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ABSTRACT 

. The erosion of several commercial piping steels by coal-solvent 

slurries was investigated at room and elevated temperatures. The 

liquid solvents used; kerosene, creosote oil and anthracene oil, had 

different viscosities that resulted in marked differences in the 

eros i vi ty of the s lurr ies. The eff ec t s of the mechan ica I prop ert ies 

and compositions of the steel alloys were related to their erosion 

behavior. The effect on the erosion of steel alloys of the impingement 

angle of the slurry was determined and related to the viscosity and 

lubricity of the slurry carrier liquids. The effect of heat treatment 

of low alloy steels on their erosion rates was determined. 

IBTRODUCnOR 

The erosion behavior of piping steels in coal conversion process 

plants by slurries consisting of small particles of coal and reacted 

coal carried in liquid solvents is an important design consideration. 

Reference 1 presents some examples of erosion which occurred during the 

operation of the Exxon Donner Solvent (EDS) process pilot plant. It 

was determined that erosion of surfaces was the most prevalent surface 

deterioration mechanism which occurred during the operation of the 

pilot plant. 

In past work in this laboratory on slurry erosion of ductile 

alloys2, relations were established between erosion and several slurry 

variables such as coal particle size, flow velocity, solids loading, 

the viscosity and lubricity of the carrier fluid, and the temperature 

at which erosion took place. Other work on slurry ·erosion behavior3 
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has shown that the mineral constituency of the coal and its microscopic 

distribution can be directly related to the shape of the erosion 

craters that occur when the coal particles strike the metal surface. 

It was also reported in Reference 3 that the velocity exponent relation 

to the erosion rate when coal or alumina and water slurries were used 

ranged from 0.7 to 2.1, well below the exponents of 2.4 to 4 that have 

been measured in gas-solid particle erosion. In slurry erosion, the 

velocity exponent was also determined to vary with impingement angles 

for the 1050 carbon steel that was tested. 

In the work reported herein the effect on the erosion of a number 

of steel compositions by variables such as chromium content and heat 

treatment of the target material, carrier fluids of varying viscosity 

and lubricity, particle impingement angle and velocity and test 

temperature were determined. Thus, the effects of a spectrum of metal 

composition and erosion environment variables on erosion rates and 

mechanisms is beginning to be understood to support design efforts for 

coal conversion systems. The compositions of the steels tested are 

listed in Table 1. 

TEST PROCEDURES 

Two test devices were used to determine the erosion behavior of 

the steels. A slurry pot was used to determine the effects of 

different solvent liquids and test temperatures on the erosion behavior 

of Scm long x 3mm dia rods that were rotated in a 3 liter pot of slurry 

at the ends of arms attached to a rotating shaft. This device is 

described in detail in Reference 2. The test specimens were weighed 

periodically during a two hour test exposure to determine the amount of 
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erosion which had occurred. 

The particle impingement angle and velocity effects were 

determined by using a jet impingement tester which directed a slurry 

stream at the flat surface of a Scm x 2cm x 6mm thick specimen. Figure 

1 is a schematic of the device. The slurry is propelled through the 

nozzle by the pressure that is imposed on the stirred storage tank of 

slurry. Eighteen gallons of slurry were used in each ambient 

temperature test. The amount of erosion which occurred was determined 

by weighing the specimen. The angle of impingement was varied by 

adjusting the cradle that the specimen was placed in. 

RESULTS 

1. Effect of Slurry Fluid 

Three solvents have been used in the slurry pot tests. They were: 

kerosene, creosote oil and anthracene oil. The latter two were 

primarily used in elevated temperature tests designed to simulate the 

coal-process solvent mixing that occurs at the beginning of several 

coal liquefaction processes. Table 2 lists the viscosities of the 

three solvents at each of the test temperatures used; 28 0
, 95 0

, 120 0 

and l7s oC.4 

The kerosene-coal slurry erosion results were reported in detail 

1n Reference 2. Figure 2 shows the cumulative erosion rate curves for 

several alloys tested at 9s oC with a velocity of 15m/so It can be seen 

that the 1018 (As3) steel and the 304SS eroded at higher rates than 

those of the other steels tested. This occurrence was fairly 

consistent when coal-kerosene slurries were used. The ini t ial 
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curvature of the curves 1.S believed to be due to comminution of the 

coal particles at the beginning of the two hour exposure in the slurry 

pot. 

