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DIFFERENTIAL EQUATIONS AND THE QR ALGORITHM

ABSTRACT
In this paper we consider a variety of isospectral flows on the
set of nxn matrices. These flows arise from Lax pairs and can all
be interpreted in terms of the QR decomposition for nonsingular
matrices. The asymptotics of these differential equations are
considered in detail and for symmetric matrices these asymptotics

Aprovide a new method of solving the eigenvalue problem.



INTRd%UCTION: In this article we consider the system of differential

equations (1). (which will be called isospectral flows) for an nxn

real matrix L

0

dL

ro BL-LB
(1)

L(0) = L

Where Lo is an arbitrany nxn matrix and B(t) s an nxn skew symmetric
matrix. The flow (1) has the property that the eigenvalues of L(t) are
independent of t, i.e. the flow (1) is isospectral. For certain very
Special choices of the matrix B this system has another interesting
feature: L(t) converges to a diagonal matrix consisting of the eigen-

values of L, as t - iw;Wvone such choice of B is
B(t) = (L(t)), - L(t)_

where L_ denotes the strictly upper (respectively lower) triangular

- part of L. Thé corresponding equations (1) are known as the Toda Lattice
first considered by Flaschka [2] and Moser [3] for a real symmetric
tridiagonal matrix L. In [1] the authors used the Toda equations (1)
to compute the eigenvalues of a tridiagonal symmetric matrix Lo.

In this paper we provide a theoretical framework connecting the
QR algorithm and the system (1). The general setting is as follows:
Corresponding to each function G(\), real and injective on the spectrum
of Lo, there exists an isospectral flow on the space of all nxn matrices
convergent (generically) to nn upper triangular matrix as t + te. If

one takes a snapshot of this flow at integer times there results a



sequence L(1), L(2),... . The matrix L(k) is the kt? iterate in the QR

L
algorithm applied to eG( °).

Thus, for example, if G(A) = Tog A
we can interpret the QR algorithm as solving a system of differential
equations exacf]y at integer times.

The paper is organized as follows. Section 1 summarizes some of
the results for tridiagonal matrices in a form useful to this article.
In section 2 we relate the isospectral flows to the QR algorithm of
linear algebra. In section 3 we consider the asymptotics of the system
(1) in the symmetric case and prove that- L(t) converges as t + to
to a diagonai matrix consisting of the eigenvalues of L,. As a corollary
we obtain an ordinary differential equations proof of the convergence of

the basic unshifted QR algorithm for positive definite matrices. Finally

in section 4 we consider isospectral flows on nonsymmetric matrices.

ACKNOWLEDGMENTS: The author would like to thank Prof. Parlett for

suggesting some simplifications in the proofs of some of the results

of §1 and to Profs. Deift and C. Tomei for many useful discussions.



NOTATIONS: Let L, be a real symmetric positive definite nxn matrix
with eigenvalues 0 <X <), <}, < ...<2A . We denote by U, the
orthonormal matrix consisting of the eigenvectors of L, and by
A= diag[xl,xz,..g,kn] the diagonal matrix consisting of the eigen-
values of L, so that
A\
T

L, = Uy AU,

e; will denote the vector (0,0,..., 1,0,...,0)T and we denote by f

J
1\
T _ jth slot
the vector U e, i.e. fi consists of the first component of the

eigenvector corresponding tb the eigenvalue xi.
We will denote by L+ and L_ the strictly upper and the strictly
Tower triangular parts of L: |

,(L+)1j = Lij if i<j and 0 otherwise

(L-)ij = Lii if i>j and 0 otherwise

§1.  CHARACTERIZATION OF TRIDIAGONAL SYMMETRIC MATRICES

We begin this section by stating some of the well known facts
about tridiagonal symmetric matrices in an unorthodox but useful form.

