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1. Introduction 

Let A be an n x n positive definite matrix with eigenvalues 

a < Al ~ A2 ~ ... < An' In this paper we describe a method to obtain the 

eigenvalues of A and in particular the largest eigenvalue of A, or the 

first few largest ones. The basic idea is to apply a sequence of reflections 

so that in the limit the first column of the matrix A converges to a 

multiple of el = (1,0,0, ... , O)T. A similar idea has been considered by 

LaBudde in [1] where the author uses both Householder reflections and Jacobi 

rotations in succession to achieve the same effect on the matrix A. Our 

method is a special case of the power method where the starting vector is 

e l . As a consequence the method converges linearly with convergence ratio 

( )2 l A~~ 1 In contrast to the power method it$elf; this method transforms the 

matrix A at each step, as a result the convergence can be accelerated by 

means of shifts, or by Aitken's procedure or both. As is well known, to 

implement shifts in the power method is not well suited for automatic compu­

tation. Moreover this algorithm has a reliable and economical stopping 

criterion. From this point of view this method is suggested as a rival to 

the Lanczos algorithm considered by the authors in [7] . 

The Jacobi method [4] for fi ndi ng the ei genva 1 ues of a full symmetri c 

matrix is well suited for sequential machines. The algorithm presented in 

this paper should perform equally well. However the present algorithm is 

eminently suitable for a parallel processing machine and should be superior 

to Jacobi's method on such machines. 

We a 1 so cons i der the di fferenti a 1 equa ti ons analogue (see [6]) of thi s 

method. Here the general idea is to write down a system of equations: 

.. 

v 
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~~ = B(t)L(t) - L(t)B(t) 

( 1 ) 

L(O) = A 

where S(t) is a skew symmetric matrix of order n. This system, for suitable 

choices of B, converges as t ~ +~ to a limit matrix A which has the 
00 

same set of eigenvalues as A. If B is taken to be the matrix 

a 

where is the first row of L(t), then as t ~ 00 the matrix L(t) 

converges to a matrix of the form A where 
(~ 

and A is an eigenvalue of A. Generically A is equal to the largest 

eigenvalue A of A. 
n 

The system (1) is also suitable for parallel 

processors and could be used to solve the eigenvalue problem. 

The study of the sys tern (1) has been done in [2] , [3], [6J and the 

connection of (1) with the QR algorithm fully investigated in [5J, [6J. This 

system has also been used for numerical computations of eigenvalues in [8], 

[ 91. 
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2. Description of the algorithm; Definition and notations 

Let A ~ (a jk ) be a positive definite matrix of order n. We shall 

wri te 

A = 
b 

where a, = all' b is a n-' vector and M is a positive definite matrix of 

order n-l. We denote by Uo an orthonormal matrix consisting of the eigen-

vectors of A and by A ~ di ag[ "1' ... , An] the matrix of the ei genva 1 ues 

arranged so that a < "1 ~ "2 ~ ..... < An' We can therefore write 

The vector Uo 
T will be denoted by fa· e, In section 6 we shall denote 

by f(t) the vector T U (t) el where U(t) is the matrix of eigenvectors 

for the matri x L(t) which satisfies ( 1 ) . 

The algorithm is defined as follows: starting with A we apply an 

orthogona 1 trans formati on HO (u ) and :iefi ne Al oy 

v 



\.r 

where 

HO(u) = I -

T 
2u u 

lIull 2 

and the vector u is chosen so that HO(u) transforms the vector 

into - ~ 21 + II b 112 e l · As is well known (see e.g. [4]) we can write 

T T 
(al,b ) 

The process is repeated indefinitely and we will show that in the limit 

we obtain a matrix of the form 

At a typical stage we have 

al (m+l ) 

b (m+ 1 ) M(m+l) 

where 

H = I - y u(m)uT(m) m m 

2 
2 ' II u (m) II 

= H A H m m m 

5 



We wi 11 show that IIb(m) 112 ~ a as m ~ 00 so thi s method provi des a very 

reliable and economical criterion to deflate the matrix. 

3. Proof of the convergence of the algorithm 

The following facts are easily verified: 

( i i ) H = 
m 

-al(m) _bT(m) 

!a~(m) + IIb(m) liZ !a~(m) + IIb(m) 112 

-b (m) 

= a
l 

(m) + 
a
l

(m)lIb(m)1I 2 + bT(m)M(m)b(m) 

a~(m) + IIb(m) 112 

Theorem 1. lim al(m) = A exists and is an eigenvalue of A. Moreover if 
~ 
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T T V 
enfo ., 0 then A = An; if in addition en_lfO ;' 0 then 

1 i m a 1 (m+ 1) - A = [A ~ -n 1 Ij 2 
I11-r"" al(m) - A 1\ 
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Proof. From (i i i) above a, (m+ 1) ~ a1 (m) because Am is pas i ti ve 

definite. Thus the sequence {al(m)} is a monotonically increasing sequence 

bounded from above by IIAII. It follows that lim a,(m) = A exists and from 
2 m-+co 

(iii) it follows that lim IIb(m)1I = 0: Let U = H ,U , denote the 
m m- m-

m~ 

matrix of the eigenvectors of Am' and let fm = u~e,. 
T T T 

Then f, = U, e, = (HOU O) e, = UOHOe,. From (i i ) 

so that 

Ae, 

!IAe,1I 

!\V6e, 

I!Uoi\U~e,lI- -

By induction it follows that 

By hypotheses 

T (_,)mf ~ (0,0, ... ') . 
m 

Since !If II = m and a,(m) = fT /If it follows that m m 

lim a,(m) = A 
~ n 

and if e T ,ft' a then 
n- c 



Remark. In OJ the author does not have an exact theoretical rate of 

convergence. 