The cumulative erOS1.on rate curves for the alloys tested using a 

coal-creosote oil slurry at 9s oC and lsm/s are shown in Figure 3. In 

this higher viscosity slurry (see Table 2), the 1018 steel erodes at a 

higher rate than the other steels, but the 30455 erodes at the lowest 

rate. Note that the erosion rates in the creosote oil slurry are lower 

than those in the kerosene liquid slurry. The coal used in all of the 

tests reported herein was 6spm dia ave. particle size Illinois #6 coal. 

The distribution of erosion rates among the steels differs somewhat 

between the two slurries. 

The coal-anthracene oil slurry erosion curves for 4 alloys are 

shown in Figure 4. The 1018 and 30455 erosion rates are again the 

highest rates shown. The erosion rates which occur in coal-anthracene 

slurries are lower than those which result from coal-creosote oil or 

kerosene slurries. Figure 5 plots the erosion rates for 32155 that 

result from the 3 slurries at a test temperature of 9s o C. The 

viscosities of the 3 liquids at 9s oC are noted beneath the liquid 

designations. The reduction in erosion rates is a function of the 

iricreasing viscosity of the liquids and their differences in lubricity. 

The large difference in erosivity between the creosote oil and the 

anthracene oil appears to be due primarily to a lubricity difference 

as the viscosity difference is relatively small. Lubricity is a major 

factor in establishing the erosivity of a slurry as was shown 1.n 

Reference 2 for coal-hexadecane slurries. Figure 6 shows the effect of 
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principally a viscosity difference on the erosion rates of 4 alloys 

tested using coal-kerosene and cresote oil slurries. 

When the data used to plot the cumulative erosion rate curves 

shown in Figures 2 - 4 is plotted to indicate the incremental erosion 

which occurs 1.n each time increment of the test, the curves for the 

various ste~ls shown in Figure 7 result. The general shape of the 

curves shown for the creosote oil-coal slurry test were also observed 

for steels tested in kerosene and anthracene oil-coal slurries. It can 

be seen that there is a high initial, incremental erosion rate and a 

~ubsequent decrease in the erosion rate with a tendency to flatten out 

at 120 m1.n. The flattening of the curve indicates an approach to a 

steady state incremental erosion rate. The peak rates are as much as 

three times the rates at 120 min. 

2~ Effect of Test Conditions 

The effect of different velocities on the elevated temperature 

erosion rates of 1018 steel are shown in Figure 8 for a coal-anthracene 

oil slurry at 120 0 C. Similar curves for alloys tested in coal-kerosene 

slurries are contained in Reference 2. The effect of velocity on the 

erosion rate of 1018 steel at different impingement angles is shown in 

Figure 9. The low velocity exponents, n, measured in the slurry tests 

compared to exponents in the range of n=2.5 - 3 measured for gas-solid 

particle erosion are similar to those reported in Reference 3. 

The effect of intermediate elevated temperatures on the erosion 

rates of steel alloys is primarily a function of the viscosity changes 

in the liquid. As can be seen in Figure 10, increasing the temperature 

causes an increase in the erosion rate of the alloys, primarily because 
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the viscosity of the anthracene oil is decreasing. The reason for the 

dec~ease in the rate of erosion of the 1018 steel at l20 0 C compared to 

its rate at 9s oC is not know but may be due to changes in the ductility 

or strain hardening characteristics of the alloy with temperature or to 

reactions between the coal and the solvent. 

