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PRESSURE (UP TO 40 KBAR) AS A PARAMETER IN THE STUDY OF 
VIBRATIONAL EXCITON LEVELS AND CRYSTALLINE POTENTIALS 

OF MOLECULAR CRYSTALS: NAPHTHALENE AND N-PARAFFINS 

Che-Kuang Wu 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory 
and Department of Chemistry; University of California, 

Berkeley, California 

ABSTRACT 

An infrared spectrophotometer is modified for the quantitative 

study of high pressure spectra. The infrared absorption spectra of 

ethylene are measured to a pressure of 40 kbar. It is observed that 

at least two pairs of energy levels behave as if they are in resonance. 

It is possible that they are examples of Fermi resonance. The corre-

sponding unperturbed energy levels as well as the coefficients of 

mixing at various pressures are calculated. Interaction force constants 

· -(B+2) 
between non-bonded hydrogens, in the expression, S = Ar , are 

calculated from the pressure dependence of factor group splittings of 

n-paraffin rocking modes. Microscopic Grueisen parameters of n-

paraffins are obtained as a function of unit cell volume and chain 

wave vector. Many other aspects of pressure effects are observed and 

discussed. Additional experiments and theoretical studies are suggested: 

A physical model is proposed to distinguish two types of dynamic 

crystalline forces as well as to illustrate how an intramolecular 

potential is perturbed by the crystalline potentials which cause pressure 

,1 induced frequency shifts and factor group splittings. 
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I. INTRODUCTION 

Exciton theory was first introduced by Frankel1 in 1931 and was 

applied to the electronic levels of molecular crystals. Since then, 

there has been a great deal of work on this topic. To date, the theory 

has been discussed and expanded in books written by DayYdov, 2 Craig 

and Walmsley, 3 Dexter and Knox,
4 

and in review articles by Fox and 

5 6 Schnepp, and McClure. 

The application of the theory to the vibrational levels of 

molecular crystal was initiated by Hornig. 7 Hexter9 extended the 

electronic exciton theory to include the vibrational wave function. 

T6 date, there are excellent articles on this aspect of the theory by 

Hass,10 Halford,11 Duyckaerts~12 Hexter,13 Vedder and Hornig,
14 

and 

Dows. 15 

In exciton theory, the crystalline energy levels are considered as 

those of the gas state perturbed by a crystalline potential. By carry-

ing out a perturbation treatment (mathematically very complicated, 

since there are Avogadro number of molecules in the system to be con-

sidered), the frequency shift from the gas to the solid state is ex-

pressed as a function of a crystalline perturbation potential. 

For the electronic energy levels of molecular crystal, great sue-

cess in explaining the frequency shift of gas to solid was achieved by 

assuming that the crystalline force field is simply the dipole-dipole 

interaction force. Multipole interactions are taken into consideration 

in a refined treatment. 

The perturbation potential used to explain the shift in electronic 

levels was applied to the vibrational energy levels with little success. 

Recently, it was shown that the short range repulsion force alone may 

account for the so-called factor group splitting for some of the 
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vibrational bands of the.molecular crystals; paraffins, 55 ethane,CH
3

c1
41 

42 and naphthalene. However, the repulsive potential function alone can 

not explain the frequency shift of gas to solid for the corresponding 

* energy levels. 

At the present time, several theoretical and experimental groups 

are attempting to understand the nature of the perturbation potential. 

In the literature, the frequency shift and Davydov splitting are 

often described; the former, as due to a static crystalline potential 

and the latter as due to a dynamic crystalline potential. The use of 

the teriiiinology "static crystalline potential" in this case is quite 

misleading, since it does not follow the usual definition, e.g. the 

static lattice potential defined in the Mei Grueneisen equation of 

state. 

The presentation of section B and C in the chapter on theory is 

designed to clarify the misconception which arose from the loose usage 

of the terminology "static crystalline potential," as well as to gain 

further understanding in the physics of the crystalline perturbation 

on the intramolecular vibrations. 

The crystalline potential is usually approximated by the sum of 

intermolecular pair potentials. The intermolecular pair potential is 

a power series of infinite terms. However, for a given intermolecular 

distance, the pair potential may usually be truncated to two terms. 

If one hypothetically decreases the density of a crystal continuously 

to that of a gas, the intermolecular distance of the nearest neighbor 

is changed from the unit cell dimension (or a fraction of it) to infinite. 

*various types of forces considered by Pimentel43 in the matrix study 
may play a part in the crystalline force field of single crystals. 
Electrostatic ~ipole-dipole interaction forces have been worked out 
by Decius for a number of ionic crystals.44 
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The force is scanned through all values of the power series. It is 

obvious that in order to gain information on the intermolecular force, 

the knowledge of frequency for a given crystal structure as a function 

of density is necessary; that is, the mere knowledge of.the frequencies 

of the gas and solid state at room pressure and temperatur~ is in­

sufficient. Since larger changes in unit cell dimensions can be achieved 

by varying pressure rather than temperature, high pressure studies of 

molecular crystals are thus desirable for obtaining information on the 

intermolecular force fields. This as well as several other applications 

of high pressure IR spectra are presented in Chapter IV. 

In Chapter III an experimental set-up is described which makes 

a quantitative study of IR spectra, under very high pressure, using a 

Drickamer type NaCl cell possible for the first time. 
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II. THEORY 

A. Symmetry Consideration and Factor Group Analysis 

A crystal lattice can be constructed from a unit cell by the 

translation operation which carries any unit cell into any other. The 

unit cell is the smallest unit in which no atoms are equivalent under 

simple translations. However, some of the atoms in a unit cell may be 

equivalent under operations of the symmetry elements of a unit cell 

group. The unit cell group is isomorphous with one of the 32 point groups 

possible in crystals, but may contain such operations as screw axis or 

glide planes in addition to purely point operations. The space group 

~s defined as the product of the operations of the unit cell group and 

those of the infinite group of translation. The space group is then 

an infinite group. However, if we define the translations which carry 

a point in a unit cell into the equivalent point in another cell as 

identity, the space group is reduced to the unit cell group. Thus the 

unit cell group is the factor group of the space group. 

Any point in the lattice is a site, and in certain locations some 

symmetry element of the space group passes through the site. The po1nt 

group of symmetry operations that leave the site invariant is called a 

site group. The site group must be a sub group of both the factor 

group and the molecular point group. 

It is known Yrom the theory of small vibrations that it is possible 

to find normal coordinates for any atomic system, such that both the 

kinetic and potential energy do not involve cross terms. In mathematical 

form, the kinetic energy T, and potential energy V, of the entire crystal 

may be written as 
3ntN-6 

2T = ~ Qi2 

i 

(1) 
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3ntN-6 

2V = L w. Q.2 (2) 
]. ]. 

i 

Where n is the number of atoms per molecule, t molecules per unit cell, 

and N is the number of unit cells. In this case, the motion of the 

system (a molecular crystal here) can be resolved into the motions of 

a set of independent harmonic oscillators of angular frequency wi and 

normal coordinate Q .. 
]. 

The vibrational wave function for the entire 

crystal is then 

3ntN-6 

~=n· 
i 

'¥ 
v. 

]. 

where '¥ (Q.) are given explicitly by v. ]. 
]. 

'¥ ( Q. ) v. ]. 
]. 

= exp[-(rrw./h)Q. 2 ] x H [(2rrw./h)112 Q.] ]. ]. v: ]. ]. 
]. 

(3) 

( 4) 

where H is the Hermit polynomial of degree v .. The energy levels in 
~ ]. 

the harmonic approximation are given by 

E =~(vi+ ;)hvi ; 
i 

v. = ·o,1,2 · · · 
]. 

( 5) 

Since T and V are to be invariant under all of the operations of the 

space group of the crystal, the coordinates Qi must transform as an 

irreducible representation of the space group. The functions H are 
vi 

odd or even functions of Q. according to whether v. is odd or even. 
]. ]. 

If Qi belongs to a non-degenerate irreducible representation of the 

space group, the corresponding '¥ transforms either as Q. or the v. ]. 
]. 

totally symmetric representation of the space group according to whether 

vi is odd or even. The vibrational ground state ~L:v.=O is non­
J. 

degenerate and belongs to the totally symmetric irreducible representa-

tion of the space group even if there are degenerate as well as 
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non-degenerate normal modes. 

For a pure vibrational spectrum, the electronic state remains un-

changed. The vibrational transition probability is proportional to 

16 the square of the transition dipole moment. 

vi j * . [ vl = ~ , v ~ dT . v .v v (6) 

In this equation v and v 1 stand for the set of vibrational quantum 

numbers in the lower and upper state respectively. If one expands the 

dipole moment of the crystal lJ in a power series of the normal coordi-

nates, then 

l-1 = l-1 +""' (2.L) Q. + ... o ~ aQ. ~ 
i ~ 0 

( 7) 

When the higher terms in the development of Eq. (7) are neglected, upon 

substituting Eq. (7) into Eq. (6), we obtain 

vi f * [vJ = v ~ ~ 1 dT v 0 v v 
Q. ~ d'T 
~ v 

(8) 

The first term on the right vanishes if v # v 1 since the vibrational 

eigenfunction of different states are orthogonal to one another. Ac-

cording to Eq. (3) 

(9) 

The integrals, j'l'* 1 'I' dQ. , are different from zero only when vJ. =vj1 
, 

v. v. J 
J J f * i.e. L\v.=O; while . 'I' 1 Q.'I' dQ. is different from zero 

J ' ' v. ~ v. ~ 
~ ~ 

only when L\v.= ±l .• The transition energy is the same for all different 
~ ., 

v. initial states and the intensities differ by Boltzman factor 
~ 

exp-E /kT. Therefore, the allowed difference bands can not be observed v. 
~ 

experimentally. Thus, we shall see that when both electrical 
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anharmonicity [higher terms in Eq. (7)] and mechanical anharmonicity 

[higher terms in Eq. (2)] are neglected. Only fundamentals are allowed 

transitions. 

Whether a certain fundamental V. of the crystal is IR active can 
l. . . . 

be decided on whether (~~i) 0 is different from zero or whether the 

inte~ral in Eq. (6) is non zero. Such an integral can exist only if 

the reducible representation of its integrand contains the totally 

symmetric representation of the space group. 

Since translational operations leave any vector invarient, they 

do not change the magnitude and the orientation of~. That is, the 

dipole moment of the crystal ~ belongs to the totally symmetric repre-

sentation of the translation group. Namely, it belongs to the unit cell 

group. It is a theorem of group theory that irreducible representations 

of the factor group, U, are also irreducible representations of the 

space group, S. In these particular irreducible representations, the 

elements of the invariant sub-group, T, are all given by identity. 

Consequently, the set of irreducible representations f 6 
, fs , fs 

~x ~Y ~z 
which' are totally symmetric with respect to translation are given by 

(10) 

v' Therefore, in order for [~] 
v 

s * u s to exist, r (~ ,)r (~)r (~ ) must contain 
v v 

~· We are interested especially in the case v=O (Ev.=O), the repre~ 
l 

sentation of the initial state fs(¢
0

) belongs to A
1

s species and 

v'=l (Ev. I = 1), the representation of the final state is rs(~ ,)=fs(Q. ). 
l v l 

This demands that 

rs ( Q. ) 
1 

b 1 t ru(,•) e ongs o '"' (ll) 

That is, only those normal coordinates of the crystal which are totally 

s~etric with respect to translation may be active, and the selection 

rules are given by 
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(12) 

Therefore, to the harmonic approximation, the total number of the ob-

servered frequencies in the infrared and, in the Raman spectrum must 

be the same as the number and symmetry types determined by the molecules 

in a single unit cell. 

The wave length of a photon in a medium of refractive index n=2, 

is one half of its vacuum value, and is of the order of 1 to 10 microns 

in the infrared. This is substantially infinite relative to unit cell 

dimension, so that for all practical purposes one can assume that the 

wave vector of an infrared photon K is equal to zero. In the process 

of transforming a photon into an excitation wave packet of the crystal, 

not only energy, but also momentum has to be .conserved. That is, 

K = k ,-k 0 = 0. Since the ground state of a crystal belongs to the 
v v= 

totally symmetric representation of the space group, the wave vector 

kv=O of the ground (initial) crystal state of the transition is simply 

zero. Therefore, the wave-vector of the excited state must be zero. 

This leads to the same conclusion as Eq. (12). Namely, only those 

normal coordinates of the crystal which are totally symmetric with 

respect to translation may be active in the infrared. Explicitly, we 

may write the infrared active modes as 

N 

Qi (k=O) = l: [qi u]m (13A) 

m=l 

Where (q.u) is the ith normal coordinate of the mth unit cell. Phys­
l m 

ically, this motion is such that equivalent atoms of all unit cells are 

in phase. 

The physics leading to Eq. (12) can easily be illustrated with a 

one dimensional model. For a one-dimensional crystal, the out of 

phase modes may be written as 

·• 

•. 
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N 

Qi (k) = ~ qi u exp ikma 

m 

(13) 

where a is the unit cell dimension. The dipole momeni; corresponding 

to this normal motion of the crystal could. be written as 

].l.(k)- ]..1 +(.£L) Q.(k) + ... 
1 - io aQi 0 1 

(14) 

Substituting Eq. (13) into Eq. (14) and writing the time dependence of 

u 
qi explicitly, we have 

~i(k) = ~io +(~MJo (qiu)o t 
m 

exp i(kma+w.t) + ··· 
. 1 

(15) 

At any instant, e.g., t=t , the second term in the right hand side can 
0 

be represented graphically. 
1T 

For example k = 6a as 

t t l f t 
j.a--1 

It is seen that to the harmonic approximation the time dependent part 

of ].l.(k) is practically zero at any instant unless the wave length of 
1 

the normal coordinate of the crystal is the order of the crystal 

dimension which is in the order of 1 micron for the polycrystalline 

sample in the actual study. That is, linless the wave vector of the 

normal motion of the crystal is nearly zero, there is no change of 

dipole moment accompanying this normal motion of the crystal. Thus, 

there is ·no emission or absorption of radiation, according to classical 

electrodynmaics. 

In order to find the spectroscopically.active modes of the crystal, 

one needs to consider only the unit cell and thus, the unit cell group. 

The analysis below will be based on the relationship between the 
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representations of the various groups. It is always possible to write 

linear relations between the irreducible representations of the unit 

cell group, and those of the site group. Irreducible representations 

which are so related are called corresponding irreducible representa-

tions. The correspondence may be determined in any specific c'ase by 

comparing the character tab+es of the site group and the unit cell 

group. In this way, correlation charts17 can be set up between the 

various site groups and the unit cell group. It is a simple matter 

then to proceed via these tables to analyze a given crystal structure 

for spectroscopic activity. 

The determination of the spectroscopic activity of naphthalene will 

be used as an example. 

Naphthalene Spectra 

The crystal structure of naphthalene is described by the space 

group P
21

/a (c2h5), with two molecules per unit cell. The site sym­

metry is C.. Figure 1 shows the unit cell and symmetry elements of the 
l 

naphthalene crystal. The relative orientation of the molecular axis 

to the unit cell axis is analytically shown in Table 1. To analyze the 

spectrum, one makes use of the correlation connecting the molecular 

symmetry group (D2h) with that of the site group (Ci), and connecting 

the site group with that point group isomorphous of the unit cell group 

( c2~). The correlations are shown in Table 2. Also shown are the 
ii 

symmetry s,pecies of the translations (and thus' the dipole moments) 

along the x, y, z axis of the molecule (z is perpendicular to the 

molecular plane, y i~ the long axis; also see Fig. 1) and along the a, 

b, c, crystal axis. 
,, 

In the site group, translations are all A . 
u 

The normal coordinates and their symmetry classes as well as the 

fUndamental frequencies of the gas state molecule are necessary for the 



... 

" 

-11-

b 

·a -glide 

a 

XBL 7110-7 363 

Fig. 1. Naphthalene has a monoclinic unit cell and has cell 
dimensions at room temperature and pressure as: a= 8.24A 
b = 6.ooA c = 8.66A S = 122.9° a = y = 90° (the angle 
between b and c is denoted by a, between c and a by 8, 
and b by y). The two molecules in a unit cell which have 
coordinates (0 0 0) and (l/2 l/2 0), are interchanged by 
symmetry operations of screw axis 2 which lies along 
(l/4 b 0), and a-glide'(a l/4 c). l 
[after D. P. Craig, Ref. 3]. 
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Table 1. Directional cosine of the Naphthalene molecular axis in its 

crystal; cosines of the angle between the molecular axis and the 

monoclinic a and b axis and c' , perpendicular to the ab plane. 

a 

b 

c' 

z 

+0.8399 

-0.4425 

+0.3143 

(after Cruickshank, Reference 32) 

X y 

-0.3207 -0.4379 

-0.8718 -0.2103 

-0.3704 -0.8741 
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Table 2. The correlation table for naphthalene. 

