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DIFFERENTIAL EQUATIONS AND THE QR ALGORITHM 

• 

ABSTRACT 

In this paper we consider a variety of isos~ectral flows on the 

set of nx n matrices. These flows arise from Lax pairs and can all 

be interpreted in terms of the QR decomposition for nonsingular 

matrices. The asymptotics of these differential equations are 

considered in detail and for symmetric matrices these asymptotics 

provide a new method of solving the eigenvalue problem. 
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INTRObuCTION: In this article we consider the system of differential 

equations (1) (which will be called isospectral flows) for an nx n 

rea 1 matri x L 

(1) 
{ 

dL 
dt = BL - LB 

L(O) = La 

where La is an arbitrary nxn matrix and B(t) is an nxn skew symmetric 

matri x. The flow (1) has the property that the ei genva 1 ues of L(t) are 

independent of t, i.e. the flow (1) is isospectral. For certain very 

speci a 1 choices of the matri x B thi s system has another i nteresti ng 

feature: L(t) converges to a di agona 1 matri x consi sting of the ei gen­

values of La as t -+ too . . One such choice of B is 

B(t) = (L(t)+ - L(t) 

where L± denotes the strictly upper (respectively lower) triangular 

part of L. The corresponding equations (1) are known as the Toda Lattice 

first considered by Flaschka [2] and Moser [3] for a real symmetric 

tri di agona 1 matri x L. In [1] the authors used the Toda equati ons (1) 

to compute the eigenvalues of a tridiagonal symmetric matrix L . a 

In this paper we provide a theoretical framework connecting the 

QR algorithm and the system (1). The general setting is as follows: 

Corresponding to each function G(A), real and injective on the spectrum 

of L , there exists an isospectral flow on the space of all nx n matrices 
a 

convergent (generically) to an upper triangular matrix as t -+ too. If 

one takes a snapshot of this flow at integer times there results a 
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sequence L( 1), L( 2) , . .. . The matri x L( k ) is the k th iterate in the QR 
. . G( L ) 

algorlthm app11ed to eO. Thus, for example, if G(A) = log A 

we can interpret the QR algorithm as solving a system of differential 

equations exactly at integer times. 

The paper is organized as follows. Section 1 summarizes some of 

the results for tridiagonal matrices in a form useful to this article. 

In section 2 we relate the isospectra1 flows to the QR algorithm of 

linear algebra. In section 3 we consider the asymptotics of the system 

(1) in the synimetri c case and prove that· L( t) converges as t -+ ± 00 

to a diagonal matrix consisting of the eigenvalues of Lo' As a corollary 

we obtain an ordinary differential equations proof of the convergence of 

the basic unshifted QR algorithm for positive definite matrices. Finally 

in section 4 we consider isospectral flows on nonsymmetric matrices. 

ACKNOWLEDGMENTS: The author would like to thank Prof. Parlett for 

suggesting some simplifications in the proofs of some of the results 

of §1 and to Profs. Deift and C. Tomei for many useful discussions. 
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NOTATIONS: Let Lo be a real symmetric positive definite n x n matrix 

with eigenvalues a < A ~ A ~ A ~ ... ~ An. 
1 2 3 

We denote by Uo the 

orthonormal matrix consisting of the eigenvectors of Lo and by 

A = di ag[A
1 

,A
2

, ••• ,An] the di.agona 1 matri x cons; sti ng of the ei gen­

values of Lo so that 
1\ 

= U A UT 
o 0 

ej will denote the vector T (0, 0, ... , 1, 0, ... ,0) and we denote by f 
t 

jth slot 
the vector u: e

1
, i.e. f. 

1 
consists of the first component of the 

eigenvector corresponding to the eigenvalue A .. 
1 

We will denote by L+ and L_ the strictly upper and the strictly 

lower triangular parts of L: 

(L ) .. = L .. if i < j and a otherwise . + lJ lJ 

(L ) .. = L .. if i > j and a otherwise - 1 J lJ 

§1. CHARACTERIZATION OF TRIDIAGONAL SYMMETRIC MATRICES 

We begin this section by stating some of the well known facts 

about tridiagonal symmetric matrices in an unorthodox but useful form. 