In this section L is a real symmetric tridiagonal matrix with

. = . € i<
L11 a; 1< n s

Li1¥1 = bi 1<1i<n-1

We assume that bi# 0, i.e. the matrix L is unreduced. Moreover,

we will assume that bi>>0 for 1 <3 <n. Lemma 1l is an elementary but



basic fact. The proof is omitted.

Lemma 1. Let L be a real symmetric tridiagonal matrix of

order n. L 1is unreduced if and only if the vectors e Lel,...,Ln-le1

are linearly independent.

Corollary. L 1is unreduced if and only if the vectors
FoAf, .. A" L E are linearly independent. |
T with f = UTel. Then,
n-1

Proof. Let L=UAU
{el,Lel,.,.,Ln'lel} = U{f,Af,...,A" “f} and the result follows
from Lemma 1.
Remarks: 1. The vectors el,Lel,...,Ln'le1 are the columns of

an upper~triangu]ar matrfx; hence the Gram Schmidt procedure applied to

these vectors gives the identity matrix I. Since

n-1 T n-1
{Fonf,.. A7 °f} = Ul{ele,...,L7 “e }
it follows that U% = Gram Schmidt{f,Af,...,A""1f}.

2. If L is unreduced it follows that 'fi# 0 and all the eigen-
values of L are distinct. We can therefore normalize the eigenvectors

of L so that each fi> 0.

Let W|(X ,X,,...,A ) denote the set of all real symmetric nxn

tridiagonal matrices L with fixed spectrum A <A <...<2}dp,, and

L >0 for i=1,2,...,n-1. From Lemma 1 and its corollary we

ii+l
immediately deduce:



Theorem 1. Let L be a real symmetric nxn tridiagonal matrix
with L“+1 > 0. The map F which takes L into the set
{(A <, <o), [Ifi =1, f,>0} is one to one. Furthermore,
correspondjhg to any "spectral data" (Al < A, €...<Ap) and f with
Ifi =1, f;>0 one can associate a unique real symmetric tf{diagona1'
matrix L in such a way that

a) XI,AZ,...,An are the eigenvalues of L,

b) the vector f is the first row of the matrix U of the

normalized eigenvectors of L, and

c) L >0 for i=1,2,...,n-1.

ij+l ~
Proof.»ASuppose that F(L,) = F(L,). By corollary td Lemma 1
aboye the matrices U, and U, bf the eigenvectbrs of lﬁ and L, respec-
tiVe]y'are equa].f Hence 'Ll = Lz' showing that F -is one fd one.:.
Conversely, given any spectral data, the vectors f,Af;...,Anflf
are.]inear1y independent. Let A be the nonsingular matrix whose columns
are f,Af,.,.,An'lf; let A=QR be the unique factorization of A vinto
an orthogonal matrix Q and an upper triaﬁgu]ar matrix R with positiye
diagonal entries. Define L = QT A Q. We assert that L 1is the desired
mafrix. Clearly L satisfies (a) and (b). It remains to show that L

is tridiagonal and L > 0. Let i-j > 1. We will show first that

i+l
_ T _ T

L., = e L ey = ,(Qei) A er

Now er belongs to the vector space spanned by {f,Af,...,AJ'lf} SO

belongs to the vector space spanned by {f,Af,...,AJf} which is
i-2

e.
AQ 3

contained in the vector space spanned by {f,Af,...,A" “f}. Since Qe; fis



orthogonal to this space we conclude that Lij =0 if i-j > 1, showing
that

T
Liger = 41 L &

(Qeq,p)" A Gy

T i
(Qeqyq) A

R > 0

i+l i+l
Remarks: 1. Theorem 1 completely characterizes unreduced tridiag-

onal symmetric matrices. Moreover, it shows that geometrically

‘m(xl,xz,...,x ) is a smooth (n-1) dimensional manifold. In fact

n
WA, ,\,,...,1) is diffeomorphic to
1272 n

[xe R"[1x1=1, x;>0 i=1,2,...,n}

This.theorem is eésentia]\y in Parlett [5] and is an example'of the
inverse spectral problem. The inverse algorithm, i.e. reconstructing L
from the spectral data, is of intrinsic interest and is useful in a
variety of problems. Theorem 1 has natural generalizations to symmetric
band matrices.

