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Abstract: The algorithm described in this article uses Householder reflec-
tions to obtain the largest eigenvalue of a full positive definite matrix.

The method is a special case of the power method but has several interesting
features. The algorithm can be used to obtain all the eigenvalues of a
symmetric matrix and is eminently suitable for a parallel processing machine.
For such machines this method should be much better as compared to the
Jacobi's method. The algorithm has a built in deflation and has a reliable
stopping criterion. We also consider the differential equations analogue of
this method and prove the convergence of that method together with the conver-

gence rates. Finally some numerical examples are given.



1. Introduction

Let A be an n xn positive definite matrix with eigenvalues
0 < A £ A, < ..o <A In this paper we describe a method to obtain the
eigenvalues of A and in particular the largest eigenvalue of A, or the
first few largest ones. The basic idea is to apply a sequence of reflections v
so that in the Timit the ffrst co]umn of the matrix A converges to a
mu1t1p1e of e, = (1,0,0, ..., O)T. A simiTar idea has been considered by
LaBudde in‘[ll where the author uses both Householder reflections and Jacobi
rotations in succession to achieve the same effect on the matrix A. Our

method is a special case of the power method where the starting vector is

ey- As a consequence the method converges linearly with convergence ratio

(r |2 ,
t n']J In contrast to -the power method itself, this method transforms the

M
matrix A at each step, as a result the convergence can be accelerated by
means of shifts, or by Aigcken's procedure or both. As is well known, to
implement shifts in the power method is not well suiﬁed for automatic compu-
tation. Moreover this algorithm has a reliable and economical stopping
criterion. From this point of view this method is suggested as a rival to
éhe Lanczos algorithm considered by the authors in [7].
The Jacobi method [ 4] for finding the eigenvalues of a full symmetric
matrix is well suited for sequential machines. The algorithm presented in o
this paper should perform equally well. However the present algorithm is
eminently suitable for a para]le]bprocessing machine and should be superior
to Jacobi's method on such machines.

We also consider the differential equations analogue (see [6]) of this

method. Here the general idea is to write down a system of equations:



\/

dL _

& = B(EL(E) - L(t)B(t)
(1)

L(0) = A

where B(t) is a skew symmetric matrix of order n. This system, for suitable
choices of B, converges as t > += toa limit matrix A_ which has the

same set of eigenvalues as A. If B 1is taken to be the matrix

where (a], bT) is the first row of L(t), then as t =+ « the matrix L(t)

‘converges to a matrix of the form A_ where

and A 1is an eigenvalue of A. Generically X 1is equal to the largest
eigenvalue An of A. The system (1) is also suitable for parallel
processors and could be used to solve the eigenvalue problem.

The study of the system (1) has been done in (2], [3], [6] and the
connection of (1) with the QR algorithm fully investigated in [5], [6]. This
system has also been used for numerical computations of eigenvalues in [8],

[al.
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2. Description of the algorithm; Definition and notations

Let A = (ajk) be a positive definite matrix of order n. We shall

write

where 3 = ayqs b is a n-1 vector and M 1is a positive definite matrix of

order n-1. We denote by U
vectors of A and by A = diag[X

afranged so that 0 < M A < A,- Wecan therefore write

The vector U Te] will be denoted by f In section 6 we shall denote

0 0’
by f(t) the vector UT(t)e] where U(t) 1is the matrix of eigenvectors
for the matrix L(t) which satisfies (1).

The algorithm is defined as follows: starting with A we apply an

orthogonal transformation Ho(u ) and define Ay by

an orthonormal matrix consisting of the eigen-

s A the matrix of the eigenvalues

'



where

and the vector u 1is chosen so that Ho(u) transforms the vector (a1,bT)T

into vé + HbH . As is well known (see e.g. [4]) we can write
v = (a] NV CRNTTEN bT]T.

The process is repeated indefinitely and we will show that in the limit

we obtain a matrix of the form

At a typical stage we have

where




We will show that "b(m)“2 -0 as m > o so this method provides a very

reliable and economical criterion to deflate the matrix.

3. Proof of the convergence of the algorithm

- The following facts are easily verified:

(i) v.' = ¥A%(m) + Up(m)1° & AT .+”b "ﬂ

m 1

( -2, (m) )
VaZ(m) + Ib(m)1° Val(m) + Io(m)1°
(1) W=
| -b (m) | T
I - Ymb(m)b (m)
44?(m) + Ib(m)I° ]
a. (m)Ib(m)1Z + b' (m)M(m)b(m)
(ii1) a](m+]) = a](m) + 5 >
a](m) + Ib(m)