In this section L is a real symmetric tridiagonal matrix with 

L· . = ai 1 ~ i ~ n 
11 

Lii+l = b. 1 ~ i ~ n-1 
1 

We assume that bi -# 0, ; . e. the matrix L ;s unreduced. Moreover, 

we wi 11 assume that b; > 0 for 1 ~ ; ~ n. Lemma 1 is an elementary but 

1:, 
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basic fact. The proof is omitted. 

}.emma 1. Let L be a real symmetric tridiagonal matrix of 

order n. L is unreduced if and only if the vectors e
1

, Le
l

, ••• ,Ln-1 e
1 

are linearly independent. 

Corollary. L is unreduced if and only if the vectors 

f,Af, ... ,An- 1 f are linearly independent. 

Proof. Let L = U A UT with f = uTe
l 

Then, 

{ n-l } e 1 ' Le 1 ' ••• , L e1 { 
n-l = U f,Af, ... ,A f} and the result follows 

from Lemma 1. 

Remarks: n-l 1. The vectors e1 , ~el ' ... , LeI are the columns of 

an upper triangular matrix; hence the G~am Schmidt procedure applied to 

these vectors gives the i denti ty matri x I. Si nce 

f n-l } If,Af, ... ,A f = Tf n-l } U 1 e , Le , ... , L e 
1 1 1 

it follows that ut = Gram Schmidt{f,Af, ... ,An- 1f}. 

2. If L is unreduced it follows that f. # 0 and all the eigen-
1 

values of L are distinct. We can therefore normalize the eigenvectors 

of L so that each fi>O. 

tridiagonal matrices L with fixed spectrum A < A <... < An' an d 
1 2 

Li i+l > 0 for i = 1,2, ... ,n-l. From Lemma 1 and its corollary we 

immediately deduce: 
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Theorem 1. let L be areal symmetri c n x n tri di agona 1 matri x 

with L .. 1 > O. The map F which takes L into the set 
1 1 + 

{(\ < A2 < .•• < An)' IlIfll = 1, f i > o} is one to one. Furthermore, 

corresponding to any "spectral data" (AI < A2 < •.• < An) and f with 

IIfll = 1, f i > 0 one can associate a unique re.al symmetric tridiagonal 

matri x L in such a way that 

a) Al ,A 2,.·· ,An are the eigenvalues of L, 

b) the vector f is the first row of the matrix U of the 

normal i zed ei genvectors of L, and 

c) Li i+l > 0 for i = 1,2, ... ,n-1. 

Proof. Suppose that F(L
1

) = F(L2). By corollary to Lemma 1 

above the matri ces U1 and U2 of the eigenvectors of Ll and L 2 respec­

tively are equal. Hence Ll = L2 showing thatFis 'one to one. 

Conversely, given any spectral data, the vectors f,Af, ... ,Ah- 1f 

are linearly independent. Let A be the nonsingular matrix whose columns 

are n-l f ,Af, ... ,A f; 1 et A =QR be the uni que factori zati on of A into 

an orthogonal matrix Q and an upper tri angul ar matri x R wi th posi ti 'Ie 

diagonal entries. Define L = QT A Q. We assert that L is the desired 

matrix. Clearly L satisfies (a) and (b). It remains to show that L 

is tridiagonal and L .. 1> O. Let i-j> 1. We will show first that 
1 1+ 

L.. = e~Le. 
1J 1 J 

= 
T (Qe.) A Qe. 