2. In the next sect%on the spectral data {(A1<:A2< oo < An),f},
which so far has an algebraic interpretation, will be given a dynamical

interpretation.

§2. ISOSPECTRAL FLOWS AND THE QR ALGORITHM

In this section we analyze first the system of differential
equations (1) for the special case when L is a tridiagonal symmetric

matrix and B =L - L_. This is the Toda Lattice first considered by
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Flaschka and Moser. An ahderstanding of this system will provide a
natural geheka]ization of (1) to arbitrary matrices.

Lemmas 1 and 2 below are stated for the sake of comp]eteness,
They are otherwise well known.

-

Lemma 1. Let B(t) be any n n real skew symmetric matrix

defined on -» < t < =. Let U(t) be defined by

du |
5 = 8u
(2)
u(o) = 1

Then U(t) 1is unitary for -o <t < e, .

proof. S (uTu) = uTeu + (u'BN)u

T T

BU = 0

“u'BU - U

uT(0) u(@) = 1 forall t.

so uT(t) ult)

Lemma 2. Let L be an arbitrary real ’symmetric matrix and

L(t) the solution of (1). Then

L(t) ut) L uT(t)

where U(t) is orthogonal.

Let U(t) be defined by (2). Then

T

g% WL v = u'sTLu + u'BLy - uTLey + u'wBu
i.e., 4Ly = o



0

Hence UT(t) L(t) U(t) = L (0) = L and the Lemma follows.

We now consider the system (1) when B(t) = (L(t)), - (L(t))_
and L s an unreduced symmetric tridiagonal matrix. The corresponding

system (1) can then be expressed as

d - _
Jl'b = b (a - a) 1<k s<n-1
dt “k k'"k+l k :

with b = 0=b . Here g =1L, and b =1L, , .. From(3) is is
clear that the matrix L(t) is unreduced for all times. Moreover,
bk(t) >0 if b (0) > 0. Lemma 2 above shows that the eigenvalues of
_L(t’ are independent of t. Thus (3) is a flow on WA ,A,,...,A,)
where Al,x;,...,xn arélthe éigenva]ues of Lo. Thefe éré n! éritica]
points of (3) as can be easily verified. These are the n! permutations
of the diagonal matrix A.

The next theorem shows that (3) can be solved explicitly in terms

of rational functions of exponentials. This result is due to Moser £3].

Theorem 1. The system (3) can be solved explicitly. Moreover,

ak(t) and bk(t) are rational functions of exponentials.

Proof. In view of Theorem 1 of §1, it is enough to solve for

f(t) explicitly. By Lemma 2,

T

L(t) RTINS

u(t) Uo AU
so that
f(t)

T,T
U, U (t)el
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and by (2),
4F T T
dE = Uy U(t) Bltle,
Now B(t)e, = (0,-b 0, ..., 0)
= -Le, +a(tle,
hence
dof T T T T
& - U, u (t)L{t)e, - a U U (tle
- T,T T .7
=, AU, U'(t)e, - a, U, U (t)e,
= Af - a)f
Now
a (t) = el Litle, = fl(t) A f(t)
o)
* df _ e - (g7
(4) r (f A f)f
The proof of the theorem now follows from
Lemma 3. Let u(t) be the solution of
du Au - (Au,u)u fu(t)] =1
T - i
(5)
u(@) = u_, lu(o)] =1

0

where A is a constant matrix. Then

q(t)
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Proof. Let v(t) = eAtu so that == = Av. Then

_g_( v(t) ) . A (vV Av)v
N\ T(t) vit) v ik

—vit) satisfies (5) and the lemma follows.
JvI(t) vit)

The next result is due to Symes [6,7].

This shows that

tL
Theorem 2. Let e ° = Q(t)R(t) be the unique factorization
tL ' . -
of e ° with Q(t) orthogonal and R(t) upper triangular with positive

diagonal elements. Then

Qlt) = UT(t).