3. Effect of Impingement Angle 

The effect of the impingement angle of the slurry on the steel 

specimens was determined using the jet impingement tester. The general 

shape of the curves of erosion rate v.s. impingement angle were the 

same for all alloys tested at ambient temperature. Figure 11 shows the 

curves for 2 1/4CrlMo steel at two slurry velocities. Unlike the curves 

for ductile metals tested in gas-solid particle erosive streams which 

reach an erosion rate peak at impingement angles around 20 0 and then 

drop off to lower rates at higher angles, all of the steels tested had 

increasing erosion rates with impingement angles to a maximum rate at 

a=90 0
• 

However, a secondary erosion rate peak occurred at impingement 

angles in the 40 0 and 50 0 range depending on the alloy tested, its heat 

treated condition and the slurry velocity. At the higher velocities, 

the peak was more pronounced. This can be seen more dramatically in 

Figure 12 for 1018 steel. Plots of erosion rate v.s. velocity for this 

steel are shown in Figure 9. At the lower velocities, the secondary 

erosion rate peak was generally subdued for the alloys tested, as can 

be seen in Figure 12. 

The effect of heat treatment and the resultant morphology 
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differences in an alloy on its erosion behavior 1S shown in Figure 13. 

The low ductility, untempered martensite of the as-quenched 4340 steel 

had a considerably higher erosion rate when eroded by a coal-kerosene 

slurry than the more ductile tempered martensite and spheroidized 

versions of the alloy. the latter two heat treat conditions had 

similar erosion rates even through their strength differed by a factor 

of two. Generally, the lower strength spheroidized condition had a 

higher erosion rate. In the spheroidized condition both the 4340 and 

the 1018 steels had similar curves of erosion rate v.s. impingement 

angle, as can be seen in Figure 14. 

The austenitic stainless steels had a sharp increase in erosion. 

rate over a narrow range of impingement angles, as shown in Figure 15. 

The 304SS had a higher erosion rate than the 321SS at all angles except 

the secondary peak angle and 90 0 . At these two angles, both alloys had 

the same erosion rate. 

4. Effect of Materials Properties 

The relative erosion resistance ranking of the various piping 

steels tested varied with the slurry fluid, temperature, velocity and 

the duration of the heat, see Figures 2-4. In order to determine what 

correlations might exist between a steel's properties and erosion 

resistance, families of curves were prepared relating properties to 

erosion rates. Figures 16-21 are typical sets of curves shown for the 

test conditions of 30 wt% coal-creosote oil at 17s oC and a velocity of 

Ism/s. Figure 16 plots the cumulative erosion rate for a two hour test 

duration. The order of the alloys is different from the set tested at 

9s oC that is shown in Figure 3. Figures 17 and 18 show that there is 
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no correlation between erosion rate and tensile and yield strength. 

There was also no correlation for elongation as can be seen in Figure 

19. This differs from tests from several of the alloys in gas-solid 

particle erosion where increasing ductility caused a decrease in 

erosion rate. 5 

Figure 20 indicates that with increasing hardness the erosion rate 

tends to decrease. However, the 5Cr 1/2Mo steel does not follow this 

trend, having an erosion rate 50% less than other steels at the same 

hardness. This also differs from their behavior in gas-solid partie Ie 

erosion where no such correlation existed. The plot of the chromium 

content of the alloys v.s. erosion rate, Figure 21, indicated that a 

m1n1mum erosion rate occurred between 5 and 10% chromium for the alloys 

in their annealed condition. Further work is required to establish 

which properties relate more directly to erosion ~ates so that criteria 

for alloy selection and development of improved alloys can be 

established. 

DISCUSSION 

The use of different carrier liquids; ie, kerosene, creosote oil 

and anthracene oil with the same coal particles, -200mesh Illinois #6 

coal indicated that increasing the viscosity and lubricity of the 

organic solvents resulted in 'a decrease in the erosivity of the 

res u 1 tan t s 1 u r r i e s . Fig u res 5 and 6 s how t his e f f e c t d ire c t 1 Y . Th e 

proposed reason for this effect relates to the ability of the liquids 

to modify the force with which the particles strike the surface. As 

the viscosity and lubricity of the liquid increase, the particle force 
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at the alloy surface is reduced, thereby reducing its erosivity. This 

effect was discussed in Reference 2 for room temperature tests. The 

opposite effect can occur at elevated temperatures. The increase in the 

erosion rate with temperature for the anthracene oil-coal slurries 

shown in Figure 10 can be due to the effect of temperature reducing the 

viscosity and thereby, increasing the erosivity of the coal particles. 