Degrees of Molecular Site Factor group Degrees of 
freedom symmetry symmetry symmetry freedom 

¥ D2h c. c2h l. 

.. 

A g A g 
Bl u----..:::::::: 
B -----.::=:: 
2g. B g 

B3g 

A 

A b u 
z 

X B u a,c 

y B3u 

(After G. c. Pimentel, et al. Reference 34.) 
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study of the molecule in the solid state. These are available in the 

literature for naphthalene. 33 The condition for infrared activity in 

the gas phase is that the normal coordinates of the molecule have the 

symmetry of a component of the molecular dipole moment. Therefore, the 

inrared-active modes of the naphthalene molecule are those belonging 

to the classes, Blu' B2u and B
3
u of the molecular point group. 

The correlation table is simply the expression of the retention in 

the sub group (the site group, C. ) of a part of the symmetry elements 
~ 

of the group (either the unit cell group c2h or the molecular point group 

D2h). Thus, all of the symmetry classes that have the character -1 

under the inversion operation in D2h correlate with Au of the site 

group. All those symmetry classes of the factor group, c2h' which are 

asymmetric with respect to the inversion operation correlate with A 
u 

of the site group. 
I 

Since the symmetry of a molecule in a crystal is actually that of 

the site, one simply correlates each molecular vibration with its 

proper class under C. and predicts its spectral activity by using se­
~ 

lection rules appropriate to C. (i.e., that those vibrations falling 
~ 

under A will be infrared-active). The procedure to this point is 
u 

called the site analysis. 18 For example, v8, y1 and o
5 

are of the 

symmetry classes b1 , a and b2 respectively in the isolated molecule. 
g u u 

v8(b1g) is infrared inactive in the gas phase. In the crystal it falls 

under class Ag of the site group and remains inactive. y1 (au) is 

inactive in the gas phase. In the crystal, it belongs to class A 
u 

of the site group and can be active. Its intensity will be expected 

to be low, since it c~~,only be active because of the small crystal 

field perturbation. o/5\(b2 ) is gas phase active. 
;;., u 

In the crystal it 

remains active. The r~sult is obvious that any degenerate vibration 
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of a molecule which is in a site of a symmetry group c
1

, c
2

, Ci or 

D
2

, may split, since there is no degenerate class in these groups. 

This splitting is the so-called site group splitting. Symmetry, of 

course, tells us nothing about the magnitude of the site group splitting. 

Site group splitting is a first order effect, and the change in in-

tensity is second order. This will be discussed later in this chapter. 

Having considered the effect of the lowering of symmetry due to 

the local field at the site, one must now take into account the fact 

that the coupling may occur between two naphthalene IDJlecules of the 

unit cell, i.e., the factor group analysis. 8 This involves the con-

u u 
struction of the symmetry coordinates qa and qS of the unit cell 

from the normal coordinates qa and qb of the molecules at the two sites 

of the cell. Considering only one normal motion of the molecules, we 

have 

(16) 

B is a unitary matrix similar to the transformation matrix for the 

transformation of internal coordinates into symmetry coordinates in the 

theory of molecular vibrations. 

The correlation table shows that for each A vibration of the 
u 

molecules at the two Ci sites, there will be two unit cell vibrations, 

one each of species A and B . Of these unit cell vibrations, those 
u u 

in class A will be infrared active with the transition dipole parallel 
u 

to the b axis. Those in class B will be infrared active with the 
u 

transition dipole perpendicular to the b axis. The symmetry coordinates 

of the unit cell are obviously 
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(17) 

u u Since <1a and qB are orthonormal and so are qa and qb. The B matrix is, 

thus 

B = t J (18) 

Equation (17) tells us that the molecule in site a vibrates either in 

phase with, or exactly 180° out of phase from the mol~cule in site b 

for the spectroscopic active modes of the crystal. 

In summary, from symmetry considerations, site group and factor 

group splittings are expected in the spectra of molecular crystals. The 

major purpose of the next two sections is to illustrate the nature of 

the crystalline force field causing these splittings and the ac-

companying frequency shifts. 

B. The Pertrubation of the Crystalline Force 
Field on the Internal Vibration 

One may describe the displacement of the center of gravity of 

each ion or molecule as well as the displacement of the angles which 

define the orientation of a set of axis fixed to each molecule with 

respect to an axis fixed in the entire crystal by the coordinates S~. 
J 

Here the superscript and subscript represent the ith coordinate of the 

jth molecule. These coordinates are lat~ice coordinates, and they are 

analogous to the coordinates which define the translation and rotation 

of a free molecule. The distortion of the molecul.ar configuration, rel-

ative to the center of gravity and body axis of the jth molecule is to 

be designated by the internal coordinates R~. These are the internal 
J 

coordinates in the same sense as in the usual molecular vibration 

problem. 

.. 
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In these coordinates, the potential energy of the solid is given 

3n-6,3n-6 

(

tN tN· 

+ i?.;j' 
3n-6,6 

(

tN tN 

+ if.tj' 

ii 1 Ri i 1 

Mjj I j Rj I 

ii 1 Ri i 1 

Njjl j Sj 1 

~ ii I iII Si. i I iII + • • • ·) J:..J Jjjlj" J Sj 1 sj" 
ii 1 i 11 jj 1 j 11 

+ •..• ) 

+ •• ) (19) 

where L, J, M, and N are force constants. Since Si and Ri are not 
j j 

normal coordinates of the crystal, cross terms may exist for all pairs 

of 3ntN coordinates (6tN lattice coordinates and (3n-6)tN internal 

coordinates for the crystal of non-linear molecules). The terms in the 

first parenthesis represent the potential which yields the lattice 

motion of rigid molecules. The terms in the second'parenthesis are the 

sum of the potential for the internal motions of all of the individual 

molecules which are in the crystal field of the site symmetry. These 

terms also include the interaction among internal motions of the various 

molecules. In general, the amplitude of intramolecular motion is very 

much small~r then that of the lattice vibrations, therefore only the 

limit of small intramolecular vibrations will be considered below. The 

' terms in the third parenthesis represent the interaction between lat-

tice and internal vibrations. 

In terms of these same coordinates, the kinetic energy is of the 

form 
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3n-6 

tN [ 6 3n-6 3n-6,6 

s~·J i·i2 ~ 
• • I ·i •i I ~ c~i' • i 

T = ~ ~AjSj + B:J. R. R. + R. (20) 
J J J J 

J J. iiI ii' 

Where SJ~ and R~ are the velocities corresponding to S~ and R~ dis-
J J J 

placements. The coefficients A, Band C are functions of the coordinates 

chosen and masses of constituent atoms of the cr~stal. The first term 

is the translational and rotational energy of the molecules considered 

as rigid bodies. The second is the internal kinetic energy of the 

molecules and is analogous to that encountered in any molecular vibra-

tion problem. The third term does not vanish whenever Ri and Si are 
j j 

not orthogonal. 

If the cross terms between lattice coordinates and internal co-

ordinates in both T and V are neglected, the problem would be separable 

into the problems of lattice vibrations and internal vibrations of the 

crystal. This is usually a satisfactory assumption since the large 

frequency separation between intramolecular vibration and lattice 

vibration prevents the two classes of motion from interacting appreciably. 

The lattice vibration will not be treated here, and the internal vibra-

tion will be treated by the theory of small vibrations. To this limit, 

we have the potential and kinetic energy of internal vibrational motion 

as 

Vinternal motion ~ ii' R~ 
i I. 

= M •• , Rj I JJ J 
(21) 

iiI jj I 

Tinternal motion ~ Bii ·i • i I 
= Rj Rj' j (21A) 

ii'j 

Following the procedure of vibrational analysis in molecular 

spectroscopy, one substitutes Eq. (21) and Eq. (21A) into Lagrange's 

equation: 



av 
aR~ 

J 

.:..19-

= 0 (22) 

A set of (3n-6)tN equations is obtained. If we wish to determine 

whether there are any normal vibrations of the entire crystal, namely, 

motions in which all particles move with the same frequency of simple 

harmonic motion, 

(23) 

One has to see whether the above condition expressed by Eq. (23) for 

simple harmonic motion can be fulfilled simultaneously for all internal 

coordinates with the same frequency. That is, one tries to substitute 

i the R. 1 s of Eq. ( 23) and their derivative into the set of ( 3n-6 )tN 
J 

number of equations obtained above. In doing so, a system of linear 

.. (Rji)o, •.. (RtN3n-6)o d h (Rll)o, an omogenous equations for 

is obtained. In principle, from these equations, (3n-6)tN number of 

normal vibrational frequencies of the crystal could be obtained as 
• • I 

functions of M .. 
1
ll and 

JJ 

quencies of the crystal 

(R
1
l)o, ... (Rji)o, . 

• • I 

B.ll • They are exactly those internal fre­
J 

in Eq. (5). The relative values of 

( 3n-6 o 
· RtN ) thus form the normal.vibrations 

of the crystal, the Qi of Eq. (2), could also be obtained in principle. 
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It is shown in Section B that only in-phase modes could be 

observed spectroscopically; that is, a maximum of (3n-6)t normal 

frequencies are observable. Therefore, the observable frequencies 

2 could never be sufficient for the evaluation of the [(3n-6)tN] 

number of force constants, Mjj 1 ii
1

• 

i Since the molecular-normal-coordinates q and its frequency 

vi are usually known, one would like to express the normal frequency 
0 

of the crystal vi as vi plus a crystal perturbation term. To clarify 
0 

the effects of the crystalline force field, one may transform the 

internal coordinates in Eq. (21) into molecular-normal-coordinates, 

thus 

Vinternal motion= ~ 
ii 'jj I 

i,i 1*i,j i,i 1 ,j,j 1*j 

• • I 

I .1 K.1,1 n genera , 
J 

i * 0, since qj are not normal coordinates of the 
• • I i molecule with site symmetry. Kj ,j l*j 
1,1 * o, since qj are not 

normal coordinates of the entire crystal. Kj 
i 
* (:\ji)o' (:\ i) 

j 0 
is 

the force constant of an isolated molecule. The potential function 

for an isolated molecule is 

i 

(24) 

(25) 
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Substituting Eq. (25) into Eq. (24), one has 

V ~ V + """ fKji .... (A J.j. )o] ( qji )2 internal motion = ~ j ~ L 
j ij 

+ L L (26) 

ii '*ij iiI jj ':#:j 

In this equation, the existence of the 2nd, 3rd, and 4th terms is 

obviously due to the crystal field perturbation on the intramolecular 

vibrations. It is interesting to see (and will be shown below more 

explicitly) that Eq. (26) tells us: First--the lowering of.the 

molecular symmetry to the site symmetry causes a frequency shift of 

l/2rr ,(K~- (Aji)
0 

and is expressed by the second term. Second--the 

crystal field causes the coupling of the molecular normal modes 

within a molecule and among different molecules. Therefore, one 

should regard the molecular-normal-coordinates as a set of internal 

coordinates of the crystal. The coupling of a given molecular-

normal-mode among tN molecules of the crystal splits the tN-fold 

degeneracy. Each of the resulting tN normal modes of the crystal 

is characterized by a certain phase relation among neighboring 

molecules. The sign and magnitude of the frequency shift and splitting 

are dependent on the crystal structure as well as the nature of the 

cr~stalline force fields. The crystalline forces are the repulsion 

forces, hydrogen bonding, London forces and Coulombic forces. In 

general all these forces exist at the same time. Nevertheless, one 

-
type of the force field may be dominant among all the others for a 

\ 

'· 
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small range of intermolecular distance. 

We will proceed further toward the correlation of the molecular 

normal frequency with the normal frequency of the crystal, keeping 

in mind the previous assumption that the cross term between lattice 

motion and internal modes of the crystal is neglected. The total 

potential of the crystal, i.e., Eq. (19) may be rewritten to the 

limit of infinitesimal intramolecular vibration as 

I: 
ii 1 i 11 jj 1 j 11 

ii 1 i" 8i. i' i" 
Jjjlj" J sj 1 sj" + .. -) 

+ L (27) 
iiI jj l:;i:j 

Therefore, the crystal potential energy is that of the isolated 

molecules plus a perturbation U. Namely, 

v = Lvj + u (27A) 
j 

·C~j. ii 1 si il L ii 1 i 11 
si il i" 

J 
u = u ~jj' sj I + Jjj'j" 8 • I 8 j 11 + • . 

0 j J J 
ii 1 i 11 jj1 j 11 

• • I 
KJ.J. 

j 

(28) 
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U is the static lattice potential and is identical to that 
0 

in the Mei Gruneisen equation of state. It is a function of crystal 

i 
structure and unit cell dimension. If one divides the crystalline 

potential U into a static potential U plus dynamic potentials. Each 
0 . 

of the other terms on the right hand side of Eq. (28) represent a 

dynamic potential. 

C. Internal Vibrational Energy Levels (vibrational exciton 
levels) of Molecular Crystals 

The vibrational energy levels of the ith normal mode of the 

jth isolated molecule is the eigenvalues of the Schredinger equation. 

r 

where 

Hi ,,,i. i ,,,i 
j o/J = Ej '~'j 

The solution for this equation is well known, namely: 

The internal vibration:al energy levels of the crystal are 

the solution of a Schredinger equation of the form 

(29) 

(29A) 

(29B) 
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(30) 

Where T is the first term in Eq. (20). It is a constant here, ·external 

i.e., it is not a function of internal coordinates of the crystal 

(molecular-normal-coordinates). U is defined in Eq. (28). In the 

following treatment, only the interaction of a molecular-normal mode 

among the tN molecules is to be considered. Thus, the superscript 

of q and w is to be omitted. The unperturbed wave function o! the 

crystal ground state, ~~ is 
'-' v.=O 
j J 

The unperturbed first excited states ~E v = 1 is the linear 
J . th 

number of ¢ in which the p molecule is 
p 

combination of the tN 

excited and the others are in their ground state. 

v =1 
<I> = W P II W 0 

p p j J 

(30A) 

(31) 

The tN number of the unperturbed excited states ~E v =l are acciden­
j 

tally degenerate. Namely, they belong to various irreducible 

repre.sentation of the space group, and thus, the energy levels are 

expected to be split by the perturbation. 

Since both H and ~ are the functions of intramolecular normal 

coordinates only, the bracket of Eq. (28) is a constant. U of Eq. (28) 

is reduced to 



.. 
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( 32) 

Assuming that the perturbation potential U can be expressed 

as a sum over pairs of molecules 

(33) 

It can be shown (2,3,5,6,9.15) by first order perturbation theory 

that the energy level of the excited states is split into t branches 

(to be designated by a.,S,y .•. ). The energy difference between 

the spectrally excited state and the ground state is given by 

t,N 

E 
w,j 

w 

tN (~) E a 2 
j ~ 0 

~34) 

0 1 0 Where E and E ar.e the energies of the states ljJ and ljJ • E - E
0 = hV • 

0 

The partial differentials are evaluated at static equilibrium, namely, 

LIs~ I = 0 and L: jq~l = 0 Molecule p is on site a, and 
ij ij 
molecule j . w is on site w. w runs through a, b, . . . to t number of 

equivalent sites in a unit cell. B is the transformation matrix 

difined in, Eq. (16) and Eq. (18), for the case t=2. 
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For a crystal with two molecules per unit cell, there are two 

unit cell modes for each intramolecular vibration. They are 

± 1 

811"~ c 
0 

The splitting of' each gas state frequency into a and a factor 

. group coiii:ponents is the so called factor group ·splitting and also 

called Davydov splitting. The frequency shi:f't as gas condenses to 

·the crystal is 

and the factor group splitting is 

(35) 

(36) 

(37) 

(38) 

Uj is a function of intermolecular distance as well as relative p . 

orientation of mo'lecules in a crystal. The former is obviously 

varied with pressure and temperature. Ther.e:f'ore, both frequency shift 

.. 
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and factor group splitting are expected to be temperature and pressure 

dependent. Any discontinuity of relative orientation of the molecules 

and/or of intermolecular distances across the solid-solid phase transi-

tion may be detected from the expected discontinuity in the frequency-, 

pressure plot. Thus, the frequency-pressure plot will offer us useful 

information about the existance as well as the nature of a phase 

transition. 