Proof. We have from (2),

d T _ 0
F V) = -UuBlt)

where D(t) = diag L(t).

Thus by Lemma 2,

L yTie) = TueuTr = L U7+ UTR,

(6) dt

§
—

uT(0)

where R,(t) = D-2L_ is upper triangular. The solution of (6) is
given by ' |
tL
uT(e) = e O R(t)
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‘where R,{(t) 1is an upper triangular matrix satisfying

dR,

& = R (t) R(t)
(7)

R,(0) = I

-

Since R,(t) is upper triangular and R,(0) = I, it follows that R,(t)

has positive diagonal elements for all times. Thus

tL -
e " = uT) R = QUbR(L)

The above decomposition is unique, hence

uT(e) = q(t).

eL(m) is the mt” iterate in the QR algorithm

Corollary.

L
applied to e °.

Proof. We recall here the basic QR algorithm:
L .
Let A =e 0 = Q,R,. For n=1 we define
A = RQ = QAQ = QR .
1 00 0070 11

One then defines inductively

T
Am = Qo An-1%-1 = Ufp

Am. From the theorem above,

We must show that L(m)

L = L a
hence
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Assume the result to be true for m. Then L(m+l) 1is the solution of (1)

at time t=1 starting at L(m) (by uniqueness). Hence by the previous

theorem,
Lmel) = Q7 Lim) Q
where
oL (m) QR = A
Thus
emel) R Llm) o T AQ = AL

Remark:  The above result of Symes provides a connection between
the Toda lattice and the QR algorithm applied to eL°. We will now
proVide.a‘connection between the system (1) and the QR algorithm as »
'appiied to L, itself. | | | -

The basic idea is to guess the appropriate B in (1). In order
to do so consider the QR algorithm as applied to L,- An important
property of this algorithm is that if L, is tridiagonal and symmetric
then so are all the iterates Lp. Since each L has the same set of
eigenvalues as L, , the matrices Hn are characterized completely by the
corresponding vectors f(m) = qgel where Um is the matrix of eigen-

vectors of Lm' Now if L = QR, then

_ T _ AT T
L, = Qo Lo Qo - Qo Uo A Uo Qo :
Thus
- (1) T T
: u, = QOU0 and f = Ue = U0 Q, e,
Next .
Loe1 Loe Loel
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> uTL e AuTe (0)
Uy Qye, = ——= sty
SIS llAUoélll et
1.6e.
FD Af(g;
Iaf™7

and by induction it follows that

1" %)

Comparing (8) with the solution of equation (5) (see Lemma 3) we observe -
that (8) is the solution at time t=m of (5) with A= 1ogLA.‘ This means
o that'the‘differential equation'for-f(t) (see (4)) must be -

df

@ - (log A)f - (fT(log A)f)f )

which in turn implies that L itself must satisfy

dL(t)

—d_t_—= BL"LB

with B(t) = {log L(t)) - (log L(t))_. The whole framework can now be
generalized, and we carry this out next. Most of the proofs are similar
to the tridiagonal case and will be omitted.

In what follows B(t) = (G(L(t))) - (G(L(t)))_, where G is an
arbitrary real valued function defined on the spectrum of L . We will

consider the system 1 with this choice of B.
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Theorem 3. Let L(t) be the solution of (1). Then,

i) L(t) has the same eigenvalues as L,..

1) L(t) = Q'(t) L, Q(t) where e oo

tG(L, )
QR factorization of e °" with Q(t) orthogonal and R(t)

= Q(t) R(t) dis the unigue

upper triangular with diagonal elements postive.

eG(L(m)) th

is equal to the m™™ iterate in the QR algorithm

6lL,)

iii)

as applied to e

We close this section with a few remarks on the dynamical

interpretation of the spectral variab]es'(kl,...,xn) and f.