4. Connection with the Power method 

Consider the power method defined below: 

x 0 = e 1 and fo r m > 1 

Ax 1 m-x = -:-...;,;,;..~ 
m IIAxm_lll 

T 
P = x Ax m m m 

The next lemma shows that the Rayleigh quotient Pm is equal to al(m). 

Lemma. . (i) 

(ii) a,(m) = p(m) 

for every m > l. 

Proof: 
Ae l 

-HOel xl = = 
IIAe,11 

Pl = T x, AXl 
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so the lemma is true for m = 1. 

Assume the result is true for m. We will prove it for m + 1. 

By induction hypothesis 

so 

Finally 

= 

AXm 
xm+l = -IIA'"""'X-

m
-II = 

9 



= al (m+ 1 ) 

and the proof is complete. 

Remark. In view of the above Lemma it is not surprlslng that the method 
(A ] 2 . . n-l 

Wl th convergence ratlo 1\ . described in section 2 converges linearly 

5. Numerical results 

We give here the numerical results for matrices of order 6 x 6. All 

computations were done in single precision"on the Vax at the University of 

California, Berkeley. 

Example 1. Here we consider a 6 x 6 Hilbert matrix A 

1 
aij=i+j-l' 

- (a .. ) 
lJ 

defined by 

In Tablelwe present a snapshot of the matrices Al , A2, A
3

, A
4

, .•• The 

convergence to the largest eigenvalue is quite fast as can be seen from the 

fact that ~b~2 decreases to zero rapidly. 

~xample 2. This example was designed to show the effect of the shift~. A 
A + A 

reasonable choice of the shift is 0 = 1 2 n-l In the present example 

the eigenvalues are close to successive integers with A ~ 10 
n 

and 

A ~ 9. 
n-l We arrange the matrix A so that all ~ a22 ~ ... ~ a66 and 

after k-th iteration use the shift 

10 
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(10 .5 .25 .125 .1 
0 

1 9 .4 .2 . 1 .05 

.5 .4 8 .3 .15 .1 
'" A = 

.25 .2 .3 7 .5 .4 

. 125 . 1 . 15 .5 6 1 

. 1 .05 . 1 .4 1 5 

Without shifts at the end of 20 iterations we have 

10.822784 +0.009937 0.003310 0.001418 0.000771 0.000467 

0.009937 8.365804 0.100468 0.055740 0.024034 -0.003446 

0.003310 0.100468 7.858157 0.231583 O. 114022 0.074598 
A

20 
:: 

0.001418 0.055740 0.231583 6.966969 0.482646 0.387721 

0.000771 0.024034 0.114022 0.482646 5.990870 0.993558 

Q 000467 -0.003446 0.74598 0.387721 0.993558 4.995424 

If we use shifts then at the end of 7 iterations one gets 

~ i1 (10.822808 -0.005729 -0.001641 -0.000691 -0.000199 -0.000517 1 

-0.005729 8.365579 o .100637 0.056086 o .023938 -0.003039 
\, 

-0.001641 0 .. 100637 7.858235 0.231712 o .113968 0.074769 
A = 7 -0.000691 o .056086 o .231712 6.967099 0.482642 0.387812 

-0.000199 0.023938 0.113968 0.482642 5.990872 0.993588 

l-0.000517 -0.003039 0.074769 0.387812 0.993588 4.995508 , 



TABLE 1 

1.598409 -0.067169 -0.081336 -0.079618 -Q.074553 -0.069045 

-0.067169 0.047670 0.051330 0.046807 0.041668 0.037134 

-0.081336 0.051330 0.062067 0.060424 0.056233 0.051775 

Al = 
-0.079618 0.046807 0.060424 0.061079 0.058356 0.054795 

-0.074553 0.041668 0.056233 0.058356 0.056818 0.054133 
~ 

-0.069045 0.037134 0.051775 0.054795 0.054133 0.052167 

1. 618435 0.009656 0.012166 0.012175 0.011572 0.010836 

0.009656 0.044442 0.047410 0.042965 0.038067 0.033796 

0.012166 0.047410 0.057310 0.055760 0.051861 0.047723 

A2 = 
0.012175 0.042965 0.055760 0.056507 0.054070 0.050823 

0.011572 0.038067 0.051861 0.054070 0.052801 0.050410 

0.010836 0.033796 0.047723 0.050823 0.050410 0.048717 

') 