1 J 

Now Qe. belongs to the vector space spanned by I j -1 } so 1 f ,A f, ... ,A f 
J 

II.Qe. belongs to the vector space spanned by {f,1I. f , ... ,A j f} which is 
J 

contained { i-2 } in the vector space spanned by f,lI.f, ... ,A f. Since Qe. 
1 

is 
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orthogonal to this space we conclude that L .. = 0 if i-j >' 1, showing 
lJ 

that 

Li i +1 = = 

= Ri+1 i+1 > 0 

Remarks: 1. Theorem 1 completely characterizes unreduced tridiag-

ona 1 symmetri c matri ces. ~1oreover, it shows that geometri ca lly 

~(Al,A2, ... 'An) is a smooth (n-1) dimensional manifold. In fact 

~(Al,A2, ... 'An) is diffeomorphic to 

{x E R
n III xII = 1, xi > 0 i = 1,2, ... ,n} 

This theorem is essentially in Parlett [5] and. is an example of the 

inverse spectral problem. The inverse algorithm, i.e. reconstructing L 

from the spectral data, is of intrinsic interest and is useful in a 

variety of problems. Theorem 1 has natural generalizations to symmetric 

band matrices. 

2. In the next section the spectral data {(At < \ < ••• < An)' f}, 

which so far has an algebraic interpretation, will be given a dynamical 

interpretation. 

§2. ISOSPECTRAL FLOWS AND THE QR ALGORITHM 

In this section we ana~yze first the system of differential 

equations (1) for the special case when L is a tridiagonal symmetric 

matrix and B = L+ - L_. This is the Toda Lattice first considered by 
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Flaschka and Moser. An understanding of this system will provide a 

natura 1 general izati on of (1) to arbi trary matri ces. 

Lemmas 1 and 2 below are stated for the sake of completeness. 

They are otherwise well known. 

lemma 1. Let B (t) be any n n real skew symmet ri c mat ri x 

defi ned on -(X) < t < ~. Let U (t) . be defi ned by 

(2) 
{ 

dU = SU 
. dt 

U(O) =1 

Then U(t) is unitary for -ClO <t < 00. 

Proof. ..s!..(UTU) = UTSU + (UTST)U 
dt- . 

= U T SU - uTsu = d 

So UT(t) U(t) = UT(O). U(O) = 1 for all t. 

lemma 2. Let L be an arbi trary rea 1 symmetri c matri x and 

L(t) the solution of (1). Then 

where U(t) is orthogonal. 

Let U(t) be defined by (2). Then 

i . e. , JL (UT L U) = O. 
dt 

'.' . 
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Hence UT{t) L{t) U{t) = L (a) = Lo and the Lemma follows. 

We now consider the system (I) when B{t) = (L{t)) - (L{t)) 
. +-

and Lo is an unreduced symmetri c tri di agona 1 matri x. The correspondi ng 

system (I) can then be expressed as 

1 ~ k ~ n 

1 ~ k ~ n-l 

with bo = 0 = bn· Here ak = Lkk and bk = Lk k+l. From (3) is is 

clear that the matrix L{t) is unreduced for all times. Moreover, 

bk{t) > 0 if bk{O) > O. Lemma 2 above shows that the eigenvalues of 

. L{t) are independent of t. Thus (3) is a flow on 1UL\ ,A
2
,··· ,An) 

where A
1

,A
2

, ••• ,A n are the eigenvalues of Lo. There are n! critical 

points of (3) as can be easily verified. These are the n! permutations 

of the diagonal matrix A. 

The next theorem shows that (3) can be solved explicitly in terms 

of rational functions of exponentials. This result is due to Moser [3]. 

Theorem 1. The system (3) can be solved exp 1 i ci t ly. Moreover, 

ak(t) and bk(t) are rational functions of exponentials. 

Proof. In view of Theorem 1 of §l, it is enough to solve for 

f(t) explicitly. By Lemma 2, 

so that 

f{t) 
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and by (2), 

Now 

hence 

Now 

so 

(4) 

(5) 

T = (0, -b
1 

0, ... , 0) 

= Af - a1f 

df T dt = Af - (f A f)f 

The proof of the theorem now follows from 

Lemma 3. Let u(t) be the solution of 

Au - (Au, u) u 

{ 
~~ = 

u(O) = u , o 

Ilu(t)1I = 1 

II u ( 0 ) II = 1 , 

where A is a constant matri x. Then 

u(t) = 
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Proof. Let v(t) = eAt u so that ~~ = Av . Then 

d ( v(t) ) 
dt J v T ( t) v ( t ) 

This shows that v(t) satisfies (5) and the lemma follows. 