1. It is a remarkable fact that the system (1) which is nonlinear
can, by a change of variables be solved explicitly. Moreover, the solution

is given in terms of rational functions of exponentials.

2. In the tridiagonal case the change of variables is provided
dX;
by Theorem 1 of §1. Under this change of variable we have TE} =0

etG(A) f(0)

so that
Tl £ (o))

and by Lemma 3 of §2, f(t)

le

f.(t) £:(0)
log m) = Jog W) + [G()x,i)'G()\l)]t

1 1

£,
In other words the variables {i.} and {1og ?;-} evolve linearly in

. 1
time. These. are the analog of the action angle variables of the Hamilton
Jacobi theory associated with the system (1). For more inforamtion in the

general case we refer to reader to [9].
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§3. ASYMPTOTICS OF THE FLOW (1)

In this section we consider the asymptot1cs of the system (1) where
~B(t) = (G(L(t )), - (G(L{t)))_. The main result is the following: We

show that L(t) converges as t - += to a diagonal matrix consisting of
the eigenva]ues}df Lo. In particular, if L0 is a positive definite
matrix and G(x) = Tog A wevw111 obtain a proof of the conVergence of

the basic unshifted QR algorithm using ordinary differential equations.
This result turns the problem of calculating the eigenvalues of a real
symmetric matrix into a problem in the theory of ordinary differential

_ equations.' The resu]t'a]sbvprovides a unified theory of many of the
a]gorithm§ of ]ihear.algebra uéed‘to calculate the eigenvalues of symmetric
matrices. Wejcan‘say that a'choice of an a]gorithm is a choice of B or

' equ1valent]y a cho1ce of a vector f1e1d on the set of all symmetr1c matrices
_'hav1ng_thevsame e1genva1ues. The d1fferent1a] equat1on framework can also
~ be usea'to_guéss some new algorithms in linear algebra. One such method

js discussed in [4]. We begin this section by a technical lemma.

Lemma 1. Let f be a Lipschitz continuous square integrable

function on (-»,o), Then lim f(t) = 0.

t-)too

Proof. Suppose that 11€15up [f(t)] > 0. Then there exists an
-+
€>0 and a sequence t, 4+« such that [f{t, )] > e for k>1. Without

loss we may assume that the tk are chosen so that the intervals

_ - _E_ _e_- . o . . . . i
Ik = (tk M ,'tk+ ZM) are disjoint. Here M 1is the Ljpsch1tz constant

of f. Then for t € Ik’

TR0 > (£t )] - [F(E) - F(t))]
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This implies that

o«

J|f(t)|2dt ) [If(t)lz dt = e
k

which is a contradiction unless lim [f(t)| = O.
t++oo
One shows similarly that Tim |[f(t)] = O.

t+-oo

Theorem 1. Let L(t) be the solution of (1) with

B(t) = L(t)_ - L(t)_. Then lim L(t) = L, exists. Moreover, L

ts>ow ®

is a diagonal matrix consisting of the eigenvalues of L .

Proof. With B as in the hypothesis the system (1) yields

d 2 2
=L, = 2 2 L.-222L 1<k<n
dt "kk jokal kJ i kJ
Hence
d 5 SR 2y 3o
(*) - L = 2 Li. - 2 LE.
dt (o7 kk k=1 jok  J k=1 j=1 M

Interchanging the order of the summation in the second term on the

right side above gives

d 5 SDIIRN SRk
(**) - L = 2 L. = 2 L.
dt (77 kk kel jomel K jemel ™
Since L(t)l = Ll for all times (see Lemma 2, §2) it follows from

(1) that the elements of L(t) and their derivatives are uniformly bounded
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for all times. In particular, Lmj is Lipschitz continuous and from (**),

(]

n
J L2.(t) dt < ». By Lemma 1, > (t) > 0 as t=+ o,
LY S J=m+l mJ

-0

From (*) it follows that 1lim ka(t) exists. Hence .Jim L(t) = L
>

tre ©

exists. By Lemma 2, 82, L_ must consist of the eigenvalues of L.