It is possible, at this point, to develop a physical model to de- · 

scribe the mechanism which causes the frequency shift and Davydov split-

ting, when the gas becomes a crystal and the change when high pressure 

is applied on a solid, or when a solid-solid phase transition takes · 

place. As was shown above, the perturbation potential U is the paten-

tial energy of the entire crystal minus that of the molecules in the 

gas state. U is thus the energy of interaction among the charge dis-

tributions of all molecules. Ujp is the intermolecular pair potential. 

It is important to realize that only the part of Ujp which is dependent 

the unit vector ~' and 

" (a2uoP ) is caused by an intramolecular displacement along ~- q is 
!>. aqja~ o J 

a restoring force along ~ and is caused by an intramolecular displace-

ment along q.. In Fig. 2, a model is proposed to illustrate these 
J 

force fields graphically. The numberical force constants are phase 

independent (because the displacement and the restoring force are 

always in phase) and contribute only to the frequency shift. The 

tensoral force constants are phase dependent and contribute to both 
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frequency shift and the splitting into t branches, of ea.ch of the gas 

state frequencies and are responsible for the exciton e:1ergy transfer 

mechanism. 

Both scalar and tensoral force constants may cause site group 

splitting. (Site group splitting is predicted in the g:~oup theoretical 

consideration in Section A, namely, the degeneracy of molecular-normal-

modes may be split due to the lower symmetry of the site.) This split-

ting may be visualized easily from the crystalline force field. As a 

simple model, assume that a linear triatomic molecule crystalizes in 

the naphthalene sites (see Fig. 1), one can then construct the crystal-

line forces, as in Fig. 2 for the doubly degenerate bending modes. The 

crystalline force fields so obtained are different for the two bending 

modes. That is, the two bending modes are no longer degenerate. 

In the literature, the frequency shift and Davydov splitting are 

often described; the former, as due to a static crystalline force field 

and the latter as due to a dynamic crystalline force field (also called 

resonance interaction force field). From our definition of static and 

dynamic crystalline potentials in Eq. (28), both the frequency shift 

and Davydov splitting are obviously caused by the dynamic potentials. 

Two types of force constants, illustrated in Fig. 2, yields two kinds 

of.dynamic forces. The frequency shift is caused by both types of 

dynamic forces while Davydov splitting is caused by the second type of 

the dynamic forces (tensor force constant). The dynamic interaction of 

the seco~d type reaches a maximum value when all molecules vibrate with 

the same frequency and is the so called resonance interaction. 

The possible force fields which could be involved in U. are 
JP 

the Coulumbic force which may be resolved into the sUmmation of 



-32-

monopole, dipole and all multipole interactions, London forces 

repulsion forces and hydrogen bonding. Certain intermolecular 

potentials (the latter three) may reasonably be l!lrokenup into central 

forces acting between pairs of atoms, one in each of the two molecules. 

That is 

U (r ) mn mn 

Where m is an atom of molecule j, n is an atom of molecule p, and 

r is the interatomic distance. mn 
The numerical and tensoral force constant in Eq. (37) and 

Eq. (38) can be written41 , 55 as 

arn )2 
a~ . 

0 

(
armn) Where r is a vector describing the position of atom m. --

m arn 0 

the cosine of the angle between the molecular normal displacements 

of the atom n and the interatomic distance r , and is calculable mn 
from the knowledge of the crystal structure and molecular normal 

(~:n)o coordinates. a ~ is a matrix element of the transformation 

from Cartesian coordinate to normal coordinates, and is usually 

(39} 

(40) 

(41) 

is 
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available in the literature for the gas state normal coordinate 

analysis. 

Equation (38) there fore reduces to 

(42.) 

Where C(which includes a structure factor) can be calculated, at 

least in principle. Atoms m and n are now those of two molecules in 

the same unit cell. Therefore, in this approximation, (with assumptions 

of Eq. ( 33) and Eq. ( 39)), the interatomic force constant may be 

obtained as a function of interatomic distance, when Davydov splitting 

is measurable as a function of unit cell dimensions. For a special 

case, when the interatomic forces are dominated by the nearest 

neighbor repulsion force, the summation and structural factor are 

reduced to a simply calculable constant. This will be shown in 

Chapter IV for n-paraffins. 

D. Intensity 

The intensity of an infrared absorption band is proportional 

to the square of the change in dipole moment during a normal motion 

of a crystal. The change in dipole moment of the crystal is the 

vector sum of the individual molecular dipole changes each weighted 

by the phase difference from a reference molecule. The weighting 

factors are exactly the coefficients of the linear combination of 

molecular normal coordinates in forming normal coordinates of the 

crystal. The change in the dipole moment of an individual molecule. 

* 
is proportional to the transition moment Mj = ~~l (q~)~(q~)~(q~)dq~ 
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where 
* . . i . . 

1jJ (q~), ljJ(q~) and lJ(qj) are perturbed by the crystal field U. 

i However, in the first order perturbation theory, both qj and ljJ's are 

of the zero order (unperturbed), and the transition dipole moment of 

a molecule in the crystal is identical with that of an isolated 

molecule. 
. th 

The intensity of the a factor group transition (k = 0) 

is thus proportional to 

Where N is the number of unit cells, M is the transition dipole 
a 

moment of a free molecule and is oriented in the direction of the 

change in dipole moment of the molecule at site a. B /B b is the a.a a. 

(43) 

phase difference of molecular motion between site b and site a. For 

a crystal with two molecules per unit cell using the B matrix in 

Eq. (18), we have 

I 
a. 

a: 

a: 

(44) 

(45) 

For Naphthalene, each of the B2u normal modes have a change of 

dipole moment along the x-axis. With the help of Fig. 1 and Table 1, 

it can be shown that Ma + ~ is along the b-axis and Ma - ~ is 

* perpendicular to the b-axis. Namely, the a. factor group component 

* The symmetry class and thus the spectroscopic activity of factor 
group components is usually deduced from the correlation table and 
group theoretical argument (see any book on exciton theory). 

·• 
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is IR active along the b-axis and 8 factor group component is IR 

active perpendicular to the b-axis. The intensity along the a and c 

axis is proportional to 1 <ma ...:. ~) · al
2 

and I <ma ..;. ~) · 2 12 

respectively. Therefore, the intensity ratios which are readily 

observable are 

I c 

= 

= 

j(Ma- ~) • aj
2 

IMa + ~~2. 

j(Ma- ~) • cj2 

jMa + ~~2 

The intensity ratios for Blu' ~2u' and B3u molecular ~ormal modes 

20 of naphthalene are .calculated by Person, Pimentel and Schnepp. 

The intensity ratio are obviously dependent on the relative 

orientation of Ma and ~· 

The sum of the intensities of the two factor group components 

is obvious from Eq. (45) and Eq. (44) and is just equal to the 

intensity of the transition in the gas state. This conclusion is 

also true for crystals with more molecules per unit cell since B is 

a unitary matrix. In the beginning of this chapter, it was shown 

(46) 

(47) 

that some transitions that are IR inactive in the isolated molecule, 

e.g. A normal modes of Naphthalene, may become active in the crystal 
u 

field with lower symmetry. Nevertheless the first order perturbation 

theory yields zero intensity. To discuss the intensity in the 

crystal field, it is necessary to correct the wave functions of the 

unit cell state to the first order. In other words, it is necessary 

to use the second-order perturbation theory.5,l9 
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E. Selection Rules for Combinations and Overtones 

Two kinds of combinations and overtones are possible. The 

combinations (or overtones) of the first kind may be called the 

intermolecular combinations (or overtones) and are the transitions 

from the ground state to the states in which two different molecules 

are each excited by one quantum. These transitions are a consequence 

of the anharmonic coupling of the various motions of different 

molecules; i.e. due to the higher order terms in the perturbation 

potential U of Eq. (32). For this type of combinations (or overtones), 

the more general selection rule (Eq. 11) requires that k1 = k2 ; 

where k1 and k
2 

are wave vectors of the two excitations. Since the 

combinations and overtones of this type has never been confirmed in 

the observed spectra, we shall not discuss it any further. 

The combinations (or overtones) of the second kind may be 

called intramolecular combinations (or overtones) and are the transi-

tions from the ground state to the states in which one molecule is 

excited by two quanta. These combinations and overtones are a conse-

quence of the anharmonic coupling of various intramolecular motions; 

i.e., the consequence of the inclusion of the higher order terms in 

:Hji of Eq. (29). 

Equation (8) is the selection rule for overtones. The restriction, 

that· IJ.v. = ± 1, is removed, since'¥ and'¥ , of Eq. (9) are 
~ v. v. 

~ ~ 

no longer harmonic. In the case of combinations, the selection rule 

depends on the non-vanishing of the integrals: 
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Namely, a combination will be infrared active when at least one 

component of the dipole moment of the unit cell has the same species 

as the vibrational eigenfunction~ ,~ , of the upper state. This 
vi vj 

type of overtones and combinations seems to be the ones most commonly 

observed,and as a result, the selection rules for the observed 

combinations and overtones usually follow the predictions of the unit 

cell group analysis. 

It might be worthwhile to point out that the conventional 

terminologies "one molecule is excited by two quanta" or "two molecules 

each excited by one quantum" do not mean that a photon splits into 

two before it is absorbed. The physics for the overtone and combina-

tion transitions is illustrated in Appendix I. 

F. Experimental Methods 

It is known21 , 22 , 23 that the transition energy and the 

corre~ponding oscillator strength are related to the observables: 

the refractive index, n(v), and the extinction coefficient, k(v). 

Namely; the transverse optical frequency is the peak frequency of 

the absorption band n(v)k(v). The oscillator strength f is 

m 
f = e 

tNTI2e2 !~ nkVdV ~ --m~e~ 
tNrr2e2 

band 

n J kVdV 

band 

(50) 

Where m and e are the mass and charge of the electron respectively, 
e 

tN is the number of molecules in the solid. The first integral is 

to be referred as the absolute intensity. 
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The experimental methods for obtaining crystal spectra at normal 

pressure are well established. A comparison of the use of infrared 

absorption, reflection and Raman scattering is presented in the 

following paragraphs. 

The extinction coefficient as a function of v; k(v), may be 

measured by infrared absorption. For weak absorption bands, the peak 

frequency of the nk band may be taken as that of the k band within 

experimental error, since n is nearly constant. The absolute intensity 

may be approximated by the integrated area of the k(V) band times n. 
n is defined in Eq. (50). However, if one wishes to compute a more 

accurate value for the eigen freQuency as well as the oscillator 

strength, one may calculate the refractive index from the k(v) 

spectrum through the well-kriown Kramers-Kronig dispersion relation­

ship,24,25 which connects the real and imaginary parts of any complex 

optical indexes to the limit of linear optics. Infrared absorption 

measurement alone could in principle yield both eigen frequency as 

well as oscillator strength. 

For intense absorption bands, the calculation of refractive 

index becomes essential. However, the absorption me~urement becomes 

insufficient for quantitative study for the following three reasons: 

(1) An absorption band in a crystal is always accompanied by an 

anomaly in the dispersion of the index of refraction n(v). The 

stronger the absorption, the greater the fluctuation in n(v) through 

the band. The n(v) anomaly is also accompanied by a maximum in the 

reflectance spectrum of the crystal. If reflection does occur to a 

measurable amount, the measured absorption spectrum k(v) will include 

the effects of reflection as apparent absorption. Thus, the peak 

\ 
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position and the line shape ,as well as the absolute intensity can be 

in error. (2) The sample thickness required is of the order of 

1 micron and below. Therefore, the sample is usually deposited in 

the form of a poly-crystal on a substrate. The sample thickness is 

usually uncertain and thus the absolute value of k(v) can not be 

certain. (3) Disorder in the polycrystalline sample causes a 

broadening of the absorption band. 

The reflection method is of importance in the study of intense 

bands. This method has been used to a great extent for ionic crystals 

where the oscillator strength is usually high. The processing of 

the normal incidence reflection data to obtain both extinction 

coefficient k(V) and index of refraction n(v) may again be accomplished 

by the use of the Kramers-Kronig dispersion relationship. However, 

the intensitiesof radiati-on reflected by a sample in the minimum­

reflectance region are well below the instrumental noise level for 

very intense bands. The so obtained optical indicies have always 

been in doubt. Fortunately, with the so called partitioning technique 

of Wu and Andermann, 29 , 30 it is now possible to obtain reliable 

optical indices even for the most intense bands, e.g., the optical 

phonon band of LiF and Mg0.3l 

Raman spectroscopy has different selection rules from those in 

the infrared. Beside being complimentary to the infrared, its 

additional advantages are that information can be obtained concerning 

the lattice modes without going to the far infrared and an occasional 

observation of longitudinal frequencies. Its disadvantages stem 

basically from the fact that Raman scattering is a second order 

process. They are: (a) the high background noise level precludes 
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very high resolution, and (b) a large (a few millimeters) clear single 

crystal is needed for the sample. 

In this work, we are ma±nly interested in the frequency shift 

and splittings as a function of unit cell dimension. That is, only 

the relative values of the frequencies are needed. We feel that it 

is not yet necessary, at this stage, to calculate n(v) for high 

pressure spectra. 
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III. INSTRUMENTATION 

A. Pressure Devices 

1. Selection of a High Pressure Sample Cell for Spectroscopic 
Measurements 

For spectroscopic measurement under high pressure, the needs are 

cell windows which satisfies the following two requirements: (1) they 

are transparent in the interested frequency range, (2) they are able 

to stand high sheer stress. So far there is no material available which 

satisfies these two conditions simultaneously for infrared windows to 

the highest attainable pressures. 26 H. G. Drickamer, et al. used 

synthetic sapphire windows for the infrared transmission study of 

liquid solution to pressures of 12 kb. The sapphire window is trans-

-1 ' -1 
parent in the frequency range of 2000 em to 50,000 em . However, in 

-1 this study, we are interested in the frequency range below 2000 em . 

C. E. Weir, et al. 27 used a diamond squeezer for the infrared 

study of ionic and molecular crystals to pressures of 30 kb. Only two 

percent of all diamonds are relatively transparent for wave lengths 

longer than 6~, and all diamonds have various absorbtion bands below 

6 microns. It is noted that hydrostatic pressure is obtained in the 

sapphire cell, while a diamond squeezer exerts a uniaxial force to 

a specimen contained between two flat surfaces, and further has a 

very large pressure gradient. 

For transmission purposes, the alkali halides are ideal, but 

they are mechanically weak. To overcome this weakness, Drickamer 

et al. 28 has invented a bomb design using sodium chloride simultane-

ously as the pressure transmission medium and pressure resisting 

window. Pressures up to 200 kb were obtained. However, the use of 
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this cell (to be called sodium chloride high pressure cell) is limited 

by the very small amount of radiation energy which can pass through 
/ 

the long windows. When black body radiation is used as a light source, 

the source intensity is much weaker in the infrared than in the UV 

and visible regions. Drickamer, et al. restricted their study to 

the latter frequency regions. In this study, we have extended the 

usage of this cell into the infrared. 

A sodium chloride cell is made available to us by Nicol, who 

modified the sodium chloride cell for Raman measurements. 68 The 

references cited above give detailed information on the construction 

of the cell as well as the preparation of the cell windows. 

2. Press 

A force of 7120 lbs. is sufficient for generating a 40 kb in a 

sample chamber of O.l25.inch diameter. An easily portable press 

sketched in Fig. 3, is thus constructed to suit optical alignments. 

In a compression process, the pressure transmission fluid is 

forced to'enter above a Bridgeman seal, into the cylinder of the 

press. In order to remove an optical cell immediately after de-

compression, the Bridgeman seal is lifted up by compressed air. 

When compressed air is introduced, one has to be sure to keep 

fingers away from the sample cell position, since the compressed air 

which lifts the Bridgeman seal also· presses the piston downward. 

B. Optics 

A Perkin-Elmer Model 21 IR spectrophotometer was reconstructed 

with its optics modified for high pressure measurements. The optics 

used and presented below make a quantitative study of high pressure 
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Fig. 3 Sketch of a press constructed 
for this study. All numbers 
indicated are in inches. 
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IR spectra, 650 to 2000 cm-l, po.ssible for the first time. 

The optical system which precedes the monochromator is shown 

in Fig. 4. In the transmittance measurements, the first light source 

(S1 ) is used. The passage of radiation follows the order of M1 , M2 , 

Sample, M
3

, M4 and the monochromator. For reflectance measurements, 

the second light source (s
2

) is employed. The light passage follows 

the order of M
5

, M6, Sample, M
3

, M4 and the monochromator, and it 

is necessary that M
3 

is shifted along the mirror plane, in the direction 

shown in Fig. 4, such that only half of the M
3 

mirror surface is in 

the light beam. The operational mode is to focus the source radiation 

on the.center of a sample cell and then refocus on the entrance slit 

of the monochrometer. 

