v

J

The internal vibrational energy levels of the crystal are

the solution of a Schredinger equation of the form
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Z HJ * Texternzav.l M Z€J,+ Erpe (30)
J .

J

Where ?external 1svthe first term in Eq. (20). Iﬁ is & constant here,
i.e., it is not a function of internal coordinates of the crystal
(molecular-normal—coordinates).. U is defined in Eq. (28). 1In the
following treatment, only the interaction of a molecular-normal mode

among the tN mqlecules is to be considered. Thus, the superscript

of q dnd Y is to be omitted. The unperturbed wave function of the

crystal grqund state, @Z v.=g 18
y 49
<I>°=51x13vj=o (30A)
The unperturbed first excited states @z v. =1 is the linear
combination of the tN number of ¢p in which the pth molecule is

excited and the others are in their ground state.

v._ B
A

The tN number of the unperturbed excited states @z v =1 8&re acciden-
J

tally degeherate. Namely, they belong to various irreducible
representation of the space group, and thus, the energy levels are
expected to be split by the perturbation.

Since both H and ¢ are the functions of intramolecular normal
coordinates only, the bracket of Eq. (28) is a constant. U of Eq. (28)

is reduced to
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U(q.l9q_2 . »' . qj e o o q_tN) = COI?Sta.nt

2 : 2 :2 :

+ 1K, - (A + X 2
: J . 33’ .

Assuming that the perturbation potential U can be expressed

as a sum over pairs of molecules

U =

o

U 33
2 U (33)
Jp C '
Tt can be shown (2,3,5,6,9.15) by first order perturbation theory

that the energy level of the excited states is split into t branches

(to be designated by a,8,Y . . .). The energy difference between

‘the spectrally excited state and the ground state is given by

' N
3%
E._EO=€_€o+_.l]___ E _le.
o _ 8W2v c 9 2
J %/,
t,N 20

32 U0y o\
i MV e 3 (34)
81V e oy "\ 0 jwaqp )

Where € and e° are the energies of the states wl and wo. € - e = hvo.

The partial differentials are evaluated at static equilibrium, namely,
zz:lsll = 0 and EE:]ql[ =0 . Molecule p is on site a, and -

i i3 9 | |
molecule jw is on site w. W runs through a, b, . . . to t number of"

equivalent sites in a unit cell. B is the transformation matrix

difined in, Eq. (16) and Eq. (18), for the case t=2.
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For a crystal with two molecules per unit cell, there are two

unit cell modes for each intramolecular vibration. They are

3%y ' | L 32U5a

-
1 Z " ip 1 2:
vV =V + +
[ B 2 . q
S e G\ ) 812y c T 3% 3%
N 20U ' '
1 . vP ) . .
= _ : (35)
8nv e :E:: aquaqp _ - .
- © J'b o . . .
‘ o
E, - E = v, , A(36)
8 ]

The splitting of each gas state frequenéy into o and B factor
~ group components is the so called factor group splitting and also
called Davydov splitting. The frequency shift as gas condenses to

‘the crystal is

| e - N /.U, ‘
o1 _ 1 3 "Jp :E:: a
o 3 \%h e Jq |
o]
and the factor group splitting is
N
2 J.p ’
1 :E: 3 b}
V-V, = —_— (38)
@ B Bﬂzvoc aquaqp '

Jb o

U, 1is a function of intermolecular distance as well as relative

Jp

orientation of molecules in a crystal. The former is obviously

varied with pressure and temperature. Therefore, both frequency shift
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and factor group splitting are expected to be temperature and pressure
dependent. Any discontinuity of relative orientation of the molecules
- and/or of intermolecular distances across the solid-solid phase transi-
tion may be §etected from the expected discontinuity in the frequency-
pressuré_plbt. Thus, the frequency-pressure plot will offer us useful
informatién about the existahce as well as the nature of a phase
utranéitioh.. _

It is possible, at this point, to develop a physical model to de- °
scribe ﬁhe mechanism which causes the frequency shift and Davydov split-
ting, when the gas becomes a crystal and the change when high pressure
is applied on a soiid, or when a solid-solid phase transition takes'
place. As was shown above, the perturbation potential U is the poten-
tial eﬁergy Qf the entire crystal minus that of the molecules in the
gas state.. U is thus the eneréy of interaction among the charge dis-~

tributions of all molecules. U, is the intermolecular pair potential.

Jp

It is important to realize that only the part of U, which is dependent

Jp

on the intramolecular vibrational coordinates entefs into Eq. (37) and

Eq. (38). 1In these equation, éf%ig and 23912—) are force con-
Sq_p o 3%50%/ o

stants. The former is a pure number while the latter is a tensor.

’Namely,'(§E§%2> qP is & restoring force along the unit vector ap’ and

-3

® qp © . . . A BZU". E .

is caused by an intramolecular displacement along qp. qJ is
quaqp o

.a restoring force along ap and is caused by an intramolecular displace-

ment along'aj. In Fig. 2, a model is proposed to illustrate these

force fields grmphically. The numberical force constants are phase

independent (because the displacement and the restoring force are

always in phase) and contribute only to the frequency shift. The

tensoral force constants are phase depehdent and contribute to both
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' (32 U. 62 U, p - : XBL7||O“7364
J_ P J
8, . A
—_— + | —— ) is the component
s o 2 b I W % dp P
b o % o
of the force exerted by the eight loose springs, due to
the intramolecular displacement qp.

Fig. 2a
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Fig. 2b - is the § component of the force exerted
b

by the four loose springs, due to the intramolecular dis-
placement q,
Ja
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2 U,
67 "3y P
Fig. 2c — is the § component of the
& _ Gq.péqj qu % pot
1) 0]

force exerted by the four loose springs, due
to the intramolecular displacement qj
b
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frequengy'Shift and the splitting into t branches, of each of the gas
state fréquencies and are responsiblé for the exciton eergy transfer
mechanism.

Both scalar and tensoral force constants may cause site group
splitting. (Site group splitting is predicted in the g-oup theoretical
considéfation in Seétion A, namely, the degeneracy of molecular-normal- -
modés may £e split due to the lower symmetry of fhe site.) This split~
ting may be visualize& easily from the~crysfalline force field. As a
simple model, assume that a linear triatomic molecule crystalizes in
the naphthalene sites (see Fig. 1), one can then construct the crystal-
line forces, as in Fig. 2 for the doubly degenerate bending modes. The
érystalline force fields so obtained are different for thebtwo bending
modes. That is, the two bending modes are no longe? degenerate. |

In the literature, the frequency shift and Davydov splitting are
often described; the former, as due to a static crystalline force field
and the latter as due to a dynamic crystalline force field (alsb called
resonance interaction force field). From our definition of static and
dynamicvcrystalline potentials in Eq. (28), both the frequency shift
and Davydov splitting are obviouély caused by the dynamic poténtials.
Two types of force constants, illustrated'in Fig. 2, yields two kinds
of.dynaﬁic forces. The frequency shift is caused by both typesvof
dynamic forces while Davydov splitting is caused by the second type of
the dynamic forces (tensor force constant). The dynamic interaction of
the sécdnd type reaches a maximumkvalue when ali molecules vibrate with‘
the same frequency andAis the so called resonance interaction.

The possible fqrég fields which could be involved in Ujp are

the Coulumbic force which may be resolved into the summation of
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‘monopole, dipdle and all multipole interactions, Londbn forces
repulsion forces and hydrogen bonding. Certain intermolecular
potentiéls (the latter.fhree) mey reasonably be Broken up into central
forces écting between pairs of atoms, one in each of the two molecules.

That is

Usp = Umn(rmn) . - (39)

Where m is an atom of molecule j, n is an atom of molecule p, and .
rmn is the interatomic distance.
The numerical and tensoral force constant in Eq. (37) and

Eq. (38) can be writtenhl’55 as

Ty Z 2 lan) (Twm . Ta) . (%0)
aqi 3y 2 arn qu v _
‘ (] mn nmn (o} [e]
3% Ysp\ _ Z 32 Upn 3"mn  8'm ?"mn | 3'n (11)
99,9q, or 2 3Tm a%/o ¥n 3% S

o mn mn e}

[~r
Where_rm is a vector describing the position of atom m. (armn) is
onl/o

the cosine of the angle between the molecular normal displacements

of the atbm n and the interatomic distance rone and is calculable

from the knowledge of the crystal structure and molecular normal

: r
coordinates. (g—ll> is a matrix element of the transformation
. . o

from Cartesian coordinate to normal coordinates, and is usually

1
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available in the literature for the gas state normal coordinate
analysis.

Equation (38) there fore reduces to

~ /20U
_ 4~ “mn
Vo = Vg = C E ————3r > (k2)

mn mn o]

Where C(which includes a structufe factor) can be calculated, at

least in principle. Atoms m and n are now those of two molecules in
the same unit cell. Therefore, in this approximation, (with assumptions
of Eq. (33) and Eq. (39)), the interatdmic force constant may be
obtained as a function of interatomic distance, when Davydov splitting
is méasurable as a function of unit cell dimensions. For a special
case, when the interatomic forces are dominated by the nearest

neighbor repulsion force, the summation and structural factor are
reduced to a simply calculable constant. This.will be shown in

Chapter IV for n-paraffins.

D. Intensity

The intensity of an infrared absorption band is ﬁroportional
to the square of the change in dipole'moment during a normal motion
of a crystal. The change in dipole moment of the crystal is the
vector sum of the individual molecular dipole changes each weighted

: /
by the phase difference from a reference molecule. The weighting
factors are exactly the coefficients of thé linear combination of
molecular normal coordinates in forming normal coordinates §f the
crystsal. The change in the dipole moment of an individual molecule.

. . * . . s 3
is proportional to the transition moment Mﬁ = J{bl (qg)u(qg)W(qg)dqg 3
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where w*(qi), w(qg) and u(qj)_are perturbed by thg;cryétal'field u.
However,.in the first.order pertufbation theory, both q§ and Y's are
of the zero order (unperturbed), and the transition dipole moment of
a_molecﬁie in the crystal is. identical with that.of an isolated
molecule. The intensity of the ath-factqr group transition (k = 0)
is thﬁs proportional to |

I, NZBaaMa | . (43)

W : .

Where N ié'the number of unit cells, Ma is the transition dipolé
moment of a free molecule and is oriented in the direction of the
change in.dipole moment of the molecule at site a. Baa/Bab is‘the
phase difference of molecular motién between site b and site a. For
a crystai with two molecules per unit cell using the B matrix in

Eq. (18), we have
EAE N S )
g = NQ(Ma, - 1) . : (k5)

For Naphthalene, each of the B, normsl modes have a change of

2u
dipole moment along the x-axis. With the help of Fig. 1 and Table 1,

it can be shown theat Ma + Mb is along the b-axis and Ma - Mb is
A ‘ *
perpendicular to the b-axis. Namely, the o factor group component

. .
The symmetry class and thus the spectroscopic activity of factor

group components is usually deduced from the correlation table and
group theoretical argument (see any book on exciton theory).
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is IR active along the b-axis and B factor group component is IR

active perpendicular to the b-axis. The intensity along the a and c
. . V . - .A/\2 . .I\2

axis is proportional to l(ma -m) a]“ and [(ma - mb) g]

respectively. Therefore, the intensity ratios which are readily

observable are

A2
Ll e
I.b |Ma + Mblz (46)
ES. . I(Ma -M) - 6]2 - (47)
oy ) |

The intensity ratios for B ’ §2u, and B3u molecular normal modes
of naphthnlene are calculated by Person, Pimentei and Schnepp.20
The in£énsity ratio aré obviously dependent on the relative
.ofientatibn of Ma and Mb.

‘The sum of the intensities of the two factor group components
is oﬁvious from Eq. (45) and Eq. (4L4) and is just équal to the
intensity of the tfansition in the gas state. This conclusion is
also true‘for crystals with more molecules per unit cell since B is
a unitary matrix. In the beginning of this chapter, it was shown
that séﬁe transitions that are IR inactive in the isolated molecule,
e.g. Au'normal modes of Naphthalene, may become active in the crystal
field with lower symmetry. Nevertheless the first order perturbation
theory yields zero intensity. To discuss the intensity in the
crystal field,'it is necessary to correct the wave functions of the
unit cell state to the first order. In other words, it is necessary

5,19

to use the second-order perturbation theory.
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E. Selection Rules for Combinations and Overtones

Two kinds of combinations and overtones ére possible. The
combinations (or overtohes) of thé first kindvmay be called the
intermoleéular combinations (or overtones) and_afe the transitions
from the'grbund state to the states in which two different molecu;es
are each_excited by one quaﬁtum. These transitions are a consequence \
of the énharmonic coupiing of the various motions of different
molecules; i.e. due to the higher order terms in'the petturbation
potentiai U of Eq; (32). For this type of combinations (or overtones),
the more general selection rule (Eg. 11) requires that ki = kz;
where-kl and k2 are wave vectors of the two excitations. BSince the
combinatioqs and overtones of this type has never been confirmed in
the observed-spectra, we shall not discuss it any further.