The next result is due to Symes [6,7]. 

Theorem 2. tLo Let e = Q(t)R(t) be the unique factorization 
tLo of e with Q(t) orthogonal and R(t) upper triangular with positive 

diagonal elements. Then 

Proof. We have from (2), 

T = -U (L+ - LJ 

= -UT(-L + 2L+ - D) 

where O(t) = diag L(t). 

Thus by Lemma 2, 

( 6) 

where R1(t) = 

given by 

0- 2L 
+ 

is upper triangular. The solution of (6) is 
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where Rz (t) is an upper triangular matrix satisfying 

{ 
dRz = Rz (t) Rl (t) crt 

(7) 

Rz(O) = I 

Since R1(t) is upper triangular and Rz(O) = I, it follows that Rz(t) 

has positive diagonal elements for all times. Thus 

tLo T 1 
e = U (t) R~ (t) = Q(t)R(t) 

The above decomposition is unique, hence 

Corollary. eUm ) is themth iterate in the QR algorithm 
Lo app 1 i ed to e . 

Proof. We recall here the basic QR algorithm: 

eLo __ 
Let Ao = Qo Ro' For n = 1 we defi ne 

One then defines inductively 

We must show that L(m) = Am' From the theorem above, 

hence 
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Assume the result to be true for m. Then L(m+1) is the sol uti on of (1) 

at time t = 1 starting at L(m) (by uniqueness). Hence by the previous 

theorem, 

where 

Thus 

L(m+1) = QT L(m) Q 

eL(m) = Q R = ~ 

QT A Q = m 

Remark: The above result of Symes provides a connection between 
L 

the Toda lattice and the QR algorithm applied to e 0 We wi 11 now 

provide a connection between the system (1) and the QR algorithm as 

applied to Lo itself. 

The basi c idea is to guess the appropri ate Bin (1). In order 

to do so consider the QR algorithm as applied to Lo' An important 

property of this algorithm is that if Lo is tridiagonal and symmetric 

then so are all the iterates Lm' Since each Lm has the same set of 

eigenvalues as Lo' the matrices Lm 

corresponding vectors f(m) T = Urn e1 

vectors of Lm, Now if Lo = QoRo 

Ll = QT L Qo = 
0 0 

Thus 
QTU U

1 
= and o 0 

Next 

= 

are characterized completely by the 

where Urn is the matrix of eigen-

then 

QT U 
o 0 

/\ U T Q o 0 

f (1) 

L e 
o 1 

= UTe 
1 1 

J(L e )T L e 
o 1 0 1 

UT Q e = 
001 

= 
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Af(O) 

IIAf(o) II 

= 

and by induction it follows that 

(8) f(m) = . Amf{O) 

IIA mf(O) II 

Comparing (8.) with the solution of equation (5) (see Lemma 3) we observe 

that (8);s the solution at time t=m of (5) with A= log A. This means 

that the differential equatioofor f(t) (see (4)) must be . 

df 
dt = (log A)f - (fT (log A) f)f 

which in turn implies that L itself must satisfy 

dL(t) = BL - LB 
dt 

with B(t) = (log L(t)+ - (log L(t))_. The whole framework can now be 

generalized, and we carry this out next. Most of the proofs are similar 

to the tridiagonal case and will be omitted. ~ 

In what follows B(t) = (G(L(t)))+ - (G(L(t)))_, where G is an 

arbitrary real valued function defined on the spectrum of Lo. We will 

consider the system 1 with this choice of B. 
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Theorem 3. Let L(t) be the solution of (1). Then, 

L(t) has the same eigenvalues as L~. 

ii) T tG (L ) . 
L(t) = Q (t) La Q(t) where e 0 = Q(t) R(t) 1S the unique 

tG(La ) 
QR factorization of e with Q(t) orthogonal and R(t) 

upper triangular with diagonal elements postive. 

iii) eG(L(m) is equal to the mth iterate in the QR algorithm 
G(L ) 

as app 1 i ed to eO. 