The drop 1n the erosion rate of the 1018 steel at still higher 

temperatures can be due to reactions between the oil and the coal or 

changes in the properties of the steel. This reverse effect of higher 

test temperature resulting in lower erosion rates can also be seen by 

comparing Figures 3 and 16 for creosote oil-coal slurries at 95 0 and 

l75 0 C. 

The role of the lubricity can be estimated by comparing the 

erosion rates for the 321SS tested in the three slurries shown in 

Figure 5. The relatively small difference 1n viscosity between the 

creosote oil, 1.07 cp, and the anthracene oil, 1.10 cp resulted in as 

great a decrease in erosion rate as the larger viscosity difference 

between kerosene, 0.7cp and creosote oil, 1.07 cpo Much of this 

difference 1S thought to be due to the higher lubricity of the 

anthracene oil compared to the creosote oil. 

The high initial incremental erosion rates for the alloys tested 

shown in Figure 7 with a subsequent decrease to rates that are 

approaching a steady state rate are thought to be due to two 

complimentary effects. The lesser effect is that of comminution of the 

eroding particles. Because the same slurry is used throughout the test 

period, the same particles repeatedly strike the test specimens. Early 

9 



Ln the tests, these particles are at their largest size and are, 

therefore more erosive than they are later in the test when, through 

some comminution, they reach a smaller, steady state size. 

The much more significant effect that causes the incremental 

erosion rate to decrease with test time is due to the surface work 

hardening of the steel. The plastic deformation of the surface of the 

steel which occurs during the erosion process work hardens the steel, 

making it more resistant to subsequent erosion. This effect in slurry 

erosion is different from that which occurs in gas-solid particle 

erosion where adiabatic shear deformation results in a significant 

heating of the immediate surface to near the annealing temperature of 

the alloy. The heating prevents the immediate surface from work 

hardening and, instead, causes the sub-surface region to work harden. 

In liquid-solid particle slurry erosion, the liquid acts as a coolant, 

preventing the surface from heating and thereby, allowing the surface 

to be cold worked. 

The effect of impingement angle on the erosion rates of 1018 steel 

shown in Figure 9 where the curves are higher with greater impingement 

angles can also be related to the ability of the carrier liquid to 

reduce the erosivity of the particles in the slurry. At the low 

angles, this effect LS greater than at the higher angles. The ability 

of the particles to impact the surface with the greatest force occurs 

at a=90 and it is at this impingement angle that the highest erosion 

rate occurs. The erosion rate v.s. impingement angle curves shown in 

Figures II-IS which indicate that the erosion rate generally 

increases with impingement angle are further evidence of the 
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ameliorating effect of the liquid on the erosion behavior of the 

slurries. 

It is thought that the secondary erosion rate peak at impingement 

angles of 40 0 to 50 0 1S related to the same mechanism that causes it to 

occur at 20 0 to 30 0 1n gas-solid particle erosion. 2,6 Both peaks are 

the result of the formation of platelets of extruded material as the 

result of the impact of the eroding particles on the surface. When the 

direction of the particle striking the surface and the force it exerts 

maximize the extrusion effect, at a somewhat shallow angle, the size of 

the platelets produced are larger and the erosion rate is higher. The 

effect of the liquid carrier is evidenced by the fact that the peak 

impingement angle where the force of the particle and its directional 

vector combine to develop the largest size platelets requires a steeper 

angle to offset the viscosity and lubricating effects of the liquid. 