The ideal amount of energy which can be passed through the 

NaCl cell is that which is emitted from the cell when an imaginary 

light source is located at the center of the sample cell. · Since the 

aperature of the sample cell and the cross-section of the light 

passage at the cell center is fixed, i.e. constant for a given cell, 

the energy that passes through the cell is simply proportional to the 

product of the intensity of light sour~e I(v) and the cross-sectional 

area for the passage of radiation at the cell center. The Sylvania 

concentrated Zr arc lamp, water jacketed, with a NaCl window, is used 

as the light source fdr the sample beam for the following reasons: 

(1) I(v) is at least 2.25 times more intensive than a globar in the 

entire infrared frequency range, (2) it is relatively cheap and 

easy to operate, and (3) output intensity is very steady. 

Although the aperture of the sample cell is smaller than the 

maximum aperture of the radiation which can be accepted by the 
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Fig. 4 Optical system of sample beam. 
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thermocouple, the optics is aligned such that the maximum aperture 

of radiation is seen by the thermocouple, i.e., the entire surface 

of all the mirrors in the monochrometer is enveloped with radiation. 

Energy is gained, since the focus of the light source at the cell 

center is larger than the slit width used. 

The theoretical intensity is obtained by minimizing spherical 

aberration and astigmatism. 

C. Pressure Scale and Precision of the Measured Frequencies 

A recent calibration of the pressure scale for samples of ionic 

crystals by Fang and Nico167 shows an approximately linear relation-

ship between the pressure within the NaCl cell and the applied load 

at pressures up to 25 kb. However, the compressibility of the 

substances in this study is nearly twice that of the NaCl window and 

the ionic crystals used in their calibration. Therefore, Fang and 

Nicol's calibration is not necessarily applicable to the system in 

this study. Furthermore, it is obvious that pressure within the cell 

might be dependent on the fit of the pistons with the sample chamber, 

and on the compression process; i.e., how fast the load is increased. 

Before a suitable calibration of an absolute pressure scale for 

this system is obtained, a reference pressure scale is defined in 

( 
-1 Fig. 29 Which is the P-v relation of the 730 em absorption band 

of polyethylene). In this P-v plot, pressure of the sample is simply 

defined as the applied load divided by the area of piston. The 

choice of this particular band is based on the following reasons: 

(1) a 1 mil. polyethylene sheet (Marlex 6009) supplied by Phillips 

Petroleum Company, can readily be used as a test sample. (2) reproduc-

ible and large frequency shifts of this absorption band. (3) the 
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position of the peak maximum can be determined with certainty, since 

this absorption band is fairly narrow and symmetric, and its intensity 

as well as band width are independent of pressure. 

Throughout this study, the pressure-scale is checked with 

Fig. 29. It is found that the pressure-load relation remains for 

an old cell just as when it was new. However, the upper pressure 

limit is dropped as the cell is used repeatedly (order of 50 runs). 

This is probably due to the slight enlargement of the sample chamber. 

-1 The observed frequencies for the 730 em absorption band of 

polyethylene at various pressures are tabulated in Table 3 for two 

runs of different samples. For pressures above 15 kb, the frequencies 

of different runs agree within the experimental precision of a single 

run; the data presented is the adverage values of five to ten runs. 

For pressures below 10 kb, and especially below 5 kb, the agreement 

between two runs is not as good. This is due to a poor reproducibility 

of the. compression process at low pressures. 

From Table 3, it is seen that the reproducibility for the 

-1 frequency of a given sample at each pressure is below ± 0.125 em • 

This is the reproducibility of our spectrophotometer. However, the 

precision of the frequencies to be presented in Chapter 4 ranges from 

± 0.25 to± 1.0 cm-1 , owing to additional uncertainties. For example: 

(1) the intensity of the sample beam is increased with pressure 

(may 'be 20 to 30% from zero to 40 kb) owing to the increase in 

transparency df the contact surfaces between the sample and windows. 

(2) uncertainty in the determination of peak maximum for asymmetric 

bands and very broad bands. (3) uncertainty in the reproducibility 

of compression.process. 
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Table 3. The average frequencies (before calibration) for the 730 cm-l 

absorption band of polyethylene. 

Sample I Sample II 

P(kbar) freq. P(kbar) freq. 

0 728.31 ± 0.06 decompressed 0 729.73 ± 0.07 

5 733.61 ± 0.06 0.755 730.72 ± 0.05 

1.35 730.71 ± 0.09 

7.5 733.98 ± 0.15 2.1 730.82 ± 0.08 

2.76 730.76 ± 0.10 

10 735.50 ± 0.125 3.4 731.50 

4.04 731.90 ± 0.14 

12.5 736.63 ± 0.1 4.72 732.36 ± 0.11 

5.4 132.59 ± 0.08 

15.0 737.796 ± 0.1 6.075 732.75 ± 0.03 

6.67 733.06 ± 0.10 

17.5 739.09 ± 0.09 7.45 733.56 ± 0.04 

20 740.34 ± 0.09 10.08 734.95 ± 0.08 

12.5 736.38 ± 0.01 

22.5 741.47 ± 0.05 15.0 737.62 ± 0.1 

20.0 740.31 ± 0.01 

25 742.856 ± 0.14 

27.5 744.0 ± 0.05 

30.0 745.31 ± 0.11 

32.5 746.98 ± 0.106 

35.0 748.22 ± 0.10 
" 37.5 749.51 ± 0.075 

40.0 750.38 ± 0.20 
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Since high resolution is not essential for this study, the 

resolution of our high pressure spectrophotometer is limited by the 

usage of a sodium chloride prism alone for the dispersion system. 

Nevertheless, a good reproducibility of the instrument is essential 

and is obtained in this study. 

While no reflectance spectra are measure for this study, over 

* one hundred absorption bands are studied as a function o~ pressure. 

Among them, the frequency shifts range from a few wave-numbers of 

red shifts to 40 cm-l blue shifts. Intensities for most of the bands 

are nearly independent of pressure, although some bands show increased 

intensities with pressure and others decrease with pressure, (See 

Fig. 8(a), 8(b), and 25). Most of the bands with constant intensities 

have band widths that are also independent of pressure. However, 

there are bands with increasing band widths and bands with decreasing 

band widths. 

We tend to believe that pressure exerted on the sample is 

fairly uniform throughout the area of light passage, since no 

** pressure gradient over the sample surface is observed. It is 

especially convincing from the fact that most of the absorption bands 

have a constant band width, and that some bands, for example, the 

B
3
u band {gas state frequency 1214 cm-1 ) of naphthalene as shown in 

Fig. 5, have a decreased band width, while the frequency is shifted 

considerably with pressure. 

* 

** 

In order to assure a consistant pressure scale, only first compression 
data are recorded. (Recompression and decompression data are studied 
for special purposes.) 

Large pressure gradients are observed in a diamond cell by 
C. E. Weir.70 As a·result, all absorption bands are greatly 
broadened at high pressures. 
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IV. EXPERIMENTAL RESULTS, . CALCULATIONS AND DISCUSSIONS 

PART I. Naphthalene 

. A. Blue and Red Shifts 

Clear single crystals in a plate form are prepared by evaporation 

from reagent grade naphthalene. •The transmission spectra (700 cm-l to 

2000 cm-1 ) of naphthalene-single crystals were measured with the light 

beam perpendicular to the ab crystal plane to a pressure (defined in 

Chapter III) of 40 kilobar. All of the absorption peaks in this 

frequency range observed at room temperature and pressure are resolved 

in our high pressure spectra. The observed peak frequencies at 

pressures of 5 kilobar intervals are tabulated in Table 4. To compare 

the pressure induced frequency shift with the frequency shifts of 

gas to solid, the gaseous as well as the solid state frequencies at 

1 atm. as reported by Pimente134 are included in the table. The 

) 
-1 

average frequency shift.of gas to solid (v l'd- v is +3 em so 1 gas 

All but three are blue shifts. At high pressure, the three exceptions 

show evidence of interaction with neighboring states. This phenomenon 

will be discussed later. The pressure induced frequency shifts for 

bands which appear throughout the entire pressure range studied, are 

to be found in Table 4 under ~v( 40 kb)' ~v( 40 kb) ranges from +5.7 to 

. -1 -1 4 37.3 em with an average value of 23 em For naphthalene, 0 kb cor-

responds to a 21% change in volume, i.e. 7% change in the intermolecular 

distance from that of the crystal at 1 atm. Even though the volume 

change of a solid to an ideal gas is essentially infinite, the 

frequency shift of naphthalene from gas state to solid state is an 

order smaller than the pressure induced shift, ~v( 40 kb)' Does this 

indicate that the intermolecular force reaches only to the range of 
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Table 4. The peak frequencies in the vibrational spectra (700 to 

2000 cm-1 ) of crystalline naphthalene at various pressures. 

* Assignment 

Symmetry Class 

** Gas State Freq. 

** Solid State Freq. 

*** Ia/Ib 

p (kb )\ freq. 

1 

5 

10 

15 

20 

25 

27.5 

30 

35 

40 
:j: 

l1v ( 4o kb) 

\) -\) . 
solid gas 

l1v/v0 

698 

699 , 726 

1.7/0.7 7/5 

695.5* 72l 

696.5 724 

700 

703.5(?) 

707.7 

708.7 

711 

712.8 

17.75 

1 

0.0254 

734.8 

12.3 

0.0169 

747 

749 

7/5 

2 

779 

766 787 

6~5/2 10/10 

767* 788.5 

767 788.5 

771.5 

773 

774.5 

774.5 

790 

792 

794.2 

795.5 

797.5 

799.3 

799 

801 

802.5 

15.7 

3.5 

0.019 

*Fundamenli~: aft~~-~· Claverie. 33 Their gas state frequencies are 
s~~wn in par~~thesi~"~/ Combination: after S. S. Mitra and H. J. Bernstein.39 

After Pimentel, et· al. 34 · *** .,,.. . '.·· . 
Intensity ~atio of a- and b- two factor group

4
components from 

Pimentel's measurement with polarized light.20,J 
*The v-p plot is nearly a straight line for most of the absorption bands. 

Therefore, a least square fit of the experimental data to a straight line 
is carried out to calculate 6v40kb" 

*Owing to the presence of the very intense band, these side bands are 
not resolved at each pressure. 
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Table 4 continued 

Assignment y (843) 
2' 

y (955) 
3 

Symmetry Class B . A Blu lu. u 

Gas State Freq. 821 949 
' 

Solid State Freq. 819 841 953 

Ia/Ib 7.5/7 8/6 9/9 

p (kb )\ freq. 

l 818 843.7 961.5 ** 

2.5 817.0 844 961.5 

5 817.5 846 962.0 976.75 

10 817.5 847.0 963.5 979.25 

15 816.2 848.8* 965.0 982.0 

17.5 

20 851.1 965.7 983.4 

25 854.0 967.0 984.5 

27.5 855.5 967.8 986.0 

27.5 (overnight ) 968.0 986.5 

30 856.5 968.5 987.5 

32.5 969.7 989.5 

35 859.5 867 970.0 990.0 

37.5 970.9 992.0 

40 861.5 870 971.0 993.0 

~\)(40kb) 18.9 10.4 18.8 

\) . -\) 
solid gas -2 4 3 

~v/v 
0 

0.0225 0.011 0.0194 

* Evidence of splitting start to develop 
** Zero intensity at atmos~heric pressure, gain intensity through 
Fermi resonance with y1 (9 5); see also Fig. 8(b). 



Assignment 

Symmetry Class 

Gas State Freq. 

Solid State Freq. 

I a/~ 

P(kb )\ f:req. 

1 

5 

10 

15 

17.5 

20 

25 

27.5 

27.5 (overnight) 

30 

32.5 

.,..54-

Table 4 continued 

y (965) 
1 

A 
u 

970 

9/4 

978 

982 

983.5 

985.5 

988.0 

1012 

1014 

9.5/9.5 

1010.1 

1009.9 

1010.5 

1011.8 

1013.0 

990.0 1013.0 

992.5 1013.5 

(993.5)*** 1014.0 

1014.2 

0 (1126) 
5 or o 

7 
B2u or 

B3u 

1130 

1133 

15 

1127.0 

1126.5 

1127.0 

1127.5 

1024.5* 1128.7 

1129.2 

1028.0 1129.0 

1030.2 1129.5 

1033.0 1129.8 

1130.0 

1130.1 

1038.6 1131.2 

1 

35 

37.5 

40 

(993. 5) 

(994.5) 

(996.5) 

(997.0) 

(998.5) 

1014.7 

1016.4 

1016.8 1042 1131.0 1146.o** 

!1v (40kb) 21.5 

v -v solid gas 

!1v/v 
0 

* 

1018.0 

1018.5 

8.75 

2 

0.00865 

1042 

1131.7 

1131.9 

5.7 

3 

0.0057 

Pressure induced peak; the resonance partner is unidentified if the 
intensity is obtained through Fermi resonance. 
** ***A factor group component of (1126) band. 

The frequencies in parenthesis are from shoulder bands and have 
poorer precision. 
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Table 4 continued 

Assignment 6
5 

or 6
7

(1136) 

Symmetry Class B3u or B2u B3u 

Gas State Freq. 1146 1214 

Solid State Freq. 1217 

Ia/~ 7/8 

P(kb )\ freq. 

1 

5 

10 

. 15 

17.5 

20 

25 

27.5 

27.5 (overnight) 

30 

32.5 

35 

37.5 

40 

b.v (40kb) 

v -v solid gas 

b.v/v 
0 

* 

1144.8 

1144.6 

1146.4 

1148.0 

1151.0 

1152.0 

1152.2 

1154.8 

1156.0 

1156.5 

1157.3 

1159.0 

1159.7 

1160.7 

1161.2 

18.2 

0.016 

1214.0 

1214.5 

1215.5 

1218.5 

1221.0 

1223.2 

1226.0 

1227.4 

1228.0 

1229.0 

1231.2 

1232.5 

1234.2 

1234.6 

21.8 

3 

0.0179 

r
6
+r

3 
6

6
(1266) 

B * B 
2u · 2u 

1238 1266 

1244 1271 

9/9.5 9/9.5 

1249.7 1277.0 

1250.0 1277.0 

1252.0 1278.25 

1255.5 1280.0 

1259.0 1283.3 

1261.5 1285.2 

1265.0 1288.0 

1267.5 1290.0 

1268.0 1290.4• 

1269.0 1292.5 

1272.0 1295.0 

1273.0 1298.0 

1275.3 

1275.6 

28.1 20.3 

6 5 

0.0226 0.016 

Exchange intensity (in Fermi resonance) with 6
6

(1266). See also 
Fig. 8(a). 
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Table 4 continued 

w14 (1360) * Assignment w11 (1389) w15 (1509) 

Symmetry Class B3u B3u B2u B3u 

Gas State Freq. 1366 

Solid State Freq. 1307 1362 1385 1506 

I a/~ 5/3 8/9 9/9.4 

P(kb)\ freq. 

1 1308.0 1367.75 1393.1 1513.0 

2.5 1308.5 1368.8 1393.1 1513.5 

5 1312.0 1369.8 1394.5 1528 1513.6 

10 1372.0 1394.5 1532.5 1515.0 

15 1315.0 1395-7 1517_.0 

20 1318.0 1537.0 1518.0 

25 1519.3 

27.5 1324.6 1370.0 1520.6 

30 1324.25 1370.5 1544.5 1521.0 

35 1329 1372.0 1395 1523.2 

4o 1331.5 1374.0 1395-5 1525 

l!v ( 40kb) 24.5 12.1 

\) -\) 
solid gas -4 

t:.v!v0 
0.00803 

* ~idence of interaction between w14 and w11 is observed. See also 
F1g. 11. · 
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Table 4 continued 

Assignment w10 (1596) 

Symmetry Class B2u B2u B2u B3u 

Gas State Freq. 1596 1661 1720 

Solid State Freq. 1563 1594 1673 1337 

Ia/Ib 8/9 7/8.5 

p (kb )\ freq. 

1 1572.0 1598.5 1673.0 1735.5 

2.5 1573.0 1598.5 1675.0 1736.0 

5 1576.5 1599.7 1676.0 1740.0 

10 1578.0 1600.5 1680.0 

15 1582.5 1602.5 1683.0 1745·. 0 

20 1585.0 1602 .. 8 1684.7 

25 1586.5 1603.4 1686.0 1756 * 

27.5 1589.0 1605.0 1756.o* 

30 1590.0 1605.2 1757.5* 

35 1593.0 1606.5 1690 

40 1597 1608 

t::,v(40kb) 9.9 31.9 

v ...;v 
solid gas -2 2 17 

t::,vjv 0.0062 0.00185 
0 

* A pressure induced peak at 1738 is resolved. 
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Table 4 continued 

Assignment o6+w5 w5+wll 

Symmetry Class B2u B3u B2u B2u or 
B3u (?) 

