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Test Problem for the Two-dimensional 

Buckley-Leverett Equation 

Norman Albright 

ABSTRACT 

A test problem and its analytically derived solution for the two-dimensional 

Buckley-Leverett equation for two phase immiscible flow in a porous medium are 

described. The test problem is the five-spot contlguration of water flooding of a 

petroleum reservoir with the total velocity given by potential flow. The solution 

is obtained by means of a coordinate transformation. 

INTRODUCTION 

The simultaneous flow of two incompressible, immiscible fluids through a 

porous medium can be described by the Buckley-Leverett equation [1. pp. 19-

22]. When capillary pressure effects are small or absent, this equation is hyper­

bolic in nature. For the purely hyperbolic case {zero capillary pressure} it is 

well known that, in general, solutions develop disconlinuilit;!S in finite time, even 
/ 

for smooth initial data These discontinuities corresp9nd to propagating fronts 

between the two fluids. If a small, but non-zero, amount of capillary pressure is 

present then the .fronts that are developed will not be perfectly sharp, but will 

correspond to a large change in fluid saturation over a small, but non-zero, dis-

tance. 

The representation of such discontinuities, or near discontinuities, usually 

causes difficulty for conventional numerical methods. The development of new 

numerical methods is aided by lest problems with analytically derived solutions 

that have such discontinuities. A suitable such test problem for the two-
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dimensional Buckley-Leverett equation is the five-spot configuration of water 

flooding of a petroleum reservoir with the total velocity given by potential flow. 

THE TEST PROBLEM 

The Buckley-Leverett equation for the saturation of the flow of two immisci-

ble, incompressible liquids through a homogeneous porous medium in the 

absence of capillary pressure and gravitational effects, in a region free of 

sources or sinks, is 

05 = -~v·Vs ot rJ.s • 
(1) 

where v=(v~,vy} is the total velocity, and s(:r,y;t) and f(s) are the saturation 

and fractional flow of the wetting liquid respectively. Typically f (s) has the S-

shape shown in Figure 1, which for this test problem is given by the model for-

mula 

s2 
f(s) = s2 + a.(1-s)2 . (2) 

where a is the ratio of the viscosities of the wetting to the non-wetting fluids. 

The standard diagonal-geometry quarter five-spot configuration on the unit 

square is chosen, with a unit source at {0,0) and sink at (1,1), as shown in Figure 

2. The total velocity is taken to be potential flow defined by 

where 1/1 satisfies 

with no-flow conditions 

v=V1/J, 

fl'l/1 = o(:r)c5{y)- o(:r-l)o(y-1). 

!!!L = 0 on 

2 

(3) 
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on the edges of the square. This v is the actual velocity in a five-spot 

configuration for the case of constant saturation, for which 'VI is proportional to 

the negative of the pressure. 

The boundary conditions on s are 

OS = 0 
Bn (6) 

on the edges of the square, through which there is no flow, and s = 1 at the 

source. The initial condition is s = 0 everywhere except at the source. 

SOLUTION 

The solution to this problem is obtained by means of a transformation to 

orthogonal coordinates (Y'.?'}). where ?'}(X ,y} =constant are the flow lines, 

'1/l(x ,y) =constant are the velocity equipotentials, and rp is a function of 'VI that is 

chosen to have finite range. In these coordinates the equation for the saturation 

can be solved by quadrature. To facilitate this, a second transformation is made 

to a coordinate ~(rp,?']), which is chosen so that the saturation is a function of ~ 

and t only. and the characteristics of (1) are straight lines in the ~-t plane. The 

solution to the test problem consists of two parts: the calculation of s as a func-

tion of { and t and the calculation of { as a function of x and y. 