We close this section with a few remarks on the dynamical 

interpretation of the spectral variables (AI, ••• ,A n) and f. 

1. It is a remarkable fact that the system (1) which is nonlinear 

can, by a change of variables be solved explicitly. Moreover, the solution 

is given in terms of .rational functions of exponentials. 

2. In the tridiagonal case the change of variables is provided 

by Theorem 1 of §1. Under this 

and by Lemma 3 of §2, f(t) = 

change of variable we have 

e tG (A) f (0) 

II e tG (A) f (0)" 
so that 

dAi 
- = 0 dt 

(
f.(t)) (fi(O)) 

log f: (t) = log fl (Of + [G(Ai) - G(\ )]t 

In other words the variables {-Ai} and {log ;i} evolve linearly in 
I 

time. These. are the analog of the action angle variables of the Hamilton 

Jacobi theory associated with the system (1). For more inforamtion in the 

general case we refer to reader to [9]. 
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§3. ASYMPTOTICS OF THE FLOW (1) 

In this section we consider the asymptotics of the system (1) where 

B(t) = (G(L(t)))+ - (G(L(t))J_. The main result is the following: We 

show that L(t) converges as t ~ too to a diagonal matrix consisting of 

the eigenvalues of Lo' In particular, if Lo is a positive definite 

matrix and G(~) = log ~ we will obtain a proof of the convergence of 

the basic unshifted QR algorithm using ordinary differential equations. 

This result turns the problem of calculating the eigenvalues of a real 

symmetric matrix into a problem in the theory of ordinary differential 

equations. The result also provides a unified theory of many of the 

algorithms of linear algebra used to calculate the eigenvalues of symmetric 

matri ces. We' can say that a choi ce of an algorithm is a choi ce of B or 

equivalently a choice of a vector field on the set .of all sYmmetric matrices 

having the. same eigenvalues. The differential equation framework can also 

be used to guess some new algorithms in linear algebra. One such method 

is discussed in [4]. We begin this section by a technical lemma. 

lemma 1. Let f be a Lipschitz continuous square integrable 

funct i on on (- 00,00 ) • Then lim f(t) = o. 
t ~ too 

Proof. Suppose that lim sup If(t)1 > O. Then there exists an 
t~oo 

€ > 0 and a sequence tkt 00 such that I f(t k) I > € for k~ 1. Without 

loss we may assume that the tk are chosen so that the i nterva 1 s 

Ik = (tk - 2~' tk + 2~) are di sjoi nt. Here Mis the Li pschitz constant 

of f. Then for t E Ik, 

.:' 
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This implies that 

00 

which is a contradiction unless lim If(t)1 = O. 
t+ +00 

One shows similarly that lim If(t)1 = O. 
t+ -00 

Theorem 1. Let L(t) be the sol uti on of (1) wi th 

B (t ) = L( t) + - L( t ) _ . Then lim L(t) = L 
t+oo 00 

exi sts. Moreover, Loo 

is a diagonal matrix consisting of the eigenvalues of Lo' 

Hence 

(*) 

Proof. Wi th B as in the hypothes is the system (1) yi e 1 ds 

d m 
dt L: Lkk 

k=l 

1 ~ k < n 

Interchanging the order of the summation in the second term on the 

right side above gives 

(**) 
d m 
dt L: Lkk = 

k=l 

m n n 
2 L L L~j > 2 L L~j 

k=l j=m+1 j=m+1 

Since lIL(t)1I = IILoll for all times (see Lemma 2, '§2) it follows from 

(1) that the elements of L(t) and their derivatives are uniformly bounded 
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for all times. In particular, L . mJ is Lipschitz continuous and from (**) , 
00 n 

f L~j{t) dt < 00. By Lemma 1, L L~j{t) -+- 0 as t-+-oo . 
-<XI 

j=m+1 

From (*) it follows that 1 im Lkk{t) exists. Hence 1 im L{t) = t-+-oo t-+-eo 

exists. By Lemma 2, §2, L must consist of the eigenvalues of Lo' co 

Remarks. 1. The above theorem provides us with a new proof of 

the spectral theorem for symmetric matrices. As remarked earlier it 

also gives a new proof of the convergence of the basic unshifted QR 

algorithm for positive definite matrices. 