Gas State Freq. 1763 1835 1896 1938 

Solid State Freq. 1786 1845 1919 1944 

I/Ib 

P(kb )\ freq. 

1 1787.0 1846.0 1932 1966.5 

2.5 1788.25 1848.5 1933.5 

5 1789.0 1849.0 1935.5 1968.5 

10 1792.0 1851.5 1938.5 1970.0 

15 1799.5 1856.5 1945.8 1976.5 

20 1800.5 1858.5 1947.8 1982.5 

25 1803.2 1862.0 1950.0 1986.5 

27.5 1808.8 1864.0 1954.5* 1988.5 

30 1809.5- 1865.5 1954.0 1990.0 

35 1816 1868.5 1964.2 1996.2 

4o 1819.5 1870.3 1968.2 1998.5 

!1v(40kb) 33.6 25.2 37.3 33.3 

v - -v solid gas 23 10 23 6 

11v/v 
0 

0.019 0.01375 0.0197 0.0172 

* Evidence of exchange in intensity between B2u(l896) and (1938) 
is observed above 27.5 kb. 
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unit ce.ll dimension? This question as well as its relation to the blue 

and red shift will be discussed in the following paragraphs. 

For a qualitative discussion of the frequency shift, only the 

* numerical force constant of Eq. (37) will be considered. The tensor 

force constant is probably much smaller than that of the numerical 

constant for naphthalene, since the pressure induced change in Davydov 

splitting is much smaller than the corresponding frequency shift for 

all bands except one in the naphthalene spectra. From Eq. (40), it is 

-b obvious that each attractive term (e.g. -ar where a and b are positive 

numbers) in U contributes a red shift to ~v(gas to solid) as well as 
mn 

to ~v(P2-P1 ). Although multipole-coulombic forces can contribute 

either red or blue shifts depending on the relative orientation of the 

molecules, the fact that the condensed phase could be formed from the 

gas state indicates that the net long range forces must be attractive. 

The short range repulsion potential always causes a blue shift. If one 

hypothetically decreases the density of a crystal continuously to that 

of a gas, there should be a red shift in a range of density below a 

certain value and a blue shift above this value. This qualitative con-

sideration agrees with the experimental observation of Wiederkehr and 

Drickamer35 in their measurement utilizing a sulfide cell. Figure 6 

shows their results of the measurement of the C-N stretching frequency 

in various solvents to 10 kb. The change from red to blue shifts im-

plies a chance in the dominant force field from attractive to repulsive. 

It is thus concluded that the small frequency shift of gas to solid is 

probably a result of the cancellation of a large red and a larger 

blue shift. 

* -Only the first term in Eq. (37) is left if one studies molecules or 
ions in a matrix or in liquid solutions. 
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-8.0 Solvents 

• CFCI3 
(J CCJ4 
v CHCI3 
0 CH2Cl2 
0 CH2 Br2 
A Trans C2H2Ct2 • Cis C2H2CI2 

' 

-11.0 

1.000 1.100 1.200 1.300 

Fig. 6 

Relative Density, P/Po 

XBL 7110-7370 

CN vibration of CH
2

CN in various solvents. p 
is the density of a solution of 1 atm and p 0 

is that at 1 atm to 10 kbar. (after R. R. 
Wiederkehr and H. G. Drickamer (35)) 
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The observed pressUre induced frequency shifts ~v( 40kb) for the 

-1 -1 fundamentals range from 5.7 em to 21.3 em There is no obvious 

* evidence of any correlation ·between the frequency shifts of the normal 

modes and their symmetry classes, nor correlation among the normal 

modes of the same type of motions, e.g. w12 , w16 , and w17 . This may 

be understood from Eq. ( 40 ) and Eq. ( 41 ) . 

In Eqs. ( 4o) and ( 41)' only the factor ( ar n I a~) 0 is dependent on 

the molecular normal coordinate q~. One may re-write the second term 

in the parenthesis of Eq. (40) as (ar jaqi)2 . It is then obvious 
mn o 

that the normal motions which connect with larger changes in the non-

bonded interatomic distances are expected to show greater frequency 

shifts. One can define the hard collision as that due to the short 

range repulsion force and the soft collision as that due to the long 

range forces. (Similar definitions have been used in the transport 

theory of the liquid phase.) It may be concluded that the frequency 

shift as well as the Davydov splitting are caused by collisions (both 

hard and soft collisions are involved in this mechanism) of non-bonded 

atoms, and that the pressure induced blue shifts of the naphthalene 

normal modes are due to the dominance of hard collisions between non-

bonded atoms during their normal motions. It can be understood from 

Fig. 2 that only the qi component of the restoring force of the non-

bonded atomic collisions is responsible for the frequency shift and the 

i Davydov splitting of the q normal mode. 

* To correlate the frequency shift among different normal modes, it 
is proper to compare the values of ~v40kb/vgas instead of ~v40kb' 
The former is listed in Table 4 under ~v/v . 

0 
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B. Discussion of Non-Bonded Interatomic Potential. 

One may assume a functional,form for U with unknown parameters: 
mn 

u 
mn 

-c -d = Ar - Br mn mn 
(51) 

Three sets of each of the parameters A, B, c and d are necessary to 

account for H-H, H-C, and C-C non-bonded atomic potentials. Using these 

potential functions, one may be able to calculate both the tensoral and 

numerical force constants of Eq. (40) and Eq. (41). (v -v ) of the 
P1 P2 

fundamentals can thus be obtained as a function of the twelve unknown 

parameters. These unknown parameters and thus the interatomic potential 

functions could then be evaluated from the observed (v -v ) of Table 4. 
P1 P2 

However, the numerical calculation can not be carried out until high 

pressure .x-ray data are available. 

The interatomic potential could also be calculated from the pres-

sure dependence of Davydov splitting. This will be illustrated with n-

paraffins, since only one pair of factor group components are resolved 

for naphthalene in this study and the assignment of this doublet (at 

1126 cm-1 ) is still uncertain. The resolved doublet has a separation 

-1 
of 5 and 15.3 em respectively at 1 atm and 40 kb. The factor group 

components are identified through the comparison of the intensity ratio· 

with that observed by Pimentel, et a1. 20 in their measurements with 

polarized radiation at 1 atm. 
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C. A Direct Observation of Resonance Phenomenon ~nd Calculation 
·or Unperturbed Levels·a.s well a.s·coefficierits of Mixing 

In the frequency range, 690 cm-l to 1600 cm-1
, Naphthalene. 

shows 18 bands in its gas state spectrum and 37 bands in its solid 

state spectrum. There are 28 bands in the spectrum of solutions 3~ 

of Naphthalene in carbon disulfide, methyl cyclopentane and carbon 

tetrachloride. The additional bands in the condensed phases are 

believed to be overtone and combination bands, al~hough the assignment 

is still far from complete. 

The appearance of overtone and combination bands is, naturally 

due to the effect of anharmonicity or higher terms in electric dipole 

expansion. The former is usually more important and is assumed to be 

the cause. In first order perturbation theory, the consequence of 

considering the anharmonic terms is that the perturbed energy level 

is shifted, and the amount of shifting is equa~ to the diagonal matrix 

element of the perturbation function < ljJ0 
I H 1 I1/J

0 
) • As the result of v v 

this shift, the overtone frequencies are·not exactly integral multiples 

of the fundamental frequencies. The combination frequencies are not 

exactly equal to the sums of the fundamental frequencies making up the 

combination. In second order perturbation theory, the perturbation 

causes a mutual interaction of the energy levels. This is represented 

by the off diagonal matrix perturbation function H 1 
1 ( = < ljJ0 

I H' I1/J
0 

1 ) ) • vv v v 

As a result of this second order effect, each level c? produces a shift 
v 

0 
of any other £ 1 and at the same time contributes to the eigen function 

v 

of the others; both effects increase with decreasing separation of 

unperturbed levels and the larger the perturbation function H1 the 

larger will be this effect. 
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In a molecule or crystal, should there exist two levels of 

nearly the same energy and all the othersare far apart, the perturbed 

energy levels£ are the solution of the secular determinant. 36 

H' v'v 

H' vv' 

0 
£ I - £ v, 

The solution of which may be written as 

Where 

£ = 

1 

o = (o~ + 4IH'vv·' 12
]

2 

= 0 (52) 

(53) 

(54) 

o is the observed separation and o (= £0 
- £0 

) is the separation of o v v' 

the unpertrubed levels. The eigen functions of the reaulting states 

are36 

lVV = a1P
0 

- blP
0 (55A) v v' 

0 0 (55B) 1P , = blP + alJJ , v v v 

Where 
1 1 

[6 +"a r. [" ~000] 
2 

a = b = (56) 26 ' 
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H1 have the full symmetry of the system and is totally symmetric. 

0 0 Therefore ~ and $ 1 must have the same symmetry in order for this 
v v 

resonance interaction to exist, i.e. H' 1 * 0. An interesting case vv 

is o = 0; both perturbed states are fifty-fifty mixtures of the 
0 

1 unperturbed states, i.e. a=b= 
12 

We define the unperturbed states of pair 0 a resonance ~v~ and 

~0 follows. 0 is the upper state as ~v' of an overtone or combination. v 

~0 is the upper state of an IR active fundamental. A situation where v 

the energy level of ~0 , is below that of ~0 at 1 atm. and ~0 1 is above v v v 

~0 at high pressure, may exist when a larger blue shift of ~0 1 is v v 

induced by pressure. The resonance pair is thus described by a positive 

o value at 1 atm., by o = 0 at a cross-over pressure, and by negative 
0 0 

0 values at higher pressures. The resonance interaction between the 
0 

overtone (or combination) and the fundamental reaches a maximum at the 

cross-over pressure. The extent of interaction is decreased by either 

increasing or decreasing pressure from the cross-over pressure. The 

expected frequency vs. pressure plot of the perturbed and unperturbed 

levels is depicted in Fig. 7. In this figure, ~ 1 and ~ are perturbed v v 

states. The ~ states (marked as stars) contain more than 50% of the 
v 

states ~~ and may be observed with a higher intensity than the ~v' 

states (marked as darkened circles) which have less than a 50% content 

of ~0 • At the cross-over pressure (o = 0) the observed separation o v 0 

is minimum. The two perturbed states marked with ~ in Fig. 7 have the 

same intensity, if the intensity of the fundamental is much greater 

* than that of the overtone or combination. 

* Private communication with Proffessor G. Pimentel. 
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XBL 7110-7371 

Fig. 7 The expected frequency vs pressure plot for the 
perturbed as well as the unperturbed st:•,tes of a 
resonance pair. F(p) is defined such tl at the. energy 
levels of the unperturbed states are ap}.roximately 
linear functions of F(p). 
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Two pairs of this type of resonance phenomenon are observed in 

the high pressure spectra of crystalline naphthalene. The intensity 

transfer phenomenon is obvious in the observed spectra, as shown in \ 

Figs. 8(a) and 8(b). In Fig. 8(a), the resonance pair is o6 (1266 cm-1 ) 

fundamental and r6 + r
3 

(1238 cm-1 ) combination band. The symmetry 

. ' . 20 34 33 39 classes of both partners are well establ1shed ' ' ' and are both 

1 40 In Fig. 8(b), y1 (965 em-) belongs to the Au symmetry class. 

Its resonance partner is not resolved in the atmospheric spectra, 

and has not been assigned. The observed energy level separations of 

these resonance pairs at various pressure are shown in Figs. 9(a) and 

9(b). At the cross-over pressure, the observed energy level separation 

is equal to 2IH 1 
I I. The cross-over pressures are 24 kb and 17.5 kb vv 

respectively for the B2u and Au resonance pairs. The off diagonal 

4 -1 matrix elements of anharmonic perturbation functions are 11. em 

6 -1 and 2. em respectively for the B2ti and Au resonance pairs. Assuming 

H1 as. independent of pressure, the o
0 

values ,as well as the coefficients 

of mixing, a and b can be calculated from Eqs. (54) and (56) by 

utilizing the obtained H1 
1 and o values. The calculated unperturbed 

vv 

energy level separation and the coefficients of mixing at various 

pressures are shown in Table 5(a) and 5(b). In Figs. lO(a) and lO(b), 

the predicted unperturbed, as well as the perturbed energy levels, 

are plotted as a function of pressure. 

The anharmonic potential of a crystal includes the higher order 

terms in Eqs. (29) and (32). As mentioned in Chapter II, the observed 

overtones and combinations of molecular crystals usually originates 

from the anharmonic coupling of intramolecular motions. Thus, in 

principle, one should apply the perturbation treatment of this section 
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XBL 7110-7372 
· Fig. 8a The high pressure spectra of the B2u resonance 

pair; 66(1266 cm-1) and r3 + r6(1238 cm-1 ) of 
crystalline naphthalene. 
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The high pressure spectra of the A 
resonance pair of crystalline · \1-
Naphthalene. 
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Fig. 9a The observed energy level separation at various 
pressures for the B

2
u resonance pair of crystalline 

· naphthalene. 
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Fig. 9b The observed energy level separation at various 
pressures for the A resonance pair of crystalline 

u naphthalene. 



Table 5(a). The unperturbed frequency separations and the coefficients of mixing at various pressures for the 

B2u resonance pair of crystalline Naphthalene. 

P(kbar) 0 5 10 15 20 24 30 35 

cS (cm-1 ) 15.7 13.1 10.5 7.5 4.0 0 5.3 9.35 
0 

a 0.88 0.87 0.84 0.81 0.76 0.706 0.78 0.83 

b 0.47 0.50 0.54 0.59 0.65 0.706 ''0.62 0.56 

I 
-.:j 
r\) 
I 
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Table 5(b). The unperturbed energy level separations and coefficients of mixing at various pressures for 

the A resonance pair of crystalline Naphthalene. u . . 

P(kbar) 0 5 10 15 17.5 20 25 

6 (cm-1 ) 3.8 3.3 2.3 
0 

1.3 0 2.8 5.5 

a 0.88 0.86 0.83 0.79 0.706 0.85 0.92 

b 0.48 0.50 0.56 o ... 62 0.706 0.53 0.39 

I 
--.1 
w 
I 
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Fig. lOa The predicted unperturbed and perturbed 
energy levels (corresponding to the curve 
of Fig. 9a) for the B2u resonance pair of 
crystalline naphthalene at various pressures. 
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Fig. lOb The predicted unperturbed and perturbed energy 
levels (corresponding to the curve of Fig. 9b) 
at various pressures for the A resonance pair 

u of crystalline naphthalene. 
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to the solution of Eq. (29) before attempting to solve Eq. (30). H' 

is thus the total Hamiltonian of a molecule minus that of the harmonic 

approximation. It may be concluded that the observed resonance 

phenomenon is exactly that which was first recognized by Fermi 37 in 

the vibrational spectra of co
2

. 

If the resonance partner of a fundamental is not an overtone or 

combination, but a vibrational level of a different electronic state, 

the above treatment holds exactly, except that H' 1 is now the 
vv 

perturbation due to the interaction of vibration and electronic 

motion. 38 The vibrational assignment of the B2u resonance partners 

are reasonably certain. Therefore, the latter resonance mechanism 

is probably eliminated, at least, for this resonance pair. 

To the limit of the second order perturbation theory, there 

could be no interaction among normal modes of different symmetry 

classes. Nevertheless, normal modes w14 (B
3
u) and w11 (B2u) are 

observed to exchange intensities as depicte~ in Fig. 11. At 

atmospheric pressure, the intensity of the w14 (B
3
u) band is approximately 

half of that of the w11 (B2u' band. The B
3
u band loses its intensity 

' 
to the B2u band with increasing pressure. The w14 (B

3
u) band is nearly 

diminished at 25 kb. When the pressure is further increased, the 

B
3
u band regains part of its intensity from the B2u band. This 

interaction phenomenon is different from that of Fermi resonance, 

through which one band is continuously increasing intensity at the 

expense of the other. 

The interaction among normal modes of different SynJI!letry classes 

is probably a result of higher order perturbation effects. Further 

study on this interaction phenomenon, both experimentally and 
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Fig. 11. The high pressure spectra of w11 (B2u) and 
w14 (B

3
u)-of crystalline Naphthaiene. 
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theoretically could be fruitful. 