Thé'combinations (or overtones) of the second kind ﬁay be
called intramolecular combinations (or overtones) and ére the transi-
tions from the ground state to the states in which one molecule is
excited'by two quanta. -These combinations and overtones are a conse-
quence of the anharmonic coupling of various intfamolecular motions;
i.e., the consequence of the inclusion of the higher order terms in
Hji of Eq. (29). ,

EQuation (8) isvthe selection rule for overtones. .The restriction,
that Avi = % 1, is removed, since WV' and WV.; of Eq. (9) are
no longér_harmonic. In the case of combinatio;s, the selection rule

depends on the non-vanishing of the integrals:

* *
f‘yv.' \yv.' u‘Pv.\yv dQ‘idQ,j
i J i3
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Namely, a combination will be.infrared gctive when at.least one
componeént of the dipole moment of the unit cell has the same species
as the vibrational eigen function wv.;wv , of the upper state. This
type of overtones and combinations szemsjto be the ones most commonly
observed,"and as a result, the selection rules for the observed
combinations and overtones usually follow the predictions of the unit
cell group analysis.

It might be worthwhile to point out that»the‘conVentional
terminologies "one molecule is excited by two quanta" or "twp molecules
each excited by one guantum" do not mean that a photon splits into

two before it is absorbed. The physics for the overtone and combina-

tion transitions is illustrated in Appendix I.

F. Experimental Methods

Tt is known21’22’23 that the transition energy and the

‘corresponding oscillator strength are related to the observables:
the refractive index, n(v), and the extinction coefficient, k(v).
Namely, the transverse optical frequency is the'peak frequency of

the absorption band n(v)k(v). The oscillator strength f is

. m m

f=—" f pkvdy ¥ —=— 1 kvav , (50)

T tNree® S tNTPe? -
. band band

Where me and e are the mass and charge of the electron respectively,
tN is the number of molecules in the solid. The first integral is

to be referred as the absolute intensity.
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Thevexperimental methods for obtaining cryétai spectra at normal
pressure'are well established. A comparison of the use of infrared
absorption, reflection and Raman scattering is presented in the
following paragraphs.

The extinction coefficient as a function of v, k(v), may be
measuréd by infrared absorption. For weak absorption bands, the pesk
frequeﬁcy of the nk band may be taken as that of the k band #ithin
experiﬁental error, since n is nearly constant. The absolute intensity
may be approximated by the inﬁegratéa area of the‘k(v)'bdnd times &.

n is defined in Eq. (50). However, if one wishes to compute a more
accuréfe vaiue for the eigen frequency as well as the‘oscillator
strength, one may calculate the refractive index from the k(v)
spectrum through the well—known Kramers-Kronig dispersion relation-

ship,eh,zs

which connects the real and imaginary parts of any éomplex
optical indexes to the limit of linear optics. .Infrared absorption
measuremént alone could in principle yieid both eigen frequency as
well as oscillator strength.

?or'intense absorption bands, the calculation of refractive
index beéomes essential. However, the absorption mé§§urement becomes
insufficient for quantitative study for the following three reasons:
(1) An absorption band in a crystal is always accompanied by an
anomaly in the dispersion of the index of refraction n(v). The
stronger the absorption, the greater the fluctuation in n(v) through
the band. The n(v) anomaly is als§ accompanied by & maximum in the‘
reflectance spectrum of the crystal. If reflection does occur to a

measurable amount, the measured absorption spectrum k(v) will include

the effects of reflection as apparent absorption. Thus, the peak
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position and the line shape as well as the absoluté.intensity can be
in error. (2) The sample thickness required is of the order of

1 micron and belaw. Therefore, the sample is usualiy deposited in
the form of a poly-crystal on é substrate. The sample thickness is
usually uncertain and thus the absolute value of k(v) can not be
certain. (3) Disorder in the polycrystalline sample causes a
broadehing of the absorption band.

The reflection method is of importance in the study of intense
bands. 'This method has been used to s gfeat extent for ionic crystals
where thé oscillator strength is usually high. ‘The.proéessing of
the normal incidence reflection data to obtain both extinction
coefficient k(v) and index of refraction n(v) may again be accomplished
by the ﬁse of the Kramers-Kronig dispersion relationship. However,
the intensitiesof radiation reflected by a sample in ﬁhe nminimum-
réflecﬁance region are well below the instrumental noise level for
very intehse bands. The so obtained optical indicies have always
been in doubt. Fortunately, with the so called partitioning technique

29,30

of Wu and Andermann, it is now possible to obtain reliable

thicai indices even for the most intense bands, e.g., the optical
phohon band of LiF and MgO.31

Raman spectroscopy has different selection rules from those in
the infrared. Beside being complimentary to the infrared, its
additional advantages are that information can be obtained comncerning
the lattice modes without going to the far infrared and an occasional
observatién of longitudinal frequencies. Its disadvantages stem

basically from the fact that Raman scattering is a second order

process. They are: (a) the high background noise level precludes
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very high resolution, and (b) a large ja few milliméters)bclear single
crystal is needed for thé sample. |

In this work, we are mainly interested in the frequency shift
and splittings as a functioh of unit cell dimenéion. That is, only
the relative values of the frequencies are.needed.‘ We feel that it
is not yet'necessary, at this Stage, to calculate n(v) fof high

pressure spectra.
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ITI. INSTRUMENTATION

‘A, Pressure Devices -

1. Selection of a High Pressure Sample Cell for Spectroscopic
Measurements ‘

For spectroscopic measurement under high pressure, the needs are
cell windows which satisfies the following two requirements: (1) they
are transparent in the interested frequency range, (2) they are able
to stand high sheer stress. So far there is no material available which
satisfies these two conditions simultaneously for infrared windows to
the highest attainable pressures. H. G. Drickamer, et al. 26 used
synthetic sapphire windows for the infrared transmission study of
liquid solution to pressures of 12 kb. The sapphire window is trans-
parent in the frequency range of 2000 cm—l to 50,000 ém-l. However, in
this study, we are interested in the frequency range below 2000 cm_l.

27

C. E. Weir, et al. used a diamond squeezer for the infrared
study of ionic an& molecular crystals to pressures of 30 kb. Only two
percent of all diamonds are relatively transparent for wave lengths

‘longer than 6u, and all diamonds have various absorbtion bands below
6 microns. It is noted that hydrostatic pressure is obtained in the
sapphire cell, while a diamond squeezer exerts a uniaxial force to
a specimen contained bétween two flat surfaces, and further has sa
very‘largé pressure gradient.

Fér transmission purposes, the alkali halides are ideal, but
they afe mechanically weak. To overcomé this weakness, Drickamer
et al. 28 has invented & bomb design using sodium chloride simultane-

ously as the pressure transmission medium and pressure resisting

window. Pressures up to 200 kb were obtained. However, the use of
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this cell (to be called sodium chloride high pressure cell) is limited
by the very small amount of radiation energy which can pass .through’
the long windows. When black body.radiation is used as'é light source,
the source intensity is much weaker in the infrared than in the UV
and visible regions. Drickamer, et‘al. reétricted their study to
the latter frequency regions. In this study, we have extended the-
usage of.this cell into the infrared. |

A sodium chloride cell is ﬁade available to us by Nicol, who
modified the stium chloride cell for Raman measurements.68 The
references cited above give detailed information on the construction
of the cell as well as the preparation of the cell windows. |
2. Press |

A force of 7120 1bs. is sufficient for generating a 40 kb in a
sample chamber éf 0.125"inch diameter. An easily portable press
sketched in Fig. 3, is thus constructed to suit optical alignments.

In a‘compression process, the pressure transﬁission fluid is
forced to enter above a Bridgeman seal, into the cylinder of the
press. In order to remove an optical cell immediately after de-
compreésibn, the Bridgeman seal is lifted up by compressed air.

When compressed air is introduced, one has to be sure to keep
fingers away from the sample cell position, since the compressed air

which 1lifts the Bridgeman seal also presses the piston downward.

B. Optics

A Perkin-Elmer Model 21 IR spectrophotometer was reconstructed

’

with its optics modified for high pressure measurements. The optics

used and presented below make a quantitative study of high pressure
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IR spectra, 650 to 2000 cm™, possible for the first time.

The oﬁtical system which precedes the mqnochromator ié'shown
in Fig. k. In the transmittance measurements, the first light source
(Si) is used. The passage of radiation follows the order of M. , M2,
Sample;_M3, Mh and the monochromator. For reflectance measurements,
the second light source (82) is employed. The light passage follows
the ordér of M5’ M, Sample, M3, M), and the monochromator,.and it

is necessary that M., is shifted along the mirror plane, in the direction

3

shown in Fig. L4, such that only half of the Mé mirror surface is in
the light beam. The‘ope?ational mode is to focus the source fadiation
on the.center of a sample cell and then refocus on the entranceislit
of the monoéhrometer.

The ideal amount of energy which can be passed thréugh the
' NaCl cell»is that which is emitted from the cell when an imeginary
light source is located at the center of the sampie cell.  Since the
aperature of the sample cell and the cross-section of the light
passage-at the cell center ig fixed, i.e. constant for a given cell,
the energy that passes through the cell is simply proportional to the
product of the intensity of light source I(v) and the cross-sectional
area for the passage of radiation at the cell cénter. The Sylvanis
concentrated Zr arc lamp, water Jacketed, with a NaCl window, is uéed
as the light source for the sample beam for the following reasons:
(1) I(v) is at least 2.25 times more intensive than a globar in the
entire infrared frequency range, (2) it is felatively cheap and
easy to.operate, and (3) output intensity is very steady.

Although the aperture of the sample cell is smaller than the

maximum aperture of the radiation which can be accepted by the
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Fig. 4 Optical system of sample beam.



_L6-

therﬁocouple, thevoptics is aligned such that the maximum apertﬁre
of radiation is seen by the thermocouple, i.e., the entire surface
of all the mirrors in the monochrometer is enveloped with radiation.
Energy'is gained, since the focus of the light source at the cell
center is larger than the slit width used.

The‘theoretical infensity is obtained by minimizing sphericai

aberration and astigmatism.

C. Pressure Scale and Precision of the Measured Frequencieé-

A recent calibration of the pressuré scale for samples of ionic

67

crystals‘bbeong and Nicol shows an‘approximateiy linear relation-
ship between the pressure within the NaCl cell and the applied load
at preSsuies up to 25 kb. However, the compressibility of the
substances in this study is nearly twice that of the NaCl window and
the ionic crystals used in théir calibration. Therefore, Fong and
Nicol's calibfation is not necessarily applicable to the system in
this study. Furthermore, it is obvious that pressure within the cell
might bé dependent on the fit of the pistons with the sample.chambér,
and on the compression process; i.e., how fast the load is increased.
.Before a suitable calibration of an absolute pressure scale for
this system is obtained, a reference pressure scale is defined in
Fig. 29 (Which is the P-v relation of the T30 cm—l absorption band
of polyethylene). Ih this P-v plot, pressﬁre of the sample is simply
defined as the applied load divided by the area of piston. The
‘choice of this particular band is based on the following reasons:
(1) & 1 mil. polyethylene sheet (Marlex 6009) supplied by Phillips.
Petroleum Company, can readily be used as a test sample. (2) reproduc-

ible and large frequency shifts of this absorption band. (3) the
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position of the peek maximum can be determined with certainty, since
this absofption band is fairly narrow and symmetric,'and its intensity
as well as Band width are independent of pressure.
. Throughout this study, the ﬁressure-scale is checked with
Fig. 29. It is found that the pressure-load relation remaiﬁs for
an old cell just as when it was néw. However, the upper pressure
~ limit is dropped as the cell is used repeatedly (order of 50 runs).
This is prpbably due to the slight enlargement of the sample chamber.
The pbserved frequencies for the 730 cm_l absorption band of
polyethjlene.at various pressures are tabulated in Table 3 for two
runs bf different samples. For pressures above 15 kb, the frequencies
of different runs agreé within the exp;rimental precisidn of a single
run; the data presented is the adverage values of five to ten runs.
For pressures below 10 kb, and especially below 5 kb, the agreement
between two runs is not as good. This is due to a poor reproducibility .

of the compression process at low pressures.

From Table.3, it is seen that the reproducibility for the

<

frequency of a given sample at each pressure is below * 0.125 cm_l.

This is fhe reproducibility of our spectrophotometer. However, the
precision of the frequencies to be presented in Chapter 4 ranges from
* 0.25 tot 1.0 cm—l, owing to additional uncertainties. For.example:
(1) the intensity of the sample beam is increased with préssure

(may be 20 to 30% from zero to 40 kb) owing to the increase in
transparency of the contact surfaces between the sample and windows.
(2) uncertainty in the determination of peak maximum for asymmetric
bands and very broad vands. (3) uncertainty in the'reproducihility

of compression process.



Table 3. The average frequencies (before calibration) for the 730 em~
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absorption band of polyethylene.
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Sinée‘high resolution is not essential for this stﬁdy, the

, resolution of our high pressure spectrophotometer is limited by the
usage of a sodium chloride prism alone fdr the dispersion system.
Nevertheless, a_good reproducibility of the instrument is essential
and is obtéined in this study.