Leo 

2. Essentially the same proof carries over for hermitian matrices. 

The matrix B in (l) has to be modified appropriately so that it is skew-

hermitian. 

3. In [3] Moser has proved the same result for tridiagonal matrices. 

4. In [1] the system of equations {3} has been used to obtairi 

the eigenvalues of some tridiagonal matrices. It can be seen quite 

easily using Theorem 1 of §1 that la
1
{t) - ~nl goes to zero linearly 

if one uses a fixed time step to integr"ate the system (3). However by 

varying the time step it is observed that the differential equations 

method for solving the eigenvalue can be quite competitive as compared 

to the QR algorithm. 

Theorem 1 above considers the special case of the system (I) when 

B{t) = L+ - L_. We now would like to generalize this theorem to the case 

when B{t) = G{L)+ - G{L)_. Regarding the function G the only assumption 

we will make is that it is one to one and real on the spectrum of Lo' 

Before we prove the general result we state a technical lemma that 

fa 11 sout of Theorem 1. This lemma reveals the structure of lim U{t) . t+eo 
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We consider the solution of (1) with B = L+ - L_ and write 

L(t) = U(t) Lo UT (t) = U(t)Uo A uJUT(t) as in Lemma 2 of §2. By 

Theorem 1, the limit matrix Loo consists of the eigenvalues of Lo ' hence 

L = PAP for some permutati on matri x P sati sfyi ng 
00 

pT = P . 

Let us suppose that Lo has k distinct eigenvalues Al < A2 < ••• < Ak 
k 

where Aj has multiplicity mj ~ 1, j~1 mj = n. 

Lemma 2. Let V(t) = PU(t)Uo and suppose that tk is any 

sequence such that lim tk = 00, lim V(tk ) = Z. Then, 
k~oo k~oo 

o 

(9) Z = 

o 

where Z. is an orthogona 1 matri x of order m .. 
J J 

Proof. Z is an orthogonal matri x sat i sfyi ng 

(*) A = ZA ZT 

Since 
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/ 

A I 
2 2 

A = 

AK1k 

where Ij is an mj mj identity matrix, we conclude from (*) that z 

has the structure advertised in (9). 

Theorem 2. Let G(A) be real and injective on the spectrum of 

La' Then, the solution L(t) of (1) with. B(t) = G(L(t))+ - G(L(t))_ 

converges as t + +0) to a diagonal matrix consisting of the eigenvalues 

of La'. 

Proof. From Lemma 2 of §2 we can write 

so that 

It follows from (2) of §2 now that M(t) = G(L(t)) satisfies (1) with 

B :: M+ - M_. From Theorem 1 it follows that M(t) converges as t+O) 

to a di agona 1 matri x of the form PG (A) P where Pis a permutati on 

matrix. We will now show that L(t) converges to a diagonal matrix as 

t +0). To this end let (sk) be any sequence converging to 0) and let 

(tk) be a subsequence so that V(tk) = PU(tk)Ua converges to an ortho-

gona 1 matri x Z. By Lemma 2, Z has a block structure (9) and 

,;;. 

'\ 
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Since G is one-one it follows that 

Z A ZT = A 

Now 

= 

converges to PZAZ T P = PAP. Since the sequence (sk) is arbitrary 

it follows that lim L(t) = PA P and the proof is complete. 
t~oo 

Corollary. The QR algorithm for a positive definite matrix 

converges to a diagonal matrix consisting of the eigenvalues of Lo. 