Remarks. 1. The above theorem provides us with a new proof of
the spectral theorem for symmetric matrices. As keha%ked-ear]ier it
also gives a new proof of the convergence of the basic unshifted QR
a]gorithﬁ for positive définite matrices. |

2. Essential]y the same proof carries over for hermitian matrices.
The matrix B in (1) has to be modified appropriately so that it is skew-
herm1t1an o |

'.3. In 3] Moser has proved the same resu]t for tr1d1agona1 matr1ces§ 

4, In [1] the system of equat1ons (3) has been used to obtain
v'the e1genva1ues of some tridiagonal matrices. .It can be seen quite
easily using Theorem 1 of §1 that Ial(t) - Anl goes to zero linearly
if one uses a fixed time step to 1ntegréte the sysfem (3). However by
varying the time step it is observéd that the differential equations
mefhod'for solving the eigenvalue can be quite competftive as compared
to the QR algorithm.

Theorem 1 above considers the special case of the system (1) when
B(t) = L, - L_. We now would 1ike to generalize this theorem to the case
when B(t) = G(L), - G(L)_. Regarding the function G the only assumption
we will make is that it is ohg to one and real on the spectrum of L.
Before we prove the general result we state a technical lemma that

falls out of Theorem 1. This lemma reveals the structure of -JjﬂL u(t) .
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We consider the solution of (1) with B =L - L_ and write

L(t) = UL uT(t) = u(t)u, A UUT(t) as in Lemma 2 of §2. By

Theorem 1, the 1imit matrix L_ consists of the eigenvalues of L, hence

L, = PAP for some permutation matrix P satisfying

Let us suppose that L has k distinct eigenvalues A <A < ... < A

. k
where A, has multiplicity m, =1, D m. = n.
J J j=1 J

Lemma 2. Llet V(t) = PU(t)U, and suppose that t, is any

sequence such that lim t, = =, 1im V(tk) = Z. Then,

) k> o

where Zj is an orthogonal matrix of order mj.

Proof. Z 1is an orthogonal matrix satisfying

(*) A=ZAZT

Since
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where Ij is an mj m. identity matrix, we conclude from (*) that Z

J
has the structure advertised in (9).

Theorem 2. Let G(A) be real and injective on the spectrum of
L,. Then, the solution L(t) of (1) with B(t) = G(L(t)), - G(L(t))_

converges as t - += to a diagonal matrix consisting of the eigenvalues

of L,.
Proof. From Lemma 2 of §2 we can write

L(t) = u(t) L, uT(t)
so that
T, T
TuT(

6(L(E)) = Ult) 6(L,) UT(e) = uce)y, () uluT(t)

It follows from (2) of §2 now that M(t) = G(L(t)) satisfies (1) with
- B=M_-M_. From Theorem 1 it follows that M(t)' converges as t-o

to a diagonal métrix of the form PG(A)P where P is a permutation
matrix. We will now show that L(t) converges to a diagonal matrix as
t+o. To this end let (sk) be any sequence converging to « and let
(tk) be a subsequence so that V(tk) = PU(t, )U, converges to an ortho-

gonal matrix Z. By Lemma 2, Z has a block structure (9) and

6027 = 6ln)
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Since G 1is one-one it follows that

Now
_ T
L(t,) = PPU(t)U, A UL (t, )PP

converges to PZAZT}’ = PAP. Since the sequence (sk) is arbitrary

it follows that Jinl L(t) = PAP and the proof is complete.
-+

Corollary. The QR algorithm for a positive definite matrix

converges to a diagonal matrix consisting of the eigenvalues of L .

Proof. Apply Theorem 2 with G(A) = log A and use (iii) of

Theorem 3 §2.