Whilé no reflectance spectra are measure for this. study, over
one huhdred absorption bands aré studied as a function &f pressure.*
Among them, the frequency shifts fange from a few wave-numbers of
red shifts to 40 cm-l blue shifts. Intensities for most of the bands
are héarly independent of pressure, aithough éome bands show increased
intensitiés.with pressure and others decrease with pressure, (See
Fig. 8(a), 8(b), and 25). Most of the bands with constant intensifies
have band widths that are also independent of pressure. However,
there are bands with increasing band wiéths and bands with decreasihg
band widths.

We”tend to believe that pressure exerted on the‘sample is
fairl& uniform throughout the area of light passage, since no
‘pressﬁre gradient over the sampie surface is observed.** It is
especiglly convincing‘from the fact that most of the absorptibn bands
have a constant band width, and that some bands, for example, the
B2y band (sas state frequency 1214 cm-l) of naphthalene as shown in

3

Fig. 5, have a decreased band width, while the frequency is shifted

considerably with pressure.

* v v v
In order to assure a consistant pressure scale, only first compression .
data are recorded. (Recompression and decompression data are studied
for special purposes.) : :

*%

Large pressure gradients are observed in a diamond cell by
C. E. Weir.T0 As a result, all absorption bands are greatly
broadened at high pressures.
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Fig. 5. Observed B3u (121k cm_l) band at various

pressures.
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Iv., EXPERIMENTAL RESULTS,‘CALCULATIONS'AND DISCUSSIONS
PART I. DNaphthalene

A. Blue and Red Shifts

\
Clear single crystals in a plate form are.preparéd by evaporation

from reagent gréde naphthalene. ' The transmissionlspeétra (700 cm-l to
20Q0 cm-l) of naphthalene single crystals were ﬁeasured with the light
beam perpendicuiar to the ab crystal plane to a pressure (defined in
Chapter ITII) of 40 kilobar. All of the absorption peeks in this
frequency range observed at room temperature and pressure are resolved
in our‘high pressure spectra. The observed peak frequencies at
pressufes of 5 kilobar intervals are tabulated in Table 4. To compare

- the preséure induced frequency shift with the frequency shifts of
gas tp solid, the gaseous as well as the solid state frequencies at
1 atm. és reported by Pimentel3h are inciuded in the table. The
averageifrequency shift of gas to solid (vsolid - vgas) is +3 em T,
All‘but three are blue shifts. At high pressure, the three exceptions
show evidehce éf interaction with neighboring states. Thié phenomenon
will be discussed later. The pressure induced frequency shifts for
bands which appear throughout the entire pressure range studied, are
to be fouyd in Table 4 under Av(ho Kb)" Ab(ho xp) Tenses frpmv+5.7 to
37.3 em™ with an average value of 23 em™L. For naphthalene, 40 kb cor-
responds to a 21% change in volume, i.e. T% change in the intermolecular
distance from that of the crystal at 1 atm.  Even though the volume
change of a solid to an ideal gas is essentially infinite, the
frequehcy.shift of naphthalene from gas state to éolid state is an
order smaller than the pressure inducéd shift, Av(hd Kb)* Does this

i

indicate that the intermolecular force reaches only to the range of
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Table h, The peak frequencies in the vibrational spectra_(TOO to

2000 cm_l) of crystalline nephthalene at various pressures.

Assignment ;h * g | Yu(783)
Symmetry Class By, Bi, By By, By
Gas StateﬂFreq.**' 698 TUT 779
‘Solid State Freq.™ 699 , 126 T 766 787
/L, 1.7/0.7 /5 /5 6:5/2 10/10
P (kb )\ freq. |

1 o 60s.5° . 122t st 76t 885

2.5 o ', | 696.5 T2k Thh 767 788.5

5 . %5 TTL.5 790
10 700 773 792
5 | 703.5(7) 94.2
20 o 795.5
25 - | 797.5
27.5 071.7 799.3
0 708.7 N 799
35 o T11 ¢ Tth.5 8ol
ko : - 712.8 734.8 | T74.5  802.5
Avthovkb). 17.75 12.3 15.7
Vso11d Vgas 1 2 3.5
/vy 0.0254 0.0169 . ' 0.019

Fu.ndamenfal: afb 33

' N. Claverie. Their gas state frequencies are
wn in parenthe51 " Combination: after S. S Mitra and H J. Bernstein.

After leentel, et al. 3 :

Inten51ty ratlo of a- and b- two factor groughcomponents from
Pimentel's meesurement with polarized light.

The V-p plot is nearly a straight line for most of the absorption bands.
Therefore, a least square fit of the experimental data to a straight line
1s carried out to calculate AV oxp -

Ow1ng to the presence of the very intense band, these . side bands are
not resolved at each pressure.
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Table 4 continued

Assignment , (849 y,(955)
SymmetryvClass Blu: Au | _ , Blu
Gas State Freg. 821 ~ 9kg

Solid State Frea. 819 8h1 953
1/ 1.5/1  8/6 9/9
P(kb )\ freq.

1 | | - 818 843.7 961.5 %

2.5 . | - 817.0 84l _ 961.5

5 | 817.5 846 | 962.0  976.75
10 _ 817.5 847.0 " 963.5  979.25
15 816.2  848.8" 965.0  982.0
7.5 |
20 a  _ . 8s51.1 965.7  983.L
25 : 85Lk.0 967.0 98k.5
27.5 . 855.5 ' 967.8 986.0
27.5 (ovérnight) | _ 968.0  986.5
30 . | 856.5 968.5 987.5
32.5 ) - | 969.7  989.5
35 | 859.5 867 970.0 - 990.0
37.5 ' _ ' 970.9  992.0
Lo | _ 861.5 8710 971.0 . 993.0
Av(hOkb5 : | 18.9 10.4 18.8
Vso1id Vgas -2 4 3
Av/v . 0.0225 0.011  0.019k

—_—
Evidence of splitting start to develop

*% :

Zero intensity at atmospheric pressure, gain intensity through

Fermi resonance with Yl(9 5); see also Fig. 8(b).
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Table 4 continued

Assignment yl(965) . 68(1008) | §_(1126)
: or 67
Symmetry Class Au B3u v B2u or
| o ‘ B3u
Gas State Freq. 1012 1130
Solid State Freq. 970 101} 1133
/o, 9/h 9.5/9.5 15 1
P(xb )\ freg. | a
1 o o 978 1010.1 ~1127.0
2.5 982 1009.9 . 1126.5
5 : 983.5 1010.5 | - 1127.0
10 | © 985.5 1011.8 1127.5
15 988.0 1013.0  1024.5% 1128.7
17.5 | 1129.2
20 990.0 1013.0  1028.0 1129.0
25 o 992.5 1013.5  1030.2 1129.5
27.5 . © o (993.5)"**  101k.0  1033.0 1129.8
27.5 (overﬁight) (993.5) 101k.2 ' 1130.0
30 B _ (994.5) 101k.7 | 1130.1
32.5 | (996.5) 1016.4  1038.6 113L.2
35 (997.0) 11016.8 1042 1131.0  1146.0%*
37.5 . (998.5) 1018.0 ' 1131.7
Lo - ~1018.5 10k2 1131.9 11kh7.2
& (hoxp). 215 8.5 5.7
2 3

Vsolid_vgas
Av/vo' . 0.00865 0.0057

* o
Pressure induced peak; the resonance partner is unidentified if the

1nten51ty is obtained through Fermi resonance.
A factor group component of (1126) band.

The frequenc1es in parenthesis are from shoulder bands and have
poorer precision. .
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Table L continued

Assignment 65
Symmetry Class
Gas State Freq.
Solid State Freq.
T,/%,
P(kb )\ TreQ-

1

2.5

p)

10

.15

17.5

20

25

27.5

27.5 (overnight)
30

32.5

35

37.5

Lo

AV () 0xp)

vsolid_vgas
Av/\).o

*

Fig. 8(a).

or 67(1136)

B or B B

3u 2u " 3u

1146 121k

1217

7/8
1144.8 121k.0
1146 121h.5
1146, 1215.5

 1148.0 1218.5

1151.0 1221.0
1152.0
1152.2 1223.2
1154.8 1226.0
1156.0 1227.4
1156.5 1228.0
1157.3 1229.0
1159.0 .1231.2
1i59.7 1232.5
1160.7 123k.2
1161.2 1234.6
18.2 | 21.8

3
0.016 0.0179

Exchange intensity (in Fermi resonance) with §

F6+F3

2u
1238

124y

_9/9.5

1249.7
1250.0
1252.0
1255.5

1259.0

1261.5
1265.0
1267.5
1268.0

1269.0

1272.0

1273.0
1275.3
1275.6
28.1

6

0.0226

_ B

66(1266)
2u
1266
1271

9/9.5

1277.0
127T7.0
1278.25
1280.0

1283.3

1285,

no

1288.0
1290.0
1290.4
1292.5
1295.0

1298.0

20.3

5

0.016

6(1266). See also
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Assignment
Symmetry.Class'
Gas Staté,Fréq.
Solid State Freq.
T/t
P(kb)\ freq.

1

2.5

>
10
15
2OV
25
27.5

30
35
Lo

&Y Loxb)
Vso1id™Vgas
Av/vo..
*

FPig. 11.

3u

1307

- 5/3

1308.
1308.

1312.

1315.
1318.

132k,
132k,

1329

1331.

24,5

0

25

B3u
1366
1362

8/9

1367.
~ 1368.
1369.
1372.

1370.
11370.
1372.
137k.

-k

Evidence of interaction between wlh and

5

94

¥ ' %
| wlh(1360)._w11<1389>

-~ w5(1509)
Béu B3u
1385 1506
9/9.4
1393.1 1513.0
1393;1 1513.5
139k.5 1528  1513.6
13945 1532.5  1515.0
1395.7 | 1517.0
. 1537.0  1518.0
1519.3
1520.6
154k.5 1521.0
1395 | 1523.2
1395.5 1525
12.1
0.00803
is observed. BSee also



=57~

Table 4 continued

Assignment
Symmetry Class

Gas State Freq.

Solid State Freq.

'Ia/Ib _
P(xb)\ freq.
1

2.5'

-5

10

15

20

25

27.5
30

35

ko

AV (uoxp)

Vso01id Vgas
Av/vo

*

2u

1563
8/9

1572.
1573.
1576.
1578.
1582.
1585.
1586.
1.589.
1590.
1593.

1597

w10(1596)

B2u

1596
1594

1598.5
1598.5
i599.7
1600.5
1602.5
1602.8
1603.4
1605.0
1605.2
1606.5
1608
9.9
-2

0.0062

2u
1661

1673

7/8.5

1673.
1675;
1676.
1680.
1683.
168k,
1686.

1690

A pressure induced peak at 1738 is resolved.

3u
1720

1337

1735.5
1736.0

17k0.0

1745.0

1756
1756.0%
1757.5%

31.9
17

0.00185
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Table 4 continued

Assignment A 66+w5 _ W tw

, A | 5 011
Symmetry Class B2u B3u B2u .B2u or
. B (?7)
3u
Gas State Freq. 1763 1835 1896 1938
Solid State Fregq. 1786 1845 1919 194k
Ia/Ib :
- P(xb)\ freg.
1 : 1787.0 1846.0 1932  1966.5
2.5 - 1788.25  1848.5  1933.5
5 . ' 1789.0 1849.0 1935.5 1968.5
10 1792.0 1851.5  1938.5 1970.0
15 = 1799.5 1856.5 1945.8 1976.5
20 - S 1800.5 1858.5 1947.8 1982.5
25 ~ 1803.2 1862.0 1950.0 1986.5
27.5 1808.8 - 1864.0 1954.5% 1988.5
30 o 1809.5 1865.5 - 1954.0 1990.0
35 1816  1868.5  196k.2  1996.2
- 4o 1819.5 - 1870.3 .1968.2 1998.5
Av(hokb)' 33.6 25.2 37.3 33.3
vsolia—vgas 23 10 23 6
. Av/vov o 0.019 0.01375 0.019F .0.0172

. v
Evidence of exchange in intensity between B2u(1896) and (1938)

is observed above 27.5 kb.
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unit ce1l dimension? This question as well as its relation to the blue
and red éhift will be discussed in the following paragraphs.