The velocity potential 'VI approaches -oo at the source and +oo the sink. For 

convenience of numerical calculation a function rp('V;) is defined that is equal to 0 

at the source and 1 at the sink. The saturation can be expressed as a function of 

Y'· 7], and t. In these coordinates (1) becomes 

OS - ~ 2 !!!E.... OS 
Bt - - ds v d.'V; OY' ' (7) 

where v =v(rp,?J). Let 'V;(rp) denote the inversion of Y'("/1). and '1/l'(rp) denote 

d.'l/11 d.rp. Define 
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(8) 

and 

~(rp,'7J) =fa' H(a,TJ) da. (9) 

The fnnction rp('if;) must be chosen so that H is bounded at the source and sink 

and positive everywhere. Then ~ equals 0 at the source and increases along each 

ftow line. If the saturation is expressed as a fnnction of~. TJ, and t, the satura-

tion equation simplifies to 

as = - !!:f__ OS 
at ds a~ · {10) 

In the ~-'7} coordinate system, the saturation equation is independent of TJ. 

Since, in addition, the initial condition for this problem is independent of '7], the 

solution is a function of~ and t only, s = s (~,t ). The solution is a shock front fol-

lowed by an expansion wave. The height of the shock front is 

-- ;---a 
so - V T+'Ci" · 

The height is approximately 0.577 for a= 0.5. The speed of the shock front is 

- fT+(X 
a.0 = 0.5 + 0.5 V -;;--a-· 

(11) 

For a= 0.5 the speed is approximately 1.366. In front of the shock, that is, for 

t > a.o t, the saturation is 0, for ~ = ao t the saturation equals s 0, and behind the 

shock, where ~ < a 0 t, the saturation is given by the solution of the equation 

a(s) =~It , (12) 

where 

a(s) = d/(s) = 2as(1-s) 
ds (s 2 +cx(1-s)2 ) 2 (13) 

Eq. ( 12) has four solutions, which are functions of the ratio (It. The saturation 

is the solution that equals 1 for~= 0. 
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The diagonal y = x is a flow line. The wetting liquid flowing along this line 

reaches the sink before that flowing on other paths; this is called breakthrough. 

Let ~ 1 be the limit of ~(so,7J) as so approaches 1 for 7J corresponding to this diago-

nal. Then the time of breakthrough is given by 

(15) 

The value of ~1 is independent of a; so the time of breakthrough depends on a 

only through the shock speed a 0• For our problem the value of ~ 1 is approxi-

mately 2.912, and for a= 0.5 the time of breakthrough is approximately 2.132. 

THE FUNCTION so('r/1) 

The velocity potential '1/1 is determined only up to an additive constant. Let 

the constant be chosen so that the '1/1 is zero on the diagonal y = 1 -x. 

The function so('l/1) is determined by two conditions: that H be finite at the 

source and sink, and that so have specified values at the source and sink, which 

are taken to be 0 and 1 respectively. Near the source 

so the square of the velocity is 

(16) 

which can be written as a function of 1/1 as 

(17) 

Near the sink 

-1 2 '1/1 ~-log [ {x-1)2 + (y-1) ] 
4rr 

(18) 

and the square of the velocity is 
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(19) 

The function rp('l/l) must be chosen so that dcp!d'ifl is proportional to 1/ v 2 near 

the source and sink, thus dcp/ d'ifl must be proportional to e 4 7Tli near the source 

and proportional to e -4nl! near the sink. A suitable choice for c,o is 

(20) 

Then c,o is 0 at the source, 1 at the sink, and 0.5 on the diagonal y = 1-x. c,o can 

be inverted to give 1/l{c,o). 

'1/1 = - 1-log ( ~) 
411" 1-c,o 

(21) 

and 

'1/1' = 1/ [4rrc,o{1-c,o)]. (22) 

THE FLOW LINES 

The no-flow boundary conditions on '1/1 and the locations of the source at 

{0,0) and the sink at {1,1) imply that one flow line is composed of the lower and 

right-hand edges of the square and another flow line is composed of the left­

hand and upper edges. The function 7J(X ,y) is constant along a flow line and is 

taken to be 0 on the lower and right-hand edges and 1 on the left-hand and 

upper edges. The function 7J is determined by these boundary conditions and 

the equation 

b.7]=0. {23) 

By symmetry the diagonal y=x corresponds to 7]=0.5. The function 7J(x,y) is 

multivalued at the source and sink. 
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COORDINATE TRANSFORMATION 

The calculation of ~ as a function of x and y must be performed numeri­

cally. The steps are: 

{i) Let (xt..Y;) be a point on a mesh that is uniform on the unit square in x,y 

space. Solve (2) and (23) for 1/1 and 7J respectively on this mesh. This gives 

'ljl(xi.Y;) and 1](-Zi.Y; ). 