Proof. Apply Theorem 2 with G(A) = log A and use (iii) of 

Theorem 3 §2. 

§4. ISOSPECTRAL FLOWS ON NON-SYMMETRIC MATRICES 

In this section we consider isospectral flows on nonsymmetric 

matrices. These flows are appropriate generalizations of (1) for the 

symmetric case. The main result here is that under suitable conditions 

L( t) converges as t ~ 00 to an upper tri angu 1 ar matri x. I n case the 

initial matrix Lo has complex eigenvalues L(t) is asymptotic to an 

almost periodic orbit. Briefly then, the limiting behavior of L(t) is 

determined by the eigenvalues of Lo. This is analogous to the situation 

for a linear system of ordinary differential equations 

du 
- = Au dt 

where A is a constant matrix. This may appear surprising because the 
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system (1) is patently nonlinear. The element of surprise however 

disappears if one recalls Lemma 2 §2 and Theorems 2 and 3 of §2. 

Assumptions and Notations: We will consider an nx n real matrix 

Lo which can be diagonalized so that 

(10 ) 

The matri x Xo' consi sts of the ei genvectors of Lo and we wi 11 assume 
-1 that Xo has an LU decomposition, i.e. 

(ll ) 

-where Lo is a lower triangular matrix with all the diagonal elements 
-equal to· +1 and Ro is an upper triangular matrix. This assumption is 

not very stringent because there always exists a suitable permutation 

matrix P so that PX- 1 has an LU decomposition. The system of differ en­

tial equations we will consider is (1) with 

[G{L(t)] 

so that B is anti symmetric. As in §2 (see Lemma 2, Theorem 2) it can be 

deduced easily that 

1) L(t) has eigenvalues independent of t, i.e. the flow (1) 

is isospectral. 

i1) 
T tG(L } 

L(t) = Q (t) Lo Q(t) where e 0 = Q(t)R(t) is the 
tG(Lo) 

unique factorization of e into an orthogonal and 

upper triangular matrix. 

In other words, the system (1) can be solved explictly. It remains to 

.. 
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consider the asymptotics of the flow (1). We will consider the asymptotics 

when the function G(,,) = ". The general case can be reduced to this case 

as in Theorem 2 §3. 

Theorem 1. Let Lo be an arbi traryrea 1 matri x of order n 

with eignevalues "1'''2'''''''n so that Re "1> Re "2 > ... > Re "n' 

Let L(t) be the solution of (1) with B(t) = (LJT - L_. If Lo satisfies 

(10) and (ll) then L(t) converges to an upper triangular matrix as t + 00. 

Proof. The proof we give uses the ideas from Wilkinson [8J 

(proof of the convergence of the QR algorithm). Since Xo is nonsingular 

we can write 

whe·reQI is unitary and Rl is upper triangular with. diagonal elements 

positive. Using equations (10),(11) we then have 

e tLo 
= X etA X-I 

o 0 

Q1Rl 
tA ----= e L R 

0 0 

i.e. 

(12 ) tLo Q R (etA L e- tA) tA --e = e Ra 1 1 a 

The matrix etA La e- tA is a lower triangular matrix with its diagonal 
__ t("i-Aj) 

Its (i,j) element for i>j is (L ) .. e and since 
a lJ 

elements 1. 

Re "i < Re Aj thi s element c~nverges to a as t + +00. We can, therefore, 

write 

tA -- -tA 
e La e = 1+ E(t) 
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where E (t) converges to 0 as t -+ 00. From (12) it then fo 11 ows that 

-1 
For large t, 1+ R

1
E(t)R

1 
is invertible and admits a unique 

decomposition O2 (t)R2 (t) with Q2 unitary and R2 upper triangular with 

positive diagonal entries. Moreover, Q2(t) and R2(t) both converge 

to I, as t -+ 00 • Us i ng thi s decompos iti on we obtai n 

-Let.us write Ro 
-I-

so that D R o 
has positive diagonal 

elements .and D is a diagonal matrix with diagonal elements of unit 

modulus. We can then write 

The matrix in the square brackets on the right side above is upper 

triangular with positive diagonal elements and the matrix QI Q2(t)D 

is unitary. By the uniqueness of the decomposition of e
tLo 

into Q(t)R(t) 

it follows that 

Hence lim Q(t) = it follows that 
t-+oo 

.1 im- L( t) = 
t-+oo 

= 

'J/, "., 
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and this matrix is upper triangular. This completes the proof. 