For a qualitativg discussion of the frequency shift, only the
numerical force constant* of Eq. (37) will be considered. The tensor
force coﬁstant is probably much smaller than that 6f the numerical
constant for naphthalene, since the pressure induced change in Davydov
‘splitting is much smaller than the corresponding frequency shift for
all bands excep£ one in the naphthalene spectra. From Eq. (40), it is
obvioué fham eaéh attractive term (e.g. —ar_b where a and b are positive
| numbers ) inUﬁn contributes a red shift to Av(gas to solid) as well as
to Av(Pz—Pl). Although multipole-coulombic forces can contribute
either red or blue shifts depending on the relative orientation of the
molecules, the fact that the condeﬁsed phase could be formed from the
gas state indicates that the net long range forces must be attractive.
The short rangé repulsion potential always causes a blue shift. If one
hypothetically decreases the density of a crystal continuously to that
of a gas, there should be a red shift in a range of density below a
certain value and a blue shift above this value. This qualitative con-
sideration agrees with the experimental observation of Wiederkehr and

35

Drickamep in their measurement utilizing a sulfide cell. Figure 6
shows . their results of the measurement of the C-N stretching frequency
in Varioué solvents to 10 kb. The change from red to blue shifts im-
plies a chance in the dominant force field from attractive to repulsive.
It is fhus concluded that the small frequency shift of gas to solid is

probably a result of the cancellation of a large red and a larger

blue shift.

*
- Only the first term in Eq. (37) is left if one studies molecules or
ions in a matrix or in liguid solutions. '
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Fig. 6 CN vibration of CH.CN in various solvents. ©p
is the density of a solution of 1 atm and p
is that at 1 atm to 10 kbar. (after R. R.
Wiederkehr and H. G. Drickamer (35))
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The observed pressure induced frequency shifts Av(hOkbj for the
fundamentals range from 5.7 cm_l to 21.3 cm—l. 'Therg is no obvious
evidence of.any correlation*'between the frequency shifts of the normal
modes and their symmetry classes, nor correiation’among the normal

‘ 3
wl6’ and wl This may

modes of the same type of motions, e.g. W) 55

7"
be understodd from Eq. (40) and Eq. (L41). _
In Egs. (40) and (41), only the factor (Brn|8q;50 is dependent on
the molecular normal coordinate qi. One may re-write the second term
‘ )2

in the ﬁarenthesis of Eq. (40) as (Brmn/aq1 o+ It is then obvious

that the hofmal motions which connect with larger changes ig the non-
bonded interétomic distances are expected to show greater. frequency
shifts. One caﬁ define the hard collision as that due to the short
range répulsion force and the soft collision as that due to the long
range forces. . (Similar definitions have been uéed in the transport
theory of the liquid phase.) It may be concluded that the freqﬁency
shift as well as the Davydov splitting are caused by collisions (both
hard and'soft éollisions are involved in this mechanism) of non-bonded
atoms, and that the pressure induced blue shifts of.the naphthalene
normel modes are due to the dominance of hard collisions between non-
bonded atoms during their normal motions. It can be understood from
Fig. 2 that onlynthe ai component of the restoring force of the non-

bonded'atomic collisions is responsible for the frequency shift and the

Davydov splitting of the ql normal mode.

* ‘
To correlate the frequency shift among different normal modes, it
is proper to compare the values of Athkb/vgas instead of Athkb'

The former is listed in Table 4 under Av/vo.
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B. Discussion of Non-Bonded Interatomic Potential

One may assume a functional,form‘for Umn with unknown parameters:

U =arC - ¢ : (51)
mn mn mn :

Three sets of each of the parametefs A, B, ¢ and d are necessary to
account for H-H, H~C, and C-C non-boﬁded atomic potentials. Using these
potential funcfions, one may be able to calculate both/thevtenéoral and
numerical force constants of Eq. (40) and Eq. (L1). (vpl—vpz) of the
fundamentals can thus be obtained as a function of the twelve unknown
paraﬁeters. These unknown parameters -and thus the interatomic potential
functions could then be evaluated from the observed (vpl—vp2) of Tabie L,
However, the numerical calculation can not be carried out until high
pressure .x-ray data are available.

The interatomic potential could also be calculated from the pres—
sure déﬁendence of Davydov splitting. This will be illustrated with n-
paraffins, since only one pair of factor group components. are resolved
for naphthalene in this study and the assignmenf of this doublet (at
1126 cm—l)‘is still uncertain. The resolved doublet has a separation
of 5 and 15.3 cm—l respectively at 1 atm and hb kb. The factor group
componéntsvare identified through the comparison of the intensity ratio "

20

with thai observed by Pimentel, et al. in their measurements with

polerized radiation at 1 atm.
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C. A Direct Observation of Resonance Phenomenon and Calculation

of Unperturbed Levels as well as Coefficiernts of Mixing

In the frequency range, 690 em™ to 1600 cm_l, Naphthalene
shows 18 bands in its gas state spectrum and 37'bands in its solid
state spectrum. There are 28 bands in the spectrum of solutions3y
of.Naphthalene in carbon disulfide, méthyl cyclopentane and carbon
tetrachloride. The additional bands in the condensed phases are
believed.to be overtone and combination bands, although the assignment

is still far from complete.

| The appearance of overtone and combinatiéﬁ bands is, naturally
due to the effect of anharmonicity of.higher terms in electric dipole
expansion. The formervis usually more important and‘is assumed to be
the cause. In first order perturbation theory, the consequence of
considering the anharmonic terms is that thevperturbed energy level

is shifted, and the amount of shifting is equal’fo the diagonal matrix
element of the perturbation function (wle'[win). As the result of
this shift, the ovértone frequencies are not exactly integral multiples
of the fﬁndamental frequencies. The combination frequeﬁcies are not
exactly édual to the sums of the fundamental frequencies making up the
combination. In second order perturbation theory, the perturbation
causes a mutual interaction of the energy levels. This is represented
by the off diagonal matrix perturbation function H'vv,(= (¢3|H'|w3, »).
As a result of this second order effect, each level 83 produces a shift
of any other €3, and at the same time contribufes to the eigen function
of the others; both effects increase with decreasing separation of
unperﬁurbed levels and the larger the perturbation function H' the

larger will be this effect.



o T

\

In a molecule or crystal, should there exist two levels of

nearly the same energy and all the others are far apart, the perturbed

energy levels € are the solution of the secular determinant.36
o _ '
€, = € HV,V'
= 0 (52)
H' , so. - €
v'v v
The solution of which may be written as
o] o]
€.+ €,
g=—Y VY t<% 8 (53)
Where
1 _
i 2 v
Y . 2]
6= [62 4w, ] | (5k)

§ is the observed separation and 60(= 63 - 83,) is the separation of

the unpertrubed levels. The eigen functions of the reaulting'states

a.re36
v, = avy - YD, | (554)
Wy, o= BU0 4 eyl . (55B)
Where
L 1
2 2

6 + 6, | s-s12 :
e L R N ¢ 3
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H' have ﬁhe full symmetry of the system and is totally symmetric.
Therefore ws and wz, must have the seme symmetry in order for this
resonance interaction to exist, i.e. H'vv' * O. An interesting case

is 60 = 0; both perturbed states are fifty-fifty mixtures of the
unperturbed states, i.e. a=b= L .
/2 o
~ We define the unperturbed states of a resonance pair wv' and
wi as follows. ws, is the upper state of an overtone or combination.
. v

wv

the energy level of ws, is below that of ¢3 at 1 atm. and wg, is above

is the upper state of an IR active fundamental. A situation where

wz at high pressure, may exist when a larger blue shift of wz, is

induced by pressure. The resonance pair is thus described by a positive

Go value at 1 atm., by GO = 0 at a cross-over pressure, and by negative
60 valugs at higher pressures. The resonance interaction.between the
overtOhé (or combination) and the fundamental reaches a maximum at the
cross;ovef pressure. The extent of interaction is decreased by either
increasing or decreasing pressure from the crbss-over pressure. The
expected frequency vs. pressure plét of the perturbed and unperturbed
levels is depicted in Fig. 7. In this figure, wv, and wv are perturbed
statés. The wv states (marked as stars) contain more than 50% of the
states ws and may be observed with a higher intensity than the wv'
states (marked as darkened circles) which have less than a 50% content
of wg. Atvthe Cross-over pressure (50 = 0) the obsefved separation §
is minimum. The two perturbed states marked with A in Fig. 7 have the
same intensity, if the intensity of the fundamental is much greater

. *
than_that of the overtone or combination.

* : '
Private communication with Proffessor G. Pimentel.
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F(P)

XBL7I10- 737!

Fig. 7 The expected frequency vs pressure plot for the
‘ perturbed as well as the unperturbed st:otes of a -
resonance pair. F(p) is defined such tlat the energy
levels of the unperturbed states are aprroximately
linear functions of F(p).
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Two pairs of this type of resonance phenomenon are observed in
thé high pfessuré spectra of crystalline naphthaléne. The intensity
transfer phenomenon is obvibus in thé observed spectra, as shown in \
Figs. 8(a) and 8(b). In Fig. 8(a), the resonance pair is 56(1266 cm-l)

fundamental and F6 + F3 (1238 cm—l) coﬁbination band. The symmetry

20,34,33,39

classes of both partners are well established and are both

— -1 40
B2u' In Fig. 8(b), Yl(965 cg ) belongs to the A

symmetry class.
Its resonance partner is not resolved in the atmospheric spectra, |
and haé not been assigned. The ébserved energy level separations of
these_resonahce pairs at various pressure are shown in Figs. 9(a) and
9(b). At»;he Cross-over pressure, £he observed energy level separation
is‘equal to 2|H'vv,|. The cross-over pressures are 24 kb and 17.5 kb

respectively for the B and Au resonance pairs. The off diagonal

1

2u

matrix elements of anharmonic perturbation functions are 11.4 cm™

and 2.6 cm-l respectively for the B, . and Au resonance pairs. Assuming

ot
H! as,independent of pressure, the 60 values\as well as the coefficients
of mixing, a and b can be calculated from Eqs. (54) .and (56) by.
utilizihg.the obtained H'vv' and § values. The calculated unperturbed
energy level separation and the coefficients of mixing at various
pressures are shown in Table 5(a) and 5(b). In Figs. 10(a) and 10(b),
the predicted unperturbed, as well as the perturbed energy levels,
are plotted as a‘function of pressuré.

' The anharmonic potential of & crystal includes the higher order
terms in Egs. (29) and (32). As mentioned in Chapter II, the observéd
overtones and combinafions of molecular crystals usually originates

from the anharmonic coupling of intramolecular motions. Thus, in

principle, one should apply the perturbation treatment of this section
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Fig;'B b . The high pressure spectra of the Au.

resonance pair of crystalline
Naphthalene.
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Fig. 9Ia The observed energy level separation at various
pressures for the B, resonance pair of crystalline
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naphthalene. ’ :
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Fig. 9b The observed energy level separation at various
pressures for the A resonance pair of crystalline
naphthalene. u



Table 5(a). The unperturbed frequency separations and the coefficients of mixing at various pressures for the

BQu resonance pair of crystalline Naphthalene.

P(kbar) 0 5 10 15 - 20 2k 30 35
so(cm‘l) 15.7 13.1 10.5 7.5 k.0 0 5.3 9.35
a - 0.88  0.87  0.8%  0.81  0.76  0.706 0.78  0.83
b 0.47 0.50 _  0.54  0.59  0.65 0.706 0.62 0.56

—z)-



Table 5(b). The unperturbed energy level separations and coefficients of mixing at various pressures for

the Au resonance pairfof crystalline Naphthalene.

_ P(kbar) 0 _ 5 10 15 - 17.5
6 (cn™) 3.8 3.3 2.3 1.3 0
a 0.88 0.86 0.83 0.79 0.706

b © 0.48 0.50 0.5 - 0.62 0.706

20

2.8

0.85 -

0.53

25
5.5

0.92

0.39

_SL_
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The predicted unperturbed and perturbed
energy levels (corresponding to the curve

of Fig. 9a) for the By, resonance pair of
crystalline naphthalene at various pressures.
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Fig. 10b The predictéd unperturbed and perturbed energy

levels (corresponding to the curve of Fig. 9b)
at various pressures for the A resonance pair
of crystalline naphthalene. g
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to the solution of Eq. (29) before attempting to solve Eq. (30). H'
is thus the total Hamiltonian of a molecule minus that of the harmonic

approximation. It may be concluded that the observed resonance
' 37

phenomenbn is eXactly that which was first recognized by Fermi in

the vibrational spectra of co,,.

'If the resonance partner of a fundamental is not an'OVértone or
combination, but a vibrational level of a different electronic state,

the above treatment holds exactly, except that H'Qv' is now the

perturbation due to the interaction of vibration and electronicv

38. The vibrational aésignment of the B2u

are reasonably certain. Therefore, the latter resonance mechanism

motion. resonance partners

is probably eliminated, at least, for this resonance pair.
To the limit of the second order perturbatibn theory, there
could be no interaction among normal modes of different symmetry

classes. Nevertheless, norma} modes wlh(B3u) and wll(Bzu) are

observed to exchange intensities as depicted in Fig. 11. At
atmospheric pressure, the intensity of the wlh(B ) ‘band is approx1mately

half of that of the w J band. The B band loses 1ts intensity

ll( 2u 3u

to the B2u band with increasing pressure. The wlk(BSu)'bandzls nearly

diminished at 25 kXb. When the ?ressure is further increased, the

4

3u 2u

. interaction phenomenon is different from that of Fermi resonance,

B_._ band regains part of its intensity from the B, band. This

through which one band is continuously incréésing intensity at the
eipense of the other.