The relationships between the properties of the alloys tested and 

their eros ion ra tes, Figures 17 -21, ind ica t e tha t additional 

properties have to be considered before firm guidance is available for 

the selection of alloys or the development of improved alloys for 

slurry erosion service. More detailed analysis of the differences in 

the morphologies of the alloys and their phase di'stributions in the 

annealed condition may contribute to understand the effect of chromium 

content on erosion rate as is shown in Figure 21. Another 

consideration is the difference in strain hardening coefficient with 

chromium content which would relate to the work hardening effect shown 

in Figure 7. 
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The fact that erosion rates decreased with increasing hardness, 

Figure 20, but did not relate to tensile or yield strength indicates 

that the indentation behavior of the alloys under a pointed load rather 

than the strength-hardness relationship dictates the erosion behavior 

of the alloy. 

CONCLUSIONS 

1. The erosion rates of steels by coal particles 1n liquid solvents 

decreases as the viscosity-lubricity of the liquids increase. 

2. In liquid-solid particle slurry erosion, the liquid acts as a 

coolant, preventing adiabatic shear heating of the surface which 

results in cold working of the surface as the erosion proceeds, 

with a resultant decrease in the erosion rate. 

3. The erosion rates of steels 1n coal-solvent slurries increase with 

impingement angle, reaching a maximum at a =90 0
• 

4. A secondary peak of erosion occurs at a=40° - 50 0 in coal-solvent 

slurry erosion that can be related to the same extrusion of 

platelets mechanism that causes an erosion peak to occur at a=200 

- 30 Q in gas- solid particle erosion. 

5. The velocity exponents of erosion for steels in coal-solvent 

slurries are lower than those measured in gas-solid particle 

erosion. 

6. The increase in erosion rates of piping steels with increasing 

slurry temperature is due to the decrease 1n the viscosity of the 

carrier liquid with temperature. 
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FIGURES 

1. Schematic of jet impingement tester. 

2. Erosion rates of steels tested in coal-kerosene slurries at 95°C, 
15 m/s. 

3. Erosion rates of steels tested in coal-creosote oil slurries at 
9S oC, 15 m/s. 

4. Erosion rates of steels tested 1n coal-anthracene oil slurries at 
9s oC, 12 m/s. 

5. Erosion rates of 32lSS as a function of the carrier liq~id. 

6. Erosion rates of steel alloys in kerosene and creosote oil 
slurries. 

7. Incremental erosion rates of steels in creosote oil-coal slurries 
at 9s oC. 

8. Erosion rates of 1018 steel at 6 and 12 mls 1n coal-anthracene oil 
slurries. 

9. Erosion rate vs slurry velocity for H.R. 1018 steel. 

10. Erosion rates of steels vs test temperature using coal-anthracene 
oil slurries. 

11. Erosion rates of 2-1/4 Cr lMo steel vs impingement angle at 2s oC. 

12. Erosion rates of H.R. 1018 steel vs impingement angle at 25°C. 

13. Erosion rates of 4340 steel at 3 heat treatments vs impingement 
angle. 

14. Erosion rates of spherodized 4340 and 1018 steels vs impingement 
angle. 

15. Erosion rates of 304SS and 32lSS vs impingement angle. 

16. Erosion rates of several steel alloys tested in coal-creosote oil 
slurries at l7soC. 
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17. Relationship between tensile strength and erosion rate of several 
steel alloys. 

18. Relationship between yield strength and erosion rate of several 
steel alloys. 

19. Relationship between elongation and erosion rate of several steel 
alloys. 

20. Relationship between hardness and erosion rate of several steel 
alloys. 

21. Relationship between chromium content and erosion rate of several 
steel alloys. 
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DIRECT IMPINGEMENT TEST 
SET-UP 

Components 

Propellant Gas 6. Stirring Motor 
Pressure Gauge 7. Heating Gas Inlet 
Pre-Mix Slurry 8. Pre-Heating Exchange 
Stirrer 9. Nozzle 
Slurry Re-Fill Inlet 10. Gas Exhaust 

Fig. 1. Schematic of jet impingement tester. 

filter 

XBL 783-452 

I!. Insulation 
12. Rotatable Specimen Mount 
13. Thermocouple 
14. Drain 
15. Secondary Valve 
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