Among the 34 bands studied, most keep a constant intensity to 

40 kb. However, aside from the three resonance pairs, the bands at 

-1 -1 818 em and 1572 em are diminished with increasing pressure. The 

pressure induced peaks, 867 cm-l and 1024.5 cm-l are apparent at 

35 kb and 15 kb respectively. Their intensities are increased with 

pressure. The intensity changes of these bands might also be associated 

with resonance interaction. However, their resonance partners .(one 

may have to conside~ the resonance among several levels) are not the 

nearest neighboring bands. The resonance partners cannot be found 

without a quantitative analysis of absolute band intensities. The' 

same resonance mechanisms may also be responsible for the change of 

the absolute band intensity from_gas to solid phase. 

The vibrational analysis of the molecular spectra is exceedingly 

complicated as a consequence of the anharmonicity, owing to both the 

first and second order effects mentioned in the beginning of this 

section. The direct observation of the Fermi resonance for any 

substance will certainly be helpful for the vibrational analysis of 

its molecular snectra. 

Other aspects of the usefulness of the solid state spectra and 

high pressure study for vibrational analysis will be discussed in 

the next section. 

D. Application of High Pressure Crystalline Data on Molecular 
Vibrational Assignment 

A Naphthalene molecule has 48 vibrational degrees of freedom. 

Among them, 20 ungerade normal modes are IR active and 24 gerade 

normal modes are "R':'I.::;an active. 'l'he solid state IR spectra Of 

•. 
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Naphthalene was first studied for the purpose of the vibrational 

assignment of gas state spectra. As shown in Chapter II, the 4 A 
. u 

normal modes which are inactive in the gas state become active in its 

crystal site. The gas phase infrared active modes remain active in 

the solid state. Two factor group components were observed for each 

of the solid-state-active-molecular-normal-modes in the polarized 

34 . 34 20 infrared measurement. It was demonstrated by P1.mentel ' that 

the observed intensity-ratio of these two components could be 

employed to divide the observed bands of Naphthalene into the 

appropriate symmetry classes to allow the selection of the fundamentals 

from just the restricted number of frequencies in the proper class; 

As a consequence one may identify a B1u absorption band of Naphthalene 

from the expected intensity relationship: I a. ) Ib and I c < Ib. B2u 

from the relationship: I a < Ib and Ic < Ib . 

Ic ) Ib. 

B
3 

from I ) Ib.and u a 

The vibrational anai7sis has been improved a great deal in the 
I 

past few years with the extensive application of computers and least 

square refinements. However, it is still very difficult to analyze 

the vibrational spectra of molecules as large as Naphthalene. With 

the help of the symmetry assignment from the intensity ratio of the 

factor group components, the vibrational spectra of Naphthalene are 

best understood among molecules of this size. However, the assignment 

of its fundamental frequencies is still uncertain for at least two 

normal modes,·o
5 

and o
7

. Not many overtones'and combinations are· 

assigned unambiguously. 

·The direct observation of resonance pairs, together with the 

calculation of the unperturbed levels might be able to alleviate the 
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difficult situation in the vibrational analysis. The high pressure 

study can further offer us the following rules for verifying an 

assignment and for knowing the quality of the assignment. 

If one defines ~v as the frequency shift from 1 atm to 40 kb, 

it iiliiilediat ely follows that 

~v = ~v o-+v v-+v' (57) 

The subscripts represent a set of quantum numbers specifying a 

vibrational state. To the harmonic approx~mation, 

~v + ~v = ~v o -+ v o -+ v' o -+ v + v' (58) 

To ve~ify the applicability of the above two rules, it is necessary 

to obtain high pressure Raman spectra as well, and to anticipate a 

more complete assignment of the overtone and combination bands of 

Naphthalene. 
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PART II. N-Paraffins and Polyethylene 

A. Pressure Effects on the Spectra of N-Paraffins 

The IR spectra of n-paraffins at 1 atm. have been measured by 

many authors. 

Gunthard, 45 •46 

The most recent studies are those by Primas and 

47 48 . . 49 50 Brown, et al., ' Snyder ' and Tasumi, 

et al.51,52,53,54 The assignment of the frequency regions to specific 

types of vibrations are well established. They are summarized in 

Table 6. Also included in this table are the vibrational assignment 

which give rise to the IR activity of the normal modes. 

In their normal coordinate analysis of an infinite chain, 

(namely, solving the 18 x 18 GF matrix of two CH
2 
gro~ps for various 

phase differences), Tasumi and Shimanouchi obtained normal coordinates 

of an infinite chain as a function of phase differences kc. Where k 

is a wave vector, and c is the distance along the chain axis between 

two adjacent methylene groups. The constituent synnnetry coordinates 

for each class of normal modes are also included in Table 6. 

For an isolated n-paraffin, the vibrational frequencies of a 

specific type of vibrations·are cosine functions of kc. 49 Normal 

modes of a n-paraffin molecule are characterized by various values 

of phase differences. They are 

kc = m1T 

N-1 where m = 1,2,3 ... N-2 (59) 

Where N is the number of carbon atoms in a n-paraffin molecule. Normal 

modes of a given type of vibrations are thus specified by m and N 

values. In order to facilitate our presentation of the observed fre-

quencies, notations for molecular normal modes are defined in Table 6. 



Table 6. Character of n-paraffin normal modes 

Tasu.mi and Composite Symmetry Our Notation Frequency 
Shimanouchi's Symmetry Coordinates For These Region of the 
Vibrational Coordinates Which Normal Modes Corresponding 
Assignment Contribute IR Spectra 

Activity 

\)8 CH2 rocking and CH2 rocking v(R N) 720-1050 
CH2 twisting modes m 

modes 

\)4 c-c stretching CH2 wagging 970-1140 
I 

modes, CH2 wag- modes co 
[\) 

ging modes and I 

c-c-c bending 
modes 

\)7 CH2 twisting CH2 rocking v(T N) 1168-1295 
modes and CH2 modes m 

rocking modes 

\)3 CH2 wagging, CH2 wagging v(W N) 1176-1415 
c-c stretching modes m 

and c-c-c bend 
ing modes 

\)2 CH2 bending CH2 bending v(B N) ,..,. 1470 
modes modes m 
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Very pure n-c23H48 , n-c24H50 , n-c28H58 and n-c29H60 were made 

* available to us by A. E. Smith. IR spectra of melt grown poly-

crystallines are measured at various pressures to 35 kb in the frequency 

range 700 to 1600 cm-1 . Polyethylene film (Marlex 6009) supplied by 

Phillips Petroleum Company in the fo~m of 1 mil. sheets was also 

measured. 

Among the progressions of absorption bands in Table 6, only 

that of wagging modes and rocking modes are properly assigned. 49 The 

high pressure frequencies of these two types of vibrations together 

** with that of the in-phase bending mode are presented in Table 7,8 and 9. 

In these tables, a factor group component is specified by a subscript 

of v. When both factor group components for a chain mode are measured, 

v and ~V defined in Eqs. (37) and (38) are tabulated. 

There are three different crystal structures among the four 

n-paraffins measured. The high pressure spectra of n-paraffins which 

crystallizes in orthorhombic structure are to be discussed first. 

Following this discussion, a comparison of crystalline effects among 

various crystal structures, orthorhombic (n-c23H48 , n-c29H60 and 

polyethylene), monoclinic (n-c28H
58

) and triclinic (n-e24H50 ) are 

presented. 

* N-paraffins from Smith are4th?se ~tudied by Smith65 in his x-ray 
measurements and by Snyder 9 1n h1s IR measurements. 

** Phase differences were defined for each of the nine classes of chain 
modes somewhat independently and arbitrarily by Tasumi and other 
authors, in their normal coordinate analysis of mol~cular 
polyethylene and n-paraffins. Snyder defined all the ungerade modes 
as in-phase modes and gerade modes as 180° out-of-phase modes. This 
definition yields different vibrational assignments from that of 
Tasumi, et al. However, it is noted that by defining kc as the phase 
difference of transition dipole moments between two adjacent 
methylene groups, the assignment of kc values for the absorption 
bands in a progression is consistent with that of Snyder. 



Table 7. Frequencies of Rocking Modes 

v(Rl23) 6.v(Rl23) v(R 23) 6.v(R 23) - ( 23) 23 *~ 23 Pressure v Rll 6.v(Rll ) v(Rl3 ) 
(Kbar) 9 9 

normal 
modes 

5 724.25, 14.5 752.0 8 784.5 3 832.0 
725.0 16.0 

10 726.0 17.0 752.5 9 785.0 3 832.2 
726.8 18.6 

78;;.6 4.8 832.7 
I 15 . 727.75 19.5 753.5 11 CX> 

728.75 -~="' 20.5 I 

20 729.75 21.5 754.0 12 786.4 4.8 833.3 
729.75 23.5 

25 731.25 24.5 754.75 13.5 786.8 5.7 833.6 
731.75 25.5 

30 732.5 27.0 787.5• 4.8 834.2 
732.75 27.5 

35 733.0 28.0 788.0 5.7 834.4 

* Unresolved Davydov spli ttings 6.v (R11
23 ) and llv (R13 

23 ) are evaluated from the change in band 
width as described in Appendix I. 

• 



Table 7, continued 

23 *- 23 23 -( 23) 23 v(Rl24) v(R924) Pressure ~v(Rl3. ) v(Rl7 ) ~v(Rl7 ) v Rl9 ~v(Rl9 ) 
(Kbar) 

Normal 
modes 

5 0 942.25 6.5 933.5 7 716.0 744.0 
716.5 744.0 

-10 0.45 942.75 7.5 995.875 8.25 717.0 744.0 
717.5 744.0 

15 0.45 943.5 9.0 996.0 7 718.0 744.5 
I 
co 

718.8 745.0 
\.n 
I 

20 0.45 944.5 9.0 996.15 7.7 719.0 
c 720.0 

25 1.0 945.0 10.0 996.25 8.5 720.5 
720·5 

30 1.5 945.25 10.5 996.65 9.3 721.0 
721.0 

35 1.8 946.0 11.0 •. 997~375 10.75 722.0 

997 0 5 11.0 
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Table 7, continued 

v(R 24) 24 24 24 24 v(R 28) Lw(R128) Pressure v(Rl3 ) v(Rl5 ) v(Rl7 ) v(Rl9 ) 
(Kbar) 11 1 

normal 
modes 

5 772.5 814.5 866.0 920.4 974.0 723.85 14.7 
724.75 : 15.5 

10 772.5 814.3 866.0 921.0 975.0 725.6 16.8 
726.5 17.0 

814.0 866.0 976.0 18.1 
I. 

15 772.5 921.5 727.5 co 
0\ 

728.25 18.5 I 

20 772.5 813.5 865.5 921.8 976.5 729.0 19 .. 6 
729.75 20.5 

25 722.0 813.2 865.0 922.0 977.5 730.5 22.0 
731.25 23.5 

30 722.0 813.0 864.5 922.0 978.0 732.0 24.0 
733.0 26.0 

-
35 771.5 812.5 864.0 992.0 978.0 733·5 27.0 
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Table 7, continued 

Pressure v(R 28) -( 28 v(R 28) v(R2128) ( 28) -( 28 ~v(R 28) VR ) ~v R21 . v R23 ) 
( Kbar ) normal 

13 15 17 23 

modes 

5 774.0 811.5 853.5 946.5 911.0 

10 744.0 811.5 854.0 947.0 992.0 

15 774.5 812.0 854.3 948.0 993.0 

20 744.8 812.3 854.7 949.0 . 994.0 I 
co 
.....;j 
I 

25 775.0 813:0 855.4 950.0 5.5 996.0 7.0 

30 775.0 813.0 855.5 950.0 6.0 997.0 9.0 

35 775.0 813.0 856.0 950.0 6.0 998.0 11.0 



Table 7, continued 



Table 7, continued 

v(R 29) -( 29) ilv(R 29 ) -( 29 LW(R 29 ) -( 29) 29 Pressure v R21 v R23 ) v R25 ilv(R25 ) 
(Kbar) 17 21 23 

normal 
modes 

3 843.5 932.5 5.3 976.5 6.0 

7. 5 843.5 933.3 6.0 977.0 8.0 

10 843.5 933.0 8.0 977.0 7.4 

844.0 8.0 8.1 
I 

15 933.5 977.0 (X) 

\0 
I 

20 845.0 933.5 9.0 976.5 9.0 

25 845.5 934.0 9.0 977.25 8.5 1017.25 17.5 

30 846.0 934.75 9.5 977.5 10.0 1018.7 18.5 



Table 8. Frequencies of CH2 Bending Modes 

v(Bl24) v(B 28) llv(B 28 ) v(Bl29} llv(B 29 ) v(Bloo) 
00 

Pressure llv(B1 ) 
(Kbar) 1 1 . 1 

normal 
modes 

5.0 1478.0 1472.7 10.7 1473.0 10.9 1472.1 12.2 

7.5 1472.8 11.5 1472.9 11.3 1472~2 12.5 
10.0 1478.5 1473.1 11.5 1473.0 12.0 1472.4 12.8 

12.5 1473.0 13.0 1472.75 12.5 1472.7 13.2 

15.0 1478.5 1473.3 12.5 1473.25 12.5 1473~0 13.8 

17.5 .\ 1473.6 13.1 1473.2 13.3 1472.7 14.4 I ) 
...... :,· \0 

1478.5 1473.8 13.5 1473.6 13.5 1473.2 14.5 0 20.0 I 

22.5 1474.0 14.0 1474.1 14.2 1473.8 14.7 

25.0 1479.0 J 1474.2 14.4 1474.25 14.5 1475.0 14.9 

27.5 1474.4 15.7 1474.5 15.0 1474.8 15.7 
30.0 1480.0 1474.5 15.0 1474.8 15.5 1474.7 15.8 

32.5 1474.8 15.5 1475.0 16.0 1475.0 16.1 

35.0 1481.0 1474.9 15.8 1475.5 17.0 1475.2 16.5 

37.5 1475.4 17.3 1475.5 17.0 

40.0 1481.5 1475.2 17.5. 



Table 9. Frequencies of Wagging Modes 

Pressure v(wl23) V(W 23) v(w 23) v(w 23) v(w523) v(W623) v(w723) 
(Kbar) 2 3 4 

normal 
modes 

5 1202.6 1219.3 1236.5 1249.5 1278.7 

10 1188.0 1202.8 1219.8 1250.3 1263.0 1277.6 

15 1187.0 1219.6 1235.9 1248.5 1264.5 

20 1186.5 1220.5 1234.6 1249.2 1278.3 I 
\0 
I-' 
I 

25 1186.6 ·. 1219.0 1233.3 1248.0 1264.0 1276.6 

30 1185.7 1198.1 1219.7 1233.7 1247.8 1275.3 

35 1185.5 1198.0 1219.2 1233.3 1247.6 



Table 9, continued 

v(w 23) 23 v(wl24) v(w 24) v(w 24) v(w 24) v(w924) Pressure· v(Wll ) 
(Kbar) 

-·· 9 3 5 7 
normal 

modes 

' 
5 1332.5 1217.0 1247.0 1275.5 1302.0 

10 1306.5 1331.5 1217.0 1247.0 1274.5 1303.0 

15 1306.5 1183.0 1215.5 1244.0 1273.5 1303.0 
I 

\0 

l306.7 1183.5 1247.0 1304.5 
1\) 

20 1273.5 I 

25 1305.0 1184.o 1245.0 1273.0 1305.0 

30 1304.6 1184.0 1244.5 1273-5 1306.5 

35 1306.4 

, 
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N-Paraffins with an odd-number of carbon atoms have 

orthorhombic structure. As shown in Fig. 12, four molecules are 

arranged in an orthorhombic unit cell. Crystal axis a, b, and c are 

defined in the figure. Molecules are arranged in layers with the 

chain axis perpendicular to the ab plane. A sub-cell defined as the 

repeating unit of a single layer is enclosed by solid lines in the 

figure. 

Each layer of the crystal may be considered as a two _dimensional 

crystal. The two adjacent layers are identical crystals with a 

different.orientation. The vibrational selection rules may thus be 

derived from the symmetry of the sub-cell. 

Molecular axes x, y, and z are defined such that all the carbon 

atoms of a n-paraffin molecule are in the xz plane. z is the chain 

axis. Since z I I c, x andy are in the ab plane. Let ~I and ~II be 

the transition dipole moments of the two molecules in a sub-cell. 

Wagging modes have ~±I I~±II lz. (~I + ~II) is thus parallel to the z 

axis, and (~I - ~II) vanishes. Therefore, only one factor group com­

ponent is IR active. 