Thg intergction among normal modes of different symmetry classes
is probably a result of higher order perturbation effects. Further

study on this interaction phenomenon, both experimentally and
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Fig. 11. The high pressure spectra of W, (B2u) and
wlh(B3u)‘ of crystalline Naphtha]ﬁene.
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thedretically could be fruitfnl.

Amgngrthe 34 bands studied, most keep a censtant intensity te
4o kt. However, aside from tne three nesonanee pairs, the bands at
818 C‘m_l and 1572 cm_l are diminished with incressing pressure. The
pressure induced peaks, 867 em™t and 1024.5 cn ™t are apparent at
35 kb and 15 kb respeetively. Their intensities are increased with
pressure. The intensity changes of these bands might also bevassociated
with resonance interaction. However, their resonanee'partners.(one
may have to consider, the resonance among several levels) are not the
nearest neighboring bands. The resonance partners cannotvbe found
without a quantitative'analysis of absolute band intensities.v‘The -
same resonance mechanisms may also be responsible for the changevef
the absolute band intensity from gas to solid phase.

The vibrational analysis of the molecular SPeetra_is.exceedingly
compliceted as a consequence of the anharmonicity, ewing to botn the
first and second order effects mentioned in the beginning of this
section. The direct observetion of the Fermi resonance fer any
substance will certainly be helpful for the vibrational analysis of
its molecular sneetra. | |

.'Other aspects of the usefulness of the solid state spectra end
high pressure study for vibrational analysis will be discussed in~

the next section.

D.. Application of High Pressure Crystalline Data on Molecular
Vibrational Assignment -~~~

A Naphthalene molecule has 48 vibrational degrees of freedom.
Among them, 20 ungerade normal modes are IR active and 24 gerade -

normal modes are Razan active. The solid state IR spectra of
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Naphthalené was first studied for the purpose of the vibrational
assignment of gas state spectra. As shown in Chapter II, the L Au
normal modés which are inactive in the gas state become active in its
crystal site. The gas phase infrared active modes remain active in
the solid state. Two factor group coﬁponents were observed for each
of the solid-state-active-molecular-normal-modes in the polarized

infrared measurement.3h 34,20 t

It was demonstramted by Pimentel hat

the obséfved intenéity—ratio of these two components could be

employed to divide the observed bands of Naphthalene into the
appropriate symmetry ciasses to ‘allow the selection of the fundamentals
from just the restricted number of frequencies in the proper class;

As a consequence one may identify a B u absorption band of Naphthalene

1
‘ . . . . : ( .
from the expected intensity relationship Ia ) Ib and IC Ib B2u
from the relationship: I, ( I, and I ( Ib . B3u from I ) I,-end
IC ) Ib‘

The'vibrétipnal anal¥ysis has been improved a great deal in the
past few.years with the extensive applicatiénfgfvcomputers and least
square refinements. Ho%ever, it is still very difficult to analyze
the vibrational spectra of molecules as lafge as Naphthalene. With
the help of the symmetry assignment from the intensity.ratio of the
factéf group components, the vibrational spectra of Naphthalene are
best uﬁderstood among molecules of this size. Howevei, the assignment
of ité'fundamental frequencies is still unéertain for at least two
normal modes,'G5 and 67. Not many overtones 'and combinations are
assigﬁed unambiguously.

- The direct observation of resonance pairs, together with the

calculation of the unperturbed levels might be able to alleviate the
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difficult éituation in the vibratioﬁal analysis{ The high.pressure
stud& één‘further offer us thé following rules for verifying én
assignment and for knbwing the quality of the assignment.
if dne defines AV as the frequency shift from 1 atm to 40 kb,
it iﬁmediately follows that
Ay Av =AM (57)

Yorv' T "o v v > v

,

The subseripts represent a set of quantum numbers specifying a
vibrational state. To the harmonic approximation,

Av + Av = Av (58)

o0 *r vV o+ v! o+ v + v
To verify the applicability of the above two rules, it is necessary
to obtain high pressure Raman spectra as well, and to anticipate a
more'cbmplete'assignment of the oveftone and combination bands of

.

Naphthalene.

A
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PART II. N-Paraffins and Polyethylene

A, 'Pregsure Effects on the Spectra of N-Paraffins

The IR spectra of n-paraffins at 1 atm. have been measured by

many authors., The most recent studies are those by Primas and

Gunthard,*>*¢ Brown, et a1.,*T**8 soyaer9>>°

ot a1, 51»52,53,5k

and Tesumi,
The assignment of the frequency regions to specific
types of vibrations are well established. They are summarized-in
Table 6. Also included in this table are the vibrational essignment'
which give rise to the IR activity of the normal modes.

In their normal coordinate analysis of an infinite chain,

(nemely, solving the 18 x 18 GF matrix of two CH groups for various

2
phase differences), Tasumi and Shimanouchi obtained normal coordinates
of an infinite chain as a function of phase differences kec. Where k
is a wave vector, and c is the distance along the chain axis between
© two adjacent methylene groups. The constituent symmetfy coordinates
for each class of normsl modes are also included in Table 6.

For an isolated n-paraffin, the vibrational frequencies of a
specific type of vibrations are cosine functione of kc.hg Normal

modes of -a n-paraffin molecule are characterized by various values

of phase differences. They are

N

ke = ——  where m=1,2,3 . . . N=2 (59)

Where N is the number of carbon atoms in a n-paraffin molecule. Normal
modes of & given type of vibrations are thus specified by m and N
values. In order to facilitate our presentation of the observed fre-

quencies, notations for molecular normal modes are defined in Table 6.



Table 6. Character of n-paraffin normal modes

Tasumi and
Shimanouchi's
Vibrational
Assignment

V8

Composite
Symmetry
Coordinates

' CH, rocking ‘and

CHy, twisting
modes

c-c stretching
modes, CHp, wag-
ging modes and
c-c—c bending
modes

CHp twisting
modes and CH2
rocking modes

CH2 wagging,
c-c stretching
and c-c-c¢ bend

ing modes

CHy bending
modes

Symmetry

Coordinates

~Which
Contribute IR
Activity

CH, rocking

. modes

CHp wagging
modes

CHy rocking

modes

CHo wagging
modes

CH, bending
modes

Qur Notation
-For These
Normal Modes

N
\)(Rm )

Frequency
Region of the
Corresponding

Spectra

720-1050

970-11k0

1168-1295

_ 1176-1&15'

~ 1h70




Very pure n—023Hh8’ n—CQhHSO’.n—CQ8H58 andvn-029H6O were made
avqilable to us by A. E. Smith.* IR spectra of melt grown poly-
crystallines are méasured at various préssures to 35 kb in the frequency
range T00 ﬁo 1600 cmﬂl. Polyethylene film (Marlex 6009) supplied by
Phillips Petroleum Company in the form éf 1 mil, sheets was aiso
. megsured.

Amoné the progressions of absorption bands.in Table 6, only
that of wagging modes and rocking modes are properly assigned.u9 The
high pressﬁre frequencies of these two types of vibrations together
with that of the in-phase bending mode are presented in Table 7,8 and 9f*
In thesebtables,va factor group component is épecified by a.subscript
of V. When both factor group componenfs for a chain mode are measured,
V and AV defined in Egs. (37) and (38) are tabulated.

Tﬁere'are three different crystal structures amoﬁg the four
n-paraffihs measured. The high pressure spectfa of n—paraffins'%hich
crystaliizes in orthorhombic structure are to bé discussed firét.

Following this discussion, a comparison of crystalline effects among

varlogs crystal structures, Qrthorhomblc (n-C23Hh8, n-C29H60 and
polyethylene), monoclinic (n_028H58) an@ trlc}lnlc (n-quHSO) are
presented.

*

those studied by Smith65 in his x-ray

N-paraffins from Smith are)_\L
9 in nis IR measurements.

measurements and by Snyder
®% : .
Phase differences were defined for each of the nine classes of chain
modes somewhat independently and arbitrarily by Tasumi and other
authors, in their normal coordinate analysis of molecular
polyethylene and n-paraffins. Snyder defined all the ungerade modes
as in-phase modes and gerade modes as 180° out-of-phase modes. This
definition yields different vibrational assigmments from that of
Tasumi, et al. However, it is noted that by defining kc as the phase
difference of transition dipole moments between two adjacent
methylene groups, the assignment of k¢ values for the absorption
bands in a progression is consistent with that of Snyder.



Table 7. Frequencies of Rocking Modes

*_
Pressure 3R, ) 6(3923) Av(R923) SR, (R PR
(Kbar) v
normal
modes
5 T2k, 25 14.5 752.0 8 - T84.5 3 832.0
- T725.0 ° 16.0
10 726.0 17.0 752.5 . 9 ‘ 785.0 3 832.2
726.8 -18.6 _ ‘
15 - - 727.75 19.5 - 753.5 11 - 785.6 L.8 ©  832.7
728.75 . 20.5 ‘ -
20 729.75 21.5 T54.0 12 T86.4 4.8 833.3
_ 729.75 23.5 o
25 731.25 2k.5 T54.75 13.5 786.8 5.7 833.6
_ 731.75 25.5 o , DU
- 30 732.5 27.0 787.5 L.8 - 83h.2
732.75 27.5 ‘
35 733.0 28.0

788.0 . 5.7 . B3L.k

Unresolved Davydov splittings AV (R 3)

23) and A\)(Rl32
width as described in Appendix I.

11 are evaluated from the change in band

-hg-



Table 7, continued

Pressure

(Kvar)

-10
15
20

o5

Normal
modes

30

35

| Av(R13?3)*5(Rl723)

0 942,25
0.45 942,75
0.45 | 943.5
O.hs okL.5
1.0 9ks5.0
1.5 9&5.25
1.8 9h6;0

~

2
Av(Rl7v

6.5

10.0
- 10.5

11.0

3

933.5
995.875
9§6lo
996.15
996.25
996.65

997.375

997.5

10.

11.

.25

5

T16.
T16.

T17.
T17.

- T18.
T18.

719.
T20.

720.
. T20.

T21.
T21.

T22.

o N e}

i

Thl,
Thh,

Thh,
Thl,

Thk,
TL5,

[oNe)

[oN e

[@ AN ]

-gg-



Table 7, continuéd_

Pressure -
(Kbar)
normal
~modes
10
15
20
25
30

35

772;
172,
T72.
’772.
722,
.722'.

TT1.

81kL.
81k.

81k.

- 813.

813.

813,

- 812,

866.
866
866.
865.
© 865.
86L.

- 86k4.

920.
921.
921.

| 9é1.
922.
922,

992.

9TkL.
975.
976.
o76.
97T.
.978.

978.

723

725.
726.

721.
728.

729.
T29.
130.
T31.
732.
- T33.

.85
T2k,

75

0
0

T33:5

1k,
£15.

16.
1T7.

18.
18.

19.
20.

02,
23.

éh.
26.

O 1 3

.o v O\ o

o o

-9g~



Table T, continued

Pressure

(Kbar)

10

normal
modes

15

20
25
30

35

TTL.
Thl,
TTh.
Th,
T75.
T75.
T75.

811.5
811.5
812.0
812.3
813.0

813.0

© 813.0

853.
85k,
85k,
85k,
855.
855.
856.

9k6.

LY

950.

9L8.
9Lg.
950.
950.

5.5
6.0
6.0

911.0
992.0
993.0

" 994,0
996.0 -

997.0

- 998.0

Av(R23

7.0
9.0

11.0

28) '

_Lg_
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Table T, continued

Pressure
(Kbar)
normal
modes

7.5

‘lO
15
20
25
30

'35

V(R

',72h.
T25.

- T26.
T2T.

728.
T29.

.T29.
730,

S 731,
732.

T31.
T32.

733.

29)

A\)(R1

13.
15.

16.
1T7.

18.
~19.

20.
21.

23'
23 ..

25.
26.

27.

295

(0]

=l w1 N -\

=

| V(R 29)'

11

TL8.7

T48.7

7)4900

T49.7

751.0

T51.5

Av(R

11

6.5

7.5

. 8.0

9.5

12.0

13.0

- 29
\)(R13 )

TT70.
- T70.

- TT0.
TT0.
771.
'7737

TT2.

29
A\)(R13 )

k.0

4.5
k.5

- 5.3

6.6

6.5

'6;5

‘803.5v

803.5

803.9

80k. 25

 80L.7

'805.6

806.0



Table 7, continued

f?ﬁii?fe G(R1729) G(Rzlgg) M (R, ) 6(R2?,29) AV(R2§29> G(R2529) AV(R2529)

normal

mpdes

3 8u3.5 932.5 5.3 976.5 6.0

7.5 '_ 843.5 953.3. 6.0 977.0 8.0

w0 843.5 933.0 8.0 977.0 7.