{ii) Calculate rp(xi.Yi) for each point on this mesh. 

(iii) Interpolate rp and 7J smoothly on the x ,y mesh. This gives rp(x ,y) and 

7J(x,y) for any point (x,y) on the unit square. 

(iv) Let ( fPA: ,7Jm) be a point on a mesh that is uniform on the unit square in 

rp,1] space. Using the interpolations for rp(x,y) and 17(x,y) calculate the point 

(xkm, Ykm) that satisfies the pair of equations: 

rp(.x.~;m.Y.~:m) = fPk 

7J(XA:m•YA:m) = 7Jm (24) 

X~;m and Ykm are the x ,y coordinates corresponding to the point ( fP.~: •17m) on the 

rp,1] mesh. 

(v) Let fP: and fPy denote arp(x,y)/ax and arp(x,y)lay respectively. Using 

the interpolation for rp(x,y) calculate fPz and fPy at the point (x.~:m.Ykm.). 

(vi) Evaluate H on the rp,7J mesh using. 

H(rp.~;,7Jm) = 1/ ['1/l'(rp,~;) [ rpi(xkm•Ykm) + rp:(xkm•Ykm)]] (25) 

{vii) Interpolate H in rp for each value of 7Jm on the rp,1] mesh. This gives 

H(rp,1]m). Using this interpolation integrate H in rp to obtain ~(fP.t.7Jm) for each 

point on the rp,7J mesh. 

(viii) Interpolate ~on the rp,7] mesh. This gives ~(rp,1]). Using this interpola­

tion, calculate the value of~ at the point (rp(x;..Y; ),7J(Xi•Yi)) for each point on the 
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:r ,y mesh. From these values a standard contour plot routine will generate con­

tours on the :r ,y plane of~ =constant . 

The solution s(~.7].t) was computed at times t = 0.5, 1.0, 1.5, 2.0, and 2.2. 

The contours on the :r ,y plane of s = 0.577, 0.6, 0. 7, and 0.8 for these times are 

shown in Figures 3(a)-{e). The contour for s = 0.577 depicts the position of the 

discontinuity, in front of which s = 0. The contours were drawn using subroutine 

CONREC from the National Center for Atmospheric Research {NCAR) graphics 

package. {The small oscillations of some of the contours are due to the effects 

of the interpolation from a discrete grid.) 

ACKNOWLEDGEMENT 

The author would like to thank Paul Concus for acquainting him with this 

problem and for numerous discussions concerning it. 

REFERENCE 

[1] Peaceman. D. W.: "Fundamentals of Numerical Reservoir Simulation", 

Elsevier, Amsterdam-Oxford-New York {1977). 

B 



FIGURE CAPTIONS 

Fig. 1 - Fractional flow as a function of saturation 

Fig. 2 - Quarter configuration of the five-spot problem 

Fig. 3A- Saturation contours 0.577, 0.6, 0. 7, and 0.8 at t = 0.5. 

Fig. 3B- Saturation contours 0.577, 0.6, 0. 7, and 0.8 at t = 1.0. 

Fig. 3C- Saturation contours 0.577, 0.6, 0. 7, and 0.8 at t = 1.5. 

Fig. 3D- Saturation contours 0.577, 0.6, 0. 7, and 0.8 at t = 2.0. 

Fig. 3E- Saturation contours 0.577, 0.6, 0. 7, and 0.8 at t = 2.2. 
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