Rocking modes and bending modes have ~jii~II 1 z. (CH2-bending 

modes with ~'I lx, CH2 rocking modes, ~'I ly). Both (~I + ~II) and 

(~I - ~h) do not vanish as long as the setting angle e, which is 

'defined as the angle between the skeletal plane of an-paraffin 

molecule and the a-axis of the unit cell, is not zero. Therefore, 

both a and b factor group components of the crystal are IR active. 
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Fig. 12 .A unit cell of odd-numbered n-paraffins. 
(After A. E. Smith (65) and Snyder (50)) 
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T~ese three classes of normal frequencies, rocking, wagging, and 

bending modes will be discussed separately in the following paragraphs. 

(a) Rocking Modes 

-1 A progression of absorption bands in the frequency range 720 em 

to 1050 cm-l results from the fundamentals of the normal modes v(R N) 
m 

which are composed of CH
2 

rocking and twisting motions. It is the 

rocking motion which contributes the IR activity. We refer to these 

00 

normal modes as rocking modes, although only v(R1 ) is a purely rocking 

motion for an infinite chain. 51 

The dispersion curves of v(R 23 ) and v(R 29 ) are shown in Fig. 13. m m 

In this figure, the circles represent v(R 29) and the triangles 
m 

represent v(R 23 ). The fact that both circles and triangles lie along 
m 

the s~e smooth curve for any given pressure implies that the normal 

frequencies of rocking modes in the orthorhombic structure are functions 

of kc only, i.e. independent of chain length N for any given unit cell 

dimensions. v (RN ) vs. pressure plot for each of the N and m values 
m 

is approximated by a straight line. The slopes so obtained for 

various phase differences are to be found in Fig. 13 as well. The 

pressure induced change in the entire dispersion curve may be 

visualized by imposing the two curves in Fig. 13.' Namely, as pressure 

is increased, the entire dispersion curve is shifted upward and the 

energy band is narrowed. 

'The dispersion curve at each pressure may be represented by 

Eq. (37), where v is now a function of kc. In the first order 
0 

perturbation treatment of Chapter II, V is assumed to be independent 
0 

of pressure. The change of the dispersion curve with pressure is 

entirely due to the change 6f intermolecular potential. 



1000 

-I 
E 
u 

• ii (R~) 
• ii {R~3) 
0 8ii/8p 

-96-

- 900~~ ::>-. 
u 
c 
QJ 
::J 
CT 
QJ ... 

LL.. 800 

Fig. 13 

0.2 

0.2 0.4 0.6 
Phose Difference, kc/7T 

XBL 7110-7380 

Observed dispersion relation for rocking frequencies 
of odd-numbered n-paraffins v(RmN) at 25 .kb. The 
pressure induced frequency shift is also plotted as a 
function of the phase difference, kc. 

-... 
0 
.0 
.X 

:::.... 
I 

E 
u -

N 
C. N 

I~ c. 
I I 

-c. 
I~ 



-97-

It if:! obvious from Fig. 13 that there is a decided convergence of 

energy levels to the limiting mode (m=l). This results in several 

absorption bands being unresolved, and is responsible for the absence 

of v(R
3

), v(R
5

) and v(R
7

) in Table 7; At the other end of the 

dispersion-curve, a proper assignment of the last mode in this series 

is obstructed by the presence of several unrelated absorption bands. 

At room temperature and pre-sure, the majority of the doublets 

(factor group components) can not be resolved, because the bands 

overlap. When the temperature of the sample is lowered, the bands 

are narrowed considerably and the factor group splitting is increased 

slightly.- Snyder was able to resolve most of the doublets at -180°C. 

In our measurements, as shown in Figs. 14 and 15 when pressure on the 

sample is increased, the splitting of the doublet is increased 

considerably. Some bands unresolved at 1 atm. are resolved at high 

pressures. For the rocking modes of N-c
23

H48 , the factor group split­

tings as a function of pressure are presented in Fig. 16. The phase 

difference kc is a parameter in this figure. 

(b) Wagging Modes 

A progression of observed absorption bands in the frequency 

-1 ' 
range 1180 to 1300 em is the result of the fundamentals of the 

normal modes v(~m). These normal modes are composed of CH2 wagging, 

C-C stretching and C-C-C bending motions, as shown in Table 6. One 

band for each of the normal modes (m = 1,2,3,4, •.• ) is observed 
I 

at all pressures. Wagging modes with m > 11 are not observed owing 

to the presence of much stronger absorption bands, i.e. symmetric 

methyl bending mode at approximately 1375 cm-1 . 
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Spectra of va and ~(R1 ) at three pressures. The 
broadening of the lower frequency peak (b factor group 
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which is not resolved. 
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(c) Bending Modes 

As shown in Fig. 17, two factor group components are observed at 

various pressures. The pressure dependence of v(B~) and ~v(B~) will 

be discussed later in comparison with that of different crystal 

structures. 

The relative i'ntensi ty (Ia/Ib) of two factor group components 

(the one with a lower frequency is the b-component) is changed from 

unity at 5 kb to approximately 2 at 35 kb. This phenomenon may be 

interpreted with the oriented gas model for either of the following 

two reasons: (1) the relative orientation of two molecules in a unit 

cell is changed, e.g. the setting angle 8 is changed with pressure. 

{2) the polycrystallites randomly oriented at 1 atm. to 5 kb are 

partially oriented at higher pressures. However, there is no similar 

change in the relative intensities of the two factor group components 

of the rocking modes. The first reason is thus excluded. The second 

one is still possibly valid, since different samples are needed for 

taking the spectra of rocking modes and bending modes. The sample 

thickness is of the order of 2.5 microns for measuring bending modes, 

25 microns for in-phase rocking modes and 25 mils for out-of-phase 

rocking modes. 

It was shown47 that an oriented polycrystalline film can be 

obtained by slowly cooling an~ pressing a melt of paraffin between 

two potassium chloride windows. The polycrystallites of the odd-

numbered n-paraffins are then oriented such that the· direction of the 

chains is perpendicular to the faces of the windows. 

For a polycrystalline sample of either completely ordered or 

completely random orientations, Ib/Ia = tan8 = 1.1 to the oriented gas 
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model approximation. The relative intensity of the two factor group 

components may deviate from 1.1 when the polycrystalline sample is 

partially oriented in certain ways. The sample thickness for measuring 

bending modes is of the right order as that of the melt between two 

potassium chloride windows. Therefore, the polycrystallites under 

high pressure (P > 5 kb) may be in a transition state from random to 

orderly. The observed phenomenon may thus be accounted for. 

This phenomenon may also be a result of second or higher order 

perturbation effect; namely, the vibrational wave funetion is perturbed 

by the crystalline potential. 

2. A Comparison of Pressure Effects among Various Crystal Structures 

In order to compare the spectra and its pressure dependence 

among various crystal structures, vibrational spectra of polyethylene, 

n-c 28H58 (monoclinic) and n-c24H
50 

(triclinic) are also measured at 

various pressures. 

Polyethylene has an orthorhombic structure with two molecules 

per unit cell. The unit cell is identical with the sub-cell of odd 

numbered rt-paraffins. For an infinitely long zig-zag polyethylene, 

only the transition of an in-phase mode (i.e., kc = 0) is observable 

for each type of vibrations. 

N-c28H58 has a monoclinic structure, and a space group symmetry 

of P
2 

/a. Two molecules in a unit cell lie parallel to the c-axis 
1 

and are thus tilted with respect to the normal of the ab plane. Since 

there are two molecules per unit cell, two factor group components 

are observed for rocking modes and bending mode. 

N-c24H50 has a triclinic structure with one molecule per unit 

cell. Its space group is not known. Nevertheless, one would not 
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expect any factor group splitting, since there is only one molecule 

per unit cell. 

The substantial phase dependence of rocking frequencies for all 

crystalline n-paraffins (See Fig. 13 for example) is mainly due to the 

phase dependence of the intramolecular potential, e.g., the combination 

coefficients of rocking and twisting symmetry coordinates are functions 

of the phase difference kc. The phase dependence of Davydov splitting 

(e.g., see Fig. 16) originates from the variation of intermolecular 

coupling forces with the phase difference kc (vibration modes of 

d~fferent kc are different normal modes). The pressure induced fre-

quency shifts and the pressure induced change in Davydov splittings 

originate from the variation of intermolecular forces with the 

contraction of unit cell dimensions. The variation of intermolecular 

coupling forces as well as its effects on vibrational frequences can 

be understood from a similar force diagram as depicted in Fig. 2 of 

Chapter II. 

In Fig. 16, factor group splittings of rocking modes are 

approximated as linear functions of pressure. The slopes so obtained 

are expressed as (6vp + 30kb- 6vp)' for various phase differences. 

This is shown in Fig. 18. Also shown in this figure is the factor group 

splitting at 1 atm. for n-paraffins with the orthorhombic structure 

(Snyder's atmospher±c data on odd-numbered n-paraffins are included 

in the latter plot). 

From this figure, the phase dependence of both Davydov splitting 

and its pressure induced change can be evaluated for an orthorhombic 

structure. If n-c28H
58 

belonged to the orthorhombic structure as 

c
29

H60 does, the expected difference in Davydov splitting at 1 atm. 
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Fig. 18 Observed phase dependence of Davydov sp1ittings of 
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between normal modes R
1

28 and R
1

29 is of the order of 0.1 cm-l Also 

from Fig. 18, the corresponding difference in the pressure induced 

change of Davydov splitting is of the order of 0.1 em -l /30 kb. The-se 

values are within experimental errors of a single ~v vs. pressure plot. 

Therefore, the observable difference, if any, in the value as well 

28 as the pressure induced change of Davydov splittings between R
1 

and 

29 . 
R1 is not due to their discrepancy in kc (i.e. different normal 

motions, since a chain mode is defined such that the phase difference 

kc is specified) and is due to the distinction of the crystal structures. 

28 29 As shown in Fig. 19, ~v vs. p plots for R
1 

and R
1 

are identical 

within experimental errors. The corresponding plot for the bending 

mode is shown in Fig. 20. A simple explanation for the coincidence 

· th 1 11 th · d d h of Av(R
1

28 ) 1n e va ues as we as e pressure 1n uce c anges, u 

with ~v(R129 ), and ~v(B128 ) with ~v(B129 ) is possible. Namely, in the 

monoclinic structure, although the chain axis is tilted from the normal 

of the ab plane, the non-bonded hydrogen distances remain the same as 

that in the orthorhombic structure. 

Since a unit cell of n-c
24

H
50 

(triclinic structure) has only one 

molecule, there is no Davydov splitting. In order to compare its 

crystalline potential with that of other structures, the observed 

frequencies are to be compared with the average frequencies of the 

corresponding factor group components for the orthorhombic and 

monoclinic structures. 

The phase dependence of the vibrational frequencies of rocking 

modes and their pressure induced shifts for an orthorhombic structure 

can be evaluated from the curves of Fig. 13. If n-c
24

H
50 

and n-c
23

H4B 

had the same crystal structure, the expected difference in the 
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Fig. 19 Davydov splittings in orthorhombic and monoclinic 
structures vs pressure, for nearly in-phase rocking 
modes. 
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23 24 . . -1 
frequencies of R1 and R1 ~s 0.000 em The corresponding 

difference for the pressure induced shift is of the' order of 0.01 cm-1/ 

kbar. These values are again within experimental error for a single 

v vs. p plot. Therefore, any difference in v and its pressure depend-

23 24 . ence between normal modes R1 and R1 ~s not due to their discrepancy 

in kc and is due solely to the distinction in the crystal structures. 

In Fig. 21 v vs. 23 24 28 p for R1 , R1 and R
1 

are presented. The cor'-

responding plots for bending modes are shown in Fig. 22. It is seen 

that the vibrational frequency as well as the pressure induced frequency 

shifts of n-c
24H

50 
differ considerably from that of n-e

23
H48 and 

n-c 28H
58

. At all pressures the nearly in-phas~ rocking mode of a 

triclinic structure has a lower frequency than that of the orthorhombic 

and monoclinic structures. However, the bending mode for the triclinic 

structure has a higher frequency than that for the orthorhombic and 

monoclinic structures. 

While there is no obvious change in intensity (there may be a 

slight increase with pressure, beyond experimental uncertainties) for 

absorption bands of rocking modes in the n-c
23

H48 and n-c
29

H60 spectra 

at various pressures, one pressure induced peak is observed at roughly 

-1 15 em below each of the average frequencies of factor group com-

ponents. As shown in Fig. 23, the location of their appearance seems to 

be more precisely described by t [v(Rm+
2

)-v(Rm)] below,v(Rm+2). These 

pressure induced peaks become apparent at 15 kb. The intensity of 

each peak is increased up to 10 to 15% of that of an adjacent band. 

In the high pressure spectra of n~c24H50 , pressure induced peaks 

are observed above rqcking frequencies in contrast to what is observed 

in the spectra of odd numbered n-paraffins. This is shown in Fig. 24. 
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However, no similar pressure induced bands are observed in the high 

pressure spectra of n-c28H58 . (The crystal structures are monoclinic, 

triclinic and orthorhombic for n-c 28H
58

, n-c24H
50 

and odd numbered 

n-paraffins respectively). 

The observed pressure induced peaks seem too far away from the 

center of v(Rm) and v(Rm+2 ) to be identified as even-m-numbered rocking 

modes. These peaks are also unlikely to be a result of Fermi resonance 

for the following two reasons: First, it is certain that the 

intensities of the odd-m-numbered rocking modes are not decreased 

with pressure. Second, statistically, it is very unlikely to have 

overtone or combination energy levels at equal distance from every one 

of the rocking modes. 

A strange phenomenon is observed consistantly among wagging modes 

of all n-paraffins studied. The observed intensities for the series of 

wagging modes at 1 atm. is nearly opposite to what we would expect 

for a progression of purely wagging modes. (One expects the intensity 

to decrease along a progression of increasing m values). Moreover, as 

shown in Fig. 25, the expected intensity ratio for the progression of 

bands is attained in the high pressure spectra. v(W1 ) is hardly 

observed at 1 atm. owing to its very low intensity. At 35 kb, its 

intensity is increased to roughly the intensity of out of phase (m-~ 9) 

rocking modes. 

B. Applications 

From the observed pressure dependence of Davydov splitting, the 

repulsion potential between non-bonded hydrogens is calculated. The 

calculated repulsion potential as well as the Gruneisen parameters 

which are readily obtained from-the change in vibrational frequencies 
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with unit cell dimension are important roles in the Mei-Gruneisen 

equation of state. These two aspects of applications for high pressure 

study will be elaborated in;the following sections. Applications ,. 

mentioned in Part I for Naphthalene will not be repeated here for 

n-paraffins. 

1. Non-bonded Hydrogen Repulsion Potential 

As derived in Eq. (38), Davydov splitting is expressed as a sum 

of the interaction force constants between ~· (normal coordinate of 

reference molecule p at site a) and qj (normal coordinate of each 
b 

molecule in b sub-lattice). For the following consideration, ~ is 

a rocking coordinate of the reference c2H4 group, and qj is a rocking 
b 

coordinate of jbth c
2
H4 group in b sub-lattice. It was shown55 that 

Davydov splitting of rocking modes is primarily due to the repulsion 

potential between non-bonded hydrogens. The summation in Eq. (38), 

running through jb is reduced to include only eight c2H4 groups 

surrounding the reference group p as indicated in Fig. 26. Shown in 

this figure is a cross-section (perpendicular to the chain axis and 

bisecting a C-C bond) of the orthorhombic unit cell. Employing Eq. (41), 

factor group splittings of rocking modes are simply as follows; 

(60) 
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Fig. 26 A cross section (perpendicular to chain axis) 
of the orthorhombic n-paraffin unit cell. 
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Where U is the interaction :potential between non-bonded hydrogens of mn 

different chains. r 2,
3

, r 1 ,2, and r 2,4, defined in Fig. 26, are 

2.954A, 2.9251\. and 2.586A respectively at static.equilibriuro and 1 atm. 

These figures are calculated from the values of unit cell dimensions 

reported by Swan, 56•54 i.e. a= 7.414A, b = 4.942A, 2C = 2.5473A and 

the setting angle 8 = 48°. The next nearest pair of hydrogen separation 

is 3.7 A. This pair and all the other pairs at greater separations are 

considered as non-interacting. 