15 B0 9335 8.0  9t7.0 8.1

20 8L5.0 933.5 9.0 976.5 9.0

25 845.5 934.0 9.0 977.25 | . 8.5 1017.25 7.5

30 846.0 934.75 9.5 977.5 10.0 ~1018.7 . 18.5°

;68_



Table 8. Frequencies of CH, Bending Modes

2
Cresswe (32 9P we® 3w e e we
(Kbar) | : : |
normsl
modes
5.0 1478.0 1k72.7 - 10.7 1473.0 10.9 1b72.1 12.2
7.5 |  1k72.8 11.5 1472.9 11.3 72,2 12.5
- 10.0 1&78,5 1473.1 11.5 1h73}b. 12.0 14724 12.8
12.5 0 1473.0 13.0  1b72.75 0 12.5 72,7 13.2
15.0 - 1L478.5 1&73.3 , 12.5 1473.25 12.5 1473.0 13.8
17.5 ) 14136 13.1° 1473.8 13.3  1h72.7  1k.k
20.0 1478.5  1473.8 13.5 1473.6 13.5 1473.2  1k.5
22.5 | 14740 14.0 14741 1k.2 1473.8  1h.7
25.0 - 1479.0 7 1Th.2 1k} 1474, 25 1k.5 1475.0 k.9 -
27.5 . 1hThLY 15.7 147L.5 15.0 1h7h.8 15.7
30.0 1480.0 1hTh.5 15.0° 147k.8 15.5 b7k 7 15.8
32,5 o 147L.8 15.5 1475.0 16.0 1475.0 16.1
35.0 1&81;0  1kTh.9 15.8 1475.5 17.0  1475.2 16.5
37.5 o : | 14754 17.3  1475.5  17.0
%0.0 1481.5 , _ - 1475.2 5.

7.

=06~



Table 9.

Frequencies of Wagging Modes

Pressure

(Kbar)

10
15
20
25
30
35

normal
modes

1188.0

1187.0

1186.5

1186.6 -

1185.7
1185.5

‘Q(w223)

1202.6

1202.8

1198.1

1198.0

v(W323)

1219.3
1219.8

1219.6

-1220.5

1219.0
1219.7

1219.2

23
v(wh )

1236.5

1235.9

1234.6
1233.3
1233.7

1233.3

12k9.
1250.
1248.
1249.
1248.
1247.
1247,

N o ® O N

23
v(w6 )

1263.0

1264.5

1264 .0

v{W

1278.7
1277.6

1278.3

1276.6

1275.3

23)

_I6_



Table 9, continued

Pressure:
- (Kbar)
normal
‘modes

10
15
20
25
30

35

V(W 23)

1306.5
1306.5
1306.7
i305.o
130&,6
1306.4

i B vy v
1332.5 | 1217.0
1331.5 o 1217.0
1183.0 1215.5
1183.5
118k.0

1184.0

v(w

1247,
1247.
12k,
1247,
1245,
124k,

ohy

o

(@]

(@]

¢ 2k

1275.5
127h.5

1273.5

1273.5
1273.0

1273.5

V(W

1302.0

1303.0

1303.0

i3oh;5

'1305.0

1306.5'

2k

-86_
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1. Odd-Numbered N—Paraff1ns——n—023Hh8 and_n—ngﬂso

N-Paraffins with an odd-number of carbon atoms have
orthOrhombic structure. As shown in Fig. 12, four molecules are
arrangéd in an orthorhombic unit cell. Crystal axis a, b, and c are
defined in the figure. Molecules are arranged in layers with the
chain axis perpendicular to the ab plane. A sub-cell defined as. the
repeating unit of a single layer is enclosed by solid lines in the
figure. |

Eaéh layer of the cfystal may be considered as a two dimensional
crystal. Theltwo édjaéent layers are identical crystals with a
different. orientation. The vibrational selectionvrules may thus be
derived from the symmetry of the sub-cell.

Molecular axes x, ¥y, and z are defined such that all the carbon
atoms of a.n—paraffin molequle are in the xz plane. 2 is the chain
axis. Since 2 || ¢, x and y are in the ab plane. Let ui and uiI be
the transitionldipole moments of the two molecules in a sub-cell.

Wagging modes have ui Ilﬁ. (ui + uiI) is thus parallel to the z

[ugy

- “iI) vanishes. Therefore, only one factor group com-

axis, and (ui
ponent is IR active.
Rocking modes and bending modes have uilluil Lz, (CH2-bending

modes with u'||%, CH, rocking modes, u'||§). Both (uiv+ UiI) and

2
(ui - qu) do not venish as long as the setting angle 6, which is
defined as the angle between the skeletal plane of a n-paraffin

molecule and the a-axis of the unit cell, is not zero. . Therefore,

both a and b factor group components of the crystal are IR active.
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Fig. 12 A unit cell of odd-numbered n-paraffins.
(After A. E. Smith (65) and Snyder (50))



These three classes of normal freguencies, rocking,'wagging, and
bending modes will be discussed separately in the fdllowing.paragraphs.

(a) Rocking Modes

A progfession of absorption bandé in the frequengy range T20 cm_l
to 1650 cm_l results from the fundamentals of the normal modes v(RmN)

which aré composed of CH,. rocking and twisting motions. It is the

2
rocking motion which contributes the IR activity. We refer to these
normal modes as rocking modes, although only v(le) is a purely rocking
motion for an infinite cha.in.51
. R - 23 - 29 . .
The dispersion curves of \)(Rm ) and \)(Rm -} are shown in Fig. 13.
In this figure, the circles represent G(ngg) and the triangles

23). The fact that both circles and triangles lie along

represent G(Rm
the sgme smooth curve for any given pressure implies that the normal
frequencies of rocking modes in the orthorhombic structure are functions
of kc only, i.e. independent of chain length N for any given unit cell
dimensions. G(RNm) vs. pressure plot for each of thg'N and m values
is apﬁroximated by a straight line. The slopes so obtained for
various phase differences are to be found in Fig. 13 as well. The
pressure induced chénge in the entire dispersion curve may be
visualized by imposing the two curves in Fig. 13.  Namely, as pressure
is increased; the entire dispersion curve is shifted upward and the
energy band is narrowed.

The dispersion curve at each pressure may be represented by
Eq. (37), vhere v_ is now a function of ke. In the first order
perturbation treatment of Chapter II, Vo is assumed to bé-independeht
of pressure. The change of the dispersion curvé With pressure is

entireiy due to the change 6f intermolecular potential.
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Flg 13 Observed dispersion relation for rocklng frequencies

of odd-numbered n-paraffins V(Ry") at 25 kb. The
pressure induced frequency shift is also plotted as a
function of the phase difference, kec.
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It is obvious from Fig. 13 that there is a decided convefgence of
énergy levels to the limiting mode (m=1). This results in several
absorptioﬁ bands being unrésolved, and is responsible for the absence
© of \)(R3), \)(RS) gnd v(RT) in Table 7. At the other end of the
dispersion .curve, a proper assignment of the last mode in this‘series
is obstructed by the presence of several unrelated absorption bands.

At:room temperature and pre-sure, the ma&ority of the doublets
(factor‘grpup components) can not be resolved, becsuse the bands
overlap. When the temperature of the sample is lowered, the bapds
are narrowed considerably and the factor group éplitting is increased
" slightly.- Snyder was able to resolve most of the doublets ét —i80°C.

In ourrmeaSurements, as shown in Figs. 1L and 15 when pressure on the
sample is increased, the splitting of the doublet is increased
considerably. Some bands unresolved at 1 atm. are resolved at high
pressﬁres. For the rocking modes °f~N-023Hh8’ thg factor group split-
tings as a function of pressure are presented in Fig. 16. The phase
difference ke is a parameter in this figure.

(b) Wagging Modes

V A ?rogression of observed absorption bands in the frequency
rénge 1180 to 1300 cm_l is the result,of the fandamentals of the
normal modes V(WNm). These normal modes are composed of CH2 wagging,
C-C stretching and C-C-C bending métions, as shown in Table 6. One
band fo? each of the normal modes (m = 1,2,3,4, . . .) is observed

-at aii ﬁressures. Wagging modes with m > 11 are not observed owing

to the presence of much stronger absorption bands, i.e. symmetric

methyl bending mode at approximately 1375 cm°l.
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Fig. 14 Spectra of va and vb(le) at three pressures. The

broadening of the lower frequency peak (b factor groupv,
component) is due to the presence of an unrelated band
which is not resolved.
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‘Davydov Splitting (cm'f')

8] 10 20 30 40
Pressure (kbar)

XBL7110-7383
Fig. 16 Observed Davydov splittings of rocking modes .
AV(Ry23) at various pressures. The phase
difference, kc( = (mm/22) is a parameter..

(‘ .
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(c) Bending Modes

As shown in Fig. 17, two factor group componeﬁts are observed at
various pressures. The pressure dependence of G(Bf) and Av(B?) will
be discussed later in comparison with that of different crystal
structures.

The relative intensity (Ia/Ib) of two facfor group components
(the ohe with a lower frequency is the b-component) is changed from
unity at 5 kb to approximately 2'at 35 kb. This phenomenon may be
interpreﬁéd with the oriented gas model for either of the following
two reasons: (1) the relative orientation of two molecules in a unit
cell is changed, e.é. the setting.angle 6 is changed with pressure.
(2) the polycrystéllites randomly oriented at 1 atm. to 5 kb are
partially oriented at higher pressures. However, there is no similar
¢change in the relative intensities of the two factor group components
of thé'focking modes. The first reason is thus.excluded. The second
one is still possibly valid, since different samples are needed for
taking the spectra of rocking modes and bending modes. The éamplé
thickness is of the order of 2.5 microns for measuring bending modes,
25 microns for in-phase rocking modes and 25 mils for out-of-phase
rocking.modes; _ |
| It was shownh'r that an oriented polycrystalline film can be
obtained by siowly cooling and pressing a melt of paraffin between.-
two'potaésium chloride windows. The polycrystallites of the odd-
numbered n-paraffins are then oriented such that the direction of.the
chains~is perpendicular to the faces of the windows.

"For a polycrystalline sample of elther completely ordered or

completely random orientations, Ib/Ia = tand = 1.1 to the oriented gas
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Fig. 17. Spectra of \)a(Bl29) at three pressures.
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model approximation. The relative intensity of the two factor group
components may deviate from 1.1 when the polycrystalliné sample is
partielly oriented in certain ways. The sample thicknéss for méasuring
bending modes is of the right order as that of the melt between two
- potassium chloride windows. Therefore, the polycrystallites under
high pressure (P > 5 kb) may be in a transition state from random to
orderly. The observed phenomenon mgy thus be accounted for.

This phenomenon may also be a result of second or higher order
Perturbation effect; namely, the vibrational wave funetion is perturbed
by the crystalline potential. -

2. A Comparison of Pressure Effects among Various Crystal Structures

In order to compare the spectra and its pressure dependence
among various crystal structures, vibrational spectra of polyethylene,

,n-C28H58 (monoeclinie) and n-C (triclinic) are also measured at

24850
- various pressures.

P&lyethylene has an orthorhombic structure with two molecules
per unit cell. The unit cell is identical with the sub-cell of odd
numbered n—ﬁaraffins. For an infinitely long zig-zag polyethylene,
only thé transition of an in-phase mode (i.e., ke = 0) is observable
for each type of vibrations.

N;CQBH58 has a monoclinic structure, and a space group symmetry
of PQl/a. ‘Two molecules in a unit cell lie'parallel to the c-axis
and are thus tilted with respect to the normal of the ab plane. Since
there are two molecules per unit cell, two factof‘group components
are observed-for rocking ques-and bending mode.

N—CZhHSO has a triclinic structure with one molecule per unit

cell. Its space group is not known. Nevertheless, one would not
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expecf any faqtor group splitting, since there is only one mglecule
Iper uﬁit cell.

The substantial phase dependence of rocking-fréquencieé for all
crystaliihe n-paraffins (See Fig. 13 for example) is mainly due to the
phase dependence of the intraﬁolecular potential,‘é.g., the combination
coefficients of rocking and twisting s&mmetry coordinates are functions
of the‘phase difference kc. The phase dependence of'DavydOv splitting
(e.g., see Fig. 16) originates from the variation of intermbieculaf
cbupling\forces with the phase difference kc (vibfation modes of
different ke are différent normal modes). Thevpressure induced fre-
quency shifts and the pressure induced change in Davydov splittings .
originate from the variation of intermoclecular forces with the
contractiqn of unit cell dimensions. The variation of intermolecular
coupling'forces as well as its effects.on vibrational frequences can
be understood from a similar force diagram as depicted in Fig. 2 of
Chapter iI.

In Fig. 16, factof group splittings of focking modes are
approximafed as linear functions of pressure. The slopes so obtained

are expressed as (Av Avp), for various phase differences.

p + 30kb
This is shown in Fig. 18. Also shown in this figure is the factor group
: splitting at 1 atm. for n-paraffins with the ofthorhombic structure
”;(Snyderfs atmospheric data on odd-numbered n-paraffins are included
in the latter ploﬁ).