Theorem 1. 1im a](m) = A exists and is an eigenvalue of A. Moreover if
oo

T _ Coie s L. T
enfo # 0 then ) = xn, if in addition en_]fo # 0 then

a](m+]) -
T & T = %




Proof. From (iii) above a,(m+1) z_a](m) because A is positive

1
definite. Thus the sequence {a](m)} is a monotonically increasing sequence

bounded from above by [Al. It follows that 1im a](m) = A exists and from

M->oo
(iii) it follows that 1lim ﬂb(m)"2 =0. let U =H .U denote the
ffi-+oo _ m m-1"m-1
matrix of the eigenvectors of A , and let fm = U;e].
N T . .
Then f, U]e] = (HOUO) 1 UOHOe] From (i7)
Ae
H.e, = - 1
071 HAe]I
so that
UTAe AUge Af
f = .—.O 1 = - ] = o O
1 HAe]H I AU!e i lAfOl
0071
By induction it follows that
m
At
fo= (=17
m m
A fOH
T
By hypotheses enfo # 0 so
m T
(-1)™f_ (0, 0, ... 1)".

. _ T .
Since Hme =1 and a](m) = fm A ﬂn it follows that

1im a,(m) = A
oo 1 n

and if e f# 0 then 12
Tim a](m) - An | >‘n-]
m—mla](m ]) I )\n



Remark.v In [1] the author does not have an exact theoretical rate of

convergence.

4. Connection with the Power method

Consider the power method defined below:

xO = e] and for m > 1
Ax
_ m-1 .
Xn = A1l A

The next Temma shows that the Rayleigh quotient P is equal to a](m).

, (s (L
Lemmé. (i) X0 (-1) HOH] ... Hm_]e]
(i) ay(m) = o(m)
for every m > 1
Ae1

Proof: X.l = W’—"' = —Hoe]

T

oy = XyA%
T
= e]HOAHOe]

eTA e



3

so the Temma is true for m = 1.
Assume the result is true for m.

By induction hypothesis

We will prove it for

m oy o+ Haoi®
S0
- m
Axm = (-1) AHOH] . Hm_]e]
_ m
= (-1)"HgAHy -.n Hoqey
o am
= (1) HgHy e Ho jAe
- m -
= (-1) HgH, Hoq(-1ALe  IH e;)
B m+]1
= (<1)7 A el HgHy o.. Hoeg
and qumu = uAme]n. Hence
Ax
_ m__ oL m+1
X1 ”Axm" = (-1) H0H1 HmeT
Finally
I
Po+l ~ Xme1 1

= e]HmH

HnAHAH H e

m=1 "°""0"017T °** m1

m+ 1.
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1 "m+1&

a1(m+1)
and the proof is complete.

Remark. In view of the above Lemma it is not surprising that the method

fxn_] 2

A

described in section 2 converges linearly with convergence ratio

n

5. Numerical results

We give here the numerical results for matrices of order 6 x 6. Al]
computations were done in single precision’on the Vax at the University of
California, Berkeley.

Example 1. Here we consider a 6 x 6 Hilbert matrix A = (aij) defined by
a. = — .

iJ i+j-1

In Tablelwe present a snapshot of the matrices A], A2, A3, A4, ... The
convergence to the largest eigenvalue is quite fast as can be seen from the

" fact that Ibl® decreases to zero rapidly.

Example 2. This example was designed to show the effect of the shifts. A
Mt A

reasonable choice of the shift is o Sl m— In the present example

the eigenvalues are close to successive integers with An ~ 10 and

A 9. MWe arrange the matrix A so that a,, >a,,> ...>a and

n-1 > 22 = = %66

after k-th iteration use the shift



.25
.125

.1

o, - 35p(K) ; 366 K)
] 5 .25
9 42
4 g .3
2 3 7
1 a5 .5
.05 a4

Without shifts at the end of 20 iterations we have

20

10.822784
0.009937
0.003310
0.001418
0.000771

| 0000467

+0.009937

8.365804

0.100468
0.055740
0.024034
-0.003446

0.003310
0.100468
7.858157
0.231583
10.114022
0.74598

0.001418
0.055740
0.231583
6.966969
0.482646
0.38772]1

.125

0.000771

0.024034
0.114022
0.482646
5.990870
0.993558

If we use shifts then at the end of 7 iterations one gets

x>
|

10.822808
-0.005729
-0.001641
-0.000691
-0.000199

-0.000517

-0.005729
8.365579
0..100637
0.056086
0.023938

-0..003039

-0.001641 -0.000691

0.100637
7.858235
0.231712
0.113968
0.074769

0.056086
0.231712
6.967099
0.482642
0.387812

-0.000199
0.023938
0.113968
0.482642
5.990872
0.993588

.05

0.000467
-0.003446
0.074598
0.387721
0.993558
4.995424

-0.000517 °

-0.003039
0.074769
0.387812
0.993588

4995508 |

11
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.598409

.067169
.081336
.079618
.074553

.069045

.618435
.009656
.012166
.012175
.011572

.010836

.618890
.001440
.001820
.001824
.001736

.001626

.61890
.000216
.000272
.000273
.000260

.000244

-0.