As mentioned previously, Davydov splitting of rocking modes is 

primarily due to tne repulsion potential between non-bonded hydrogens. 55 

One may assume a functional form for the interaction potential between 

non-bonded hydrogens as 

u 
mn 

-B = Ar mn 

Where A and B are parameters to be determined. The force constant 

S is 

= B(B+l)A [rmn -(B+2 )] 
0 

Upon substituting Eq. (62) into Eq. (60), one gets 

b.v = c = F[ (r ) ] = 
mno 

F(P) 

(61) 

(62) 

(63) 

Where c includes the directional'cosines and coordinate transformation 

matrix elements in Eq. (60). If the ab planes of n-paraffins contract 

isotropically and if c remains constant at various pressures (this is 
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already implied in Eq. (38)), it was revealed~n that dV ex d[(r ) ]2 . 
p mn o 

Where V is the unit cell volume for odd numbered n-paraffins or 
p 

polyethylene at P kbar. We obtain from Eq. (63) 

B + 2 = d Log t.v 
- d Log(r ) 

mn o 
= 2 (- d.Log V ) 

p 

~(B + 2) is the slope gf log t.v vs. log(Vp)-l plot, which is readily 

available from our high pressure measurements. As shown in Fig. 27, 
00 29 23 the slopes obtained for three rocking modes, R1 , R1 and R

17 
are 

identical within experimental error. The deviation of the dashed 

(64) 

curve from the upper straight line may be a consequence of the volume 

dependence of the parameters A and B, if not due to experimental errors. 

Assuming that A and Bare constants for 2.33 < (r ) < 2.95~, B is 
mn o 

obtained from Fig. 27 to be 6.4 ± 0.4. This is in excellent agreement 

with Amdur's result, 58 B = 6.18, 2.09 < rH.H < 2.77 A, from molecular 

beam scattering experiments. 

The directional cosines as well as the coordinate transformation 

matrix elements included in the constant C of Eq. (63) may be calculated 

from the result of the normal coordinate analysis by Tasumi and 

Shimanouchi. 53 •54 Nevertheless, in their normal coordinate analysis 

of infinitly extended polyethylene crystals,54 three 8 values at 

(r13 )
0

, (r23 )
0 

and (r24 )
0 

were selected to obtain a good fit to the 

observed Davydov splittings at l atm. By imposing 8 = 0.0165 m dyne/A 

for rH,H = 2.586 A (The value used is an average value for their two 

sets of calculations) on Eq. (63), and B = 6.4. We obtain 

8 = 48.6r-8 · 4 m dyne/A (65) 
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In comparing this equation with that obtained by De Bore59 for 

the hydrogen repulsion potential, it is significant to look into the 

implications of this e~cellent agreement as shown in Fig. 28. Since 

these two equations are derived from different systems with various 

assumptions, the agreement is beyond expectation. As was mentioned, 

the exponential, B, obtained in this study also agrees with Amdur's 

result from his scattering experiment. However, the coefficient A is 

off by a factor of two. 

2. Volume and Wave Vector Dependence of Gruneisen Parameters 

If one defines a CH2 molecular crystal as a hypothetical crystal­

line polyethylene with no chemical bond between methylene groups, the 

Vibrational energy levels of this hypothetical crystal, plotted in an 

extended zone scheme, would consist of nine energy bands corresonding 

to three translational phonon, three rotational phonon and three 

internal vibrational exciton bands. The six phonon bands would be 

-1 distributed in the frequency range from zero to approximately 200 em • 

The exciton bands could be approximated by Einstein model and have a 

great density of state at approximately 1400, 2850 and 2900 cm-l for 

bending, symmetric and asymmetric stretching modes respectively. The 

heat capacity of this hypothetical substance would approach a constant 

value of 6R as temperature increasingly approaches 300°K. All of the 

external modes contribute to the heat capacity at room temperature. 

However, for crystalline n-paraffins or polyethylene, the strong C-C 

bond along the chain direction causes the upper energy limit for the 

external (refer to methylene group) energy levels to reach the value for 

bending modes. That is, there is no band gap between external and 

internal energy levels. One would then expect that the heat capacity 
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of n-paraffins and polyethylene would not level off at room temperature 

and increase with temperature (up to 2100°K, C could approach 7R 
v 

asymptotically if crystalline n-:paraffins did exist at this temperature). 

At room temperature, not all of the external modes of methylene groups 

contribute to the heat capacity of n-paraffins. Similary, not all of 

the external modes contribute significantly to the thermal pressure 

(to be defined later) of n-paraffins or polyethylene. However, there 
.-' 

is no clear cut number of normal modes which contribute to the thermal 

pressure at any temperature. 

A significant portion of external (refer to methylene group) 

energy levels are observed in the IR spectra of n-paraffins. Gruneisen 

parameters defined as d lnv/d ln V may readily be calculated from 

Tables 7,8 and 9 for rocking, wagging, and bending modes. These 

parameters may give us an idea about the relative contribution of 

various normal modes to the thermal pressure at a given temperature. 

The wave vector as well as the volume dependence of Gruneisen 

parameters is essential to the understanding of the Mei-Gruneisen 

equation of state. Since both wave vector and volume dependence of 

Gruneisen parameters for some vibration modes can also be calculated 

from our high pressure data presented in Tables 7, 8 and 9, n-paraffins 

offer us a very rare example for studying these dependences. 

The Gruneisen parameters as well as their volume and wave vector 

dependence to be presented below is applicable to the study of the 
~ 

equation ofstate for crystalline polymers. The Mei-Gruneisen equation 

of state was originally derived for metals and alkali halide crystals
60 

and is not yet familiar in the field of polymers. Therefore, we will 

re-define the Gruneisen parameters to a greater detail and illustrate 
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the significance for obtaining their volume and wave-vector dependence. 

One may write the Mei-Gruneisen equation of state for the extended 

crystalline polyethylene or n-paraffins as 

p - - dUo + 1 t t (-__;1~~ 
dV V . .. y ij h'V . ./kT l 

1 J · e lJ -
+ 

d.Log'Vij 

d.LogV 

(66A) 

(66B) 

The observed (external) pressure P is equal to the internal pressure 

(defined as the first term on the right side of Eq. (66A)) plus thermal 

pressure (second term). U is the static lattice potential defined 
0 

in Eq. (28) of Chapter II. An isolated polyethylene chain may be 

considered as a one dimensional crystal of the methylene groups and the 

crystalline polyethylene as a very anisotropic three dimensional crystal 

of the methylene groups. There are nine degrees of freedom for an 

isolated methylene group. In the crystalline state, each of the nine 

modes of motion splits into N normal modes of the crystal and forms one 

band of energy levels. N is equal to the number of methylene groups in 

the entire crystal. As we have mentioned before, only part of the 6N 

external modes (refer to methylene group) contributes significantly to 

the thermal pressure. We could replace the upper limit of the summation 

9N by 6xN, where x < 1. However, x is unknown and is temperature 

dependent. We shall keep the more general form and leave 9N in the 
I 

following equations. 
. th 

Each of the N normal modes in the i energy 

band have a vibrational freq~ency 'Vij and is specified by a unique 

phase difference between the vibrational motion of neighboring 

methylene groups. The frequency-phase relationship is usually unknown 
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and is generally approximated by the Einstein model for the optical 

bands and by the Debye model for the acoustic bands. To this approxima-

tion, Eq. (66A) is reduced to 

p - -
dU 
___£ + 
dV 

l 
v 

9 
l: 
i=l 

N ( 1 
j~ e hV fj /kT -l 

d.Logei 

d.LogV 

+ (67A) 

(67B) 

Where 8. is either an Einstein or Debye temperature for the i~h band 
J. 

of energy levels. If it is proper to represent all nine bands with 

a single Debye temperature, one can further reduce Eq. (67A) to 

9 
p - - 1: 

i=l 

y - - d.Lo~ = 
d.LogV 

Va 
c X v 

Wherea, C and X are thermal expansion coefficient, heat capacity 
v 

(68A) 

(68B) 

and compressibility respectively. y ij is to be called a microscopic 

Gruneisen parameter and y as a macroscopic Gruneisen parameter. The 

knowledge of the macroscopic Gruneisen parameter as a function of 

volume and temperature is necessary for the calculation of the equation 

of state. However, the volume and temperature dependence of a, C and v 

X are very seldom available for any substance. Therefore, the 

macroscopic Gruneisen parameter y is usually regarded as a constant. 
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To the first order perturbation treatment, vibrational frequency, 

and thus the microscopic Gruneisen parameter are independent of 

temperature, i.e. (ov.~/oT) = (oy.j/oT) = o. The volume _dependence 
1u v 1 v 

of microscopic Gruneisen parameters is readily obtained for optical 

active modes, when the vibrational frequencies as a function of unit 

cell dimension are measured with good precision. As shown in Fig. 29, 

00 

va(R1 ) is plotted as a function of volume, pressure and temperature. 

The open circles represent our compression data. Pastine's P-V 

relation57 is used and is indicated in the upper and lower abscissa. 

The closed circles are low temperature data at 1 atm. by M. Shen, 

61 et al. _·Their T-V relation from x-ray measurement is also included. 

The very good agreement in slope for these two sets of data may imply 
00 

the following: (1) Microscopic Gruneisen parameter for R1 is 

independent of temperature. (2) Pastine's theoretical P-V relation is 

quite good. 

The volume dependence of Gruneisen parameters (e.g~ the slopes of 
00 

the curve in Fig. 29 at various volumes) is obatined for va(R1 ) and 

00 

va(B1 ) as shown in Fig. 30. The microscopic Gruneisen parameter for 

both the in-phase bending B1 and rocking R1 modes increase with de-

creasing-unit cell volume. The smaller y .. value for the bending mode 
1J 

is increased faster with pressure than that of the rocking mode which 

has a larger yij value. This might be a general trend. At infinite 

pressure, one would imagine all the molecular crystals to become atomic 

crystals or metal and thus, the Gruneisen parameters of internal modes 

could approach the values for the external modes. 

In addition to the volume dependence, if the wave vector 

dependence of the microscopic Gruneisen parameters were known, the 

• 
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more general equation of state, Eq. (66A), can be readily applied to 

any substance. The high pressure IR measurement of n-paraffins offers 

us a starting point along this direction, since dispersion curves 

(e.g. Fig. 13) are obtained at various pressures. The phase dependence 

of y (R 23 ) and yb(R 23 ) is calculated and shown in Fig. 31. The a m m 

Gruneisen parameter of b-factor group component is nearly phase-

independent. This can be understood from Eq. (35) as due to the 

cancellation of two dynamic force constants. The Gruneisen parameter 

of a-factor group component is strongly phase dependent owing to the 

addition of two resonance interaction force fields. In conjunction 

with this plot, it is obvious that for a substance with more than one 

molecule per unit cell, the Gruneisen parameters of those vibration 

modes which show no factor group splitting are phase independent. In 

.. such a case, the Gruneisen parameter for the whole branch may be 

determined from the observed in-phase mode alon~. 

Although the volume and wave vector dependences of Gruneisen 

parameters are obtained for the first time for n-paraffins and 

polyethylene, a number of values were reported for Gruneisen parameters 

at 1 atm .. in the literature as a result of various types of measurements, 

·e.g. ultrasonic, thermal conductivity, and far infrared measurements. 

It is not surprising that various measurements give very different 
-

·values (e.g. 0.25 to 11 for polyethylene), since properties of different 

vibrational modes are measured. Namely, an Avogadro number of yij 

values could be different from each other. The macroscopic y differs 

from the value for any of y.j or y. in general. However, this was not 
l l 

yet familiar in the field of polymer science. yij' yi andy were not 

distinguished. Questions as to why one value is different from those 
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obtained by others were open in the literature of polymers. This 

question was presented and discussed by the author to the polymer 

section at the ACS meeting of April, 1971. 

We shall end this section with a discussion on Table 10, which was 

presented in the ACS meeting to compare our calculated Gruneisen 

parameters for vari~us normal modes. yij for the bending and rocking 

modes are obtained from our high pressure infrared data (e.g. Fig. 30). 

The y 'j value for the 71 cm-l translational lattice mode is calculated* 
~ . 

from Bank and Krimm's62 low temperature measurement. The Gruneisen 

parameter for the translational mode is larger than that for the 

libration mode (rocking mode). In tur:q, this is larger than the value 

obtained for the internal mode. This is expected for the following 

reason. The smaller the frequency of a normal mode, the larger is its 

amplitude of vib~ation at a given temperature. The normal mode is thus 

affected more by the change of intermolecular distances and has a larger 

yij value. 

Owing to recent calculations of P-V relation by Pastine 57 and 

thermal expansion coefficient by Shen, 61 it becomes possible for us 

t~ calculate the macroscopic Gruneisen parameter from Eq. (68B). The 

macroscopic Gruneisen parameter calculated from the value of C by 
v 

Wunderlich, 63 a by Shen and X by Pastine, has a value of 1.3. This 

value is probably more reasonable than the value of 0.2561 or 7.5
64 

in 

the literature. 

* . ~ 4 Y±j value for 71 em translational mode was calculated to be 0. 3 
by Barker and Chen. They also used the far infrared data of Bank 
and Krimm. However, they defined y = d ln v(x)/d ln (p(x)) where 
v and p are vibration frequency and the density for polyethy;Lene. 
Instead of using pressure or temperature as an independent variable, 
they changed the crystallinity (x). This is obviously unacceptable. 

' 
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Table 10. Gruneisen Parameters of Crystalline Polyethylene 

yij = d ln V/d ln V 

Melt Grown 

Bending 
Mode 

va(Bloo) 

0.0024 

Rocki~g 
Mode 

va(Rloo) 

0.070 

Translational 
Optical Mode 

1.525 

Solution Grown 1.2~ 

y = Va/C X = 1.3 v 
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APPENDIX I 

Overtone and Combination Transitions 

The potential energy surface of a system which has only two 

vibrational degrees of freedom is a two dimensional surface. A 

paraboloid surface is the so called harmonic potential. The energy 

levels of the stationary states as solved from the Schrodinger equation 

are 

(A-I.l) 

The energy levels as well as the allowable transitions are indicated 

in Fig. A-1. It is seen from Eqs. (6), (7), (8) and (9) that in order 

to excite the system to energy levels (0,2) (2,0) or (1,1) from (0,0), 

two photons are required. This is because 

Unless 

When the system has either electrical or mechanical anharmonici ty, 

the above restirction no longer exists. A single photon with energy 

of roughly (hv1 + hv2) could excite the system from ground state to 

energy level E(l,l). 

Classically, the relative motion of the atoms in the system can 

be represented by the motion of a single mass point under the action of 
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gravity on the potential surface. When the mass point starts from any 

point on the paraboloid surface, the motion can be resolved into two 

normal motions along ACA' and BCB'. Each one of the normal motions is 

a simple harmonic motion of all atoms with a single frequency. If the 

normal motion v1 (ACA') is connected with a change of dip6le moment of 

the system, the amplitude of the normal motion may be increased by 

absorbing the radiation of frequency v
1

. 

If the paraboloid surface is distorted ~n such a way that when 

the mass point starts at A, it will carry out a Lissajous motion and 

will fill a larger and larger area about ACA'. This distorted surface 

is a potential sur~ace with slight anharmonicity. Now the motion of 

each atom is no longer periodic. The normal coordinate n (ACA' )(a loose 

term representing motion around ACA') may be expressed as 

n(ACA') 

.. 

The vibrational motion contains the frequencies zv1 , 3V1 , v1 ± v
2

, ) 

2v1 ± v
2 

and so forth. The system can thus also absorb photons of 

these frequencies. The probability of absorbing 

proportional to (n20 )2 which is very much smaller 

the (2v
1

) photon is 

2 than (n10 ) . The 

amplitude of ACA' normal motion which has a major component of n10 is 

increased irrespective of the energy of the photon abosrbed. 
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APPENDIX II 

An Estimation of the Separation of an Unresolved Doublet 

Two factor group components of v(R
17

23 ) are observed at various 

pressure (See Fig. 15 and 23). The doublets are not entirely resolved. 

However, the peak positions of this doublet may be determined by 

assuming a Gaussian band shape for each component. The separation 

!J.v l"tt. (P)', for the doublet at each pressure is plotted vs. the sp 1 1ng 

half width t.v112(P) of the doublet at the corresponding pressures in 

Fig. 33. A linear relationship is obtained between !J.v l"tt .· (P) and sp 1 1ng 

+ t.v l"tt" (P=O) sp 1 1ng 
(A-II.l) 

In the progression of absorption bands for rocking modes, the 

intensity ratio of two factor group components is nearly unity for all 

of the doublets. Therefore, one may expect Eq. (A-II.l) to hold equally 

for all the doublets in this series. 
' 23 

The doublets for v(R11 ) and 

v(R13
23 ) are resolved50 at -180°C and atmospheric pressure with a 

Beckman IR 7 spectrophotometer. However, even at 40 kb, they are not 

resolved with a dispersion system of a sodium chloride prism alone. 

The separations of these two doublets 'tabulated in Table 7 are 

calculated from Eq. (A-II.l) by assuming that !J.v l"tt" (P=O) is sp 1 1ng 

independent of temperature. 
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