From this figure, the phase dépendence of both Davydov splitting
and its pressure induced change can be évaluatéd for an orthqrhombié

structﬁre. If n—028H58 belonged to the orthorhombic structure as

C29H6O does, the expected difference in Davydov splitting at 1 atm.
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Observed phase dependence of Davydov splittings of
odd-numbered n-paraffins AV(R N) at 1 atm. The
pressure induced change of Av Rm23) is also plotted
as a function of phase difference kc. '

Avp+30K0 ~ Dvp cm™
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is of the order”of'O.l‘cm-l. Also

between normal modes R 8 and R129

1

from Fig. 18, the corresponding difference in the pressure induced
change of Davydov splitting is of the order of 0.1 cm—l/30 kb. These
values are within experimental errors of a single Av- vs. pressure plot.

Therefore, the observable difference, if any, in the value as well

as the pressure induced change of Davydov splittings between R 28 and

1 .
R. 29

1 is not due to their discrepancy in kc (i.e. different normal’

motions, since a chain mode is defined such that the phase difference
ke is specified) and is due to the distinction of the crystal structures.

28 29

As shown in Fig. 19; Av vs. p plots for R and-Rl are identical

1
within experimental errors. The corresponding plot for the bending
mode is shown in Fig. 20. A simple explanstion for the coincidence
in the values as well as the pressure induced changes, of Av(Rlea)

: 29 28, . 29, . . ‘
with Av(Rl ), and Av(Bl ) with Av(Bl ) is possible. Namely, in the
monoclinic structure, although the chain axis is tilted from the normal
of the ab plane, the non-bonded hydrogen distances remain the same as
that in the orthorhombic structure.

Since a unit cell of n-C (triclinic structure) has only one

24850 |
molecule, there is no Davydov splitting. In order to caompare its
crystalline potential with that of other structurgs, the Qbserved
frequencies are to be compared with the averagé frequencies 6f the
correspbnding factor group components for the orthorhoibic and
monoclinic structures.

The phase dependence of the vibrational freQuenéies of rqcking
modes and their pressure induced shifts for an orthorhombic structure

can be evaluated from the curves of Fig. 13. If n-C and n_023Hh8

obsg

had the same crystal structure, the expected difference in the
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Fig. 19 Davydov splittings in orthorhombic and monoclinic
structures vs pressure, for nearly in-phase rocking
modes.
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Fig. 20 Davydov splittings in orthorhombic and monoclinic
structures vs pressure, for a nearly in-phase
bending mode.
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23 and R 2l is 0.000 cm™. The corresponding

frequencies of Rl 1

difference for the pressure induced shift is of the order of 0.0l cm_l/
kbar. These values are agaein within experimental error for a single
V vs. b pldt. Therefore, any difference in V and its pressure depend-

23 and R 2k is not due to their discrepancy

ence between normal m.odes'Rl 1

in ke and is due solely to the distinction in the crystal structures.

23, R 2k and R 28 are presented. The cor-

In Fig. 21 v vs. p for R 1 1

1
responding plots for bending modes are shown in Fig. 22. It is seen
that the vibrational frequency as well as the pressure induced frequency

shlfﬁs of n—Czh differ considerably from that of n_€23Hh8 and

H50
n—028H58. At all pressures the nearly in-phase rocking mode of a
triclinic structure has a lower frequency than that of the orthorhombic
and monoc¢linic structures. However, the bending mode for the triclinic
structure has a higher frequency‘than that for the orthorhombic and
monoclinic- structures.

While there is no obvious change in intensity (there may be a
slight increase with pressure, beyond expefimental uhcertainties) for
absorption bands of rocking modes in the n_023Hh8 and,n—C29H6o spectra
at varidﬁs pressures, one pressure induced peak is observed at roughly
15 cm—; below each of the average frequencies of factor group com-
ponents. As shown in Fig.'23, the location of their appearance seems to

be more precisely described by %-[G(R )—G(Rm)] belOW\G(Rm+

. Th
m+2 ) ese

2

pressure induced peasks become apparent at 15 kb. The intensity of
each peak ié increased up to 10 to 15% of that of an adjacent band.

In the high pressure spectra of n;cgh pressﬁre induced peaks-

HSO’ |
are observed above rocking frequencies in contrast to what is observed

in the spectra of odd numbered n-paraffins. This is shown in Fig. 2k.
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Fig. 23. Part of the observed progression of rocking modes-
' in the absorption spectrum of n-Cpo3Hpg at 30 kb.
P represents a pressure induced peak.
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However, no similar pressure induced bands are observed in the high
pressuré spectra of n-CQSHSB’ (The crystal structures are monoclinic,

triclinic and orthorhombic for n-C28H58’ n-C and odd numbered

2hH50
n—paraffins respectively). |
The observed.pressure induced pesks seem too far away from the

center of v(Rm) and v(Rm+2) to be identified as even—m—numbered rocking
modes. These peaks are also unlikely to be a result of Fermi resonance
for the following two reasons: First, it is certain thaf the'
intensities of the odd-m-numbered rocking modes are not decresased
with‘pressure. Second, statistically, it is very ﬁnlikely to have
overtone df combination energy levelé at equal distahce from'every'one
of the rockipg modes. | |

. ’A'strange phenomenoh is observed consistantly among wagging modes
of all n-paraffins studied. The observed intensities for the series of
wagging modes at 1 atm. is nearly opposite to what we‘yould expect
for akprogression of purely wagging modes. (One expects the intensity
to decrease along a progression of increasing m values). Moreover, as
shown in Fig. 25, the expected intensity ratio for the progression of
bands is attained in the high pressure spectra. V(Wl) is hardly
observed at 1 atm. owing to its vefy low intensity. At 35 kb, its
intensity is increased to roughly the intensity of out of phase (m = 9)

rocking modes.

B. Applications

From the observed pressure dependence of Davydov splitting, the
repulsion potential between non-bonded hydrogens is calculated. The
calculated repulsion potential as well as the Gruneisen parameters

. Which are readily obtained from the change in vibrational frequencies
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Fig. 25. The observed progressian of wagging modes in the
absorption spectra of n—CQBHhS.
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with unit cell dimension are important roles in fhe Mei—Gfuneisen
equatibn of' state. These two aspects of applications fof high pressure
_study will ee elaborated in:the following sections. Applications
mentioned in Part I for Naphthalene will not be repeated here for
n-paraffins.

1. Non-bonded Hydrogen Repulsion Potential

As derived_in Eq. (38), Davydov,splitting:is expressed as a sum .
of the interaction force constanfs between qp‘(normal coordinete of
reference molecule p at site a) and qu (normal coordinate of each
molecule in b sub-lattice). For the follow1ng cons1deratlon, gp is
a rocklng coordinate of the reference C Hh group, and qJ is a rocking

coordlnate of j th 2 h group in b sub-lattice. It was shown55

that .
Davydov splitting of rocking modes is primarily due to the repulsion
petential between non-bonded hydrogens. The summation in Eq. (38),
running through jb is reduced to include only eight C2Hh groups -
surrounding the reference group p as indicated in Fig.,26; Shown in
this figure is a cross-section (perpendicular,te the chain axis and

bisecting a C~C bond) of the orthorhombic unit cell. Employing Eq. (k1),

factor gfoup splittings of rocking modes are simply as follows;
. 1 8<62U ><5 23 6r2 ><6r23 B 5r3>
T2 Sr. ~ 8q r
kv _c 6rpe/ \'72 3/ 873 8%/

. 8<52U13 <6r13 ! <6r13 873
T 2 r 8q r, = 8q_
: »6rl3 871 3p/ \673 qp\‘

o <62Uzh 824 872 \([&Tan arh> (60)
2 r 8q, r 8
8r,), %/ \8°2 3/ \&7h o/

4



-117-

2 )
\ /
. r’
— ? jb

XBL 7110-7393

Fig. 26 A cross section (perpendicular to chain axis)
of the orthorhombic n-paraffin unit cell.
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Where Umn is the interaction potentigl between hon-bonded hydrogens of
different chains. r2,3, rl’2, and r2,n, defined in Fig. 26, are
2.9548, 2.925A and 2.586A respectively at static'equilibrium‘and 1 atm.
These figures aré celculated from the values of unit cell dimensions
reportéd by SWan,56’5h i.e. a = T.h1MA, v = 4. 9L2A, 2¢ = 2.5473A and
the setting angle 6 = 48°, The next nearest pair'of hydrogen separation
is 3.7 A. This pair and all the other pairs at greater separations are
considered as noh-interacting.

As mentioned previously, Davydov splitting of rocking modes is
primarily due to the repulsion potential between non-bonded hydrogens.55

One may assume a functional form for the interaction potential between

non-bonded hydrogens as
U = Ar | (61)

Where A and B are parameters to be determined. The force constant

B is

_[8%m\  _ ~(B+2) L
B = (Gr 2) s [, 7 ]O (62)
mn/ o )
Upon substituting Eq. (62) into Eq. (60), one gets
AV = c [rmn_(B+2)] = Fl(r_ )] = F(P) (63)

(e]

Where ¢ includes the directional ‘cosines and coordinate transformation
matrix elements in Eq. (60). If the ab planes of n-paraffins contract

isotropically and if c¢ remains constant at various pressures (this is

s
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. of infinitly extended polyethylene crystals,
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57

already implied in Eg. (38)), it was revealed” that de o d[(rmn)o]2.

Where Vp is the unit cell volume for odd numbered n-paraffins or

polyethylene at P kbar. We obtain from Eq. (63)

_ d Log AV _ dLoghv
B+2=- d Log(r 50 =2 (- dlog Vp) (64)

mn

%(B + 2) is the slope of log Av vs. log(Vp)—l plot, which is readily

available from our high pressure measurements. As shown in Fig. 27T,

23

the slopes obtained for three rocking modes, R ® R 29 and R are

12’71 17

identical within experimental error. The deviation of the dashed

curve ffom the upper straight line may be a consequence of the volume

"dependence of the parameters A and B, if not due to experimental errors.

Assuming that A and B are constants for 2.33 < (rmn)o < 2.954A, B is

obtained from Fig. 27 to be 6.4 * 0.4. This is in excellent agreement

58

with Amdur's result,” B = 6.18, 2.09 < Ty g < 2.77 A, from molecular

beam scattering expériments.
The directional cosines as well as the coordinate transformation
matrix elements included in the constant C of Eq. (63) may be calculated

from the result of the normal coordinate analysis by Tasumi and

53,54

Shimanouchi. Nevertheless, in their normal coordinate analysis

5k

three B values at

(rl3)o’ (r23)O and (rQh)o were selected to obtain a good fit to the |

observed Davydov splittings at 1 atm. By imposing B = 0.0165 m dyne/A

for Tyyg = 2.586 A (The value used is an average value for their two
3

sets of calculations) on Eq. (63), and B = 6.4. We obtain

-8.4

8 = 48.6r m dyne/A | (65)
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Fig. 27 Log Av vs Log(vo/v) for three rocking modes.
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59

In comparing this equation with that obtained by De Bore for

the hydrogen repulsion potential, it is significant to look into the
implications of this excellent agreement as shown in Fig. 28. Since )
these two equations are derived from different systems with various
assumptions, the agreement is beyond expectation. As was mentioned,
the exponential, B, obtained in this study also agrees with Amdur's
résult from his scattering experiment. However, the coefficient A is

off by a factor of two.

2. Volume and Wave Vector Dependence of Gruneisen Parameters

If one defines a CH2 molecular crystal as a hypothetical crystal-
line polyethylene with no chemical bond between methylene groups, the
vibrational energy levels of this hypothetical crystal, plotted in an
extended zone scheme, would consist of nine energy bands corresonding

to three translational phonon, three rotational phonon and three
internal vibrational exciton bands. The six phonon bands would be
distribated in the frequency range from zero to approximately 200 cm-l.
The exciton bands could be approximated by Einstein model and have a
great density of state at approximately 1400, 2850 and 29QO cm—l for
bending, symmetric and asymmetric stretching modes respectively. The
heat aapacity of this hypothetical substance would approach a constant
value of 6R as temperature increasingly approacﬁes 300°K. All of the
external modes contribute to the heat capacity at room temperature.
However, for crystalline n-paraffins or polyeﬁhylene, the strong C-C
bond along the chain direction causes the upper energy limit.for the
external (refer to methylene group) energy levels to reach the value for

bending modes. That is, there is no band gap between external and

internal energy levels. One would then expect that the heat capacity
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P

- of n-paraffins and polyethylene would not level off at room témperature
and increase with temperature (up to 2100°K, C, could approach TR
asymptotically if crystalline n-paraffins did exist at this temperature).
At room temperature, not all of the external modes of methylene groups
contributé to tﬁe heat capacity of n-paraffins. Similary, not all of
the extérnal modés contribute significanﬁly to the thermal pressure

(to be defined later) of n-paraffins or polyeEhylehe. However, there

is no clear cut number of normal modes which contribute to the<fhermal
pressure at any temperature.

A significant portion of external (refer to methylene group)
énergy levels are observed in the IR spectra of n¥paraffins. Gruneisen
parameterg-defined.as d 1nv/d 1n V may readily be calculated from
Tables 7,8 and 9 for rocking, wagging, and bending modes. These
parameters‘may give us an idea about the relative contribution of
various normal mode; to the thermal pressure at a given temperature.