Remarks. 1. The above theorem can be easily generalized to 

arbitrary complex matrices Lo. Of course B has to be modi fi ed 

accordingly. • 

2. Theorem 1 continues to be true if La has multiple eigenvalues. 

Suppose that Lo has k-distinct eigenvalues AI' ... ,Ak . Assume that 

Re A1 > Re A2 > > Re Ak and Lo satisfies (10) and (11). Then one 

can show that L( t) converges to an upper tri angul ar matri x as t -+ 00 • 

We end thi s secti on by a bri ef di scussi on of the case when La has 

pairs of complex conjugate eigenvalues. To illustrate the idea we 

consider a 4x4 real matrix La with eigenvalues A1,A2,A 3,A .. where 

IAll=IA21 and R~Al> ReA 3 > ReA ... Let A1 =a+iB,A2 =a-iB 

with a and 8 real. As in (10) and (11), let L = X A X-l where o . 0 a -
[1 = L R. Then, 

o 0 0 

1 a 0 0 

h(t) 1 0 0 
tA - -tA + E(t) e Lo e = 

0 0 1 0 

a 0 0 1 

E(t) -+ 0 as t-+oo and h(t) = e-2iBt (l:o)21· Let L3 (t) be the 4 x 4 

matrix shown above so that 
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= Xo(L (t) +E(t)etA R 
3 0 

Here l+Rl(t)L~l(t)E(t)R;l(t) = Q2(t)R)t) for large t. As in the 

proof of Theorem 1 we get now 

In order to deduce the asymptotics of Q(t) we need the following facts: 

i) The matrix R
1
(t) L~l(t) E(t) R;l(t) goes to zero and Q2(t) 

approaches I as t + co • 

i i) The thi rd and fourth columns of Q 1 (t) are independent of t. 

This is because the second, third and fourth columns of 

XOL3 (t) are the same as those of Xo' and the first column 

of X
O
L

3
(t) is a linear combination of the first and second 

columns of Xo. Thus if Qo denotes the matrix obtained by 

carrying out the Gram Schmidt process on the columns of Xo 

.. 
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then the third and the fourth columns of Q1(t) are the 

s~e as those of Qo • 

iii) From (ii) and the relation R1(t) = Q7(t)X oL3 it follows 

that the elements. (R1)33' (R1)3 .. ' and (R1) .... are all 

independent of t and the same is true of the correspondi ng 

-1 
elements of R1(t) L3 (t). 

For 1 arge t we can thus express 

Q(t) = Q1(t) D + F1(t) 

with F (t).-+ 0 1 as t-+oo. 

L(t) = DTQT(t)L Q (t)D + F (t) 
1 0 1 Z 

with F(t)-+O as t-+oo. 
Z 

Finally, eliminating Q 1 (t) gives 

where L (t) has the form shown be 1 ow. 
00 

a1 (t) az (t) a
3
(t) a .. (t) 

b
1 
(t) bz(t) b3 (t) b .. (t) 

Loo (t) = 
0 0 A3 C 

0 0 0 A .. 
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The functions a.(tJ, b.(t) j = 1,2,3,4 are periodic with 
J J 

peri od ~ and cis a constant. Thus L( t) is asymptoti c to a 

periodic orbit. In the extreme case when A1 = A
2

, A = A with 
3 4 

1m Al # 0, 1m A3 # 0, L(t) is asymptotic to an almost periodic orbit. 

Analogous results hold for the general n x n case. . ~ . 

.. , 
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