§4. ISOSPECTRAL FLOWS ON NON-SYMMETRIC MATRICES

In this section we consider isospectral flows on nonsymmetric
matrices. These flows are appropriate generalizations of (1) for the
symmetric case. The main result here is that under suitable conditions
L(t) converges as t -« to an upper triangular matrix. In case the
initial matrix L, has comp]ek eigenvalues L(t) is asymptotic to an
almost periodic orbit. Briefly then, the limiting behavior of L(t) is
determined by the eigenvalues of L . This is analogous to the situation
for a linear system of ordinary differential equations

du

Et- Au

where A is a constant matrix. This may'appear surprising because the
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system (1) is patently nonlinear. The element of surprise however

disappears if one recalls Lemma 2 52 and Theorems 2 and 3 of §2.

Assumptions and Notations: We will consider an nxn real matrix

L, which can-bé'diagona1ized so that

0

| =1
(10) Ly = X A

The matrix X, -consists of the eigenvectors of L, and we will assume

that X' has an LU decomposition, i.e.
(11) | X' = TR

where_t0 is a lower triahgu]ar matrix with all the diagonal elements
~equal to +1 and Eo is an upper tfiangu]ar matrix. This assumption.js
not very stringent bebause there a]ways'exists'a suitable permutation
matrix P so‘that PX™' has an LU decomposition. The system of differen-

tial equafions we will consider is (1) with

B(t) = ([6(LeNI)), - [6(LtN]. = (6)7-6

so that B 1is antisymmetric. As inv§2 (see Lemma 2, Theorem 2) it can be

deduced easiTy that

i} L(t) has eigenvalues independent of t, i.e. the flow (1)

is isospectral.

1) L(t) = QT(e) L, Q(t) where e oite]

, tG(L
unique factorization of e GlL, )

= Q(t)R(t) 1is the
into an orthogonal and
upper triangular matrix.

In other words, the system (1) can be solved explictly. It remains to
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consider the asymptotics of the flow (1). We will consider the asymptotics
when the function G(A) =X. The general case can be reduced to this case

as in Theorem 2 §3.

Theorem 1. Let L be an arbitrary real matrix of order n

with eignevalues A ,X,,...,A, so that Re A > Re A, > ... > Re ..

n
Let L(t) be the solution of (1) with B(t) = (L_)T - L_. If L, satisfies

0

(10) and (11) then L(t) converges to an upper triangular matrix as t » =.

Proof. The proof we give uses the ideas from Wilkinson [8]
(proof of the convergence of the QR algorithm). Since X 6 1is nonsingular
we can write |

XO = QlRl
where Q, is unitary and R, is upper triangular with diagonal elements

positive. Using equations (10),(11) we then have

tL -
e o = x ey
0 0
th 3
= QIRI e LORO
i.e.
tL ~ - ~
(12) e 9 = QlRl(etA L, e tA) eth R,
. tAh~  -th ., . . . . .
The matrix e™ L e is a lower triangular matrix with its diagonal
~ t(x;-25)
elements 1. Its (i,j) element for i>j is (Lo)ij e '3 and since
Re A; < Re xj this element converges to 0 as t -~ +=. We can, therefore,

write

e L e = I+E(t)
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where E(t) converges to 0 as t -+ . From (12) it then follows that

tL
e O

tAy
Q,R, (1+E(t)) &R

thy
R,

Q, (I+RE(t)R]') Rye

For large t, I+R1E(t)R;1 is invertible and admits a unique
decomposition Qé(t)Rz(t) with Q, unitary and R upper triangular with

positive diagonal entries. Moreover, Qz(t) and Rz(t) both converge

to I as t-+=. Using this decomposition we obtain

_ tAY
e = Qle(t)Rz(t)Rle R,
Let us write Eo = D(D-IEO) so that D_lﬁo has positive diagonal -
elements and D is a diagonal matrix with diagonal élements of unit

m0du1us. We can then write

tL i
e ° = QQ,(t)D [DT'R (t)R De*t

-17
D Ro]
The matrix in the square brackets on the right side above is upper
triangular with positive diagonal elements and the matrix Q,Q,(t)D
tL
is unitary. By the uniqueness of the decomposition of e ° into Q{(t)R(t)

it follows that

Hence Tim Q(t) = Q0. Since L{t) = Q'(t) L, Q{t) it follows that

t>o

- T AT
Tim L(t) b Q L, Q0D

ts+o

]

DT

-1
RIAR1 0
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and this matrix is upper triangular. This completes the proof.