067169

.047670
.051330
. 046807
.041668

.037134

.009656
.044442
.047410
.042965
.038067

.033796

.001440
.044376
.047327
.042881
.037987

.033722

.000216
.044374
.047325
.042879
.037986

.033720

TABLE 1

-0

.081336

.051330

.062067

.060424

.056233

.051775

.012166
.047410
.057310
.055760
.051861

.047723 -

.001820
.047327
.057204
.055654
.051761

.047630

.000272

.047325

.057202

.055652

.051759

.047627

-0

.079618

.046807
.060424
.061079
.058356

.054795

.012175
.042965
.055760
.656507

.054070

.050823

.001824

0.042881

0

.055654
.056402
.053970

.050730

.000273

.042879

.055652

.056400

.053968

.050728

.074553

.041668
.056233
.058356
.056818

.054133

.011572
.038067
.051861
.054070
.052801

.050410

.001736
.037987
.051761
.053970
.052706

.050321

.000260
.037986
.051759
.053968
.052704

.050319

-0.

.052167

069045 1

.037134

.051775

.054795

.054133

.010836
.Q33796
.647723
.050823
.050410

.048717

.001626
.033722
.047630
.050730
.050321

.048633

.000244
.033720
.047627
.050728
.050319

.048631




5. The point of view of differential equations

In this section we consider the system of differential equations

db - g(t)L(t) - L(t)B(t)

dt
(*)
L(0) = A
where we write
a, (t) " (t)
L(t) =
b(t) M(t)
and
0 b(t)
B(t) =

1s a n xn skew symmetric matrix.

Theorem 2. Let L(t) be the solution of the system (*). Then
(i) L(t) has the same eigenvalues as A for all times

X 0
(ii) L(t) converges to [ as t » o
0 M

(iii) If ezfo # 0 then X 1is the largest eigenvalue A, of A.

Remarks 1. The algoirthm described in section (2) is a discrete analogue of
the system (*).
2. We shall call the flow defined by (*) as a "deflator" since it

deflates the matrix.

12
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Proof of Theorem 2. From the theory of ordinary differential equations the

system (*) has a solution which exists for some time interval (-e, €). Let

U(t) be defined by

(%) t € (-e, €)

we have

d (T _ T T .
7 (U'U) = -UBU +UBU =0

d ot

so U{t) 1is unitary for t € (-e,e). Next It (UT(t)L(t)U(t)) = 0 so that

L(t) = u(e)L(ouT () = vyt ().

Thus L(t) has the same eigenvafues as A and HL(t)l = JAlI. This implies

that the system (*) has a solution existing for all times. From (*) we get

da
1 2
() = = 20p(t)!
(2) < M(t)b(t) - a (t)b(t)
dt 1
dM __ T
(3) pra 2b(t)b (t).
Equation (1) together with the fact that [IL(t)l = IA limplies that

(4) [mub(s)u2 ds < .
)
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Equation (2) implies that la%-bj(t)l is bounded for all times so that

(5) HIb(t)h - Ib(t,)] < K|t;-t,|

for some constant K independent of t, and t,. We now assert that

1 2
fb(s)ll. converges to 0 as s » o. For if 1im sup b(s) > & > 0 then we.
S 4o
can find a sequence 55 + = so that Hb(sj)ﬂ >§& for Jj > 1. Without any

loss of generality we may assume the sequence sj is chosen so that the inter-

vals

1. = S _i S + —

J J 2k 7j K

are disjoint. Then if t € Ij we have using (5)

Ib(e)1 > (s ) = Ib(t) - b(s )1

> 8- K|t - Sjl.i‘§ .
U - 2 4 2 .
This implies that J Ib(s)i Z j Ib(s)I® ds = = which contradicts
- ‘jI
_ 3
(4). From equation (1) we get
t 2
() - ay(0) = 2 | wn(s)i? s
1T “

so lim a](t) = X exists and must be, in view of (i) an eigenvalue of A.

t—)CO

Equation (3) implies
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(oo}

( v
b(s)bT(s)ds” 5_} Ilb(s)ll2 ds it follows that T1im M(t) = M

and since HJ
0 toeo ”

0
exists. This proves part (ii) of the theorem. In order to prove that A =,An

we note that the matrix of eigenvectors of L(t) can be expressed as U(t)U

0
so that
T TT
7(1) = Uy Te, = uluT (e,
and
dF T T
= U (B)B(E)e,
= uguT(t)L(tle, - a](t)UgUT(t)e]
- UgAUT(t)e] - a, () F(t)
- AuguT(t)e] - ay(1)f(1)

= AF(t) - [F(t) AF(t)IF(L).

The solution of this equation, as can be verified directly, is

eAt fo

At
le fOH

f(t) =

and since ezfo # 0 it follows that lim f(t) = e and

tow

Tim a](t) = 1im fT(t) f(t) = X .

to toro

Remark. The convergence proof above is adapted from Moser [2].
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