1.618890 -0.001440 -0.001820 -0.001824 -0.001736 -0.001626 

-0.001440 0.044376 0.047327 0.042881 0.037987 0.033722 

-0.001820 0.047327 0.057204 0.055654 0.051761 0.047630 
A = 3 -0.001824 0.042881 0.055654 0.056402 0.053970 0.050730 

-0.001736 0.037987 0.051761 0.053970 0.052706 0.050321 

-0.001626 0.033722 0.047630 0.050730 0.050321 0.048633 

r, 

( 1.61890 0.000216 0.000272 0.000273 0.000260 0.000244 '1 

:..: 
0.000216 0.044374 0.047325 0.042879 0.037986 0.033720 

0.000272 0.047325 0.057202 0.055652 0.051759 0.047627 

A4 = 
0.000273 0.042879 0.055652 0.056400 0.053968 0.050728 

0.000260 0.037986 0.051759 0.053968 0.052704 0.050319 

0.000244 0.033720 0.047627 0.050728 0.050319 0.048631 



o 
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5. The point of view of differential equations 

In this section we consider the system of differential equations 

(* ) 

where we wri te 

and 

dL = B ( t) Let) - L ( t ) B (t) 
dt 

L(O) = A 

L (t) = 

b(t) M(t) 

. B(t) _ [ 0 
- -b(t) 

IS a n x n skew symmetric matrix. 

Theorem 2. Let L(t) be the solution of the system (*). Then 

( . , 
1 . L(t) has the same eigenvalues as A for all times 

( i i ) L(t) converges to [~ : 1 
as t -+ 00 

00 

( iii) If T 
enfO f 0 then A is the largest eigenvalue An of A. 

Remarks 1. The algoirthm described in section (2) is a discrete analogue of 

the system (*). 

2. We shall call the flow defined by (*) as a "deflator"since it 

deflates the matrix. 

12 



Proof of Theorem 2. From the theory of ordinary differential equations the 

system (*) has a solution which exists for some time interval (-s, s). Let 

u(t) be defined by 

(** ) 

we have 

I 
d~ U(t) = B(t)U(t) 

U(O) = I 
t E (-s, s) 

d T T T dt (U U) = -U BU + U BU = a 

so U(t) is unitary for t E (-S,E). Next d~ (Ut(t)L(t)U(t)) = a so that 

L(t) = U(t)L(O)UT(t) = U(t)AUT(t). 

Thus L(t) has the same eigenvalues as A and IIL(t)11 = IIAII. This implies 

that the system (*) has a solution existing for all times. From (*) we get 

da 
(1) d~ = 211b(t) 112 

(2) ~~ = M(t)b(t) - al(t)b(t) 

(3) ~~ =-2b(t)bT
(t). 

Equation (1) together with the fact that lIL(t)1I = lIA lIimplies that 

(4) 

13 
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Equation (2) implies that Id~ bj(t) \ is bounded for all times so that 

for some constant K independent of tl and t 2· We now assert that 

IIb(s)1I converges to a as s -+ 00. For if 1 ini sup b(s) > 0 > a then we 
Stoo · 

can find a sequence s. t 00 so that lib (s .)11 > 0 for j 2. l. Without any 
J J 

loss of generality we may assume the sequence s. is chosen so that the inter­
J 

va1s 

are disjoint. 

Thi simp 1 i es 

I (s 6 s + ~J1 
j = j - 2K' j 2K 

Then if tEl. we have using (5) 
J 

IIb(t)1I > IIb(s.)1I - IIb(t) - b(SJ.)1I 
- J 

F 
that J IIb(s)1I

2 
ds ~ ~ J 

_00 J I. 
IIb(S)1I 2 ds = 00 which contradicts 

(4). From equation (1) we get 
J 

so lim a,(t) = A exists and must be, in view of (i) an eigenvalue of A. 
t-+eo 

Equation (3) implies 

M(t) = M(O) = -2 Jt b(s)bT(S)ds 
a 

~f 
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F T (00 2' 
and since II) b(s)b (s)dsll ~ J IIb(s)11 ds it follows that lim M(t) = Moo 

o 0 t-+oo 

exists. This proves part (ii) of the theorem. In order to prove that ~ = ~n 

we note that the matrix of eigenvectors of L(t) can be expressed as U(t)U
o 

so that 

f(t) 

and 

df = -UTUT(t)B(t)e 
dt 0 1 

T T T T = UOU (t)L(t)e l - al (t)Uou (t)e l 

T T = UOAU (t)e l al(t)f(t) 

= AU~uT(t)el - al(t)f(t) 

= Af(t) al(t)f(t) 

= Af(t) - [/(t) M(t)jf(t). 

The solution of this equation, as can be verified directly, is 

f(t) 

and since T 
enfO f 0 it follows that 1 im f(t) = e 

t-+oo n 
and 

Remark. The convergence proof above is adapted from Moser [2]. 
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