Remarks. 1. The above theorem can be easily generalized to
arbitrary complex matrices L, - 0f course B has to be modified
accordingly. *

2. Theorem 1 continues to be true if L has multiple eigenvalues.
Suppose that L, has k-distinct eigenvalues Apseeeshy. Assume that

Re A, > Re x, > ... > Re A and L, satisfies (10) and (11). Then one

can show that L(t) converges to an upper triangular matrix as t + «.

We end this section by a brief discussion of the case when L, has
pairs of complex conjugate eigenva]ues{ To illustrate the idea we
consider a 4x 4 real matrix L0 with éigenva]ues ApsX, 52,54, where

Ix;I=1x,] and Re A, > Re A, > 'Relxu. Let A =oa+iB, A, = q-fiB

with o and B real. As in (10) and (11), let L0 = XOA X;1 where

X' =1 ﬁo. Then,

Y 0

1 0 0 0
_ h(t) 1 0 0
eth to et . + E(t)
0 0 1 0
0 0 0 1

E(t) 0 as t—+« and h(t) = e'ZiBt(t )... Let La(t) be the 4x 4

0°21

matrix shown above so that
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tL -

e 0 = x et x
_ th~  _-th tA 3
= X, e L e e R,

-~

o tA
= XO(Ls(t)-rE(t))e R,

-

= - tA 3
= XL () (1+L, ()7 E(t)) e R,

Write XoLa(t) ?‘Ql(t)Rl(t) to get

oL,

Q,(t) Ry (t) (1+L]'E(t)) ™R,

th
R 0

QJt)(1+RJt)LjEuH§@)RJtm

0

Q,(t)Q, (t)R (t)R (t) e™R

Here 1+R (t)L] (O)E(tIR;'(t) = Q,(t)R (t) for large t. As in the

proof of Theorem 1 we get now
Q(t) = Q1(t) Qz(t) D
In order to deduce the asymptotics of Q(t) we need the following facts:

i) The matrix R (t) L '(t) E(t) R{'(t) goes to zero and Q,(t)

approaches I as t + =,

ii) The third and fourth columns of Q,(t) are independent of t.
This is because the second, third and fourth columns of
X,L,(t) are the same as those of X,, and the first column
of X,L,(t) is a linear combination of the first and second
columns of X,. Thus if Q, denotes the matrix obtained by

carrying out the Gram Schmidt process on the columns of X
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then the third and the fourth columns of Q,(t) are the

same as those of Q.

ii1) From (i1) and the relation R, (t) = Qf(t)XoL3 it follows

that the e]ements_(Rl)aa, (Ry),,» and (R ), are all

1744
independent of t and the same is true of the corresponding

elements of R, (t) LM (t).

3

For large t we can thus express

Q(t) = Q(t)D + F,(t)
with F (t) >0 as t->e.
Thus

L(t) = 0TQl(t)L Q,(t)D + F_(t)
~with F_(t) >0 as t> .

Finally, eliminating Q,(t) gives

'R

L(t) AL )T AL OR (£)71D + F_(t)

L_(t) + F,(t)
where L_(t) has the form shown below.

a, (t) a,(t) a,(t) a, (t)
b, (t) b, (t) b, (t) b, (t)

0 0 A c
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The functions a t),bj(t) j=1,2,3,4 are periodic with

j(
period %;- and ¢ is a constant. Thus L{t) is asymptotic to a
periodic orbit. In the extreme case when X =31,, X ,=X with

Ima, #0, ImA,#0, L(t) is asymptotic to an almost periodic orbit.

Analogous results hold for the general nxn case.
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