The wave vector as well as the volume dependence of Gruneisen
paremeters is essential to the understanding of the Mei-Gruneisen
equation of state. Since both wave vector and volume dependence of
Gruneisen paraﬁeters for some vibration modes can also be calculated
from our‘high pressure data preseénted in Tables 7, 8 and 9, n-paraffins
offer us a very rare example for studying these dependences.

' The Gruneisen parameters as well as their volume and wave vector -
dependence to be presented Below is applicabie to the study of the
equation ofstate for crystalline.polymers. The Mei~-Gruneisen equation
of state was originally derived for metals and aikali halide crystals
and is not yet familiar in thelfield of polymers. Therefore, we will

re-define the Gruneisen parsmeters to a greater detail and illustrate
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the significance for obtaining their volume and wave-vector dependence.
One may write the Mei-Gruneisen equation of state for the extended

crystalline polyethylene or n-paraffins as

: du 9 N .
P=-—24+2 .. <—--—l————- + l)h\). - (66A)
dy Vg G\ v /T 2) 7715
dLogv., :
= - —— 3]
Yij dLogV ' - (663)

The observed (external) pressure P is equal to the internal pressure
(definéd as the first term on the right side of Eq. (66A)) plus thermal
pressﬁre (second term). U, is the static lattice potential defined

in Eq. (28) of Chapter II. Ah isolated polyethylene chain may be
considered as a one dimensional crystal of the meﬁhylene groups and the
crystalline polyethylene as a very anisotropic three dimensional crystal
of the mefhylene groups. There are nine degfeés of freedom for an
isolafed methylene group. In the crystallihe state, each of the nine
modes of.motion splits into N normal modes of the crystal and forms one
band of energy levels. N is equal to the number of methylene groups in
the entire crystal. As we have mentioned befére, only part of the 6N
external modes (refer to methylene group) contributes significantly to
the thermal pressure. We could replace the upper limit of the summation
9N by 6kN, where x < 1. However, x is unknown and is temperature
dependent. We shall keep the more general form and leave 9N in the -
following equations. Each of the N normal modes in the 1%P energy

band the a vibrational fréquency vij and is specified by a unique
phase-difference between the vibrationsl métion of neighboring .

methylene groups. The frequency-phase relationship is usually unknown

\)
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and is generally approximated by the Einstein model for the optical
bands and by the Debye model for the acoustic bands. To this approxima-

“tion, Eq. (66A) is reduced to

.dUo 1 29: % ( 1 l) (674)
P=-—=23 = Y. ~——=—— + =1hv , TA
TV A Vi g\ /AT 5] 13
dLoigei
Yy = - Toav (67B)

Where Bi is either an Einstein or Debye temperature for the ith band
of energy levels., If it is proper to represent all nine bands with

& single Debye temperature, one can further reduce Eg. (67A) to

re- %9'*‘% o> (Wlmzw— ' %)h“-j )
o | i=1 =1 \eMi3/ T *
_ _ dlogd _ Va_ . -
Y dTogV C X (688)

Wheré‘q, C, and X are thermal eipansion coefficient, heat capacity

and éompressibility respectively. Yij islto be called a microscopic
Gruneisen parameter and Y as a macroscopic Gruneisen parameter. The
knowledge of the macroscopic Gruneisen parameter as a function of
volume and temperature is necessary for the calculation of the equafion
qf éfate. Howéver, the>volume apd temperature dependence of q, C; and
X are very seldom available for any substance. Therefore, the

macroscopic Gruneisen parameter ¥ is usually regarded as a constant.
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To the first order perturbation treatment, vibrational frequency,
and thus the ﬁicroscopic Grpneisen parameter are'indepéndént of
témperature, i.e. (6viJ/6T)v = (GYiJ/GT)v = 0. Thé vélume @ependepce
of microscppic Gruneisen parameters is readiiy obtainéd for optical
active mbdes, when fhe-vibrational frequencies as a function of unit
cell dimeﬁsion are measured with good precision. bAs‘shown in Fig. 29, -
va(le) is plotted as a function of volume, pfessure and temperature.
.The open'circles réprésent our compression daﬁa. Pastine's PfV

5T

relation is used and is indicated in the upper and lower abscissa.

The closed circles are low temperature deata at 1 atm. by M. Shen,

et al.6l “Their T-V relation from x-ray measurement is also included.
The very good agreement in slo?e for these two sets of data may imply
- the following: (1) Microscopic Gruneisen paraméter for le is
independeﬁt of temperature. (2) Pastine's theoretical P-V relation is
quite good.

'The volume dependence of Cruneisen parameters (e.g. the slopes of
the curfebin Fig. 29 at various volumes) is obatined for va(le) and
va(Blw) as shown in Fig. 30.  The microscopic Gruneisen pérameter for
both the.in—phase 5ending Bl and rocking Rl modes increase with de-
creasing-unit cell volume. .The smaller Yij valﬁe for the bending mode
is increased faster with pressure than that of the rocking mode which
has a larger Yij value. This might be a general trend. At infinite
pressure, one would imagine all the molecular crystals to become atomie
crystals or metal and thus, the Gruneisen parameters of internal modes
could approacﬂ the values for the exfernal modes.

In addition to the volume dependence, if the wave vector

dependence of the microscopic Gruneisen parameters were known, the
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more general equation of state, Eq. (66A), can be readily applied to
any substance. Thé high pressure IR measurement of n-paraffins offers
us a starting point along this direction, sincé dispersion curves

(e.g. Fig. 13) are obtained at various pressures. The phase dependence

of Ya(Rm23) and Yb(Rm23)

is calculated and shown in Fig. 31. The
Gruneisen parameter of b-factor group component is nearly phaée— '
independent. This can be understood from Eq. (35) as due to the
cancellation of two dynamic force constants. The Gruneisen parameter
of a-factor group component is strongly phase dependent owing to the
addition of two resonance interaction force fields. In conjunction
with this plot, it is obvious that for a substance with more than one
molecule per unit cell, the Gruneisen parameters of those vibration
modes which show no factor group splitting are phase independent. In
_such a case, the Gruneisen parameter for the whole branch may be
>determined from the observed in-phase mode alone.

Although the volume and wave vector dependences of Gruneisen
paraméters are obtained for the.first time for n-paraffins and
.polyethyiene, a number of values were reported for Gruneisen parameters
at 1 aﬁm.‘in the literature as a resﬁlt of various types of measurements,
‘e.g. ultrgsonic, thermal conductivity, and far infrared measurementé.
It is not surprising that various measurements give very different
- values (e.g. 0.25 to 11 for polyethylene), since proﬁérties of different
vibrational modes are measured. Namely, an Avogadro number of Yij
valﬁes could be different from each other. The macroscopic Y differs
from the value for any‘of Yij or Yi in general. However,»this.was hot
yet familiar in the field of polymer sciencei 'Yij’ Yi_ and Y were not

distinguished. Questions as to why one value is different from those
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obtained by others were open in the literature of polymers. This

_ questiontwas presented and discussed by the author to the polymer

section at the ACS meeping of April, 1971.

We shall end this section with a discussion on Table 10, which was
presented.in the ACS meeting to compare our calculated Gruneisen
parameters for various normal modes. Yij for the bending and rocking
modes are.obtained from our high pressure infrared data (e.g. Fig. 30).
The vy 13 Y?lue for the T1 cm—l trahslational lattice mode is calculated*
from Bank and Krimm's62 low temperature measurement. The Gruneiéen'
parameter for the translational mode is larger than that for the
libration mode (rocking mode). In turn, this is larger than the value
obtained for the internal mode. This is expected for the following
reason.-‘The smaller the frequency of a ﬁormal mode, the larger is its
amplitude of vibration at a given temperature. The normal mode is thus_
affected more by the change of intermoleculsr distances and has a larger
Yij value.

o7

Owing to recent calculations of P-V relation by Pastine”' and

thermal expansion coefficient by Shen,61 it becomes possible for us
to calculate the macroscopic Gruneisen parameter from Eq. (68B). The

macroscopic Gruneisen parametér calculated from the value of Cv by

63 0 by Shen and X by Pastine,.has a8 value of 1.3. This

61 6l

value is probably more reasonablé,thanvthe value of 0.25  or 7.5 in

Wunderlich,

the literature.

¥4 value for Tl cn™! transletional mode was calcwlated to be 0.43
by Barker and Chen. They also used the far infrared data of Bank
and Krinm.. However, they defined y = d 1n v(x)/d 1n (p(x)) where
V'and p are vibration fregquency and the density for polyethylene.
Instead of using pressure or temperature as an independent variable,
they changed the crystallinity (x). This is obviously unacceptable.

f
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Table 10. Gruneisen Parameters of Crystalline Polyethylene

Bending Rockihg Translational

Yij =4 1n v/d In V Mode Mode Optical Mode
. © o :
A R \)a(Bl ) \)a(Rl )
Melt Grown » 0.0024 0.070 ' 1.525
Solution Grown o .. 1.28

Y = Voc/Cvx = 1.3

<

a
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APPENDIX I

" Overtone and Combination Transitions

The-potential energy surface of a system which has only two
vibrationalrdegreés of freedom is a two dimensional surface. A
paréboloid surface is the so célled hhfmohic potential. The energy
levels of the.stationaiy sfates as solved from tﬁé'Schrodinger equation
are |

}

| _ 1,y 1 o “1.1)
E(vy, vy) = W (v +2) + o (v, + 5) (A-I.1)

The energy levels as well as the allowable transitions are indicated
in Fig. A-1. It is seen from Egs. (6), (7), (8) and (9) that in order
to excite the system to energy levels (0,2) (2,0) or (1,1) from (0,0),

two photons are required.. This is because

2

3 . ¥ _
2 ('a'(i‘) f pr 939,398, = ©

. 1
1 o}

Unless
|Avl] + |Av2| =1

When the system has either electrical or méchaniqal anharmonicity,
the above restirction no longer exists. A single photon with energy
of roughly (h\)l + hv2) could excite the system from ground state to
energy level E(1,1).

Classically, the rélative moﬁion of the atoms in the system can

be representéd by the motion of a single mass point under the action of
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gravity on the potential surface. When the mass point starts from any
point oﬁ the paraboloid surface, the métion can be resolved into two
nbrmal motions along ACA' ahd BCB'. Each one of thé normal motions is
a simplé harmonic motion of all atoms with a single frequency. If the
normal motion Ql(ACA') is connected with a change of diptle moment of
ﬁhe system, the amplitude of the normal motion maj be.increased by
absorbihgvthe radiation of freQuency vl. | |
Ir the paraboloid surface is distorted in such a way that when
the mass point starts at A, it will carry out‘a Lissajous motion and
will fiil a larger and larger area about ACA'. This distorted surface
is a poteptial surface with slight anharmonicity. Now the ﬁotion of
each atom is no longer periodic. The normal cooriinate n(ACA')(a loose
term répresenting motion around ACA') may be expressed as
£+ el20)

10, '
cos(2mv.t + 91 ) + n2ocos(2ﬂ2v

1 1l

1) =
n(ACA ) "o

30
+ n3ocos(2W3vlt + 61 )+ oL ..
11 _ 11
+ nllcos(zﬂvlt + 61 ) cos(2wv2t + 62 )
21 : 21
+ nzlcos{znzvlt +6,77) cos(amv b + 6, )+ . . . (a-T.2)

The vibrational motion contains the frequencies 2vl, 3v1, Vl * v2,

2V1 b Vs and so forth. The system can thus also absorb photons of

these fréquencies. The probability of absorbing the (Qvl) photon is
2
)

proportional to (n20)2 which is very much smaller than (n,, The

amplitude of ACA' normal motion which has a major component of Mo is

increased irrespective of the energy of the photon abosrbed.

i)
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APPENDIX II

An Estimation of the Separation of an Unresolved Doublet

Two factor group components of V(R 23) are observed at various

17
pressure (See Fig. 15 and 23). The doublets are not entirely resolved.

However, the peak positions of this doublet may be determined by
assuming a Gaussian band shape for each component. The sSeparation

Avsplitting (P), for the doublet at each pressure is plotted vs. the

half width Av. , (P) of the doublet at the corresponding pressures in.

1/2

Fig. 33. A linear relationship is obtained between AV (P) and

splitting
Avl/2(P)' Namely

(p=0)]

Mo 1itbingP) = (0-91 % 0.05) [av, ,(P) - &

1/2

BV 1 1441ng(P=0) | | (A-I1T.1)

In the progression of absorption bands for rocking modes, the
intensity ratio of two factor group components is nearly unity for all
of the doublets. Therefore, one may expect Eq. (A-II.1) to hold equally
for all the doublets in this series. The doublets for v(R1123) and.

V(R 23) are resolved50 at -180°C and atmospheric pressure with a

13

Beckman IR T spectrophotometer. However, even at 40 kb, they are not
resolved with a dispersion sjstem of a sodium chloride prism alone.
The separations of these two doublets tabulated in Table T are -

calculated from Eq. (A-IT.1) by assuming that Av (P=0) is

splitting

independent of temperature.
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